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Abstract

Grid-level valuation and impact of large-scale energy storage deployments

by

Autumn Mariah Preskill

Doctor of Philosophy in Energy and Resources

University of California, Berkeley

Assistant Professor Duncan S Callaway, Chair

Electric power systems are currently facing substantial changes in their operating frame-
works on a wide variety of fronts. With increasing deployment of grid-connected wind and
solar generators, power system operators are concerned that the challenge of following vari-
able generator outputs may degrade system reliability. Additionally, as temperature changes
associated with climate change increase, the magnitudes and frequencies of peak loads will
correspondingly grow, thus compounding the variability problems introduced by intermittent
generation. The fossil fuels that are currently used to run most of the system are changing in
cost as new methods are developed to extract them, even as new policies are being proposed
that restrict or tax carbon emissions. Additionally, much of the current electricity system
infrastructure is nearing the end of its life, and will soon need to be decommissioned or
replaced.

Energy storage has been proposed in several different venues as a solution to many of
these problems. If energy storage can be deployed appropriately, it is possible that variability
could be reduced, fossil fuel dependency could be lessened, and additional investments in
new plants to handle increased demand could be avoided. Though these benefits could be
large, the benefits to adding storage to the current grid have not been fully characterized.

We seek to better characterize the potential for storage to change overall grid operations.
To do this, we use a 240-bus model based on the US Western Interconnection. In this model,
we first optimally locate storage devices in the network and then dispatch them along with
conventional power generation units by using a unit commitment model with DC load flow.
Storage in the model can provide frequency regulation, load following, and arbitrage for each
hour of a study year, and we investigate a range of scenarios for fuel price and renewables
penetration. We use this model to investigate the demand curves for added storage and
added TCL aggregations that function as thermal storage, as well as the extent to which
carbon taxes may have an effect on the overall benefits that storage may provide. We find
that storage and demand response are most valuable operationally and economically when
they are providing high power services like frequency regulation and demand response. We
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also show that the relationship between carbon taxes and the benefits that energy storage
resources could provide is not linear.
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Chapter 1

Introduction

1.1 Overview

Energy storage is increasingly being considered for deployment on the electricity grid. While
many possible functions for grid-connected storage have been identified, the overall value of
storage performing one or more of these functions has not been fully characterized. Further,
storage has often been identified as a technology that has the potential to reduce overall
greenhouse gas emissions and enable renewables, but the extent to which storage can do this is
still being assessed. Carbon taxes also have an important role to play in reducing greenhouse
gas emissions, but they have not been studied in conjunction with storage. Finally, it has
been suggested that energy storage services can be provided through demand response by
aggregating thermostatically controlled loads and controlling their operating temperatures
such that they act as thermal storage when desired. The grid-level benefits of such a strategy
have not been fully assessed.

My research focuses on characterizing the value of increasing the energy storage capability
of the current grid in California and WECC, using existing market structures to assess and
compensate idealized storage devices. Through this research, I attempt to place bounds on
the amount of energy storage that will reduce overall system operation costs in California
and WECC wide, determine the extent to which future system changes might cause the
bounds I assess to move, and characterize the extent to which storage compensation and
total system value are decoupled. I test the hypothesis that large-scale storage penetration
is necessarily going to decrease greenhouse gas emissions on a system-wide basis, and confirm
that, under certain system conditions, storage does indeed lead to an increase in emissions.
I also explore the extent to which carbon prices affect system benefit from storage, revenue
potential for storage, and carbon emissions of the underlying system when storage is present.
Finally, I explore the extent to which TCL aggregations, which operate like storage devices
with time-varying power and energy constraints, can compare to storage in terms of system
benefit.
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1.2 Context and Motivation

The electric power system in the United States is facing a myriad of systemic changes that
have the potential to disrupt current business operations. Renewable energy systems are
increasingly being deployed across the country, and with the addition of their low-cost power
comes a potential decrease in system reliability due to intermittency. As climate change
progresses, peak loads are expected to become higher and more frequent, and the overall
variability of the load to be met is expected to increase. The fossil fuels that are currently
used to run most of the system are increasing in cost, and it is likely that they will become
even more expensive as state, federal, and international bodies continue to implement policies
that aim to reduce carbon emissions. Additionally, much of the current electricity system
infrastructure is nearing the end of its life, and will need to be decommissioned or replaced.

Energy storage is currently being considered as one potential solution to many of these
current and predicted problems. Additionally, energy storage capabilities have been im-
plicated in a variety of proposed scenarios for future grid evolution [64] [45]. Depending
on the type of storage technology, energy storage has the potential to reduce peak loads,
decrease the need for conventional ancillary services, postpone infrastructure investment,
provide ramp support for renewables, and increase system reliability [22]. At present, energy
storage resources are limited, coming primarily from hydropower and having produced only
5.9% of the net electricity generated in 2008 [36]. Compressed air energy storage (CAES),
sodium sulfur batteries, fly wheels, and lithium ion batteries are also being built out, but
their portion of current storage capacity is much smaller than the portion held by pumped
hydro storage [22]. It is likely that the buildout of these newer technologies will depend on
the potential for storage to provide value to the current electricity system.

In light of these observations about storage and its potential for improvements to the
overall grid, several policy decisions have been put into place. Assembly Bill 2514 (AB 2514),
passed in 2010 and amended in 2012, directed the California Public Utilities Commission
(CPUC) to adopt recommendations for increasing the current penetration of storage on the
grid. In 2013, CPUC issued a decision in compliance with AB 2514 that requires all California
utilities (Pacific Gas and Electric Company, Southern California Edison Company and San
Diego Gas & Electric Company) to procure 1325 MW of storage by 2020, with installations
required no later than 2024. The decision also establishes a target for community choice
aggregators and electric service providers to procure energy storage equal to one percent of
their annual 2020 peak load in the same time frame. These entities must file Tier 2 Advice
Letters demonstrating their compliance every two years, starting in 2016 [14].

This decision does not address the duration of the required storage. There are many pos-
sible ways to achieve 1.325 GW of additional storage capacity, using a variety of technologies,
from low energy capacity (e.g., lithiium-ion batteries) to high energy capacity (e.g., pumped
hydro storage). This also means that the added storage could participate in a variety of
markets, and that the storage capacity procured will not be earmarked for any particular
function. Because storage devices can cover such a broad swath of functionality, future pol-
icy decisions that improve on AB 2514 may need further tailoring to ensure optimal future
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system buildouts of storage.
The rulemaking for AB2514 also cites Assembly Bill 32 (AB 32), the Global Warming

Solutions Act, which aims to reduce overall emissions in California to 1990 levels by 2020
[6]. This means that AB2514 is making the implicit assumption that increasing storage
penetrations will necessarily decrease carbon emissions. Unfortunately, this assumption is
not borne out in the literature. [13] shows that storage actually increases carbon emissions
in ERCOT, and [31] shows this more broadly for the US.

1.3 Research Questions and Approaches

Characterizing the value of storage at a system-wide level

The value of storage performing particular electricity system functions has been addressed
in the literature. Sioshansi et. al. investigate the value of the energy arbitrage function of
storage, and demonstrate that the value of energy arbitrage decreases as the total capacity of
storage on the system is increased [56]. Drury, Denholm, and Sioshansi look at the revenue
potential for CAES operators, if they participate in additional markets in addition to the
energy market [20]. Eyer and Corey discuss 26 different value sources for storage, and benefit
ranges in $/kW for each source [24], and the Electric Power Research Institute discusses
benefits of various technology options in a 2010 white paper [22]. In summary, energy
storage is increasingly being considered for deployment on the electricity grid, because of its
potential to benefit the system in several ways, including but not limited to the following
list of major storage benefits.

1. Load Leveling/Arbitrage: By charging when demand is low and discharging when
demand is high, storage can reduce peak loads and reduce overall ramping throughout
the day.

2. Reserves: Storage devices can be used to provide regulation, load following, spinning,
and nonspinning reserves with differing energy/power ratios.

3. Reduced transmission congestion: By strategically placing storage devices, trans-
mission congestion can be reduced by using storage to provide power during high-
congestion times, and charging during low-congestion times.

4. Power quality improvement: Storage devices can be used to reduce voltage sag,
undervoltage, and short interruptions in power supply.

5. Enables Renewables: In addition to improving power quality issues with intermit-
tent generation sources, storage devices can be used to increase the predictability of
the energy sourced from renewables.

6. Reduces Spilling: By charging when generation on the system is greater than de-
mand, storage devices can reduce spilling of unused power.
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7. Reduces Carbon Emissions: By enabling intermittent renewables and reducing the
need for inefficient peaker plants, storage has the potential to reduce the overall carbon
emissions of system operation.

8. Delayed Investments: Peaker plants, transmission lines, and transformers all need
to be replaced or augmented as they wear out and system demand increases. If storage
is used to reduce transmission congestion, level peak load, and improve power quality,
these investments can be delayed, and in some cases may not be necessary.

While many possible functions for grid-connected storage have been identified, the overall
value of storage performing one or more of these functions has not been fully characterized.
It is also possible that there are some synergies between these categories where opportunities
for storage are as yet undiscovered.

1.4 Carbon taxes and their potential effects on

energy storage deployment

If storage is able to reduce spillage, decrease use of peaker plants, and enable the use of
renewables, there exists some potential for storage technologies to reduce the use of carbon
in a system overall. However, it is also possible that a system with carbon-intense baseload
power and peakers that are less carbon intense, that storage could actually increase the
carbon intensity of overall system operations, by charging storage devices using high-carbon
baseload, and then discharging them at times when lower carbon peaker plants would have
been in use. Effectively, this allows high carbon baseload power to be used in situations
when it otherwise would not be, like those that call for fast-ramping or more capacity than
currently exists on the system as baseload. This effect has been demonstrated in Carson and
Novan, 2013 [13] and Hittinger et. al, 2015 [31], as well as Preskill, 2015 [52].

When carbon emissions go up due to a particular policy action or industrial innovation,
it is becoming standard practice for policy makers and scholars to endeavor to balance
out the increase in emissions with a decrease elsewhere, if it is not possible to prevent the
increase altogether. A general strategy for reducing carbon emissions is pricing carbon,
thus ”internalizing the externality” [63]. Many researchers have employed prices or taxes on
carbon as a way to drive down the rate of investment in fossil fuels, as well as incorporate the
social costs of carbon into their models (see [7], [45], [50], and [29], among others). Because
storage is not a generator of energy on its own, and instead operates as an arbitrage provider
in energy markets, the effect of carbon taxes on any possible increases in emissions due to
storage is not straightforward.
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1.5 The storage-like behavior of aggregations of TCLs

As WECC increasingly moves toward a grid system with high-penetration renewables, larger
ramping capabilities will become necessary to meet load in all hours reliably. This is par-
ticularly evidenced in the ”duck chart,” as discussed by CAISO, which indicates that by
2020, almost 14000 MW will be needed for ramp over a mere three hours in the evening
[48]. This occurs as a result of peak demand in the evening overlapping with a sudden cut
in solar generation as the sun sets. In large part due to this phenomenon, the California
Independent System Operator has been developing a flexible ramping product, with the ca-
pability to handle multiple sources of variability that fall between the 15-minute real time
unit commitment (RTUC) window and the 5-minute real time dispatch (RTD) window [66].
Storage could be a good resource for meeting such large ramping requirements, particularly
high power, low duration storage, since the evening ramp is large, but relatively short.

One potential source for this type of storage resource is aggregations of thermostatically-
controlled loads (TCLs). TCL aggregations are a good candidate, because they have high
power capabilities relative to their energy storage potential. Mathieu et. al. (2013) describe
the mechanism by which TCL aggregations might work in detail [42]. When large numbers of
TCLs are operating such that they are within their deadband (meaning that the temperature
is not so extreme that the TCL must be entirely off, or constantly on), it is possible to
control them such that they continue to operate within their deadband, but the sum of their
outputs follows an exogenous signal, rather than simply going up and down with the mean
temperature.

1.6 Overview of the Thesis

Chapter 2 characterizes the value of storage in WECC by iteratively adding storage capacity
to the grid and allowing it to provide a variety of services, including energy arbitrage, regu-
lation, and load following. It also describes the model used for the rest of the work in detail.
In Chapter 3, I use the model from Chapter 2 to show the effects of a carbon tax on the
emissions that can be attributed to added storage. I also discuss the implications for storage
revenues of a carbon tax, and argue that a high tax on carbon (greater than $100/ton CO2

is necessary to ensure that incentives for storage and benefits for the electricity system are
aligned. In Chapter 4, I use the model from Chapter 2 to explore the differences between
traditional storage and thermal storage implemented as aggregations of TCLs with time
varying energy and power constraints.
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Chapter 2

How much energy storage do modern
power systems need?

2.1 Abstract

The central question we seek to address in this paper is: How rapidly do the operating
cost benefits of grid-scale energy storage decline as installed storage capacity increases?
We use a 240-bus model based on the US Western Interconnection, first optimally locating
storage in the network and then dispatching it in a unit commitment model with DC load
flow. The model uses storage to provide frequency regulation, load following, and arbitrage
for each hour of a study year, and we investigate a range of scenarios for fuel price and
renewables penetration. We find that value from long-term energy shifting is negligible at all
penetrations we investigate, but also that displacing fossil-fueled generators from providing
reserves is initially very valuable. However, in most scenarios the value is negligible beyond
10 GWh of storage, or the equivalent of roughly 6 minutes of average demand in the system.
Above penetrations of 4-8 GWh, storage operating cost benefits are less than estimated
capacity values for storage. We also show that storage has the potential to increase overall
carbon emissions in the electricity sector, even when it is not providing significant amounts
of arbitrage and is preferentially providing regulation and load following services.

2.2 Introduction

Energy storage is an important part of a variety of proposed scenarios for future grid evo-
lution [64, 45, 51, 15, 34, 33]. Depending on the type of storage technology, energy storage
has the potential to reduce peak loads, decrease the need for conventional ancillary services,
postpone infrastructure investment, provide ramp support for renewables, and increase sys-
tem reliability [22, 24]. At present, energy storage resources are limited, coming primarily
from hydropower [36]. In the near term, the buildout of newer technologies – including
compressed air energy storage (CAES), sodium sulfur batteries, fly wheels, and lithium ion
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batteries – will depend on the potential for storage to provide value to the current electricity
system.

The most obvious use for storage devices is energy arbitrage, where storage devices are
charged when prices (or system loads in regions without a real time energy price) are low,
and then discharged when prices (or system loads) are high. Several papers have investigated
the potential for energy storage to provide arbitrage services in various systems, e.g.[38], [31],
[8]. However as the total capacity of storage on the system grows, or if the average spread of
energy prices decreases with the addition of high-penetration renewables, the arbitrage value
of storage could decline [28, 56, 30]. Some recent work suggests that revenue from arbitrage
does not grow for storage capacities in excess of 5 hours [8].

As an alternative, several papers investigate the potential for storage to provide reserves.
[20] find that providing reserves in addition to arbitrage services can net an additional $13-
51/kW-yr in revenues for storage devices. [28] studied the impact of a range of storage
technologies in a unit commitment model that included reserve constraints, and although
they did not directly report on the value of providing reserves at different penetration lev-
els, they did find that the operating benefits of storage technologies other than CAES do
not justify their economic costs. [60] and [55] also demonstrate that there are benefits to
providing reserves services using storage devices. Additionally, [9] show that regulation is
the more valuable service to provide over arbitrage. In combination with Bradbury et. al.’s
exploration of the relationship between revenue from arbitrage and duration, these results
strongly suggest that optimizing storage device deployment for reserves over arbitrage will
maximally add value.

[18] also raise the possibility that there is value to colocating storage with intermittent
renewables, but while they demonstrate the value for individual producers by increasing
the proportion of their power they are able to sell over a constrained network, they also
indicate that the overall system benefits of storage are maximized when storage is operating
according to system-wide price signals, rather than according to an individual generator’s
needs. Nevertheless, the location of storage is still important in a congested network, as
the congestion relief provided by storage can allow power to flow from remote locations to
demand centers.

However, these papers shed little light on how these relationships will evolve as we install
increasing quantities of storage on the grid. Services valuable at low penetrations of storage
are likely to be less valuable on the margin at higher penetrations. This paper builds on
these earlier investigations by examining how rapidly the operating cost benefits – including
reserve provision and arbitrage – of grid-scale energy storage decline as the quantity installed
increases. To answer this question we simulate storage operation over a year at different
levels of renewable generation, fuel prices and quantities of storage added. We use a model
that iteratively adds storage capacity to a 240-bus model, choosing buses that maximize
locational value. The model then uses the added resources to provide frequency regulation,
load following, and arbitrage for each hour of the year. The choice of which services to
provide is determined endogenously, based on the most valuable actions and the current
operating constraints of the system. The model is based on a previously published model
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of the US Western Interconnection (WECC) [53], however our central objective is to make
broad conclusions about how storage value depends on a variety of factors, rather than to
precisely capture the specific value of storage in the WECC context.

As with earlier studies that include reserves, we find that storage value does not come
from multi-hour energy shifting, but instead from displacing fossil-fueled generators from
providing reserves; as such systems with higher requirements for regulation and load following
provide more opportunity for storage value. However we find that the operating cost benefits
due to storage decline very quickly with increasing penetrations: In most scenarios the
value is negligible beyond 10 GWh of storage, or the equivalent of roughly 6 minutes of
average demand in the system. We also find that, above penetrations of 4-8 GWh, storage
operating cost benefits are less than hypothetical capacity values for storage – this suggests
that capacity value will dominate investment decisions above those penetrations. In the long
run, if penetrations of wind and solar grow even further and power system fuel mixes evolve
to accommodate those changes, energy storage could play a more important role in diurnal
(or longer) energy shifting, as in [43]. However our results suggest that in the short run
energy storage has relatively little value at the transmission level.

While operating cost benefits are small, we do show that storage has the potential to
increase overall carbon emissions in the electricity sector, even when it is not providing
significant amounts of arbitrage and is preferentially providing regulation and load following
services. These carbon increases continue beyond the point where storage provides significant
operating cost benefits, meaning that even if the primary economic driver for building storage
is capacity value, its day-to-day operations could be detrimental to system-wide carbon
emissions. The carbon emissions increase is greatest in a high renewables / low gas price
scenario, which is consistent with the most likely future conditions in light of energy futures
prices and renewables capacity expansion rates.

2.3 Methods

Model and Solution Method

The model used for this analysis is an hourly unit commitment model of the Western In-
terconnection (also referred to as the Western Electricity Coordinating Council, or WECC).
The model is formulated as a mixed-integer linear program that minimizes system operat-
ing costs subject to constraints on generator operation, storage device operation, DC power
flow, and reserve requirements, which include both a short-duration regulation service, and a
longer-duration load-following service. It is solved using a branch-and-cut algorithm that is
implemented using the CPLEX 12.5 C++ library. Values and data sources for any constants
in the following section are described in more detail in Section 2.3.
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Objective Function

The objective function minimizes total system operating costs over the set G of generators
on the system and the set of time periods modeled, T , as follows:

min
∑
g∈G

∑
t∈T

Γgqgt + SUgsgt, (2.1)

where qgt is a decision variable denoting the level of output for generator g in time period
t and sgt is a decision variable denoting whether or not generator g started up in hour t.
Both Γg, the marginal cost for running generator g, and SUg, the startup cost for generator
g, depend on the fuel price Fg for generator g. Explicitly, Γg = Fg ∗ HRg + Og, where
HRg and Og are respectively the heat rate for generator g and the variable operations and
maintenance cost for generator g.1 We define startup cost as SUg = SEg ∗ Fg + SAg, where
SEg is the energy required to start generator g, and SAg is the fixed cost component of
starting generator g.

Generator Constraints

In each time period, each generator g in the model can supply regulation up, rugt and regu-
lation down, rdgt as well as load following up, lfu

gt and load following down, lfd
gt, in addition

to the energy supplied, qgt. These terms are related by the following two constraints:

qgt + rugt + lfu
gt ≤ Qgugt ∀g ∈ G, t ∈ T , (2.2)

qgt − rdgt − lfd
gt ≥ Q

g
ugt ∀g ∈ G, t ∈ T , (2.3)

where ugt is a binary decision variable denoting whether or not generator g is operating in
time period t, and Qg and Q

g
are the maximum and minimum generation limits, respectively,

for generator g. Each of the ancillary service variables must also be less than their respective
limits for each generator:

0 ≤ rugt ≤ RUgugt ∀g ∈ G, t ∈ T (2.4)

0 ≤ rdgt ≤ RDgugt ∀g ∈ G, t ∈ T (2.5)

0 ≤ lfu
gt ≤ LFUgugt ∀g ∈ G, t ∈ T (2.6)

0 ≤ lfd
gt ≤ LFDgugt ∀g ∈ G, t ∈ T (2.7)

Between hours, generators are subject to ramp rate constraints:

R−g ≤ qgt − qg,t−1 − rdgt − lfd
gt ∀g ∈ G, t ∈ T (2.8)

R+
g ≥ qgt − qg,t−1 + rugt + lfu

gt ∀g ∈ G, t ∈ T (2.9)

1For simplicity we assume heat rate is constant across each generator’s output range



CHAPTER 2. STORAGE FOR MODERN POWER SYSTEMS 10

Continuous startup variables for generators are used with binary operating variables and
minimum up and down times in the manner described by [49]:

t∑
k=t−UTg+1

sgk ≤ ugt ∀g ∈ G, t ∈ T (2.10)

t+DTg∑
k=t+1

sgk ≤ 1− ugt g ∈ G, t ∈ T (2.11)

sgt ≥ ugt − ug,t−1 ∀g ∈ G, t ∈ T (2.12)

0 ≤ sgt ≤ 1 ∀g ∈ G, t ∈ T (2.13)

ugt ∈ {0, 1} ∀g ∈ G, t ∈ T . (2.14)

Storage Constraints

We model energy arbitrage in each storage device as scheduled consumption or supply of
energy in hourly blocks. We also model the commitment of storage capacity to provide
regulation and load following reserves and enforce constraints on reserves that avoid “double
counting” capacity, i.e. if capacity is committed to providing reserves it cannot also be used
for arbitrage.

Energy in storage device m at time t, emt must be less than the capacity Em of the
storage device, where M is the set of all storage devices on the system:

0 ≤ emt ≤ Em ∀m ∈M, t ∈ T (2.15)

The charge and discharge rates for the storage device are also constrained by the power
limits (P charge, P discharge) of the storage device:

0 ≤ cmt ≤ P charge
m ∀m ∈M, t ∈ T (2.16)

0 ≤ dmt ≤ P discharge
m ∀m ∈M, t ∈ T (2.17)

(2.18)

All storage devices must also satisfy energy balance for scheduled arbitrage in all hours, such
that

emt = em,t−1 + τβmcmt −
τ

δm
dmt, (2.19)

where cmt and dmt are scheduled hourly charge and discharge rates, respectively, between
hour t − 1 and hour t, τ is the time period length in hours, and β and δ are the charging
efficiency and discharging efficiency, respectively, of storage device m.

We enforce constraints to ensure that each battery is capable of serving the worst case
reserve action in addition to delivering or consuming energy according to the arbitrage
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schedule. Discharging, regulation up, and load following up all require energy to leave the
storage device, so the sum of the energy needed to provide each of those services (in the
worst case where reserves are provided at the full contracted power for the total contracted
duration) in hour t must be greater than the amount available at the beginning of the
hour. Similarly, charging, regulation down, and load following down rely on headroom in
the storage device, so their sum must be less than the head room available at the beginning
of the hour. These constraints are represented as follows:

em,t−1 ≥
1

δm

(
τdmt + τ rrusmt + τ lf lfus

mt

)
, (2.20)

Em − em,t−1 ≥ βm
(
τcmt + τ rrdsmt + τ lf lfds

mt

)
, (2.21)

where τ r is the length of time for which regulation must be provided in hours, τ lf is the
length of time for which load following must be provided in hours, and rusmt, r

ds
mt, lf

us
mt, and

lfds
mt represent the power contributions of the storage device at node n to regulation up,

regulation down, load following up, and load following down, respectively, in time period t
(we will define these parameters in Section 2.3).

Network Constraints

We enforce nodal power balance constraints for hourly schedules with a linear DC load flow
model: ∑

g∈Gn

(qgt) +
∑

m∈Mn

(cmt − dmt) +
∑
i∈N

Bni(θnt − θit) = Lnt, (2.22)

where Gn is the subset of generators located at node n, Mn is the subset of generators located
at node n, Bni is the susceptance between node n and node i, θnt is the voltage angle at
node n at time t, and Lnt is the load at node n at time t.

Also, the total load flow on line ij must be less than or equal to the maximum load flow
allowed, Dij:

Bij(θit − θjt) ≤ Dij (2.23)

Note that we do not model power flow associated with reserve actions; we assume that
any line capacity violations that result from reserve actions are sufficiently small or short
in duration that they can be tolerated by the system operator or, in the case of larger
disturbances, that the system can be redispatched to resolve constraints. We assume these
events are sufficiently rare that they can be neglected for our objective of quantifying the
annual cost benefits of storage at the scale of the model.

Reserve Requirements

In each hour, minimum reserves of each type (regulation in up and down directions, load
following in up and down directions) must be procured, corresponding to system needs. We
model daily regulation up and down requirements as a proportion, ρ, of the peak load for the
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day added to a proportion, σ, of the total installed wind and solar capacity. We model load
following up for each hour as a proportion, η, of the forecasted load plus a proportion, ν, of
the forecasted wind and solar for the hour. We model the load following down requirement
as a constant proportion of the renewables forecast. The following equations define these
constraints explicitly, with Sn and W n being the solar and wind capacities installed at node
n, respectively, and Snt and Wnt being the solar and wind forecasts at node n during time
period t. To reduce complexity, we model total reserves constraints globally.∑

g∈G

(rugt) +
∑
m∈M

(rusmt) ≥ ρ

(
max

a∈T :tmax−a≥t
Lna

)
+ σ

(∑
n∈N

(Sn +W n)

)
∀t ∈ T (2.24)

∑
g∈G

(rdgt) +
∑
m∈M

(rdsmt) ≥ ρ

(
max

a∈T :tmax−a≥t
Lna

)
+ σ

(∑
n∈N

(Sn +W n)

)
∀t ∈ T (2.25)∑

g∈G

(lfu
gt) +

∑
m∈M

(lfus
mt) ≥ η

∑
n inN

Lnt + ν
∑
n∈N

(Snt +Wnt) ∀t ∈ T (2.26)∑
g∈G

(lfd
gt) +

∑
m∈M

(lfds
mt) ≥ ν

∑
n∈N

(Snt +Wnt) ∀t ∈ T (2.27)

Solution Method

We run the model iteratively for each of the days in a given year, passing the final storage
levels, generator output levels for ramping, and generator operating and starting levels as
constants denoting the starting levels for the next day. This corresponds to the following
constraints, where the prev superscript denotes variables from the previous day’s solve:

en0 = eprevn24 ∀g ∈ G (2.28)

ugb = uprevg,24+b ∀g ∈ G, b ∈ (−DTg + 1, ..., 0) (2.29)

sgb = sprevg,24+b ∀g ∈ G, b ∈ (min(−UTg + 1,−DTg + 1), ..., 0) (2.30)

Additionally, because it would otherwise be optimal to fully discharge storage devices at
the end of each unit commitment modeling period, we also constrain the final storage levels
and generator operating levels. To do this, we run a preliminary two-day unit commitment
model with a four hour time step for the generator unit commitment variables, and save the
generator and storage states at the end of the first day for use as constraints in a second
run. In the second (final) run, we use single-day unit commitment in one hour increments
with final storage charge levels and final generator operating states constrained to be equal
to those saved from the first run (as in [55]). This corresponds to the following additional
constraints for the first two-day unit commitment, where T = {t ∈ Z : 1 ≤ t ≤ 48}

ugt = ug,t−1 = ug,t−2 = ug,t−3 ∀g ∈ G, {t ∈ T : t mod 4 = 0} (2.31)

We implement the model in C++ and solve it with CPLEX 12.5. We solve the first
two-day unit commitment problem with a mip gap of 0.5%, and the second problem with a
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Figure 2.1: The load duration curve for the year of data modeled.

mip gap of 0.05%. The average time taken to solve these two problems and obtain results
for an individual day was 72.4 seconds.

Data Inputs

The layout of the system network for the model is based on data for the 240-bus model
created and published in association with a model developed at CAISO [53], hereafter the
Price model. From this resource, we obtain susceptances Bij and line limits Dij for the
network. The hourly load at each node, Lnt, also comes from the Price model, and is based
on 2004 data. Though WECC infrastructure has evolved since that time2, our objective in
using the Price model is to capture the effect of storage operating over large scales, but not
to precisely model the effect of storage on current infrastructure. However as we will discuss,
we will investigate how storage additions impact system operations in different renewables
penetration scenarios. Figure 2.1 shows the yearly load duration curve.

In total, the model commits and dispatches 185 generators, of which 38 are coal-fired, 135
are gas-fired, 4 are nuclear, and 8 are run on fuel oil. The model does not dispatch hydro,
biomass, wind, solar, and geothermal plants; instead the production profiles and capacities
for those generators originate in the Price model. The set of dispatched generators used is
based on disaggregated generator data from the Price model, which are then modified such
that generators with similar heat rates are aggregated together, and each node in the network

2In the time since the model was built, total demand has remained relatively flat [61] and generation
capacity for all fuels but wind, solar and natural gas were virtually unchanged [21]. Gas capacity has
grown significantly since 2004, however because total and peak demand remained flat this capacity has had
relatively little impact on operations.
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Figure 2.2: The supply curves for the set of generators modeled, in the low and high gas
price scenarios. The supply curves in this graph are created for the low renewables scenarios;
the high renewables scenarios have a larger region where the marginal cost is zero.

has only one generator with each heat rate, which reduces symmetry in the subsequent
formulation. From the Price data we obtain heat rates and maximum operating capacities
for each generator (HRg, Qg). We obtain fuel prices Fg from EIA data corresponding to
2007 and 2013 ([57], [58]). Figure 2.2 shows how the heat rate curves for all generators with
non-zero marginal cost on the system change with fuel prices.

We match the prime mover for a generator in the Price data, when available, to TEPPC
generator category data from the 2009 TEPPC Study Program Results to obtain ramp
limits (R+

g , R−g ), minimum up- and down-times (UTg, DTg), minimum operating capacities
(Q

g
), start-up costs and startup energy required (SAg, SEg), and variable operations and

maintenance costs (Og). When only a fuel type, rather than a prime mover is available
from the Price data, we chose the generator type from the TEPPC data with the heat rate
that is the closest to the heat rate reported from the data in the Price model and use the
corresponding figures.

In each hour, we enforce ancillary service constraints for regulation and load following.
We model these on the requirements used in [51]. Total regulation in both directions must be
greater than 1% of peak load (ρ = 0.01) in both directions. The Western Wind Integration
Study indicates that 1% of peak is acceptable for regulation with respect to wind capacity, but
does not investigate whether this also applies for additions of solar. To ensure that regulation
needs are satisfied with the addition of both resources, we also add 1% of the installed wind
and solar capacities to the regulation requirement in both directions (σ = 0.01). Total load
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following in the up direction must be greater than the sum of 3% of forecasted load and 5%
of forecasted wind and solar (η = 0.03, ν = 0.05), in accordance with the ”3+5” rule. In
accordance with the need for load following in the down direction as specified in [39], we
also require an amount of reserve in the down direction equal to 5% of forecasted wind and
solar.

The maximum regulation (RUg, RDg) and load following capabilities (LFUg, LFDg) of
each generator are calculated based on the maximum generator movement in 10 minutes,
using the one-minute ramp rate for the generator’s prime mover [62]. Generator limits on
ramps between hours were calculated based on maximum generator movement in 60 mins. [49]

In addition to the generators, the model also dispatches 4 pumped-hydro plants in all
scenarios. The efficiencies and capabilities for the pumped hydro plants are taken from the
Price model, and comprise 3.0 GW of power, with 201 GWh of total energy capacity.

We assume that storage efficiency is 90% on both charge (βn) and discharge (δn) and
a power:energy ratio of 4, such that P discharge

n /En = 4. By choosing this ratio, we ensure
that power constraints will bind for regulation, and energy constraints will bind for load
following and arbitrage. Both pumped hydro and added storage can provide regulation and
load-following, subject to constraints that require enough energy to be present in the battery
(or energy capacity for charging in the case of down reserves) for provision of 15 minutes of
regulation and 2 hours of load following (Eq. (4.15) and Eq. (4.16) with τ r = 0.25 hrs and
τ l = 2 hrs) [55].

Placing Storage in the Model

We determined the locations for storage devices prior to running the unit-commitment model
by slightly modifying the model. Specifically, we include decision variables denoting the total
amount of energy storage capacity to be added at each node and, for each total storage quan-
tity Etot we investigate, we constrain the sum of storage capacity across all nodes such that∑
∀nEn ≤ Etot. Because these added decision variables significantly increase the complexity

of the model we made several modifications to limit computing time in the placement phase.
First, we only run the model on the peak demand day. Second, because reserves are not a
location-specific quantity in the model, we dropped reserve requirements from the objective
function. Finally, we identified storage locations iteratively, i.e. after locating the smallest
quantity of storage, we fix its location and identify the location of the next increment of
storage, and so on. Because of these modifications to the model, added increments of stor-
age are only optimal for energy arbitrage on the peak demand day. However, because the
peak demand day is the most severely constrained and energy is the only quantity subject
to nodal balance constraints, we assume that the identified locations are a decent proxy for
the true optimal locations. In all scenarios, storage is preferentially located in San Diego
before any other locations.
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Scenarios

We explored four different scenarios that allowed us to explore the effects on the value of
storage of high vs. low natural gas prices and high vs. low penetrations of renewables. First,
we explored low and high natural gas prices. We used average fuel prices from recent years
in which gas prices were relatively high (2007; the “high gas price” scenario, $7.12/MMBtu
for gas and $1.77/MMBtu for coal, 2007 $ [57]) and relatively low (2012; the “low gas price”
scenario, $3.17/MMBtu for gas and $2.22/MMBtu for coal [58]). Figure 2.2 shows a supply
curve for the generators and prices modeled. For each natural gas price, we also looked at a
low-penetration renewables scenario and a high-penetration renewables scenario that meets
California’s RPS goals [53]. The low penetration scenario has 6.5 GW of wind and 0.5 GW
of solar, whereas the high-penetration scenario has 24 GW of wind, and 7 GW of solar.3 We
also perform a low wind, high solar scenario high-penetration scenario where we scale solar
profiles and wind profiles such that their respective installed capacities are reversed.

2.4 Results

Total Social Benefit from Storage

Figure 2.3 shows the total system cost savings for each of the four major scenarios as a
function of storage energy added to the system. The range of benefits across scenarios is
very large, and both renewables penetration levels and fuel prices have significant impact on
the outcome, though for the scenarios we investigate fuel prices appear to matter more. Note
that, because some capacity is allocated to regulation (requiring a 4C battery) and some to
spinning reserve (requiring a 1/4C battery), we report results only in units of energy storage
(GWh) on the x-axis, rather than units of power capacity. We also find that, for a given
penetration of renewables, the specific mix of solar and wind has little impact (less than
4%) on savings attributable to storage (Figure 2.4). This is in contrast to other recent
results that suggest storage is more important in systems with high solar versus high wind
penetration (e.g. [43]). We attribute this difference to several observations: (1) our model
optimizes only the operation of the system but not the mix of generation infrastructure as
in [43] and (2) storage does relatively little net load shifting in our model and instead is
allocated to the higher value ancillary services; we will discuss this more when we describe
Fig. 2.9 below. Finally, we note that storage will be more important for load shifting at
higher solar penetrations.

Figure 2.5 shows the marginal benefit for storage for a 20-year time horizon with a 7%
discount rate, assuming identical cost savings each year (left vertical axis), and also for a
single year (right vertical axis). The marginal benefit is computed as the ratio of the change
in operating cost resulting from each incremental addition of storage to the size of the storage

3These scenarios are taken directly from the Price model; wind and solar capacity in WECC in the most
recent available year (2013) were approximately 18 and 5 GW, respectively [21]
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Figure 2.3: System cost savings as storage penetration is increased. System cost savings level
out in each scenario, and by the time 20 GWh of additional storage are added, increasing
the amount of storage on the system no longer produces significant savings.

increment. We see that the diversity in value of a small addition of storage capacity across
scenarios is large, with the 20-year benefit ranging from $1800/kWh in the high gas price
/ high renewables scenario to about $200/kWh in both low gas price scenarios. Still, with
small amounts of storage on the system, the marginal benefit of additional storage in every
scenario is greater than the ARPA-E GRIDS target of $100/kWh [4] (depicted as a dashed
line in Figure 2.5), suggesting that discounted system benefits would be greater than storage
capital costs for storage technologies that meet this target.4 The marginal benefit then
drops off sharply, such that by the time 10 GWh of storage capacity have been added to
the system,5 the marginal benefit in all scenarios falls below $100/kWh. By the time 20
GWh of additional storage are added, increasing the amount of storage on the system no
longer produces significant operating cost savings. We note that current battery costs are
significantly higher than the ARPA-E target, however we do not consider those costs here
because the industry is in a phase of rapid cost reduction and policies to support energy

4ARPA-E’s target is for systems 1C systems, i.e. batteries that discharge their rated energy in 1 hour.
Frequency regulation requires higher power rating (we assume 4C, or systems that discharge their rated
energy in 1/4 hour), which would add to the cost of the technology, possibly significantly more. Therefore
$100/kWh in our context should be taken as an especially low and aggressive target.

5For context, at an average demand of 97.1 GW (the average for the dataset used here), 10 GWh of
storage capacity could supply average demand in the model for 6 minutes and 11 seconds.
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Figure 2.4: In this graphic, the renewable energy provided in the high renewables / low gas
price scenario has been reallocated, such that about 66% of the total renewable energy comes
from solar (the low wind / high solar scenario). The default case has been provided as the
high wind / low solar scenario. The distribution of energy between wind and solar does not
significantly affect the value provided by storage.

storage are likely to be based on the potential for cost:benefit ratios to be attractive in the
future rather than today.

The most likely scenario for the future is one in which gas prices are low, and in these
scenarios the $100/kWh break-even point allows no more than 4 GWh of energy storage
capacity on the system before capital costs (at the $100/kWh target) are no longer recovered
through system benefits. Capital costs depend strongly on technology type and power to
energy ratio, and battery-only cost estimates (i.e. not including balance of system costs)
currently span a very broad range [47], although many are working to develop storage devices
that will meet the ARPA-E GRIDS target at scale [67, 44].

We can also compare these marginal benefits to the capacity value6 that storage might
provide. To do this, we divide the lowest cost of conventional generation capacity (we used
the overnight cost for a combustion turbine, taken from [5] as $650/kW) by the number
of hours storage would need to operate to be qualified as providing capacity value to the
system (we assume 4 hours, based on recent requests for offers in California [54]). These
parameters give an approximate storage capacity value of $160/kWh. In the low gas price
scenarios, the marginal value of storage for providing arbitrage and ancillary services quickly
falls below this number, suggesting that capacity payments will be an important factor for
storage investment in these conditions. On the other hand, for the high gas price / high

6By capacity value we mean the amount of power a device can make available during peak load conditions.
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Figure 2.5: Marginal benefit of additional storage. In all scenarios, the benefit of adding an
additional unit of storage decreases as the total amount of storage capacity on the system is
increased.

renewables scenario, capacity payments may not drive investment in storage until higher
penetrations (8-10 GWh across the system). Note that capacity value will be higher in “load
pockets” with strong constraints on citing conventional generators (e.g. the Los Angeles
basin); analysis of these conditions is outside the scope of this paper.

Figure 2.6 shows the proportions of various ancillary services requirements that are sat-
isfied by storage. Because storage satisfies regulation up requirements first, these results
indicate that regulation up is the most valuable service for storage to satisfy. The next most
valuable services are load following up and regulation down, and finally load following down.
With a higher gas price, more of the load following up requirement is satisfied by storage.
While it might otherwise make sense to satisfy both load following up and regulation down
services with the same storage device, in practice this will be undesirable, as regulation re-
quires higher power capacity than load following, and a single storage device will likely be
better suited for one or the other service. For investment purposes, it may be reasonable
to invest first in high power, lower energy capacity storage devices that will supply regula-
tion up and down, and then later install more moderate power devices with higher energy
capacities that can satisfy load following requirements in both directions.
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Figure 2.6: Proportions of ancillary services served by storage devices in various scenarios.
In all scenarios, storage quickly moves to provide all required regulation up. Subsequently,
storage emphasizes the provision of regulation down and load following up, and then finally
begins to increase the proportion of load following down provided.
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Figure 2.7: Number of generator starts per year. As the total amount of additional stor-
age capacity on the system increases, the total number of generator starts decreases. The
resulting reduction in startup costs paid contributes to the corresponding decreases in total
system operating costs, as shown in Figure 2.3.

Figures 2.7 and 2.8 indicate that the number of generator starts and the cost due to
generator starts both decrease in all scenarios as the amount of storage present in the system
is increased. The savings due to reductions in generator starts is roughly 10 percent in the
most impactful scenario (high renewables penetrations and high gas prices). With lower gas
prices, the reduction in generator starts due to storage devices is much less dramatic than
in the scenarios with higher gas prices. This is likely due to the fact that, in lower gas price
scenarios, generators need to be turned off for a longer length of time to make incurring their
startup costs economical.

Private and Market Benefits from Storage

In this section we investigate storage device profits and whether the system benefit from
storage can be captured by independent storage operators. For energy market revenue, we
assume each generator or storage device is paid the locational marginal price (LMP) for the
node at which it is located. We obtain this price from the dual of the node balance constraint
Eq. (4.30), which we will call λnt, where n ∈ N and t ∈ T . Assuming a competitive market,
we compute the market clearing price for each reserve market in each hour as the maximum
opportunity cost ($/MW) faced by a generator that is providing the corresponding resource
in that hour. We will refer to these hourly prices as λrut , λrdt , λlfut , and λlfdt for regulation up,
regulation down, load following up, and load following down, respectively. Only generators
constrained by their maximum capacities (for generators providing up reserves) or minimum
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Figure 2.8: Cost of generator starts. As the total amount of additional storage capacity on
the system increases, the total cost of generator starts decreases. The resulting reduction
in startup costs paid contributes to the corresponding decreases in total system operating
costs, as shown in Figure 2.3.

capacities (for generators providing down reserves) experience opportunity costs. Generators
that have not committed their full, currently available capacities are indifferent to committing
their capacities to one market versus another; they have available capacity to do both [65].

The gross profit, zi, for a given storage device i over the entire year, then, is calculated
as follows:

zi =
∑
t∈T

(
λitdit − λitcit + λrut r

us
it + λrdt r

ds
it + λlfut lfus

it + λlfdt lfds
it

)
(2.32)

The total gross profit in the system, Z, is the sum of the zi’s over all storage devices in the
system (i ∈ S). Gross profit is calculated as the revenue received in the energy, regulation,
and load following markets, less the cost to charge storage with energy purchased in the
market. We do not include other costs or revenues in this metric (for example storage
capital costs, taxes and depreciation, or tax incentives).

Figure 2.9 shows the changes in the value of the contribution to Z of reserves, load
following, and energy arbitrage as additional storage devices are added to the system. The
total revenue available is largest in the high renewables / high gas price case, when the
reserve requirements are the largest due to the renewables, and the market clearing prices
are set by generators with higher marginal fuel costs. The value to storage operators is
coming from reserves more than arbitrage; in fact, as the total amount of storage on the
system increases, storage operators lose money in the energy markets in favor of making
capacity available for the more lucrative regulation and load following markets. Notably,
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while the regulation markets are the most lucrative initially, the revenue in these markets
drops off quickly, and load following is the service that provides the most revenue over the
largest range of installed storage capacities.

Figure 2.10 shows the marginal changes in Z as the total amount of storage in the system
is increased. The total market revenue is largest in the high renewables / high gas price
case, when the reserve requirements are the largest due to the renewables, and the market
clearing prices are set by generators with higher marginal fuel costs due to the higher gas
prices. Similar to the operating cost benefits, this metric also declines rapidly, and once
the system has at least 10 GWh of capacity installed, the market revenue for energy and
ancillary services available to storage operators becomes small and unlikely to cover storage
capital costs on their own.

Figure 2.11 shows the ratio of the estimated market revenue (Z) for storage to its corre-
sponding operating cost savings. In the figure, the ratio dips below one between 4 GWh and
6 GWh of storage capacity. This indicates that at this point, the system benefits from the
presence of storage are no longer captured by storage operators through the markets modeled
here. Primarily, these unaccounted for system benefits are realized as avoided starts when
minimum up/down time constraints or ramp constraints would otherwise bind. Because
storage operators are reliant on prices that are set by marginal costs of generators, storage
operators are not able to realize the full value of their services, as the value of avoided starts
is not reflected in the market clearing price for generation.

Carbon Emissions Due to Storage

As storage is added to the system, the carbon emissions associated with operating the sys-
tem increase for most scenarios. Figure 2.12 shows that carbon dioxide emissions strictly
increase in most scenarios as storage penetration increases. In the high renewables, high gas
price scenario carbon dioxide emissions experience a slight decrease until 1 GWh of stor-
age capacity is present, and then emissions begin to increase. This effect is driven by fuel
switching (from gas to coal), as shown in Figure 2.13. When gas prices are low, there is less
incentive to turn off gas plants to save money, since the savings from plant cycling is not
enough to overcome large startup costs. This causes there to be more resources available
on the system that can act as base load. The gas plants that are held on at their minimum
capacities to avoid future startup costs are still more expensive to use on the margin than
coal plants during operation, so coal plants are more frequently used at higher capacities.

It is particularly notable that the most significant emissions increases happen in the
high renewables / low gas price scenario, which may well be the most likely in light of
energy futures prices and renewables capacity growth rates. We will revisit this issue in the
conclusions.
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Figure 2.9: Revenue obtained by storage due to each service provided. Revenue is calculated
by paying the storage devices the market clearing price for each service provided. In general,
as storage is added to the system, the total revenue achieved by storage decreases. At very
high penetrations, storage devices lose money in energy markets so that they may participate
in the ancillary services markets.
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Figure 2.10: Gross profit, calculated as revenues less costs to charge, per kWh installed. As
storage is added to the system, the gross profit seen by all storage operators decreases.

2.5 Discussion

We find that both fuel prices and renewables penetrations have a strong impact on the
operational savings (see Figure 2.3), with fuel prices having a larger influence across the
scenarios we investigated. This is driven in large part by the substantial difference in fuel
prices in the 2007-2012 range we considered and particularly the large difference between
the price of gas-fired peaker pants and coal-fired baseload plants (see the step change in
marginal costs at 130 GW in the supply curve in Figure 2.2).

Having high concentrations of renewables also corresponds to important operating cost
benefits for storage — savings from storage in high renewables situations is roughly double
what it is in the low penetration scenarios we investigated. This is due to the increased reserve
requirements. As we showed in Figure 2.9, in all scenarios the most valuable functions for
storage to take over are reserve functions. We also note that operating cost benefits will
further increase if one considers renewables penetrations beyond those we investigated; these
benefits may eventually be comparable to the potential benefits at high gas prices. However
we do not observe large differences in the benefits from storage when the renewables mix
is mostly solar rather than mostly wind, because it is optimal to use storage primarily for
reserves, rather than arbitrage services. This means that the timing of the resource is less
important than its relative contribution to reserves requirements at the penetrations we
investigated.

The observation that it is more valuable for storage devices to provide reserves than arbi-
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Figure 2.11: Ratio of net revenue obtained by storage to system benefit provided by storage,
relative to the base case with no storage. Between 4 and 6 GWh of storage the ratio dips
below 1, which indicates that the system benefits provided by storage operationally are no
longer able to be captured by storage operators via modeled markets.

trage services is true from the perspectives of both storage operators and system operators.
In all scenarios, regulation up is the most valuable service for storage to provide, followed
by regulation down and load following up, and finally load following down. In general, load
following provides the most revenue to storage operators, primarily because the market for
load following is larger than the market for regulation. We also observe that the presence of
storage has the potential to reduce both the total number and the overall cost of generator
starts. These results echo [28], who also studied the impact of storage on unit commitment
and reserve provision (though not for a range of storage penetration levels and with a focus
on CAES), and found that low penetrations of storage appear to be the most sensible in the
short run.

In combination, these factors indicate that storage is most beneficial in a system that
has both large reserve requirements, as in the high renewables cases, and a large difference
in marginal costs between low- and high-cost plants, as in the high gas price cases. While it
is likely that renewables will encourage increases in reserve requirements in future systems,
it is less likely that the spread in fossil fuel generation prices will stay large. With the recent
decrease in natural gas prices due to hydraulic fracturing and horizontal drilling (“fracking”),
the energy supply system has moved away from a price dichotomy that is advantageous for
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Figure 2.12: As storage is added to the system, the carbon dioxide released due to system
operations increases. In 2005, WECC emissions were between 370 and 385 MMT [12].

storage, and is closer to a system in which storage has a smaller effect on the economics of
operations7. In the scenarios with higher renewables penetrations and lower gas prices, the
operating cost benefits achieved with storage are unlikely to justify capital cost expenditures
on storage, even at aggressive capital cost estimates and low penetrations of storage. In
these cases, it is very likely that the capacity value for storage will dominate any of the
operational benefits we model here.

With respect to carbon emissions, the presence of storage on the system causes an increase
in CO2 emissions for all scenarios, except at very small storage penetrations in the high
renewables / high gas case. This is due to increased usage of coal plants in lower demand,
low price hours to charge storage devices. As long as the marginal price of electricity from
gas exceeds that for coal (as it does in all scenarios we investigated), the cheapest times to
charge storage devices will tend to be in hours when there are more coal plants on. This
implied that the energy stored in and then delivered by the storage devices will be dirtier
than the energy supplied without storage. Relative to system-wide emissions, the increases
are small; around a 1.4% increase in emissions from the 2005 level. It is worth noting other
recent work has come to similar conclusions but with different modeling assumptions; in [31],

7Of course, though it may seem unlikely, future prices could change just as suddenly as they did with the
introduction of fracking, and we cannot rule out a future fuel price scenario that favors more energy storage.
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Figure 2.13: This figure shows the emissions sources broken out by scenario. From Fig-
ure 2.12, the largest increase in CO2 emissions comes from a high renewables penetration
and a low gas price. In all scenarios, as the amount of storage added is increased, emissions
from coal plants rise. In cases with a high gas price, emissions from combined cycle plants
also rise, but with a low gas price they fall. In all scenarios, emissions from combustion
turbines fall as the penetration of storage devices increases.
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the authors only examined bulk energy shifting, or arbitrage, but also found that storage
increased carbon emissions.

Overall, the benefits from increasing the presence of storage decline rapidly as installed
capacity increases. At 10 GWh of installed capacity, operating cost benefits for all but
the high renewables / high gas price scenario are negligible. In the high renewables / high
gas case, benefits at 10 GWh are less than $100/kWh; this is well below current prices but
potentially achievable in the future if storage cost targets are met. However in most scenarios
carbon intensity continues to increase beyond 10 GWh of installed capacity. This suggests
that for the infrastructure we modeled – a simplified version of WECC – targets to install
more than 10 GWh of energy storage are unlikely to be cost effective from an operating cost
perspective in any near term future scenarios.

As we noted above the capacity value of storage (approximately $160/kWh assuming
with 4 hour discharge capability storage could replace a $650/kW combustion turbine) could
become a very important part of its value as operating cost benefits decline. If storage cost
targets are met, capacity value alone could support significant expansion of storage capacity.
In this case we expect that the operating cost benefits we observe would still be realized,
except on the limited peak net demand days when storage capacity is required for system
reliability.

2.6 Conclusions and Policy Implications

Though the operational value of storage is high at very low penetrations, our analysis indi-
cates that at modest penetrations (10 GWh, or 6 minutes of average energy demand in the
model) the operational value is unlikely to compensate for storage capital costs in the fore-
seeable future. To the extent storage is used to reduce operating costs, our analysis indicates
that price arbitrage will be an insignificant factor, and that reserve provision will dominate.
This suggests that operating cost savings on their own do not likely constitute a motivation
for policies that incentivize storage installations, even if it is on the expectation that those
policies will indirectly drive installed costs downward. However we note that reserve markets
that capture the actual value of storage are in early stages; policy makers might consider
initiatives to expand how much access storage owners have to reserve markets.

Our analysis also indicates that operating cost savings quickly fall below plausible stor-
age capacity values, and therefore capacity value is likely to be a significant component of
the total transmission-level benefits of storage. Indeed, if storage if cost targets are met,
according to our calculations, generation capacity value alone justify the cost of storage.
However we made a simple assumption that 4 hours of energy storage capability would be
sufficient to reproduce peaker plant capacity. The total quantity of energy storage required
for capacity value in practice could be more or less, depending on peak net load shapes but
also the way storage is discharged in peak conditions. Because it is energy-limited, operators
will likely discharge storage conservatively to ensure system reliability. If capacity value is
to dominate operating cost benefits as a source of storage value, it will be important for
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storage owners, system operators, utilities and regulators to agree on best-practice discharge
control algorithms in peak conditions.

We note, however, that our analysis did not investigate locational capacity value, both
at the transmission level where “load pockets” can lead to very high local capacity costs and
for distribution systems where substation and conductor capacity may require upgrades to
manage peak load growth. These very important circumstances are beyond the scope of the
present analysis; addressing them in detail would require detailed transmission models and
circuit-level distribution capacity data.

We found that storage operations can increase system-wide carbon emissions: by reduc-
ing the required number of generator starts and providing flexible reserves, storage makes
additional room for coal in the dispatch order. It is important for regulators and system
operators to consider policies and operating strategies that could be used to avoid this out-
come. However we expect that those policies would limit the operating cost benefits to
storage and, as a consequence, diminish the financial incentive for storage owners to expand
installed capacity.
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Chapter 3

Can carbon taxes incentivize energy
storage investment?

Several recent papers have indicated that increased grid-scale storage resources have the
potential to increase operational carbon emissions in the absence of carbon prices. Other
papers have demonstrated that increased storage penetrations are necessary for high penetra-
tion renewables systems to continue to provide electricity reliably. We explore the extent to
which a carbon price might influence storage-induced carbon emissions and storage-derived
system cost benefits under different scenarios, including a variety of storage penetrations.
We find that the relationship between carbon taxes and storage benefits is not linear, and
in some cases taxes on carbon can reduce the desirability of storage services. If a primary
goal for large-scale storage deployment is to reduce the long-term carbon impacts of the grid,
then more attention should be paid to the overall mix of the system into which the storage
capabilities are introduced. Increasing storage capacity is not an unequivocal path to carbon
reductions when there are large gaps in marginal costs between low-cost coal and high-cost
gas generation that storage can arbitrage. However, the likelihood of such an outcome in-
creases with the addition of carbon taxes when the differences in marginal costs between
gas- and coal-burning plants are smaller.

3.1 Introduction

Energy storage has been proposed as a vital component of the future of sustainable electricity
generation, in which carbon emissions will be substantially reduced and eventually eliminated
([17], [43],). In California, Assembly Bill AB2514 aims to increase storage capacity on the
grid [14]. AB2514 has the express purpose of decreasing emissions, citing as the impetus
for its adoption Assembly Bill 32, the Global Warming Solutions Act, which aims to reduce
statewide carbon emissions from all sources[6]. The bill does not specify the function that
these resources should serve, but several papers have shown that energy storage is most
beneficial economically in the current system as a provider of reserves or capacity value,
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rather than a provider of arbitrage ([8, 19, 52]). Other papers have shown that energy
storage could increase carbon emissions rather than decrease them [13, 31, 52]. These raise
some questions regarding the best use of storage resources on the grid, and suggest that
policies calling for additional storage should be implemented in the face of this information.

As part of the transition to a lower carbon intensity, higher renewables grid, carbon
pricing schemes will likely be deployed and large amounts of renewable generation will be
built, in addition to any energy storage systems that are installed. Many existing and
proposed policies that aim to reduce carbon overall rely on pricing carbon, either through
cap and trade policies or through a carbon tax. These approaches both aim to economically
incentivize reductions in carbon pollution by emitters. While they do have implementation
differences, both types of policy can be used to achieve carbon reductions without appreciable
differences in burden on various groups[27]. Both types of policy are often considered with
the specific aim of equalizing the burden of carbon reductions across a sector or industry and
”internalize the externality” [63]. Several studies use such mechanisms to appropriately price
the externalities from fossil fuels, and reduce the overall contribution of electricity generation
to climate change ([7], [45], [50], [29]).

Much thought has also been given to the impact of carbon taxes or cap-and-trade policies
on revenues and profits for different types of plant operators, including both renewables
and fossil fuel plants. [27] show that hits to revenues and profits for fossil fuel plants are
similar under carbon taxes and cap-and-trade policies. [26] show that, under US-wide cap-
and-trade policies, coal-fired generators show a reduction in profits, but non-coal fossil fuel
generators and non fossil fuel generators show an increase in profits. [25] show that higher and
more uncertain prices on carbon induce more investments in generators that have reduced
emissions profiles. Overall, prices on carbon have been shown to decrease revenues and
profits for fossil fuel generators, and incentivize investments in renewables instead. This is
the same goal that has catalyzed interest in storage investment.

The literature is more sparse regarding the profits and revenues of storage operators
under carbon taxes. Unlike renewables, which will be made more competitive via a carbon
price, and fossil-fuel plants, whose marginal costs will be expected to increase under a carbon
price, the impact of carbon prices on the revenue of storage is less clear. On the one hand, a
carbon price could cause energy from peaker plants to be more expensive than energy from
storage, thus increasing the revenue opportunities for storage units. On the other hand,
storage may need to charge from a grid where prices have gone up due to increased taxes on
generation, which will increase costs for storage.

Additionally, because the value of storage is dependent on the costs of the marginal
generators in the hours storage devices are charging, the structure of the generator supply
curve from which storage devices charge may have a large impact on the storage operations.
Existing mechanisms that alter the generator supply curve may also alter the carbon reduc-
tion benefits that storage could otherwise provide via enabling renewables. Several papers
have discussed possible future changes to the nature of current supply curves. In light of
the recent reductions in natural gas prices, many have demonstrated that lower prices of
natural gas can reduce overall emissions in various markets. [35] show that lower natural gas
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prices cause reductions in overall emissions by inducing fuel switching from coal to natural
gas. [37] shows that the reduction in natural gas prices in 2008 caused a reduction in overall
emissions of 8.76%, which was specifically driven by a switch from coal to natural gas. [16]
demonstrates the relationship between carbon prices and the ratio of coal to gas price; in
their model a carbon price of $80/ton CO2 is sufficient to cause marginal gas prices to be
cheaper than coal. In such a scenario, the overall CO2 emissions of the grid may change in
a favorable direction without any additional investment in storage on the part of utilities or
ISOs.

In this paper, we examine the impact of carbon pricing on energy storage, looking at
both system-wide benefits and revenue to storage operators. We address these impacts in
the context of the current system buildout of the western interconnection (WECC); this is
not a planning model and so we do not consider potential future build decisions. In this
case, we show that benefits due to storage vary greatly with respect to carbon price, and
also do not vary in a linear way. We also investigate the impacts of added storage on grid-
based carbon emissions, and find that storage has the potential to both increase and decrease
carbon emissions on the grid, depending on carbon prices and fuel prices in the underlying
system. We show that when there are large gaps in marginal operations costs between high
cost natural gas and low cost coal-fired plants, there are no synergies between carbon taxes
and additional storage capacity. When the gaps in marginal costs between these two types of
plants are smaller, synergies between carbon taxes and additional storage capacity emerge.

3.2 Methods

Model Overview

We model the operational impacts of energy storage in a variety of different scenarios using
an hourly unit commitment model that minimizes total system costs, including both startup
and marginal costs, and that is subject to constraints on generator operation, storage device
operation, DC power flow, and reserve requirements, which include both a short-duration
regulation service, and a longer-duration load-following service. We solve the underlying
model using a branch-and-cut algorithm that we implement using the CPLEX 12.5 C++
library. The underlying model is based on the Western Interconnection (also referred to
as the Western Electricity Coordinating Council, or WECC). Results from the underlying
model are described in [52].

Model Formulation

Objective Function

In the underlying model, we add storage capacity in increasing increments. We then use that
storage, along with a set of thermal generators and forecasted wind and solar resources, to
satisfy load at each node and a set of global regulation and load following requirements. We
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change the objective function of the model slightly to accommodate various carbon prices
between $0/ton CO2 and $200/ton CO2. Having a price on carbon changes both the marginal
generator operating costs and the generator start costs, because a certain proportion of both
costs is dependent on fuel. The objective function is the same as in [52]:

min
∑
g∈G

∑
t∈T

Γgqgt + SUgsgt, (3.1)

where the sets G and T denote the sets of generators on the system and time periods
modeled, the decision variable qgt denotes the level of output for generator g in time period
t, and the decision variable sgt denotes whether or not generator g started up in hour t.
Additionally, Γg = Fg ∗HRg +Og and SUg = SEg ∗ Fg + SAg, and Fg, HRg, Og, SEg, and
SAg are respectively the fuel cost for generator g, the heat rate for generator g, the variable
operations and maintenance cost for generator g, the energy required to start generator
g, and the fixed cost component of starting generator g.1 To model different carbon tax
amounts, we substitute Fg ∗ CP ∗ EFg, for the fuel cost Fg in $/MMBtu, where CP is the
carbon price for the iteration in $/ton CO2 and EFg is the emissions factor for the generator
in tons CO2/MMBtu. We obtain fuel prices Fg from EIA data corresponding to 2007 and
2013 [58]. We choose the emissions factors for generators, EFg based on fuel type, and we
obtain them from EPA. [23]Figure 3.3 shows how the heat rate curves for all generators with
non-zero marginal cost on the system change with high versus low fuel prices and various
carbon costs ranging from $0/ton CO2 to $200/ton CO2.

Generator Constraints

In each time period t, we allow each generator g to provide energy (qgt), regulation up (rugt),
regulation down (rdgt), load following up (lfu

gt), and load following down (lfd
gt). We constrain

these decision variables as follows:

qgt + rugt + lfu
gt ≤ Qgugt ∀g ∈ G, t ∈ T , (3.2)

qgt − rdgt − lfd
gt ≥ Q

g
ugt ∀g ∈ G, t ∈ T , (3.3)

where ugt is a binary decision variable denoting whether or not generator g is operating in
time period t, and Qg and Q

g
are the maximum and minimum generation limits, respectively,

for generator g. Each of the ancillary service variables must also be less than their respective
limits for each generator:

0 ≤ rugt ≤ RUgugt ∀g ∈ G, t ∈ T (3.4)

0 ≤ rdgt ≤ RDgugt ∀g ∈ G, t ∈ T (3.5)

0 ≤ lfu
gt ≤ LFUgugt ∀g ∈ G, t ∈ T (3.6)

0 ≤ lfd
gt ≤ LFDgugt ∀g ∈ G, t ∈ T (3.7)

1For simplicity we assume heat rate is constant across each generator’s output range
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Between hours, generators are subject to ramp rate constraints:

R−g ≤ qgt − qg,t−1 − rdgt − lfd
gt ∀g ∈ G, t ∈ T (3.8)

R+
g ≥ qgt − qg,t−1 + rugt + lfu

gt ∀g ∈ G, t ∈ T (3.9)

Continuous startup variables for generators are used with binary operating variables and
minimum up and down times in the manner described by [49]:

t∑
k=t−UTg+1

sgk ≤ ugt ∀g ∈ G, t ∈ T (3.10)

t+DTg∑
k=t+1

sgk ≤ 1− ugt g ∈ G, t ∈ T (3.11)

sgt ≥ ugt − ug,t−1 ∀g ∈ G, t ∈ T (3.12)

0 ≤ sgt ≤ 1 ∀g ∈ G, t ∈ T (3.13)

ugt ∈ {0, 1} ∀g ∈ G, t ∈ T . (3.14)

We obtain heat rates, and capacities (HRg, Qg) from [53]. We also match the prime
mover for generators in this dataset to TEPPC generator category data from the 2009
TEPPC Study Program Results to obtain ramp limits (R+

g , R−g ), minimum up- and down-
times (UTg, DTg), minimum operating capacities (Q

g
), start-up costs and startup energy

required (SAg, SEg), and variable operations and maintenance costs (Og). The maximum
regulation (RUg, RDg) and load following capabilities (LFUg, LFDg) of each generator are
calculated based on the maximum generator movement in 10 minutes, using the one-minute
ramp rate for the generator’s prime mover [62]. Generator limits on ramps between hours
were calculated based on maximum generator movement in 60 mins. [49]

In total, the model commits and dispatches 185 generators, of which 38 are coal-fired, 135
are gas-fired, 4 are nuclear, and 8 are run on fuel oil. The model does not dispatch hydro,
biomass, wind, solar, and geothermal plants; instead the production profiles and capacities
for those generators originate in the Price model. Production profiles for wind and solar
correspond to buildouts of 24 GW of wind capacity and 7 GW of solar capacity, which
are slightly larger than recent buildouts were approximately 18 and 5 GW, respectively, in
2013 [21].The set of dispatched generators used is based on disaggregated generator data
from the Price model, which are then modified such that generators with similar heat rates
are aggregated together, and each node in the network has only one generator with each
heat rate, which reduces symmetry in the subsequent formulation.

Storage Constraints

We model scheduled consumption or supply of energy from storage in hourly blocks. We also
model the commitment of storage capacity to provide regulation and load following reserves
on an hourly basis.
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We require storage devices to adhere to physical constraints as follows. Energy in storage
device m at time t, emt must be less than the capacity Em of the storage device, where M
is the set of all storage devices on the system:

0 ≤ emt ≤ Em ∀m ∈M, t ∈ T (3.15)

The charge and discharge rates for the storage device are also constrained by the power
limits (P charge, P discharge) of the storage device:

0 ≤ cmt ≤ P charge
m ∀m ∈M, t ∈ T (3.16)

0 ≤ dmt ≤ P discharge
m ∀m ∈M, t ∈ T (3.17)

(3.18)

These constraints ensure that every device is capable of serving the worst case reserve
action for which they might be called, in addition to delivering or consuming energy according
to the energy arbitrage schedule.

The following three constraints ensure that, at every time period, the available energy
for arbitrage, regulation, and load following are all appropriately constrained by the current
energy state of the storage devices.

emt = em,t−1 + τβmcmt −
τ

δm
dmt, (3.19)

em,t−1 ≥
1

δm

(
τdmt + τ rrusmt + τ lf lfus

mt

)
(3.20)

Em − em,t−1 ≥ βm
(
τcmt + τ rrdsmt + τ lf lfds

mt

)
(3.21)

Here, rusmt, lf
us
mt, r

ds
mt, and lfds

mt are, respectively, the power contributions of storage device m
to regulation up, regulation down, load following up, and load following down, respectively,
in time period t. The constant τ is the time period length in hours, and τ r is the length of
time for which regulation must be provided in hours, τ lf is the length of time for which load
following must be provided in hours. β and δ are the charging efficiency and discharging
efficiency, respectively, of storage device m. We assume that storage efficiency is 90% on both
charge (βn) and discharge (δn) and a power:energy ratio of 4, such that P discharge

n /En = 4.
By choosing this ratio, we ensure that power constraints will bind for regulation, and energy
constraints will bind for load following and arbitrage. In addition to the added storage
devices, the model also dispatches 4 pumped-hydro plants in all scenarios. The efficiencies
and capabilities for the pumped hydro plants are taken from the Price model, and comprise
3.0 GW of power, with 201 GWh of total energy capacity. Both pumped hydro and added
storage can provide regulation and load-following, subject to constraints that require enough
energy to be present in the battery (or energy capacity for charging in the case of down
reserves) for provision of 15 minutes of regulation and 2 hours of load following (Eq. (4.15)
and Eq. (4.16) with τ r = 0.25 hrs and τ l = 2 hrs) [55].
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Network Constraints

We enforce nodal power balance constraints for hourly schedules with a linear DC load flow
model: ∑

g∈Gn

(qgt) +
∑

m∈Mn

(cmt − dmt) +
∑
i∈N

Bni(θnt − θit) = Lnt, (3.22)

where Gn is the subset of generators located at node n, Mn is the subset of generators located
at node n, Bni is the susceptance between node n and node i, θnt is the voltage angle at
node n at time t, and Lnt is the load at node n at time t.

Also, the total load flow on line ij must be less than or equal to the maximum load flow
allowed, Dij:

Bij(θit − θjt) ≤ Dij (3.23)

We assume that any line capacity violations that result from reserve actions are suffi-
ciently small or short in duration that they can be tolerated by the system operator or that
the system can be redispatched to resolve constraints. We also assume these events are
sufficiently rare that they can be neglected for the purpose of quantifying the annual cost
benefits of storage at the scale of the model.

The layout of the system network for the model is based on data for the 240-bus model
created and published in association with a model developed at CAISO [53], hereafter the
Price model. From this resource, we obtain susceptances Bij and line limits Dij for the
network, as well as hourly loads Lnt.

2

Reserve Requirements

We procure minimum reserves of each type (regulation in up and down directions, load
following in up and down directions) in each hour. We model these on the requirements used
in [51]. For regulation up and down requirements, we require in each hour a proportion, ρ,
of the peak load for the day added to a proportion, σ, of the total installed wind and solar
capacity. We model load following up for each hour as a proportion, η, of the forecasted
load plus a proportion, ν, of the forecasted wind and solar for the hour. We model the
load following down requirement as a constant proportion of the renewables forecast. Total
regulation in both directions must be greater than 1% of peak load (ρ = 0.01). The Western
Wind Integration Study indicates that 1% of peak is acceptable for regulation with respect
to wind capacity, but does not investigate whether this also applies for additions of solar. To
ensure that regulation needs are satisfied with the addition of both resources, we also add
1% of the installed wind and solar capacities to the regulation requirement in both directions
(σ = 0.01). Total load following in the up direction must be greater than the sum of 3%
of forecasted load and 5% of forecasted wind and solar (η = 0.03, ν = 0.05), in accordance

2The [53] model is based on 2004 data. In the time since the model was built, total demand has
remained relatively flat [61] and generation capacity for all fuels but wind, solar and natural gas were
virtually unchanged [21]. Gas capacity has grown significantly since 2004, however because total and peak
demand remained flat this capacity has had relatively little impact on operations.
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with the “3+5” rule. In accordance with the need for load following in the down direction
as specified in [39], we also require an amount of reserve in the down direction equal to 5%
of forecasted wind and solar.

The following equations define these constraints explicitly, with Sn and W n being the
solar and wind capacities installed at node n, respectively, and Snt and Wnt being the solar
and wind forecasts at node n during time period t. To reduce complexity, we model total
reserves constraints globally.

∑
g∈G

(rugt) +
∑
m∈M

(rusmt) ≥ ρ

(
max

a∈T :tmax−a≥t
Lna

)
+ σ

(∑
n∈N

(Sn +W n)

)
∀t ∈ T (3.24)

∑
g∈G

(rdgt) +
∑
m∈M

(rdsmt) ≥ ρ

(
max

a∈T :tmax−a≥t
Lna

)
+ σ

(∑
n∈N

(Sn +W n)

)
∀t ∈ T (3.25)∑

g∈G

(lfu
gt) +

∑
m∈M

(lfus
mt) ≥ η

∑
n inN

Lnt + ν
∑
n∈N

(Snt +Wnt) ∀t ∈ T (3.26)∑
g∈G

(lfd
gt) +

∑
m∈M

(lfds
mt) ≥ ν

∑
n∈N

(Snt +Wnt) ∀t ∈ T (3.27)

Solution Method

As in [52], we run the model in series by passing the final storage levels, generator output
levels for ramping, and generator operating and starting levels from the first day as constants
that constrain the corresponding variables for the second day. This corresponds to the
following constraints, where the prev superscript denotes variables from the previous day’s
solve:

en0 = eprevn24 ∀g ∈ G (3.28)

ugb = uprevg,24+b ∀g ∈ G, b ∈ (−DTg + 1, ..., 0) (3.29)

sgb = sprevg,24+b ∀g ∈ G, b ∈ (min(−UTg + 1,−DTg + 1), ..., 0) (3.30)

Additionally, because it would otherwise be optimal to fully discharge storage devices at
the end of each unit commitment modeling period, we also constrain the final storage levels
and generator operating levels. To do this, we run a preliminary two-day unit commitment
model with a four hour time step for the generator unit commitment variables, and save the
generator and storage states at the end of the first day for use as constraints in a second
run. In the second (final) run, we use single-day unit commitment in one hour increments
with final storage charge levels and final generator operating states constrained to be equal
to those saved from the first run (as in [55]). This corresponds to the following additional
constraints for the first two-day unit commitment, where T = {t ∈ Z : 1 ≤ t ≤ 48}

ugt = ug,t−1 = ug,t−2 = ug,t−3 ∀g ∈ G, {t ∈ T : t mod 4 = 0} (3.31)
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Figure 3.1: System cost savings at various storage penetrations as carbon tax is increased.
At all storage penetrations, system cost savings due to added storage drop as carbon prices
increase to $80/ton, and then increase again.

We implement the model in C++ and solve it with CPLEX 12.5. We solve the first
two-day unit commitment problem with a mip gap of 0.5%, and the second problem with a
mip gap of 0.05%. The average time taken to solve these two problems and obtain results
for an individual day was 72.4 seconds.

3.3 Results

Figures 3.1 and 3.2 show the system cost savings due to storage as carbon prices increase
with 2007 (high natural gas prices) and 2012 (low natural gas) fuel prices, respectively. We
show two axes for each graph. The right-hand axis shows the single-year results from our
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Figure 3.2: System cost savings at various storage penetrations as carbon tax is increased.
At all storage penetrations, system cost savings due to added storage drop as carbon prices
increase to $80/ton, and then increase again.

model. The left-hand axis shows the expected total savings over 20 years, assuming a 7%
discount rate and that the savings achieved during the single year of savings modeled is
consistently achieved for the duration of the 20-year time horizon.

In both fuel price scenarios, we show that additional storage capabilities result in system
cost savings, regardless of the current price of carbon. We can understand these results
by examining the generator supply curves from which storage devices are charging. When
there is no price on carbon and gas prices are high, there is a large jump in the generator
supply curve (see Figure 3.3). A similar jump occurs when gas prices are low and carbon
prices reach $50/ton CO2. These jumps are where storage is truly valuable, because storage
provides value when it can arbitrage jumps in marginal costs in the energy and ancillary
services markets.
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Figure 3.3: Generator supply curves at various carbon prices.
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As carbon prices increase from $0/ton CO2, the corresponding generator supply curves
become flatter, and the jumps in marginal costs between gas and coal generators decrease.
This means that the opportunity for storage to contribute to system cost savings is reduced
as carbon prices are increased, because the value of trading a kWh stored in a cheaper hour
for either energy or ancillary services in a more expensive hour is not as high. We see this
phenomenon occurring in Figure 3.1 over a large range of carbon prices, between $0/ton CO2

and $80/ton CO2. In this high gas price case, the spread between marginal gas and coal
costs is large, and only closes after a large marginal cost change, brought about by prices
on carbon. We also see a drop in storage value as storage prices increase in the low gas
price case, between $0/ton CO2 and $10/ton CO2, and then again between $50/ton CO2

and $80/ton CO2. Overall, the sharp drops in savings occur when the mix of generators on
the margin experiences a large fuel type shift from high cost to lower cost generators. The
marginal generator for these runs is, on average, the one providing the 80th GW of power.
In Figure 3.3, we can see that the energy mix near 80 GW switches from mostly gas to
mostly coal for the high gas price cases at roughly $80/ton CO2. This is the point where
storage value goes from decreasing with carbon tax size to increasing with the size of the
carbon tax. For the low gas price case, the energy mix near 80 GW experiences a switch
from gas to coal at $10/ton CO2. As with the $80/ton point for the high gas price scenario,
we see storage value go from decreasing w/ tax to increasing w/ tax at this value. The low
gas price scenario also experiences another fuel switch from coal back to gas as the last few
gas plants to be more expensive than coal plants finally become cheaper when the carbon
price increases from $50/ton CO2 to $80/ton CO2. When this occurs, the generators on the
margin switch from burning coal at a carbon price of $50/ton CO2 to burning gas at a carbon
price of $80/ton CO2. The overall value of storage in the system then decreases, because gas
plants have shorter minimum run times than coal plants once started, and storage has fewer
opportunities to relieve these constraints.

We show the overall change in CO2 emissions, relative to the no storage case, resulting
from the addition of storage at various carbon prices for the high gas price case in Figure 3.4
and for the low gas price case in Figure 3.5. In the high gas price case, we observe an overall
rise in CO2 emissions relative to the no storage case when carbon prices are less than $80/ton
CO2. In the low gas price case, we observe an initial increase in emissions followed quickly
by a sharp drop in emissions, and then a reduction to zero change in overall emissions as
taxes on emissions increase.

We also show that the emissions due to starts of different types of generators follow an
inverse pattern to that of emissions due to energy generation. In Figure 3.6, we see that,
for all storage penetrations with high gas prices, the emissions due to coal generator starts
are initially curtailed as we first start adding a carbon tax. The relationship is different
when gas prices are low; emissions due to gas generator starts rise, but emissions due to coal
generator starts also rise for some penetrations of storage. In Figure 3.7, emissions due to
gas and coal generation are more obviously inverses in every storage penetration scenario,
but their behavior under high gas prices versus low gas prices is much different. In both gas
price regimes, $80/ton CO2 is a key inflection point, where gas generation begins to provide
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Figure 3.4: High gas prices: System cost savings at various storage penetrations as carbon
tax is increased. At all storage penetrations, system cost savings due to added storage drop
as carbon prices increase to $80/ton, and then increase again.

emissions instead of coal. This is in line with [16], who show that $80/ton CO2 is the price
at which fuel switching from coal to gas is instigated.

We also explore the gross profits seen by storage operators as carbon taxes increase from
$0/ton CO2. We calculate these using the following equation:

Z =
∑
m∈M

∑
t∈T

(
λmtdmt − λmtcmt + λrut r

us
mt + λrdt r

ds
mt + λlfut lfus

mt + λlfdt lfds
mt

)
, (3.32)

where λmt, λ
ru
mt, λ

rd
mt, λ

lfu
mt , and λlfdmt are the energy, regulation up, regulation down, load

following up, and load following down prices seen, respectively, by storage device m in
hour t. We calculate λmt as the dual of the node balance constraint Eq. (4.30), and we
calculate the prices in the reserve markets as the maximum opportunity cost faced by a
generator providing that specific reserve service. These calculations assume that generators
are bidding their marginal costs, and are not exercising market power.

Figures 3.8 and 3.9 show the gross profits seen by storage devices in our model at high
gas prices and low gas prices, respectively. We calculate gross profits as the sum of the
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Figure 3.5: Low gas prices: System cost savings at various storage penetrations as carbon
tax is increased. At all storage penetrations, system cost savings due to added storage drop
as carbon prices increase to $80/ton, and then increase again.

revenues made in regulation, load following, and energy markets, less the cost to charge the
storage devices. In these figures we show that in both high and low gas scenarios, the profits
to storage operators decrease slightly when carbon prices are relatively low ($0–$50/ton
CO2), and then proceed to increase more strongly when carbon prices are higher (greater
than $50/ton CO2). It should also be noted that the order of lines on this graph does not
follow a strict order based on the magnitude of storage capacity on the system, such that the
gross profit that an additional kWh of storage capacity will see is greater with 500 MWh of
storage on the system than with 5000 MWh of storage on the system. This is corroborated
in [52], which also shows the decrease in value to additional units of storage as total storage
penetration is increased.

3.4 Discussion

These results indicate a clear nonlinearity in the relationship between a change in carbon
price and the potential benefits of increased storage capacity. Storage has been identified as
a key component in many carbon reduction plans, but the interaction between storage and
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Figure 3.6: Emissions from generator starts broken down by fuel type: The relationship
between emissions from coal starts and gas starts as a function of carbon price follows a
different pattern than the relationship between overall emissions and carbon price; however,
emissions due to energy generation is the key driver of emissions, rather than generator
starts.
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Figure 3.7: Emissions from energy generation broken down by fuel type:The relationship
between emissions from coal and gas due to energy generation follows a different pattern
than the relationship between overall emissions and carbon price; however, emissions due to
energy generation is the key driver of emissions, rather than generator starts.
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Figure 3.8: Gross profit seen by storage operators in a system with high gas prices under
various carbon price regimes. At low carbon prices, storage operators achieve small profits
that decrease as taxes increase. As carbon taxes increase past $80/ton CO2, storage profits
begin to increase.

carbon price on the operating margin has not been specifically considered. We have shown
that this relationship is not straightforward and depends on the particular supply curve in
the system to which storage is added. At two different sets of fuel prices, we observe an initial
reduction followed by an increase in the value of storage to a grid system as the overall price
of carbon emissions is change from $0/ton CO2 to $200/ton CO2 (see Figures 3.1 and 3.2).

Further, we show that the actual contribution of energy storage devices to carbon reduc-
tions is not straightforward, and can depend on carbon price. In Figures 3.4 and 3.5, we show
that, in the presence of additions to storage, carbon emissions and carbon taxes do not have
a linear relationship. With more storage on the system, this effect is more pronounced. This
is because adding a tax on carbon changes the supply curve from which storage is charging
in fundamental ways, such that dirtier, more carbon intensive coal plants are equivalent in
price to less carbon intensive gas plants. Storage tends to charge using power produced by
plants that are lower on the supply curve and discharge to replace more expensive power
from higher on the supply curve. When carbon taxes are high enough, storage can charge
from gas plants and displace coal power that has become more expensive. When gas prices
are already high and carbon taxes are low, the gap between the marginal costs of coal and
gas is large. While a tax on carbon emissions serves to reduce the size of this gap, the coal
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Figure 3.9: Gross profit seen by storage operators in a system with low gas prices under
various carbon price regimes. At low carbon prices, storage operators achieve small profits
that decrease as taxes increase. As carbon taxes increase past $80/ton CO2, storage profits
begin to increase.

plants below said gap must still operate to satisfy load, and they are still cheaper than gas
plants. As storage capacity is increased, the overall use of baseload coal also increases due
to storage charging[52]. At $80/ton CO2, fuel switching from coal as baseload to gas as
baseload begins to occur (see Figure 3.7), which causes emissions attributable to storage to
drop rather than rise, as they do with a lower price on carbon.

The implications for the operational phase of energy storage life cycle emissions are
therefore strongly dependent on the system in which storage is operating, and the taxes on
carbon that already exist in the system. In both the high and low gas scenarios we explore,
we observe that avoided carbon goes to zero as carbon taxes increase. When carbon taxes
are high, the marginal costs of high carbon intensity plants increase, so that they operate in
fewer hours. This means that at the highest carbon prices, the difference in carbon emissions
between high and low cost generators gets smaller. As the overall energy mix gets cleaner
and renewables penetrations increase due to policy changes such as AB32 and RPS, energy
storage will no longer be able to trade high emissions energy for low emissions energy–all
energy will be coming from low emissions sources. For this reason, any storage emissions
reductions will decline as the energy mix gets cleaner, and the potential for storage to assist
in direct operational emissions reductions may be limited.
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Crucially, the value of storage to a future system with lower carbon intensity is path-
dependent: if the system has been decarbonized by disincentivizing carbon emissions through
taxes the value of storage will be different than if the system has been decarbonized through
another method that does not significantly change the overall system supply curve and the
relationships between baseload and peaker plants running on coal vs. gas (e.g. a method
that implements wide ranging energy efficiency measures on the demand side would reduce
carbon emissions overall by decreasing load, but the relationships between types of plants on
the system supply curve would not change appreciably). A carbon tax is not guaranteed to
incentivize investment in storage. The system in which storage investment is being considered
may be primed to reduce the overall benefits of additional storage when a carbon tax is added,
particularly if the price on carbon is not high enough to drive storage profits.

In some cases, the benefits to the system of additional storage capacity are reflected
in the profits achieved by storage operators; however, in this case, the overall benefit that
storage provides to the system grid-wide is not always a good proxy for estimating the
incentive (e.g. revenue, profit, etc.) for storage operators to participate in energy markets.
We show in Figures 3.8 and 3.9 that storage profits first dip slightly and then grow more
strongly as carbon prices increase, but the benefits system wide do not show a similar
pattern. From the results we present, it is reasonable to conclude that a carbon tax does not
provide a straightforward incentive for storage penetrations to be increased through market
dynamics alone. If fuel prices combined with carbon prices are such that storage operators
find themselves entering the market near the nadir for benefits (as shown most clearly in
Figure 3.1), they may be disinclined to do so. Even more starkly, a storage operator who
finds it economically beneficial to operate at a carbon price of $50/ton may no longer at a
carbon price of $80/ton, and may cease to operate. If such a storage device is contributing to
overall carbon emissions reductions, and ceases to provide these when an increase in carbon
price occurs, then the expected decrease in emissions that should otherwise coincide with an
increase in carbon tax may not in fact be realized.

To avoid misalignment of storage incentives benefits to the grid, and benefits due to
reductions in carbon, our results indicate that a carbon price of greater than $80/ton CO2 is
necessary. It is only after this point that all of these incentives line up, and storage operators
gain profit while providing a net reduction in carbon emissions as well as an overall reduction
in system costs. Additionally, a carbon tax is most synergistic with storage capacity when
gas prices are lower relative to coal prices. This means that as fracking contributes to lower
gas prices, policy makers and storage device owners should be in agreement about adding
a carbon tax to the system. $80/ ton CO2 is much larger than the current market clearing
price of the Regional Greenhouse Gas Initiave (RGGI), at $5.50/ton CO2. $80/ ton CO2 is
also on the larger side of estimates of the social cost of carbon, but not substantially so; the
PAGE09 model gives an estimate of $106/ton CO2[32], the RICE model gives an estimate
of $59/ton CO2[46], and the Anthoff model gives an estimate of $51/ton CO2[2].

In this paper, we are not considering the potential for storage to reduce emissions by
reducing inefficient energy production during fast ramping. This is an area of great po-
tential for fast-responding storage, because storage can be charged using energy from slow
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responding plants that are used for baseload, and that energy can then be used to provide
ramp services. We are also not considering the potential for energy storage to reduce un-
certainty or volatility in wind and solar power production. This is also a potential source of
storage-driven emissions reductions in the overall electricity system.

3.5 Conclusions and Policy Implications

We demonstrate that carbon taxes affect the benefits that storage can provide. When carbon
taxes increase, the effect on storage operation is dependent on the existing mix of generators
on the system. Systems with a large gap in marginal cost between cheaper, higher emissions
generators that burn coal and more expensive, lower emissions plants that burn gas will
not tend to favor storage when the gap in marginal costs is reduced by a carbon tax. In
these types of systems, there are no compelling synergies between policies that increase
storage and policies that increase carbon taxes. In systems that, at the initialization of
a carbon tax, have a smaller initial gap in marginal costs between natural gas plants and
coal plants the synergies are stronger, and storage will be more beneficial when a carbon
tax is also added. This suggests that we should consider a carbon tax under the current
fracking-enabled natural gas price regime so that additional deployments of storage can be
in the interests of storage operators as well as policy makers endeavoring to deploy storage
in an effort to reduce carbon emissions. To properly align incentives for utilities, storage
producers, and society, our results indicate that a carbon tax greater than $80/ton CO2

is necessary to ensure that storage operators are adequately incentivized, and any carbon
emissions that result from storage operation are minimized. While $80/ton CO2 is higher
than the current market clearing price of RGGI, it is within estimates in the literature of
the social cost of carbon.

Others in the literature have demonstrated that carbon emissions have the potential to
go up overall when storage is added to the current system ([52],[31]), and our results support
this. We also show, however, that changes in carbon taxes can mitigate this effect when
fuel prices for natural gas are low relative to coal. At present, current policies in California
(AB2514[1]) and US-wide (the STORAGE Act[59]) regarding storage do not sufficiently
consider the impacts of storage on carbon emissions, nor do they try to explicitly reduce
this impact. Storage will be strongly beneficial in providing ramp and reserve capabilities
to a system with higher requirements for these services due to the increased deployment of
renewables. If policy makers are interested in having storage provide these kinds of services
in a high renewables future, it is to their benefit to implement a carbon tax in the near term.
This will incentivize storage capacity to be built out now, such that it will be available to
support renewables in the future.
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Chapter 4

Using TCLs as a grid-level resource

4.1 Abstract

As the energy grid evolves away from fossil fuel-driven baseload peaker plants and towards
a system with a higher concentration of renewables and a stronger focus on efficiency, new
engineering solutions for managing such systems are being considered. Thermostatically
controlled loads (TCLs) could potentially be used to arbitrage electricity prices or provide
ancillary services through non-disruptive load control. Non-disruptive load control allows
management of TCLs in a manner similar to storage devices. We investigate the potential
systemwide benefits of large populations of centrally-managed TCLs, and compare this to
the benefits and operational impacts of storage devices.

4.2 Introduction

Demand response has been demonstrated to provide system benefits similar to storage,
particularly with respect to handling variability associated with intermittent renewables,
such as wind and solar [11]. Demand response acts in a similar manner as storage, given
that demand that is curtailed is frequently shifted to another, less constrained, time of the
day or year. Unlike storage, there is no round-trip efficiency loss, but many currently-in-use
demand response programs have other restrictions, limiting the frequency that the resource
can be called to curtail. Because demand response and storage work in similar ways, their
use may be a bit in competition.

One particular application of demand response technologies that has been considered
is the aggregation and control of the setpoints of thermostatically controlled loads [10].
By directing individual loads to turn on or off when they might not otherwise do so, we
can raise or lower their net power consumption on the grid, while keeping the individual
loads operating within their temperature dead bands. [42] demonstrate how to do this with
state estimation techniques. These techniques allow for management of large quantities of
TCLs without needing to know the exact state of each TCL individually. Millions of TCLs
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may be necessary to provide a substantial benefit, so these techniques reduce the required
infrastructure that would otherwise be necessary to implement such a solution.

Flexible ramping products are being considered to address the ”duck curve” in the elec-
tricity generation profile [66]. This curve originates as solar penetrations increase, because
the evening ramp occurs as solar production winds down for the day and the electricity
system needs to deal with the resulting larger ramp. Energy storage has been considered as
a way to deal with this ramping need, but there is still some debate in the literature over
whether or not bulk energy storage will be cost competitive enough to provide this service.
Unlike dedicated energy storage, such as lithium-ion batteries, compressed air energy stor-
age, or fly wheels, TCL aggregations may be more competitive in the market because their
capital costs will be lower. TCLs will require a sensor network and software integration, but
they will not need the kind of large-scale hardware that utility-scale storage would need, so
the lifecycle emissions costs of such a solution could be expected to be lower as well.

In this paper, we model the potential operational benefits that could be achieved using
TCL aggregations to provide storage services, including reserve services as well as energy
arbitrage. We also investigate the extent to which dedicated energy storage and aggregations
of TCLs might overlap, and the relative magnitudes of the two products’ potential revenues
and system benefits. We are interested in the overall effect of TCL aggregations, were they
to participate in the market in a manner similar to a single large-scale storage device. For
this reason, we are modeling their effects on an hourly basis. There may be other benefits
that TCL aggregations could provide on a subhourly basis which we are not addressing.

4.3 Methods

Model Overview

We model demand response services from a large population of TCLs as if they were a smaller
number of energy storage devices with constraints on their operation that are based on hourly
varying temperatures. We then use these devices with time-varying energy parameters in
an hourly unit commitment model that minimizes total system costs, subject to constraints
on generator operation, storage device operation, DC power flow, and reserve requirements,
which include both a short-duration regulation service, and a longer-duration load-following
service. We do not pay demand response devices for their energy, although they do make
revenue if they can divert their energy charging into lower cost hours. We solve the underlying
model using a branch-and-cut algorithm that we implement using the CPLEX 12.5 C++
library. The underlying unit commitment model is based on the Western Interconnection
(also referred to as the Western Electricity Coordinating Council, or WECC). Results from
the underlying model are described in [52].
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Aggregation of controlled TCL population as a single storage
device with time-varying energy storage constraints

Aggregations of thermostatically controlled loads can be conceptualized as storage devices
with time-varying parameters, because they can be controlled to operate such that their
combined output is beneficial to system operators. ”Charging” such a device amounts to
having more devices on at a given temperature than would otherwise be expected, and
”discharging” one corresponds to fewer loads in the ”on” state.

To obtain the time-varying parameters that characterize our aggregated devices, we model
the controlled TCL population using the analytical method described by [41]. Without
control, the TCLs have a total power trajectory, or baseline aggregation, Bagg,j in every
hour j. With control, the TCL population can be operated at a higher total power, Pmax,j,
or a lower total power, Pmin,j, depending on what is necessary for the overall system. In
every hour, the power output of the aggregated device, Pagg,j must be between Pmin,j and
Pmax,j. The amount stored, then, into the aggregate ”device” is as follows:

Sj+1 = Sj + (Pagg,j −Bagg,j∆T ), (4.1)

where ∆T is the length of the time period, in this case one hour. The total energy stored
into the device cannot exceed Smax,j.

Each of the parameters Bagg,j, Pmax,j, Pmin,j, and Smax,j depend on the temperature in
hour j, as well as the various other parameters of the individual TCLs on the system. The
parameters are calculated as follows:

Bagg,j =

Nj∑
i=1

P iDi
j, (4.2)

Pmax,j =

Nj∑
i=1

P i, (4.3)

Pmin,j = 0, (4.4)

Smax,j =

Nj∑
i=1

P ihip,j
(
1−Di

j

)
, (4.5)

(4.6)

where Nj is the number of devices available in time period j, P i is the rated power of device
i, and hp is the amount of time taken to traverse the entire deadband. We use a distribution
of 1000 air conditioner TCLs, and the typical values used by [40]. For temperature data,
we use hourly climate normals from the weather station at the Los Angeles Airport for
the year 2010 [3]. Additionally, we locate the aggregation at a node in the system in Los
Angeles, so that the aggregation is experiencing load conditions most closely associated with
the temperature data used.
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Unit Committment Model

Objective Function

In the model we use for the overall electricity system, we add storage capacity in increasing
increments corresponding to TCL aggregations of 1000 units each. We then use that aggre-
gation, along with a set of thermal generators and forecasted wind and solar resources, to
satisfy load at each node as well as a set of global regulation and load following requirements.
The objective function is the same as in [52]:

min
∑
g∈G

∑
t∈T

Γgqgt + SUgsgt, (4.7)

where the sets G and T denote the sets of generators on the system and time periods
modeled, the decision variable qgt denotes the level of output for generator g in time period
t, and the decision variable sgt denotes whether or not generator g started up in hour t.
Additionally, Γg = Fg ∗HRg +Og and SUg = SEg ∗ Fg + SAg, and Fg, HRg, Og, SEg, and
SAg are respectively the fuel cost for generator g, the heat rate for generator g, the variable
operations and maintenance cost for generator g, the energy required to start generator g,
and the fixed cost component of starting generator g.1 We obtain fuel prices Fg from EIA
data corresponding to 2013 [58]. We choose the emissions factors for generators, EFg based
on fuel type, and we obtain them from EPA. [23].

TCL Aggregation Constraints

We model scheduled consumption or supply of energy from aggregated TCLs in hourly
blocks. We also model the commitment of storage capacity from the aggregated TCLs to
provide regulation and load following reserves on an hourly basis. We assume that there is
no cost to using the aggregations, outside of the cost of the energy they consume to operate
outside of their expected trajectories.

As in 4.3, we require the TCL aggregations to adhere to limits, such that energy stored
in aggregation m at time t, Pagg,mt must be less than the capacity Smax,m of the resulting
aggregation. In the following constraints, M is the set of all storage devices on the system:

0 ≤ Smt ≤ Smax,mt ∀m ∈M, t ∈ T (4.8)

The charge and discharge rates for the storage device are also constrained by the power
limits for the aggregation, which are specified as follows:

P charge
m = Pmax,mt −Bagg,mt (4.9)

P discharge
m = Bagg,mt − Pmin,mt (4.10)

1For simplicity we assume heat rate is constant across each generator’s output range
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The charging cmt and discharging dmt behaviour of the aggregations are then power-
constrained as follows:

0 ≤ cmt ≤ P charge
m ∀m ∈M, t ∈ T (4.11)

0 ≤ dmt ≤ P discharge
m ∀m ∈M, t ∈ T (4.12)

(4.13)

The following three constraints ensure that, at every time period, the available energy
for arbitrage, regulation, and load following are all appropriately constrained by the current
energy state of the aggregation of TCLs. These constraints ensure that every device is
capable of serving the worst case reserve action for which they might be called, in addition
to delivering or consuming energy according to the energy arbitrage schedule.

emt = em,t−1 + τ (cmt − dmt) , (4.14)

em,t−1 ≥ τdmt + τ rrusmt + τ lf lfus
mt (4.15)

Em − em,t−1 ≥ τcmt + τ rrdsmt + τ lf lfds
mt (4.16)

Here, rusmt, lf
us
mt, r

ds
mt, and lfds

mt are, respectively, the power contributions of aggregation m to
regulation up, regulation down, load following up, and load following down, respectively, in
time period t, and emt is the amount of energy that we store into aggregation m at time t.
The constant τ is the time period length in hours, and τ r is the length of time for which
regulation must be provided in hours, τ lf is the length of time for which load following must
be provided in hours.

In addition to the added TCL aggregations, the model also dispatches 4 pumped-hydro
plants in all scenarios. These are modeled similarly to the TCL aggregations, but they
have efficiencies of charge and discharge. The efficiencies and capabilities for the pumped
hydro plants are taken from [53], and comprise 3.0 GW of power, with 201 GWh of total
energy capacity. Both pumped hydro and TCL aggregations can provide regulation and
load-following, subject to constraints that require sufficient energy and power capabilities
for provision of 15 minutes of regulation and 2 hours of load following (Eq. (4.15) and
Eq. (4.16) with τ r = 0.25 hrs and τ l = 2 hrs) [55].

Generator Constraints

In each time period t, we allow each generator g to provide energy (qgt), regulation up (rugt),
regulation down (rdgt), load following up (lfu

gt), and load following down (lfd
gt). We constrain

these decision variables as follows:

qgt + rugt + lfu
gt ≤ Qgugt ∀g ∈ G, t ∈ T , (4.17)

qgt − rdgt − lfd
gt ≥ Q

g
ugt ∀g ∈ G, t ∈ T , (4.18)

where ugt is a binary decision variable denoting whether or not generator g is operating in
time period t, and Qg and Q

g
are the maximum and minimum generation limits, respectively,
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for generator g. Each of the ancillary service variables must also be less than their respective
limits for each generator:

0 ≤ rugt ≤ RUgugt ∀g ∈ G, t ∈ T (4.19)

0 ≤ rdgt ≤ RDgugt ∀g ∈ G, t ∈ T (4.20)

0 ≤ lfu
gt ≤ LFUgugt ∀g ∈ G, t ∈ T (4.21)

0 ≤ lfd
gt ≤ LFDgugt ∀g ∈ G, t ∈ T (4.22)

Between hours, generators are subject to ramp rate constraints:

R−g ≤ qgt − qg,t−1 − rdgt − lfd
gt ∀g ∈ G, t ∈ T (4.23)

R+
g ≥ qgt − qg,t−1 + rugt + lfu

gt ∀g ∈ G, t ∈ T (4.24)

Continuous startup variables for generators are used with binary operating variables and
minimum up and down times in the manner described by [49]:

t∑
k=t−UTg+1

sgk ≤ ugt ∀g ∈ G, t ∈ T (4.25)

t+DTg∑
k=t+1

sgk ≤ 1− ugt g ∈ G, t ∈ T (4.26)

sgt ≥ ugt − ug,t−1 ∀g ∈ G, t ∈ T (4.27)

0 ≤ sgt ≤ 1 ∀g ∈ G, t ∈ T (4.28)

ugt ∈ {0, 1} ∀g ∈ G, t ∈ T . (4.29)

We obtain heat rates, and capacities (HRg, Qg) from [53]. We also match the prime
mover for generators in this dataset to TEPPC generator category data from the 2009
TEPPC Study Program Results to obtain ramp limits (R+

g , R−g ), minimum up- and down-
times (UTg, DTg), minimum operating capacities (Q

g
), start-up costs and startup energy

required (SAg, SEg), and variable operations and maintenance costs (Og). The maximum
regulation (RUg, RDg) and load following capabilities (LFUg, LFDg) of each generator are
calculated based on the maximum generator movement in 10 minutes, using the one-minute
ramp rate for the generator’s prime mover [62]. Generator limits on ramps between hours
were calculated based on maximum generator movement in 60 mins. [49]

In total, the model commits and dispatches 185 generators, of which 38 are coal-fired, 135
are gas-fired, 4 are nuclear, and 8 are run on fuel oil. The model does not dispatch hydro,
biomass, wind, solar, and geothermal plants; instead the production profiles and capacities
for those generators originate in the Price model. The set of dispatched generators used
is based on disaggregated generator data from the Price model, which are then modified
such that generators with similar heat rates are aggregated together, and each node in
the network has only one generator with each heat rate, which reduces symmetry in the
subsequent formulation.
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Network Constraints

We enforce nodal power balance constraints for hourly schedules with a linear DC load flow
model: ∑

g∈Gn

(qgt) +
∑

m∈Mn

(cmt − dmt) +
∑
i∈N

Bni(θnt − θit) = Lnt, (4.30)

where Gn is the subset of generators located at node n, Mn is the subset of generators located
at node n, Bni is the susceptance between node n and node i, θnt is the voltage angle at
node n at time t, and Lnt is the load at node n at time t.

Also, the total load flow on line ij must be less than or equal to the maximum load flow
allowed, Dij:

Bij(θit − θjt) ≤ Dij (4.31)

We assume that any line capacity violations that result from reserve actions are suffi-
ciently small or short in duration that they can be tolerated by the system operator or that
the system can be redispatched to resolve constraints. We also assume these events are
sufficiently rare that they can be neglected for the purpose of quantifying the annual cost
benefits of TCL aggregations used as storage devices at the scale of the model.

The layout of the system network for the model is based on data for the 240-bus model
created and published in association with the Price model developed at CAISO [53]. From
this resource, we obtain susceptances Bij and line limits Dij for the network, as well as
hourly loads Lnt.

2

Reserve Requirements

We procure minimum reserves of each type (regulation in up and down directions, load
following in up and down directions) in each hour. We model these on the requirements used
in [51]. For regulation up and down requirements, we require in each hour a proportion, ρ,
of the peak load for the day added to a proportion, σ, of the total installed wind and solar
capacity. We model load following up for each hour as a proportion, η, of the forecasted
load plus a proportion, ν, of the forecasted wind and solar for the hour. We model the
load following down requirement as a constant proportion of the renewables forecast. Total
regulation in both directions must be greater than 1% of peak load (ρ = 0.01). The Western
Wind Integration Study indicates that 1% of peak is acceptable for regulation with respect
to wind capacity, but does not investigate whether this also applies for additions of solar. To
ensure that regulation needs are satisfied with the addition of both resources, we also add
1% of the installed wind and solar capacities to the regulation requirement in both directions
(σ = 0.01). Total load following in the up direction must be greater than the sum of 3%
of forecasted load and 5% of forecasted wind and solar (η = 0.03, ν = 0.05), in accordance

2The [53] model is based on 2004 data. In the time since the model was built, total demand has
remained relatively flat [61] and generation capacity for all fuels but wind, solar and natural gas were
virtually unchanged [21]. Gas capacity has grown significantly since 2004, however because total and peak
demand remained flat this capacity has had relatively little impact on operations.
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with the ”3+5” rule. In accordance with the need for load following in the down direction
as specified in [39], we also require an amount of reserve in the down direction equal to 5%
of forecasted wind and solar.

The following equations define these constraints explicitly, with Sn and W n being the
solar and wind capacities installed at node n, respectively, and Snt and Wnt being the solar
and wind forecasts at node n during time period t. To reduce complexity, we model total
reserves constraints globally.

∑
g∈G

(rugt) +
∑
m∈M

(rusmt) ≥ ρ

(
max

a∈T :tmax−a≥t
Lna

)
+ σ

(∑
n∈N

(Sn +W n)

)
∀t ∈ T (4.32)

∑
g∈G

(rdgt) +
∑
m∈M

(rdsmt) ≥ ρ

(
max

a∈T :tmax−a≥t
Lna

)
+ σ

(∑
n∈N

(Sn +W n)

)
∀t ∈ T (4.33)∑

g∈G

(lfu
gt) +

∑
m∈M

(lfus
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Solution Method

As in [52], we run the model in series by passing the final stored energy levels for the
aggregation, if any, and generator operating and starting levels from the first day as constants
that constrain the corresponding variables for the second day. This corresponds to the
following constraints, where the prev superscript denotes variables from the previous day’s
solve:

en0 = eprevn24 ∀g ∈ G (4.36)

ugb = uprevg,24+b ∀g ∈ G, b ∈ (−DTg + 1, ..., 0) (4.37)

sgb = sprevg,24+b ∀g ∈ G, b ∈ (min(−UTg + 1,−DTg + 1), ..., 0) (4.38)

Additionally, because it would be optimal to fully discharge the energy stored in the alloca-
tions at the end of each unit commitment modeling period, we also constrain the final storage
levels and generator operating levels. To do this, we run a preliminary two-day unit com-
mitment model with a four hour time step for the generator unit commitment variables, and
save the generator and stored energy states at the end of the first day for use as constraints
in a second run. In the second (final) run, we use single-day unit commitment in one hour
increments with final stored energy levels and final generator operating states constrained
to be equal to those saved from the first run (as in [55]). This corresponds to the following
additional constraints for the first two-day unit commitment, where T = {t ∈ Z : 1 ≤ t ≤ 48}

ugt = ug,t−1 = ug,t−2 = ug,t−3 ∀g ∈ G, {t ∈ T : t mod 4 = 0} (4.39)
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Figure 4.1: Energy available over the year with 20,000 TCLs on the system

In practice with air conditioners, most are only capable of being used to provide storage
services at certain times of the year, when temperatures overnight are high enough that air
conditioning loads are in an on state overnight (corresponding to temperatures above at least
64.7◦F in the model.

We implement the model in C++ and solve it with CPLEX 12.5. We solve the first
two-day unit commitment problem with a mip gap of 0.5%, and the second problem with a
mip gap of 0.05%. The average time taken to solve these two problems and obtain results
for an individual day was 68.3 seconds. To reduce the time taken to solve the problem, we
run the model for a subset of days corresponding to the first week of each month in the data.
We then scale the resulting costs accordingly such that they represent a full year of data.

4.4 Results

Figure 4.1 and Figure 4.2 show the energy available and the charge and discharge power
available, respectively, over the time frame modeled. The x-axis for each graph numbers the
hours modeled between 0 and 2016. This corresponds to the first week of every month in the
dataset. From these figures it can be seen that on most days the energy and power available
start and end at 0 kWh and 0 kW, respectively. This means that there are no opportunities
on these days to carry over charge between days. Such opportunities are only available
to air conditioners in the summer, when temperatures are sufficiently high to require air
conditioning loads to operate overnight.
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Figure 4.2: Power for charging and discharging over the course of the year with 20,000 TCLs
on the system.

Figure 4.3 shows the total system cost savings due to the additions of TCL aggregations
in 1000 TCL increments. There is an initial sharp rise in savings, which then levels off
quickly, after roughly 100,000 TCLs are present in the aggregation.

Figure 4.4 shows this leveling off even more starkly. After only 50,000 TCLs are present,
the marginal benefit of adding an additional device in not identifiably different from zero. We
compute the marginal benefit as the ratio of the change in operating cost resulting from each
incremental addition of a 1000 TCL aggregation to the total capacity of TCL aggregations
present.These results suggest that, like large storage devices, there is a carrying capacity for
TCL aggregations, after which there is no more additional market benefit that is able to be
captured [52].

We can see why this is happening more clearly in Table 4.1. At low penetrations of
enabled TCLs, they are able to participate in all markets roughly equally, in roughly an
eighth of the hours in a year. This is much better than the initial performance of added
bulk energy storage, which reaches that level of penetration in the regulation market at 250
MWh, at 2 GWh in the load following market, and never in the energy market. As a result,
TCL aggregations are much more valuable at low penetrations than are bulk energy storage
additions, but, unlike bulk energy storage, TCL aggregations are unable to sustain their
increase in value as their concentrations on the grid increase.

The point at which the marginal benefit for TCL aggregations levels out corresponds
to roughly $300 million in savings discounted over a 20-year period, which can be achieved
with a population of 200,000 TCLs in the aggregation. For the high renewables, low gas
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Figure 4.3: TCL System Cost Savings

price scenario described in [52], a savings of $300 million corresponds to roughly 2 GWh
of energy storage capacity. An additional MWh of energy storage capacity from dedicated
storage devices therefore has an equivalent order of magnitude to adding an aggregation of
1000 TCLs with the properties identified in 4.3. Stated differently, 1 TCL is equivalent to
1 kWh of traditional energy storage when neither provide substantial additional value to
the system. In terms of the additional marginal benefits that TCLs can provide, each TCL
brings $2700 in marginal benefit for the first 10,000 TCLs, but the total benefits do not
increase substantially for additional TCLs, and these are worth much less to the system.
When compared to energy storage, this means that the first 10,000 added TCLs are worth
even more than the first 100 MWh of energy storage capacity provided by traditional storage,
which is valued at up to $1800/additional kWh in [52]. The next additions of TCLs after the
first 10,000 are no longer worth more than the equivalent energy storage, which continues
to be worth more than $0/additional kWh until at least 4 GWh of capacity are on the
system [52]. While the benefits to using TCL aggregations drop off much more quickly than
bulk energy storage, the costs to use TCL aggregations may be smaller, and they will require
less maintenance than larger storage devices.
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Figure 4.4: Marginal Benefit for TCLs

4.5 Discussion

In this paper we show that the marginal benefit of additional air conditioning TCLs used
to provide storage services drops off such that there is no additional marginal benefit for
the Western Interconnection after roughly 1 million of these devices are in place. As in [52],
we expect that the marginal benefit for storage devices will eventually become zero. This
is because storage will eventually be unable to arbitrage prices in any market–all the price
differences will have been arbitraged away, so there will be no more additional value that
storage can capture. Before this marginal benefit levels out at zero, however, there are some
benefits that such devices can provide.

For this model, TCLs are allowed to provide both regulation and load following services
in addition to energy arbitrage. While this provides some additional benefit opportunities
for TCLs, in practice load following services of longer duration are unlikely to be reasonably
provided by TCLs, since these services require durations of 2 hours. As in [41], we assume no
change in end-use performance of the load, i.e. that temperatures never leave their original
temperature deadband. To achieve this requires loads to be operated within constraints that
in some cases may disallow actions that would otherwise be beneficial to the system as a
whole. In addition to only being available for a few hours a day, TCL aggregations are less
likely to be able to consistently provide service as the duration of required control signal
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Table 4.1: TCL Aggregation Market Participation: Number of hours that aggregations of
TCLs participated in energy, regulation, and load following markets per year of simulation

TCL count
(000s)

Hours/year partic-
ipating in energy
markets

Hours/year partici-
pating in regulation
markets

Hours/year partici-
pating in load fol-
lowing markets

10 1189 1215 1169
20 1199 1217 1172
50 1202 1220 1197
100 1201 1223 1200
150 1201 1231 1205
200 1201 1234 1222
300 1196 1235 1234
400 1200 1234 1235
600 1198 1235 1235
800 1199 1235 1235
1000 1198 1235 1235
1200 1195 1235 1235
1600 1196 1235 1235
2000 1197 1235 1235
2400 1197 1235 1235
2800 1196 1235 1235

increases. The power to energy ratios of the modeled TCLs are also very high, which allows
them to contribute to regulation and load following markets quickly and maximally. We also
observe that TCLs are providing all of the required regulation capacity at the outset, and
are contributing to the load following capacity up to their physical limits. On most days,
there are insufficient energy arbitrage opportunities for TCLs due to the short duration over
which the outdoor air temperature allows the TCLs to operate within their deadbands.

There are several other areas for further research. We have explored a single set of fuel
prices and renewables penetrations; more tests of these could show improvements in the
value of TCL aggregations to system operations. Also, using temperature data and hourly
load data that are collocated spatially and temporally may indicate synergies between TCL
availabilities and load requirements that we do not model here. We investigate only air
conditioners here, but other devices could be modeled similarly, and may, when combined
with the benefits from air conditioners, provide additional benefits that air conditioners
alone cannot, particularly when seasonal variations are taken into account. Finally, using
other locations for aggregations may produce additional benefits, especially in places like San
Diego or Arizona, where the temperature is more frequently in a range where air conditioners
comprise a larger portion of the load. In addition to broad locational benefits driven by
climactic variation, locational value may also be observed due to decreased transmission
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congestion. We do not look at this in depth in this paper, but transmission congestion
amelioration could be an important consideration for the valuation of TCL aggregations as
well.

4.6 Conclusions and Policy Implications

We find that the overall operational value of added air conditioning TCLs is limited in size,
even when these devices are allowed to provide ancillary services. This is likely due to the
fact that the devices are only available for a few hours every day because only a few hours
of the day have the right average temperatures to allow the devices to be controlled within
their deadband. Therefore, if TCLs are to be aggregated to provide these types of services,
it will likely be necessary that both air conditioning and heat pumps be included, such that
the energy storage they can provide is available over a larger temperature range. This is
particularly important for the overnight case, when wind capacity may be large and charging
in preparation for the morning ramp will be desirable. We also find that TCL aggregations
are very beneficial when they are first installed, because their high power capacity allows
them to provide substantial reserve services, which are more valuable than energy arbitrage
services. It is also possible that capacity markets could play a role in facilitating the buildout
of the technology required for TCL aggregations.
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Chapter 5

Conclusions and Future Developments

5.1 Conclusions

In this thesis I assess the implications of a variety of options for incorporating additional
energy storage resources onto the grid at a large scale. I show that the value of storage to the
overall grid drops off as penetrations of storage increase. Similarly, as the amount of storage
on the grid increases, the gross profit available to new storage operators entering the market
quickly drops off on a $/kWh basis. Because of this sharp drop in value, it is important
for policy makers to target the rollout and development of additional storage capacity such
that the storage that is added can provide optimal value. Storage can provide a variety of
grid functions, but their corresponding system benefits are not equivalent. In this research
I show that reserve functions are the most optimal functions for storage to serve. Policies
that encourage increases in storage penetrations should focus on this source of value before
other sources, such as arbitrage.

Buildouts of storage also have the potential to increase carbon emissions in the absence of
policies to prevent such an event. Additional storage capacity is currently being considered
as a way to enable renewables and reduce the overall carbon intensity of the current grid.
If, however, storage increases carbon emissions overall, some of the expected benefits from
such policies may be mitigated. One of the most obvious policy approaches to decreasing
carbon emissions is adding a tax on carbon, which disincentivizes plants that produce more
carbon in favor of those that are cleaner and have a lower carbon intensity. In this research
I show that storage does not follow these kinds of dynamics. Implementing a carbon tax in
conjunction with storage does not necessarily decrease emissions relative to baseline if the
carbon tax is not high enough, and the gaps between the marginal costs of natural gas and
coal plants are simultaneously too large. Further still, I show that the benefits of storage to
the system decrease if carbon prices are too low, and the benefits to storage operators do as
well.

Other mechanisms for introducing energy storage resources onto the grid may be easier
and more efficient. By aggregating TCLs into single storage resources, their thermal energy
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storage capabilities can be harnessed and used for providing grid-level resources. In this
research, I explore the extent to which TCL aggregations might be comparable to other forms
of more traditional energy storage. Because storage from TCLs is dependent on temperature
and its energy and power capabilities are time varying, I am able to show that the savings
and benefits that result from adding TCLs are smaller than they are for energy storage
without time-varying constraints. I also show that the value of TCL aggregations drops off
more quickly than does the value of more consistent energy storage. While TCLs do have
high power capacity in some hours, their lack of full-time capacity severely limits their value
to ISOs, particularly for energy arbitrage functions over large time scales. Nevertheless, the
high power capacity of TCL aggregations makes them attractive and feasible at at least a
moderate scale, if they focus primarily on services like regulation and load following that
require high power capacity, but are less dependent on that power for long durations.

5.2 Future developments and uses of this work

Policy applications and improvements

Storage has already been identified in specific policies as a key piece of the puzzle in moving
toward a high renewables, low carbon electricity system. While there are certainly some
benefits to using storage in this manner, there are also several possible courses of deployment
that storage could take that would be unideal. In order for storage to contribute optimally to
the end goal of decarbonizing the electricity system, it needs to be deployed primarily for the
provision of reserves, and reserves markets need to be adjusted so that storage resources can
participate. Future work in this area should explore the changes that will be necessary for
allowing and encouraging storage devices to participate in reserves markets. Additionally,
investment should be focused on storage devices that can contribute power over energy, since
reserves markets require fast-responding power capabilities, but do not necessarily require
these powers over longer durations.

New markets for reserves

More exploration should be done regarding the effects of storage the new and much discussed
flexiramp market for CAISO. In this work, I have established that reserves provision is
the most valuable use of storage, and many other papers also confirm this. I show that
both reserves and load following are more valuable than arbitrage. Given that flexiramp
is intended to be a ramp capability that covers both time scales, storage should be ideally
suited for this application. More research will need to be done to determine the extent to
which energy storage investment is justified for this particular purpose.
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TCL aggregations

Additional climactic zones should be explored to determine whether or not TCL aggregation-
based storage is viable in some regions over others, particularly when other types of TCLs
are considered that have opposite temperature operation profiles. Also, I do not consider
the effects of climate change here, and it is very likely that, as climate change progresses,
the value of thermal storage will increase due to higher variability in the climate overall. It
is also likely that using existing devices to provide storage capabilities may be better from a
life cycle perspective than building new devices. This is an area for further research.
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