
Lawrence Berkeley National Laboratory
Recent Work

Title
THEORY OF THE LOW-ENERGY PION-PION INTERACTION

Permalink
https://escholarship.org/uc/item/42v7g3kj

Authors
Chew, Geoffrey F.
Mandelstam, Stanley.

Publication Date
1959-04-15

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/42v7g3kj
https://escholarship.org
http://www.cdlib.org/


, .. 
I· 

{/ 

I 

/ 

UNIVERSITY OF 

CALIFORNIA 

Crmt0£awrence 

adiation 

TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 
Tech. Info. Division, Ext. 5545 

BERKELEY. CALIFORNIA 

l' 

J 
.I 

. ' 

UCRL 8728 

Cy.$J... 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 

·reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



1,. 

"' . ' • . .., .. 
..... 

UNIVERSITY OF CALIFORNIA 

Lawrence Radiation Laboratory 
Berkeley, California · 

Contract No. W-7405-eng-48 

TH~ORY OF THE LOW-ENERGY PION-PION INTERACTION 

Geoffrey F. Chew and Stanley Mandelstam 

April 15, 1959 

Printed for the U. S. Atomic Ene:!"gy Commission 



I~ 

.. 

.• 

-2a- UCRL-8728 

. * THEORY OF THE LOW-ENERGY PION=PION INTERACTION 

Geoffrey F. Chew and Stanley Mandelstam 

Lawrence Radiation Laboratory and Department of Physics 
University of California, Berkeley, California 

April 15, 1959 

ABSTRACT 

The double-dispersion representation is appHcd. to the prcblem of 

pion-pion scattering, and it is shown that, if. inelastic: effects e.re impcrt.e.nt 

only at very high energies, a set of integral equations for the low=energy 

amplitudes can be derived. The solution of these equations a.ppears to depend 

on only one arbitrary real parameter, which may be defined. as the pion·~pior. 

coupling constant. The order of magnitude of the new constant ie estabh: h.;;.c:, 

and a procedure for solving the integral equations by iteratic·n is cutlir1ed 

* This work was supported in part by the U.S. Atomi~ Er .. e:rgy ::'::;rmn:::.s,2Lr .. 5,r·l 

in part by the U.s. Air Force under contra~t No. AF 638-3·27 me :_.i ' ... ::::: -:o.:l. t·.\' 

the AFOSR of the Air Research and Development Connnan:L 
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THEORY OF THE LOW-ENERGY PION-PION IN'IERACT!ON 

Geoffrey F. Chew and Stanley Mandelstam 

Lawrence Radiation Laboratory and Department of Physics 
University of California, Berkeley; Ca.liforn:i.a · 

April 15, 1959 

I. INTRODUCTION 

It has become evident in recent times that no fur·ther subs ~ . ..,.r:.·::.:.;;;.J 

prcgress vill be made in the theory cf strong-intera.cti.cn pbe'ilomf:l:a. : :::···_ i. r;. ~-e 

pions am:.. nucleons until something is understood about the p:i.cr~··picm J.r.;':-~::;:-a::·~ 

Previous theoretical work on this problem has Jacked a. frameJork. in ·dd ·: u t::. 

ma.ke pla:Jsible e.pproximationss so the results of calculatior~s cl:::ne: ur: ···.·· r. .·" 

are net considered reliable. Recently, however, one of us has I rc:r::oc:e;~- rt 

ge:cer·alizatlon of dispersion relations that allows the simulta.ne:ous '2X':e· .• s·.·.: .. · 

l 
C·f en.ergy and motnentu.m transfer Variables into -~he comple·x. planJ.?.· o ~ f ~: ~ ... ~~ 

double-dispersion represent-ation is accepted as correct~ it becc-rnE:.s r-~~<--"o-~J> ·,: 

formulate an approximation method for element.a.ry~part-icle zc.e;tterir.'g <:l,t -~,-,, 

energies that is extremely plausible. We propose in this pap;:::..;, .to app:,:\' • t""' 

new method to the pion-pion interaction . 

. The underlying motivation of the new approach is tt.e p~ope,~ty .:;f 8 .. 

analytic function that i-ts behavior ·in a limited regi.or., of the compl·:~x f' ~:.::. .·.:e 

is dominated by nearby singularities. This circumstance is 7.-he basin !_•"f.' F.-~~ 

11 effective-·range" ~heories for partial-wave scattering a."llpli turles., E:':f~: :~~-L ~· ~.,. 

range theory leads to approximate formulas for partial ampli twie s J vs L -~ ~ !1 ::t 

small range of energies, that include nearby poles and brand:, po?.nts ·,.,._ t ~ :..;·..;:." 

distant singularitie9, These formulas approxlinate the influen~e cf t~~~1ta~t~ 

l 
S. Mand.elstam> Ph:rs. Rev. (1959), to be p~blish:D.,andlliiversity c: ca_;_lf.>~,,,, 

Physics Department preprint, Berkeley ·: 1959). Also Phys. Re\.·. ll2, L:) ... ~. 
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singularities by arbitrary constants to be fitted by experiment. The content 

of the double-dispersion representation is essentially to give the loca.t.i.on and 

character of!!! the singularities of a.scattering amplitude. as well as the 

behavior at infinity. Armed with this information, one may exbend the usual 

"effective-range" approach so as to reduce drastically the number of free para:m~,te:-e. 

·Of course one can never include all the distan:t singularities, but in the pi.on=plcn 

problem the first difficult branch point occurs at such a high energy that ·we 

believe the omitted effects can to a good approxima.ti.on be absorbed into a s:ingl.e 

real parameter. 

In the conventional Lagrangian formulation of field theory an ~nd.epende.r"': 

constant appears in the pion~pion interaction, so one may be tempted. to regar·i 

an effective-range approach with a single free parameter as the equivalen·t cf r:.~. 

complete dynamical calculation. We prefer not to delve here. into this v~ry 

difficult question of principle but leave :to the·. reader the thecretica.l :.ntr:-.rJ.:E ··• 

tation of the. constant A. that is to be introduced. 0'..1:r definition of ·A. ,,,::.J j_ 

be unambiguous from the experimental point of view. 

As the price for including more of the nearby singu.lar:i.tles than is 

usuallY: attempted in effective-range theories, we shall have to solve nonhnea:r 

integral equations to find the pion-pion scattering amplitude o These equaTiO!l:S 

Will perhaps seem complicated, but they can be put into a nonsingular form 

amenable to numerical solution. The results of the numerical solutions for 

various values of A. are given in a subsequent paper. 
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II o SYMMETRIES AND KINEJilA.TIOS 

Pion-pion elastic sca.ttering may be represented by ".:.he .-:Ua.gram of I•'ig .. 2. .• 

where the ingoing four~momerita and isotopic-spin indio::es are ::r\·' a) a.r.C! 
2 

t3) and t.he outgoing are { -1"! ' . ._.-3 

for discussions cf s;yrrillletry tc use a n.cJ.::a.t.ion ir) ·which all momP.r;~;.e. 11.r.:. :fcrtnal.l:y 

directed imra.rd, although in the physical region ani are po s i +~ 1 v·c· 

time like, with p
3 

and negativ-e ·t,imelike o The c~onvenien't. j.nvl::i.:·ia.d. 

dynamical variables for the dcuble-dispers:ton representatio_:i are th.e sq,Jay·es ·.:-f 

the total center*·of-ms.ss energies for the three :rea-::~t1ons; 

L ( a) (p2, t3) 
I y) ( 5) \Pl' + .... i ~p + "$·P4' ·, y 

·.II. ( a) + f 5) ( =P t3) I r) \ pl, ,p4' -+ + \ ~·Py . 2' 

TTT (pl, a) + (p3' y) -+ \ ·~p ' t3) + ( -p4' 5) ' -....a. ...... 0 

2 

Thus we define 

(pl 
\2 

(p3 
)2 . I) 2'1 s + P2J + = 4i ~- + f.l. : PJ-1:. .Ci 

t I 
. 2 

(p2 
2 ~2 2(1 e) = I.P1 + p4) + P::-) = q_ + ·~OS 

and ,2 2 
-2q

2
( l t = (pl + p3) (p2 + p4) ;::: -· CC5 e'~ 

/ 

where q is the magnitude of the :three-momentum and 8 the angle of s c9.•;~-"'T u·.v 

in the barycentric system, Note the important supplementary condit.lC;n 

2 
1'he isotopic indices a, [3, r, and 5 can eact. assume the ·n,j_uf'.:: '1 

.L.f (.:. .•• ') ' 

'l'he value 3 corresponds to the neutral pion, while linea.r corntina:t::i~ ... ns of l 

and 2 correspond in the usual way tc · ·-;r ged pions. 



... 

s + t + t = 
2 4p. 

' 
(IL.?) 

-which means that only two of the three variables s J t, t a.re independ.ent eY•.:-n 

when extensions are made into the complex plane. 

Since isotopic spin is conserved and. the t.r..ree val:ues .,. = 0, l, 2 ;;::B.D 

occur, we expect to have three independent invariant functions of 

These fUnctions are conveniently intrcduced. by wri tj_ng the comple~~e amplH u,;~.;:- f.,:: 

+ B(s, t, t)6ar 6~6 + C(s • J 

Crossing symmetry leads at once to the relations 

A -+ A( 
B ...,. CJ 

t -+ t ' ' 
s -+ s 

A -+ 

:} c -+. 
s -+ t ' .. 6. t -+ t 

and 
A -j 
B -+ B 

t ~ t 0 
/ -r -r. 
·~ .... ..il. •• ! . 

The first of these relations simply expresses the Pauli. princ:ipJ.e, b'u't tb-::. 

remaining two place a powerful new· condition on the combined e-nergy anj 

angular dependence of' the amplitude. Such a condition,. even i:hcugh it 3.r.ls"'~-

from very simple considerations, is not known outside field thec·TY. 

An elementary calculation gives the connection betweer:.. A, B, C ')J·-·: 

the three e.mpli tudes 1 corresponding to well=defined .,.. spin· A .!. 

Ao = 3A + B + c ' 
Al = B c 

' 
A2 = B + c . 
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At this point one may verify that (II.5), together with (II,2), means that only 

even powers of cos e appear in the amplitudes for I = o, 2 and only odd powers 

of cos e for I = L The implications of (IL6) and (II.7) are much more 

subtle, as we shall see later. 

The uni tari ty condition on the pion~pion amplitude is most usef-ully 

expressed in terms of the partial-'Wl:!.ve expansion of the amplitudes AI when 

these are considered as functions of q
2 

and cos @: 

I 2 · A ( q ~ cos e) = E 
.£ even, 

.£ odd~ 

I 2 
(2£ + l)A£ (q )P.£(cos 8) , 

I=0,2 .. 
(IL9) 

I=l 

Unitarity allows the partial amplitudes A£1(l) to be written in terms cf phase 

shifts 
I · 3 

5.£ according to 

= 
,j 2 
\j q 2 

+ fl 
q 

e 

• !;>. I 
l. u .£ 

sin 5 I (II .10) 
.£ t. 

t/· 9:: ( {jv) 

where the phase shifts are real for q2 < 2 . 
3fl J the threshold for inelasti.e: 

4 
scattering with the production of two additional pions~· At higher energJ.es 

the phase shifts are complex, but the·content of (II,lO) can generally be 

expressed by the relation 

3 
The norn'.alization of (II.lO) is arbitrary, but the dependence on q foll::vs 

from the Lorentz invariance of the S matrix. 

4 Production of any odd number of pions is forbidden by the G parity of 

Lee and Yang, Nuovo Cimento .2_, 749 ( 1956) , Stngle=pion production r-~nr:::-·ens 

also to be forbidden by ordinary parity conservation. 
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T A I R I I A/(q
2

) 
2 

= 
q r .... m .e 

\}q2 
.e ' 2 

+ ll 

or 

(A I) 
-1 

R I Im = 9. ( C_oll_) .e \j 2 2 .e 
q + ll 

where R I 
.e is the ratio of the total to the elastic partia.l=;mve cro&s sec ti.: r.. 

III. THE DOUBLE-DISPERSION REPRESEN'rATION 

A prescription for extending the scattering amplitude to complex va.lue~:; 

of s, t and t, subject to (II.3), has been given by one of us.
1 

Thi.s rul::." 

is embodied by the representation5 . 

A(s, t, t)· = 12 J J . ds ' d t ' 
1C (s' - s)(t' = t) 

+ 
1
2 JJ dt 1 dt 1 

1C 

+ 
1
2 f j ds ' dt' 

J( 

) 

where the integrations in the primed variables extend in ea(::h case over reg1cnE 

of the positive real axis extending to infinity, and the 't?eight functions A. , 
. lJ 

are real. The functions B and C have similar ·representations; but the 

5 As shown in reference 1, the correct tC=te representation probably requi.r:::-s 

also single dispersion integrals and an over-all subtraction tern. See 1. h~· 

remarks below, following Eq. (III.5), in this connection1 a,s well as those 

following (IVe7). 
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crossing conditions tell us that only twc.. o'.lt of the total of nine 1-reight f·uncticns 

are independent, with one of thes-e a syrmnetr:i c function of i +,;s tw-2 a.rgu.mentt:, In 

particular_, in order to satisfy (rr.5), (II.6) and (II.7L we reqd:r·e 

p(x, y) = = ;:: B.--( X, y) C.:) . . 

C (..,r x) 
23'" .. 

:::: 

( Hl.2} 

The region of the (x, y) plane in which the weight functioris fail ·t::• 

X = 4,2 vanish is bounded by ~ and but the region is not rect;anguJa . .c. 

. 1 According to the rules developed by one of us on the basis c.f pertu:rbat:..on t;:hec-ry_, 

the boundary is given by the curves, 

16[;!; 2 
X = 

y 
for X > y 

~2 ' y -
and (.III, 3) 

16!.:!: 
2 

X for > y ;::: 

4f..l2 
y X 

X -
as shown in Fig, 2. The large distance t.o the boundary from the corne:::~ 

y X :::: 4f..l
2 

, is associated with the abs:ence of a. threE,~pic;,n vertex and 

considerably simplifies our problem. The absence of a tr.LX'ee-parti.::;le veri/ex 
6 

also is responsible for the absence of poles in (II.l). 

We ass·ume that therr.:: exist no strongly interacting particles with the saJne · 

quanttun numbers as a pair of pions. If such a parti ~le shou.ld b.=- found, 

corresponding poles must be added to (III.lL wr ... e·;;her or net the new 

par-ticle is interpreted as a two··Pii.:,TJ 1"n1md state. 
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A point of maximum symmetry in the s, tJ> t variables is the nonphysical 

pointJ> s = t = t = 411
2/3 , where A, B, and C are all real and equal ta ea-.:h 

other. It i.s appropriate then to introduce the pion-pion coupling constant A. 

through the definition7 

A ~A( 
4 2 4 2 4 112) =B( 4 2 4 2 4 2, 

= 3 f.1 ' 3 1.1. ' = 3 
jJ. 

' 1-.i. ~ 3 jJ. / 3 3 

-C( 4 2 4 2 4 2, 
::: 1.1. .• 11 J 3 1.1. ) 3 3 

( -"'!'' 11 't 
' ......... J..' ;' 

It follows from (II .8) that at this synnnetr;y· poi.nt we have 

::: = 0 ' = 

Normally a coupling constant is defined through the resi.due of a pole, b-,_.;t h:> ;·c: 

ther·e are no poles. The new constant 'A. may be expl::i.c::itly introd-,~ced in•.,::. 

(III.l), if desired, by making a subtraqtion at the symmetry· poin'L SLJbtra;.:tJ<;r~, 

are probably necessary to give a meaning to the double~dispere.i.on ·re.prr:-s·:::rr".a:• l'.'cl 

(III.l),' but we only need this expression in order to locate the 3ir"gda . .rJ'tl"'~· 

of the scattering amplitude. Thus we proceed at. one.<:; to c:;::,nsider the E'ko.ai.:r": i.: . '. J 

properties of the partial-wave ampli t.udes A/( q
2

) .' whi.::h can be cc·rrr::: :-:ly 

obtained by inspection of (III.l). 

7 This A . i.s, in conventional terminology, a renormalized unra-+;·,io:lB.liz.ecl 

coupling constant. It corresponds to a t.erm in the La.g:rangia.n of the f,:>rm 
2 

4rcA.(¢ ¢ ) 
f.1 1.1. 
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IV. ANALYTICITY PROPERTIES OF THE PARTIAL~WAVE AMPLI?JDES 

In this paper we shall concentrate most of our at.tention or, the low 

angular~ momentum states. In principle, the a:pproxi.ma.t i ".:1n seheme based Gr1 1;.he 

double-disper.sion representation: does ~ consist of taking mor-e and. morr: 

·• -~ angular~momentum states into account--such a procedure vould be i nadequs.t•: C>ti.;.,_-; 

to the failure (to be disc~ssed below) of the Legendre expansion ~o rcnv.-'r;:-;f' J.C! 

the unphysical region. It will therefore ultimately be necessary tc ~ai ::·_,let-;· 

the spectral functions in (III.l), and so to include effects of aJ.1 tLe- 8.!1g: .. 1ar·· 

momentum waves. An ·approximation scheme for calculat:lng the spectra: func':;i-:.·ns 

can be 'vorked. out and was outlined in reference 1, Even j_f the spe~:+;r9.l f-u;--,c:t I .. ::-.. : 

were known, however, it would still be necessary to tre3.t sepa.ntte ly .;_:r:c kw 

angular-momentum states? The reason is that, when the singJe-dispersion ;_nt::.:~_- ..... 1 ·-

are :i.ncluded .in (IILl), the absorptive parts of the low ant,"Ula.r-momen•;ur;, ;:•~·~·- ·~s 

wi.ll no longer be determined by the spectral functi.ons; as ·ha.s been ex.-pl.i.1.-L:-!<::<< :, r 

reference l. We shall see below that, because of special -prl~pertie3 ~:.r U.: r·-r-

system, the calculation .in the lowest approximation can be based 

the low angular-momentum states. 

From (II.9) it follows that 

1 +l I 2 
= 2 f d cos 9 A (q , cos 8) PJ(cos G) , 

~1 

e .nt 1. -: .. t: l;l 

so that, in. vieiv of (II.2), the projection of a giYen .pa.rtia-:'. ·.m.'...-e aJ:;ctn,L; to 

an i.ntegration at fJ.xed s over either dt or dt . 'L'he two ''a.ri~_l;](···, 

t and t each coYC:1' :rH~ range b_etween ,., 
u aed 

trlf: nature and location of the sJHgul&.ri ties of 

B 

(IT l .l.} 8Xplici tly. 

rrc. '' i. ll, _, r '),,, ,, 

r ,, 
-I .c .• 

i\ r \ q . '. 
J ,_ 

1' 
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It is obvious, first of all, that all the singUlarities He en 't;he rc:al 

axis. 9 Next it will be recognized that there are three sets of branch points. 

The first set is associated with the vanishing of .denominators contai.ning s, 

with the lowest branch point occurring at 
2 

q == 0, the thresh:,ld of the physi.ca.l 

region. The next branch point of this set will be at 
2 2 

q = 3f.L , the threshold 

for producip.g two additional pions, and so on. It is evidently appropriate to 

choose a cut running along the positive real axis from 0 to oo . We~ sh9.ll 

refer to this as the "right-hand" or "physical11 cut. 

The other two sets of branch points are associated with the. var.ishing 

of denominators containing t or t and are coincident J lying on the n<';gati '-:.::: 

2 2 * . real axis. The first pair of branch points is at q = -t-L , the secvnd. at: 

2 2 q = -4JJ. , etc., the spacing being the same ·as on the positiYe a...xis. A seccn·i 

cutmay then·be.chosen to run from 2 
-JJ.. to ~oo ; this will be called the 

"left-hand" or "unphysical11
. cut. 

Finally it· should be recognized that our partial=wa,ve ampl:i f_.l.:id.e J e a 

~ analytic function of l , whose boundary value as the physical C:1l~- :1..:: 

appr~ached -from above is the complex physical amplitude, but ~.fhi~h is :r.2a.l in 

·approached. The required irriagina.ry part is given for the right-hand c:ut by 

(II.ll). 

9 With unequal masses, as in pion-nucleon scattering, the singularities in 

the partial-wave a>npli tude~ do not all lie on the real axis, but tbey ca.n 

be located without difficulty. See, for example 7 S. W. McDowell, ·~-.J..i.v<:-rsit;r 

of Birmingham Physics Department preprint (1959). 
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involved, as the unit.~ri:ty ct•wiiti::m :::<S.nnot. b'=: :J.S·2d f0r ne:ga.Lve yab"'s :f 

We shall have to use cro9sing syrnnh'o·"tr.t ts ob':.eJ .. n ·tb~ :lmagi11.ary part en ~:h": 

I, 'II, a.nd III, defined. in r··sferen•:::c L 

The absorptive parts A 
1

, 8.Ud. (', ffi'3,y b7' 'f.j_-::;~~:~::.;;j_ ;,T:·c~; i (• 
J. 

imaginary ps..rts c.f the corresponding a.rri-pl.it:·.<des ir" th:? pb;y-d.::·a.l :r:::'?- fc•:. - f 

reaction I, q
2 > 0. Similarly; the abscrptive par~s <Jith _.=1.1.bE :::!'lfO::::o ; 

III are equal to imaginary part.s in the physi:-:al :regi<::.Lc t:(f :-·:-s..·-:_.; · ·.~.·:, - ~L:i : . 

respectively. These will be regi.ons of negath·-e 
2 

q ~ 

from (III.2) the following crcssi.ng r1.<lee_; ·whi·:~h cc:r:t::spor.d. t.: ~-;,t- r?l>=J:'·: _ : .. -

( II • 5) to ( I::L • 7) : 

A.,.. -t• A~l .L l . 

BI .... 

:: J CI -+ 

for s 

AIII - BI'l 
BIII -+ AI fc.~ s -t. ·'· 

CIII ..... c 1 
Ij 

and 

/l 
AII - c 

l I 
I 

BII - BI fer 

C'.,..~ -+ AI .u .. 

I ~ _' I 
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The other relation needed is. that connecting the imaginary part of the ampli tud.c s 

for q2 < 0 with the absorptive parts for reactions II and III. By examination 

of (III.l) we find 

2 = -AII(q , cos 9) 

· for q2 < 0 , 

with similar relations for ImB and Im c. 

If. we now define 

,2 t 2 q = T ·- 1-1 ' 
..... 

- 2 t 2 q' = T - 1-1 

cos Q' 1 
s 

1 2 = + 
2q'2 

= + 

and 

-1 
s 

-1 2 = -
2q'2 

= -COB e' 

and recall from (II.2) that 

2 s 2 q = T - 1-1 

and 
2 2 

COB 9 = 1 + 2 Sl. v + t!: = 2 
q 

then the crossing rules (IV.2) allow us to write 

( 2 (- 2 -Im A q ' cos e) = -CI q I ' cos 9°) 

where ranges from 2 2 
.. q - 1-1 to 

2 
-1-1 as 

(IV.,.)) 

2 2 
Sl. + t!: 

q ,2 

2 2 
q + t!: 
-2 
q' 

-2 2 
=1 = 2 9.' + IJ. 

2 
q 

in place of (IV. 3) 1 

' 

cos e goes from -1 to +1~ 

.:....2 
while q' covers the same range but in the opposite direction. It can be 



,,. 

seen by inspection of (III,l) that BI and C~. vanish ir.t the rarJ.ge b~twe~n. 0 
l. 

2 ' 
and . -tJ. i and so we· have achieved our goal of expressing the imaginary ps.r• .. ~f 

the amplitude for negative 2 q in terms of ·quanti ties at pcsi.ti.v~ 2 
q 0 

I.t remains now to project out the partial waves, From(Pf,l) we have 

for 
2 2 

. q < =IJ. ' 

+ 

2 2 
-q -j.l. 

J 
0 

The formulas for 

1 +1 2 
- 2 f d cos 9 Im A(q , cos 6)f'£(cos e) 

~1 

= 

2 2 
=q -j.l. ~~2 

J 2 

d9.'2 
2 

q 

0 q 

and 

(- 2 
CI q' , ~1 

2 2 
f") .9....._:!:_..H:_ i 
c. - 2 .. 

q' 

I, p 1'1 + 
.t'· 

expressions for amplitudes with well~defined isct-oph· spin are 

I 2 
Im A£ ( q ) 

for 2 2 
q <-tJ. 

X 

2 2 
( S:' + f.L p..e 1 + 2 2 

!: 
I'=0,1,2 

q 

A r( , 2 1 + 2 
I q ' 

'"' 2 

. .,~ , : 
' .l. \! ., ........ 
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where· 

2 

2/3 1 

-1 

Under the integrals in (IV .5) appear the absorptive parts of sca.t+;~.ring 

amplitudes at values of . cos e less than -L From the boundary c-:.xrve of Fig. 2 

and Formula (II!.3) it is possible to conclude that the Legendre polynomial 

I 2 
expansion of AI {q' , cos e) 

( ) q2> 2 IV .5 so long as ·-91-L 

converges for the values of cos €l required i.n 
10 

For the "effective .. range" approach of this 

paper, such a limit ~ight as well be -oo. The surprisingly large magnit;;de 0f 

this limit ·is associated, as mentioned above, with the absence of a three=pior. 

vertex.· Crudely speaking, absence of a single-pion exchange mechanism red1:<ces 

the range of the force to rv 1/21-L and greatly improves the comrergenC'e .cf th~-

partial wave expansion. 
10 

Also it should be remembered, as empha,sized by I..ehma.nr ... ; 

that the expansion of the absorptive part of the amplitude always convsrgo::e be:::er 

than that of the real part. 

It is possible to view in a slightly different way the approximation ma·ie 

in keeping only the first few terms of the polynomial expansion of the abso:rpi:"i.v"' 

parts on the right of (IV. 5). As shown in reference 1, the absorptive part ce9.1·, 

be written as a dispersion integral 

10 
For a discussion of the convergence of the Legendre polynomial expa.::::te :Len 

of a scattering amplitude, see H. Lehmann, Nuovo Ciment8 10, 579 (1958), 
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A {"' 13' "'J 
t I '1 . i 

l_,_ r 
\ l• 

.;. li( + u -·o . - ·~ f.;) 

The subtraction terms are here written expl:i.c:i.. tly; and t-he v.ali.::e ::_,f. thF.: ~;XS,fb~ Yt. 

is eg,ual to the number of such terms. Perturbation th:>ory pr-.~e:.:::.::'ihss (1-jil.~ ~Ll.Y 

·one subtraction is necessary. However, :f-urther subtra·.::t:i.ons may be mg,.:'_':~ .;:o,;. ci::c :·· 

because one distrusts perturbation theory i.n thir? c·:).nnt:O·:tion cr ~o :r:r. :-;-~,f.2:: :. :-"' 

. . 11 
accu.racy of the calculation. . In this paper we make "::-"m subtr9.e~:.Lns, Ei.S s>- ,-, 

below explicitly in Formulas (IV.9) &ld (IV.lO). 

Let us examine the form of the region ir:.. W'hi·::orl c.ne o.f "'·.tv:. f''P2 :·t:.r.s . .: 

functions,- A
13 

.for instance, is ncnzerc. As explair.~d. .i.n r.:-f;:,r::.;:v::? l, ·~.:-. __ 

spectral fUnction consists of a number cf parts correspc.r,.,'ii.ng t;-_ -~:.:L:::~c': 

Feynman diagrams. The two parts extending to the lcweet val'L's;:; vi· :: "·c- _, 

are bou,nded by the curves AB and CD of Fig. 2. Now, the ps.:ct b: . .D~~-"' :· nJ ·''b 

begins at or above the value s·= (4!1) 2 , the threshold.. fu!:' th-:; J/-''~ . .:.~.::-t.i·-=-- ~-.:- '--

additional pions. In the following section we shall a.pproxima:te -+;~he at.sc :r:r:- • ~. -

part in the physical region by neglecting inela.stl.:=: :p:r.oe:e:,;;se>s in the: ')t·lt'o.:-<·-._, 

condition. This is i.n line with the "effecti.ve~rangen prin.::iple. J wh:i.::. t E...ss,,rr.-·:, 

11 
Subtractions of this kind in one variable do no-t. c.orr'2::-;<~L3. -:c. ::li-? 

introduction of new parameters. See referen~~ 1. 
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that the behavior of the scattering amplitude at low momenta, is dom:i.na--r:ed by l:n~ 

nearest singularities •. Th~ part of A
13 

bounded by AB is theref'c:re z~::ro u::. 

this_approximation. Similar considerations will apply to the oth-:'r spc:::ral 

functions. If,, further, we require the crossing relations (IIL 2) tc· be 

satisfied, we shall also have to assume that the part of A
13 

bounde-ct by 

zero in the lowest approximation, so that the spectra.l func-tions are ·:k be: 

1 E 

neglected entirely. That is to say, all contributions to the spect~~l r'-.:..r:,:';·, ::>' 

begin· at values of s and t which are so far fr-om the region of i.nt·':r.ss·~ ":hAt 

they shm1ld be ignored in a consistent 11 effective=range" approach. 

From Eq. (IV.7), -the absorptive part A
1 

can then be approx.im&:k:d. by a.:-" 

expression of the form 

which is terminated at · e.n early stage. The a.bscrpti vo:: pa,r-ts. are ·:h,Js L"J ;· '= 2-:--: "·- · 

by t-aking a small number of angula.r~momentum states or~ly. This concl~,aion bt'-;;;.:r:; 

out the statement made at the beginning of this se·::tion tha;t J i.n the lcv2-;2t: 

approxi:ma.tionj the calculation can be based entlrely on the. low 9.ngul&,r<mc·m:?-c: •Ji'r: 

states. 

The approach just outlined enables us to. understand why the ats-sr, >o · • ~:: 

three=pion vertex is critical in allowing one to terminate the Lege.nj:::-::-

expansion .of the absorptive part. Had there been such a vertex_, the ::~<r''c 

bounding the shaded area in Fig. 2 would have consisted. of a single pe.r+.: · wh:.. ::J· 

approached asymptotically the lines The neglect cf r.he 

spectral functions would then not have been justified. It would h&VE-. beer: 

necessary to insert them in some approximation into Eqo (Iv.·7)_1 w:itb tht"' 

resulting expressions then subeti t·1.1ted ~ "'"'::: the integrals of Eq" (IV o 5:1 o 
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[Actually the fourth-order perturbe.tion apprcxima.tion (:C,llct bE:. used f'·)Y :.2-::-

spectral functions, as all other contribut.ions beg:i.n a.t 'l-alues c.f ci ther "' : r 

t greater than 
2 ( 4JJ) • ] Even in the a.~t·;;,al problem w:l-f_:h ::1C· )-pi)::: vE:rtez. .: f 

·we were to go beyond. the lowest approxima.tior;. it: WC'..:!ld be ne·:c;.?.seary +- .-.,,.~,--·Jl.::l'~,':' 

the spectral functions to an appropriatt! a:-·::':!J.ra~y an.:::. the::1 ::i..!'!S~Tt -~-h::;rn ::..n: .. E·~-

It is. -warth emphasizing that ·w-= only e.ssume --c.n'; e.t.e .r:pti•J,:o :r:":.rt :..r .·, 

scattering a.mpli tude to be represented by its lo·we::t: ang·Jle..r-m::ane.r..tuTE <rb .. ~, :;. , No 

such assumption regarding the rea.l part is made. At 'the crd. c.f +:.h.;: :aJ. .· ,;la!. i. :, 

the real part of the first angular-momentum state nnitte.d. ·::aL be r::.c;mpu':<"'1 .: ~.: :. · c. 

square turns ou.t to be small at the energies une.2-r ::cn;s.i.dera.t::,.n_, w"':' ;;.r,::.y~, F"""'''":::,,:;'_ 

justified in leaving out the absorptl ve pe.rt. Ther::: :1 2 t.h'.:.t8 a che ::k cr1 t h-2 

number of angular states which it is necessary tc im::bd.e . 

. To illustrate. the above consi.derations and for f·:.--.+·tn~ rsft=:-:rer_ :i:", .J': \.J 

derive formulas that· clearly show the d.:l.ffe:rer.~. :oe i.n rr.:: treea:t.rrJt::<·': c f i ·,~ "· . :. ·, ~:· 

partial waves. With no subtractions, one ·::culd ·wri.te i-:ht: fcll<:w:L,.g mc.:n::r.,;· .. "~': · 

transfer dispersion relation on the basis of 

i 

( 2 t \ 
AIII q ·' l + 2 l 

2 1 00 

A(q , cos 9) = ~ f dt' 

4~2 

________ 2SL __ , 

t 9 
- t 

= 
1 
:rr 

00 
J dqC2 
0 

2 Q 

BI ( q I 2 j 1 + 2 £ +. ~- ) 

,2 2 . n
2

(·- 0 ) 
q' + ~ + 2. J. ~ cos 0 

+ 

+ 

c-.::· 
f ,jTt 

4~ 
2 

.:... c 
-•.. .L •• 

--. (~ 4 # 

~ -c-:.-.-~~--- .... 
1 

c~· 

cfqr2 f 
Jf 

C) 

..--.-..... .... --.---~- ~ --........... ~-·-·-· ~ ~~-·~ ... ··-~-· 
·') .. , 

·1 ·.:: 
+ I~ + .. ~;. l. - ._ .. - tl 
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2 2 2 . 

q ~ . + 1-l + .9._. ( 1 - cos €l ) 
2 

1 
2 

s..... ('•. / + 2 1 + :::os 

with similar expressions for B and C. NowJ .the absorptive part B1 is, tn 

general, complexJ but the imaginary part of BI vanishes in the lo,.,.e:r .::'9.ng:; '· f 

· the integral (IV .8) because from the equivalent of Eq. (IV o 7L fer 

and q' 2 > 0, we have 

= ( 4 ' 02 2. 4( 2 2-. 
B13 ~ q + 1-l ) 7 . q + J.l ) ) ' 

2 
•:;, > 0 

which is zero outside the shaded region of Fig. 2. Thus.9 lf W·S makE: s. eub~:'tl.:.;.;··.''i 

. iii the dispersion relation (IV.8) to suppress the high=energy part9 the r-::m3,ir.,.:::_.,.: 

2 
will be almost entirely real for small q Figure 2 shows J i)f c.c-u_:-s7: . th,:;,:. 

2 as q . becomes large, the imaginary part cannot be suppressed. 'Ib~::s,:-

considerations a.re identical to those following Eq. (IV. 7). 

Let us make the subtraction by removing the S-wa.ve part of E0_. .: :.v Jj :• . 
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, 2 
A~ q , cos e) = 2 1 

00 
"' 2 A (q ) + -n· J dqlc B lnl 1 + o · r':i , 

0 

1 
+ 

In the next section we shall determine 

-2 
2 

-:;;, 

the residual amplitude (which starts here w:f+ .. h ·: . .h.:: D W'S;,V<==; lf- rc=-s.l ·-: 'l G · ~ 

approximat~on, for 
2 

q not too large. 

part of BI is to be rieglected9 we are i.gnor!.ng t.ho:; s~.r ... gJl"Oui~_:_p.;;, r_;' !.h~-­

function in the variable q
2 

7 a.l'ld accord.ing to th•= e.rg•JJn-:::r:.'::o:: fclj_ · ·il~.g F. · 

we may consis'tently approximate it by a low~c::-:-·d.er pc lyr!QmlaL. S 5. ~ -~ <. t? 

continued to the physi.::a.l region of rea.:::t~cn l :1. e -tl1"' :Lrr1e.gJ::."~.ry V·' ~ 

.. ~.! 
••• \> 0 

_amplitude, the appropriate pro.-::edure is to ~''=':vr:o2:=r . .". F
1 

':- "-'~·;nr: .• .f-·~-- .. -.:., 

l 
I 

_J 

thb.se partial wave:s that. have been subtra.-,·•:.:;d c..:t, 1.oE,, i.:'1·E·~ '·i>~~- c~.r' a.-l:{ow!Z#( 

to be complex. 

We now give the formulas f'or 

AI(q2 A I, 2) 1 00 2 9) f cos -- + - 'dql .E 
' 0 \ q . 1( 

0 Iv 

l . {~ [ ·2 ----------~2-----------

q12 + l-l
2 + £.....(1 .. cos e) 

2 

T ..... ,) ~. 

p. :) 2 c.:· 
q ..;. 

~"!. 

ar·· A_ i .~" l + 2 ~-llr-------

l' .l 
'-:1 

~~ 
q 

'-__ J ___ _ 
) ..... • - c. 

q. + '~ 
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For I = l; we subtract the P wave~ 

{~ [ 2 

l 1 l 

2 
2 

? 2 
2 J + .9..... (l - cos e) +.1...(1 Q'-qV + 1-1 q'- + l.l + C!:)S J 2 2 . 

3 9 [<l + 2 
,2 2 2 

- 2 Jj cos 9. + ~· ) £n(l + s 
2 2 2 ~2 

q q· qO + l.l 
\, '!\:"" ""/ (\ ., 
,_ • .&..,• oJ..•.....t' 

- rv 2 
Under the integrals in these formulas ~ ( q 0 

, cos 9 v) will be approxima:te: r:;y 

0 2 2 
AI ' ( q 1 

, cos 9 1 
) 

'. ;_i' '::.1' 
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V. · FORMUIATION OF INTEGRAL EQUATIONS 

We now have the task of translating our knowledge about partial~wa.ve 

amplituO,es into integral ~quations. After introducing the variable 

the preceding statements about the location of singularities are equivalent to 

. the dispersion relations, 

= 
1 -1 

f dv' 
-oo 

Im A/(-v') 

-J' - v 
1 (X) 

+ - J 
1( 0 

(V.l) 

provided the functions in question behave properly at infinity. The unitarity 

condition (II.lO) guarantees that the·partial-wave amplitudes behave asymptcticali:y 

no worse than like constants. In order to estimate the error in our appro:x.ima·'.:~cn, 

we shall assume that on the right-hand (physical) cut, 

and 

1 ... 2 

ReA_/( v) -+ 0 
' 

{V.2) 

in other words; the limit of pure diffraction scattering. 12 Such behavior) i.e. 

the ratio of the real to the imaginary part going asymptotically to zero) can be 

consistent• with Eq. (V.l) only if the limits on the left..;hand cut are the sarns, 
1

·3 

A partial-wave amplitude of order £ vanishes at the origin like 

so we may consider new quantities 

12' . 
Such behavior is expected because of. the overwhelming competi ti.on from 

inelastic channels that sets in at very high energies. 

13 
Considerations.of this kind were first emphasized by I. Pomera.nchuk, 

f 
1/ ' 

J. Exptl. Theoret. Phys. (USSR) 34, 725 (1958), in connection with forward-

dispersion relations. 
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= 

which also satisfy relations of' the type (V.l) but whose imaginary- parts 1 ex:·ep't 

. -I-.e 0 for J, = 0, now vanish at infinity like v It is clear tha.t the higher 'thf-

angular momentum, the smaller is the relative contribution from high valve':=: c·f 

in the dispersion integrals (when V . is small). .It. is only for the. S wa;-v-!;- :.rJ8,t. 

distant contributions are expected to be importantJ so for the S we.,:"e we m-'ik"· -3. 

subtraction at the symmetry point 

14 
to obtain 

I 
Ao ( v ). = 

)10 . = 

+ 

+ 

v- y -1 . 0 
f 

y - ll 
0 

-ro 

ro 
I dy, 
0 

Im A I( )u)· 0 . ) 

( y ~ - V )( Jo ... ~) 

!t is possible that even an s-wave subtraction is unnecessary in a t:·ea:trn-:-:<t 

which includes in a serious way very-high-energy inelastic prc..::e.sses &!J_.-·h 'J& 

nucleon-antinucleon pair production. We do not believeJ however, th.:..t: ::;:1.., ·f: :1 

treatment will be practical for a long time to come. Certainly- nothJLC EC 

ambitious will be attempted here. 

1 
The two subtraction constants and are ne-t: indr:::pendent b'J~ a.r~' 

related to A. through Eq. (III.5). The relation is given belO'w lL 

Formula (v .18). 
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Thus, either by div:i.ding by ")).£ or by subtracting we hope to suppress 

very high energies under the dispersion integrals. Specifically, we hope th9.t 

taking finite limits for the integrals will not cause a large error, and so ·we 

consider; instead of (V.l), expressions of the form 

' I Im A£ ( ))') 

1( y'.£()1 - y) 

or the corresponding subtracted expressions for S waves. These are supposed 

adequately to represent the physical scattering amplitudes, so long as wt:- 11avc­

v < < L~ The exact choice of L, of course, should not be important, cr a 

new parameter would have been introduced into the problem. Using Eq. (V. 2) or.~ 

can easily estimate the order of magnitude of the neglected contributions to b~ 

and 

-which are small 

In this 

o A.£ ""' 

provided L 

1 )/:, Ya 
rc L 

l 1 ( 
1( ] 

v 
L 

can be made 

first attempt at solving 

J 

£ 
) 

sufficiently large.. 

the pion-pion problem, we shall CbCJOGt:'-

L in the range where inelastic scattering first becomes important. The inela.f '- ~-: 

threshold is at 
. -----------··'----------· 

J) = 3, but experience with pion-nucleon sc~ttering suggests 

.that double-pion production won't represent a substantial fraction of the cruse:. --------....... _______ -----·----~-----""----~---·-···~----·~--·~~-----···--........ .., ... ----·---_.. .. --,.-·- ·---~-- .. --...----~-----------···------------- ··- -~ --.. ----·------~--

section until )} ~ 10. Thus, with L in thi~ range, we may use the 

unitarity conditton (II.1i) with R£ · set equal to unity: 

Y+l 
for 0 < y < L . 
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Furthermore) as discussed in the preceding section, the jmagi.na.ry pe.rts c·r, the. 

left-hand cut as given by Eq. (IV.5) may be evaluated by the use of Leg<::-n•ire 

polynomial expansions under the integrals, In particular we shall ke.;:;p .::t1l:r 

£ = 0 and £ = l terms in these integrals; the legitima.cy of thi..s tl.J..prc·xima.t.iC·n 

may be checked a posteriori by calculating the D waves that emerge from C.•'-'·' .~ y::- .;-;-:;, 

of equations. 

In terms of the variable V the formulas (IV.5) f\:;r the f1 rs._ f~;·" 

partial waves become, in this approximation: 

-Y-1 
l J 'd ~~ P 

0
( 1 + 2 Y ) 

y Q XI 

i 

+ . \ 
)/" I 

Now we put all the above information together in order t::> cbtain a r:::-·.::. :>oJJ"":-·<:: 

calculating phase shifts in terms of the empi~i.ca.l ~onsta.nt A .. 

Consider first the two S-wave ampli.tudes • We attempt t::. re:p-resrL·•_ ""'· · •· 

of these by a quotient 

I . 
and n

0 
( )) 

contains the branch point at 

are both real analytic :functions, the numer'O'.tc r 

')) = ~1 with the left·-· hand ;:1~t, · -5:nd the 

denominator contains the branch point at v = 0 \.'i'th the right-hand c•, '-" ~ t 

! 
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is also necessary, of course, that D0I( V) have no zeros. By assumption, then, 

we have 

Im N I( -)) = DO I( J ) Im AO I( ..) ) ' - . 0 

for V< -1 

I Im D0 ( v) = 0 

0 for -1 < V < 0 (V.lO) 

Im N
0 
I( )/) = 0 ' 

for V> 0 ' 
. I 

NO I( v) 1 Im D0 ( v) = Im 
AO I( y) 

and, according to our approximation of neglecting high-energy contributions, vre 

set both imaginary parts equal to zero for -J > L and Y < -L. 

The subtracted dispersion relation (V. 5) normalizes the s~wave ampli tud.<?~: 

_to ai at the point 

quotient by.setting 

a cutoff at L the amplitudes 

We accomplish this normalization in our 

= ai ·and D0I( v0 ) 1. Furthermore, with 

A.
0 
I( Y) approach real constants at infini.ty, l5 

so we may assign constant asymptotic behavior to both numerator and denominator, 

Then, introducing, 

( v > 0) (V,ll) 

15 Such behavior is inconsistent with Eq. (V.2) and incorrect physically, but 

our modified functions are only supposed to be accurate at 1ow energies. 
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we are led first to write 

NO I( y) 
v- .v_, -1 f I(- y') D I( )') 

0 J dv' 0 . 0 - a I + 
1( 

-L (-J' - ..J )(v' - J0 ) 

(V,l2) 

v- Y. L fOI( y ')DO\- v') 0 J dV' = ~ + 
1( 

1 u· + vHv' + -.) ) 
0 

Second, remembering (V. 7), we have 

1 - (V.l3) 

On defining E
0 
I( ) ) = D

0 
I(- -)) and substituting Eq. (V .12) into Eq. (v .13)., 

the foliowing integral equa~ion is obtained: 

with 

K(V, v') 

\I' y" . I 
v 1 + )) 11 

<v" +-JHv" +v') 

K(V, y/e)rOI(V')EOI(J~) 

v' + '~~o 

(V.l4,l 

If the function r0 I(J') were known, Eq. (V .14) would be. a :honsingular Fredho:un 

' ' 

equation, soluble by any number of standard methods. It will be shown in the 

following paper that, even in the:>limit L -+ oo , the equation can be cast 

into a nonsingular form. 

We cannot lessen the reliability of our result at this stage by taking 

L infinite rather than in the neighbortood·of 10, since the associated change 
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in the amplitude will be smaller than the error (V.6) which we have agreed to 
. ·. 16 . 

tolerate. · It is possible, on the other hand, that the result may be improved 

by taking· L = oo if elastic scattering is dominant up to higher energies.than 

might conservatively be guessed. For these reasons, plus the esthetic consideration 

that one does not like a calculation to depend formally on an unnecessary parameter, 

we shall henceforth set L = oo , even though the error in our approach should be 

estimated from Eq. (v.6) with some finite L. 

It is unfortunately true that is not known in advance but is 

given only through Eqs. (V .11) and (V .8) in terms of the amplitudes we are looking 

for. Thus our system of equations is actually nonlinear. In a subsequent paper, 

however, it will.be shown that the problem can be solved by an iteration procedure 

in which at every stage the linear equations (V.l4) are solved with the f I 
0 

corresponding to the previous stage. We must, of course, also formulate an 

equation for the P amplitude since this is required in Eq. ( V. 8) • 

Before considering the ?-amplitude, however, a few general rerna,rks abo:..t 

the S-wave problem are in order. First, an inspection of (V.l4) with f I t 
0 

se · 

equal to zero and L = oo · shows that E I 
0 

will develop a zero for V < v
0 

is negative. According to Eq. (V.8), both f 0 
0 

and 2 
f

0 
will be 

negative if, as is likely, the S contributions under the integrals are dominanto 17 

16 This conclusion is not quite air tight but seems very plausible since the 

high energy elastic partial-wave cross sections given by our equations are 

smaller than the total cross sections used in the estimates (v.6). 

l1 Recall that the imaginary part of a partial-wave amplitude in the physical 

region is positive definite. 
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The zero will therefore not be removed when f 0 I . is included, .but if the zero 

appears sufficiently far out along the negative real axis~~beyond the limit L at 

.which our calculation of Im A
0 

ceases to be accurate--the associated pole in 

A
0 

is of no physical significance and cannot be excluded. A crude estimate} 

based on Eq. (V.l4) and neglecting I f
0 

, indicates that for ~0.7 < 

the zero in will occur for v > 10. 

l, , I, 
If ai is positive, the requirement that there be no zero of E

0 
!. v .! 

the region ..,;
0 

< v < 0 (Le. no bound state of the rt'=:rc system) puts an upper 

limit on ~. As ai increases, the zero will appear first at ),) = 0, so we 

examine the condition that E0I(O) be pos;itive. Here the neglect of 

a good approximation, so one may deduce from Eq. (V.l4) the requirement 

or, since we have 

we can write 

1 
2 - 3 K(O, 

K(O, 

ai < __ 1!;..;__/tan -l 
2 ~ 2 

' 

-1 tan 

1 

1 

= 1.8 

f I 
0 

is 

One may inquire also about the possibility of zeros in D0I( j)) that 

are not on the real axis. Inspection of Eq. (V .13) shows that such zeros a.r"' 

in 
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T 18 
"' , v has no zeros on the pcsitive real axie" Sho,..._.i-.J. l·mpossJ'.ble so l0'"'1g as N0 .J.-~· •

1 ) 

we find a solution that does have zeros in the physical region, this point wo·:.:..ld 

have to be investigated further. 

Let ns now d .. etermine the relation between and :A. and the ccns:e y_uent 

restrictions on ~ tha·t fellow from the abcve limitations on A :;(.~.-:'rd ing 

to (III. 5 L we have 

0 o) A ( )/OJ = -5 A 

A\ -Jo, 0) = 0 J 

and 

2. 'I 
A ( v OJ 0) = -2 ~ 

The second of these relations is iientically satisfi.E:dJ sine:e A
1 

c::mt9:1ns ~··.J.y 

odd powers of cos e. The f.irst and the third, however, give us thE. r-:: q:A i -r ~.:~.: 

information abcut. ao and a2 whi~h are defined by Eq. (V .5) tn be 

= 

and 

Thus to a good approximation a
0 

~- -5 A and 

and higher partial-wave amplitudes to be small. 

18 
For v VR i VI the. imaginary part = + ) 

v .. 
~ 

00 
. .i f. dY1 - --·-· ·rt: 

0 . 

a(') ~ -~2 ·"--~ sin-:::e we ex:pe :". 
~~~ 

of DO I( l)) is gi ver1 by 

~-

No.L( ,p) 
') (') 

(j;v v \"- + YJL - R; 

and therefore vanishes only fc·:r if has a Einglc Sign. 
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It is possible to correct for the higher ·waves within the approximation 

outlined at the end of Section IV. Formula (IV.9), when evaluated at cos 8 = 0 

and v =. 'i' leads to the following result: 

-5 A 
1 j AY• { + .£n(l 

vo ) ~ . ao = +- + . 
1( )/ + 1 0 . 0 

X { ~ Im A0 ° ( V' ) + 1~ rm Ao 2(v') 

-2 A+_! 
00 ·J 
J { 1 

0 ) -a.2 = d-vh - .£n(l + 
Y!' 1( 

0 Yo + 1 

{~ Im AO 0(,1•) + -3 Im A0 
2(v' ). 

1 +Y~2} u + 1 I) 

'-6+ 
+ 6(1 + 2 v' 

1 v~} )}u + 1 + 

~ + 1 
3(1 + 2--

)/ 

1 

) 

1 l 
~m A. (J' i ·' 
.1. 1 . . f 

I 
v 

. /'1 
J. ' ' Im A

1 
( \.1 ( ' ; 

I 

.J 

The integral correction given by Eq. (V .18) to the s:i.mple relat:i.on be+.·;v-e:?;: 

the ai and A is very sma11
1
9 and may be ignored except for highly refl.nr:-.J 

considerations. The most restrictive conditions on A. are obtained by cor;sidc-r:f!·lg 

the I = 0 state, for which a
0 
~ -5 ·A • The absence of zeros on the ne.ga;>_: L'/7 

real axis for· I V I < L , as discussed above, then leads to the limit-s 

1 1 - 5 ( 1. 8 ) ;5. A ;S - 5 ( -0. 7) 

or ( v" 19) 

-0.36 $ A $ 0.14 • 

l9 The smallness is due to the expression in the first curly bracket in. the: 

integrand of Eq. (V.l8), which has~. "'JI'I.ximum value o-f 0.15 at )}' = 0 ar/i 

falls rapidly to zero as y' increases. 
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A study of the formula for the cotangent of the S phase shifts reveal~:> 

another· interesting circumstance. We ht;~.ve for V > 0 

'~ ·r 
~ ~ cot o0 --

where 

+ 

p 
rc 

y- )), 
0 

00 

J dy" 
0 

fo r(v' )Eo r(v') 

(v' + y) C-l' + v'
0

) 

,, ,/' 
~ ))" + 1 

( v" - -;) u" + v' ) 

(v. 20) 

(v. 2lj 

Again i.n the approximation where f I 
0 

is neglected we may study the poss:Lbi1.: '~;'/ 

of a 'l'esonance developing, that is, 
T 

~ .!.. cos uo vanishing. We have 

1 

ar 
2 - --1( 

1 
\[2- ' r-T .enC 'v + , r:;;-: ·-·1:··, 1 ~ ~ . ~ ~ . t 

J 

an expression that does not vanish for V > 0 if it is positive at ).) = o. 

The condition of being positive at 0 i'or ar positive is, however) 

exactly the condition that there shall be no bound state. Thus it seems unlikely 

that a resonance will develop in either S state for negative A. unless the 

effects of the f 0
1 are very strong. 



For positive A. and negative ~' formula (V.22) has a zerc but 0nly fo: 

V > L if the condition (V.l9) is obeyed. Thus we tentatively conclude: t-hat 

there are no Iow~energy: s~wave resonances in pion=pion sc.a.ttering.
20 

We turn now to the P wave and againa.ttempt to represent the 19:IDPli.tude by 

a ratio 

= 

with the same division of singularities bet-ween the numerator a_'rl.d denomi:1atcr as 

for the S wave. By arguments analogous to those used above.? we mg,y d.e:dve tr.,. 

equations 

and 

20 

= 

= 

-1 
1 J dY' 
1f . -L 

L 
1 . J dy' 
1f 1 

f \ -v' )D( yo) 1 -

f 1
1
( VO )D( "'V ) 

'/(Yo + ..)) 

1 -
L 

..:L I dyt 
1f 0 

\~ 
~~ 

j 

Nl(JI) 

\P ~ )) 

The absence of S-state resonances in simple two=body systems is a ver-y 

general circumsta.nce and may be traced to the lack of a .::.entri:f\.1gal barrier 

that can "confine" a positive energy state. The only way t.o g-;:t an S=va,v, 

resonance is to have the force sufficiently complicated. eo that a et.rcng 

inner attraction is surrounded by an outer repulsion. P-'..rave ·rc :; tlar.c-:- .. 

in contrast, arise naturally whenever there is a suf'fi:;;iently strong 

a,ttraction. 
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where N
1 

.has been assigned. a 1/ Y behaVior at i.nfini i:.:y and D
1 

a cansta.nt 

behavior. Introducing E
1 

( )) ) = D
1 
(- V), the fell owing integral equation is 

obtained by suhstituting Eq. (V.24) into Eq. (V.25):. 

::: 

L 
l+..:L. J 

1{ 
1 

K(Y )/')f' \.li).E i\j:) 
J . 1 ,Y 1'· ' 

)/ 

The P phase shift in the physical region for ...J > 0 is given by ·the form-ula 

Re D
1 

( V) 

N1( V) 

1 

If f 
1

1 
were positive and suffici.ently large it wo'.lld be po5s:i.ble to sh<:n-1 th<::.: 

. 8' . 1, .J. a resonance develops in the P wave. Ex.amina.ti•;n of Eq. \.V. ) sh::·'·"s that 1·
1 

\ v .' 

may change sign as v increases but is definitely positive for large va.l•'".::s 

of ),) • Its magnitude is uncertain. We cannot say with confidence, t.here for-:=-, 

.that a P-wave resonance will develop until the equations have beer" integra ted 1 tu ·; 

the possibility appears strong. 

The sum of the higher partial-wave amplitudes is to be calculated from 

Eqs. ( DT. 9) and (IV .10). If individual phase shifts are desired_, the appropn.'9.1.>" 

projection from these formulas is straightforward. In a subsequent pa:p~,;:, =. 

phase shifts are calculated in this manner. 
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VI. CONCLD'SION 

A set of coupled integral equations for the S- and P-1v-ave- picm-picL 

amplitudes has been formulated and in a subsequent paper the numer~.zs.l soL.:rti :~ rl 

of these equations for various values of >.. will be descr:i.bed o The D ar;·-1 

higher phase shifts can consistently be calculated by integration cv:=:r th-:­

left~hand cut only, where the discontinuity across this cut is ex:pressi:od i.rJ 

terms of the· S and P amplitudes. 

The physical meaning of cur approximati.on in comrent.ional la.ngus.g2 1 s 

that we conside:r: explicitly only the exchange of pairs of v:i:rt·.J.-'3.1 p:iona behJ6-::-', 

the two physical pions being scattered, lumping 4=picn and highe:r mult.IpL < "iy 

exchanges into the constant A,. Furthe:rmore we only attempt. -t.o .::alcule.:.-:­

accurately the exchanged pairs of lower energy-~those wh:i ch are ms,inl:-r i::-J S s,··d 

P states o The higher energy pairs are included in A, along wii,.;h all sc:r:a cf' 

other high-energy exchanges. In terms of the range of va.r;.cus .:;c-n-::r ib:;;-+~:) eg 

mechanisms to the pion-pion force, what we are trying t::-· do, of cc.1.;rs;::~ i.s ':::. 

calculate the longest-range effects in detail and to represer.t ~118 shcrtL"rs.:: .. g.::­

effects by an empirical constant. If there is an int.:r·ins:i.cally incalc-ulabl:o 

zero~range force, as suggested by Lagrangian field theory} th.i.s alsc is J.n. _l __ "Ld 

in A,, 

Beside the solution discussed in the foregoing _paragraphs J "t:t:::.r"" "'":r:: 

also an infinite number of other possible solutions; correspcm'ling t;.; the 

Castilleja, Dalitz, and Dyson (CDD) ambiguityo
21 

We car.. add to the: rigJ;:t=ha:J.:i 

side of Eqo (V .13) any number of terms of :the form ar/Cv = Vr) , sine:<:: tb:c 

only effect of such terms is to introduce zeros i.nto the scat-tering 

21 
Castilleja, Dalitz, and Dyson, Phys. Rev. 101, h53 (1956). 
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While a rigorous treatment of the CDD ambiguity has not been given for rela ti vir= t.ic 

field theory, .the problem has been solved for several models, 22 and there seems tc 

be little doubt as to the meaning of the extra solutions. They correspond -:;o 

theories in which, before the coupling is turned. on, there are one 0!' more 

particles with the same quantum numbers as two pions. Once the coupli.ng i"' 

·turned on, these particles become unstable, and appe.ar experimentally as :r-::sona..nces. 

These "kinematical" resonances differ from "dynamical" resonances., s·och a.s -+:hg.+, 

which we have suggested might appear in the P state of this problem, in that they 

occur for arbitrarily small values of the coupling constant. The absence of 

such unstable particles must be regarded as an additional postulate to bt:' ir:s·;r·~>~'1 

into the theory. 

A knowledge of the pion-pion scattering amplitude will allo·w a syst.ern:. . .J: J.-

calculation of many important properties of nucleons. The application to tl1e 

nucleon electromagnetic structure has been emphasized already by Frazer o.:/1 

This application, however, actually requires a prior knowledge of the fc.lJ t 

amplitude for the graph shown in Fig. 3, which describes not only pior>~L<CJ(::c:J 

scattertng but also nucleon-antinucleon annihilatiorl to fom ·two l;i.or..s :1 Clr.t; · -: 

us has outlined a procedure for attacking thi.s problem which is :identi• e.i u' 

. 24 
spirit to that described here for the rc-rc ·problem. The procedure requi ;:-.:·6 t.. 

knowledge of rc-rc scattering and may now be implemented. It is,hoped that-::: 

reasonably accurate description of the low-energy rc -.N phase sh.i fts 1 n te r.r;,::; 

of a single ad.di tional parameter, the pion-nucleon cou:r.-1ing constant, vi ll r···, . .J ~ ~ 

22 

23 

24 

N. G. Van Kampen, Physica 23, 157 (1957). 

vl. R. Frazer and J. R. Fulco, The Effect of a Pion-Pion Scatterinc: !·~., ~:w.n•, 

on Nuclear Structure, UCRL-8688, March 1959, and Phys. Rev. I<=·~ t ers, ~, / 

( 1959). 

S. Mandelstam, Phys. Rev. 112, 134h 
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With an understanding of the graph of Fig. 3 one c.an proceed ~:c. a 

systematic calculation not only of nucleon electromagnetic: strustur':?: b·,;;7.: s,:i.2c· 

·of the two ... pion exchange terms in the nuclear force. One can alsc, of ec:;;rs-2 1 

make a solid theory of photopion production. All these problems are 11mier 

investigation. 

There is no reason why the generalized. effecti•re-r~.~.ge approa .. :.h bs.sei 

on the double dispersion representation cannot be used in mo::<r-.: compl:.:.~"'-'"'d 

problems, such as those involving stra.rtge part.icles. Ae. -tr~e s-\;.r-c.cetu:-~ .:~· t.h-:-

nearby singularities becomes more complicated~ of ~curse;; it be.:.:<::m.;;s m-.:-rr:: a.:.: 

more difficult to include enough of them to constitute a good a.pprox.i.mat:;..,::.r.: .• 

is doubtful that any other problem can be found that is as favora.blf.: in ":h~ s 

respect as :JC""1t scattering. 

I 
j' 
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FIGURE LEGENDS 

Fig. 1. The pion=pion interaction, ~ + · ~ ~ ~ + ~ • 

Fig. 2. The domain in which the spectral functions of "the two-dimensional ~=:r· 

represent.ation are nonvanishing. 

Fig. ) • . Diagram for the reactions, ~ + N - ~ + N and ~ + ~ ..,..., N + N. 
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