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INVESTIGATION

Escherichia coli with a Tunable Point Mutation Rate
for Evolution Experiments
Nicholas A. Sherer*,†,1 and Thomas E. Kuhlman†,‡,1,2

*Department of Physics and †Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL
61801, and ‡Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521

ORCID IDs: 0000-0001-5940-2563 (N.A.S.); 0000-0002-4009-5601 (T.E.K.)

ABSTRACT The mutation rate and mutations’ effects on fitness are crucial to evolution. Mutation rates are
under selection due to linkage betweenmutation ratemodifiers andmutations’ effects on fitness. The linkage
between a higher mutation rate and more beneficial mutations selects for higher mutation rates, while the
linkage between a higher mutation rate and more deleterious mutations selects for lower mutation rates. The
net direction of selection on mutations rates depends on the fitness landscape, and a great deal of work has
elucidated the fitness landscapes of mutations. However, tests of the effect of varying a mutation rate on
evolution in a single organism in a single environment have been difficult. This has been studied using strains
of antimutators and mutators, but these strains may differ in additional ways and typically do not allow for
continuous variation of themutation rate. To help investigate the effects of themutation rate on evolution, we
have genetically engineered a strain of Escherichia coliwith a point mutation rate that can be smoothly varied
over two orders of magnitude. We did this by engineering a strain with inducible control of the mismatch
repair proteins MutH andMutL. We used this strain in an approximately 350 generation evolution experiment
with controlled variation of the mutation rate. We confirmed the construct and the mutation rate were stable
over this time. Sequencing evolved strains revealed a higher number of single nucleotide polymorphisms at
higher mutations rates, likely due to either the beneficial effects of these mutations or their linkage to
beneficial mutations.
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Mutation rates are critical to determining the course of evolution,
and mismatch repair systems are important systems affecting
mutation rates by correcting errors in DNA replication before
they become mutations. Furthermore, the mutation rate acts as a
parameter in evolutionary models describing regimes from clas-
sical hard sweeps where alleles in a population fix one by one to
opposite evolutionary regimes, where selection proceeds from
standing genetic variation, or in a traveling wave, where clonal

interference occurs or lineages with multiple mutations are com-
peting at the same time (Desai and Fisher 2007). The mutation rate
is therefore fundamental in determining the the amount of stand-
ing genetic variation in a population (Charlesworth 2015; Lynch
et al. 1998; Huang et al. 2016). The combination of the mutation
rate and population size also may move a population between
different evolutionary regimes; large populations such as labora-
tory cultures of bacteria or yeast with sufficiently high mutation
rates often evolve in a regime of clonal interference (Campos and de
Oliveira 2004; Bollback and Huelsenbeck 2007; Fogle et al. 2008; Lang
et al. 2013).

The ubiquitous importance of the mutation rate to natural
selection means the mutation rate itself is under selective pressure.
Both eukaryotes and bacteria have mismatch repair systems which
reduce the mutation rate below what it would be in the absence of
mismatch repair (Lin et al. 2007; Li 2008; Fukui 2010). Mismatch
repair systems fix mistakes in DNA replication where an incorrect
nucleotide on a daughter strand is paired with the nucleotide on the
template strand. Two proteins used in mismatch repair in E. coli,
MutS and MutL, have homologs in most bacteria and eukaryotes.
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MutS dimers recognize mismatches and bind them, while MutL
dimers bind MutS dimers. In most species, MutL homologs also
have endonuclease activity that helps remove the DNA strand with
the mismatch. However, in E. coli the endonuclease MutH is recruited
by a complex of MutS and MutL and nicks the newly synthesized
strand of DNA with the mismatch. E. coli with one of these three
mismatch repair genes knocked out have a mutator phenotype with
mutation rates elevated by two orders of magnitude compared to
E. coli with mismatch repair (Marinus (2010); Elez et al. (2012)).

Mismatch repair deficient strains have been important in exper-
iments investigating the effects of mutation rates on evolution and
have evolved in evolution experiments. MutS knockout strains de-
ficient in mismatch repair were used along with wildtype in evolution
experiments to investigate the effect of the mutation rate on E. coli
colonization and adaptation in mouse guts by (Giraud et al. 2001).
(Sniegowski et al. 1997) found that 3 of 12 replicate lines evolved in
the Lenski E. coli long term evolution experiment had become
mutators due to changes related to mismatch repair over the course
of their evolution. After many more generations of the long term
evolution experiment, there was a 4th mismatch repair mutator as well
as 2 other types of hypermutators (Tenaillon et al. 2016). By
engineering four E. coli strains to have unique fixed mutations with
a mixture of mismatch repair and polymerase proofreading mutants,
(Sprouffske et al. 2018) recently investigated the effects of the
mutation rate on adaptation. They found that, while populations
with higher mutation rates accumulated greater genetic diversity, the
diversity conveyed benefits only for modestly increased mutations
rates. Strains with the highest mutation rates showed reduced adap-
tation and experienced a decrease in their mutation rate.

The evolution of mismatch defective strains in past evolution
experiments and their successful use in probing evolutionary dy-
namics suggested we could make a useful strain for evolution
experiments by placing mismatch repair under the control of an
inducible promoter. We chose to translationally fuse mCherry to
mutH so we could also study its affect on the mutation rate;mutS and
mutL have been studied in vivo by (Elez et al. 2012). We quantify the
likelihood of mismatch repair as a function of MutH concentration.
We have done this by starting with strain ME121 (Elez et al. 2012), a
strain of E. coli with mutH deleted and MutL under the control of an
inducible lac promoter and fused to a yellow fluorescent protein. (Elez
et al. 2012) used ME121 to quantify mutation rates in individual cells
with high mutation rate by microscopy. Into ME121, we have placed a
construct with expression of MutH under the control of the promoter
PLTetO1; this MutH construct was inserted into the chromosome to keep
expression low. By tuning expression levels of MutH andMutL, we are
able to vary the mutation rate of E. coli throughout a broad range; it is
possible to vary the mutation rate over two orders of magnitude this
way including intermediate points. This makes it possible to vary the
mutation rate in evolution experiments and thus measure the effects of
the mutation rate on evolutionary dynamics without varying other
factors or constructing a new strain for each mutation rate to be tested.

MATERIALS AND METHODS

Strains
All strains used in the experiment were varieties of E. coli K-12MG1655.
Some were constructed starting from MG1655 itself and others starting
from the strain ME121 (Elez et al. 2012). The primary strains used in
experiments throughout this paper were NS001 and NS001Dcat. These
strains were engineered to have MutH expression controlled by a
tetracyline induction system giving us fine control of the point mutation

rate through mismatch repair. The only difference between them is that
we removed chloramphenicol resistance from the Dcat strain.

NS001 and NS001Dcat were constructed starting from ME121. A
plasmid containing a construct of a translational fusion of mCherry to
the N-terminus ofMutHwith a five glycine linker under the control of the
promoter PLTetO1 (Lutz and Bujard 1997) was synthesized de novo
(GENEWIZ). The ribosomal binding site of this construct was the
consensus Shine Dalgarno sequence for E. coli. A copy of the tet repressor
gene was also placed under control of a PLTetO1 promoter with a consensus
ribosomal binding site. This construct was called pUC57(amp)-
Ptet-mCherry-mutH-Ptet-tetR. A diagram of the construct without the
pUC57(amp) backbone can be seen in Figure 1. Early experiments
indicated the consensus ribosomal binding site upstream of mCherry-
mutH expressed too much protein for our purposes, so the ribosomal
binding site sequence was changed to be that of lacI. This was accom-
plished by performing PCR on the original construct with long primers
that had the lacI ribosomal binding site in place of the consensus ribosomal
binding site. This construct without the plasmid backbone was ligated into
the CRIM plasmid pAH144 (Haldimann and Wanner 2001) using T4
DNALigase (NEB). pAH144-Ptet-mCherry-mutHðlacIRBSÞ-Ptet-tetR was
then integrated into the chromosome of ME121 at the HK022 phage
attachment site using the CRIMmethod (Haldimann andWanner 2001).
To further repress expression ofmutHwhenuninduced, themediumcopy
number plasmid pTKIP-neo-Ptet-tetR where PLTetO1 controls tet repressor
expression was transformed into the strain after the mCherry-MutH
construct was integrated into the chromosome. This strain including
the plasmid, we call NS001. TomakeNS001Dcat, before inserting pTKIP-
neo-Ptet-tetR, we used pCP20 to flip out the cat gene using the method of
(Datsenko and Wanner 2000).

MG1655 DmotA mCherry-mutH is a modification of MG1655
with translational fusion of the protein mCherry to the N-terminus of
MutH with a five glycine linker inbetween at the nativeMutH locus in
the chromosome. It was constructed via the landing pad method (Tas
et al. 2015). This strain was made to test that the protein MutH could
still engage in mismatch repair after translational fusion to mCherry
and to measure the expression level of the native MutH gene.

There are tables of the strains, plasmids, and PCR primers used in
construction and verification in the Supplemental Experimental
Procedures, strain construction.

Mutation Rate Measurements
Mutation rates were measured using a rifampicin plating method
(Rosche and Foster 2000). An overnight culture was diluted 1000-fold
into fresh supplemented M9 (Elez et al. 2012) plus inducers and
maintained in exponential growth for several doublings before being
diluted to an OD of 1027 in fresh medium plus inducers again. 250 ml
aliquots of this low OD culture were then placed into a water bath
shaker at 37∘ C overnight. This overnight culture was allowed to grow
for approximately 20 doublings until the cultures had reached anOD�
0.1. The next day when this OD was reached, one ml from each aliquot
was taken for a 106 fold dilution into phosphate-buffered saline and
100 microliters of this dilution was plated on an LB plate. The
remaining 249 ml of each aliquot was plated directly on to rifampicin
plates (50 ml=ml). All plates were placed in a 37∘ C incubator for 24 hr.
Then they were removed and colonies were counted on each plate.

Inference of the mutation rate: Mutation rates were inferred from
plating data using the Ma-Sarkar-Sandri maximum likelihood
method (Sarkar et al. 1992). Confidence intervals were determined
using equations (24) and (25) in (Rosche and Foster 2000).
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MICROSCOPY AND IMAGE ANALYSIS
To measure the expression of mCherry-MutH, cells were grown in
supplementedM9 (Elez et al. 2012) plus antibiotics overnight at 37∘ C
with 220 rpm shaking in a New Brunswick C76 water bath shaker.
The next morning after saturation they were diluted 1000 fold into
fresh supplemented medium and allowed to grow for five or six more
doublings, then diluted again into fresh medium with the same
antibiotics plus any needed inducers. If inducers were added, strains
were allowed at least 5 more doublings before imaging. Cells were
imaged in exponential phase at an optical density between 0.05 and
0.25. Serial dilutions were used to keep the optical density of all
cultures below 0.25 at all times. The optical density at 600 nm
(OD600) of cultures was measured with a Bio-Rad SmartSpec Plus
spectrophotometer.

When a culture was ready for imaging, a pad of M9 salts plus 1%
agarose was prepared on a glass slide. Two 1 cm · 1 cm squares of
agarose were cut out. On one square, 1 microliter of 10x concentrated
Quantum QC # 3 beads (Bangs Laboratories, Inc.) was placed as a
fluorescent reference standard. On the other square, 5 microliters of
E. coli from a culture was placed. Then both squares were covered
with a single no 1.5 glass coverslip and the slide was placed in a 37∘ C
incubator for 20 min to allow cells to settle on the pad. The slide was
taken to the microscope where it was maintained at 37∘ C by a
temperature-controlled environmental chamber around the micro-
scope. The microscope was a Nikon Eclipse Ti-E fully automated
inverted microscope with Perfect Focus System automated focus
correction. Cells were brought into focus in phase contrast and
the perfect focus system activated. Then the microscope field of view
was moved to the segment of agarose pad with fluorescent beads and
the angles and focus of lasers were quickly adjusted to make sure
illumination was bright and even. The stage was then moved back
to the segment of agarose pad with E. coli and automated image
acquisition was begun in a grid of 100-200 fields of view. After
imaging the E. coli, we moved back to the agarose pad with the
fluorescent beads and imaged beads in thirty-six fields of view. Images
were taken taken using a Nikon CFI Apo TIRF 100x oil-immersion
objective (N.A. 1.49). Fluorescent images were captured using an
Andor iXon Ultra 897 EMCCD camera; phase contrast images were
captured using a Nikon DS-Fi2 camera. Illumination for mCherry
was provided by a Coherent Sapphire 561 nm laser and the exposure
time of the Andor camera was 200 ms with 300 EM gain.

Image analysis was performed using custom python code. In-
tensities were adjusted for illumination differences using the refer-
ence beads and cell intensities have the local background subtracted.
All intensities are given as a fraction of the reference beads intensity.
We estimated the uncertainties in intensities by taking the mean
difference between replicate experiments over the average of these
experiments. This uncertainty was comparable to the uncertainty in
the brightness of our reference beads when we put them on separate
pads of agar next to each other so the uncertainty of our intensity
measurements is likely dominated by the differences in illumination
across a slide or our inference procedure. For a more detailed
description of image analysis see the supplemental file Example_
Microscopy_Analysis.html.

EVOLUTION EXPERIMENTS
Our evolution experiment was done in a TECAN Infinite 200 plater-
eader allowing us to measure the E. coli population in every condition
and replicate every day. The strain was NS001Dcat. The culture
medium used was M9minimal medium supplemented with 0.2% w/v
casamino acids. Antibiotics spectinomycin (100mg=ml) and ampicillin

(100 mg=ml) as well as plus varying amounts of the inducers that
control the point mutation rate in this strain were added as needed.
Cultures were grown in a 48-Well CytoOne plate, nontreated. The
temperature of growth was 30∘ C, and the plate was shaken in orbital
mode with a frequency of 280.8 rpm and an amplitude of 2 mm. A
temperature of 30∘ C was chosen because it is colder than the optimal
temperature of growth for E. coli 37∘ C; we chose a suboptimal
environment for growth because we wanted to see how the process of
evolutionary adaptation to a suboptimal environment depended on
the mutation rate. Every 10 min, the optical density at 600 nm was
measured by the TECAN. Each plate was arranged to have nine
replicates of five mutation rate conditions and three blanks. We call
these mutation rate conditions Low, LoMid, Mid, HiMid, and High.
The mutation rates of each of these conditions and the inducer
concentrations necessary to reach these mutation rates are shown in
Table 1. IPTG controls mutL expression, and anhydrotetracyline
(aTc) controls mutH expression. Cells grew in the platereader for
the entire day except when transferring cells between plates. Each
day, the wells of a fresh plate were filled with 500 ml of fresh medium
and 1 ml of cells from the matching well of the day before. Plating
experiments with the same medium, temperature, and platereader
settings indicated that the initial number of colony-forming units
that started in each well each day after transfer was on the order of
one to ten million (data in ”Estimating NS001 per OD600.html”).
Samples from all wells were frozen every 3 days to allow for
resuming the experiment and other purposes. For the layout of
the conditions and replicates in a plate and further details on
transferring cells from day to day, see Supplemental Information
Figure 1. For a description of growth curve analysis, see the
supplemental file Notebook_Evolution_Experiments.html.

GENOME SEQUENCING
After the evolution experiment finished, twenty wells at two time-
points each were chosen for sequencing. The ancestral strain
NS001Dcat and its ancestor ME121 were also sequenced. For the
evolved strains, samples of the first four replicates from each muta-
tion rate condition (Table 1) were sequenced from day 24 and day
41 (the final day).

For sequencing, all samples were taken from frozen stocks and
grown overnight in 2 mL of LB with 2 mM IPTG and 10 ng/ml aTc.
One sample was grown for each evolved replicate at days 24 and 41,
and one sample of ME121 was grown. Three samples of the ancestor
NS001Dcat were grown to improve coverage and serve as a test of
sequencing and analysis replicability.

Genomic DNA was extracted from the samples using the DNEasy
UltraClean Microbial Kit. Following DNA extraction, a library was
prepared for sequencing using the NEXTERA XT library prep kit

Figure 1 Diagram of the mCherry-mutH construct. mCherry is trans-
lationally fused to the N-terminus of mutH. Both mCherry-mutH and
tetR are expressed from PLTetO1 promoters, meaning their expression is
normally suppressed but can be induced by anhydrotetracycline. The
regulation of tetR expression by TetR proteinmakes the response of the
system to anhydrotetracycline less sensitive (Nevozhay et al. 2009)
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with Nextera XT v2 Index kit A used for the indices of the 44 samples.
DNA concentrations were measured using a Clariostar Plus Micro-
plate Reader. After library clean up and before normalizing, the DNA
was analyzed using an AATI Fragment Analyzer at the Roy J. Carver
Biotechnology Center to measure DNA fragment length and con-
centration. Normalization was performed by following the bead based
normalization steps. Pooled libraries were sequenced with the MiSeq
Reagent Kit v3 (600 cycle) on an Illumina MiSeq in the Center for the
Physics of Living Cells. Data output was FASTQ only.

Data were analyzed using the program breseq; breseq outputs a list
of probable mutations of various types, the sequence evidence for
them, and a statistical estimate of mutation frequency in a sample
(”Deatherage and Barrick ”2014”). All analyses were run in poly-
morphism mode. First the .fastq files of all three samples of the
ancestor were run against the reference sequence NC_000913.3 for
E:coli MG1655 from NCBI with the annotations for the multiple
copies of the yahH gene numbered. The remaining samples used an
annotated sequence of the the genome of NS001 as a reference. This
annotated sequence was made from mutations found by breseq as
compared to the NCBI MG1655 sequence by using the APPLY
command of the gdtools utility in breseq. Each individual sample
of the ancestor NS001 was also compared to the aggregated samples
of NS001, and breseq was run over the aggregate samples again
comparing them to their own reference in order to separate poly-
morphisms in the ancestral population NS001 from fixed mutations.

breseq estimated the coverage of all samples was 30x or greater; all
but two samples had coverage of 50x or greater. Across all samples,
the mean fraction of sequencing reads mapped to the reference was
94% with a minimum of 90% and a maximum of 95%.We considered
the coverage, reads mapped, and quality to be high enough to include
all samples in further analysis.

We used themutation data from breseq to estimate the cumulative
number of single nucleotide polymorphisms (SNPs) as a function of
polymorphism frequency starting from high frequency (fixation)
going to low frequency. We did not count any mutations found in
the ancestor at any frequency for calculations of the cumulative curve
in order to focus on mutations that likely occurred de novo. We also
did not count any mutations found in more than one well since we
believe these were mutations that were present in the ancestor at low
frequency. We cannot guarantee we removed rare mutations (,5%)
present in the ancestor from consideration. We calculated the means
of these cumulative curves across all samples in a given mutation rate
condition to get a smoother estimate of how the the number of SNPs
varies with the mutation rate.

We used the mutation data from breseq to look for signs of
selection in particular genes. We considered each type of mutation
found separately: substitutions, deletions, insertions, and mobile
element mutations. To increase our statistical power and because
all strains evolved in the same environment, we aggregated the
mutations found across all evolved samples but not in the ancestor

for this analysis. Once again, we also did not count any mutations that
were found in more than one well since we believe these were rare
mutations present in the ancestral population. To be conservative, we
calculated the probability of finding the number of unique mutations
found in a given gene to the chance of finding any cluster of mutations
in a segment of the genome of the same length given the total number
of mutations found by breseq and the length of the genome under the
assumption that mutations were equally likely to occur anywhere in
the genome. This probability was calculated by simulation. This
comparison corrects for the multiple comparisons problem of search-
ing the entire genome for genes with multiple mutations.

Data availability
Strains and plasmids are available upon request. Files SNPs.html,
Polymorphisms.html, Microscopy-Analysis.html, and Evolution-
Experiments.html contain code and detailed descriptions of exper-
imental procedures and analyses. Sequence data are available at the
NCBI Sequence Read Archive with accession number PRJNA589707.
Supplemental material available at figshare: https://doi.org/10.25387/
g3.12437177.

RESULTS

Mismatch repair continues to function After
translationally fusing mCherry to mutH
Rifampicin plating tests confirmed that the mutation rate is un-
changed from wildtype after fusing mCherry to the N-terminus of the
native copy of mutH in the chromosome. We compared MG1655 to
MG1655 DmotA mCherry-mutH and ME120 to NS001 at close to
wildtype levels of MutH using a 2-sample Kolmogorov-Smirnov test
and found no significant difference in mutation rate (Table 2)

MutH expression can be varied by two orders
of magnitude
MutH expression levels can be varied from approximately 10 fold
below the level of wildtype expression to 10 fold above the level of
wildtype expression; the expression as a function of inducer concen-
tration is well described by a hill function (Figure 2a). The response is
not sensitive, with a hill coefficient of 1.6.

When the aTc concentration is 1 ng/ml or less, the mean
expression is only distinguishable from zero by averaging over the
intensity of hundreds of cells. The standard deviation of the auto-
fluorescent intensity of the DmutHME121 strain which expresses no
MutH is slightly greater than the mean expression at 1 ng/ml of aTc.
Past this level of induction, however, fluorescence in individual cells
becomes apparent by eye.

n■ Table 2 Effect of translationally fusing mCherry to MutH on the
mutation rate

base strain MG1655 ME120
mutation rate 10· 1029 3 · 1029

95% confidence interval ð5; 18Þ · 1029 ð:9; 6Þ ·1029

strain after mCherry-MutH
fusion

MG1655-mCherry-
mutH

NS001

mutation rate 8 ·1029 2:0 · 1029

95% confidence interval ð3:5;14Þ· 1029 ð:8; 4Þ ·1029

p-value of 2-sample
Kolmogorov-Smirnov test

0.70 0.72

mutation rate affected by
mCherry-MutH translational
fusion

No No

n■ Table 1 Mutation rate conditions for evolution experiment

Condition
Name

Mutation
Rate

95%
confidence
interval

[IPTG]
(mM)

[aTc]
(ng/
ml)

High 2:2· 1027 ð1:6; 2:9Þ · 1027 0 0
HiMid 4:1· 1028 ð2:6; 5:9Þ · 1028 50 0
Mid 1:4· 1028 ð:64; 2:5Þ · 1028 2000 0
LoMid 3:8· 1029 ð1:2; 7:4Þ · 1029 2000 2
Low 1:7· 1029 ð:41; 3:6Þ · 1029 2000 10
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The expression of MutH can be adjusted to vary the
point mutation rate by two orders of magnitude
By adjusting the amount of MutH expressed, we can vary the point
mutation rate from a factor of 3 lower than a complete MutH
knockout to the level of a wildtype. This is a range of point mutation
rates over two orders of magnitude. Across replicate experiments, we
are able to control/measure the point mutation rates in this range to a
factor of approximately 3. The full curve of anhydrotetracycline
concentration vs. mutation rate can be seen in Figure 2b. That no
induction still doesn’t quite reach the mutation rate of a mutH
knockout strain shows the mCherry-mutH construct is still slightly
leaky in expression. However, since NS001 descends from ME121
which expresses mutL from the lac operon in the chromosome, we
found we can affect the mutation rate through the inducer IPTG as
well, allowing us to reach the mutation rate of a DmutH strain.
However, the response curve to IPTG is highly sensitive (Supple-
mental Information - Mutation rate as a function of MutL induction).

Expressing more MutH than the native locus does not
lower the mutation rate
The mutation rate of ME120 was 3 · 1029 with a 95% confidence
interval of ð:9 · 1029;   6 · 1029Þ. The mutation rate of NS001 with
2000 mM IPTG and 100 ng/ml aTc was 2:1 · 1029 with a 95%

confidence interval of ð:6 · 1029;   4:2 · 1029Þ . These mutation rates
are close together and have largely overlapping confidence intervals
indicating little change in mutation rate, even though at this level of
induction, the mean expression of MutH in NS001 exceeds that of the
wildtype by a factor of almost 10.

EVOLVED STRAINS OF E. COLI AT VARYING MUTATION
RATES
Since the evolution experiment was performed in a platereader, we
have curves of the optical density over time for every replicate on
every day. As an example, the optical density over time for the first
replicate of the high mutation rate wells on the first day is plotted in in
Figure 3A, and the derivative of optical density over time vs. the
optical density of the same well is shown in Figure 3D. Initially, all
wells had roughly the same growth curve, as seen in Figures 3B and E.
In the graphs of the derivative of optical density vs. optical density,
there are two linear regions of the growth dynamics and a transition
in between. Up to an optical density of 0.16, optical density grows
exponentially. However, at very low optical densities, the platereader
is not sensitive enough to get goodmeasurements of growth, as shown
by the scatter of points at very low OD in the graphs of the derivative
of optical density. At optical densities above 0.3, optical density
decays toward a maximum at a different exponential rate. This region

Figure 2 a Mean mCherry-MutH ex-
pression as a function of the concen-
tration of the inducer ofmCherry-MutH
expression anhydrotetracycline (aTc).
The green line is the expression of
mCherry-MutH from the wildtype locus
which is not sensitive to anhydrotetra-
cycline (aTc). The red line is the level of
fluorescence measured from a control
strain (ME121) which expresses no
mCherry. The light blue points are
the mean expression measured by
fluorescent imaging. The dark blue
curve is a Hill function plus shift fit to
that data y ¼ A

ð1þðkax ÞnÞ þ C. The param-

eters were A ¼ :22, ka ¼ 42, n ¼ 1:6,
and C ¼ 1:6 · 1023: b The mutation
rate to rifampicin resistance per cell
division as a function of the aTc con-
centration. The red line is the mutation
rate of ME121 which is defective for
mismatch repair. The green line is the
mutation rate of ME120 which has fully
functioning mismatch repair. The light
blue points are data from NS001 at
different levels of aTc induction of
mutH expression. mutL induction was
saturated with 2000 mM of IPTG. The
dark blue curve is a Hill function plus
shift fit to that data y ¼ A

ð1þðkax ÞnÞ þ C.

The parameters wereA ¼ 28:6 · 1028,
ka ¼ :57, n ¼ 2:9, and C ¼ 8:8 ·1028:

c The mutation rate to rifampicin re-
sistance per cell division vs. the expres-
sion of mCherry-MutH. The orange
data are MutH expression and muta-

tion rates of NS001 grown with varying concentrations of aTc. The green data are the expression of MutH from the wildtype locus and the mutation
rate ofME120. The blue curve uses themean expression ofmCherry-MutH from the hill curve fit of expression vs. aTc as x and themutation rate from
the hill curve fit of mutation rate vs. aTc as y.

Volume 10 August 2020 | Tunable Mutation Rate | 2675



is less linear for some replicates later in the experiment. Over the
more than 1000 optical density curves measured, we found that all but
five curves had the same behavior at low optical densities. Such curves
typically do not repeat themselves and show erratic behavior that we
believe is likely to be a transient error from the platereader rather than
a change in the growth of E. coli. As shown in Figure 3F, for all wells
the early exponential phase of growth on the final day of the
experiment is approximately the same as it was on the first day.-
However, we can see in Figure 3F that the behavior of the growth
curves at higher optical densities has drastically changed over the
course of the experiment and has diverged from well to well. Many
wells have lower final optical densities by the end of the experiment.
We will elaborate on these changes below.

The induced mutation rates are stable on the timescale
of the experiment
For this strain to be useful for investigating the effect of the
mutation rate on evolution, it must have a mutation rate that is
reasonably stable over at least hundreds of generations. We checked
that this was the case by performing rifampicin plating tests on
seven of the evolved replicates in the platereader. For four of the
seven wells tested, the inferred mutation rates were within the 95%
confidence intervals of the ancestral strain mutation rate measure-
ment. The two conditions at High and HiMid mutation rates were
just outside the 95% confidence interval of the ancestral strain
mutation rate measurement but within a factor of 2 of the original
mutation rates. This is comparable to when we repeat measure-
ments with the ancestor strain at high mutation rates. Conse-
quently, we believe our confidence intervals underestimate the
true experimental error. Finally, over the course of the experiment
one well spontaneously developed rifampicin resistance. The data

on the mutation rates and confidence intervals for these evolved
strains can be found in Table S4.

Strains evolved in a platereader show changes in the
saturating and possibly lag phases of growth but not in
exponential phase
Over the 42 days of the platereader experiments, we did not observe
large changes in E. coli growth rate in exponential phase from
� :85  hr21 in any conditions for any replicates (Figure 4). Some
replicates showed no change in exponential growth rate while some
showed small decreases in the exponential growth phase. However,
after roughly 15 days, there began to be clear changes in the saturating
optical density at the end of the day and in the growth approaching
that optical density. The cultures also reached the optical density that
separates exponential phase growth from nonexponential phase
growth (OD600 0.16) earlier. We call the time to reach an OD600
of 0.16 ”time to leave exponential phase” because of the shape of the
derivative of optical density as a function of optical density (Figures
3D-F). So even though the exponential phase growth rate was un-
changed, either the lag phase shortened or more cells existed at the
end of saturation phase when the daily transfer occurred. The length
of lag phase is connected to the conditions of the stationary culture
before transfer (Baranyi and Roberts 1994; Jõers and Tenson 2016).
Because we use a supplementedminimal medium, our cells likely only
go through a ”lag 2” phase of growth without cell division (Madar
et al. 2013). Unfortunately, at the initial low optical densities of
inoculation, we are unable to get a good measure of this period from
our growth curves but can conclude that it is less than three hours.
Hence, we cannot use growth curves to distinguish a rise in the initial
number of cell inoculum from a change in lag phase. The time to leave
exponential phase was a noisy measurement, but all wells show a

Figure 3 First row - optical density over time for (A) A single well on the first day of the experiment, (B) All wells on the first day, and (C) All wells on
the last day of the experiment. Second row - first derivative of optical density over time plotted vs. the optical density for (D) the samewell as in A, (E)
the same wells as in B, and (F) the same wells as in C.
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decrease over the course of the experiment. Higher mutation rates
show a larger and faster decrease; this can be seen in the mean value at
a given mutation rate of the time to leave exponential (Figure 5a).
Given that the exponential growth rate of all wells is 0.85, the roughly
1 hr decrease in time to leave exponential in the High mutation rate
condition corresponds to a little over an additional doubling of the
population. In the Low and LoMid conditions, the time to leave
exponential decreases by only half that which corresponds to 1.5
times more population. Thus on average, fitness at transfer and/or in
lag phase increased increasingly quickly at high mutation rates.

The shortened time to leave exponential phase does not corre-
spond to increases in the saturating optical density of each well. We
observed wells where saturating optical density increased or de-
creased over time for several days while time to leave exponential
phase decreased. Because changes in both directions occurred from
the initial growth curves, we interpret the changes in saturating
growth as being correlated with whatever traits were being selected
for rather than being the target of selection itself. Most replicates
initially showed an increase in saturating optical density followed by a
decrease, however some only showed a decrease.

Declines in saturating optical density happen sooner at
the highest mutation rate
Halfway through the experiment, we start seeing significant declines
in saturating optical density in replicates in multiple mutation rate
conditions. However, this occurs the soonest and by far the most
consistently in our highest mutation rate condition. This is seen in the
mean behavior of the saturating optical density across all replicates at
a given mutation rate in Figure 6a or by comparing the changes in
saturating optical density in individual wells in the High 6c and Low
6d mutation rate conditions. Graphs of the saturating optical density
each day for the other conditions are in the supplemental file
Notebook_Evolution_Experiments.html.

Saturating optical density and time to leave exponential
diverge Over time Between replicates at the same
mutation rate
Evolution is a stochastic process, and we find that even in the same
condition, growth does not always evolve the same way. We find that
the divergence between replicates increased over the course of our
experiment for growth rate, time to leave exponential, and saturating
optical density. We quantified the divergence between replicates at a
mutation rate by the coefficient of variation of each growth parameter

on each day. Examining the data in Figures 4b, 5b, and 6b, there is an
overall trend of an increase in all coefficients of variation over time,
but we do not observe obvious trends in how quickly growth curve
parameters diverge from each other with respect to the mutation rate
condition.

GENOME SEQUENCING RESULTS
The mean cumulative number of SNPs starting with fixed mutations
and moving toward rare mutations is plotted for each day and each
mutation rate condition in Figure 7. The increasing slope of the
cumulative graph indicates low frequency single nucleotide polymor-
phisms (SNPs) were more common than higher frequency SNPs or
fixed mutations. Although the High mutation rate condition has the
largest number of SNPs and the HiMid mutation rate condition the
second largest number of SNPs, the mean cumulative number of
SNPs for the remaining mutation rate conditions are fairly tightly
clustered. Additionally, the fold change in the total number of SNPs
between High and Low mutation rate conditions is � 3 even though
the mutation rate fold change is � 130. This can be explained by the
action of selection during the course of evolution. Due to our � 50x
coverage, we use breseqs normal cutoff for polymorphisms calls and
do not call mutations below a frequency of 5%. Since the total
population size in a well at the end of day is on the order of a billion
and the transferred population to the next well is on the order of a
million, only beneficial mutations or mutations linked to them can
reach a frequency as high as even 1%, much less 5%.

Over all genes, we found 825 substitution mutations, 35 deletions,
18 insertions, and 3 mobile element mutations. We only found one
gene which had a cluster of substitution mutations that was statis-
tically significant on the whole genome level. sufB had 8 distinct
mutations and is 1488 basepairs long. This corresponds to a p-value
of � 8 · 1025 under the null hypothesis of 1000 substitution muta-
tions uniformly and randomly distributed in the chromosome. We
found only one gene which had a cluster of deletion mutations that
was statistically significant on the whole genome level as well. sufS had
3 distinct deletion mutations and is 1221 basepairs long. This
corresponds to a p-value of 0.002 under the null hypothesis of
40 deletions uniformly and randomly distributed throughout the
chromosome. No gene had more than one insertion mutation or
mobile element mutation across all samples and so no clustering was
found in these. Notably, 1 of the 18 insertion mutations and 1 of the
3 mobile element mutations were in sufS. Since E. coli have thousands
of genes, and we found so few of these types of mutations, it is

Figure 4 Evolution of the growth rate
in early exponential over time. Slashes
have been placed on the x-axis where
the experimentwas frozen and resumed
later. Blue circles - Low mutation rate;
orange triangles - LoMid mutation rate;
green squares - Mid mutation rate; red
diamonds - HiMidmutation rate; purple
stars - High mutation rate. a Mean
growth rate in exponential phase by
mutation rate condition over time. b
Coefficient of variation of the the
growth rate in exponential phase by
mutation rate condition over time.
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suggestive that in addition to the statistically significant cluster of
deletions in sufS there was also an insertion and a mobile element
mutation, suggesting that there is selective action deactivating suf
gene function.

Because we found a statistically significant cluster of substitution
mutations in sufB, many rarer types of mutations in sufS, and a not
statistically significant cluster of 3 mutations in sufC, we also checked
the significance of the total number of substitution mutations found
across all evolved strains in the sufABCDSE operon. The total length
of the operon is 5513, and across all sequenced samples there were
0 mutations in sufA, 8 in sufB, 3 found sufC, 0 in sufD, 1 in sufS, and
1 in sufE for a total of 13 mutations. Two of these thirteen mutations
were nonsense mutations, which adds another small amount of
evidence for selective action deactivating suf gene function. This
number of mutations in this operon corresponds to a p-value of
� 3 · 1026 which is significant and smaller than the p-value consid-
ering sufB alone. However, differences in statistical significance are
not necessarily statistically significant so we make no claim that the
operon is necessarily more sensibly considered the region of en-
hanced mutation than some of the individual genes on their own.

DISCUSSION
By placingmutH under the control of an anhydrotetracyline inducible
system and translationally fusing it tomCherry, we have measured the
dependence of the mutation rate on the concentration ofMutH protein
and made a strain of E. coliwhere it is possible to continuously vary the
point mutation rate across two orders of magnitude.

We found that over the course of an evolution experiment to adapt
to growth at 30∘ C, changes in growth occurred in all replicates in
saturating optical density and time to leave exponential phase. Time
to leave exponential phase decreased most quickly on average in the
High then HiMid mutation rate conditions. That changes in time to
leave exponential phase were adaptive can be seen by how replicates
reached an optical density of 0.16 more quickly at the end of the
experiment than at the beginning. Saturating optical densities in-
creased over time at first in most replicates then decreased. However,
in the High mutation rate condition, many replicates had a shortened
or nonexistent period of increase in saturating optical density.

From sequencing, we found strong signs of selection in the
sufABCDSE operon. SufS, together with SufE, acts as a cysteine
desulfurase in oxidative stress conditions (Dai and Outten 2012).

That most of the mutations in sufS were insertions, deletions, or
mobile element mutations suggests that the regular functioning of
SufS was deleterious in the environment in which we evolved the
bacteria, although its exact role remains unclear. We also found that
more polymorphisms occurred at higher mutation rates (threefold
more mutation occurred in the high mutation rate condition com-
pared to the low mutation rate condition), but the number of
polymorphisms did not increase nearly as many fold as the difference
in mutation rate between the high and low mutation rate condition
(130-fold). The number of polymorphisms depends upon both the
mutation rate in a population and the distribution of fitness effects
due to mutations. Our strain and data open up the possibility of
experimentally testing models of how the mutation rate affects the
dynamics of the spread of beneficial mutations.

Being able to control mutation rates is important to experimen-
tally investigating evolutionary dynamics. This has important prac-
tical applications because hypermutators are often found in antibiotic
resistant clinical isolates of pathogenic bacteria (Denamur et al. 2000;
Komp Lindgren et al. 2003). (Giraud et al. 2001) found mutators had
an advantage in colonizing mouse guts in an in-vivo experiment;
antibiotics killing bacteria in an environment may leave new niches
for colonization which may explain part of the advantage hyper-
mutators have in environments with antibiotics. Long term chemo-
stat experiments with a continually rising antibiotic concentration
were used to study continuing adaptation to antibiotics by (Toprak
et al. 2011). It would be interesting to see how these dynamics are
affected by changing the mutation rate. Mutators may be selected for
in novel or rapidly changing environments because a larger number
of beneficial mutations will usually be available in an environment an
organism is less well adapted to than one it is already well adapted to.
Novel environments change the balance in linkage between mutator
phenotypes and beneficial mutations vs. linkage between mutator
phenotypes and deleterious mutations. This changes the selection
pressure on the mutation rate because selection on the mutation rate
depends on the distribution of fitness effects due to mutations (Good
and Desai 2016). However, as a population adapts to a new envi-
ronment the frequency of beneficial mutations will likely drop and the
linkage between mutator phenotypes and deleterious mutations
found in the genome even during successful adaptation of mutators
(Couce et al. 2017) will push mutation rates back down in the longer
term once there are not frequent enough beneficial mutations to

Figure 5 Evolution of the time before
leaving exponential phase growth a
The mean time before the optical den-
sity exceeded that of exponential
phase growth (OD600 = 0.16) by mu-
tation rate condition. Blue circles - Low
mutation rate; orange triangles - LoMid
mutation rate; green squares - Mid mu-
tation rate; red diamonds - HiMid mu-
tation rate; purple stars - High mutation
rate. b The coefficient of variation of
the time before the optical desnity
exceeded that of exponential phase
growth by mutation rate condition.
Blue circles - Lowmutation rate; orange
triangles - LoMid mutation rate; green
squares - Mid mutation rate; red dia-
monds - HiMid mutation rate; purple
stars - High mutation rate.
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balance out the accumulation of deleterious mutations. This could be
quantified better by testing a range of mutation rates in experimental
environments. (Luan et al. 2013b) found that different environments
favored different strengths of mutator E. coli when evolving mixtures
of E. coli with plasmids containing various mutations to dnaQ to
develop E. coli with tolerance to various toxic chemicals.

Being able to adjust the mutation rate more easily should make it
easier to test theoretical models of adaptation in large populations like

bacteria (Neher and Hallatschek 2013; Good and Desai 2016).
Adaptation in these models also depends on the distribution of
fitness effects, and in particular the set of fixed beneficial mutations
depends on the mutation rate (Good et al. 2012). The distribution of
fitness effects has been measured in mutation accumulation exper-
iments, by sequencing, and recently by tracking single lineages after a
mutation (Robert et al. 2018). However, beneficial mutations are very
rare and any inference on the size and frequency of their effects using

Figure 7 The mean number of cumu-
lative SNPs for each mutation rate con-
dition. Shading is an estimate of the
standard error of the mean for each
mutation rate condition. Blue - Low
mutation rate; orange - LoMid muta-
tion rate; green - Mid mutation rate;
red - HiMid mutation rate; purple -
High mutation rate. a is on day 24.
b is on day 41.

Figure 6 Evolution of saturating optical
density over time. Slashes have been
placed on the x-axis where the experi-
ment was frozen and resumed later. a -
mean saturating optical density by
mutation rate condition over time. Blue
circles - Low mutation rate; orange tri-
angles - LoMid mutation rate; green
squares - Mid mutation rate; red dia-
monds - HiMid mutation rate; purple
stars - High mutation rate. b - Coeffi-
cients of variation of saturating optical
density by mutation rate condition over
time. Blue circles - Low mutation rate;
orange triangles - LoMid mutation rate;
green squares - Mid mutation rate; red
diamonds - HiMidmutation rate; purple
stars - High mutation rate. c - Saturating
optical density over time for replicates
in the high mutation rate condition. d -
Saturating optical density over time
for replicates in the low mutation rate
condition.
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sequencing of adapting populations will need to account for the
effects of the mutation rate on their fixation described in (Good et al.
2012). Tests of both the model and inferences about the distribution
of beneficial fitness effects could be stronger if the mutation rate in
evolution experiments is varied in a controlled way.

The range of mutation rates that could be reached by tuning could
also be extended by expressing mutant polymerase proofreading
subunits in the cell. (Chou and Keasling 2013) varied expression
of the mutD5 mutant dnaQ polymerase subunit in response to
metabolite production in order to dynamically adjust the mutation
rate downward as E. coli evolved and began producing a desired
metabolite. The errors made by the mutD5 mutation can be partially
compensated for by overexpression of mismatch repair proteins mutL
and mutH (Schaaper and Radman 1989). So a system where expres-
sion of both a defective proofreading subunit and mismatch repair is
adjustable would give control over two multiplicative factors feeding
into the overall mutation rate. This may extend the adjustable range
of mutation rates by a factor of 10 or 100 upwards since some dnaQ
mutants have a mutation rate almost 10,000 times higher than
wildtype (Taft-Benz and Schaaper 1998) whereas our strain can only
reach mutation rates about 100 times higher than wildtype. It may be
possible that overexpression of multiple mismatch repair proteins is
able to drive the mutation rate below wildtype levels even though
overexpressing MutH did not. So by placing mutS and/or mutL under
the control of inducible promoters as well it may be possible to extend
the range of tunable mutation rates downward; (Foster 1999) found
that overexpression of mutS, mutL, or both reduced the number of
reversion mutations of thelac or tet alleles. (Luan et al. 2013a)
adjusted the mutation rate of Clostridium acetobutylicum by altering
mutS and mutL levels, and did not attain lower than wildtype
mutation rates.

We were able to quantify the effect of MutH numbers on the
mutation rate by fusing it to mCherry fluorescent protein. MutS and
MutL can also function when fused to fluorescent proteins, and (Elez
et al. 2012) did this to study their stoichiometry at mismatch repair
sites. Mismatch repair proteins are in a race with DAM methylation
proteins and overexpression of DAM methylation can disable mis-
match repair (Lennen et al. 2016). By tagging the Dammethylase and
putting it under the control of an inducible promoter, the interactions
of the mutSLH proteins and their race with the methylation system
could be observed and the point mutation rate’s dependence on all
four proteins quantified.
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