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Abstract

Electroencephalography (EEG) and functional near infrared
spectroscopy (fNIRS), both portable and non-invasive, en-
hance brain-computer interface (BCI) performance by inte-
grating their spatial and temporal benefits when combined to-
gether. However, the fusion of these two signals still faces
challenges. To fully unitize the complementarity of EEG and
fNIRS for improved performance in EEG-fNIRS BCI, we pro-
pose an EEG-fNIRS fusion network based on end-to-end mu-
tual information learning, named EFMLNet. In the model,
EEG and fNIRS data are fed into their respective feature ex-
tractors for the extraction of temporal and spatial information.
Furthermore, their complementary information is fused by two
parallel mutual learning modules. We conducted classifica-
tion experiments on a publicly available BCI dataset based on
motor imagery (MI) task and achieved a cross-subject classi-
fication accuracy of 71.52%. This result surpasses the perfor-
mance of most existing fusion methods and demonstrates the
potential for real-time hybrid BCI systems.

Keywords: EEG-fNIRS; Multimodal fusion; End-to-End; Hy-
brid BCI; Mutual Learning

Introduction
Brain-computer interfaces (BCIs) has emerged as valuable
tools for neurorehabilitation, aiding disabled individuals and
detecting neurological conditions such as disorders of con-
sciousness (Pan et al., 2023). Non-invasive BCIs utilize tech-
nologies like electroencephalography (EEG), functional near-
infrared spectroscopy (fNIRS), and functional magnetic reso-
nance imaging (fMRI). Among them, EEG and fNIRS are fa-
vored for real-world applications due to their portability and
cost-effectiveness, with extensive research currently focusing
on these two modalities (Gao et al., 2023).

EEG is a widely used technique for examining brain ac-
tivity, recording neuronal voltage fluctuations via scalp elec-
trodes (Buzsáki, Anastassiou, & Koch, 2012). Renowned for
its excellent temporal resolution and responsiveness, EEG is
favored in cognitive field (Ray & Cole, 1985). However, it
faces limitations in spatial precision and susceptibility to mo-
tion artifacts and noise, potentially causing misinterpretation
of resting-state signals in BCI systems (Eldele et al., 2021).

fNIRS measures cerebral cortex blood flow and
metabolism by monitoring oxygenated hemoglobin (HbO)
and deoxygenated hemoglobin (HbR) using near-infrared
light (Quaresima & Ferrari, 2019). It offers better spatial
resolution and less noise interference than EEG (Rahman
et al., 2020). Nevertheless, its temporal resolution is poor,

and delayed hemodynamic response make it challenging to
construct a real-time BCI alone.

Optimal BCI systems are characterized by portability, non-
invasive, and superior accuracy and efficiency. Integrating
various brain signal modalities has been proven to enhance
BCI performance (Ferdinando et al., 2023; D. Wang et al.,
2023; Park, Ha, & Kim, 2023). However, the challenge lies
in utilizing the distinct and complementary data from diverse
modalities to surmount the constraints of single-mode sys-
tems and enhance overall functionality in multimodal BCI ap-
plications. In the study of (Yin et al., 2015), they merged EEG
and fNIRS into a single vector and optimized using the joint
mutual information criterion to enhance classification perfor-
mance. Shin et al. (2016) extracted prediction scores from
EEG and fNIRS signals respectively, and then used LDA-
based meta-classifiers to obtain final prediction results. These
methods, while promising, do not effectively harness the syn-
ergistic qualities of EEG and fNIRS, leading to suboptimal
predictive performance in EEG-fNIRS BCI.

Several studies have explored using fNIRS signals as an
auxiliary tool for EEG-based BCI systems, that is, using
fNIRS spatial prior information to optimize the processing of
EEG signals in the BCI study. In an EEG-fNIRS BCI study,
R. Li et al. (2017) determined the two fNIRS channels with
the strongest task-induced response by general linear model-
ing (GLM), and then selected two EEG channels near them
for performance evaluation of the hybrid fNIRS-EEG BCI
system. In another study, Kwak, Song, and Kim (2022) de-
signed a fNIRS-guided attention network for the EEG-fNIRS
BCI , where fNIRS guides the important region for brain de-
coding and applies spatial attention to EEG features. These
EEG-fNIRS BCI methods based on fNIRS- or EEG-informed
can improve system performance to a certain extent by uti-
lizing the complementary characteristics of both. However,
this method naturally biases towards one modality, inevitably
leading to the loss of information from the other modality,
which can easily result in information bias.

In summary, while current integration techniques mod-
erately enhance the synergistic information from EEG and
fNIRS modalities, they typically fall short in thoroughly min-
ing and capitalizing on the complementary attributes between
EEG and fNIRS signals. This limitation tends to constrain
the efficacy of hybrid EEG-fNIRS BCI systems. Moreover,
most methods are hindered by cumbersome preprocessing
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and manual feature extraction, impeding their efficiency and
online applicability. To address this, we introduce the EEG-
fNIRS Mutual Learning network (EFMLNet), a deep learning
model that streamlines fusion through end-to-end mutual in-
formation learning for hybrid EEG-fNIRS BCI systems. This
approach effectively streamlines the workflow for researchers
and leverages the complementary characteristics of the two
modalities, achieving commendable classification results in
cross-subject validation. Our contributions are as follows:

• We designed personalized feature extractors for EEG and
fNIRS, respectively, to extract their crucial features in tem-
poral and spatial dimensions.

• We proposed an EEG-fNIRS deep fusion method based on
end-to-end mutual information learning, named EFMLNet,
which utilizes the multi-head cross attention mechanism of
Transformer to achieve complementary information learn-
ing between two modalities.

• We conducted end-to-end cross-subject experiments on a
publicly available EEG-fNIRS BCI dataset and achieved
superior classification results.

Method
Model Framework
This study proposes a novel EEG-fNIRS fusion model based
on end-to-end mutual information learning to enhance the
performance of the hybrid EEG-fNIRS BCI. The model con-
sists of a feature extractor module and a mutual learning mod-
ule, as depicted in Figure 1. Two automatic feature extractors
are designed for EEG and fNIRS data. The EEG extractor in-
cludes two convolutional neural networks (CNNs) and a long
short-term memory network (LSTM) to capture temporal dy-
namics, while the fNIRS extractor uses an Embedding layer
and a Transformer encoder for spatial features. The extracted
modality-specific features are input to a cross-modal mutual
learning module with symmetrical Transformers. Predictive
losses from extractors are combined with the fusion module’s
loss to form a joint loss, ensuring balanced representation
learning across modalities for robust outcomes.

Feature Extractor Module In order to effectively distill
crucial information from both the EEG and fNIRS modali-
ties, we developed specialized feature extractors for each.

The EEG feature extractor integrates two one-dimensional
CNNs followed by a LSTM network. Research has shown
that one-dimensional CNNs are adept at capturing localized
temporal patterns within signals, which renders them particu-
larly effective for analyzing time-series data (Chua & Roska,
1993). The CNN we designed consists of two one-layer con-
volution with a kernel size of 1×3, a step size of 1, and a
padding value of 0. Each convolution layer is followed by
a batch normalization layer and an activation function. As
a special recurrent neural network (RNN) (Cho et al., 2014)
architecture, LSTM solves the gradient disappearance prob-
lem by introducing several gates (input gates, forget gates,

and output gates) and cell states (Greff et al., 2016). The key
to LSTM is its cellular state, which traverses the entire chain
with only a few small linear interactions. There are few bar-
riers to the flow of information, allowing it to flow unharmed
throughout the sequence. Therefore, the extractor designed
based on CNN and LSTM can effectively capture and extract
the key temporal features of EEG signals, which denoted as
E f eature. Moreover, such a simplified design is advantageous
in mitigating potential overfitting issues that may arise from
complex deep learning models.

The fNIRS feature extractor is structured with an input
embedding layer that incorporates positional encoding, fol-
lowed by a Transformer encoder layer. The encoder layer fur-
ther consists of two sub-layers: a Multi-head Self-Attention
(MHSA) mechanism and a Feedforward Neural Network
(FNN), each followed by residual connections and layer nor-
malization. The embedding layer, combined with positional
encoding, equips elements with positional information, al-
lowing the encoder to discern the relative position of input
elements for subsequent learning. The core of spatial infor-
mation extraction process is the MHSA mechanism. In the re-
gions of brain activity, the signals recorded by each channel
play distinct roles, so the feature extraction should be more
targeted. MHSA excels in identifying and linking global re-
lationships across various positions within the input, assign-
ing significance to channels through the calculation of atten-
tion weights for each position. In this manner, we further
enhance the spatial information of the data, thereby enriching
the model’s comprehension of the entire sequence architec-
ture.

The data, once filtered, undergoes normalization via a lin-
ear embedding layer that projects each element into a high-
dimensional space. The outcome of this process is denoted as
F1. Unlike RNNs, Transformer is lack of sequential process-
ing capabilities, therefore, to grasp the relative positioning of
elements within the sequence, it is essential to incorporate
position embeddings (PE):

F2 = F1 +Fpos (1)

Fpos represents the position embeddings, and the specific in-
formation is frequency band and channel.

Subsequently, the data are fed into a standard Transformer
encoder. The encoder utilizes the MHSA layer as one of its
key components to focus on various segments of the input se-
quence. The integration of the residual connection (RC) sur-
rounding this layer, along with subsequent layer normaliza-
tion (LN), facilitates more effective gradient propagation and
allows for easier training. After the data passes through the
self-attention layer, the representation of each position under-
goes a nonlinear transformation via a feedforward neural net-
work. Similar to the processing after the attention layer, the
feedforward neural network layer also uses residual connec-
tions and layer normalization to enhance the network’s learn-
ing capability. Finally, the input sequence passed through the
Transformer encoder will be mapped to the new representa-
tion, denoted as Ff eature.
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Figure 1: The Structure of EFMLNet.

Mutual-learning module Following the extraction of
modality-specific extractor, the EEG and fNIRS features are
separately fed into the cross-modal mutual learning module.
Within this module, a pair of structurally identical cross-
modal Transformers have been implemented to facilitate the
mutual learning. To effectively learn the information be-
tween different modalities and achieve a complementary ef-
fect, we have also utilized the multi-head attention mecha-
nism of the Transformer. The cross-modal transformers are
similarly constituted of attention layers, Feed-Forward Net-
works, layer normalization, and residual connections. How-
ever, unlike the feature extractors for fNIRS, the attention lay-
ers in these transformers are specifically employed to help
the model discern inter-feature relationships and to learn the
mapping of information from one modality to another. The
parallel processing capability allows the model to treat the in-
put features as several blocks, enabling it to focus on different
parts of the input simultaneously. With multi-head attention,
the model can effectively transmit and integrate information
from different modes in the process of coding.

The principle involved in implementing information map-
ping between different modalities are mainly related to the
Q (Query), K (Key), and V (Value) components within the
Transformer. They are three linear transformations in the at-
tention mechanism that are used to map different aspects of
the input sequence. Q is the representation of the input se-
quence after a linear transformation, expressed as:

Q = I ·Wq (2)

where I is the representation of the input sequence and Wq
is the learned weight matrix. Q is used in the attention mech-
anism to generate an attention score, that is, to determine
the attention weight of other locations to the current loca-
tion. It indicates the importance of the current location and

influences the attention of other locations.
K is the representation of the input sequence after another

linear transformation, expressed as:

K = I ·Wk (3)

where I is the representation of the input sequence and Wk
is the learned weight matrix. The K provides the information
used to calculate the Q’s attention score for other locations.
By comparing Q and K, the model can determine the data
relevance between different locations.

V is the representation of the input sequence obtained
through different linear transformations, expressed as:

V = I ·Wv (4)

where I is the representation of the input sequence and Wv
is the learned weight matrix. The V contains information
about the sequence of inputs, weighted summing the inputs
based on the calculated attention score to produce the final
output representation. It represents information about where
the attention mechanism is focused.

In the mutual learning module, we treat the Ff eature as the
Q and the E f eature as the K and V , and vice versa—treating
the E f eature as the Q and the Ff eature as the K and V , thereby
achieving mutual learning of the data through query match-
ing. The cross attention of the two cross-modal Transformers
are calculated as follows:

T 1i(Ff eature,E f eature) = So f tmax(
MQiNT

Ki√
dim

)NVi (5)

T 2i(E f eature,Ff eature) = So f tmax(
NQiMT

Ki√
dim

)MVi (6)

T 1i and T 2i respectively represent the cross-attention of
the i-th head in the two cross-modal Transformers, while MQi,
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NKi, and NVi correspond to the linear projections of E f eature
and Ff eature. Combining the attention of all the heads in a
single module gives the input sequence I, which performs the
corresponding operations of Q, K, and V .

IE =
[
T 11(Ff eature,E f eature), · · · ,T 1n(Ff eature,E f eature)

]
(7)

IF =
[
T 21(E f eature,Ff eature), · · · ,T 2n(E f eature,Ff eature)

]
(8)

After multiple cross-attention layers is the superposition of
residual connection and feedforward layer, the processed data
passes through a linear layer and is activated by the tanh (Fan,
2000) function, as in the case of single-modality indepen-
dent prediction. Since we have two identical cross-modality
Transformer modules, there will be two output results, de-
noted as OF1 and OF2. By summing these two results and
passing the sum through a softmax function, we obtain the
final prediction outcome. This also represents the output of
the entire model, as shown in Equation 9. Meanwhile, the
loss function of fusion prediction L f usion is used for model
training.

Predict = So f tmax(OF1 ⊕OF2) (9)

During the training process, we employed cross-entropy
(L. Li, Doroslovački, & Loew, 2020) as the loss function for
model training, assessing the training effectiveness by com-
paring the discrepancy between predicted labels and actual
labels.

Experiment
In our study, we utilized a motor imagery (MI) public dataset
(Shin et al., 2016) containing EEG and fNIRS signals to con-
duct experiments, which represent motor imagery (MI) tasks.

Dataset
The dataset was collected from 29 subjects (14 men and 15
women) with a mean age of 28.5±3.7 years (mean±SD). EEG
signals were recorded using 30 channels at a sampling fre-
quency of 1000 Hz, while fNIRS signals were recorded using
36 channels at a sampling frequency of 12.5 Hz. During the
experiments, subjects performed MI tasks according to the
given instructions.

Data Processing
Prior to conducting data fusion analysis, we performed fil-
tering and downsampling procedures on the initial dataset.
Specifically, for EEG signals, we implemented a third-order
Butterworth filter to perform bandpass filtering within the
1-45Hz range (Kocsis, Herman, & Eke, 2006), and sub-
sequently reduced the sampling rate to 200Hz. Regarding
fNIRS signals, we utilized a third-order Butterworth filter
to conduct bandpass filtering between 0.01-0.09Hz for both
HbO and HbR, and then downscaled the sampling frequency
to 10Hz.

Experiment Settings
In our study, we adopted the Leave One Subject Out (LOSO)
method for training and testing our model. The dataset con-
tains a total of 1740 samples. In each iteration, we removed
all the data from one subject (60 samples) to use as the test
set, while the remaining subjects’ data were used for training.
The input dimensions of the model were 1740×30×2000 for
EEG data and 1740×72×100 for fNIRS data. Regarding the
choice of optimizer, we utilized the Adam optimizer (Kingma
& Ba, 2014) and set the weight decay to 0.0008.

Evaluation Metrics
To validate the effectiveness of the model, the experiment em-
ployed commonly used metrics in classification tasks to eval-
uate the model. These included Accuracy, Precision, Recall,
and the F1-Score.

Results
To validate the effectiveness of our model, we conducted
comprehensive classification experiments on a MI dataset, in-
cluding comparative experiments and ablation experiments.

The Results of Comparative Experiments
We first compared the multimodal fusion results based on
EFMLNet (i.e., EEG-fNIRS fusion) with results obtained
from unimodal predictions (i.e., EEG-only or fNIRS-only ).

The comparative results of EEG-fNIRS fused by EFML-
Net with EEG-only and fNIRS-only in MI tasks are presented
in Table 1. It can be seen that the performance of each subject
in the hybrid EEG-fNIRS, fused by EFMLNet, is consistently
superior to that of EEG-only and fNIRS-only.

Table 1: Comparative classification performance of
EEG-fNIRS fusion based on EFMLNet with EEG-only and

fNIRS-only in MI tasks
Modality EEG fNIRS EEG-fNIRS

Accuracy (%) 63.24% 53.46% 71.52%
Precision (%) 62.51% 53.08% 71.02%

Recall 66.72% 56.74% 73.33%
F1-score 63.24% 53.22% 71.08%

To further validate that the favorable results in Table 1 are
not solely attributed to the use of multimodal signals but also
to our fusion model, we conducted comparisons by contrast-
ing the fusion results of EFMLNet with those of a simple con-
catenation fusion of multimodal signals, as shown in Table 2.
In comparison to the results obtained by employing simple
concatenation fusion and classification through LDA (Meng
et al., 2021), KNN, CNN (Nour, Öztürk, & Polat, 2021),
and ResNet, our model consistently exhibits superior perfor-
mance in MI tasks. The accuracy increased by 10.35-20.31%.
Precision improved by 8.92-19.70%, while recall increased
by 13.33-23.26%. F1-score also demonstrated improvements
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Table 2: Comparison of EFMLNet with traditional models under EEG-fNIRS modality fusion for MI tasks.
Method Modal Accuracy Precision Recall F1-score

Concatenate Fusion

LDA 51.21% 51.32% 50.92% 50.41%

KNN 53.34% 53.91% 50.33% 51.57%

CNN 61.17% 62.10% 60.00% 61.04%

ResNet 54.74% 54.83% 56.72% 54.71%

Ours EFMLNet 71.52% 71.02% 73.33% 71.08%

of 10.04-20.67%. These results suggest that our model can
further enhance the performance of the EEG-fNIRS system.

Furthermore, we compared our model with some state-of-
the-art methods conducted on the same dataset, including the
following studies:

• (Jiang et al., 2019): An independent decision path fusion
(IDPF), leveraging both EEG and fNIRS technologies to
distinguish various mental states.

• (Esfahani & Sadati, 2021): Ensemble learning, which en-
hances accuracy and reduces standard deviation, leading to
improved outcomes from classification models when the
variance of predictions is diminished.

• (Zhang et al., 2021): An 3D convolutional neural network,
which can preserve the temporal information of the EEG
data while maintaining its spatial topological features.

• (He et al., 2022): A novel end-to-end multimodal mul-
titask neural network (M2NN), which integrates the spa-
tial–temporal feature extraction module, multimodal fea-
ture fusion module, and multitask learning (MTL) module.

• (Z. Wang, Fang, & Zhang, 2023): fNIRSNet, incorporat-
ing the delayed hemodynamic response as domain knowl-
edge into fNIRS classification.

The results are shown in Table 3. Although Jiang et al.
(2019) achieve a classification accuracy of 70.32%, their
method will result in the computational burden escalates with
an increasing number of decision paths. Esfahani and Sadati
(2021) focused on integrated learning, but their method relies
on a voting mechanism which has poor portability. In con-
trast, our model can be directly transferred and used without
the need for such mechanisms. The approach of Zhang et al.
(2021) is capable of extracting features from signals at multi-
ple scales, yet their focus on EEG signals results in the loss of
fNIRS information. Conversely, Z. Wang et al. (2023) priori-
tizes fNIRS signals, overlooking EEG. Our method, however,
is able to fully integrate information from both modalities.
He et al. (2022) also employed an end-to-end approach; how-
ever, their classification accuracy on MI was 62.26%, which
is lower than our 71.52%.

In comparison to these fully cross-subject experiments, our
model demonstrates superior performance, indicating the ef-
ficacy of our model.

Table 3: The comparative results between the EFMLNet
model and state-of-the-art methods

Studies Method Classifier Modality Accuracy

Jiang et al. IDPF, LOOCV LDA,SVM,
HMM

EEG-fNIRS 70.32%

Esfahani et al. Ensemble Learning,
LOOCV

FCM-ANFIS EEG-fNIRS 70.40%

Zhang et al. End to end, LOSO 3D-CNN EEG-fNIRS 70.15%

He et al. MTL,
LOSO-CV

M2NN EEG-fNIRS 62.26%

Wang et al. LOSO-CV fNIRSNet EEG-fNIRS 65.26%

Ours End to end, LOSO EFMLNet EEG-fNIRS 71.52%

The Results of Ablation Experiments
Feature Extractors Experimental results have confirm the
model’s effectiveness, nevertheless, it’s uncertain if feature
extractors act as precursors to the mutual learning process or
if the mutual learning modules alone are inherently perfor-
mant. To ascertain this, we opted to bypass the feature extrac-
tion stage, directly feeding raw data into the mutual learning
modules for examination.

As shown in the MI results of Figure 2, after eliminat-
ing the feature extractors, our model’s performance decreases
significantly compared to the complete model (EFMLNet).
Specifically, the classification accuracy plummets by 20.48%,
highlighting the vital importance of feature extractors in
EFMLNet. This revelation underscores the indispensabil-
ity of feature extraction for multimodal signals prior to fu-
sion, especially focusing on personalized feature extraction
tailored to the unique characteristics of each modality.

Figure 2: Comparison of MI classification accuracy for each
subject of the model with and without feature extractors.
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Multimodal Mutual Learning To ascertain the effective-
ness and necessity of multimodal mutual learning within
EFMLNet, we performed an ablation experiment, specifically
by eliminating the cross-modal Transformer on one side of
the mutual learning module to achieve one-way guidance.
This ablation encompassed two scenarios of unilateral learn-
ing: one where the EEG signal served as the primary source
and the fNIRS signal as the learning objective, and another
where the fNIRS signal served as the main focus and the EEG
signal as the target of learning.

Figure 3: Comparison of classification accuracy between mu-
tual learning and one-way learning for each subject in the MI
task.

As illustrated in Figure 3, both one-way learning guided
by fNIRS signals and guided by EEG signals exert compa-
rable influences on the ultimate classification results, indicat-
ing that the extracted features from EEG and fNIRS contain a
nearly equivalent amount of valid information. Through mu-
tual learning, the pertinent information from both modalities
is optimized and fully exploited. In comparison to one-way
guided learning, mutual learning enhanced the average clas-
sification accuracy of MI tasks by 8.26% when EEG serves as
the primary modality and by 9.37% when fNIRS is the main
modality.

Conclusion
In this paper, we propose an end-to-end deep neural net-
work for mutual learning between EEG and fNIRS data. The
model automatically extracts data features internally and uti-
lizes parallel multi-head attention to achieve complementary
learning between different modal data. Experimental results
indicate that this model achieves outstanding performance
compared to existing models. Moreover, the model can also
be generalized to the study of other physiological signals with
complementary characteristics.
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