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THEORY OF THE LOW-ENERGY PION-PION INTERACTION
Geoffrey F. Chew and Stanley Mandelstam

Lawrence Radiation Laboratory and Department of Physics
University of Califcrnia, Berkeley, Californis

April 15, 1959
ABSTRACT

The double-dispersion représentation is applied tc the problem of
pion-pion écéttering, and it is shown thﬁt, if inelastid affects ere imﬁcrtant
only at very high energies, a éet of integral eqnatiohs‘for the low=energy
amplitudes éan be derived. The solution of theSe éqpaticns gppears to depend
on oniy one arbitrary real paramgter, which may be defined as the pion-pion
coupling constant. The order of magnitude of the new constant is establishsa,

and a procedure for solving the integral equations by iteraticn is cutlined

* ' _ ‘ .
This work was supported in part by the U.S. Atomis Erergy Tommiss!l rn acd

in part by the U.S. Air Force under contract No. AF €38=327 mczitzrad by

the AFOSR of the Air Research and Developmeht Comman .
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I Imonuc'rzdﬁ

It has become evident in recent times that no Fhlth?r substarila
prcgress will be-made in the theory of strong—interacticn PhenomALe [N Ly g
rions and nucleons until something is understood about the picn-pion 1n%efa:ﬁ
Frevicus theoretical work on this problem has lackea & framéwaxﬁ‘in.wh}tn Pt
make plausible ap?roximationsi so the results of calculaticrns ﬂ,nt 155 SRR S
are not considered reliable. Recentl&,_heweVer, one of us has yproposed o
gen alizauion of dispersion relations that allows the simultansous =x< LS

' L . ; ‘ 1 .
of energy and momentum transfer varlables 1ntovthe complex plans. LE e

double-dispersion representation is’accepted as correct, 1t bectmes pua<iuit Ul
formilate an approx1ma tion. method for elemertarjnpart¢clﬂ gestiering ab v

enérgies that is extremely'plausible. We propose in this peper Lo atpiv tne

new method to the pion-pion interaction.

~
N
4

The underlyingvmotivation of the new apprcach is the proper:)
gnaiytic functlon that 1ts behavior 1n a limited nglOu of tnc combl L LBE
is dominated by‘nearby singularities. This circumstancs is the basig oFf &1

‘effective-range” theories for partial-weve scattering amplitudes. Erizsif. .

ange theory leads to approximste formulas for partial amplitudes, walii :xn =

o

‘emali range of energies, that include nearby poles end branch pein

3 e N
2 S -

distant singularities. mhese formnlas approx1mate the infius thﬂﬁﬁéﬁCixxdx

l_J

a

5. Mandelstam, Phys. Rev. (1959), to be publiﬂrd,éndlhiversity cf Cagirifosrra

FPhysics Department preprint, ‘Berkeley +1959). Also Phys. Rewv. 11z, Lhhe R
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singularities by arbitraryAconstants te be fitted by expériment° The content

of the double-dispersion representation is esséntially to'give the location and
character of all the siﬁgularities of.alscattering amplitudé‘as well as,fhe

behavior at infinit&, Armed with this information, one msy extend fhe ususl
effectivenrange" approach so a8 to reduce drastically the number of free parageters,

‘0Of course one cen never include all the distant singularities, but 1n the plﬂnmprﬁ

problem the.first difficult branch point occurs at such & high energy that we

| believe the omitted effects can to & good éppr@ximation be abscrbed intso a»single

real para.meter° |

In the conventional Lagrangian formulat¢on of finldrtheory en independer®
' constant appears in the pionmpion.inte?actlon, so one may be tempteu’%o regard
aﬁ effective~range approach with a éingle free p&rémeter as the aguivelent ct a
complete dynamical calculation. Wé'prefer.nct to delve.hefe.into this very
difficult question of principle but leave tc- the reader the thecreticel intesrgre-
tation of the constant A that is to be introducjed° Our definition of A will
be unambiguous ffom_the éxperimental point of view.

As thé ﬁrice for iﬁcluding more of the nearby sinéularities than is
usually attempted in effectiﬁearange theories, wé shall have to solve nonlinear
integral'eépations‘to find the pion-pion scattering émplitude5 Thése‘equations
will perhaps seem cbﬁplicated, but theyrgan be putbinto'g nonsingular form
amenable to numerical solution. The resuits of the numerical sclutions for

various values of A\ are given in a subsequent paper.
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II. SYMMETRIES AND KINEMATICS
Pion~-pion elastic scattering may be represented by the diagram of Fig. 1,

where the ingoing four-momenta and isotopice~spin indizes are
‘ 2

, B) and the outgoing are {-p Y) ani {(-p, , B), Tt is conrenient
p2. - L J v p)_;_} R

3¢
for discussicns of symmetry tc use a notation in which all momern®s are fcrmally
directed ipward; althcugh in the physicsl regimn 1
~timelike, with- p5 and ), negati%e timelike., The cconveniant invariart

dynamical variables for the dcuble-dispersion representation are the squarss o

the total center-of-msss energies for the three reactions:
I _ (PlJ G) + (PQJ B) "Dv ("’p%) Y) + {.“'p)_‘; 6)
“II. (pys @) +{py, 8} = {-p,y B) + (-pz ¥) | (07 1)
IIT. (pys @) + (py, ¥) = (=B, BY + {-py; B) .
Thus we define
£\ 2 2 ;2 2,
g = (\pl + p2/\ = (P5 + P)_;) = l“{q + H ,\‘ »
t = {p, + pr = (p, t P # - “2q(1 + 20e ©) {Tr.:
1 4 2 3 . 10 YRS _ b S
and
\2 2 2 ,
; = = = - 1 = cog )
t = {py + pg) (p, +3,) 2q7(1 - cos 6)

wvhere q 1s the magnitude of the three-momentum and © the angle cf scaniering

in the barycentric system. Note the important supplementsry ccnditacn

2

The isotopic indices o, B, v, end B can each assume the wviiue: 1, Z_ .- 3,

i

The value 3 corresponds to the neutral pion, while linesr combinatisns of

and 2 correspond in the usual way *c . svged pions.
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- ) ' : P
s + t + t = o (I1.3%}

which means that only two of the three variables s, t, t are independent even
when extensions are made into thé complex plane.

Since isotopic.spin i{s conserved and the three values I = 0, 1, 2 gan
occur, we expect to have three'independent invarisnt functicns of s, ©,

These functions are conveniently intrcduced by writing the complete amplitudes as

+ B(s, t, E)qzr 3 + vC(s, %, t)

T | CTT
Als, t, t)sdg §Y5 85 ézs_aar . (I5 40
Crossing symmetry leads at once to the relations
J ,Al o _
t - t, 8 - s |, (71.5%
B - cJ
A - B . _
s » t, t - t , LT 6
c - C
and
A - C _
s =+ t, I A T cIDLY
B - B

The first>of these relations simply expresses the Paﬁii principle, but ths
remaining two place a powéfful new cpndition on the combined ensergy and
angular dependence of the amplitude. Such a condition, sven thcugh it arig=:
from very simple considérations, is not known outside‘field theory.
Anleiemeﬂtary'calculation gives the connection beiweer A, B, C: B

the three amplitudes AI cofresponding to well-defined I spin-

AO = 3 + B + C,
st = B - ¢, PITLE
, A

A = B + C.
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At this point one may verify that (II.5), together with (II.2), means that only
even powers of cos 6 appear'in the amplitudes‘for I_=:O, 2. and only odd powers
of cos 8 for I = 1. The implications of (II°6) and (II.Y)Aarevmuch more
subtle, as we éhall see later.

- The unitarit& condition oﬁ the pionépion amﬁliﬁude is most usefully

expressed in terms of the partial-wave expansion of the amplitudes AI when

these are consideredvas-functions of q?’ and cos 6:. | =
AI(q?, cos 8) = s (22 + 1)A I(qE)P (cos ©) . {(17.9)
- £ £
£ even, I=0,2 ,
£ odd, I=1

Unitarity allows the partial amplitudes ,Azr(q?) to be written in terms cf phase

shifts Sél according oo

P
'On)

+
=

N

I, 2 _ L.

f}z (q. ) - q B € s1in sz 2 "
C . Cn (b 0
e Yakd

o, : 2 . v
where the phase ghifts are real for -q? < 3u , the th:eshold for inelastic

1.10)

£

. : N
scattering with the production of two additional pions. A%t higher energies
the phase shifts are complex, but the content of (II.10) can.generally be

expressed by the relation

The normalization of (IT.10) is arbitrary, but the dependence on ¢ follcws

from the lLorentz invariance of the S matrix.

Production of ahy odd number of pions is forbidden by the G parity of
Lee and Yang, Nuovo Cimento 3, T49 (1956),4 Single~pion production harmens

also to be forbidden by ordinary parity conservation.
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T q T I, 2, %
Im Aﬁ = > > Rz IAE '(q ) l )
q +u
or . .
. . G-J. .
Im (AzI) = - R I , : A Trr. 1L}

where RzI. is the ratio of the total to the elastic partisl-wave cross secilin,

ITI. THE DOUBLE-DISPERSION REPRESENTATION
- A prescription for extending the scattéring amplitude to complex Values
of s, t and t , subject to (II.3), has been given by one of us.® This rule

5

is embodied by the representation

_ A (Su, tg) B I ’ s°
Als, %, %) = L5 [/ s apr —2 v g flas aT e
om (st <= 8)(t' = t) - «x (s¥ « s)it" - 1
A (tr, T
+ 35 J] atr atr — &2 —
T (t' = t)(%" = t)
{(I¥i.L

whefe,the integratidns in the primed variables extend in eacth case over regicns
of the positiVe real axis extending to infinity, and the weight functions Aij

afe real. The functions B - and C have similar representations, but the

2 As éhown in reference 1, the correct s-n representation probably requirss
also single dispersion integrals and an over-all subtraction term. Sse. 1he
remarks below, following Eq. (III.5), in this connection, as well as those

folloving (IV.7).
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cfossing conditions tell us that only twe cut of the total of nine weight fun ticns
-are independent, with cne of these a symmet;ib function of it tw~ arguments. In

'particular, in order to satisfy (LI 5)g (11, 6\ and (II.7), we reguire

plx, ¥) = Byglx, ¥) = Algﬁv,'x} = Bygly, %) - Bos(x: ¥)
= ‘ = C (" \ |
012~X9 y) 025\:73 X!‘ s
{Iry.2»
ps(xy Y) = ps(y? X) = ‘AQ'—j»(Xy y) = ’BJ_E(X_’ Y) = 13{4-9 N

The .region of the (x, y) plane in which the weight functiorie fail +:
vanish is bounded by x = 4p2 and y = hug, but the region is not rectanguisr.

According tc the rules developed by dne of us on the basis ¢f periturbation thecryﬁ~L

the boundary is given by the curves,‘

X = ~3éﬁ—z§ , for x > ¥y,
¥y - b | ;
and A - _ 1117.3)
: 16u°x |
y = ———ii—7§ ., for y > %,
% - bp
as shown in Fig. 2. The large distance t¢ the boundary from the corner,
y = x = huz , 1s associated with the absenve of a ihrpemplun vertex and

considerably si mplifies our problem. -The absence of a three-particle vertex

6

also is responsxble for the absence of poles in (II.1).

We assume that therz exist vno strongly lntera cting partirl es with the same
gquantum numbers as & pair of pilons. If such a particle shouli be  round,
corresponding pcles must be added to (III°l3 whether or nct the new

particle is interpreted as a two-piomn Hznnd state.
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A point of meximum symmetry in the s, t, © variables is the nonphysical
point, s =t = t = hu%/3 , where A, B; and C are all real and equal to sach
other. It is appropriate then to introduce the plon=pion coupling constant A

through the def’inition7

L 2 4 2 L 2 s b2 ko2 b o2
AN = oA-— s —_— - "“Bf“‘" ) P —_— '\’
(3“) 5”* }) 3“) \3#-1.5 3Us 31-1
N R
3 3r 3R
(1174
It follows from (II.8) that at this symmetry pcint we have
0 1 C 2 .
A = =5\, A= 0, A = -2, VITDS)

Normally a coupling constant is defined thfough the residue of a pole, but here
there are no i)oles° The new constant A may‘Be explicitly introdnced intc
{171.1), if'desired, by making a subtraction at the symmetry'poinia Subtraciicn:
are probably necessary to give a meaning tovthe double-dispersion repressntation
(IIIal),jbut'we oniy néed this expression in order tc locate the sing.lariniess

" of the scattering amp;ifude. Thus we proceed at oncz to consider the sgaliyii. .y
' ' ‘ I{ 2

g ). which can be corre:viy

properties of the partial-wave amplitudes Ay (e

obtained by inspection of (III.1).

7

This XA .is, in conventional terminology, a renormslized unrstionalized

coupling constant. It corresponds to a term in the lagrangisn of the form

2
hnx(ﬁu ﬂu) .
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Iv. 'ANALYTICITY PROPERTIES OF $HE PARTTAL-WAVE AMPLITUDES
In this paper ﬁe shall concen£rate most éf our attention on the low
angular;momenium’states, In principle, the approximaﬁian scheme basea on the
doﬁBlé-diéperéion representation does not consist of taking mbre and more
angularamoﬁéhtum‘states into account-=~such a procedure wouid be inadequats Cwiag
to thé failure‘(to be discﬁssed.below)_of the Legendré_expansion o copverze un

the unphysical region. It will therefore ultimately be necessary to -aic.late

the spectral functions in (III.1), and sc to include effects of all ihe sus.

can be worked out and was outlined in reference 1. Even if the spectrsl functi.n:
were known, however, it would still be necessary tc trest separaﬁély the low
angular-momentum ':s.'ted:es.° The réason 1s‘that, when thé'sing]e-dispersion nte
are iﬁclﬁded in-(III,l), the absorptiﬁe parts of the low angular-momen®un sma2iag
will no longer.be determined by the spectral funétiéhsg as -has been explminéﬁ i
reference 1. We shall see below thgt, because of speclial pfdperﬂies Rt rep
system, the caiculation in the lowest approximation can be based entirely <n

the low angular~momentum states.

From (II.9) it follows that

-1

f o+

= % d cos © AI(q?,_cos 8) Pg(cos Q) , (rv.1,

1
so that, in view of (IIL.2), the projection of a given partial wave amcunts to
an integration at fixed s over either dt or dt . The %two variabie:,

t and t  each cover the range between U and ~tg . woving ur 2g0 Lo

directions. It is straightisrward, then, by inspection ¢ (L5, " f ef%nLlF5LJ

-8

| ’ : : IR e
tne nature and location of the singularities of A, {q" g
It is possible, of course, to carry L +iv integratinn over (.- =

(TTL.L1) explicitly.
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o Poweadt  Brgade pde 4o ’w‘(jv\ . S?""Ifif'-"‘v'”"l = ~t,

¥ €
et Al lowgf vebee 8 =0 af 0 gzl o So, S=p = fEo

U“RLnSTE&

-1

o It'is.obviOUS{'first of éll, that-all the singularities lie cn the resl
'axisa9 ﬁext it will be reéognized that there are three sets of branch peints.
,The first set is associated with the vanlshing cf denominatars containing s,
with the lowest branch point occurrlng at q = O, the threshzld of the physical
region. The next branch point Qf this set will be at q? = 3@2, the threshoid
‘fof produclﬁg £wq-additional pione, and so on. It is evidently appropriate to
choose a\cutﬁrunhing along fhe positive real axis from 0O %z © . We shail
refer o this as the "right-hand" or "physical cut.

| 'The other tﬁo séts of branch poin£$ are associated with ths vanishing
of dengﬁlnatoré containi@g vt or ? and are ccincident; lying on the negative

. o +*
"real axis. The first pair of branch points is at q? = »ug, the seconi at

.»qg = ;#pg,veté.,'thé spacing being the same ‘as on the positive axis. A saccnd
. cut*may then-be'chosen to fun'from -ug to jgoo ; this will be called the
"left hand" 6r unphy51cal“ cut.. | |

v Flnally it should be recognized that our partlalwwave ampli*ude 18 &
. real analytlc function of q? , whose boundary value as the phy51cal cut i3
apprpachedgfrom above is the complex physical amplitude, but which is r2s8l1 in
thé gaﬁ'between _;ué and O on the'real:éxis. The discontinuit& in géing
»across either-Cut'is.twiCe the imaginary part of the limit as the cut is ;}
i épproaChed, vThe7reqpired imagihary.part is given for_thé rightmhand.cut by

(11.11).

9

‘With unequal masses, as in pion-nucleon scattering, the singularities in
the partial-wave amplitudes do nof all lie on the real axis, but thsy can
be located without difficulty. See, for example, S. W. McDowell, Taiversity

of Birminghém Physics Department preprint (1959).



The calzulation cf the iméginary Lart ¢
invelved, as the unitarity cendition
We>shall‘ha§e to,usezcrossing symmssry tC obtaein
hand cut invterms_of'thaf én_the right=hand cut, and ﬁhé mosT mivenissl oway 7

handle this problem is in terms of the abscrpiive paris for fns thra=e reszel

-

The abstrptive parts A

i’

“lDu

zannot be U

I, II, and IIT, defined in referencze 1.

UCRL-E72%

the imaginsry part cn whe

snd C, may b2 id=ohificed with
£ .

imaginary perts c¢f the corresponding amplitudes in the physizal rsoton - f

réaction I, q?

III are equal to imaginary parts in the physi:al regitrs of ress
respectively. These will be regions of negs

from (III.2) the following cressing rules; which

(II,5)'to (12.7)

=
[}

4

=

—

Q
=

¢

ov)

IIT
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°
°

]

for

h
el
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The other relation needed is that connecting the imaginary part of the amplifudss
for q2 < 0 with the absorptive parts for reactions IT and III. By examination

of (III.1) we find

V- | 2 2 o
ITn A(q s cos8 e) = "AII(q ’ cos 9) = AIII(q s COS e) . (m".))

~ for q_2<0,

with similar relations for Im B and Im C.

If. we now‘ define .

2 t 2
q = Tt K
-2 T 2
q = T - ko,
S 2 N 2
cos @' = 1 + 5 = 1 + 2 -9-—-5’21— s
2q' q'
and
S 2 2
cos ©' = =1 = S = =l -2 S FH ,
, ) =7
2q’ q’
and recall from (IT.2).that
2 s 2
Q@ = T - B,
and .
, 2,2 =2 2
_‘cos9'=l+23-—§—}f—_— .,1,;29.__?_&_ ,
q

then the crossing rules (IV.2) allow us to write in place of (IV.3),
Im 2 _ =2 Y = ? o (IV.3
A(q~, cos 8) = -CI(q , cos 8') = BI(q , cos © ) (TV.37)

where q'2 ranges from -»qa- ug to f-p.z as cos & goes from -1 to +1,

" while 5’2_ covers the same range but in the opposité direction. It can be
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seen by inspection of (III°1) that BI and CT vanish in the range betwesn 0O

ahd’_-u2, and so we have achieved our goal‘of expressing the imsginary psrt =f

the aﬁplitude for negative q? in terms of guantities at positivs qgo

It remains now to project out the partial waves. From {IV.1) we have

for ..q2V< eug,

o 5 1+ ' 5 .
“ Im Ag(q Yy o= 5 [ d cose ImA(q", cos e)Pzisos e}

= 2'M2~ d—nz o 2 + 2 -2 . 2
= S ¢ (T, a1 -2l P (el e 2 Bl
I > 2 )
0 q q 4
= 2““? d'12. o) ' 2 % 2 ' 02.+ 2
+ f o B.(g'", 1+2 S *rE Yy {1+ 2 A__* ,
0 7 q' ! g

The formulas for Im Bg(qg) and Im Cz(q?)'are similer, and the corresp.nai-g

.»expressionsvfor-amplitudes with welil-defined isctopic spin are

| 2
S TR 2 2
m A, (%) = 742l p(1ep SrH o
£ : 2 1 )
0 q q-
R 2, .2
x T a, A(g5, 142 AE
1'=0,1,2 o g | TULe
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“where
/3 P | :_ 15/5
o 25 153 (1V.6)
o/5 -1 | 1/3

AUnder the integrals in (IV.5) appear fﬁe ébsorptive parts of scattering
amplitudes at values of _cos e léss than -1. From the boundary curve of Fig. 2
énd Forﬁtia (III.3) it is possible to conclude that the Legendre pélyncmial
gxpapéion of AII(Q'Q, cbs 8) 'cdnverges for the values of cos 8 required in

10

(IV.5) so long as q? > ‘-9u2 .. For the "effective-range" approach of this

paper;:such a limit might as well be -co. The surprisingly large magnitude of

it

this 1limit is associated, as mentioned above, with the absence of a three-pic

vertex. Crudeiy speakiné, absence of a single-pion exchange mechanism reduces

g

the fdnge of thefforce to ~ l/2p and greatly improves the convergence <f the
parfial wave“exp_a.nsiono Aléo it should be remembered, as emphasized by.Lehmann..,lO
ithat the expansion of the abéorptive part of the gﬁplitude always convsfgas beiier
than that of the real part.
. It is pogéible to view in a slightly différent way‘the approximsticn made
in keeping*dﬁly the firsf few terms of the polynomial‘expansion of the abscrptivs
parts on the right of (IV.5). As shown in»refefence 1, the absorptive parf ZEL

be written as aéﬁépéfsion integral

10 :
For a discussion of the convergence of the Legendre polynomial expansicn

of a'scéttering amplitude, see H. Lehmann, Nuovo Cimento 10, 579 (1958).
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A { q?(s), cos 6(s, t) } = ao(s) + al(s)+ + e
. ' Aoy(s, t')
+ (6= t)" %fdt' l? »
o ' (t' - %,O;‘{t“ Y
— A‘ r'\!sﬁ T{:’.{')
+(E-F)" = [ aw 2 :
0 n (T o T v E, LTy
(B0 = )% = 1)
VLT

The subtraction terms are here written explicitly, and the value of the expepgmi— v
is equal to the number of such terms. Perturbation thacry priearibes that nly
1one,subtraction is necessary. However, further subtractions may be male e ther
‘because one distrusts perturbation theory in this connection ¢r %o irnovesss 10
o R, . 11 . o :
accuracy of the calculation. In this paper we make *wo subbtrasciiinz, as sh o
below explicitly in Formmlas (IV.9) and {IV.10).
. Let us examine the form of the region in whichk cune of *he speirs

functions,. A -for instance, is ncmzerc. As explainzd in reference I, th.:

13 _
_spegtral;funétion consists of a number <f parts egrresponiimg T dilfers:s
Feynman diaéré.ms° The.two parts extending tc the icwest valuss of & &.. -~
are'bended‘by‘the cﬁfves AB énd4 Ch of Fig. 2. Now, the part'b:uxie: rpy  Ab
‘begins ét‘Qr above the value _sv='(&u)2, the threshold for the prolisticn of
additiﬁnal picns. In the following section we.shéll approximéte the sbsoretit -

part in the physical region by neglecting inelastic processas in the uniisring

condition. This is in line with the "effective-range” prinziple, which assum-:

11 . :
Subtractions of this kind in one- variable de nct corresgond To the

introduction of new parameters. See refersncs 1.
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that the behavior of the scattering amplitude at low momenta is dominated by ine

nearest singularities. . The part of A bounded by AB is therefore z<ro 1in

13
this,approximﬁtion. Similar considerations will apply tc the other spzziral
_functibnso If, furfhér, we require the crossing felations.(IIIOQ) te be
satisfied, we shall éiso have %o éssume that‘ﬁhe part of A13 bgunded by L is
Zerc in.the lowest approximation, sc that the spectral functions ars W bs
' negleéted entirely;‘ That is'to say, &all contributioﬁs te the spectral fuﬁ:%;;n$
begin at values of s and 't which are so faf from the region of lntersst that
 theyAshouid be ignored in a consistent "effectivemfange" approach.

From Eq. (IV.7), the absorptive part A_ can then be approximsved by axn

I

expression of fhe form
| AL { q?(s) cos.e(s t) } = 'a (s> + a{sit ...
I /s . ’ O - . 1

3

which is terminated at 'en early stage. The abscrphive parts sre thus raprzash-.

b

Sy taking a small number of angularnmomenﬁum states oﬁlyo This concivaion bears
oﬁt'the stétement made at the beginning of this section that, in ths 1cweat.
approximation, the calculation can‘be based entirely con the low sngular-momstr um
states.

The apﬁroaeh just butlined enabies us to:understand why the absanis 2! =
three=pion vertex is criticai in allowing one tovterminate the Legéndrs
expansion.of the absorptive part. Had there been such a vertex, thé :ﬁrve
Bounding the shaded area in Fig. 2 would have ccnsisted of a single part vhizh
approaéhed asymptofically the lines x = hue, j =_hu2, The neglect of the
spectral functions would then not have been justified. It would have been
necessary to,iﬁsert them in some approiim&tioﬁ into BEg. {IV.T), with the

resulting expressions then substituted 27> the integrals of Eq. (IV.5},
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[Actually'the fourth-order perturbetion approximation cculd be

spectral functions, as all other contributions begin at walues

. . ' 2 _ .- A .
t greater than (Lu)”.] Even in the actual problem wiih nc 3epion vertex. :f

we were to go beycnd the lowest approximstion it would

be neca

ggary to caicuiate

. ac ctions to an appropriate accuracy and then insert tham inv. Eg.
the spectral functions to an appr iate a-curaly and th h Eqg

(Tv:7). ' ;

‘It is. warth emphasizing that we only sssume th: ab

(o2
1

LI

tive parh o

scattering amplitude to be represented by its lowest sngulizr-mamentum waer s, No

such assumption regarding'the real part is made. At the

the real'part of the first angular-momentum stste cmittsd -

square turns out to be small at the energies under zor

end of ths zalieistl i

be computerr L e

iderating, w2 Wers pres odt L

Justified in leaving out the absorptive pert. Therz is thus 8 chexk on the

number of angular states which it is necessary tc include.

To illustrate the above considerations swd for future

derive formulas that clearly show the differen:e in o

partial waves. With no subtractions, one =culd writs

S

transfer dispersion relation on the basis of (ZI7.17.

' ]
2 i
5 L ® Apprlas 1+ =% «
{‘"‘:L' ,
A(q", cos 8) = = [ at’ +

[l
Al
fo¥)
O
N
&
+
B

s

ek

+

refererne, Wi oW

trsgtment of Low oan rign

A

he foll

4

o,

E
o4

cwing momsny.m-

, N
LG, e o~ s

P .

g

-~

U SO

o .
(A

: z -
g2 AT
et ¢ , =Ll o= 2 e e mamataoa
A “
s o s o e 4 s it sl e s
il
. T -~
~Nt < - 2
+ oo .

4 L PR N _



UCRL-8728

=19~

PR
[
<
3
on

with similar expressions for B and C. Now, the absorptive part B, is, o

‘general, complex, but the imaginary part of B, vanishes in the lower rapngs «f

I
“the integral (IV.8) because from théveqﬁivalent of Bg. {IV.7), for qf > 0

and__qu > 0, we have

AP QQ uf 2 2 2 2,
In BI(CI'_ s 1+ 2. ¥ ) = BIB(u(qﬂ M ‘)9 h(q +u )) b
v i . :

q
which is zero outéide the shaded regibn of Fig. 2. -Y’I’l'ruxs.y if ws make s subiraitinn
‘Jin the dispersion relation (IVOS) to suppress the high-energy pari, the ramainisr
-will'be almost enﬁirely real for small q? . Figure 2 shows, of course, thav
. as. q?  becomes large, the imaginary part cannct be suppressed. Thess |
- conéidefations are ideﬁticalvto those.followihg Eq,b(IV°7)e

Let us make the subtraction by removing the S-wave part of Ea. LIV EN



YRI5

w2Qw

T

i

: o ' z .
, i . 2 1 2 , 2 R T 1
A(q?, cos ©) Ao(q') += { dq”c_Bngc , 1+ : = ';;i—w = e e
. . N t,

q .z [. 2 - ‘_‘2 N
g ¢ -+ 8t -+ :)-“'; A -
R
1 2 37 . ]
+ - 2 ¢ T R R
' 2 2 2 i "2 ' L -
Q' o+ +‘%7(l + cre ©) * "- - -

gllowing 1% %0 o crmpiss, bRl

In the next sectioﬁ'we.shall'defermine Aofq?);
: the‘residual'ampl;tude {which starts here with +hz D wave 18 r=sl ~ =z g %
\approximatioﬁ, for :q? net too large. Furtherm:re, g2 icng 58 The imspimdsy
vjpart of .BI is tq be neglected, ve are lgnoring the Qingjlariii;s of Yhig

fuhctioﬁ iﬁhihe variable qg, and éccording 1o the argumenislfoll*wiig oo ¥,

. we may consistently approximate it by a low-crder pcliycomial. Sizse £ W

continued to the physical region of rearticn 1 ie the imsgizsry par:t 1
»ampli%ude, the appropriate prozedure is to reprszss=snt  F voTArme LT pr - L,

L

- those partial waves that have been subtra-tasd cut, i.g, th gz “Gat ar- ah[ou!zﬁ(
to be complex. .

" We now give the formulas for. I = 0, 2 +that wirresp.nt 1o Ej. (1V.5

N -

2

q'2 + u2 + 35(1 - cos 8) qg' + ug +»%¢{1 +ooze 00

g
&
. N
Py —ﬂ—c:\w— er'a! 1 + -—-——-_}*—_—.—r\ i .
= .z z
g + s BRI
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For I = 1, we subtract the P wave:
) 0 -4 z =
AY(q®, cos @) = 3cos 0 A (%) + 2 aq'® £ a, Al (g2, 1+ i E
’ 1 wo © T ATt e

i —d

i

[ 1 1
2 - 2

2 ‘ : .

qV2 + u2 + %? (1 = COs 8) - q' o+ ug + %? (1 + eosreg

2 2 2.
¢
__5.._993_9. I:(l+23.7__*é'_.ﬁ_)gn(1+ _._S__.,_a:j_g}

- 2 ,2 Z
q q 9 tu
ASTON
- ) ' It 2 N U . e
Under the integrals in these formulas AI {q*, cos 8') will be approximates by
A O’2(q_°2, cos 6') ~ ImA O’z(q'g) 5
I , 2 0 :
Q'” >0
RS
. _ : 2
A l(q“z, cos ©') 7~ 3 cos &' ImA 1(q°*) .
I _ 2 1
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V.  FORMUIATION OF INTEGRAL EQUATIOﬁS
.;A We n@&_havetthé task-of translating our knowledge about partial-wave
, gmplitudes into integral eqﬁations.: Aftef introducing'the variable V= q%/ug 5
'ithé préceding étatements about‘theblocation of'singularitieé are equivalent to

‘the dispersion relations,

o, 1 ) L, ® In 4,7 (") ' |
Ag (v) = = [ av —_—— + = [ av —— 3 (v.1)
| - v -V ™0 v ooV

provided the functions in question behave properly at infinity. The unitarity
' conditionv(II.lo) guarantees that the partial-wave amplitudes behave asymptciticalliy
" no worse than like constants. In order to estimate the error in our approximaticn,

we shall assume that on the right-hand (physical) cut,

o=

'Im‘Af( V) -
and - , S ' - {v.2}

Re A, (V) -0,

- in other words; thé limit of pure diffraction scattering,lg Such behavior, i.e.
the ratio of tﬁe_real to the imaginary'part going asymptotically to zero, can bs
consistent’ with Egq. (V.l) only if the limits on fhe left-hand cut are the samlf,—;,,l'5
A'partial-wave émplitude of order £ vanishes at the origin like ijﬂf

so we may consider new quantities

1?' Such behavior is expected because of the overwhelming competition from

inelastic channels that sets in at very high energies.
13-

Considerations of this kind were first emphasized by I. Pomeranchuk,
J. Exptl. Theoret. Phys. (USSR) 34, 725 (1958), in connection with forward-

digpersion relations.
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 'vﬁich aiso~satisfy relatiohs_of the type (V.1l) but whose imaginary parts, exept
for: £ ; O;vnow vanish at infinity“like ﬂ/“z. Ii is clear that the higher @hé
rangﬁlar mémentum, the smallér is the rél@tivé contfibution from high valusz of  jf
in the diépersionhintegrgls (when V. is small)f It is only for the € WETE “hat

distant contributions*are expected to be"important, 80 for the S wave ws mak= a2

subtraction at the symmetry point

% o= =23, o _ (Von
to obtainlt

| VeV -1 Im A T( V)

al(v) = ap ¢ —2 ] an 0 ,

| R (V' - V)V = V)
V -y o . Im A I( 3¢)

+ 90 [ av o -

T0 (V= YV e )

It is‘possiBle.fhat even an S-wave subtraction is unnecessary in é treatmsat
.which includes in a serious way very-high=energy inél&stic preesesses guch 898
huciébnméntinucleon'pair production. We do not believe, however, that sufh'a
treatment will be pfactical for a iong time to éome° Certainly ncthing sc

ambitious will be attempted here.
% »

The two subtraction constants a, and a, are not independent but ars

related to A through Eq. (III.5). The relation is given below it

' Formula (V.18).
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Thus, either by dividing by ,Vﬁ or by subtracting we hope to suppress
very high energies under the dispérsion integrals. Specifically, we hope that
taking finite limits for the integrals will not cause a large error, and so we

consider, instead of (V.l), expressions of the form

. P T | " ' T,
z ~1 Im A (V') I L Im A, (")
T -L_. J (Y= v) T 0 y W= Y)

or thé correspondiﬁg subtra;ted expressidns for S waves., These are supposed
adéquately to_répfééent the physical scaﬁtering amplitudes, sc long as we have
V<< .L; 'The exact choice_of L, of course, should no% be impertant, cr a
néw‘paramefer would have been introducéd into the problem. Using Eq. (V.2) on=

can easily estimate the order of magnitude of the neglected contributions to bs

N,

’ 1 0
' ~S — [RS————
& A, : ,
and o | (V.6
o 11 v ot
o8, Tz ()

-which are small provided L can be made sufficiently large.
In this first attempt at solving the pion-pion prcblem, we shall chucse

L 1in the range where inelastic scattering first beccmes important. The inelas®.:

?EfiﬁﬁQld is at V = 3, but experlence with pionwnucleon SLatterlng suggus ts

A o s 1 A o e

.that double—plon productlon won't rnpresent 8 substantlal fraction of the cruss

— e e B e o, —-— o e T R A T e
e e i, PR et b e

section until Vo~ lO,- Thus, with L in this range, we may use the

B

unitarity condition {(II.11) with R

T

7 set equal to unity:

prm—————

r -1
Im {Ai(ﬂ}] = -\j ‘/1 , for 0 < V< L. (V.7

Yo+ 1
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Furthefmore, as discussed in the preceding section; the imaginsry parts <o the
left-hand cut as given by Eq. (IV.5) may be evaluated by the use of Legerdre
polynomial expansions under the integrals. In particular we shall kesp <nly

£ =0 and £ = 1 terms in these integrals; the legitimecy of this approximaticn

. may be checked a posteriori by calculating the D waves that emerge from cur y: =n

of equations.

In terms of the variable V the formulas {IV.5) for the first few
partial waves become, in this approximation:
I 1 -V-1 - 1 0
ma, (V) = 5/ ) P (1+2 ) Sogg Tm Ayl
: V< =1 0 : '
2, . Ve 1 . Lo
=) moA Ty )
+ o, Im A, (V ) + 31+ 2 v 1 i Y ;
b

Now we put all the above infbrmation together in crder to obtain 8 proiisiure T
'calcﬁlating phase shifts in terms. of the empiriéal zonstant A
Consider first the two S-wave amplitudes:. We attempt to repres-nt =a°r

of these by a quotient

L o L
I N, (V)
'AO(\/‘) '——I————-
D, I(v)
where NOI(mf) and DOI(S)) are both real analytic functions, the numeratcr
contains the branch pqinﬁ.at Y = =1 with the left.-hand out, Bad the

denominator contains the branch point at V = 0 with the right-hand c.v, it
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is also necessary, of course, that ‘DOI(‘V) have no zeros. By assumption, then,

we have
,‘Iin"NOI(.)}) = DY) ma(V), ]
" ' for V< -1
ImDO:F(\)) -0 ,
Im'NoI(x/_)' = .Im DO'I(x/) = 0 ,‘ for -1< >/'< 0 (v.10}
Im»NOI( V) = 0,
for V> 0,
I I 1
ImD. (YY) = N (V) Im——o
o at (V)

and, according to our approximétion of neglecting high-energy contributicns, we
set'both imaginary parts equal to zero for Yy > L and Vo< L.
The subtracted dispersion relation (V.5) normalizes the S-wave amplitude:

at the pqint‘ vV = V.. We accomplish this normalization in our

to o

&I»

quotient by.setting NOI( VO)' = a.  and DOI( vg) = 1. Furthermore, with

I
a cutoff at I - the amplitudes AOI( V) approach real constants at infinity,J‘tj

so we may assign constant asymptotic behavior to both numerator and denominator.

‘Then, introducing,

sv) - mal-v) . (V> 0 (v.11)

5 Such behavior is inconsistent with Eq. (V.2) and incorrect physically, but

our modified funétions are only supposed to be accurate at low energies.
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: wé'are led first,to‘vrite
_ v-o) =1 ey Iy
V) = oap 0 fan =8 ) % )
S ~L V' -V - Vo)
' : (v.12)
V=¥, L £y ) D (-
= e b ) 2 9 ‘”-,o
. o 1 (V' + )Y+ \/O)
Second, remembering (V.7), we have
I VRV A NS NIy
D, ( V) = 1.4 O T a , 9 . (V,13)
S 0 R R IOV
On defining EOI_( V) = DOI(; ) anci substituting Eq. (V.12) in;to Eq. (V.13},

the following integral equatiOn_ié obtained:

‘ , | R ' ’ | . Vi V L K(\/’ \/9 £ I(\)v)E I(J,)
By (V) = 1+ (Ve VRO, -))ey + 0 [ aw )% U
» ' v | o 1 o+ Vb

. . | -. | : . ’ . N . . (Vcll"!

with - K o : .
‘ s W! = = - W - ha ( 215)
R R A S T TN TRy Vo)

- If the functibn fOI(J{)  were_knoVn,_Eq. (V.14) would be, a nonsingular Fredhoim
' eqﬁatidh,isolﬁblé by an& number of sﬁandard methods. It will be shown in the
followiﬁg paper that, even in the2limit L - o , thereqpation‘can be cast
iﬁtb a.nénéingular form. |
" e cannot lessen the reliability of'éur result at this stage by taking

L infinite rather than in the neighborhood of 10, since the associated change
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" in the amplitude will be smaller than the error (V.6) which we have agreed to
-tblera%eflé' It is poséible, on the other hand,ithatAthe result may be improved
by taking' L = o if elastic scattering is dominant up to highef energies than
‘might éonservatively be guessed. For these reasons, plus the esthetic consideration
that one.dqés not liké a calculation to depehd formally on an unnecessary parameter,
. we shgli‘hencefofth set L= o ,ve§en though.the error in our approach should be
estiﬁgéed’from Eg. (Y,6) with some finite L.

It is upfortunately true éhat foI( V') is not known in advaﬁce but is
given-oﬁly through Egs. (V.ll)vand (v.8) in terms of the amplitudes we are locking
for. Thus our sysfem‘of eqpatioﬁs‘is actually nonlinear. In a subsequent paper,

however, it'wiil'be shown that the problem can be scolved by en iteration procedurs

I

in which at every stage the linear equations (V.14) are solved with the £y

corresponding to the preVious stage. We must, of course, also formulate an
: equation for the P amplitude since this is required in Eq. (V.8).

Before considering the P—amplitude, however, a few general remarks abouh
I

‘the S-wave prbblem are in order. First, an inspéctioﬁ of (V.14) with fo set
eQual to zero and L = co * shows that EOI will develop a zero for V < VO
if ar is negative. According to Eq. (V.8), both foo and f02 will be

negative if, as is likely, the S contributions under the integrals are dominanto*7

16 This_céncluéion ié not Quiﬁe alr tight but seems very plausibie since thé
high energy elastic partial-wave cross séctions givén By our equations are
smaller fhan the total cross sections used in the estimates (V.6).

17 Recall tﬁat the imaginary part of a partial-wave amplitude iﬁ the physical

region is positive definite.
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The zero willlthefefore not be removed when f I is included, but if the zero

0
appears sufficiently far out along the ﬁegative real axigse-beyond the limit L at

~which our calculation of Im AO ceases to be accurate-~the associated pole in

o AO is of no phySiéal Significance and cannot be excluded. A crude estimate,

based on Eq. (V.1h4) qnd neglecting fOI » indicates that for -=0.7 < ar < Q,

the zero in EOI(‘J) will occur for V > 10.

| If ar
~ the region Vg < V < 0 (i.e. no bound state of the m-x system) puts an upper

is positive, the requirement that there be noc zero of EOI(\)) in

I increases, the zero will appear first at 1/ = 0, sc we
examine the condition that EOI(O) be positive. Here the neglect of f T

+1limit on aI. As a
¢

a good approximation, so one may deduce from Eq. (V.14) the requirement

g)aI > 0 ,

L
1 - K0, 3

or, since we have

x(0, %—) - 3\2 ﬂe  tan™t 2

we can write

. 7 -1 1
a. < — / tan = 1.8
I eV / \ 2
One ﬁay inQpire also- about the possibility of zeros in DOI())) that

are not on the real axis. Inspection of Eq. (V.13) shows that such zeros ars
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. : T, . 18 .
impossible so long as NO*\V } has nc zeros on the pcsitive real axis. Showulis

- we find g selution that dces have zercs in the physical region, this péint wonld
‘have to be investigated further.

Let us now determine the felatien between ar and A and the consesguent
restriQtions oh A that fcllow from the abcve 1imit§tions cn an .A:ccfding
to (III,55, we have

O i .
ATV 0)

= =5 A R
1! ‘)
AT( »6, 0) = 0
snd « , (V.16

A%V, o) = 2

: v : . o o . 1 « .
. The second of these relations is identically satisfied, since A contsing v
N . : b A

0dd- powers of c¢os ©. The first and the third, however, give us the rzquirsd

information abcut &, and a, which are defined by Eg. (V.5) to be

and , voi7
2. .
8.2 = AO A \/O ) °

Thus to a good epproximetion 8, = =5+ and a, = =2 A
. i 2

P

and higher partial-wsve amplitudes to bz small.

,}8 For L/ = )% + i v@ , the imaginary part of DOI()/) is given by

V.,

Co
c I Ty
1 0

ROV
L) 3

(V' =V + Y°

and therefore vanishes only for )%'= o if JOI( v'' has a single sign.
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It is poésible- to correct for the highe.r waves within the approximaticn
outlined at the end of Section IV. Formula (IV.9), when evaluated at cos 8 = O

and V = V), leads to the following result:

N ' m k = V
X 1 0 1
a, = =5N+=-[ @) £n(1 + - ) -
._O‘ Ty ' ;JO | NI vn +1+V0/2
2 _ | : Yo+ 1 ]
2 0 . _l_q 2 0 -1, a
X (3 In A, (V') + 3 Im A, (V') + 6(1+2 vi ) Im ATV :
| J
{V.13)
@ VA -
a, = =2A+= [ @) ¢ = 4n(1 + ) -
2. "o 0 VAN gL VR
' Voo+ 1 . |
j 2 0 1 2 - o) . TP
3Im A, (\)') + 5 ImAg (V') - 3(1+2 v } Im A OV

J

The integral éorrecﬁioﬁ giveﬁ by Eq. (V,iB) to thé simple relation betwesn
the aI _ énd A is very smalll9 and may be ignored except for highly refinsd
co'nslideratiéns. The most restrictive conditions on A are cbtalned by considering
the I = O state, for whiéh 8, = =5 A . The absence of zeros on the negativ:
real axis for- | V| < L, as discussed above, then leads to the limits |

~

1 _ 1 '
-3 (1,8) < AL - 5,(-0,7)

or ' . {V.19;
-0.% <

~

A < 0.1k,

19 The smallness is due to the expression in the first curly bracket in the
integrand of Eq. (V.18), which has & »eximum value of 0.15 at ' = 0 and

falls rapidly to zero as \/'b increases.
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A study of the formula for the cotangent of the S phase shifts reveals

another interesting circumstance. We have for V > 0O

I .
14 cot 5 . ﬁf—gg—gliz
V-l @ 10,y e
, 0 .. o WVlRh
R e S v i vA
Ve e s | |
ap + —— [ a
1 '+ N+ V)
' {(V.20)
| oty e i k(=¥ D)
where L( Q} o) = g K
- .)/fv
[o.0] A i
IV, V) = = [ T | (v.21)
T o0 (V" =)V + )

Again in the épproximation vhere f T is neglected we may study the possibii:uy

-0
bof a resonance developing, that is, cos ESO“L venishing. We have

X
Y I . 2 el L VT T
v+ 1 cot_&o I~ Y - T | 2 tan \!—;é: - v+ 1 ﬂn(\J\/ +\]’-yf+ i}

an expression that does not vanish . for Vv > 0 if it is positive at YV = 0.,
‘The condition of being positive at Y = 0 for ar positive is, however,
exactly the condition that there shall be no bound state. Thus it seems unlikely
* that a resonance will develop in,either's state for negative A unless the

effects of the fOI are very strong.
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For positive A and negative aI, formula (V 22) has s zerc but only fer
¥} > L if the condition (V.19) is obeyed. Thus we tnntatively eonclude that
there are no low=energy S»wave resonances in pion-pion scatt tering.

" Ve turn now to the P wave and again attempt to represent the amplitude by

a ratio
L, (Q) = u B . | (V.23

: with the same.division of singularities between the numerator and dsnominatcr se

fbr the S wave. By arguments analogous to those used above, we may darive the

éqpations

1
=1 £ (=y")D(V")
vy = 2 Vi 1 \
ERC S £L VI (VIR ’
1 .
= }.‘Ifd\/v fl (M)D(ﬂ/’) ,
“and- '
(V) = | L
20

The:absence‘of S~state resoﬁances in simple two-body systems is a wvery
general circumstance and may be traced to the lack of a sentrifugal barrier
that can "ccnfiﬁe" 8 positive energy state. The only way to gzt &an S-wsws=
resohance is to have the force sufficiently complicated gc that g strong

" inner attraction is surrounded by an outer repulsion. Pewave vsg oancs.,
in contrast, arise naturally whenever there is a suifisiently strong

- attraction.
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where Nl hss been assigned a l/V . behavior at infinity and D, a constant

1
behavior. Introducing El('V) = Dlﬂ-‘V), the fcllowing integral equation is

obtained by substituting Eq. (V.24) into Eq. {V.25):

s
K(Y, V)£, "V E V)

{(V.26)
Y

E.l(\/) - 1.+-ﬂl’— { avs

The P. phase shift in the physical region for V> 0 is given by the formula

3  ReD (V)
I A 63 B
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@
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If. fll were positive and sufficientlyvlarge it would be poesibls to show thst

a resonance develops in the ? wave. Examinaticu of BEg. (V.8) shows thst fll{)/}
may change sign as Y increases but is definitely positive for large values
of V. Its maghitude is uncertain. We cannét say with confidence, therefors.
that a P-wave resonance will develep until ﬁhe equations have been integrated, tuxw
the possibility appears strong.

The sum_of the higher partialfwave'amplitudes is to be calculated from
Egs. (IV.9) and (IV.10). If individﬁal phase shifts are desired, the approprisu-

projection from these formulas is straightforward. In a subsequent pap<r,

phase shifts are calculated in this manner.
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- VI. CONCLUSION

A set of coupled integral equations for the.Sm and P-wave pion-picn
amplitudes has been formulated and in a subsequent paper the numerizal solitizn
of these equaticns for various values of A will be described. The I sarnd
higher phase shifts can consistently be calculated by integrasticn cvar the
left»hand cut,only, wﬁere the discontinuity across this cut is expresssed in
terms of the S and P amplitudes., |
| The physicgl meaﬁing of ocur épproximation in eonventionai langusgs is
that we consider explicitly only the exchange bf pairs of virtual pions betwse.
"~ the two physieal pions being scattered, lumping U-picn and higher multipli-lity
' exéhanges into the constant A. Furthermcre Qe only attempt *c calculats
acéurateiy the exchanged pairs ofAlower energy=-=those which are msidly in S sad
P states. The higher energy pairs are included in. & aleng with &ll gcr%s o
. other high~-energy exchanges. In terms of the range of varicus canﬁributing

+ -

P

w

mechanisms tQ.the pion=picn ferce, what we are trying to~ do, of ccurse, i
caiculate the loﬁgestarange effects in defail and to represernt the shortersngs
effects by an empirical constant. If there is an intrinsically incalculabls
zero-range force, as suggested by lagrangian field thecry, this alsc is incisded
in A

Beside the solution discussed in the foregoing paragraphs, *thers ars
also anAinfinite,humbér of other possible sélutioﬁs, correspornding 4o the
Castillejo,vDalitz, and Dysonl(CDD) ambiguitycgl We can add tc the right-hsnd
side of Eq. {V.13) any number of terms of the form ar/CV - »}) , sinne the

only effect of such terms is to introduce zeros intc the scatbtering amp.iill-.

21

Castillejo, Dalitz, and Dyson, Phys. Rev. 101, 153 {(1956).
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While & rigorous treétment of the CDD ambiguity has not been given for relstivistic
field‘theory,_thé proplem has been solvéd for seﬁeral models,22 and there seems tc
Be little doubt as to the meaning qf the.extra solutions. They correspond tc
V theériés in which, before the coupling is turned on, there are one °r more
particles with thé same quantumihumbers as two pions. Once the coupling is
“turned on, these pérticles become unstable, and éppearvexperimentally as r2scnasces.
These hkinematical” resonances differ from "dynamiéal" resonénces, such as *tha*%
' which we have suggested might appear in the P étate of this problem, in that they
occur for arbitfarily smail values of the coupling éonstant. The absence cf
such unstable particles must be regarded as an additional postulate tc be ins=rtaa
intorthe theory.

A‘knowledge of tﬁé.pibn-pioh scattering amplitude will allow a systema*ic

calculation of many important properties of nucleons. The application teo the

S
I

nucleqn eléctromagnetic Structure has been emphasized already by Frazer ani i-o
This appiiéation, however, actually requires a prior knowledge of the ful.
amplitude for the graph shown in Fig. 5; which describes not only pior-asclec:
scattering but also nucleon-antinucleon annihilation to form two picns. One o7
us haé outlined.a pfocedure for attacking this problem which 1is identica: 1a
spirit to that described here fér the rra-yr-pm‘olermgl1L The procedure ?equires a
knowledgé of n-x scattering and may now be implemented. It‘is‘hoped that s
reasonably accuratg description of the low-energy n=-N phase shifts in terns

of a single additional parameter, the pion=-nucleon courling constant, will re..ul?

22

N. G. Van Kampen, Physica .23, 157 (1957).

\

23 W. R. Frazer and J. F, Fulco, The Effect of a Pion~Pion Scatterins Fe - -napn-u
on Nuclear Structure, UCRL-8688, March 1959, and Phys. Rev. fewters, ., .
(1959) .

24 S. Mandelstam, Phys. Rev. 112, 134k "7 3},
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With an understanding of the graph of Fig. 3 cne can pracéed T8
‘ systematic calculation not only’of nucleon electromagﬁetie structurs but &isc
‘of the twO»pioﬁ exchange terms in the nuclear férce, One can alsc, of ccurse,
meke & solid theory of photopion production. All these problems are undar
investigafibn.‘ |

There'ié no reason why the generslized effective-range arprosch based
6n the double dispersion representatioﬁ cannot be used in more compiiated
problems, sﬁch aé those involving strange particleé, Az the strueturs of ths
nearby siﬁgularities becomes-mcré complicated, of ccurse; it bescmes mors an:
more diffiéﬁlt to ineclude enéugh of them to censtitute a good approxima%ignb P

is doubtful that any other problem can be found that iz as favoreble in *tis

respect a5 mw-xt scattering.
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FIGURE LEGENDS

The pion-pion interaction, =« + =« = o o+ o,

The domain in which the spectral functions of the twe-dimensional mer

representation are nonvanishing.

.Disgram for the reactions, n + N <« =n + N and = + 7 <= N + N,



N . s
| | /
N 4
| N /.
: 4'/ N '
/ | A
/o A
7 T A
| p /a _ 5 \\
I ) ‘T} | pzl/B

MU - 17069

Fig. 1



S S _

]
|

—_——

g

4/42 -

MU-17070

2



2|

N

MU-17068





