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Meshfree Methods on Manifolds for Hydrodynamic Flows on Curved
Surfaces: A Generalized Moving Least-Squares (GMLS) Approach.

B. J. Gross 1, N. Trask 3, P. Kuberry 3, and P. J. Atzberger1,2 [1] Department of Mathematics,
University of California Santa Barbara (UCSB); atzberg@gmail.com; http://atzberger.org/ [2] Department of
Mechanical Engineering, University of California Santa Barbara (UCSB); [3] Sandia National Laboratories,
Albuquerque, NM ∗∗

W
e utilize generalized moving least squares (GMLS) to develop meshfree tech-
niques for discretizing hydrodynamic flow problems on manifolds. We use
exterior calculus to formulate incompressible hydrodynamic equations in the

Stokesian regime and handle the divergence-free constraints via a generalized vector
potential. This provides less coordinate-centric descriptions and enables the develop-
ment of efficient numerical methods and splitting schemes for the fourth-order govern-
ing equations in terms of a system of second-order elliptic operators. Using a Hodge
decomposition, we develop methods for manifolds having spherical topology. We show
the methods exhibit high-order convergence rates for solving hydrodynamic flows on
curved surfaces. The methods also provide general high-order approximations for the
metric, curvature, and other geometric quantities of the manifold and associated ex-
terior calculus operators. The approaches also can be utilized to develop high-order
solvers for other scalar-valued and vector-valued problems on manifolds.

1. Introduction

Many investigations in fluid mechanics pose challenges related to resolving hydrodynamic flows
on curved surfaces or in confined geometries. Examples include the transport of surfactants
within bubbles and thin films [47, 104, 54, 16, 65], protein drift-diffusion dynamics within lipid
bilayer membranes and cell mechanics [23, 39, 88, 71, 78, 83], and colloidal aggregation within
fluid interfaces [19, 60, 30]. Additional examples include stratified models in atmospheric and
ocean science which employ shallow water equations within topologically spherical shells [109] and
subsurface models governing the flow of groundwater through fractures in porous rock providing
intricate geometries formed from the crack surfaces [4, 20, 67, 36]. For these problems the fluid
mechanics can often be formulated in terms of effective fields on two dimensional surfaces. In some
cases these problems also can involve additional challenges of tracking an evolving geometry of the
surface from the motion of the interface or even of tracking topological changes [91, 38, 89]. We shall
consider here primarily the problem of resolving hydrodynamic flows for surfaces of static shape.
Already in this case, challenges arise in formulating the hydrodynamic equations and numerical
methods to take into account the contributions of the geometry.

There has been a lot of interest in developing numerical methods to solve Partial Differential
Equations (PDEs) on manifolds. Broadly categorized, these include Finite Element Methods (FEMs)
[27, 11, 28, 25], Level Set Methods (LSMs) and Phase Field Methods (PFMs) [79, 93, 26, 14, 94, 89,
14, 26], Discrete Exterior Calculus Methods (DECMs) [22, 49], Finite Element Exterior Calculus
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Methods (FEECMs) [41, 9, 24], and other approaches [113, 43, 75, 102, 64, 62]. Each of these
approaches have their strengths depending on the application addressed as well as having challenges.
FEMs offer specialized high-order methods with robust behaviors for broad problem classes with
often rigorous guarantees of accuracy and stability when mesh quality factors for the geometry
can be ensured [17]. LSMs/PFMs provide an implicit representation of the geometry often more
amenable to evolution and topological changes, but typically require sophisticated algorithms to
track the interface, mitigate numerical diffusion, and recover quantities associated with the geometry
and the scalar and vector fields on the surface [94, 89, 14, 26, 14, 111, 112]. The DECMs/FEECMs
provide discretizations with desirable qualities for mechanics allowing for derivation of methods
that have conservation of mass, momentum, and vorticity [73]. By their design for preserving
geometric structure, DECMs/FEECMs are currently applied primarily in fluid mechanics to inviscid
flows. While DECMs are elegant and very useful discretizations that have been applied successfully
to many applications [72, 22, 73, 21], for some scientific calculations they are low order, have
limited convergence analysis [29, 74], or are restricted to specialized surface operations presenting
some challenges for general physical modeling [55, 15]. In each of these methods, there is also a
reliance upon a sufficiently high quality rectified or curvi-linear mesh or grid to locally represent the
surface geometry or surface fields. To complement these methods, we consider alternatives based
on meshfree approaches for surface hydrodynamics and PDEs based on Generalized Moving Least
Squares (GMLS) approximations [110].

We develop GMLS approaches to approximate differential operators on manifolds where the
shape is represented as a point set that samples the geometry. We build on recent related work
by Liang et al. who discretized the surface Laplace-Beltrami operator on manifolds [63]. We
construct smooth continuous representations of the manifold by solving a collection of local least-
squares problems over an approximating function space at each of the sample points to obtain local
paramerizations. This approach captures the geometry in a manner similar to [98, 58, 50, 7]. We
approximate the surface scalar fields, vector fields, and differential operators by solving another
collection of related local least-squares problems that make use of the geometric reconstructions. In
conjunction, these provide general methods for obtaining high-order approximations of the manifold
shape, operators arising in differential geometry, and operators of differential equations. We use
exterior calculus for generalizing operations from vector calculus and techniques from mechanics to
the manifold setting. This provides a convenient way to formulate incompressible hydrodynamic
equations for flows on curved surfaces and related GMLS approximations. We also use these
approaches to show in general how equations and related solvers can be formulated in terms of
vector potentials facilitating development of other physical models with constraints and numerical
methods.

We also mention there are many existing meshfree approaches for solving PDEs. These may
be characterized broadly by the underlying discretizations. This includes Radial Basis Functions
(RBFs) [18], Smooth Particle Hydrodynamics (SPH) [42], and the approaches of Generalized Finite
Differences / Moving Least Squares / Reproducing Kernel Particle Method (GFD/MLS/RKPM)
[59]. While the majority of meshfree literature has concerned solution of PDEs in Rd, significant
recent work has focused on the manifold setting [62, 63, 84, 96, 75, 64, 5, 82, 40]. In the last decade,
substantial work has been done to use RBFs to solve shallow-water equations on the sphere [33].
The meshfree setting is attractive particularly for building semi-Lagrangian schemes of interest in
atmosphere science and other applications [96]. Significant work also has been done on RBF methods
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to obtain robust numerical methods for predictive simulations in [34, 32, 37] and for solving PDEs
on manifolds without the need for local surface reconstructions in [97, 95]. Recent work on RBF-FD
also includes methods for reaction-diffusion equations on surfaces and other PDEs [97, 61, 95] and
related approaches in [82, 81, 35].

SPH approaches have also been introduce that offer attractive structure-preserving properties,
particularly in conserving invariants of Lagrangian transport. However, in general it is not possible
for SPH to simultaneously obtain conservation principles and a consistent discretization [107]. The
MLS/RKPM/GFD approaches provide a compelling alternative by addressing accuracy issues
through the explicit construction of approximations with polynomial reproduction properties and
an accompanying rigorous approximation theory [110, 90]. However, it should be noted in many
cases stability theory currently is still lacking. There have been several examples of successful
discretizations for scalar surface PDEs in [100, 103].

In Generalized Moving Least Squares (GMLS) this approach is extended to enable the recovery
of arbitrary linear bounded target functionals from scattered data [110, 70]. For transport and flow
problems in Rd, compatible GMLS methods have been developed in [106] which parallel the stability
of compatible spatial discretization [8]. In the Euclidean setting, this has allowed for stable GMLS
discretizations of Darcy flow in Rd[108], Stokes flow in Rd [106], and fluid-structure interactions
occurring in suspension flow [52]. In the recent work [105], is has been shown that the scheme
developed by Liang et al. [63] to discretize the Laplace-Beltrami operator on manifolds admits an
interpretation as a GMLS approximation. This unification enables extensions of the compatible
staggered approach for Darcy in Rd [108] to the manifold setting [105].

We develop here related methods for discretizing the diverse collection of exterior calculus
operators to obtain high-order solutions to PDEs on surfaces. We focus particularly on the case
of developing methods for hydrodynamic flows on curved surfaces. We introduce background on
the GMLS approximation approach in Section 2. In Section 3, we discuss how to use GMLS to
reconstruct locally the manifold geometry from a point set representation, approximate quantities
from differential geometry, and approximate operators that generalize vector calculus to the manifold
setting. In Section 4, we show how exterior calculus approaches can be used to formulate equations
for hydrodynamic flow on surfaces in a few different ways which facilitates development of alternative
solvers. We discuss our numerical solvers for incompressible hydrodynamic flows in Section 5. Finally,
in Section 6, we conclude with results discussing our investigations of the accuracy of the GMLS
methods. In particular, we study convergence of the approximations for the operators on the
manifold and the precision of our solvers for hydrodynamic flows on curved surfaces. Many of our
methods can be adapted readily for approximating other scalar-valued and vector-valued PDEs on
manifolds.

2. Generalized Moving Least Squares (GMLS)

The method of Generalized Moving Least Squares (GMLS) is a non-parametric functional regression
technique for constructing approximations by solving a collection of local least-squares problems
based on scattered data samples of the action of a target operator [110, 70, 70, 69]. These local
problems are formulated by specifying a finite collection of functionals that probe features of the
action of the target operator.

More specifically, consider a Banach space V and function u ∈ V. We assume that u is
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characterized by a scattered collection of sampling functionals Λ(u) := {λj(u)}Nj=1 ⊂ V∗, where
V∗ is the dual of V. Here, we shall primarily use sampling functionals that are point evaluations
λi(u) = δxi [u] = u(xi). We denote the collection of sample points as Xh := {xj}Nj=1, where h

indicates the spatial resolution. We assume Xh ⊂ Ω ⊂ Rd for a compactly supported domain Ω. We
characterize the distribution of points by

hX,Ω = sup
x∈Ω

min
1≤j≤N

||x− xj ||2, qX =
1

2
min
i 6=j
||xi − xj ||2, qX ≤ hX,Ω ≤ cquqX. (1)

The || · ||2 is the Euclidean norm, hX,Ω is the fill distance, qX is the separation distance of Xh. The
point set is called quasi-uniform if there there exists cqu > 0 in the last expression of equation 1. We
shall assume Xh is quasi-uniform throughout, which is important in proving results about existence,
convergence, and accuracy of GMLS [110, 70].

Consider a target linear functional τx̂ at location x̂. For example, the point-evaluation of
a differential operator τx̂ = Dαu(x̂) with α the multi-index. To approximate such operators, we
first solve using the samples a collection of local weighted `2-optimization problems over a finite
dimensional subspace Vh ⊂ V. In particular, we solve for p∗ ∈ Vh with

p∗ = argmin
q∈Vh

N∑
j=1

(λj(u)− λj(q))2 ω(λj , τx̃), ω(λj , τx̃) = Φ(||xj − x̃||2). (2)

The ω is a compactly supported positive function correlating information at the sample location xj
and the target location x̃. Throughout, we take Φ to be radially symmetric with Φ(r) = (1− r/ε)p̄+,
where (z)+ = max{z, 0} and p̄ > 0 with the ε controlling the shape and support of ω.

For the basis Vh = span{φ1, ..., φdim(Vh)}, we denote by P(x) the vector whose ith-entry is
[P(x)]i = φi(x). The solution to equation 2 can be represented using a coefficient vector a(u) to
express the GMLS approximation of τx̃ as

p∗ = P (x)ᵀa(u), τhx̃ (u) = τx̃(P)ᵀa(u). (3)

Assuming that the collection of sampling functionals Λ is unisolvent for Vh, the GMLS estimate of
τx̃ in equation 3 can be expressed as

τhx̃ (φ) = τx̃(P)ᵀ (Λ(P)ᵀWΛ(P))−1 Λ(P)ᵀWΛ(u). (4)

The Λ is called unisolvent over Vh, if any element of Vh is uniquely determined by the collection of
sampling functionals λj , here by the points in the support of ω [110].

We summarize the GMLS approximation approach in Figure 1. We use the following notation
throughout

• τx̃(P) ∈ Rdim(Vh) denotes the vector with components consisting of the target functional
applied to each of the basis functions φk.

• W ∈ RN×N denotes the diagonal weight matrix with entries {ω(λj , τx̃)}Nj=1.

• Λ(P) ∈ RN×dim(Vh) denotes the rectangular matrix whose (j, k)-entry is λj(φk) corresponds
to the application of the jth sampling functional λj applied to the kth basis function φk.

Page 4 of 37



• Λ(u) ∈ RN denotes the vector consisting of entries {λj(u)}Nj=1 corresponding to the N sampling
functionals λj applied to the function u.

We remark that an advantage of GMLS over traditional least-squares approaches is that to
build up approximations it only requires information locally at nearby points. Algorithmically,
the main expense in GMLS is in inverting over the base points x̃ many separate small systems of
dense normal equations given by equation 4. The GMLS approach is very well-suited to hardware
acceleration and parallelization using packages such as the recent Compadre toolkit [56].

We shall consider here primarily the case when the target functional τ is selected to approximate
point evaluations of either the function as in regression or of differential operators acting on manifolds.
These approximations and estimates have relation to [77, 70, 110, 69]. For partial derivatives Dα in
Rd with multi-index α, Mirzaei [70] proved the estimate

‖Dαu−Dαp∗‖2 ≤ Chm+1−|α|. (5)

These reconstructions use mth−order polynomials. We extend such approximations to the manifold
setting to handle non-linear target functionals due to geometry-dependent terms. While Mirzaei’s
analysis was not developed for the non-linear setting, we find empirically convergence rates manifest
in our approximations similar to equation 5.

Remark. We consider throughout quasi-uniform point sets of two-dimensional compact manifolds
embedded in R3. It can be shown readily [110] that for the quasi-uniform Euclidean setting in R2

that there exists constants c1, c2 > 0 such that c1hX,Ω ≤ 1√
n
≤ c2hX,Ω, and thus the fill distance

scales as h ∼ 1/
√
n, where n is the number of points. We shall use the notation h̄−1 :=

√
n to

characterize the refinement level of the point set.
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3. Geometric Reconstructions from the Point Set of the Manifold

Figure 1: GMLS Approximation of Operators and Surface Reconstructions. A target functional τx̃[u]
is approximated using data within an ε-neighborhood around the base point x̃ (left-top). For values of u
the best fitting function p∗ ∈ Vh is identified using the sampling functionals {λj} for computing τhx̃ [u] =
τx̃[p∗] (left-bottom). For geometric reconstructions (center), a Principle Component Analysis (PCA) is
used to find local parameterization of the surface of form (ξ1, ξ2, s(ξ1, ξ2)) (top-right). The s(ξ1, ξ2) and its
derivatives are approximated by GMLS to obtain general geometric quantities of the manifold and approximate
operators (bottom-right).

To formulate GMLS problems on manifolds, we must develop estimates of the metric tensor and
other geometric quantities associated with the shape of the manifold. The metric tensor and
geometric quantities are first extracted from the point cloud sampling of the manifold and then
used to approximate the differential operators on the surface.

Consider a smooth manifold M ⊂ Rd and assume a quasi-uniform point cloud sampling
Xh ⊂ M. At each point xi ∈ Xh, we shall construct an approximation to the tangent space Txi

[110, 63]. At location xi, we use Principal Component Analysis (PCA) based on nearby neighbor
points xj such that j ∈ Ni. The Ni = Nε(xi) = {xk | ‖xk − xi‖2 < ε} = Xh

⋂
Bε(xi) is the ε−ball

of samples around xi. To center the sample points for use in PCA, we define the centering point

x̄i =
1

|Ni|
∑
j∈Ni

xj . (6)

While in general x̄i 6= xi, in practice these are typically close. We also refer to Ni = Nε(xi) as the
patch of points at xi. For PCA we use for the empirical estimate of the covariance at xi

C = Cov({xj}) =
1

|Ni|
∑
j∈Ni

(xj − x̄i) (xj − x̄i)
ᵀ . (7)

This provides a good estimate to the local geometry when hX and ε are sufficiently small that the
set of points Nε(xi) is nearly co-planar. We estimate the tangent space TMxi of the manifold using
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the (d− 1)-largest eigenvectors of C. These provide when d = 3 a basis for the tangent plane that
we denote by ψ1

i and ψ2
i and normalize to have unit magnitude. These also give the unit normal as

ηi = ψ1
i ×ψ2

i . We show the steps in the geometric reconstruction approach in Figure 1.

Remark. It is important to note that the PCA-approach can arbitrarily assign an orientation in
the reconstruction of the tangent space. This can have the undesirable property that neighboring
patches have opposite orientations resulting in sign changes for some surface operators, such as
the curl. In the general case, globally orienting the surface is a challenging NP-hard problem, as
discussed in Wendland [110]. Many specialized algorithms have been proposed for this purpose which
are efficient in practice, including front-marching and voronoi-based methods [6, 110]. We shall
assume throughout that at each point xi there is a reference normal ñi either determined in advance
algorithmically or specified by the user. We take in our PCA procedures that the normals ηi are
oriented with ñTi ηi > 0.

We use this approach to define a local coordinate chart for the manifold in the vicinity of
the base point x̃ = xi. For this purpose, we take as the origin the base point xi and use the
tangent plane bases ψ1

i ,ψ
2
i and normal ηi obtained from the PCA procedure. We then define a

local coordinate chart using the embedding map σ

σ(ξ1, ξ2; q) = xi + ξ1ψ1
i + ξ2ψ2

i + s(ξ1, ξ2)ηi. (8)

This provides a family of parameterizations in terms of local coordinates (ξ1, ξ2), defined by choice of
a smooth function s. Without loss of generality we could always define the ambient space coordinates
so that locally at a given base point x̃ we have σ = (ξ1, ξ2, s(ξ1, ξ2)). This can be interpreted as
describing the surface as the graph of a function over the (ξ1, ξ2)-plane where s is the height above
the plane, see Figure 1. This parameterization is known as the Monge-Gauge representation of
the manifold surface [76, 85], and we will use GMLS to approximate derivatives of σ through the
following choices:

• We take for our sampling functionals Λ = {λj}Nj=1 point evaluations λj = δxi at all points xj
in the ε-ball neighborhood Ni of xi.

• We use the target functional τ [α] as the point evaluation of the derivative Dασ at xi, where
Dα denotes the partial derivative of σ in {ξc} described by the multi-index α [31].

• We take for the reconstruction space the collection of mth
1 -order polynomials.

• We use for our weighting function the kernel in equation 2 with support matching the parameter
ε used for selecting neighbors in our reconstruction and for defining our ε-graph on the point
set.

We use these point estimates of the derivative of σ to evaluate non-linear functionals of σ
characterizing the geometry of the manifold. Consider the metric tensor

gab = 〈σξa ,σξb〉g. (9)

The 〈a,b〉g corresponds to the usual Euclidean inner-product a · b when the vectors σξc = ∂σ/∂ξc

are expressed in the basis of the ambient embedding space. Other geometric quantities can be
similarly calculated from this representation once estimates of Dασ are obtained.
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3.0.1. GMLS Approximation of Geometric Quantities

We now utilize these approaches to estimate Gaussian curvature, as a representative geometric
quantity of interest. In Appendix A we provide detailed expressions for additional geometric
quantities of interest which we will later need for approximating hydrodynamic flows on surfaces.
To demonstrate in practice the convergence behavior of our techniques as the fill-distance is refined,
we consider the four example manifolds shown in Figure 2.

Figure 2: Point Set Representations of Manifolds (bottom). Manifold A is an ellipsoid defined by the equation
x2/a2 + y2/b2 + z2 = s20 with a = 1.2, b = 1.2, s20 = 1. Manifold B is a radial manifold defined in spherical
coordinates by (θ, φ, r(θ, φ) where r(θ, φ) = 1+r0 sin(3φ) cos(θ) with r0 = 0.1. Manifold C is a radial manifold
defined in spherical coordinates by (θ, φ, r(θ, φ) where r(θ, φ) = 1 + r0 sin(7φ) cos(θ) with r0 = 0.1. Manifold

D is a torus defined by the equation (s21 −
√
x2 + y2)2 + z2 = s22 with s21 = 0.7, s22 = 0.3. Estimated Gaussian

curvature of the manifold (bottom). Each of the manifolds shown are represented by quasi-uniform point sets
with approximately n = 104 samples. For quasi-uniform sampling we expect the fill-distance h to scale as
h ∼ 1/

√
n. When reporting our results, we use throughout the notation h̄−1 =

√
n. We discuss further details

of the point sampling of the manifolds in Appendix D.

We utilize the Weingarten map W = I−1II to estimate the Gaussian curvature via the formula
K = det(W) when using the GMLS estimate of σξc to calculate I and II, see Appendix A. We
investigate the convergence of the estimated curvature for the manifolds A-D as the point sampling
resolution increases in Table 1. We show the estimated curvature on the surface for each of the
manifolds in Figure 2. We find our GMLS methods with m = 6 yields approximations having
5th-order accuracy. While there is currently no convergence theory for our non-linear estimation
procedure, the results for k = 2 for Gaussian Curvature are consistent with the suggestive predictions
m+ 1− k of equation 5.
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Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 2.1351e-04 - 1.1575e-01 - 1.2198e-01 - .08 5.5871e-02 -
0.05 3.0078e-06 6.07 1.6169e-02 2.84 4.7733e-03 4.67 .04 6.5739e-04 6.51
0.025 5.3927e-08 5.77 8.3821e-04 4.26 1.6250e-04 4.88 .02 1.3418e-05 5.67
0.0125 1.1994e-09 5.48 2.3571e-05 5.14 4.5204e-06 5.17 .01 3.1631e-07 5.37

Table 1: Convergence of GMLS Approximation of the Gaussian Curvature K. The GMLS reconstruction of
the manifold is used with polynomial order m1 = 6. Our GMLS methods involve operations with k1 = 2nd-order
differentiation. We find ∼ 5th-order asymptotic convergence rate. The target sampling distance h is discussed
in Appendix D. The estimated Gaussian curvature for each manifold is shown in Figure 2.

3.1. Generalizing the Differential Operators of Vector Calculus to Manifolds using
Exterior Calculus

The differential operators of vector calculus utilized in continuum mechanics formulations such as
the grad, div, curl can be extended to corresponding operators on general manifolds. Differential
operators on manifolds are notorious for having complicated notations when expressed in local
coordinates [1]. We aim for a less coordinate-centric description of the methods and operators by
utilizing approaches from exterior calculus. For this purpose, we utilize the operators of exterior
calculus given by the Hodge star ?, exterior derivative d, and vector to co-vector isomorphisms [, ]
(definitions below). Operators extend to the context of general manifolds acting on scalar fields f
and vector fields F as

gradM(f) = [df ]], divM(F) = −(− ? d ? F[) = −δF[,

curlM(F) = − ? d
[
F[
]
, curlM(f) = [− ? df ]] .

(10)

We define δ = (− ? d?) which is referred to as the co-differential. To define d the exterior derivative
and ? the Hodge star, we consider the tangent bundle TM of the manifold and its dual co-tangent
bundle TM∗. The tangent bundle defines the spaces for scalar fields, vector fields, and more
generally rank m tensor fields over the manifold. The co-tangent bundle is the space of duals to
these fields. The co-tangent bundle can be viewed as the space of differential forms of order 0, 1,
and m.

We denote vector fields and contravariant tensors using the notation a = ai1...ik∂i1 · · · ∂ik . We
use ∂ik to denote the basis vector ∂ik = ∂σ/∂xik and tensor product these together to represent
vectors and tensors for the choice of coordinates x = (x1, x2, . . . , xd). We denote a differential
k-form as α = (1/k!)αi1,...,ikdxi1 ∧ · · ·dxik . The ∧ denotes the wedge-product of a tensor [1]. We
use the convention here with 1/k! to allow summations over all permutations of the index values for
i1, . . . , ik. A more detailed discussion of tensor calculus on manifolds can be found in [1].

We formulate the generalized operators in terms of the co-vectors (differential forms) f [ and
F[. We use that in the case of a scalar field we have quantitatively at each point f = f [ [1]. The
isomorphisms [, ] mapping between the vector and co-vector spaces is given by

a[ = (1/k!)gi1,`1 · · · gik,`ka
`1...`kdxi1 ∧ · · ·dxik (11)

α] = (1/k!)gi1,`1 · · · gik,`kα`1...`k∂xi1 · · · ∂xik . (12)
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The exterior derivative d of a differential k-form α is defined in terms of the coordinates x as

dα =
1

k!

∂

∂xj
αi1,...,ikdxj ∧ dxi1 ∧ · · ·dxik . (13)

The Hodge star ? is defined in terms of the coordinates x as

?α =

√
|g|

(n− k)!k!
αi1,...,ikεi1,...,ik,j1,...,jn−k

dxj1 ∧ · · · ∧ dxjn−k . (14)

Note the indices have been raised here for the k-form with αi1,...,ik = gi1`1 · · · gik`1α`1,...,`k . The
ε`1,...,`n denotes the Levi-Civita tensor which gives the sign of the permutation of the indices `1, . . . , `n
and is otherwise zero [1].

This exterior calculus formulation allows us to provide a less coordinate centric description
of the physics revealing in many cases more clearly the relationship of the continuum mechanics
and role played by the geometry. This also has the advantage in analytic calculations of making
expressions more concise and allowing more readily for generalization of identities and techniques
employed from vector calculation [44, 99]. As for practical numerical calculations, we utilize this
approach along with symbolic computation to generate offline the expressions needed for any choice
of local coordinates on the manifold using equations 10– 14. This permits the efficient evaluation of
these equations for any given choice of local coordinate using precompiled libraries for expressions.
We give more details and show how this approach can be applied to the Laplace-Beltrami and
Biharmonic operators in Appendix A.

3.1.1. GMLS Approximation of Differential Operators on Manifolds

Using these approaches we can perform GMLS estimates of the differential operators on the manifold.
We consider the approximation of target functionals which may depend nonlinearly on estimates of
the geometry. For example, the Laplace-Beltrami operator depends on the inverse metric tensor
and can be expressed in local coordinates as

∆LBφ =
1√
|g|
∂i

(√
|g|gij∂jφ

)
. (15)

We assume an estimate of g to be calculated at each point xi following the approaches outlined in
the previous sections. We then approximate the action of the operator on scalar and vector fields
through the following GMLS approach. First, we find locally the best approximating reconstruction
P of the scalar or vector field components on the manifold. In the second, we apply the target
functional for the differential operator to P using geometric quantities from our initial GMLS
reconstruction of the manifold. This can be expressed using the optimal coefficient vector ax̃ at x̃ as

τhx̃ (φ) = τx̃(P)ᵀax̃(u), ax̃(u) = (Λ(P)ᵀWΛ(P))−1 Λ(P)ᵀWΛ(u). (16)

In the general setting, the sampling functionals λj may depend non-linearly on the geometric terms.
In the current case using local point evaluations, the functionals λj are linear.

We remark that the two components ax̃(u) and τx̃(P) encode different types of information
about the approximation. The τx̃(P) encodes the action of the target functional on the basis for
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the space Vh. The ax̃(u) encodes the reconstruction of the function u by the best approximating
function p∗ in Vh according to the best match between the sampling functionals λj acting on u
and p∗, see equation 2. As a consequence, for each of the target operators τ , the ax̃(u) will not
change since this term only depends on the function u. As a result, we need only compute fresh for
each operator the τx̃(P) which represents how the differential operator on the manifold acts on the
function space Vh.

As a summary, our GMLS approximation on the manifold involves the following steps

• Take Λ = {λj}Nj=1 where λj = δxj are point evaluations with λjφ = φ(xj) for the xj in the
neighborhood j ∈ Ni around the point xi.

• For the target functionals τ , treat the surface differential operators by utilizing for evaluation
the parameterization and approximate metric tensor outlined in Section 3.0.1.

• For the reconstruction space Vh, use the collection of mth
2 -order polynomials p(x, y) over R2

where m2 is an integer parameter for the maximum degree.

• For the weight function ω(λj , τxi) = w(‖xj − xi‖), select a positive kernel w(r) with support
contained within an ε-ball of xi. We also use this to construct an ε-graph on the point set.

The reconstruction space Vh consists of polynomials of order m2 which need not be chosen to be the
same order m1 as in the geometric reconstructions in Section 3, so in general m2 6= m1. However,
in practice the operators on the manifold often involve differentiating geometric quantities which
typically need m1 ≥ m2 to achieve convergence.

As an illustration of our GMLS approach, consider the Laplace-Beltrami operator. The other
differential operators for the manifold follow similarly, but with more complicated expressions which
we evaluate symbolically, see Appendix A. For the Laplace-Beltrami operator we have

∆LBφ =
1√
|g|
∂i

(√
|g|gij∂jφ

)
, τx̃(P; g) =

1√
|g|
∂i

(√
|g|gij∂jP

)
. (17)

On the left the Laplace-Beltrami operator is expressed in coordinates and on the right we have the
GMLS approximation. The P represents the vector of basis functions of Vh and the differentials act
component-wise.

Remark. It is necessary to choose a reconstruction space Vh of sufficient richness that a differential
operator on the manifold Lg can be adequately represented. For instance, a differential operator of
order k should have a polynomial space of order m2 satisfying m2 ≥ k, as suggested by the bounds
in equation 5. From these bounds we also do expect that higher-order convergence rates are possible
when using larger degrees. This can yield computational efficiencies in achieving a desired level of
accuracy, especially when treating smooth fields and low-order differential operators. However, it is
important to note that larger choices of m2 will necessitate that the neighborhoods defined by the
weight function contain more points to ensure unisolvency and ultimately solvability of the GMLS
problem.

We give additional details on our GMLS approach for specific operators in Appendix A.
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4. Hydrodynamic Flows on Curved Surfaces

We formulate continuum mechanics equations for hydrodynamic flows on curved surfaces using
approaches from the exterior calculus of differential geometry [66, 1]. This provides an abstraction
that is helpful in generalizing many of the techniques of fluid mechanics to the manifold setting while
avoiding many of the tedious coordinate-based calculations of tensor calculus. The exterior calculus
formulation also provides a coordinate-invariant set of equations helpful in providing insights into the
roles played by the geometry in the hydrodynamics. We provide a brief derivation of hydrodynamic
equations here based on our prior work [99, 44, 45]. For additional discussion of the derivations for
hydrodynamics on manifolds and related differential geometry, see [99, 45, 101, 66, 1].

4.1. Hydrodynamics in the Stokesian Regime

We consider the hydrodynamics in the quasi-steady-state Stokes regime where the flow is determined
by a balance between the fluid shear stresses and the body force. The hydrodynamics in this regime
can be expressed in covariant form as{

µm
(
−δdv[ + 2Kv[

)
− γv[ − dp = −b[

−δv[ = 0.
(18)

The v[ is the surface fluid velocity, p the surface presssure enforcing incompressibility, and b[ the
surface force density driving the flow. The µm

(
−δdv[ + 2Kv[

)
corresponds to the divergence of

the internal shear stress of the surface fluid, and −δv[ = 0 expresses the incompressibility constraint.
The µm gives the surface fluid viscosity. It is worth pointing out that the surface shear stress has a
dependence not only on the usual gradients in the velocity field but also the Gaussian Curvature
K of the surface. This can lead to interesting flow phenomena on curved surfaces and significant
differences with respect to flat surfaces, as discussed in [99, 45, 10, 46].

We remark that the −γv[ serves as our model for the coupling between the surface flow and
bulk three-dimensional surrounding fluid. More sophisticated models also can be formulated, but
for general geometries this requires development of a separate solver for the bulk three-dimensional
surrounding fluid which we shall consider in future work. It is important in physical models to
have some form of dissipative traction stress with the surrounding bulk fluid since this provides a
crucial dissipative mechanism that suppresses the otherwise well-known Stokes paradox that arises
in purely two-dimensional fluid equations [2, 12, 45, 92, 87]. Additional discussions of equation 18
and its derivation can be found in [45, 99].

4.2. Vector Potential Formulation for Incompressible Flows and Hodge
Decomposition

We generalize approaches from fluid mechanics to the context of manifolds to handle the incom-
pressibility constraint in equation 18. We reformulate equation 18 using the Hodge decomposition
and a vector potential φ that ensures the generated velocity fields are incompressible. By utilizing
this gauge to describe the physics we can avoid the challenges in numerical methods associated with
having to enforce explicitly the incompressibility constraint. We use a surface Hodge decomposition
of the fluid velocity field that can be expressed using the exterior calculus as

v[ = dψ + δφ+ h. (19)
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The ψ is a 0-form, φ is a 2-form, and h is a harmonic 1-form on the surface with respect to the
Hodge Laplacian ∆Hh = (δd + dδ) h = 0. The first term dψ captures the curl-free component
of the velocity field, the second term δφ the divergence-free component of the velocity field, and
the third term an additional harmonic part that arises from the topology of the manifold. In the
Euclidean setting only the first two terms typically play a role since the harmonic term in this case
is often a trivial constant and with decay conditions at infinity the constant is zero.

In the non-Euclidean setting there can be many non-trivial harmonic 1-forms. The number is
determined by the dimensionality of the null-space of the Hodge Laplacian which depends on the
topology of the manifold [53]. As a consequence, we have for different topologies that the richness
of the harmonic differential forms h appearing in equation 19 will vary. Fortunately, in the case of
spherical topology the surface admits only the trivial harmonic 1-forms h = 0 making this manifold
relatively easy to deal with in our physical descriptions. As we shall discuss, for more general
topologies our incompressibility gauge descriptions will require solving additional coupled equations
in order to resolve the non-trivial harmonic contributions. We shall focus here primarily on the case
of manifolds having spherical topology and pursue in future work development of these additional
numerical solvers needed for the harmonic component.

We consider incompressible velocity fields v[ on manifolds having spherical topology. When
applying the co-differential δ to equation 19 and utilizing the incompressibility constraint in
equation 18, we have δv[ = δdψ = ∆Hψ = 0. For spherical topology this requires ψ = C and
dψ = 0. As a consequence, we can express the incompressible hydrodynamic velocity fields as

v[ = δφ. (20)

From the co-differential operator δ defined in Section 3.1, we see that φ is a 2-form on the two-
dimensional surface. In practice, we find it more convenient to express v[ in terms of an operation
on a 0-form (scalar field) which can be done using the Hodge star to obtain Φ = ?φ. Using the
identity of the Hodge star that ?? = (?)2 = −1 for 2-manifolds. This gives φ = − ? Φ. This allows
us to express incompressible hydrodynamic flow fields as

v[ = − ? dΦ. (21)

We refer to Φ as the vector potential since it serves as a potential to generate vector fields v. This
can be interpreted as a generalized curl operation as in equation 10 applied to a scalar field which
intrinsically generates divergence-free vector fields v . This approach generalizes the vorticity-
stream formulation of fluid mechanics [3] to the manifold setting. We use this to reformulate the
hydrodynamic equations in terms of unconstrained equations in terms of Φ.

4.2.1. Biharmonic Formulation of the Hydrodynamics

We reformulate the hydrodynamics equations 18 in terms of an unconstrained equation for the vector
potential Φ. We substitute equation 21 into equation 18 and apply the generalized curl operator
curlM = − ? d to both sides. This gives the biharmonic hydrodynamic equations on the surface

−µm∆2
HΦ− γ∆HΦ− 2µm(− ? d(K(− ? d)))Φ = − ? db[. (22)

The µm is the surface shear viscosity, γ the drag with the surrounding bulk fluid, and K the Gaussian
curvature of the manifolds. The b[ is the covariant form for the body force acting on the fluid. We
see the pressure term no longer plays a role relative to equation 18.
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The Hodge Laplacian now acts on 0-forms as ∆HΦ = δdΦ and is related the surface Laplace-
Beltrami operator by ∆HΦ = −∆LBΦ. This provides for numerical methods a particularly convenient
form for the fluid equations since it only involves solving for a scalar field Φ on the surface. However,
this does have the drawback that for handling the incompressibility constraint this way we now
need to solve a biharmonic equation on the surface. We shall refer in our numerical methods to this
approach to the hydrodynamics as the biharmonic formulation.

We remark that our approach can be related to classical methods in fluid mechanics by viewing
our operator − ? d as a type of curl operator that is now generalized to the manifold setting. The Φ
serves the role of a vector potential for the flow [2, 12, 57]. The velocity field of the hydrodynamic
flows v is recovered from the vector potential Φ as v[ = − ? dΦ. We obtain the velocity field
v = v] = (− ? dΦ)] using equation 50 and the isomorphisms ] between co-vectors and vectors
discussed in Section 3.1. Additional discussion of this formulation of the hydrodynamics can be
found in [99, 45].

4.2.2. Split Formulation of the Hydrodynamics

While the equation 22 is expressed in terms of biharmonic operators, for numerical purposes we can
reformulate the problem by splitting it into two sub-problems each of which only involve the Hodge
Laplacian. This is helpful since for our numerical methods this would require us to only need to
resolve second order operators with our GMLS approximations. This has the practical benefit of
greatly reducing the size of the GMLS stencil sizes (ε-neighborhoods) required for unisolvency for
the operator as discussed in Section 2.

We reformulate the hydrodynamic equations by defining Ψ = ∆HΦ, which allows us to split
the action of the fourth-order biharmonic operator into two equations involving only second- order
Hodge Laplacian operators as

−µm∆HΨ− γΨ− 2µm(− ? d(K(− ? d)))Φ = − ? db[. (23)

∆HΦ−Ψ = 0. (24)

As we shall discuss, the lower order of the differentiation has a number of benefits even though
we incur the extra issue of dealing with a system of equations. This reformulation results in less
sensitivity to errors in the underlying approximations in the GMLS reconstructions of the geometry
and surface fields. This reformulation also requires much less computational effort and memory
when assembling the stiffness matrices since the lower order permits use of smaller ε-neighborhoods
to achieve unisolvency as discussed in Section 2. We refer to this reformulation of the hydrodynamic
equations as the split formulation.

For a further discussion of these surface hydrodynamics equations, related derivations, and
physical phenomena see [99, 45].

5. Computational Methods and Numerical Solvers

We develop numerical methods to solve equations 22 or 23 for the velocity field of hydrodynamic
flows on surfaces using the GMLS approximations of Section 2 and 3. We briefly discuss the overall
steps used in our numerical methods. We formulate the hydrodynamics using a vector-potential
formulation to obtain a gauge that intrinsically enforces the incompressibility constraints of the
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flow appearing in equation 18. For steady-state hydrodynamic flows, we derived conditions for the
vector potential of the flow resulting in equation 22. We summarize the steps used in our solution
approach in Figure 3.

Figure 3: Steps in the Numerical Methods for the Surface Hydrodynamic Flows. For a given body force
density or stresses b acting on the surface fluid we convert the fields to covariant form b[, shown in (i),(ii).
To handle incompressibile flows, we convert all fields to a divergence-free gauge using the generalized surface
curl − ? db[, shown in (iii). We solve for the vector potential Φ of the surface hydrodynamic flow using
equations 22 or 23 and our GMLS collocation methods for the differential operators, shown in (iv). We
construct the covariant form of the velocity field of the hydrodynamic flow response using the generalized
surface curl v[, shown in (v). We obtain our final results by converting the covariant form v[ to the velocity

field by v =
(
v[
)]

. This yields the surface hydrodynamic flow shown in (vi).

To determine numerically the hydrodynamic flow in response to a body force density b acting
on the surface fluid, we first convert force fields into co-variant form b[. We next use our exterior
calculus formulation of the generalized curl to obtain the corresponding vector-potential for the
body force Ψ = C1b

[ where C1 = − ? d acts on 1-forms. We numerically compute Ψ = C̃1b
[ where

C̃1 is our GMLS approximation of the curl operator C1 discussed in Section 3.1.1 and Appendix A.3.
We can now utilize equation 22 to specify the differential equation for the steady-state velocity

response. We use GMLS to assemble in strong form a stiffness matrix A using a collocation approach.
The full differential operator that appears on the left-hand-side is computed at each base point x̃ of
the point set of the manifold. This results in the system of equations linear in Φ̃

AΦ̃ = C̃0b. (25)

We solve the large linear system using GMRES with algebraic multigrid (AMG) preconditioning.
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The velocity field is given from the vector potential Φ by the generalized surface curl operator
v[ = C0Φ, where C0 = − ? d acts on 0-forms. From the solution Φ̃ of equation 25, we construct
numerically the co-variant velocity field of the flow using ṽ[ = C̃0Φ̃. The C̃0 is our GMLS
approximation of the generalized curl operator C0 discussed in Section 3.1. Finally, using the metric
tensor obtained from the GMLS reconstruction, we obtain the surface velocity field ṽ by converting

the covariant field v[ into the contravariant field by ṽ =
(
ṽ[
)]

. For more details on this approach
and operations see Appendix A.3. We use this approach to numerically compute incompressible
hydrodynamic flows in response to applied driving forces or stresses acting on the surface fluid. We
remark that our approach can also be combined with other computational methods and solvers to
compute coupling to bulk three dimensional hydrodynamics or more generally for resolving other
physical systems and interactions that occur at interfaces.

The Compadre toolkit [56] was used to solve the GMLS problems. The toolkit provides domain
decomposition and distributed vector representation of fields as well as global matrix assembly.
The linear equations were solved through iterative block solvers (Belos [13]), block preconditioners
(Teko) and AMG preconditioning (MueLu [86, 51]), within the Trilinos software framework [48].

6. Results

6.1. Convergence Results for Operators on Manifolds based on GMLS Geometric
Reconstructions

We investigate the convergence of the GMLS approximation of the operators required to solve
the hydrodynamic equations in Section 4. It is important to note that our target functionals
have a non-linear dependence on the geometry resulting in contributions from two different GMLS
approximations. First, the GMLS reconstruction of the geometry of the manifold and associated
associated geometric quantities. Second, the GMLS approximation of differential operators acting
on the surface scalar and vector fields.

Our solvers for the surface hydrodynamic flows of equation 22 and 23 use the following
operators: Laplace-Beltrami LLB = −∆H = −dδ, Biharmonic LBH = L2

LB = ∆2
H ,Curvature

LK = curlM (K · curlM) = − ? d (K · (− ? d), Surface-Curl-0-Forms C0,LC0 = curlMΦ = − ? d0,
Surface-Curl-1-Forms C1,LC1 = curlMv = − ? d1. In the split formulation of equation 23, this
simplifies without the need for LBH .

To approximate each of the operators using GMLS, we use point samples within a distance ε
from the target point xi. For the local optimization problems to determine the polynomial of degree
m, a minimum of np =

(
m+2

2

)
points are needed per neighborhood. To find such an ε, we sweep

through the points and either increase or decrease the initial guess ε0 by a factor β∗. This is done
so that the ε = βk∗ ε0 can be used globally to generate neighborhoods with at least α∗np points in
each of them, where α∗ ≥ 1 is a tune-able parameter for calculations. This is used to determine
the polynomial representation p∗. In practice, the factor α∗ is used to ensure significantly more
points are in neighborhoods than are strictly needed which helps to provide additional robustness in
calculations. We use throughout α∗ = 2.8 and β∗ = 2.

To study the accuracy of our GMLS approximation of these operators, we investigate the case of
the test scalar field Φ(X) = Φ(x, y, z) = z(x4 +y4−6x2y2) and test vector field v[ = C0Φ = −?d0Φ.
We have chosen Φ(x, y, z) to be a smooth continuation of a spherical harmonic mode to the full
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space R3. Since our manifolds M are smooth, we obtain a smooth surface scalar field by evaluation
of Φ(X) at the surface (i.e. using the inclusion map ι : R3 ↪−→M with Φ(x) = ιxΦ(·)). This provides
a way to define surface scalar fields and vector fields without the need for local coordinate charts on
the manifold.

We investigate the accuracy of the GMLS approximation of these operators. We study the
`2-errors

εop0 =
∥∥∥L̃gΦ− LgΦ

∥∥∥
2
, εop1 =

∥∥∥L̃gv − Lgv
∥∥∥

2
. (26)

The `2-norm is computed by averaging the error over all n sample points of the manifold ‖u− v‖22 =
1
n

∑
i (u(xi)− v(xi))

2. The L̃g denotes the numerical GMLS approximation of the operator Lg. In
practice, for comparison with the GMLS results in the convergence studies, we evaluate to high
precision the action of the operators Lg by using symbolic calculations using SymPy [68].

Using this approach, we investigate the accuracy of the GMLS approximation of the operators
for each of the manifolds in Tables 2– 4. We estimate approximate convergence rates by fitting
using in a log-log scale the error between the reported h value and the previous h value. While we
do not have theory given that the operators have a non-linear dependence on the manifold geometry,
for operators of order k and GMLS approximation of order m we do have the suggestive predictions
from equation 5 that the convergence be order m + 1 − k. Since our GMLS methods involve
approximations both of the geometry and the surface fields, for purposes of the comparisons we take
k = max(k1, k2) and m = max(m1,m2). The k1 denotes the order of the differentiation involved in
obtaining the quantities associated with the geometry and k2 with the order of differentiation of the
surface fields. The m1,m2 are the polynomial orders used for the approximations for the manifold
geometry and surface fields, as discussed in Section 2.

Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 4.2208e-04 - 2.2372e-02 - 1.3580e-01 - .08 4.7880e-02 -
0.05 7.503e-06 5.74 1.2943e-03 4.11 4.8597e-03 4.80 .04 5.5252e-04 6.54
0.025 1.8182e-07 5.34 5.8300e-05 4.46 1.2928e-04 5.24 .02 1.3877e-05 5.36
0.0125 4.8909e-09 5.21 1.7364e-06 5.06 3.7508e-06 5.11 .01 3.7568e-07 5.17

Table 2: Convergence of GMLS Approximation of the Laplace-Beltrami Operator LLB. We use GMLS with
(k = 2,m = 6) and find the methods have ∼ 5th-order asymptotic convergence. The target sampling distance
h is discussed in Appendix D.
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Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 1.7177e-01 - 1.1102e+01 - 6.9226e+01 - .08 4.0566e+01 -
0.05 1.0768e-02 3.94 2.1455e+00 2.37 9.6017e+00 2.85 .04 1.3004e+01 5.04
0.025 9.3281e-04 3.51 3.4556e-01 2.63 7.8738e-01 3.61 .02 1.0736e-01 3.63
0.0125 9.3585e-05 3.31 3.5904e-02 3.26 7.7925e-02 3.34 .01 1.0722e-02 3.30

Table 3: Convergence of GMLS Approximation of the Biharmonic Laplace-Beltrami Operator LBH = L2
LB.

We use GMLS with (k = 4,m = 6) and find the methods have ∼ 3rd-order asymptotic convergence.

Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 3.7004e-03 - 1.0621e+01 - 6.1440e+01 - .08 6.5445e-01 -
0.05 1.9863e-04 4.16 1.7987e-01 2.56 3.9161e-01 3.97 .04 1.6209e-02 5.42
0.025 1.1937e-05 4.03 1.9796e-02 3.18 2.9043e-02 3.76 .02 8.4581e-04 4.30
0.0125 7.3369e-07 4.01 1.6147e-03 3.61 2.0897e-03 3.80 .01 5.6742e-05 3.87

Table 4: Convergence of GMLS Approximation of the Curl-K-Curl Operator LK . We use GMLS with
(k1 = 3, k2 = 2,m = 6) and find the methods have ∼ 4rd-order asymptotic convergence.

We find to a good approximation our GMLS methods exhibit convergence rates in agreement
with the suggestive prediction m+ 1− k. For the Laplace-Beltrami operator LLB with (k = 2,m =
6), we find ∼ 5th-order convergence rate, see Table 2. For the Biharmonic operator LBH with
(k = 4,m = 6), we find 3rd-order convergence rate, see Table 3. In the case of the Curvature
Operator LK we have (k1 = 3, k2 = 2,m = 6). The k1 = 3 arises since the operator involves
estimation not only of the surface Gaussian Curvature K but also its first derivatives. For LK ,
we find ∼ 4th-order convergence rate, see Table 4. We also report convergence rates for the curl
operators LC0 and LC1 in Appendix B. We give further details on the sampling resolution of the
manifolds in Appendix D. We perform further convergence studies to investigate the robustness of
the methods and how the accuracy depends on the quality of the point sampling of the manifold
geometry in Appendix C. Again, we emphasize while there is currently no rigorous convergence
theory given the non-linear dependence on geometry in our GMLS approximations, we do find in
each case agreement with the suggestive predictive rates m+ 1− k similar to equation 5.
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6.2. Convergence Results for Hydrodynamic Flows

Figure 4: Surface Hydrodynamic Flows on Manifolds A–D. We use our GMLS solver to compute numerically
the surface hydrodynamic flow responses on each of the manifolds, as discussed in Section 4.2. Manifold A−D
solutions were computed at a resolution with number of sample points nA = 38, 486, nB = 147, 634, nC =
127, 346, and nD = 118, 942.

We investigate the convergence of our GMLS methods for the surface hydrodynamic equations
formulated in Section 4. We study convergence of our solvers for hydrodynamic flows by developing
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manufactured solutions using high precision symbolic calculations of the incompressible flow field
v[ = − ? dΦ = C0Φ with the specific choice of Φ given in Section 6.1.

We calculate symbolically the expressions of the forcing term b using equation 18 where
µm(−δd + 2K)v[− γv[−dp = −b[. We manufacture the data b needed on the RHS of equation 18
using

b[ = µmδdv[ + (γ − 2µmK)v[. (27)

Since generating both the velocity field v and force density b this way will already be incompressible,
we have used that we can set p = 0 when manufacturing our data. In practice, we evaluate
equation 27 to high precision using the symbolic package SymPy [68].

We investigate the convergence of the GMLS solvers using the `2-error

εhydro = ‖ṽ − v‖2 /‖v‖2 (28)

ṽ = C0(S−1(C0b)). (29)

The v denotes the exact solution, C0 approximates numerically − ? d0, C1 approximates numerically
− ? d1, and S−1 denotes the numerical solution operator corresponding to use of our GMLS solver.
We use the hydrodynamics equations both formulated using the biharmonic form in equation 22 or
in the split form in equation 23.

For each of the manifolds A−D, we computed manufactured solutions with the parameters
µm = 0.1, γ = 0.1 in equation 27. We used the surface force density b to numerically compute
surface hydrodynamic flow responses ṽ using our GMLS solvers discussed in Section 5. We show
the hydrodynamic surface flows in Figure 4. We show our convergence results for both the case of
the biharmonic formulation and split formulation in the Tables 5– 8.

Biharmonic Formulation: Manifold A
m = 4 m = 6 m = 8

h `2-error Rate `2-error Rate `2-error Rate
0.1 1.6072e-01 - 1.1597e-03 - 1.0648e-03 -
0.05 1.8027e-02 3.11 8.4190e-05 3.73 1.8627e-06 9.04
0.025 4.9155e-03 1.86 1.1655e-05 2.84 4.4796e-08 5.35
0.0125 2.0873e-03 1.23 7.1161e-07 4.02 1.9263e-07 -2.10

Split Formulation: Manifold A
m = 4 m = 6 m = 8

h `2-error Rate `2-error Rate `2-error Rate
0.1 1.5578e-02 - 2.6826e-04 - 1.0756e-04 -
0.05 7.0783e-04 4.40 1.2065e-05 4.41 3.7309e-07 8.06
0.025 1.2151e-05 5.83 4.4532e-07 4.74 3.0556e-09 6.90
0.0125 4.3056e-06 1.49 1.0349e-08 5.42 1.7664e-10 4.10

Table 5: (top) Convergence on Manifold A of our GMLS solver based on the biharmonic formulation of
the hydrodynamics in equation 22. The target sampling distance h is discussed in Appendix D. (bottom)
Convergence on Manifold A of our GMLS solver based on the split formulation of the hydrodynamics in
equation 23.
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Biharmonic Formulation: Manifold B
m = 4 m = 6 m = 8

h `2-error Rate `2-error Rate `2-error Rate
0.1 3.1890e-01 - 1.0457e-01 - 1.6845e+00 -
0.05 3.1951e-01 -0.002 7.4388e-03 3.81 1.9954e-02 6.40
0.025 2.4571e-02 3.69 1.2081e-03 2.62 2.9917e-04 6.05
0.0125 5.6309e-03 2.12 6.9269e-05 4.11 2.6601e-05 3.48

Split Formulation: Manifold B
m = 4 m = 6 m = 8

h `2-error Rate `2-error Rate `2-error Rate
0.1 9.7895e-02 - 6.5222e-02 - 2.8024e-01 -
0.05 1.4383e-02 2.77 2.8402e-03 4.52 1.2100e-02 4.53
0.025 3.6243e-03 1.98 3.9929e-04 2.82 4.9907e-04 4.59
0.0125 7.8747e-04 2.20 1.2357e-05 5.00 5.7023e-06 6.44

Table 6: (top) Convergence on Manifold B of our GMLS solver based on the biharmonic formulation of the
hydrodynamics in equation 22. (bottom) Convergence on Manifold B of our GMLS solver based on the split
formulation of the hydrodynamics in equation 23.

Biharmonic Formulation: Manifold C
m = 4 m = 6 m = 8

h `2-error Rate `2-error Rate `2-error Rate
0.1 2.9886e+00 - 8.0650e-01 - 3.3799e-01 -
0.05 1.2926e+00 1.21 2.3277e-01 1.79 1.0993e+00 -1.70
0.025 2.8576e-01 2.18 2.1497e-02 3.44 7.1166e-03 7.28
0.0125 4.2226e-02 2.76 1.4986e-03 3.84 9.8921e-05 6.17

Split Formulation: Manifold C
m = 4 m = 6 m = 8

h `2-error Rate `2-error Rate `2-error Rate
0.1 1.1346e+00 - 8.8130e+01 - 4.6473e+00 -
0.05 7.7801e-02 3.86 1.0276e-02 13.0 3.7375e-02 6.96
0.025 1.6751e-02 2.22 1.8764e-03 2.45 4.2722e-04 6.46
0.0125 1.7381e-03 3.27 4.2181e-05 5.48 9.1845e-06 5.54

Table 7: (top) Convergence on Manifold C of our GMLS solver based on the biharmonic formulation of the
hydrodynamics in equation 22. (bottom) Convergence on Manifold C of our GMLS solver based on the split
formulation of the hydrodynamics in equation 23.
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Biharmonic Formulation: Manifold D
m = 4 m = 6 m = 8

h `2-error Rate `2-error Rate `2-error Rate
0.08 3.3170e-01 - 1.5154e-01 - 1.2223e+01 -
0.04 2.4421e-02 3.82 4.6233e-03 5.11 3.9632e-03 11.7
0.02 4.5705e-03 2.44 3.0246e-04 3.97 4.2784e-05 6.60
0.01 1.4748e-03 1.62 1.9067e-05 3.96 5.4137e-07 6.26

Split Formulation: Manifold D
m = 4 m = 6 m = 8

h `2-error Rate `2-error Rate `2-error Rate
0.08 1.7719e-02 - 1.4221e-02 - 6.6061e+00 -
0.04 1.5473e-03 3.57 1.2632e-04 6.92 1.3431e-04 15.8
0.02 1.3575e-04 3.54 3.2125e-06 5.35 5.0041e-07 8.15
0.01 2.5891e-05 2.37 1.9018e-07 4.05 4.5906e-09 6.72

Table 8: (top) Convergence on Manifold D of our GMLS solver based on the biharmonic formulation of the
hydrodynamics in equation 22. (bottom) Convergence on Manifold D of our GMLS solver based on the split
formulation of the hydrodynamics in equation 23.

We emphasize that these convergence studies take into account the full pipeline of our GMLS
numerical methods as discussed in Section 5 and shown in Figure 3. This involves not only the
solution of biharmonic or split equations, but also the GMLS reconstruction of the surface velocity
field v from the computed vector-potential Φ and the calculation of the vector-potentials Ψ = −?db
for the body force density b which drives the flow. These steps also each have a non-linear dependence
on the geometry which contributes through our GMLS reconstructions from the point set sampling
of the manifold as discussed in Section 3.

In the convergence studies, we find in all cases that the GMLS solvers are able to resolve the
surface hydrodynamic fields to a high level of precision. The Manifolds B and C presented the most
challenges for the solvers with largest prefactors in their convergence. This is expected given the
increased amount of resolution required to resolve the geometric contributions to the differential
operators in the hydrodynamic equations 22– 23. In all cases, we found our GMLS solvers based
on the split formulation performed better when using equation 23 relative to our GMLS solvers
based on the biharmonic formulation of equation 22. Interestingly, for Manifold B and C these
differences for m = 8 where not as pronounced, see Table 6– 7. We think this is a manifestation of
the challenges in capturing the geometric contributions to the differential operator that with limited
resolution will not benefit as much from the higher order approximations or split formulations
relative to the case of less complicated geometries.

We find in the case of Manifold A that the GMLS solver for sufficiently large order (m ≥ 6)
converges at a rate of approximately ∼ 4th-order for the biharmonic formulation and at a rate of
approximately ∼ 5th-order for the split formulation. We base this on the overall trends, and some
of this is a little obscured by the noise of the convergence after acheiving a high level of accuracy.
We suspect the last upward point of the error observed for m = 8 for the biharmonic formulation is
likely a consequence of the conditioning of the linear system becoming a limiting factor. We note the
overall high level of precision already achieved by that data point with errors on the order of 10−8,
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see Table 5. We find there is a particular advantage of our GMLS solvers when based on the split
formulation. Our GMLS methods in this case are able to converge to much higher levels of precision
achieving errors on the order 10−10 in the case of m = 8 at the largest resolutions considered, see
Table 5.

In summary, our results show that both formulations of the GMLS solvers are able to achieve
high-order convergence rates in approximating the hydrodynamic fields. We emphasize that these
results assess contributions from the entire pipeline that includes not only the GMLS solve but
also the pre-processing and post-processing steps involving the curl operators that arise in our
vector-potential formulation for incompressible hydrodynamic flows.

7. Conclusions

We have developed high-order numerical methods for solving partial differential equations on
manifolds. Our apporach is based on GMLS approximations of the manifold shape, operators
arising in differential geometry, and operators of differential equations. We have introduced exterior
calculus based approaches for generalizing the operators of vector calculus and techniques from
mechanics to the context of manifolds. Using this approach, we have formulated incompressible
hydrodynamic equations for flows on curved surfaces. We have also shown how our approaches in
general can be used to formulate equations in terms of vector potentials facilitating development
of other physical models with constraints to obtain numerical solvers. We showed there are a
few different ways to formulate vector-valued surface equations facilitating the development of
GMLS solvers. By comparisons with high precision manufactured solutions, we characterized our
GMLS solvers and found they each exhibit high-order convergence rates in approximating manifold
operators and in resolving hydrodynamics flows on surfaces. We found the split formulations
involving lower order differential operators to have particular advantages exhibiting the highest
orders of convergence. Many of our GMLS methods and exterior calculus approaches also can be
utilized for the development of high-order solvers for other scalar-valued and vector-valued partial
differential equations on manifolds.
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Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina
Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta,
Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán
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Appendix

A. Operators on Manifolds, Monge-Gauge Parameterization, and
Coordinate Expressions

To compute in practice the action of our operators during the GMLS reconstruction of the geometry
of the manifolds or differential operators on scalar and vector fields on the surface, we use local
Monge-Gauge parameterizations of the surface. To obtain high-order accuracy we further expand
expressions involving derivatives of the metric and other fields explicitly using symbolic algebra
packages, such as Sympy [68]. This allows us to avoid some of the tedium notorous in differential
geometry and to precompute offline the needed expressions for the action of our operators. We
summarize here the basic differential geometry of surfaces expressed in the Monge-Gauge and the
associated expressions we use in such calculations.

A.1. Monge-Gauge Surface Parameterization

In the Monge-Gauge we parameterize locally a smooth surface in terms of the tangent plane
coordinates u, v and the height of the surface above this point as the function h(u, v). This gives
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the embedding map

x(u, v) = σ(u, v) = (u, v,h(u, v)). (30)

We see that this parameterization of the surface is closely related to equation 8. We can use the
Monge-Gauge equation 30 to derive explicit expressions for geometric quantities. The derivatives of
σ provide a basis ∂u, ∂v for the tangent space as

∂u = σu(u, v) = (1, 0,hu(u, v)) (31)

∂v = σv(u, v) = (0, 1,hv(u, v)). (32)

The first fundamental form I (metric tensor) and second fundamental form II (curvature tensor)
are given by

I =

[
E F
F G

]
=

[
σu · σu σu · σv
σv · σu σv · σv

]
=

[
1 + hu(u, v)2 huhv(u, v)

hu(u, v)hv(u, v) 1 + hv(u, v)2

]
. (33)

and

II =

[
L M
M N

]
=

[
σuu · n σuv · n
σvu · n σvv · n

]
=

1√
1 + h2

u + h2
v

[
huu huv
huv hvv

]
. (34)

The n denotes the outward normal on the surface and is given by

n(u, v) =
σu(u, v)× σv(u, v)

‖σu(u, v)× σv(u, v)‖
=

1√
1 + h2

u + h2
v

(−hu,−hv, 1). (35)

We use throughout the notation for the metric tensor g = I interchangeably. For notational
convenience, we use the tensor notation for the metric tensor gij and for its inverse gij . These
correspond to the first and second fundamental forms as

gij = [I]i,j , gij =
[
I−1
]
i,j
. (36)

For the metric tensor g, we also use the notation |g| = det(g) and have that√
|g| =

√
det(I) =

√
1 + h2

u + h2
v = ‖~σu(u, v)× ~σv(u, v)‖. (37)

The provides the local area element as dAu,v =
√
|g|dudv. To compute quantities associated with

curvature of the manifold we construct the Weingarten map [85] which can be expressed as

W = I−1II. (38)

The Gaussian curvature K can be expressed in the Monge-Gauge as

K(u, v) = det (W(u, v)) =
huuhvv − h2

uv

(1 + h2
u + h2

v)
2
. (39)

For further discussions of these tensors and more generally the differential geometry of manifolds
see [85, 1, 101]. We use these expressions as the basis of our calculations of the action of our surface
operators.
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A.2. Coordinate Expressions for Surface Operators

We use local Monge-Gauge parameterizations of the manifold to compute the geometric operators
needed in our surface hydrodynamic equations. Consider the negative semi-definite scalar Laplace-
Beltrami operator that acts on 0-forms which can be expressed as ∆LB = −δd = −∆H , where ∆H

is the Hodge Laplacian. This operator can be expressed in coordinates as

∆LB =
1√
|g|
∂i

(
gij
√
|g|∂j

)
. (40)

The gij denotes the metric tensor, gij the inverse metric tensor, and |g| the determinant of the
metric tensor as in Appendix A.1. For the Monge-Gauge parameterization (u, v), we find it useful
to consider

`ij =
(√
|g|gij

)
∂ij +

(
∂i
√
|g|gij

)
∂j . (41)

We use the convention that ∂1 = ∂u and ∂2 = ∂v. This allows us to express

∆LB = (1/
√
|g|)

∑
ij

`ij . (42)

We can further express the prefactor terms involving the metric appearing in equation 41 as

√
|g|gij =


gvv/

√
|g| = 1+h2

v√
1+h2

u+h2
v

if: i = j = u

guu/
√
|g| = 1+h2

u√
1+h2

u+h2
v

if: i = j = v

−guv/
√
|g| = −gvu/

√
|g| = −huhv√

1+h2
u+h2

v

if: i 6= j.

(43)

The utility of these decompositions and expressions is that we can construct operators for GMLS
approximation while avoiding the need to compose numerical differentiation procedures. This allows
us to compute directly the action on the reconstruction space functions p ∈ Vh. This decomposition
is also useful to help simplify symbolic expansions when we compute the Bi-Laplace-Beltrami
operator ∆2

LB, which poses the most significant computational challenges in our current numerical
calculations. We compute in practice the Bi-Laplace-Beltrami operator ∆2

LB using symbolic algebra
system.

A.3. Exterior Calculus Operators Expressed in Coordinates

In our notations throughout, we take the conventions that for differential 0-forms (scalar functions)
fj = ∂xjf , for differential 1-forms (co-vector fields) α = αjdx

j , and for vector fields v = vj∂j . In
each case we have j ∈ {u, v}. The isomorphisms ] and [ between vectors and co-vectors can be
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expressed explicitly as

v[ = (vuσu + vvσv)
[ (44)

= vuguudu+ vuguvdv + vvgvudu+ vvgvvdv

= (vuguu + vvgvu)du+ (vuguv + vvgvv)dv

(α)] = (αudu+ αvdv)] (45)

= αug
uuσu + αug

uvσv + αvg
vuσu + αvg

vvσv

= (αug
uu + αvg

vu)σu + (αug
uv + αvg

vv)σv

We use the conventions for the notation that for the embedding map σ we have σu = ∂u and
σv = ∂v as in Appendix A.1. The exterior derivatives on these k-forms can be expressed as

df = (∂uf)du+ (∂vf)dv = fudu+ fvdv (46)

dα = (∂uαv − ∂vαu)du ∧ dv. (47)

The generalized curl of a 0-form and 1-form can be expressed in coordinates as

− ? df =
√
|g|(fuguv + fvg

vv)du−
√
|g|(fuguu + fvg

vu)dv (48)

− ? dα =
∂vαu − ∂uαv√

|g|
. (49)

Combining the above equations, we can express the generalized curl as

(− ? df)] = curlM(f) (50)

= ([
√
|g|(fuguv + fvg

vv)]guu + [−
√
|g|(fuguu + fvg

vu)]gvu)σu

+ ([
√
|g|(fuguv + fvg

vv)]guv + [−
√
|g|(fuguu + fvg

vu)]gvv)σv

=
fv√
|g|
σu −

fu√
|g|
σv

− ? dv[ = curlM(v) =
∂v(v

uguu + vvgvu)− ∂u(vuguv + vvgvv)√
|g|

. (51)

We also mention that the velocity field of the hydrodynamic flows v is recovered from the

vector potential Φ as v[ = − ? dΦ. We obtain the velocity field as v =
(
v[
)]

= (− ? dΦ)] using
equation 50. Similarly from the force density b acting on the fluid, we obtain from equation 51 the
vector potential for the force density as Ψ = −?db[. This is used in the vector-potential formulation
of the hydrodynamics in equation 22 and equation 23. We expand these expressions further as
needed in coordinates using symbolic algebra methods. This provides the needed expressions for
computing these operations. Additional details and discussions of these operators and our overall
approach also can be found in our related papers [99, 44].

B. Convergence Results for the Generalized Curl Operators

We report tabulated results for the GMLS approximations of the operators LC0 and LC1 discussed
in Section 6.1.
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Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 2.7152e-05 - 1.5075e-03 - 4.8243e-01 - .08 2.1570e-03 -
0.05 3.8309e-07 6.07 3.0281e-05 5.64 2.4465e-04 10.9 .04 2.2565e-05 6.68
0.025 5.8491e-09 6.00 6.9649e-07 5.43 6.1779e-06 5.31 .02 3.3550e-07 6.13
0.0125 8.8291e-11 6.04 1.3078e-08 5.72 1.1817e-07 5.71 .01 4.9708e-09 6.04

Table 9: Convergence of GMLS Approximation of the Surface Curl Operator on Scalars LC0. We use GMLS
with (k = 1,m = 6) and find the methods have ∼ 6th-order asymptotic convergence.

Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 9.2312e-04 - 1.5887e-02 - 5.2497e+01 - .08 1.9686e-02 -
0.05 1.4851e-05 5.88 1.2736e-03 3.64 1.3126e-02 8.65 .04 2.0410e-04 6.70
0.025 2.3374e-07 5.96 1.2597e-04 3.33 5.6087e-04 4.55 .02 3.0223e-06 6.13
0.0125 3.5970e-09 6.01 5.1267e-06 4.61 1.4082e-05 5.32 .01 4.3847e-08 6.07

Table 10: Convergence of GMLS Approximation of the Surface Curl Operator on Vectors LC1. We use
GMLS with (k1 = 2, k2 = 1,m = 6) and find the methods have ∼ 5th-order asymptotic convergence or greater.
It is notable that in the case of Manifold A and D we in fact see ∼ 6th-order convergence. This manifests
since the manifolds have a relatively symmetric geometry compared to Manifold B and C, see Figure 2. This
results in a simplification with fewer non-zero terms and derivatives associated with the contributions of the
geometry to the operator. As a consequence, the GMLS approximation at a given order m becomes more
accurate by one order for Manifold A and D.

The Manifolds B and C have more complicated geometry and require more resolution to see
behaviors in the asymptotic regime with a high-degree basis. We see that by lowering the degree
of the basis these operators exhibit more readily behaviors in the asymptotic regime in Table 11
and 12.

Manifold B Manifold C
h `2-error Rate `2-error Rate

0.1 5.2558e-03 - 1.2083e-02 -
0.05 3.6359e-04 3.85 1.0345e-03 3.54
0.025 2.3078e-05 3.97 7.3790e-05 3.81
0.0125 1.4569e-06 3.98 4.8316e-06 3.93

Table 11: Convergence of GMLS Approximation of the Surface Curl on Scalars LC0. We use GMLS with
(k = 1,m = 4) and find the methods have ∼ 4th-order asymptotic convergence.

Page 35 of 37



Manifold B Manifold C
h `2-error Rate `2-error Rate

0.1 6.3586e-01 - 7.6579e-01 -
0.05 1.6568e-01 1.94 2.1680e-01 1.82
0.025 4.1633e-02 1.99 5.6498e-02 1.94
0.0125 1.0399e-02 1.99 1.4336e-02 1.98

Table 12: Convergence of GMLS Approximation of the Surface Curl on Vectors LC1. We use GMLS with
(k = 1,m = 2) and find the methods have ∼ 2nd-order asymptotic convergence.

C. Dependence of GMLS Approximations on the Point Sampling

Figure 5: Ellipsoidal Manifold, Point Samples, and Perturbations. (left) The ellipsoidal manifold with
(x/`x)2 + (y/`y)2 + (z/`z)2 = 1 with `x = 1.2, `y = 1.2, `z = 1. The manifold is sampled with 154, 182 points.
(right) The points are perturbed by noise having strength α = 0.05, 0.10, 0.50.

We investigate the dependence of the GMLS approximations on the point sampling. We perform
studies of the sampling of the manifold perturbed by noise. As discussed in Appendix D, we start
with the manifold sampled by a collection of points {xi} using DistMesh [80]. These are nearly
uniform as characterized by equation 1. We then add Gaussian noise ηi with mean zero and standard
derivation of σ = α`∗ to each of the points xi. The `∗ is 1/3 the smallest nearest neighbor distance.
We project these points back to the manifold to obtain the new perturbed sampling x̃i = P(xi + ηi),
where P denotes the projection mapping. For the radial manifold shapes, P is the mapping back to
the manifold along the radial directions. We study the perturbations when α ∈ {0.05, 0.1, 0.5} for
the ellipsoid (x/`x)2 + (y/`y)

2 + (z/`z)
2 = 1 with `x = 1.2, `y = 1.2, `z = 1. We show realizations

of the point sampling and perturbations in Figure 5 and the results of our convergence studies in
Table 13.
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Laplace-Beltrami Biharmonic
α `2-error Rate `2-error Rate

0.00 3.437-04 2.03 2.828-04 2.54
0.05 3.425-04 2.03 8.655-04 2.20
0.10 3.419-04 2.04 9.032-04 2.17
0.50 3.650-04 2.07 1.464-03 2.18

Table 13: Dependence of GMLS Approximations on the Point Sampling. We investigate the convergence
when perturbing the manifold sample points by x̃i = P(xi + ηi) where the Gaussian noise ηi has mean zero
and standard deviation of σ = α`∗. The `∗ is 1/3 of the smallest nearest neighbor distance for the unperturbed
sampling. We consider the ellipsoidal manifold with (x/`x)2 + (y/`y)2 + (z/`z)2 = 1 with `x = 1.2, `y = 1.2,
`z = 1 sampled with the number of sample points 2, 350, 9, 566, 38, 486, and 154, 182. We study the accuracy
of the solvers for Lu = −f where L is the Laplace-Beltrami Operator and the Biharmonic Operator. The
solver for the Biharmonic Operator uses the split formulation. The function f is generated using angular
coordinates to obtain the real-part of the spherical harmonic Y 5

4 projected to the ellipsoidal surface. The
ellipsoid considered is given by (x/`x)2 + (y/`y)2 + (z/`z)2 = 1 with `x = 1.2, `y = 1.2, `z = 1.

From Table 13, we see that the GMLS methods are robust to perturbations in the sampling
both for the Laplace-Beltrami Operator and for the Biharmonic Operator. We remark that these
solvers each have a non-trivial dependence not only on the approximation of the differential operators
but also in the approximations performed for the local geometry of the manifold. This indicates in
GMLS that the local least-squares fitting is not overly sensitive to the point sampling that is used
in constructing the approximations.

D. Sampling Resolution of the Manifolds

A summary of the sampling resolution h used for each of the manifolds is provided in Table 14.
We refer to h as the target fill distance. For each of the manifolds, we achieve a nearly uniform
collection of the points as in equation 1 using DistMesh [80]. We emphasize this approach was used
only for convenience to obtain quasi-uniform samplings and other sampling techniques can also be
utilized for this purpose of representing the manifolds. We specify h and the algorithm produces a
point sampling of the manifold. In practice, we have found this yields a point spacing with neighbor
distances varying by only ≈ ±30% relative to the target distance h. We summarize for each of the
manifolds how this relates to the number of sample points n in Table 14.

Refinement Level A: h n B: h n C: h n D: h n

1 .1 2350 .1 2306 .1 2002 .08 1912

2 .05 9566 .05 9206 .05 7998 .04 7478

3 .025 38486 .025 36854 .025 31898 .02 29494

4 .0125 154182 .0125 147634 .0125 127346 .01 118942

Table 14: Sampling Resolution for each of the Manifolds A–D. Relation between the target distance h and
the number of sample points n used for each of the manifolds. In each case, the neighbor distances between
the points sampled were within ≈ ±30% of the target distance h.
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