
UC Irvine
UC Irvine Previously Published Works

Title
Finite determining parameters feedback control for distributed nonlinear dissipative 
systems - a computational study

Permalink
https://escholarship.org/uc/item/42z2v555

Authors
Lunasin, Evelyn
Titi, Edriss S

Publication Date
2015-06-11
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/42z2v555
https://escholarship.org
http://www.cdlib.org/


Finite determining parameters feedback control for
distributed nonlinear dissipative systems - a

computational study

Evelyn Lunasin1 and Edriss S. Titi 2,3

1 Department of Mathematics, United States Naval Academy, Annapolis, MD 21402
lunasin@usna.edu

2 Departments of Mathematics, Texas A&M University, College Station, TX 77843-3368,
USA.

3 Department of Computer Science and Applied Mathematics, The Weizmann Institute of
Science, Rehovot 76100, Israel.

titi@math.tamu.edu and edriss.titi@weizmann.ac.il

June 11, 2015

Abstract

We present a computational study of a simple finite-dimensional feedback
control algorithm for stabilizing solutions of infinite-dimensional dissipative evo-
lution equations such as reaction-diffusion systems, the Navier-Stokes equations
and the Kuramoto-Sivashinsky equation. This feedback control scheme takes
advantage of the fact that such systems possess finite number of determining
parameters or degrees of freedom, namely, finite number of determining Fourier
modes, determining nodes, and determining interpolants and projections. In
particular, the feedback control scheme uses finitely many of such observables
and controllers that are acting on the coarse spatial scales. We demonstrate
our numerical results for the stabilization of the unstable zero solution of the
1D Chafee-Infante equation and 1D Kuramoto-Sivashinksky equation. We give
rigorous stability analysis for the feedback control algorithm and derive sufficient
conditions relating the control parameters and model parameter values to attune
to the control objective.

Keywords. Chafee-Infante, Kuramoto-Sivashinksky, reaction-diffusion, Navier-
Stokes equations, feedback control, data assimilation, determining modes, deter-
mining nodes, determining volume elements.
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1 Introduction

Efficient algorithms for control and stabilization of flows for various transport-
reaction-diffusion systems have many important applications in several areas
of science and engineering. Representative applications include stabilizing flame
front propagation, catalytic rod, chemical vapor deposition – a process often used
in the semiconductor industry to produce thin films for defense-related applica-
tions and microelectronics manufacturing, and nonlinear control of Czochral-
ski crystal growth processes – a well established industrial process used for the
production of silicon needed in the construction of wafers for fabrication of mi-
croelectronic chips and other micro devices, to name a few (see, e.g., [9] for a
detailed description of set-up and models for these industrial and engineering
applications).

For several of these applications, the model equations governing its dynamics
are classified as dissipative dynamical systems that are known to have a finite
number of degrees of freedom. Thus, various feedback control approaches are
based on reduced order models. To name some of these works, we direct the
reader to [1, 2, 20, 23, 37, 52, 53, 56] and references therein. Despite many
efforts, there are only a few rigorous analytical work in feedback control theory
justifying these algorithms. There is also the conventional set-back on the real
time implementation of these algorithms in industrial control systems.

In [4], the authors introduced a simple finite-dimensional feedback control
algorithm for stabilizing solutions of infinite-dimensional dissipative evolution
equations, such as reaction-diffusion systems, the Navier-Stokes equations and
the Kuramoto-Sivashinsky equation. The feedback control scheme uses finitely
many observables and controllers which is consistent and stems from the fact
that such systems possess a finite number of determining parameters or degrees
of freedom, for example, finite number of determining Fourier modes, determining
nodes, and determining interpolants and projections.

We note that based on this new control algorithm a new continuous data
assimilations algorithm that has applications for weather prediction was devel-
oped in [3], (see also [21, 22] for abridged continuous data assimilation). With
the assumption that the observational data measurements are free of noise, the
authors in [3] provided sufficient conditions on the spatial resolution of the col-
lected coarse mesh data and the relaxation parameter that guarantees that the
approximating solution obtained from this algorithm converges to the unknown
reference solution over time. Then, in [6], the performance of this linear feedback
control algorithm applied to data assimilations where the observational data con-
tains stochastic measurement errors was studied. The algorithm is applied to the
2D Navier-Stokes equations. The resulting equation in the algorithm is a Navier-
Stokes-like equation with stochastic feedback term that attunes the large scales in
the approximate solution to those of the reference solution corresponding to the
measurements. They found resolution conditions on the observational data and
the relaxation/nudging parameter in which the expected value of the difference
between the approximate solution, recovered by proposed linear feedback control
algorithm and the exact solution is bounded by a factor which depends on the
Grashof (Reynolds) number multiplied by the variance of the noise, asymptoti-
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cally in time. We also note that the feedback controller proposed in [4] can be
used for stabilization of the zero steady state solutions of a wide class of nonlinear
dissipative wave equations, (see. eg. [42]).

In this paper, we implement the feedback control algorithm for a simple
reaction-diffusion equation, the Chafee-Infante equation, which is the real version
of the complex Ginzburg-Landau equation, and for the Kuramoto-Sivashinksy
equation (KSE), a model for flame front propagation or flowing thin films on
inclined surface. We give rigorous stability analysis for the feedback control
algorithm for stabilizing the zero unstable steady state solution and derive the
sufficient conditions relating the control parameters and model parameter values.
The analysis for the more general case of stabilizing a nonzero reference solution
of the KSE is provided in the appendix.

As an initial test case, we implement the control algorithm where the actua-
tors are taken to be the first m Fourier modes and the control inputs prescribe
the amplitude of the modes. Then, we implement the control algorithm using
determining volume elements (local spatial averages) and as well as the deter-
mining volume elements based on nodal values. We also apply the algorithm for
control of nonlinear parabolic PDE system to some recent feedback control case
studies of the catalytic rod with or without uncertainty on the variables and give
a comparison of results to existing control algorithms. For the catalytic rod with
uncertainty, the control objective is the regulation of the temperature profile
in the rod through the manipulation of the temperature of the cooling medium
when the dimensionless heat of reaction βT is unknown and time-varying (see pp.
102-117 in [9], for more details). In their control process there is one available
control actuator and one point measurement sensor placed at the center of the
rod. It was found that in the presence of uncertainty, their proposed algorithm
regulates the temperature profile at the desired steady state under a certain tol-
erance which depends on the uncertainty level in the system parameters. We
present our results on a similar computational study using the new simplified
method for control of instabilities in the presence of uncertainty in the model
parameters.

We note that the newly proposed feedback control for controlling general
dissipative evolution equations using finitely many determining parameters like
determining modes, nodes, and volume elements, is without requiring the pres-
ence of separation in spatial scales, in particular, without assuming the existence
of an inertial manifold (see, eg. [53] for using inertial manifold for feedback con-
trol). In addition, it is worth mentioning that one can use this approach to show
that the long-time dynamics of the underlying dissipative evolution equation,
such as the two-dimensional Navier-Stokes equations, can be imbedded in an
infinite-dimensional dynamical system that is induced by an ordinary differential
equations, named determining form, which is governed by a globally Lipschitz
vector field (see, e.g. [24, 25] and [38]).
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2 Interpolant operators as feedback controllers

This section reviews the type of interpolant operators that we will use in our
computational studies.

For ϕ ∈ H1([0, L]) we define

‖ϕ‖2H1 :=
1

L2

∫ L

0
ϕ2(x) dx+

∫ L

0
ϕ2
x(x) dx. (1)

Consider a general linear map Ih : H1([0, L])→ L2([0, L]) which is an interpolant
operator that approximates the identity operator with error of order h. Specifi-
cally, it approximates the inclusion map i : H1 ↪→ L2 such that the estimate

‖φ− Ih(φ)‖L2 ≤ ch‖φ‖H1 , (2)

holds for every φ ∈ H1([0, L]), where c is a dimensionless constant. The last
inequality is a version of the well-known Bramble-Hilbert inequality that usually
appears in the context of finite elements [10].

Examples of approximate interpolant operators, discussed in [4], with the
general mapping property (see e.g., [40, 41]) mentioned above are given below.

2.1 Fourier modes

Consider a periodic function φ. The interpolant operator Ih acting on φ is defined
as the projection onto the first N Fourier modes;

Ih(ϕ) =
a0
2

+
N∑
k=1

ak cos
kπx

L
+

N∑
k=1

bk sin
kπx

L
, h =

L

N
, (3)

where the Fourier coefficients are given by ak = 2
L

∫ L
0 ϕ(x) cos kπxL dx, bk =

2
L

∫ L
0 φ(x) sin kπx

L dx.

2.2 Finite volume elements

The volume element operator is also an interpolant operator satisfying (2). Given
ϕ, we define

Ih(ϕ) =

N∑
k=1

ϕk χJk
(x), (4)

where Jk =
[
(k − 1) LN , k

L
N

)
, for k = 1, . . . , N − 1, and JN =

[
(N − 1) LN , L

]
,

χ
Jk

(x) is the characteristic function of the interval Jk, for k = 1, . . . , N , serving

as the actuator shape function, and where

ϕ̄k =
1

|Jk|

∫
Jk

ϕ(x) dx =
N

L

∫
Jk

ϕ(x) dx,

represents the amplitude for the given actuator. Here, the local averages, ϕk, for
k = 1, ..., N, are the observables, which also serve as the feedback controllers.
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2.3 Interpolant operator based on nodal values

We also consider here where the observables are the values φ(x∗k), where x∗k ∈
Jk = [(k− 1) LN , k

L
N ], k = 1, 2, . . . , N . In this case the feedback control scheme is

given by

Ih(ϕ) =

N∑
k=1

φ(x∗k)χJk
(x), x ∈ [0, L]. (5)

where χ
Jk

(x) is the characteristic function of the interval Jk, for k = 1, . . . , N ,

serving as the actuator shape function.

3 Motivating example: Chafee-Infante equa-

tion

We recall the Chafee-Infante reaction-diffusion equation (or the real version of the
complex Ginzburg-Landau equation) on the interval [0, L], with no flux boundary
condition

∂u

∂t
− ν uxx − αu+ u3 = 0 (6a)

ux(0) = ux(L) = 0, (6b)

for α > 0, large enough, and given initial condition u(x, 0) = u0(x). In [4] the
authors designed a feedback control algorithm to stabilize an unstable steady
state solution of (6a)-(6b) either by observing the values of the solutions at
certain nodal points, local averages of the solutions in subintervals of [0, L], or
by observing finitely many of their Fourier modes. In the case of the steady state
v(x) ≡ 0, as a particular example, the number of feedback control needed to
stabilize this zero solution is proposed (which was then rigorously justified in [4],
see, also [5, 36] and [57] for a similar analysis) to be proportional to the dimension

of unstable manifold which is
√

αL2

π2ν
. To shed some light on this proposed value,

we linearize equation (6a) about the steady state solution v ≡ 0, to obtain

∂v

∂t
− νvxx − αv = 0, (7)

vx(0) = vx(L) = 0.

One can assume a particular solution of the form v(x, t) = ak(t) cos(k xL π), with

given initial condition v0(x) = Ak cos(kxL π), where Ak ∈ IR. Plugging in this
ansatz, we obtain the equation for the time dependent coefficients as follows

ȧk + νak

(
πk

L

)2

− αak = 0, (8)
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whose solution is simply

ak(t) = Ak e
(−ν (πkL )2+α) t.

One then observes that for α > 0, large enough, all the low wave numbers

k2 < αL2

π2ν
are unstable, and hence, one needs at least

√
αL2

π2ν
number of parameters

to stabilize v ≡ 0.

3.1 Chafee-Infante equations: Finite volume elements

The following scheme was proposed as a feedback control system for (6a)-(6b) to
stabilize the steady state solution v ≡ 0:

∂u

∂t
− ν uxx − αu+ u3 = −µIh(u) (9a)

ux(0) = ux(L) = 0, (9b)

where Ih is specified in section 2.
The results concerning global existence, uniqueness and stabilization for gen-

eral family of finite-dimensional feedback control system that includes system
(9a)-(9b) as a particular case, were established in [4]. They showed that every
solution u of (9a)-(9b) tends to zero, as t → ∞, under specific explicit assump-
tions on N , in terms of the physical parameters ν, α, L and µ. Their main results
are stated in the next proposition and theorem. It is worth mentioning that
similar results were first introduced and proved in [33] (see also [15] and [39]).

Proposition 3.1 ([4]). Let ϕ ∈ H1([0, L]) then

‖ϕ(·)−
N∑
k=1

ϕk χJk
(·)‖L2 ≤ h ‖ϕx‖L2 ≤ h ‖ϕ‖H1 , (10)

where h = L
N . Moreover,

‖ϕ‖2L2 ≤ h γ2(ϕ) +

(
h

2π

)2

‖ϕx‖2L2 , (11)

where

γ2(ϕ) =

N∑
k=1

ϕ2
k.

Using the proposition above, applying energy estimates, and giving specific
explicit assumptions on N , in terms of the physical parameters ν, α, L and µ, the
authors of [4] obtained the following theorem:

Theorem 3.1 ([4]). Let N and µ be large enough such that µ ≥ ν
(
2π
h

)2
> α,

where α > 0 and h = L
N . Then ‖u(t)‖L2 tends to zero, as t → ∞, for every

solution u(t) of (9a)-(9b).
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Figure # Actuators µ ν α Interpolant operator

1 0 0 1 100
2 10 300 1 100 finite volume elements

Table 1: Model parameters and type of interpolant operator for the controlled and
uncontrolled 1D Chafee-Infante equations

Remark 2.1

As mentioned in [4], the assumptions of Theorem 3.1, in particular, that N >√
L2 α
4π2ν

, is consistent with the fact that the dimension of the unstable manifold

about v ≡ 0 is of order of
√

L2 α
ν (see for e.g., [5, 36, 57]). It was also noted there

that one can use the same idea to stabilize any other given solution, v(x, t), of
(6a)-(6b) by using a slightly modified feedback control in the right-hand side of
(9a)-(9b) of the form −µ

∑N
k=1(uk − vk) χJk(x). Note that in [44], it was shown

that the dissipative system (6a)-(6b) has only two determining close enough
nodes. Whether one can design a feedback control scheme that stabilizes the
zero stationary solution using only two controllers at these nodes is an open
problem of an ongoing research.

3.2 Reaction-Diffusion feedback control: Numerical
results

3.2.1 Discretization scheme, set-up

We solve the Chafee-Infante equation with or without feedback control, (6a)-(6b)
or (9a)-(9b), respectively, with initial data u0 = A cos(3x), with A = 1, supple-
mented with homogeneous Neumann boundary conditions using finite differences
in space and explicit time stepping. We note that when A � 1, the simulation
exhibits similar behavior. We solve it on the time interval [0, 1], and spatial
interval [0, 1] and choose the step-size ∆t and spatial discretization width ∆x so
that the ratio r = ν∆t/(∆x)2 < 1/2 for stability of the numerical scheme. We
used α = 100 and ν = 1.

3.2.2 Without feedback control

The Chafee-Infante equations in the case where there is no feedback control
(µ = 0) has an unstable trivial steady state. Starting with some initial condition
close to zero, the solution grows in time until it reaches another steady solution
characterized by constant function equal to its maximum value proportional to
the
√
α as expected.
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Figure 1: (a) Open-loop profile showing instability of the u(x, t) = 0 steady state
solution. The solution increases with bound proportional to

√
α. (b) Top-view.

3.2.3 With feedback control: Control turned on at t = 0.

Now we look at the numerical simulation of the control algorithm (9a)-(9b) with
Ih defined as in (4) to test a simple case. We assume that measurements of the
state u(x, t) are available at the discretized positions and discrete times. The
actuator and sensor locations are distributed uniformly throughout the domain.

To give a clear illustration, we only show the results on the time interval
[0, 0.1]. The number of controls NC = 10 is consistent with the number of
unstable modes

√
L2α/ν = 10 with the given parameters α = 100, ν = 1, L = 1.

The value µ = 300 used in the simulation is much smaller than the value stated
in Theorem 3.1. This implies that a less stringent condition is actually required
than derived in the theory.
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Figure 2: (a) Closed-loop profile showing stability of the u(x, t) = 0 steady state
solution. (b) Top-view.
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4 Kuramoto-Sivashinsky equation: Overview

We illustrate the application of the proposed feedback control algorithm to the
stabilization of the zero solution of another nonlinear dissipative PDE known
as the 1D KSE. The KSE equation was originally derived and introduced as a
turbulence model for magnetized plasmas [46, 13], chemical reaction-diffusion
processes [45], and flame front propagation [55]. KSE also models the motion of
a thin viscous fluid or thin film flowing down an inclined wall [8]. In one space
dimension, it is written as

∂u

∂t
= −γ ∂

2u

∂x2
− ν ∂

4u

∂x4
− u∂u

∂x
, x ∈ [0, L] (12)

subject to the periodic boundary conditions, and initial condition:

u(x, 0) = u0(x), (13)

where u(x, t), for example, describes the height of the film fluctuations, and
the parameters γ and ν are given positive constants. Equation (12) can be
nondimensionalized by substituting u → γu/L̃, t → tL̃2/γ, x → L̃x, and ν →
L̃2γν, with L̃ =

L

2π
. In this case one gets the same equation as before with the

modification γ = 1 and L = 2π.
Analytical studies have revealed that the KSE also enjoys finite-dimensional

asymptotic (in time) behavior (see, e.g., [11, 12, 16, 17, 26, 30, 36, 49, 51, 54,
57], and references therein). This is evident due to the fact that such systems
possess finite-dimensional global attractors ([5, 16, 17, 51, 54, 57]), and finite
number of determining modes ([28, 27, 26, 41]), determining nodes ([26, 31, 32,
33, 39, 41, 44]), determining volume elements ([33, 40]) and other finite number
of determining parameters (degrees of freedom) such as finite elements and other
interpolation polynomials ([11, 12, 32].)

Although the KSE also enjoys the property of separation of spatial scales,
which guarantees the existence of a finite-dimensional inertial manifolds (see,
e.g., [16, 17, 29, 30, 57], and references therein), we do not need it for the im-
plementation of the control algorithm. Our feedback algorithm relies on the fact
that the instabilities in such systems occurs solely at large spatial scales, and
hence all that needed is to control these large spatial scales.

To give some justification for the choice of the number of feedback controllers
(for our method the actuators and sensors are in the same locations) it is nec-
essary to know the number of unstable modes of the steady state v(x) ≡ 0 for
a given instability parameter value ν. In order to obtain a heuristic value for
the number of unstable modes, one can perform a simple analysis by linearizing
equation (12) about v ≡ 0, subject to periodic boundary conditions, to obtain
the linear equation

∂v

∂t
= −∂

2v

∂x2
− ν ∂

4v

∂x4
, x ∈ [0, 2π]. (14)
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Assuming a particular solution of the form v(x, t) = ak(t) e
ikx yields the equation

ȧk = (k2 − νk4)ak, (15)

for the time dependent coefficients. We solve equation (15) with initial condition
v0(x) = Ake

ikx, with Ak ∈ IR, which yields

ak(t) = Ak e
k2(1−νk2)t.

This shows that all the low wave numbers k < 1√
ν

are unstable. Thus, one needs

at least 1√
ν

number of parameters to stabilize v ≡ 0. Since the smaller value

of ν, for which the solution u(x, t) = 0 is about to become unstable is ν = 1,
implies that the nonlinear system (12), is locally unstable when ν < 1.

4.1 KSE without feedback control

4.1.1 Discretization scheme, set-up

To show some proof-of-concept corresponding to our heuristic calculations of
the number of unstable modes, we present our simulations for the case where
the ν > 1 and the case where the ν < 1. We choose the initial condition
1e−10 ∗ cosx (1 + sinx) for both cases. Observe that for ν = 1.1 > 1, our linear
stability analysis shows exponential decay to the linearly stable steady state zero
solution. Figure 3a is consistent with this result. The final profile of the film
height is given in Figure 3b.

For the case where ν = 4/15 < 1, our numerical simulation is illustrated in
Figures 4a and 4b. In the context of a thin film flowing in an inclined surface,
Figures 4a and 4b illustrate the unwanted wavy fluctuations that develop in time.
The film height initially starts close to zero and then at around time t = 32 a
pattern starts to evolve. At time t = 80, the solution is eventually attracted to a
stable traveling wave. We show only up to some particular final time to display
a clear transition between patterns or structures.

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3 x 10−19

x

u

Figure 3: (a) Open-loop profile showing stability of the u(x, t) = 0 steady state
solution when ν = 1.1 > 1 (b) Profile of u(x, t = 200).
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Figure 4: (a) Open-loop profile showing instability of the u(x, t) = 0 steady state
solution when ν = 4/15 < 1. (b) Top view profile of u(x, t).

A common goal (see, e.g. [1], [2], [47]) is to identify a control strategy to
suppress the undesirable occurrences of these wavy patterns by using actua-
tors/sensors that control the thin film’s thickness, for example, by adjusting
dynamically in time a valve that serves as a source or sink at specific location
in the inclined plane where the liquid film is flowing. One also needs to design a
control algorithm that is likely to achieve the stabilization of the film height to
the zero solution in real time making the implementation tractable for industrial
control system problems.

5 KSE with feedback control

To stabilize the steady state solution v = 0 of (12), we implement the proposed
feedback control algorithm in [4], applied to KSE, which is given as follows:

∂u

∂t
= −∂

2u

∂x2
− ν ∂

4u

∂x4
− u∂u

∂x
− µ Ih(u), x ∈ [0, 2π] (16)

subject to the periodic boundary conditions, and initial condition u(x, 0) = u0(x),
with

∫ 2π
0 u(x, 0) dx = 0, where the interpolant operator Ih acting on u can be

defined as one of the general interpolants listed in section 2 satisfying certain
properties. Note that the interpolant polynomial here is shifted by its average
in the whole domain [0, 2π] to maintain the invariance of the zero average for
the controlled equation, (see e.g., equation (36) in the numerical results section
below). We begin by establishing global well-posedness and stability results for
the proposed feedback control algorithm.

5.1 Existence, uniqueness and stability results using
finite parameters feedback control

We recall that the existence and uniqueness of solution, as well as the existence
of finite-dimensional global attractor to the system (12) were first established in
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[49] (see also [57]) for odd initial data. The long-time boundedness results was
later improved and extended to any mean-zero initial data in [14, 35]. Improved
estimates were later established in [7] and [34].

In this section we establish the global existence and uniqueness for the general
feedback algorithm stated in (16); and that the Ih feedback control is stabilizing
the steady state solution v ≡ 0 of (12). This will be accomplished by choosing
µ large enough and then choosing h small enough, under the assumptions

µ >
4

ν
and ν > µ ch4. (17)

Our estimates here are formal, but these steps can be justified by the Galerkin
approximation procedure and then passing to the limit while using the relevant
compactness theorems. We will omit the rigorous details of this standard proce-
dure and provide only the formal a-priori estimates (see, e.g., [57]).

Let us now establish the aformentioned formal a-priori bounds for the solution
which are essential for guaranteeing global existence and uniqueness.
System (16) can be rewritten as

∂u

∂t
+
∂2u

∂x2
+ ν

∂4u

∂x4
+ u

∂u

∂x
= −µ Ih(u). (18)

Taking the L2- inner product of (18) with u, integrating by parts, and using the
periodic boundary conditions, the cubic nonlinear term disappears and we obtain

1

2

d

dt

∫ L

0
u2 dx + ν

∫ L

0
u2xx dx = −

∫ L

0
uuxx dx− µ

∫ L

0
Ih(u)u dx.

Writing
Ih(u)u = (Ih(u)− u)u+ u2, (19)

and applying the Cauchy-Schwarz, we get

1

2

d

dt

∫ L

0
u2 dx+ ν

∫ L

0
u2xx dx ≤

(∫ L

0
u2 dx

) 1
2
(∫ L

0
u2xx dx

) 1
2

− µ
∫ L

0
u2 dx+ µ

(∫ L

0
u2 dx

) 1
2
(∫ L

0
|u− Ih(u)|2 dx

) 1
2

.

Using Young’s inequality, we reach

1

2

d

dt
‖u‖2L2 + ν‖uxx‖2L2

≤
‖u‖2L2

ν
+
ν

4
‖uxx‖2L2 −

µ

2
‖u‖2L2 +

µ

2
‖u− Ih(u)‖2L2

(20)

Let us recall the fact that for every φ ∈ H1
per(0, L), with

∫ L

0
φdx = 0, (see Prop.

5 (ii) page 299 of [3]) and thanks to Poincaré inequality, one has

‖φ− Ih(φ)‖L2 ≤ ch ‖φx‖L2 , (21)
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for some constant c. Hereafter, we abuse the notation for an arbitrary constant
c which may change from line to line.

Using the interpolation inequality ‖φx‖2L2 ≤ ‖φ‖L2‖φxx‖L2 and the approxi-
mation inequality (21) one has

1

2

d

dt
‖u‖2L2+

3ν

4
‖uxx‖2L2

≤
(

1

ν
− µ

2

)
‖u‖L2 +

µ

2
ch2‖ux‖2L2

≤
(

1

ν
− µ

2

)
‖u‖L2 +

µ

2
ch2‖u‖L2‖uxx‖L2

(22)

By Young’s inequality we have

µ

2
ch2‖u‖L2‖uxx‖L2 ≤

µ

4
‖u‖2L2 +

µ

4
ch4‖uxx‖2L2 (23)

and substituting (23) to (22) we obtain

1

2

d

dt
‖u‖2L2 +

(
3

4
ν − µ

4
ch4
)
‖uxx‖2L2 ≤

(
1

ν
− µ

4

)
‖u‖2L2 (24)

for every t ∈ [0, T ). Thanks to the assumption (17), we have that(
3

4
ν − µ

4
ch4
)
> 0. (25)

By dropping the ‖uxx‖2L2 term on the left-hand side of (24) and applying Gron-
wall’s inequality we obtain

‖u(t)‖2L2 ≤ e(
1
ν
−µ

4 )t ‖u(0)‖2L2 . (26)

In particular, by assumption (17) we find that u ∈ L∞([0, T ], L2), for all T > 0.
Also notice that from (24) and (17) one can conclude that for every τ > 0

ν

∫ t+τ

t
‖uxx(s)‖2L2 ds ≤ ‖u(t)‖2L2 . (27)

Using (26) and (27) one can easily show the continuous dependence of the
solutions of (16) on the initial data and the uniqueness, using similar energy
estimates, provided the assumptions (21) and (17) hold.

In conclusion, from the above, and in particular thanks to (26) and (27), we
have the following theorem:

Theorem 5.1. Let µ, ν and h be positive parameters satisfying assumption (17);

and that Ih satisfies (21) and
∫ L
0 Ih(u)(x) dx = 0. Suppose T > 0 and u0 ∈

L2([0, L]), then system (16) has a unique solution u ∈ C([0, T ], L2)∩L2([0, T ], H2),
which also depends continuously on the initial data. Moreover,

lim
t→∞
‖u(t)‖2L2 = 0;
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and for every τ > 0

lim
t→∞

∫ t+τ

t
‖uxx(s)‖2L2 ds = 0.

In particular, we established (see (26)) that under that above assumption the
feedback control interpolant operator Ih is stabilizing the steady state solution
v ≡ 0 of (12) in L2.

Remark 5.1. In the KSE (12), the term uxx is responsible for internal destabi-
lizing of the system, as it has been demonstrated in studying (14), and the term
uxxxx is responsible for dissipating energy and stabilizes the system. In order to
show that the KSE is dissipative, one takes advantage of the nonlinear term uux
which transfers energy from low modes (produced by the term uxx) to high modes
which is then dissipated by the term uxxxx. In other words, the nonlinear term is
responsible for preventing the solution to growing indefinitely to infinity. On the
other hand, the feedback control term is a different mechanism which stabilizes
the null state. The feedback control term in (18) is responsible for stabilizing the
low unstable modes (large spatial scales); together with uxxxx it neutralizes the
instability generated by the term uxx. Specifically, the dissipation term uxxxx dis-
sipates the spillover and instabilities of the small scales that Ih(u) might produce
while stabilizing the large spatial scales.

Remark 5.2. Since
∫ L
0 (uxx(·, t))2 dx <∞, then u ∈ H2 for a.e. t > 0. Without

loss of generality, one may assume that u0 ∈ H2 ⊂ H1.

5.2 H1− stability

Here we conclude that under the same assumption (17), the feedback control
interpolant operator Ih is stabilizing the steady state solution v ≡ 0 of (12) in
the H1 norm.

We start by taking the inner product of (18) with −uxx, writing Ih(u) as in
(19), and integrating by parts, to get

1

2

d

dt

∫ L

0
u2x dx+ ν

∫ L

0
u2xxx dx = −

∫ L

0
uxuxxx dx−

1

2

∫ L

0
u2uxxx dx

+ µ

∫ L

0
(Ih(u)− u)uxx dx− µ

∫ L

0
u2x dx

(28)

Applying Cauchy-Schwartz and Hölder’s inequality, using the fact that in one
dimension, H1 ↪→ L∞, (and we have the available Agmon’s inequality ‖φ‖2L∞ ≤
‖φ‖L2‖φx‖L2), and then applying Young’s inequality we obtain
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1

2

d

dt
‖ux‖2L2 + ν‖uxxx‖2L2

≤ ‖ux‖L2‖uxxx‖L2 +
1

2
‖u‖L∞‖u‖L2‖uxxx‖L2

+ µ‖Ih(u)− u‖L2‖uxx‖L2 − µ‖ux‖2L2

≤
2‖ux‖2L2

ν
+
ν

8
‖uxxx‖2L2 +

2

ν
‖u‖3L2‖ux‖L2

+
ν

8
‖uxxx‖2L2 + µ‖u− Ih(u)‖L2‖uxx‖L2 − µ‖ux‖2L2

(29)

Combining like terms we obtain

1

2

d

dt
‖ux‖2L2 +

3ν

4
‖uxxx‖2L2 ≤

(
2

ν
− µ

)
‖ux‖2L2 +

2

ν
‖u‖3L2‖ux‖L2

+ µ‖u− Ih(u)‖L2‖uxx‖L2 .

(30)

Notice that ‖uxx‖2L2 ≤ ‖ux‖L2‖uxxx‖L2 and also recall that we have (21). The
right-hand side of equation (30) becomes

≤
(

2

ν
− µ

)
‖ux‖2L2 +

4

µν2
‖u‖6L2 +

µ

4
‖ux‖2L2 + µch‖ux‖3/2L2 ‖uxxx‖

1/2
L2

≤
(

2

ν
− 3

4
µ

)
‖ux‖2L2 +

4

µν2
‖u‖6L2 +

3µ4/3

4ν1/3
ch4/3‖ux‖2L2 +

ν

4
‖uxxx‖2L2

(31)

(Here we used the Young’s inequality a · b ≤ 3
4a

4/3 + 1
4b

4). Thus we have

1

2

d

dt
‖ux‖2L2 +

ν

2
‖uxxx‖2L2 ≤

(
2

ν
− 3

4
µ+

3

4

µ4/3

ν1/3
ch4/3

)
‖ux‖2L2 +

4

ν2µ
‖u‖6L2 (32)

since µ > 4
ν we have 2

ν −
3
4µ ≤

µ
2 −

3
4µ = −µ

4 . Now since ν > cµh4, we have(
µ4ch4

ν

)1/3

≤ µ

4
. It follows that the coefficient of ‖ux‖L2 , which we denote as

Q, satisfies

Q :=
2

ν
− 3

4
µ+

3

4

µ4/3

ν1/3
ch4/3 ≤ −µ

4
+

3

4

(
µch4

ν

)1/3

µ

≤ −µ
4

+
3

16
µ < 0

(33)

We drop the positive term ν
2‖uxxx‖

2
L2 in (32), recalling that Q < 0 and the fact

that lim
t→∞
‖u(t)‖2L2 = 0, we obtain from Gronwall’s inequality that

lim sup
t→∞

‖ux(t)‖2L2 = 0.
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6 Numerical results: Stabilizing KSE by im-

plementing two types of interpolant operators

Ih

In this section we present the numerical results for the new feedback control algo-
rithm (16). We illustrate through matlab computer simulations, the application
of the proposed new method for stabilizing the unsteady zero solution of the
Kuramoto-Sivashinksy equations. As a simple initial test case, we consider the
example where the actuators are taken to be the first m modes, where m depends
on the number of unstable modes and the control inputs prescribe the amplitude
of the modes. We also simulate the control algorithm using determining volume
elements (local spatial averages) and as well as the determining nodal values.

The stabilization of 1D KSE has been addressed in several earlier works, for
example in [1], [2], and [47], in which the common starting point is reduced-order
system, that can accurately describe the dynamics of the KSE. Then, from this
resulting reduced-order system, the feedback controller can readily be designed
and synthesized by taking advantage of the reduced-order techniques, called the
approximate inertial manifold (AIM) and the proper orthogonal decomposition
(POD) methods. Several other works also addressed the issue of selecting the
optimal actuator/sensor placement so that the desired control energy budget are
achieved with minimal cost, (see for example [48] and references therein).

We utilize a simple modification of the Exponential Time Differencing fourth-
order Runge-Kutta (ETDRK4 ) method used to solve the KSE with feedback
control. This exponential time differencing scheme was originally derived by
Cox and Matthews in [18] and was later modified by Kassam and Trefethen
in [43], treating the problem of numerical instability in the original scheme.
This overcomes a stiff type problem via the exponential time differencing, a
method which uses the idea similar to the method of integrating factor. The
implementation of ETDRK4 for the KSE equation was presented as a simple
example in [43]. We have adapted a similar code for a fixed computational
domain, incorporated the parameter ν as the system parameter, and incorporated
the feedback control term appropriately.

6.1 Case 1: Controlled KSE with finite modes

6.1.1 Projection onto Fourier modes as an interpolant operator

For a motivating simple example, we implement the proposed feedback control
system in [4] for the KSE to stabilize the steady state solution v = 0 of (12),
which is given as follows:

∂u

∂t
= −∂

2u

∂x2
− ν ∂

4u

∂x4
− u∂u

∂x
− µ Ih(u), x ∈ [0, L] (34)

subject to the periodic boundary conditions, with L = 2π, and initial condition

u(x, 0) = u0(x), with

∫ L

0
u(x, 0) dx = 0, where the interpolant operator Ih acting

on u is defined as in (3)
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Here we do not assume any symmetry on the initial data except that its spatial
average is zero. Designing the feedback control based on the first m, L−periodic
Fourier modes, although not practical, is a common practice for testing grounds
of the control method (for example, see [1, 2] and references therein). Here we
present a similar initial test, that is, where feedback control is given simply by
(3). We are able to implement this by modifying the definition of the operator
L in [43] to accommodate the feedback control term −µIh and design a routine
for the feedback control scheme that depends on the number of unstable modes
and the type of interpolation operator Ih.

In Figure 5a and 5b we illustrate the solution to controlled problem using ET-
DRK4. He we start with the initial condition u0(x) = cos(x). ∗ (1 + sin(x)). The
figure in 5a illustrates the open-loop profile showing instability of the u(x, t) = 0
steady state solution for 0 < t < 40 for ν = 4/15 < 1, then the feedback control
with µ = 20 is turned on for t > 40 which exponentially stabilizes the system.
Figure 5b shows the top view profile of u(x, t).

Figure 5: (a) Open-loop profile showing instability of the u(x, t) = 0 steady state
solution for 0 < t < 40 for ν = 4/15 < 1, then the feedback control with µ = 20 is
turned on for t > 40 which exponentially stabilizes the system. (b) Top view profile of
u(x, t).

6.2 Case 2: Stabilizing KSE by implementing finite
volume elements

Using the notation of section 3.1 we consider the proposed feedback control
system in [4] to stabilize the steady state solution v = 0 as follows:

∂u

∂t
= −∂

2u

∂x2
− ν ∂

4u

∂x4
− u∂u

∂x
− µ Ih(u), x ∈ [0, L], (35)

subject to the periodic boundary conditions, with L = 2π, and initial condition
u(x, 0) = u0(x), where the interpolant operator acting on u, Ih(u), is defined as
a slight modification of (3) as follows,

Ih(u) = Ih(u)− 〈Ih(u)〉 , (36)
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where I(u) =
∑N

j=1 ūk χJk
(x), and 〈Ih(u)〉 =

1

L

∫ L

0
Ihu(x, t) dx.

We implement this proposed control algorithm by modifying the main time-
stepping loop via the 4th order Runge-Kutta in section 4 of [43] to accommodate
the feedback control term −µIh and designing a function for the sensor/actuator
placements.

6.2.1 Control turned on at t = tc = 0

We denote by tc the time when the feedback control is turned on. Figure 6
illustrates the solution to controlled problem when the control is turned on at
t = 0. He we used the initial condition

u0(x) =
(

2.5/
√

5
) 5∑
n=1

(sin(nx− nπ) + cos(nx− nπ)) . (37)

The closed-loop profile shows exponential stabilization of the u(x, t) = 0 steady
state solution. The number of controls is NC = 4, which is proportional to the
number of unstable modes.

Figure 6: (a) Closed-loop profile showing fast stabilization of the u(x, t) = 0 steady
state solution for ν = 4/20 < 1, and with µ = 20. (b) Top view profile of u(x, t).

6.3 Case 3: Controlled KSE with interpolant opera-
tor based on nodal values

As we have mentioned earlier, designing the feedback control based on the first m,
2π-periodic Fourier modes, or based on determining volume elements may not be
as practical to implement in industrial setting. This is because you would require
a proportional amount of sensors or controllers as the number of grid points used
in the computer simulations. Here we present a similar application of the control
algorithm but where the feedback control uses (5). The amount of physical
sensors or controllers one needs is proportional to the number of unstable modes
for given parameter values. We are able to implement this simply by modifying
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Figure 7: (a) With u0 = 1e−10 cosx(1 + sinx), the film height starts to destabilize
around t = 32 and then once feedback control is turned on at tc = 40, the solution
stabilizes to zero again. (b) A top view of the controlled profile.

Figure # Actuators µ ν tc Interpolant Operator

3 0 0 1.1 0
4 0 0 4/15 0
5 4 20 4/15 0 Fourier modes
6 4 20 4/20 0 finite volume
7 4 20 4/20 40 nodal values

Table 2: Model parameters and type of interpolant operator for the un-controlled and
controlled 1D Kuramoto-Sivashinksy equations

the feedback control routine that uses the value of the function at the middle of
each subintervals instead of taking the values at every discretized spatial points
and then averaging them as in the previous example with the determining volume
elements.

∂u

∂t
+
∂2u

∂x2
+ ν

∂4u

∂x4
+ u

∂u

∂x
= −µ Ih(u), x ∈ [0, 2π], (38)

with Ih(u) defined as in (5). Using similar initial condition, u0 = 1e−10 cosx(1 +
sinx), the same number of controllers NC = 4 and relaxation parameter µ = 20
which is turned on at tc = 40, we can see in Figure 7, that the film height
starts to destabilize around t = 32 and then once feedback control is turned
on at time tc = 40 it stabilizes exponentially to zero again. We recall that the
simulation time is truncated to give a clear picture of the stabilization process.
We summarize our numerical experiments in Table 2.
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7 Predictive control of catalytic rod with or

without uncertainty variables

We illustrate the application of the proposed new method for control of nonlin-
ear parabolic PDE system to some recent feedback control case studies of the
catalytic rod. We consider the catalytic rod example introduced in [9]. Con-
sider a long thin rod in a reactor where pure species A is fed into the system
and a zeroth-order exothermic catalytic reaction of the form A→ B takes place
on the rod. The reaction is assumed to be exothermic which then allows the
cooling medium that is in contact with the rod for decreasing the temperature.
Under the assumptions of constant density and heat capacity of the rod, con-
stant conductivity of the rod and constant temperature at both ends of the rod
and unlimited supply of species A in the furnace, the model that describes the
evolution of the dimensionless temperature u(x, t) in the reactor as described in
[9] is written as follows

∂u

∂t
=
∂2u

∂x2
+ βT e

− γ
1+u + βU (b(x)q(t)− u)− βT e−γ , (39)

subject to homogeneous Dirichlet boundary conditions:

u(0, t) = 0, u(π, t) = 0, (40)

and initial condition:
u(x, 0) = u0(x), (41)

where βT denotes a dimensionless heat of reaction, γ denotes a dimensionless
activation energy, βU denotes a dimensionless heat transfer coefficient, and q(t)
the manipulated input (supplied by the cooling medium), with b(x) the actuator

distribution shape function which was taken to be b(x) =
√

2
π sin(x) in [9] chosen

in order to supply maximum cooling in the middle of the rod.

7.1 Case 1: Uncontrolled catalytic rod

For the typical values of the model parameters,

βT = 50, βU = 2, γ = 4, (42)

the steady state solution u(x, t) = 0, when there is no control available, is un-
stable. Starting with an initial data with small perturbation near zero, the tem-
perature evolves to another stable steady state where the temperature profile
has a hot-spot in the middle. We run the simulation with the initial condition
u0(x) = 1e−3 sin(2x) on the spatial interval [0, π] and time interval [0, 6]. We
obtain the following results illustrated in Figure 8. The axes are in units of
∆x = π/20 and ∆t = 6/1000.
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Figure 8: (a) Open-loop profile showing instability of the u(x, t) = 0 steady state
solution. (b) Top-view of u(x, t).

7.2 Case 2: Controlled catalytic rod

We now investigate the new feedback control scheme for the catalytic rod problem
which takes the following form:

∂u

∂t
=
∂2u

∂x2
+ βT e

− γ
1+u + βU (−µIh(u)− u)− βT e−γ . (43)

For the given parameters for the catalytic rod problem in (42), we observe one
unstable mode and so we supply our control algorithm with NC = 1. We put
one actuator in the middle of the rod at x = π/2. The interpolant operator is
defined as Ih(u) = ū χ

[0,π]
(x), where ū is the spatial average of u(x, t) on the

interval [0, π].
Under this feedback control scheme, using the same initial condition, we

observed stabilization of the trivial steady state solution as shown in Figure 9.
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Figure 9: (a) Closed-loop profile showing stabilization to u(x, t) = 0 steady state
solution. (b) Top-view.
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7.3 Case 3: Application to catalytic rod with uncer-
tainty

For the catalytic rod with uncertainty, the control objective is the regulation of
the temperature profile in the rod through the manipulation of the temperature
of the cooling medium in the presence of time-varying uncertainty in the heat
of the reaction βT (page 102 [9] for more details). The author in [9] proposed a
procedure for the synthesis of the robust controllers that achieve arbitrary degree
of asymptotic attenuation of the effect of the uncertain variables on the output
based on the construction of higher dimensional approximation of the state slow-
variables subsystems stemming from the concept of inertial manifold. Here we
apply a similar study using the new feedback control algorithm.

For simplicity, we used βT = βT +θ(t), where βT = 50 and θ(t) = sin(0.524t).
The location of the actuator is at x = π/2. In the presence of the uncertainty in
some model parameters values, the control algorithm is able to compensate for
the uncertainty. The result on the bounds for u depends on the size of the error
in the measurements. Our results are shown in Figure 110 for the case where the
initial condition has amplitude of A = 1e−10. Although the stabilizing effect is
not exponential, we see the eventual stabilization to zero.
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Figure 10: (a) Closed-loop profile showing eventual stability. (b) Top-view.

7.4 Case 4: Nodal-point observational measurements

For our last numerical test, we repeat Case 2 but with the feedback control
scheme is given by

∂u

∂t
=
∂2u

∂x2
+ βT e

− γ
1+u + βU (−µIh(u)− u)− βT e−γ , (44)

with Ih(u) = u(π/2)χ[0,π]. So the actuator and sensor are both located in the
middle of the rod at x = π/2. We have observed similar behavior as in the case
of the finite volume case. For this reason we do not present the figures.

We summarize our numerical experiments in Table 3.
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Figure # Actuators µ ν βT βU γ interpolant operator

8 0 0 1 50 2.0 4.0
9 1 30 1 50 2.0 4.0 finite volume
10 1 30 1 varying 2.0 4.0 finite volume

similar to Fig 9 1 30 1 50 2.0 4.0 nodal values

Table 3: Model parameters and type of interpolant operator for the un-controlled and
controlled catalytic rod problem
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8 Appendix

8.1 Existence, uniqueness and stability results for the
control of solution of the KSE (general case).

In this section we will establish the global existence, uniqueness and stability
results for the general feedback algorithm stated as

∂u

∂t
+
∂2u

∂x2
+ ν

∂4u

∂x4
+ u

∂u

∂x
= −µ (Ih(u)− Ih(u∗)), (45)

where Ih is a feedback control interpolant operator that is stabilizing the solution
v = u∗ of the (12). This will be accomplished by choosing µ large enough and
then choosing h small enough, under the assumptions (54), below, and that

µ >
4

ν
and ν ≥ µ ch4. (46)

Under the conditions stated in (46) and (54) we derive formal a-priori bounds for
the difference u−u∗ that are essential for guaranteeing the decay of ‖u−u∗‖L2 to
zero. These a-priori estimates, together with the global existence of u∗, form the
key elements for showing the global existence of the solution u of (45). Notably,
these formal steps can be justified by the Galerkin approximation procedure.
Uniqueness is obtained using similar energy type estimates.

To show convergence of u to the reference solution u∗, we consider the differ-
ence w = u−u∗. The evolution equation for w, which is obtained by subtracting
(12) and (45), is

wt + νwxxxx + wxx = −wwx − u∗wx − wu∗x − µ Ih(w). (47)



Feedback control for distributed nonlinear dissipative systems 25

Multiplying by w, integrating by parts with respect to x using periodic boundary
conditions (the cubic nonlinear term disappears) and using (19), we obtain

1

2

d

dt

∫ L

0
w2 dx+ ν

∫ L

0
w2
xx dx

= −
∫ L

0
wwxx dx−

∫ L

0
wwx u

∗ dx− 1

2

∫ L

0
(w2)x u

∗ dx− µ
∫ L

0
Ih(w)w dx

= ‖wx‖2L2 +
1

2

∫ L

0
w2 u∗x dx− µ‖w‖2L2 + µ

∫ L

0
(w − Ih(w)) w dx

(48)

A straightforward calculations, using the Poincaré, Cauchy-Schwarz, Young and
Agmon (‖ϕ‖2L∞ ≤ ‖ϕ‖L2‖ϕx‖L2) inequalities, yield

1

2

d

dt
‖w‖2L2 + ν ‖wxx‖2L2

≤ 2

ν
‖w‖2L2 +

ν

8
‖wxx‖2L2 +

1

2
‖w‖2L2 ‖u∗x‖L∞ − µ‖w‖2L2 + µ ‖Ih(w)− w‖L2‖w‖L2

≤ ν

8
‖wxx‖2L2 +

(
2

ν
− µ+ ‖u∗x‖L∞

)
‖w‖2L2 + µch‖wx‖L2‖w‖L2

≤ ν

8
‖wxx‖2L2 +

(
2

ν
− µ+ ‖u∗x‖L∞

)
‖w‖2L2 + µch‖w‖3/2

L2 ‖wxx‖
1/2
L2

≤ ν

8
‖wxx‖2L2 +

ν

4
‖wxx‖2L2 +

(
2

ν
− µ+ ‖u∗x‖L∞

)
‖w‖2L2 +

3

4

(
µ4ch4

ν

)1/3

‖w‖2L2

=: Q.

(49)

Hereafter, we abuse the notation for an arbitrary constant c, which may change

from line to line. By assumption (46) that cµh4 ≤ ν we have

(
µ4ch4

ν

)1/3

≤ µ

4
.

Thus,

Q ≤ 3ν

8
‖wxx‖2L2 +

(
2

ν
− 3

4
µ+ ‖u∗x‖L∞

)
‖w‖2L2

≤ 3ν

8
‖wxx‖2L2 +

(
−µ

4
+ ‖u∗x‖L∞

)
‖w‖2L2 ,

(50)

where the last inequality is due to the assumption (46), i.e., µ > 4/ν. In conclu-
sion we have

1

2

d

dt
‖w‖2L2 +

5

8
ν ‖wxx‖2L2 ≤

(
−µ

4
+ ‖u∗x‖L∞

)
‖w‖2L2 ,

and by Gronwall’s inequality it follows that

‖w(t)‖2L2 ≤ e(−
µ
4
+ 1
t

∫ t
0 ‖u

∗
x(s)‖L∞ ds)t ‖w(0)‖2L2 . (51)

Since u∗ is a solution of KSE, it suffices to show that for large enough t we have

−µ
4

+
1

t

∫ t

0
‖u∗x(·, s)‖L∞ ds < −

µ

8
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to get an upper estimate, that decays like e−
µ
8
t, for ‖w(t)‖2L2 . This can be

obtained by requiring additional assumption on µ in terms of the size of the
absorbing ball for KSE ([49],[57]). We then proceed noting that by Sobolev

imbedding theorem in one dimension we have ‖u∗x‖L∞ ≤
(
L
2π

)1/2 ‖u∗xx‖L2 . From
the mathematical theory of 1D KSE (see, e.g.[7, 14, 34, 49, 50, 57]) we have that

lim sup
t→∞

1

t

∫ t

0
‖u∗xx(·, s)‖2L2 ds = R2

2 (52)

where R2 is a number which depends on the ν and L. Therefore

lim sup
t→∞

1

t

∫ t

0
‖u∗x(·, s)‖L∞ ds

≤
(
L

2π

)1/2

lim sup
t→∞

(
1

t

∫ t

0
‖u∗xx(·, s)‖2L2 ds

)1/2

≤
(
L

2π

)1/2

R2.

(53)

Thus, if we assume that

µ

8
≥
(
L

2π

)1/2

R2, (54)

then

lim sup
t→∞

‖w(t)‖2L2 ≤ lim sup
t→∞

e(−
µ
4
+ 1
t

∫ t
0 ‖u

∗
x(s)‖L∞ ds)t‖w(0)‖2L2 = 0 (55)

We obtain the following:

Theorem 8.1. Let µ, ν and h be positive parameters satisfying assumption (46)

and (54); and that Ih satisfies (21) and
∫ L
0 Ih(u)(x) dx = 0. Then for every

T > 0 and u0 ∈ L2([0, L]), system (45) has a unique solution u ∈ C([0, T ], L2) ∩
L2([0, T ], H2), which also depends continuously on the initial data. Moreover,

lim
t→∞
‖u(t)− u∗‖2L2 = 0;

and for every τ > 0

lim
t→∞

∫ t+τ

t
‖uxx(s)− u∗xx‖2L2 ds = 0.

The stability in H1 can be obtained by a slight modification of the previous
analysis. Here we conclude that under the assumption (46) and (54), the feedback
control interpolant operator Ih is stabilizing the steady state solution v ≡ u∗ of
(12) in the H1 norm. Taking the inner product of (47) with −wxx, writing Ih(u)
as in (19) and integrating by parts, yields

1

2

d

dt

∫ L

0
w2
x dx+ ν

∫ L

0
w2
xxx dx

= −
∫ L

0
wxwxxx dx−

1

2

∫ L

0
u∗x(wx)2 dx− 1

2

∫ L

0
w2wxxx dx

+

∫ L

0
u∗x(wwxx) dx+ µ

∫ L

0
(Ih(w)− w)wxx dx− µ

∫ L

0
w2
x dx

(56)
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Applying Cauchy-Schwarz, Hölder’s, Agmon and Gagliardo-Nirenberg interpo-
lation (‖φxx‖2L2 ≤ ‖φx‖L2‖φxxx‖L2) inequalities, and then applying Young in-
equality, we obtain

1

2

d

dt
‖wx‖2L2 + ν‖wxxx‖2L2

≤ ‖wx‖L2‖wxxx‖L2 +
1

2
‖u∗x‖L∞‖wx‖2L2 +

1

2
‖w‖L∞‖w‖L2‖wxxx‖L2 ,

+ ‖u∗x‖L∞‖w‖L2‖wxx‖L2 + µ‖Ih(w)− w‖L2‖wxx‖L2 − µ‖wx‖2L2

=: Q1 +Q2 +Q3 +Q4 +Q5 +Q6,

(57)

with

Q1 = ‖wx‖L2‖wxxx‖L2 ≤
1

ν
‖wx‖2L2 +

ν

4
‖wxxx‖2L2 ,

Q2 =
1

2
‖u∗x‖L∞‖wx‖2L2 ,

Q3 =
1

2
‖w‖L∞‖w‖L2‖wxxx‖L2 ≤

1

2
‖w‖3/2

L2 ‖wx‖
1/2
L2 ‖wxxx‖L2

≤ 1

4ν
‖w‖3L2‖wx‖L2 +

ν

4
‖wxxx‖2L2

≤ 1

2µν2
‖w‖6L2 +

µ

16
‖wx‖2L2 +

ν

4
‖wxxx‖2L2 ,

Q4 = ‖u∗x‖L∞‖w‖L2‖wxx‖L2 ≤ ‖u∗x‖2L∞
h2

4ν
‖w‖2L2 +

ν

h2
‖wxx‖2L2

Q5 = µ‖Ih(w)− w‖L2‖wxx‖L2 ≤ µch‖wx‖L2‖wxx‖L2

≤ µ

16
‖wx‖2L2 + µch2‖wxx‖2L2 ≤

µ

16
‖wx‖2L2 +

ν

h2
‖wxx‖2L2 ,

Q6 = −µ‖wx‖2L2 ,

(58)

where for Q5, we used the approximation identity (21) and the assumption (46)
that ν ≥ µ ch4. Collecting like terms we have

1

2

d

dt
‖wx‖2L2 +

ν

2
‖wxxx‖2L2 ≤

(
1

ν
− µ+

µ

8
+ ‖u∗x‖L∞

)
‖wx‖2L2

+
1

2µν2
‖w‖6L2 +

h2

4ν
‖u∗x‖2L∞‖w‖2L2 +

2ν

h2
‖wxx‖2L2 .

(59)

By assumption (46), that µ >
4

ν
, we have

d

dt
‖wx‖2L2 + ν‖wxxx‖2L2 ≤ 2

(
−µ

2
+ ‖u∗x‖L∞

)
‖wx‖2L2

+
1

µν2
‖w‖6L2 +

h2

2ν
‖u∗x‖2L∞‖w‖2L2 +

4ν

h2
‖wxx‖2L2 .

(60)

Let ε > 0 be a given arbitrarily small number. Thanks to Theorem 8.1 there
exists a T0(ε) > 0, large enough, such that for all t ≥ T0 we have

‖w(t)‖L2 < ε,

∫ t+τ

t
‖wxx(s)‖2L2ds < Kε, and ‖u∗x‖L∞ ≤ 2

(
L

2π

)1/2

R2.

(61)
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Thus, for t ≥ T0 + τ we have

d

dt
‖wx‖2L2 + ν‖wxxx‖2L2 ≤ 2

(
−µ

2
+ ‖u∗x‖L∞

)
‖wx‖2L2+

+
1

µν2
ε6 +

2h2

ν
R2

2 ε
2 +

4ν

h2
‖wxx‖2L2 .

(62)

By assumption (54) and Gronwall inequality we have

‖wx(t)‖2L2 ≤ e−
µ
2
(t−T0) ‖wx(T0)‖2L2 +

2

µ

(
1

µν2
ε6 +

2h2

ν
R2

2 ε
2

)(
e−

µ
2
T0 − e−

µ
2
t
)

+
4ν

h2

∫ t

T0

e−
µ
2
(t−s)‖wxx(s)‖2L2 ds.

(63)

Let us treat the integral J =

∫ t

T0

e−
µ
2
(t−s)‖wxx(s)‖2L2 ds. There exists a nat-

ural number N such that T0 +Nτ ≤ t < T0 + (N + 1)τ . Therefore,

J ≤
∫ T0+(N+1)τ

T0

e−
µ
2
(t−s)‖wxx(s)‖2L2 ds

=

N∑
k=0

∫ T0+(k+1)τ

T0+kτ
e−

µ
2
(t−s)‖wxx(s)‖2L2 ds

≤
N∑
k=0

e−
µ
2
(t−(k+1)τ−T0)

∫ T0+(k+1)τ

T0+kτ
‖wxx(s)‖2L2 ds

≤ Kε e−
µ
2
(t−T0)

N∑
k=0

e
µ
2
(k+1)τ

≤ Kε e−
µ
2
(t−T0)

(
e
µ
2
(N+1)τ − 1

e
µ
2
τ − 1

)
e
µ
2
τ

(64)

Notice that
e−

µ
2
(t−T0)e

µ
2
(N+1)τ = e

µ
2
(T0+(N+1)τ−t) ≤ e

µ
2
τ

and
e−

µ
2
(t−T0) ≥ 0.

Thus, J ≤ Kε
(

eµτ

e
µ
2 τ−1

)
. Using the upper bound for J and noting that e−

µ
2
T0 −

e−
µ
2
t ≤ 1, we obtain from (63), that for t ≥ T0 + τ ,

‖wx(t)‖2L2 ≤ e−
µ
2
(t−T0) ‖wx(T0)‖2L2 + 2

µ

(
1
µν2

ε6 + 2h2

ν R
2
2 ε

2
)

+ 4ν
h2
Kε
(

eµτ

e
µ
2 τ−1

)
.

Taking the limit supremum as t→∞ we get
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lim sup
t→∞

‖wx(t)‖2L2 ≤
2

µ

(
1

µν2
ε6 +

2h2

ν
R2

2 ε
2

)
+

4ν

h2
Kε

(
eµτ

e
µ
2
τ − 1

)
.

We let ε→ 0 to obtain

lim sup
t→0

‖wx(t)‖2L2 = 0, hence, lim
t→0
‖wx(t)‖2L2 = 0.
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