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ABSTRACT OF THE DISSERTATION

Data-Driven Decision-Making
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Healthcare and Energy Management

by

Saeed Ghodsi

Doctor of Philosophy in Management

University of California, Los Angeles, 2022

Professor Reza H Ahmadi, Chair

Decision-making under uncertainty has been studied for a long time by the operations

management research community. In the past, uncertainty models were often derived based

on domain knowledge. However, the availability of vast amounts of data in the recent years

has shifted interests towards data-driven approaches for uncertainty quantification. More

specifically, statistical models are employed within this framework for characterizing the

uncertain components of a stochastic optimization problem based on historical data.

In this dissertation, we focus on applications of data-driven decision-making under

uncertainty in the healthcare and energy management sectors. The first part of our work

provides a mathematical framework for efficient call assignment under Direct Load Control

(DLC) contracts (i.e. an incentive-based demand-response program that is widely used

by utility firms for balancing the supply and demand of electricity during peak times).

Specifically, we employ a model for forecasting energy consumption and develop a large-scale

integer stochastic dynamic optimization problem. We then propose a novel hierarchical
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approximation scheme for efficient execution of the contracts. We evaluate the quality of

our proposed approach using real-world data obtained from California Independent System

Operator (CAISO), which is the umbrella organization of utility firms in California. A

large utility firm in California has implemented our model and informed us that they have

experienced a 4% additional reduction in their cost.

Following a similar predict-then-optimize methodological framework, the second part of

this dissertation studies data-driven healthcare intervention planning. Specifically, we develop

a continuous-time latent-space Markovian model for describing disease progression based

on discrete-time irregularly-spaced observations. Our model is capable of incorporating the

effect of interventions on progression of disease. We discuss the computational challenges

of parameter estimation for this model and present a novel efficient estimation approach

based on the Expectation-Maximization (EM) algorithm. A population-level optimization

model for intervention planning in the behavioral healthcare sector is then developed using

the fitted disease progression model. Afterward, we present an extension of the model, which

is more appropriate for medical healthcare domains such as cancer maintenance therapy, and

formulate an EM algorithm for estimating the model parameters. Finally, we develop an

individual-level intervention planning problem based on the patient’s historical data using

the estimated model.
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CHAPTER 1

Introduction

In this dissertation, we study two practical problems in the domains of healthcare and

energy management within the data-driven optimization framework. Chapter 2 presents

a large-scale stochastic dynamic programming problem for executing Direct Load Control

(DLC) contracts, and shows that the problem is NP-hard. We estimate the model parameters

by constructing a demand model, and then develop a hierarchical approximation scheme

for solving the optimization problem. In Chapter 3, we deign a population-level healthcare

intervention planning framework for behavioral healthcare settings. As part of the planning

problem, we need to estimate the transition rates between different health condition levels.

To do so, we develop a disease progression model that incorporates the effect of interventions

into the model, and present an efficient algorithm for estimating the parameters. We then

present an extension of the model, which is more appropriate for medical healthcare domains

such as cancer maintenance therapy, and study the individual-level intervention planning

problem based on this model. The common theme between these two research projects is the

predict-then-optimize nature of the problems. The core contribution of the first project is

in efficiently solving the large-scale optimization problem, while the main challenge in the

second project is in designing an efficient algorithm for fitting the prediction model. In the

following, we’ll present a brief overview of the next chapters.

Direct load control contracts are among the most common types of Demand Response

(DR) programs that are proposed by utility firms for controlling peak energy consumption.

Under DCL contracts, the customer agrees to reduce their load at certain times for a specific
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period of time in response to the request of the utility firm. The contract specifies limits on

the total number of times that such requests can be made as well as the total duration of

load reduction on both monthly and annual basis. This research project studies the optimal

assignment problem for the so-called load reduction ”calls”. We assume the customers are

divided into a set of groups, and the utility firm wants to assign a certain number of calls

(with specific beginning time and duration) to each group in a way that the total cost of

energy is minimized under the contractual constraints.

We represent the problem as a large-scale stochastic dynamic programming problem in

which the demand is forecasted using an auto-regressive model. We first prove that even

the deterministic version of the problem is NP-hard. We then introduce a hierarchical

approximation scheme for solving the problem, which includes a monthly resource allocation

problem as well as a within-a-month call assignment problem. Specifically, the aggregate

problem allocates a certain number of calls and hours to each month, and also determines

the corresponding ”threshold” value. To do so, we generate a set of samples and estimate the

parameters of the optimization problem via simulation. For industrial-sized instances, even

solving the aggregate problem is challenging from the computational perspective. Hence, we

relax some constraints by assuming that the remaining calls and hours at the end of each

month cannot be used in the consecutive months. As a result, the approximate aggregate

problem can be represented in terms of the multiple-choice knapsack problem, which can be

solved in a reasonable time. The monthly problem receives the total number of allocated calls

and hours as well as the threshold as its input and assigns the allocated calls to the groups.

The structure of this problem is similar to the original problem, and it can be shown that it

is NP-hard as well. We present a heuristic approach, called scenario-based disaggregation, for

approximately solving the monthly problem.

We construct a lower bound on the original problem for evaluating the performance of

the proposed approximation scheme. Our numerical experiments demonstrate that the error

introduced by this approximation is relatively small (i.e. on average around five percent).

2



Moreover, the total error is around twelve percent. We also show that the algorithm allocates

calls and hours to different groups in a balanced manner. We then perform an in-depth

analysis of risk and discuss how managers can employ threshold as a tool for controlling the

trade-off between the average cost of energy and the level of risk. Finally, we provide an

extension of the model in which the customer compliance is stochastic.

Our research on healthcare intervention planning was originally motivated by observing

the trade-off between allocating the limited healthcare resources for providing care to patients

as needed and an alternative approach which is providing early intervention services. Such

trade-off exits in a variety healthcare settings, especially within the behavioral health sector.

Therefore, we design a framework for population-level intervention planning under resource

and budget constraints. For estimating the transition rates of the planning problem, we

develop a statistical disease progression model that assumes the underlying health state of

the patient is unobserved and employs historical data for estimating the model parameters.

We discuss that parameter estimation based on traditional approaches such as Monte Carlo

Expectation Maximization (MCEM) are computationally challenging for our problem, and

present an efficient estimation algorithm.

Afterward, we present an extended version of the disease progression model in which the

underlying health state is occasionally observed. This model is more appropriate for medical

healthcare domains such as cancer maintenance therapy and heart disease management. In

these contexts, an accurate examination often imposes risk or financial cost to the patient,

and they are done occasionally as a result. We develop an EM algorithm for estimating the

parameters of the extended model. Finally, we discuss how the extended model can be used

for individual-level intervention planning based on the patient’s historical data. To evaluate

the performance of the estimation algorithms, we generate synthetic data and quantitatively

analyze the convergence of the parameters to their true values.

3



CHAPTER 2

An Optimization Framework for Call Assignment Under DLC

Contracts

2.1 Introduction

The demand for electricity varies over the course of a year and during a day. Power generation

and distribution systems are capital intensive, and altering the installed capacity of these

systems takes years. At present, available electricity storage technologies are not commercially

viable at scale [Qdr06, Tem18]. Due to these factors, supply and demand for electricity have

to be matched in real time.

Power-generation technologies vary considerably in generation cost, scale, and ease of

altering the output [Pos15]. Peak periods are defined as time intervals in which the capacity of

primary generators, such as renewable, nuclear, and gas, are not sufficient to meet demand, and

utilities are forced to turn on secondary sources such as diesel or gasoline-powered generators.

The problem with the deployment of secondary electricity sources is that supply costs rise

sharply [Meu14, Pos15] as illustrated in Figure 2.1. According to the U.S. Government

Accountability Office, generating electricity during hot summer days is 10 times more costly

during summer nights. Excessive demand is a common cause of grid failure that can cost

utilities billions of dollars each year.1

Utilities have introduced programs to influence demand patterns and reduce demand

1https://www.sandc.com/en/solutions/reliability
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Figure 2.1: Marginal cost of energy [sei16]

during peak periods [ALW12, FKG12]. Demand response programs are an important subset

of mechanisms that utilities employ to manage electricity demand [PB15, BKT06, FHT09,

DG12, CKS11, AMY10, Wis11, KOK13]. For example, the Los Angeles Department of

Water & Power (LADWP) offers financial incentives to businesses that voluntarily reduce

their energy consumption during DR events.2 Pacific Gas and Electric (PG&E),3 Southern

California Edison (SCE),4 Enel X North America,5 and many other utility firms offer similar

incentive-based DR programs to their customers.

Direct load control contracts (DLCCs) are an important class of incentive-based DR

programs, which permit utility companies to reduce a customer’s energy usage by notifying

them to reduce their consumption by a given amount based on their contracts. According

to the Federal Energy Regulatory Commission, as of 2012, more than 200 utilities across

the U.S. offered some type of direct load control program for residential customers [Com16].

Many utility companies, including LADWP, PG&E, and SCE, offer DLCCs. For example,

2https://www.ladwp.com/ladwp/faces/ladwp/commercial/c-savemoney/c-sm-rebatesandprograms/c-sm-
rp-demandresponse

3https://www.pge.com/en US/residential/save-energy-money/savings-solutions-and-rebates/demand-
response/demand-response.page

4https://www.sce.com/residential/demand-response

5https://www.enelx.com/n-a/en/businesses/distributed-energy/demand-response
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customers who participate in SCE’s Time-of-Use Base Interruptible Program commit to

reduce their energy usage when they receive a notification. SCE can call customers 24 hours

a day, 7 days a week, and 365 days a year. However, the calls are limited to one call per

day up to six hours, 10 calls per calendar month, and 180 hours per calendar year. The

implementation of DLCCs is expected to rapidly expand due to the recent developments in

the Internet of Things technology.

Engineering factors place constraints on how load is shed across the user base [TB11,

BTM12]. As a result, utilities partition customers into a set of identical groups. The

composition of each group ensures the grid engineering constraints are satisfied when the

members of the group shed load. Grouping also enables the utilities to shed load in discrete

increments.

In this research project, we study a class of DLCCs that are executed as follows. At

the beginning of each day, the utility firm must decide, based on forecasts, which groups of

customers, if any, to “call,” and the starting time and the duration for each group called. A

load-reduction episode is referred to as a “call.” The following considerations apply while

assigning the calls: (i) Customers must be informed of the call at the beginning of the day, if

not earlier (some utilities send notification one day/working day in advance); (ii) the length

of a call cannot exceed a predetermined value (L); (iii) a group can be called only once in a

day, no more than k̆m times in month m, and the total number of hours called in the month

cannot exceed h̆m; and (iv) the annual calls are contractually limited to K calls and H hours

for each customer.

Hourly demand in a day is referred to as an energy consumption profile (ECP). Figure

2.2 shows ECPs for the first Mondays of July, August, and November from 2014 to 2016.

The horizontal axis denotes the time of day, and the vertical axis shows the hourly energy

consumption in gigawatt hours (GWh). Note ECPs can have many different shapes; the

shape of the ECPs vary by season, and, in general, each day is likely to have a unique ECP.

Figure 2.3 plots the daily peak consumption for July, August, and November from 2014 to
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Figure 2.2: Comparison of the ECPs of the first Mondays of July, August, and November of
different years (CAISO)
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Figure 2.3: The fluctuation patterns of the peak daily consumption rate in July, August, and
November of different years (CAISO)

2016. We observe variations in the peak loads within a month and across the years for the

same month. Many factors such as weather patterns, hour, and weekday can affect the ECPs.

The problem of determining calls can be formulated as an integer stochastic dynamic

program, where the state space includes the number of calls and hours available for each

group in the current month and the rest of the year and the information needed to forecast

demand over the rest of the horizon. The decision variables are calls, and the objective is to

minimize the total power-generation cost over a one-year planning horizon. This stochastic

dynamic program is extremely difficult, and we prove it is strongly NP-hard. Thus, we

develop an approximation approach and test its performance on real data from CAISO.
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We employ a hierarchical approximation approach, which consists of an annual problem

and monthly problems. We incorporate a reduce-to-threshold policy (or threshold policy for

short), an important managerial consideration of a major utility firm that we collaborated

with. This firm requires a threshold level for each month. If the consumption is expected to

exceed this threshold, it should be reduced to the threshold. This policy is motivated by the

utility company’s desire to diminish the need to frequently change the supply capacity. In

addition, we show this policy has desirable optimality and computational properties.

We performed extensive numerical experiments using real data from CAISO to demonstrate

the value of our solution approach. We found the error of our approach, measured against a

lower bound, is, on average, 12.03%. More importantly, we found our solution approach can

reduce cost by 3.11%, on average, and as much as 4.70%. Given the capital-intensive nature

of this industry, such savings would enable utility firms to free up financial resources for future

investments and offer incentives to motivate new customers to enroll in such DR programs.

Additionally, we performed various sensitivity analyses related to customer preferences for

the frequency and duration of calls, and obtained insights on the trade-off between reducing

cost and customer preferences. Our partner utility firm notified us our model resulted in an

additional 4% reduction in cost, relative to the firm’s prior practice.

The remainder of the chapter is organized as follows. §2.2 provides a literature review.

§2.3 formally models our integer stochastic dynamic problem, and presents our hierarchical

modeling approach, which consists of a master problem, referred to as the aggregate monthly

problem (AMP), and a subproblem, referred to as the within-a-month problem (WP). We

also establish the computational complexity of our problem and introduce a lower bound

to measure the quality of our solution approach. §2.4 and §2.5, respectively, present our

analysis of AMP and WP. In §2.6, we provide the setup for our numerical experiments, and

demonstrate the quality of our approximation on simulated and real data. We also describe

our data collection and forecasting ECPs, and compare our approach with the prior practices.

§2.7 extends our models and incorporates stochastic customer compliance behavior. §2.8

8



concludes the chapter.

2.2 Literature Review

Our work is related to the literature on operational issues on the energy industry and, in

particular, in electric systems. Several papers in this literature focus on operational issues

in the supply side of the electricity market. For example, [ACW17] study the impact of

intermittent renewable power generation on supply-function competition among conventional

power generators. [SB19] analyze a supply-function competition between conventional and

renewable firms in a day-ahead electricity market, and prove that imposing or increasing a

market-based undersupply penalty rate can lead to lower equilibrium reliability in all periods.

[SS21] study the effects of rooftop solar panels on utility profits and social welfare under net

metering and find that, contrary to the common belief, the net-metered distributed generation

can strictly improve the utility’s expected profit.

A vast and growing literature addresses various aspects of demand-side management by

utility firms [VZV14]. Within demand-side management, DR instruments focus on reducing

electricity consumption during peak periods, either by dynamically varying the price of

electricity based on time of use or by offering incentives to customers, who reduce their

consumptions when the system operator requests. For a literature review on DR programs,

refer to [AA13, Sia14, DYC15, HSE16, SSS16]. Related to the dynamic pricing of electricity,

[KO02] present a new contract form for the supply and procurement of interruptible electricity

that bundles simple forwards with exotic call options. [BKT06] consider interruptible pay-

as-you-go and pay-in-advance contracts that allow an electricity retailer to interrupt an

“industrial” customer’s load. They focus on deriving the optimal aggregate load interruption

under each of the contracts and assume the number of industrial customers is so large that the

retailer’s interruption actions will not be restricted by individual constraints on the number of

interruptions. [PB15] study the repeated interaction between peak producers with uncertainty
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in their short-term revenues and market power and characterize the conditions under which

peak producers can implicitly coordinate to achieve high prices. In their framework, the

firm’s demand is determined by the customer’s adaptability cost and a measure of how far

the ambient environment deviates from the customer’s desired level.

An extensive literature on mechanism design and efficient rationing focuses on the design

of incentive mechanisms that induce customers to reveal their preferences for load control

options, which guide the design and practice of load-control contract. Under such mechanisms,

customers can, for instance, prioritize segments of their loads or controllable devices at their

premises and be compensated accordingly. [CW87], [CO16], and [PBF13] are some examples

of such approaches. In this research project, we primarily focus on optimally implementing

these contracts.

Utilities use DLCCs to directly control customers’ electricity consumption. The literature

on DLCCs is scarce [PD11, RV08, RCO09, WWG10]. [FDA22] develop an aggregation-

disaggregation approximation for implementing a class of DLCCs and show it is asymptotically

optimal as the length of the contract horizon grows. Our work is different because (i) we

have monthly constraints on the number of calls and hours assigned to each group, and (ii)

our partner utility requires that load reduction occurs such that the consumption profile

is reduced to a threshold. The approach proposed by [FDA22] does not apply to DLCCs

with these two features. In addition, we test the quality of our solution approach on a data

from CAISO and a large utility firm in California. We show that, relative to the firm’s prior

practice for managing the peak load, our approximation approach can significantly reduce

the firm’s total cost.

Our problem that assigns calls to customer groups to flatten the ECPs has some similarities

with the online stochastic bin packing problem with cardinality constraints [BBD20], in which

items (calls) of unknown sizes randomly arrive and must be assigned to various bins. The

number of items and the total size of the items assigned to a bin cannot exceed the capacity

and the maximum number of items allowed in each bin. Our problem is different because

10



(i) we must determine the length of the calls (size of the items), (ii) at most one call can be

assigned to a group in a day, and (iii) we have monthly limitations on the calls and hours

assigned to each group.

Given the complex nature of our problem, we develop a hierarchical approximation

approach that assigns calls to participating customer groups on a daily basis. We also develop

a lower bounding procedure for the total cost. We test the performance of our approach using

real data and show that the gap between our solution and the lower bound is reasonably small.

Moreover, we report the results of our collaboration with one of the utilities in California that

is currently in the process of fully implementing our approach. We show that our solution

approach significantly reduces total system cost compared to the policy that is currently used

by our partner utility.

2.3 Model Formulation

The problem of determining calls each day, denoted by P, can be formulated as

(P) vm,d(X,Y,k
◦
m,h

◦
m,Ωm,d) = min{ϕm,d(k,h,Ωm,d)

+ E[vm,d+1(X− k,Y − h,k◦
m − k,h◦

m − h, Ω̃m,d+1)]}, (2.1a)

s.t. k ≤ min{X,k◦
m}, (2.1b)

h ≤ min{Y,h◦
m}, (2.1c)

where vm,d(·) denotes the expected future cost starting from day d ∈ {1, . . . ,Dm} of month

m ∈ {1, . . . ,M} until the end of the horizon. The optimal value of P is v1,1(K,H, k̆1, h̆1,Ω1,1),

where vectors K and H are of size G (number of groups), with all elements equal to K and

H, respectively, representing the annual limits on the calls and hours for customer groups.

Similarly, all elements of vectors k̆m and h̆m are respectively equal to k̆m and h̆m, representing

the monthly contractual limits on calls and hours. Let Ωm,d represent the latest information
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available to forecast ECPs over the rest of the horizon. Vectors X and Y denote the number

of calls and hours left for each group based on the annual contractual limits, vectors k◦
m and

k◦
m denote the number of calls and hours left for each group in month m at the beginning of

day d, and vectors k and h are decision variables and denote the number of calls and hours

deployed on day d of month m for each group (elements of k are either 0 or 1). Stage cost

ϕm,d(·) is the total cost on day d of month m. The expectation in (2.1a) is with respect to

future demand. Constraints (2.1b) and (2.1c) ensure the monthly and annual limits on the

number of calls and hours are not violated (min{·} in (2.1b) and (2.1c) is element-wise).

Note on the first day (d = 1) of each month m, we set the monthly remaining calls and

hours k◦
m and h◦

m to their contractual limits k̆m and h̆m, whereas X and Y carry over from

the last day of the previous month. To simplify our presentation, we do not show these

features in model P.

Problem P is a large-scale intractable integer stochastic dynamic program. Next, we show

that even when ignoring the stochasticity, the problem is still strongly NP-hard (Appendix

2.9 provides a mathematical model for the deterministic version of P).

Proposition 1 (NP-Hardness). The deterministic version of P

(a) is NP-hard when the number of groups is 2,

(b) is strongly NP-hard when the number of groups is large, and

(c) when the number of groups is large, even the last-day problem is strongly NP-hard.

All proofs are in Appendix 2.10. Our reductions to prove Proposition 1 satisfy the

threshold policy. Thus, as a corollary, even when we impose a threshold policy on P, it remains

strongly NP-Hard. Our numerical experiments indicate only toy sizes of P can be solved in

a reasonable time. Therefore, we propose a hierarchical approximation method to solve P.

§2.3.1 provides an overview of our approximation. §2.3.2 presents a lower bound for problem

P to measure the total error of our approach.
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Problem P:  Solved daily
Objective:  Minimize energy costs over the planning horizon
Constraints:  
• Annual and monthly limits on calls and hours
• No more than one call per day 
• Limit on call duration

Approximation Method

AMP:  Solved monthly

Key features:
• Groups aggregation
• Threshold policy
Decisions:
• Monthly aggregate limits on calls and hours
• Monthly threshold level

WP (within-a-month problem): Solved daily

Key features:
• Inputs are monthly decisions from AMP
• Scenarios for the next few days
• Threshold policy
Goals:
• Meet monthly threshold level
• subject to constraints from AMP

Solution Technique
Step 1 – Simulations:
For each month, for each combination of calls and 
hours, use simulations to estimate:
• Optimal threshold level 
• Expected monthly costs
• Distribution of unused calls and hours

Step 2 – Solve AMP:
• For small problems, solve AMP optimally
• For large problems, solve approximation KMP

Objective: 
• Minimize expected wastage of calls and hours 

over the rest of the month
Decisions:
• Assignment of calls to groups
Constraints:
• Threshold level 
• Calls and hours constraints 

Figure 2.4: Overview of our approximation method

2.3.1 Approximation method

Our approximation method consists of two major components (Figure 2.4). The first

component, referred to as the aggregate monthly problem, considers the entire planning

horizon, and aggregates the groups and the days in each month. The second problem, called

the within-a-month problem, considers a month as its horizon and determines the calls to be

made each day. Decisions made by AMP are constraints for WP. Our approximation is akin to

hierarchical approaches to solving production planning problems, which have effectively solved

complex practical problems [BHH82, NL92]. At the “master level” (i.e. AMP), we allocate

calls and hours to each month, taking into account the monthly and annual contractual limits,

and determine the monthly threshold levels. The “operation level” (i.e. WP) determines the

call for each group on a daily basis, while incorporating the decisions made by the master

problem. In the following, we provide an overview of AMP and WP.
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2.3.1.1 Aggregate monthly problem

AMP has the following key elements: (i) We reduce the state space by aggregating the

groups and creating a “super group,” where the calls and hours available to each group are

summed and assigned to this super group; (ii) we reformulate the annual problem in terms of

monthly problems; (iii) we employ a threshold policy to compute the monthly costs; that

is, we compute a target threshold for each month, and each day, we schedule calls so as to

reduce the ECP to this threshold; and (iv) at the beginning of each month, we re-optimize

AMP on a rolling-horizon basis. AMP is

(AMP) Vm(X, Y,Ωm) = min{Φm(k, h,Z,Ωm) + E[Vm+1(X − k̃, Y − h̃, Ω̃m+1)]},

(2.2a)

s.t. k̃ ≤ k ≤ min{X,Gk̆m}, (2.2b)

h̃ ≤ h ≤ min{Y,Gh̆m}, (2.2c)

where Φm(·) is the expected cost incurred in month m under forecast information Ωm, given k

and h available calls and hours, respectively, in the month, and while employing threshold Z.

The decisions made at the monthly level are k, h, and the threshold Z. These three decision

variables are scalars for a given month. Random variables k̃ and h̃ denote the number of calls

and hours actually used in the month, determined by the demand realization over the month.

The optimal value of AMP is V1(GK,GH,Ω1). We discuss the key features of AMP below.

Groups aggregation. In AMP, state-space aggregation simplifies the problem by reducing

the monthly decisions to three scalars. Theorem 2 in §2.4.2 establishes a worst-case error

bound for the deterministic version of AMP. Our numerical experiments in §2.6 indicate the

error of aggregating groups is small.

Reformulating P in terms of monthly problems. An important aspect of AMP is that

it focuses on monthly decisions. We decided to focus on monthly analysis for three reasons.
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First, the contractual terms stipulate monthly limits on calls (k̆m) and hours (h̆m). AMP sets

limits on the number of monthly calls (k) and hours (h), which may be less than the monthly

contractual limits. These decision variables are not present in P. Second, energy-consumption

patterns are seasonal and include a significant monthly component. Extended forecasts

beyond a few weeks are largely independent of the current state and depend on historical

patterns for that time of the year. Third, month is also a suitable unit of analysis for

procurement planning purposes. Utilities are concerned with the peak demands in a month,

which also justifies employing the monthly threshold levels.

Threshold policy. The industry practice of using a threshold-type policy is motivated

by the following advantages. First, on the supply side, utilities commonly need to provide a

monthly target plan to their suppliers. Second, a threshold-type policy flattens the demand

by reducing the consumption during peak periods. Third, besides the above practical and

managerial benefits, a threshold-type policy is also desirable from the view of optimality and

computational effectiveness. Given that the cost curve is convex increasing in the height of

the energy consumption profile, reducing higher levels of an ECP is clearly preferable.

Overall, our approximation AMP reduces some of the computational burden and has

the flexibility to adapt to forecast changes. Aggregating groups facilitates determining the

monthly threshold levels and the monthly calls and hours requirements, while considering

the needs over the entire planning horizon. The threshold policy, besides being intuitively

appealing, simplifies the daily and monthly problems (ϕ(·) and Φ(·)). AMP also allows us to

incorporate forecast revisions. The daily problem takes into account the latest forecast and,

by resolving AMP each month, we incorporate forecast updates at a monthly level.

Next, we provide an overview of our approach to solving AMP (see §2.4 for details).

1. We use simulation to determine the expected cost Φm(·) for each month and each

possible value of h, k, and threshold level Z. These simulations also provide an estimate

of the distribution of the number of calls and hours that will remain unused at the
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end of the month. These inputs are sufficient for solving AMP. Our numerical study

indicates only medium instances of AMP can be solved in a reasonable amount of time.

Thus, for large instances, we develop an approximation of AMP.

2. We approximate the value function of AMP by ignoring the overflow of unused calls

and hours. The resulting approximation of AMP, referred to as KMP, has a nice

structure. KMP uses the expected monthly costs Φm(·), obtained from our simulations,

and approximates the objective function values of AMP by setting the unused calls

and hours ([k − k̃]+ and [h− h̃]+) to zero. KMP has the structure of a multiple-choice

knapsack problem, and its objective function only contains the monthly cost functions

Φm(·). Furthermore, our analysis revealed the monthly cost functions Φm(·) are nearly

convex. Remarkably, large industrial instances of KMP are solved in a reasonable time.

Theorem 3 in §2.4.3 analyzes the properties of KMP.

3. In our simulations, we need to repeatedly solve the daily problems ϕ(·) to determine the

expected monthly costs Φm(·). Because we are restricting solutions to threshold-type

policies, the daily problems minimize the calls and hours needed each day to lower the

energy-consumption levels to the given threshold. The daily problems are solved many

times in the course of simulation; hence, they must be solved efficiently. We present a

polynomial-time procedure for optimally solving these daily problems in §2.4.1.

2.3.1.2 Within-a-month problem

AMP (KMP) determines the threshold level for and the total number of calls and hours that

are available in a month. These calls have to be allocated among the G groups to minimize

costs in the month, while respecting the contractual limits for each group. Our allocation

problem is more difficult than the stochastic bin packing problems [BBD20]. Thus, we design

another approximation method, called the within-a-month problem, to deploy calls to groups

on a daily basis. WP employs a scenario-based rolling-horizon approach, and has the following
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key features.

1. We simplify the problem by truncating the horizon. Typically, demand can accurately

be forecast for the focal day. For the next few days, demand forecasts have greater

uncertainty. Nevertheless, over a horizon consisting of a few days, we can assign

likelihoods to alternate realizations. Beyond this small horizon, forecasts resemble what

is broadly expected for the month and lack any additional refinements. We assume

demand is independent and identically distributed outside a short horizon of a few days.

Our scenario-based approach is based on this structure of the forecast evolution.

2. We present a heuristic procedure for solving WP, referred to as HWP, which focuses on

minimizing the expected number of hours that remain unused at the end of the month.

Under the threshold policy, the number of hours used is approximately proportional to

cost reduction. The ability to utilize the hours is constrained by calls. Thus, a poor

allocation of calls to groups may result in some groups running out of calls although

they may have hours. HWP, which is solved each day, attempts to mitigate such losses.

2.3.2 Lower bound for problem P

We use a lower bound (LB) to measure the total error of our approximation. The LB is

obtained by relaxing the constraints on the number of calls while retaining the constraints on

hours. We also allow a customer to be called more than once in a day; that is, we ignore the

constraints on the continuity of calls. Moreover, we evaluate LB on observed realizations.

Our LB for problem P is

LB := E


min∑

m,d,t Rmdt≤Gmin{H,LK},∑
d,t Rmdt≤Gmin{h̆m,Lk̆m}, ∀m,∑

t Rmdt≤GL, ∀m, d,
Rmdt∈{0,1,...,G}, ∀m, d, t,

{∑
m,d,t

fmdt (r̃mdt −Rmdt)

}

.

17



The expectation is over the annual consumption {r̃mdt}m,d,t. For a given annual consumption,

Rmdt denotes the amount of reduction in consumption during period t in day d of month

m. To compute the LB through simulation, for each testing realization, we obtain the

optimal Rmdt’s that minimize the deterministic optimization problem inside the expectation.

For a given realization, the optimal solution is found by assigning Gmin{H,LK} units of

consumption reduction to some periods with the largest cost-reduction over the horizon. This

procedure is performed in O(GHMDmT ) for each testing realization (assuming H ≤ LK).

Therefore, the time complexity would be O(QGHMDmT ), where Q denotes the number

of testing realizations. Note the LB does not impose the threshold policy, and hence, the

errors measured based on this bound incorporate all errors in our approximation, including

the errors due to (i) imposing monthly decisions, (ii) restricting solutions to threshold-type

policies, (iii) aggregating groups, and (iv) approximately solving WP. Although this bound

relaxes two key constraints and is an ex-post optimization, we find the total error of our

approximation method, measured against this bound, is small.

2.4 Aggregate Monthly Problem: Solution Methodology

Our dynamic programming problem AMP requires as input, for all possible combinations of

calls (k), hours (h), and thresholds (Z), (i) the expected monthly costs Φm(·) and (ii) the

distribution of the number of calls and hours used in each month (h̃ and k̃). We estimate

these inputs using Monte Carlo simulations. We run one set of simulations for each month,

for each combination of monthly allocations of calls and hours, and for each threshold level.

Our simulations for each month consist of the following steps:

1. We simulate the ECPs of the days in the month using the historical distribution of the

ECPs.

2. For the simulated month, for each combination of monthly allocations of calls and hours,

and for each potential threshold level, we compute the daily costs, monthly cost, and
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the number of calls and hours that are used in the month.

3. Each day, for each combination of k, h, and Z, we solve a daily problem, denoted by

DLP, to compute the daily cost. DLP reduces the ECP of the day to the given threshold

subject to the availability of calls and hours. By solving DLP, we introduce at most G

calls in a day, where each call’s duration is at most L. Details are available in §2.4.1.

For each combination of h, k, and Z, a simulated month provides a single estimate

of Φm(·), h̃, and k̃. We simulate each month 300 times in our numerical experiments. A

computational burden stems from DLP, which determines the day cost ϕ(·). We need to solve

DLP millions of times; in each iteration, we need to solve DLP for each day of the month,

for each combination of h and k, and for each potential threshold level. Next, we present a

mathematical model for DLP and an efficient procedure for solving it (§2.4.1), a theoretical

and numerical analysis of approximating P by AMP (§2.4.2), and our solution procedures for

AMP and its approximation KMP (§2.4.2 and §2.4.3).

2.4.1 Daily problem (DLP) and its solution

For a given ECP, the area above any given threshold is fixed, and hence, we do not have

any latitude in the number of hours needed to lower the ECP. Therefore, DLP reduces to a

problem that minimizes the number of calls needed to implement the threshold policy.

Let rmdt denote the power-consumption level during period (hour) t of day d in month m.

Given rmdt, for t = 1, . . . , T , and a threshold level Z, the total number of hours that have to

be chopped off in day d is fixed and computed as ĥmd :=
∑T

t=1[rmdt − Z]+. Therefore, we

need to find the minimum number of calls, denoted by k̂md. Let J be a known upper bound

on the value of k̂md. There are J potential calls, and we aim to determine these calls’ starting

times and durations. Let binary variable yjt take a value of 1 if the jth potential call starts

at period t, and 0 otherwise. Moreover, let binary variable xjt take a value of 1 if the jth
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potential call is active during period t, and 0 otherwise. DLP is

(DLP) k̂md := min
J∑
j=1

T∑
t=1

yjt (2.3a)

s.t.
J∑
j=1

xjt = [rmdt −Z]+, ∀t, (2.3b)

T∑
t=1

xjt ≤ L, ∀j, (2.3c)

yjt ≥ xjt − xj,t−1, ∀j, t ≥ 2, (2.3d)

yj1 ≥ xj1, ∀j, (2.3e)

T∑
t=1

yjt ≤ 1, ∀j, (2.3f)

xjt, yjt ∈ {0, 1}, ∀j, t. (2.3g)

The objective function (2.3a) minimizes the total number of calls in day d. Constraint (2.3b)

reduces the load to Z.6 Constraint (2.3c) ensures the duration of each call does not exceed L.

Constraints (2.3d)-(2.3f) guarantee the continuity of calls.7

A real instance of DLP may have more than 1,000 binary variables. Solving DLP efficiently

is essential, given that commercial solvers cannot solve millions of integer programs in a

reasonable amount of time. We present a procedure, given in Algorithm 1, that finds an

optimal solution for DLP in O(JT ). This procedure finds the minimum number of calls to

reduce the load to Z in day d. The while-loop creates calls until the threshold Z is achieved.

The starting time of a call is the earliest time that load level exceeds Z (line 2), and the call

is active until either the length of the call is L or the load level starts reducing (line 3). In

line 4, the new call (determined in lines 2-3) is output, and the ECP is updated in line 5.

6For ease of presentation, we assume each active call reduces the load by one unit. To relax this assumption,
one needs to multiply the left-hand side of constraint (2.3b) by an appropriate coefficient.

7If reducing the load to Z by at most G calls is not possible, the solution of DLP will produce more than
G calls. In this case, one could select any G calls from the set of produced calls.
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Theorem 1 shows Algorithm 1 finds an optimal solution for DLP in a polynomial time.

Algorithm 1: Finding an optimal solution for DLP

1 Let r̄t := rmdt, for t = 1, . . . , T , and r̄T+1 := Z
2 while ∃ ts := min{t| 1 ≤ t ≤ T, r̄t > Z} do
3 Define te := min {ts + L− 1, min{t| ts ≤ t ≤ T, r̄t > r̄t+1}}.
4 Introduce a call with start and end times ts and te (inclusive).
5 Update r̄t := r̄t − 1, for all ts ≤ t ≤ te.

Theorem 1 (Optimality and Efficiency of the DLP Procedure). Algorithm 1 finds an optimal

solution for DLP in time complexity of O(JT ).

Thus, our procedure optimally solves DLP, and its time complexity is linear in the number

of periods T . Theorem 1 is valuable because it enables us to optimally solve millions of

instances of DLP in a reasonable amount of time. As discussed earlier, the threshold policy is

a heuristic policy, and our numerical experiments verify its high quality; however, theoretically,

its worst-case error can be arbitrarily bad. Finally, the outputs of our DLP procedure and

the monthly expected costs Φm(·) are inputs for solving AMP (KMP), as we describe next.

2.4.2 Analysis of AMP and a dynamic programming procedure

Our simulation procedure described above provides us with the information needed to solve

AMP as a finite-horizon stochastic dynamic program. The computational time complexity

of this procedure is O(MG6h̆2mk̆
2
mHK), recalling that h̆m and k̆m are the maximum number

of calls and hours allowed per month per group, and H and K are the annual limits. Our

numerical study indicates medium-size instances, with group sizes less than six, can be solved

exactly using this dynamic programming procedure. However, large industrial instances (e.g.,

with 20 groups and annual limits of 100 calls and 180 hours per group) can’t be solved in a

reasonable amount of time. Therefore, in §2.4.3, we present an approximation of AMP that

is suitable for large instances.
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Before proceeding, we present an analysis of approximating P by AMP. This step of our

approximation introduces an error because groups are aggregated, referred to as groups-

aggregation error. Below, we present a worst-case bound for this error, for a deterministic

special case of our problem.

Theorem 2 (Groups-Aggregation Error). Let v′ and v′′ denote the optimal values of the

deterministic special cases of P and AMP, respectively, without restricting solutions to

threshold-type policies. The gap between these optimal values satisfies:

0 ≤ v′ − v′′ ≤ δG

(
ML+min

{
ML,

(
M∑
m=1

h̆m

)
−H

})
,

where δ is an upper bound on the increase in cost if a one-hour call to a group is canceled at

any time.

Theorem 2 provides an absolute worst-case error for the groups aggregation. We measured

this error using various sets of practical parameters. The relative value of this worst-case

error ranges roughly from 30% to 55% (with respect to saving). However, our numerical

experiments in §2.6 show the amount of error introduced by aggregating groups is considerably

smaller.

Approximating P by AMP introduces another error because of restricting the solutions to

the threshold-type policies; that is, each day, we schedule calls so as to reduce the ECP to a

target threshold (recall a third type of error is introduced due to imposing monthly decisions).

Our numerical results in §2.6 indicate the relative error is on average less than 7.76%.

Thus far, we have provided an analysis of the errors of approximating P by AMP, and

argued a dynamic programming algorithm can solve medium-size instances of AMP. Next, we

present an approximation of AMP, which enables us to solve large instances in a reasonable

amount of time.
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2.4.3 Multiple-choice knapsack approximation to AMP: KMP

At the beginning of each month m, AMP allocates calls (k∗m) and hours (h∗m) to the month

and sets a threshold level (Z∗
m). These decision variables determine the expected monthly

costs Φm(·) and the distributions of the unused calls and hours from the allocation at the end

of the month. The resources (calls and hours) that are allocated to a month are optimized by

considering the expected future value of these resources. Calls and hours available beyond

month m depend on k∗m, h
∗
m, and the unused resources left at the end of month m. One

source of complexity in AMP is these unused calls and hours. In our approximation KMP,

we assume these random variables are zero, which significantly reduces the computational

burden and allows us to solve industrial-size instances of KMP in a reasonable time.

Before examining properties of KMP, we discuss the reason we chose this approximation.

We conjectured that the saving derived under AMP and KMP are likely to be very similar

based on the following intuitive arguments. First, because AMP accounts for unused resources,

at the beginning of the horizon, its key decision variable is the threshold level (Z∗
m). AMP

can be liberal with resource allocation, recognizing the threshold level will dictate the usage

in the focal month and the overflow into the next month. On the other hand, KMP has to

carefully match the threshold level and the calls and hours allocated to a month. In KMP,

the only decision variables are calls (k) and hours (h) allocated to a month. These decisions

determine a threshold that leads to the minimum cost for the allocated resources. Thus,

we conjectured that in the early parts of the horizon, KMP and AMP may differ in their

resource allocations but will set similar threshold levels, and hence, they will use similar

amount of resources. Towards the end of the horizon, we expected AMP and KMP to also

match on the resources allocated. Second, by assuming that in KMP the allocated resources

(k∗m and h∗m) are consumed in the month, we are introducing an error in the expected value of

using these resources. Interestingly, this error applies to all possible values of resources, and

hence, although the expected costs are incorrectly computed in KMP, to the extent that the

same error is made across all combinations of calls and hours, the savings obtained in each
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month by AMP and KMP may be the same. Third, although we ignore the unused resources

when solving KMP, we incorporate any unused resources when we re-solve the problem every

month. Our above conjectures were confirmed by our numerical experiments on medium

instances, which indicated the difference between the optimal values of AMP and KMP is

less than 8.33% and, on average, 5.14% (see §2.6).

We explore the structure of KMP. Because we assume all allocated resources are consumed

in any month, the resulting optimization problem can be represented as the problem of

selecting a policy among the set of policies for each month while being mindful of the

yearly allocation of calls and hours. This problem can be formulated as a two-dimensional

multiple-choice knapsack problem. We show it can be solved effectively due to its special cost

function.

We present a mathematical model for KMP. Recall we use simulations to estimate the

expected monthly costs Φm(·), for all m, k, h, and Z. If we ignore the overflows from one

month to the next, for each combination of h and k, we can pick a threshold level Z that

minimizes the monthly cost. As a result, for ease of exposition, in this section, we denote the

expected monthly costs by Φm(k, h). For each month m, and for some values of k and h, let

pm,i denote the triple (k, h,Φm(k, h)) and let pm,i,ȷ denote the ȷth element of this triple. Each

month has Nm = (Gk̆m + 1)(Gh̆m + 1) triples. Furthermore, let Pm := {pm,1, . . . ,pm,Nm}.

KMP is a two-dimensional multiple-choice knapsack, where the points pm,i are analogous to

the items in a knapsack problem that are partitioned into M subsets P1, . . . ,PM, and exactly

one item must be selected from each subset. Selecting item pm,i utilizes the two resources

(annual calls and hours), and the amounts of resource utilization are given by the first two

elements of the vector pm,i. The third element of pm,i corresponds to the objective coefficient

in the knapsack problem. KMP is formulated as

(KMP) min
M∑
m=1

Nm∑
i=1

pm,i,3νm,i (2.4a)
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s.t.
M∑
m=1

Nm∑
i=1

pm,i,1νm,i ≤ GK, (2.4b)

M∑
m=1

Nm∑
i=1

pm,i,2νm,i ≤ GH, (2.4c)

Nm∑
i=1

νm,i = 1, ∀m, (2.4d)

νm,i ∈ {0, 1}, ∀m, i. (2.4e)

Constraint (2.4d) ensures exactly one point is selected for each month from the set Pm; that

is, we pick one (k, h) pair for each month, satisfying 0 ≤ k ≤ Gk̆m and 0 ≤ h ≤ Gh̆m.

Constraints (2.4b) and (2.4c) enforce the annual calls and hours constraints, respectively,

recalling the first and second entries of the selected points represent the number of calls and

hours. The objective function minimizes the sum of the third entries of the selected points,

representing the total expected cost over the contract horizon.

The constraints and objective function of KMP have desirable features. We first explore

the constraints. In addition to the binary constraints (2.4e), KMP has M generalized upper-

bound constraints (2.4d) and two knapsack constraints (2.4b)-(2.4c). In the LP relaxation of

KMP, denoted by KMP◦, the binary constraints are redundant and can be dropped, leaving

M+ 2 constraints. Hence, in KMP◦, at most M+ 2 non-zero variables exist that must sum

up to M. This observation implies at least M− 2 decision variables will be 1 and at most

four decision variables will be fractional.

The objective function of KMP consists of the expected costs Φm(k, h). The value of

Φm(k, h) is monotone non-decreasing in k and h. Although Φm(h, k) is not fully convex, our

numerical analysis indicate it is approximately convex. For example, the left graph in Figure

2.5 depicts the points in Pm for a small instance with G = 5, k̆m = 2, and h̆m = 5. We have

connected these points to provide a visualization of the cost function (this step is akin to

assuming calls and hours take continuous values). Note the values have been scaled to [0,1]
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Figure 2.5: A monthly expected cost function (a) and its lower convex envelope (b)

to provide an improved visual illustration.

We next formalize the relationship between KMP and its LP relaxation KMP◦. We

show that under some conditions, KMP◦ solves KMP. Let p◦
m :=

∑Nm

i=1 pm,iνm,i denote the

selected point for month m in the optimal solution of KMP◦. Recall the elements of p◦
m

are respectively the number of calls (p◦m,1), hours (p
◦
m,2), and cost (p◦m,3) for month m. The

objective function forces p◦
m to lie on the lower envelope of the convex hull generated by

the set Pm. Let conv(Pm) denote the convex hull of Pm. The lower envelope of conv(Pm) is

defined as

Em : [0, Gk̆m]× [0, Gh̆m] → R, Em(pm,1, pm,2) = min {pm,3 | pm ∈ conv(Pm)} .

The right graph in Figure 2.5 depicts the lower convex envelope. The points in Pm are

also plotted in a lighter tone. Observe the lower convex envelope is very close to Pm. We

consistently observed this in all of our numerical experiments, implying KMP◦ provides a very

good bound for KMP. In fact, under some reasonable assumptions, we can find an optimal

solution for KMP by solving KMP◦, as presented below.

Theorem 3 (Properties of KMP◦). The optimal solution of KMP◦ satisfies the following
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properties.

(a) In an optimal solution of KMP◦, for all m, p◦
m is on the lower convex envelope Em.

(b) If for all m, the lower envelope Em is linear over the unit square [k, k + 1]× [h, h+ 1],

for all k ∈ {0, 1, . . . , Gk̆m − 1} and h ∈ {0, 1, . . . , Gh̆m − 1}, then KMP◦ has an optimal

solution with integral numbers of calls and hours for all months.

(c) KMP◦ has an optimal solution that is also optimal for KMP if for all m, the following

conditions are satisfied: (i) The lower convex envelope Em is linear over the unit square

[k, k + 1]× [h, h+ 1], for all k ∈ {0, 1, . . . , Gk̆m − 1} and h ∈ {0, 1, . . . , Gh̆m − 1}; and (ii)

pm,i is on the lower envelope Em, for all i.

In summary, we showed KMP has several nice structural properties that make it easier

to solve than AMP. In our numerical experiments on a large practical-size instance with 25

groups, k̆m = 10, h̆m = 20, K = 100, and H = 180, an instance of KMP has, on average, 28

rows, 817,401 columns, 817,382 integer variables, and 3,264,671 nonzeros, and is solved in

15.52 seconds, on average, on a personal computer. For this instance, computing the expected

monthly costs through simulation (to construct KMP instances), using 300 realizations, took

53,785.49 seconds on our personal computer. Note computing these monthly costs can be

performed offline and on parallel machines, which can significantly reduce its CPU time.

Furthermore, we show, on medium-size instances, the error gap in approximating AMP by

KMP is small (less than 8.33% and, on average, 5.14%; see §2.6). By solving AMP (KMP) at

the beginning of each month, we identify the number of calls and hours to be used during the

month.8

8We also investigated the impact of partially enumerating these points on the quality of our solution. On
the instances of Table 2.1, enumerating only 10% of the points (randomly selected) increased the error of
KMP+HWP by less than 1%. Thus, we conclude our approximation’s high performance is preserved if only a
small portion of the points are enumerated. We provide an intuitive explanation using Figure 2.5, which
shows monthly expected cost and its lower convex envelope. By eliminating some of the points, the lower
convex envelope will not change much. For large instances, the number of points is significantly large (e.g.
10,000 points), yet having only a small portion of these points suffices to achieve a good approximation of
the envelope. Therefore, especially for large instances, enumerating only a small portion of the points is a
reasonable approximation.
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2.5 Within-a-Month Problem: Solution Approach

AMP (KMP) allocates aggregate resources (total number of calls k∗m and hours h∗m) to each

month. These aggregate resources must be disaggregated across the G groups on a daily basis

within each month. In other words, each day, we need to assign calls to specific groups so as

to reduce the ECPs to the threshold level Z∗
m obtained from AMP. Our WP is

(WP) wm,d(X,Y,k
◦
m,h

◦
m,Ωm,d) = min{ϕ̆m,d(k,h,Z∗

m,Ωm,d)

+ E[wm,d+1(X− k,Y − h,k◦
m − k,h◦

m − h, Ω̃m,d+1)]}, (2.5a)

s.t. Constraints (2.1b)-(2.1c), and

k⊤1 ≤ k△m := k∗m −
(
Gk̆m − k◦⊤

m 1
)
, (2.5b)

h⊤1 ≤ h△m := h∗m −
(
Gh̆m − h◦⊤

m 1
)
, (2.5c)

recalling that X and Y (respectively, k◦
m and h◦

m) denote the calls and hours available to each

group based on the annual (respectively, monthly) contractual limits. The daily cost ϕ̆m,d(·)

is the cost of supplying power after the ECP is truncated to the threshold. A solution of WP

must satisfy constraints (2.1b)-(2.1c) to ensure the monthly and annual contractual limits

for each group are not violated. In addition, constraints (2.5b)-(2.5c) ensure the aggregate

monthly limits k∗m and h∗m obtained from AMP (KMP) are adhered to. Note k△m and h△m

denote the number of calls and hours left based on the limits k∗m and h∗m set by AMP (KMP).

Recall Algorithm 1 solves DLP and determines the calls needed to reduce the load to the

given threshold level. WP assigns these calls to the groups. WP is different from P because

(i) in WP, the horizon is limited to a month, and (ii) each day, groups have to be called to

reduce the ECP to the given threshold level. Overall, WP is similar in structure to P, and

it is another difficult stochastic dynamic program. We use a reduction similar to that in

Proposition 1 to show WP too is strongly NP-hard.

Proposition 2 (WP is NP-hard). The deterministic special case of WP is strongly NP-hard,
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Figure 2.6: Illustration of our scenario-based disaggregation model

implying WP is strongly NP-hard.

Moreover, our numerical experiments indicate only toy-size instances of WP can be

solved optimally using commercial solvers (e.g., using the stochastic dynamic programming

approach). Thus, we design a heuristic approach for solving WP, referred to as HWP.

Energy demand can be forecasted with some accuracy over a short horizon of a few days.

Beyond this horizon, forecasts resemble what would be expected for the month and day of

the week. Motivated by this observation, we present our heuristic HWP to solve WP, which

uses a scenario-based approach. In our scenario-based approach (Figure 2.6), we assume the

demand for the focal day d† is known with certainty, and the forecast for the next few days

d† + 1, . . . , d‡ consists of discrete alternative demand realizations or scenarios. Beyond day d‡,

we assume the demand is independent and identically distributed. We refer to the part of the

horizon that is beyond d‡ as over-the-horizon (OTH) period.

Let (d, s) denote the sth potential demand realization on day d ∈ {d†, . . . , d‡}. A specific

ECP is associated with each scenario (d, s). Thus, associated with each scenario is a set of

calls, denoted by {ld,s,i}i, that are obtained by solving DLP for the corresponding ECP. We

need to assign specific groups to these calls. Let ρ denote a path through the scenarios; for

example, in Figure 2.6, scenarios (d†, 1), (d† + 1, 2), and (d‡, 3) constitute a path. All paths
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start on day d† and terminate on day d‡. Let πρ denote the probability of path ρ.

We first provide an intuition for the design of HWP. Recall WP aims to reduce the ECPs

to the given threshold Z∗
m using the given calls k∗m and hours h∗m. A disaggregation method

is optimal if either of the following two (sufficient but not necessary) conditions hold: (i)

All ECPs are below the threshold when we exhaust the hours h∗m; or (ii) at the end of the

month, all ECPs are below the threshold. A disaggregation method may not be optimal if

the allocations result in some groups that have calls, based on their monthly and annual

constraints, but do not have hours, and other groups that have hours but have reached their

limits on calls, while some ECPs are above the threshold. Thus, as a heuristic approach, we

seek to maximally cover the calls whereas minimizing the hours that go unused. We model

HWP as

(HWP) min
∑
ρ

πρ (Uρ +Ψm,d (X− kρ,Y − hρ,k
◦ − kρ,h

◦ − hρ)) (2.6a)

s.t. Uρ =
∑

(d,s)∈ρ

∑
i

ld,s,i

(
1−

∑
g

αd,s,i,g

)
, ∀ρ, (2.6b)

∑
(d,s)∈ρ

∑
i

λd,s,i,g = kg,ρ ≤ min
{
Xg, k

◦
g

}
, ∀ρ, g, (2.6c)

∑
(d,s)∈ρ

∑
i

ld,s,iαd,s,i,g = hg,ρ ≤ min
{
Yg, h

◦
g

}
, ∀ρ, g, (2.6d)

∑
g

∑
(d,s)∈ρ

∑
i

λd,s,i,g ≤ k△m, ∀ρ, (2.6e)

∑
g

∑
(d,s)∈ρ

∑
i

ld,s,iαd,s,i,g ≤ h△m, ∀ρ, (2.6f)

∑
i

λd,s,i,g ≤ 1, ∀ (d, s), g, (2.6g)

∑
g

λd,s,i,g ≤ 1, ∀ (d, s), i, (2.6h)

0 ≤ αd,s,i,g ≤ λd,s,i,g, ∀ (d, s), g, i, (2.6i)

λd,s,i,g, ∈ {0, 1}, ∀ (d, s), g, i. (2.6j)
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The objective function (2.6a) minimizes the expected uncovered hours in the given calls

and the expected number of hours that will remain unused in the OTH period, respectively

denoted by Uρ and Ψm,d(·). We will shortly describe our approach for estimating Ψm,d(·).

Equation (2.6b) computes the total unassigned hours Uρ for each path, where ld,s,i denotes

the length of the ith call and variable αd,s,i,g denotes the fraction of call i assigned to group g

in scenario (d, s). The continuous variables αd,s,i,g allow for partial assignments of calls; for

example, if a group has one call and two hours available, we may assign half of a call with

length 4 to this group (αd,s,i,g = 0.5). If each of the calls is fully assigned,
∑

g αd,s,i,g will

be 1 for each call and Uρ will be 0. We also define binary variable λd,s,i,g as 1 if (a non-zero

fraction of) call i is assigned to group g in scenario (d, s), and 0 otherwise. In essence, λd,s,i,g

accounts for calls used by group g. Constraints (2.6c) and (2.6d) ensure, in each path, the

calls and hours assigned to each group are constrained by the annual and monthly contractual

limits (recall vectors X, Y, k◦, and h◦ represent the number of calls and hours available with

respect to the annual and monthly contractual limits). Constraints (2.6e) and (2.6f) ensure

the calls and hours assigned in each path do not exceed the monthly limits (k∗m and h∗m) set

by AMP (KMP). Due to constraints (2.6g) and (2.6h), a group may receive at most one call

per day, and a call is assigned to at most one group.

The core challenges encounterd while computing the expected loss of hours Ψm,d(·) in the

OTH period are the same as those in WP. Therefore, we use the following simplifications to

estimate the loss function:

1. We assume demand (realization of ECPs) is i.i.d. in the OTH period. This assumption

implies a stochastic process that generates a set of calls {li}i each day.

2. To cover these calls, we rotate through the groups one at a time and randomly assign a

call. This procedure is equivalent to shuffling the calls and dealing them to the groups.

The rotational schedule is maintained across days. We continue to assign calls until we

reach the limits set by AMP (KMP), either k∗m or h∗m, and ignore all other constraints.
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All calls that are assigned but cannot be implemented due to other constraints are

considered lost. We refer to this procedure as the dealing algorithm (DA).

3. We assume the loss function Ψm,d(·) is additive in the groups and let

Ψm,d (X,Y,k
◦,h◦) =

∑
g

ψm,d,g

(
Xg, Yg, k

◦
g , h

◦
g,
k△m
G
,
h△m
G

)
, (2.7)

where function ψm,d,g(·) computes the expected hours lost by group g. Recall k△m and

h△m denote the number of calls and hours left based on the limits set by AMP (KMP).

Note DA assigns k△m
G

calls to each group, unless the total hours assigned to the group

exceeds h△m
G
. This procedure ensures the calls and hours allocated by AMP (KMP)

are fully deployed. The availability of calls and hours for each group based on their

respective annual and monthly constraints are captured in the first four arguments of

ψm,d,g(·).

These simplifications enable us to solve HWP. We next provide a rationale for our approach

and then elaborate on the solution procedure. Observe if the limits set by AMP (KMP)

are achieved without any hours going unused, DA achieves the same cost as the aggregate

solution. Thus, we incur a loss if some groups are unable to accept a call before either of the

AMP (KMP) limits are reached. In the following theorem, we show if calls and hours available

to a group are in balance, the relative loss in hours due to DA asymptotically approaches

zero.

Theorem 4 (Asymptotic Optimality of DA). Assume calls are assigned to groups according

to DA, and have a mean l̄ and a standard deviation σl. Further, assume

(a) the monthly limits by AMP (KMP) satisfy h∗m = l̄ k∗m,

(b) each group has h∗m
G

hours and k∗m
G

calls available (assuming these quantities are integral),

and

(c) limn→∞

∑n
i=1 li−nl̄
σl
√
n

D−→ N (0, 1).
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Figure 2.7: Expected loss in hours (assume l̄ = 3, σl = 1.73, and a call’s maximum duration
L is 6 hours). In Figure (b), we assume calls available are equal to 5. Similarly, in Figure (c),
we assume hours available are equal to 15.

Consider a regime in which the length of the OTH period, the number of calls k∗m, and the

number of hours h∗m grow proportionally. In this regime, let n denote the calls and nl̄ denote

the hours available per group and also the AMP (KMP) limits per group. Then, the expected

percentage of hours lost (computed based on the total hours available) converges to

lim
n→∞

βσl√
n l̄

+
ϵ

n
,

where β is a constant coefficient and ϵ ∈ [0, 1). Thus, DA is asymptotically optimal.

Theorem 4 establishes that if calls and hours are in balance, the percentage error of DA

asymptotically approaches zero as the problem size grows. By balance, we mean each group

has the number of calls (n) required by AMP (KMP) and the hours available are nl̄. Figure

2.7a illustrates that even for a small number of calls n, the expected percentage of hours

lost monotonically decreases. In this figure, for each n on the x-axis, the available hours are

equal to nl̄. Figures 2.7b and 2.7c depict function ψ(·) and demonstrate the impact of an

imbalance in calls and hours available to a group. Figure 2.7b shows the change in hours lost

as a function of the number of hours available. In this graph, the number of calls are fixed to

five. Figure 2.7c shows the impact of the number of calls available. Here, the hours are kept

constant at 15. The expected hours lost decline sharply when the number of calls available
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equals five. We make the following observations.

1. If calls and hours are in balance, meaning each group has the calls needed by AMP (n)

and the available hours are close to nl̄, disaggregating the calls and hours such that

we realize cost reductions that are close to those obtained in the aggregate model is

possible. A simple algorithm such as DA can achieve such a disaggregation.

2. HWP is likely to allocate calls in a balanced manner because ψ(·) heavily penalizes

imbalances.

3. When the calls and hours available are in balance, DA is nearly optimal. Hence, DA is

likely to provide good estimates of the expected hours that are likely to be lost.

4. DA decomposes the loss function Ψ(·) by groups ψ(·), which considerably reduces the

state space (for estimating the loss function) from O(h̆Gmk̆
G
m) to O(h̆mk̆m).

5. A balanced calls allocation is also a fair allocation policy and managerially appealing.

Our approach to solving HWP consists of the following two steps. First, we enumerate

ψ(·), for all values of available calls and hours, using simulation. This step is performed in

O(h̆mk̆m) iterations (note ψ(·) is identical across groups). Second, we reformulate HWP as

an integer linear program by introducing binary variables that select one value of ψ(·) for

each group.

We construct and solve HWP at the beginning of a day if calls are to be assigned to some

groups, that is, if the load exceeds the threshold. In our numerical experiments on a large

practical-size instance with 25 groups, k̆m = 10, h̆m = 20, K = 100, and H = 180, an instance

of HWP has, on average, 5,156 rows, 22,020 columns, 17,709 integer variables, and 67,789

nonzeros, and the average CPU time for finding a solution with a 1% optimality gap is 8.01

seconds on a personal computer.

The solution of HWP is the final solution of our approximation method. Intuitively,

the total cost associated with this final solution must be worse than the objective value of
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AMP (KMP), because HWP disaggregates the solution of AMP (KMP), which may result

in some calls and/or hours being wasted (e.g., if a recipient group for a call has reached its

annual/monthly limit on either calls or hours). However, HWP has a forward-looking feature

that enables skipping shorter calls in anticipation of longer (more valuable) calls in the future.

If the consumption in a month is unusually higher than expected, obviously, the allocated

resources by AMP (KMP) will not be sufficient to reduce the load to the given threshold

throughout the month, and the load will inevitably exceed the threshold on some days. In

this case, HWP properly rations the available number of calls and does not waste them on

short calls. This feature becomes more advantageous when the limit on the number of calls

becomes more restrictive. Our numerical experiments on medium-size instances show the

objective value of the HWP solution is always better than the objective value of the aggregate

solution of AMP (KMP). On our medium instances, HWP improves the solution of AMP

by 0.24% on average, and as much as 2.81%. Thus, the forward-looking feature of HWP

significantly improves the solution of AMP (KMP), and the improvement is larger than the

groups-aggregation error. We present our numerical study below.

2.6 Implementation and Computational Experiments

We conduct extensive numerical experiments to test the performance of our approximation

methods and analyze the impact of different problem parameters. We consider 25 instances

that are generated by varying the parameters of our problem (G, L, k̆m, h̆m, K, and H). In

the following, we will discuss our parameter settings as well as the suggested approach for

simulating the training and testing realizations. We summarize our key findings as follows:

First, the error (in the objective value) of approximating AMP with KMP ranges between

3.53% and 8.33%, with an average of 5.14%. This is the error in the objective value of the

aggregate monthly problem. Second, the total error ranges between 9.82% and 14.33%, with

an average of 12.03%. To compute the total error, we compared the solution obtained from
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our approach (KMP+HWP) with our lower bound (§2.3.2). This error is remarkably small for

such a complex stochastic dynamic program. Further, the error is relative to a lower bound

that relaxes most of the constraints. Third, we find our approach (KMP+HWP) allocates

calls and hours in a balanced manner, which is consistent with our motivation for designing

HWP. The details are presented below.

Table 2.1: Performance analysis of our approximation approaches

%error vs AMP %error vs LB coefficient of variation (%)

G L k̆m h̆m K H KMP AMP

+

HWP

KMP

+

HWP

AMP KMP AMP

+

HWP

KMP

+

HWP

LB AMP KMP AMP

+

HWP

KMP

+

HWP

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r)

2 3 5 10 20 40 4.42 −0.04 4.26 8.15 12.21 8.11 12.06 3.82 4.04 3.57 4.05 3.55

3 3 5 10 20 40 5.26 −0.05 5.06 8.15 12.99 8.11 12.81 3.75 4.38 3.90 4.36 3.87

4 3 5 10 20 40 5.60 −0.14 5.28 7.53 12.71 7.40 12.41 3.57 3.99 3.80 4.00 3.79

5 3 5 10 20 40 4.68 −0.16 4.26 7.20 11.55 7.05 11.16 3.56 4.17 3.75 4.15 3.68

6 3 5 10 20 40 4.23 −0.19 3.77 6.69 10.64 6.52 10.21 3.74 3.75 3.69 3.77 3.68

4 2 5 10 20 40 3.53 −2.81 −0.36 13.30 16.36 10.86 12.98 3.47 4.79 4.10 4.64 3.74

4 3 5 10 20 40 4.31 −0.10 4.00 7.98 11.94 7.88 11.66 3.90 4.47 4.05 4.50 3.99

4 4 5 10 20 40 5.76 −0.15 5.29 7.25 12.59 7.11 12.15 3.56 3.94 3.86 3.97 3.82

4 5 5 10 20 40 4.54 −0.26 3.94 7.01 11.24 6.77 10.67 3.71 4.25 3.77 4.31 3.74

4 6 5 10 20 40 3.67 −0.21 2.98 7.05 10.46 6.85 9.82 3.83 4.36 3.92 4.43 3.90

4 3 3 6 12 24 5.28 −0.24 4.84 8.03 12.88 7.80 12.48 4.12 4.55 3.92 4.53 3.92

4 3 4 8 16 32 5.55 −0.09 5.21 7.74 12.86 7.66 12.55 3.96 4.05 4.00 4.08 4.00

4 3 5 10 20 40 4.66 −0.11 4.35 7.68 11.98 7.58 11.69 3.63 4.31 4.24 4.34 4.18

4 3 6 12 24 48 4.61 −0.12 4.32 7.52 11.79 7.41 11.52 3.45 4.06 3.80 4.06 3.77

4 3 7 14 28 56 3.96 −0.08 3.72 7.46 11.12 7.38 10.91 3.71 4.11 4.09 4.09 4.07

4 3 5 8 20 32 5.64 −0.17 5.19 7.68 12.89 7.53 12.47 3.97 4.47 4.04 4.52 3.99

4 3 5 9 20 36 4.58 −0.21 4.17 7.63 11.86 7.43 11.48 3.80 4.46 4.03 4.47 4.00

4 3 5 10 20 40 5.48 −0.08 5.14 7.47 12.54 7.39 12.22 3.70 4.36 3.72 4.34 3.69

4 3 5 11 20 44 5.36 −0.12 5.09 7.85 12.79 7.74 12.54 3.66 4.29 3.87 4.29 3.86

4 3 5 12 20 48 4.97 −0.07 4.70 7.51 12.11 7.44 11.86 3.22 3.71 3.68 3.68 3.66

4 3 5 10 10 20 7.26 −0.12 6.88 6.33 13.13 6.21 12.77 4.98 5.20 4.17 5.17 4.16

4 3 5 10 15 30 8.33 −0.10 7.90 6.99 14.74 6.89 14.33 4.33 4.14 3.75 4.13 3.75

4 3 5 10 20 40 4.95 −0.11 4.62 7.25 11.84 7.15 11.53 3.55 3.79 3.90 3.79 3.87

4 3 5 10 25 50 6.28 −0.10 5.90 8.23 13.99 8.14 13.64 3.43 3.80 3.96 3.82 3.94

4 3 5 10 30 60 5.47 −0.13 5.09 8.21 13.24 8.09 12.89 3.22 3.75 3.80 3.77 3.76

smallest value 3.53 −2.81 −0.36 6.33 10.46 6.21 9.82 3.22 3.71 3.57 3.68 3.55

averages 5.14 −0.24 4.62 7.76 12.50 7.54 12.03 3.75 4.21 3.90 4.21 3.85

largest value 8.33 −0.04 7.90 13.30 16.36 10.86 14.33 4.98 5.20 4.24 5.17 4.18

We consider 25 instances (rows of Table 2.1) that are generated by varying the parameters

of our problem G, L, k̆m, h̆m, K, and H (see columns (a)-(f) in Table 2.1). For example, in

the first row of Table 2.1, we have an instance with two groups, the maximum call length is

three hours, each group can be called at most five times in a month and at most 20 times

over the horizon, and the total time of calls can be at most 10 hours in a month and at most
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Master Problem 
(aggregate monthly problem; 
solved on a rolling basis at 
the beginning of each month)

Within a Month Problem 
(Disaggregation)

Notes

AMP
(stochastic 

dynamic 
programming)

KMP
(multiple 
Choice 

Knapsack)

HWP
(scenario-

based
lookahead 

model; solved 
daily)

No 
Disaggregation 
(the solution 
is applied in 
an aggregate 

setting)

Approximation 
Procedures

[AMP+HWP] ⊠ ⊠ • For medium instances.

[KMP+HWP] ⊠ ⊠ • For large instances.

Bounding 
Procedures

[AMP] ⊠ ⊠
• A lower bound if the monthly
decisions and threshold policy 
are imposed.

[KMP] ⊠ ⊠
• To measure the error due to 
using KMP instead of AMP.

[LB]
This lower bound is estimated through simulation by solving a 
relaxed deterministic problem for each testing realization and 
computing the average saving.

• A lower bound on problem P
(for any policy).

• To measure errors due to all 
approximations.

Figure 2.8: Summary of our approximation/bounding procedures

40 hours over the horizon. For each parameter setting (each row of Table 2.1), we create

300 annual energy-consumption realizations as the training data. The distribution of energy

consumption over the horizon is based on an autoregressive model that we have designed

using the actual CAISO data. We use the training data to infer a policy. We then evaluate

the policy on a test dataset that consists of a different 300 realizations. Below, we report the

performance observed on the test data. Table 2.1 is based on the average savings for the five

approximation/bounding procedures listed in Figure 2.8.

Columns (g)-(i) show the performance of our approximations with respect to the “optimal”

value of AMP. If the monthly decisions and threshold policy are imposed, the optimal value

of AMP is a bound on the optimal value of our problem. Column (g) shows the average

percentage loss in saving if the solution of KMP is used for the aggregate problem instead of

the solution of AMP. This error changes between 3.53% and 8.33% with an average of 5.14%

(see the last three rows of Table 2.1). Columns (h) and (i) measure the difference between

the aggregate solution of AMP and the final solution of our approximation method after

applying HWP. In other words, columns (h) and (i) show the percentage loss in savings due to

disaggregation plus the improvement due to the forward-looking feature of HWP. Compared

to AMP, our approximation [AMP+HWP] improves, on average, 0.24% (and between 0.04%
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and 2.81%), and [AMP+HWP] loses, on average, 4.62% (and between -0.36% and 7.9%)

saving. The largest losses for these approximations are 3.69% and 8.81%, respectively. Note

the reason for the negative values in columns (h) and (i) is as follows. Recall HWP allows

shorter calls to be skipped in anticipation of longer calls that may arrive in the future, whereas

AMP uses all generated calls by DLP (in the aggregate setting). Thus, HWP improves the

saving over AMP, and hence, compensates for some portion of the error that is created due

to aggregation/disaggregation. Consequently, in some cases, especially when the number of

calls is too restrictive, the average saving by [AMP+HWP] is strictly better than that of

[AMP], which explains the negative values in columns (h) and (i). Overall, columns (h)-(i)

imply the groups-aggregation error is very small.

Columns (j)-(m) measure errors with respect to our LB. Recall LB is a bound on the

saving of P obtained by any policy, and consequently, the errors measured based on this

bound include the errors due to all approximations as well as the error due to imposing

the threshold policy. Column (j) (respectively (k)) could be interpreted as the error due

to imposing monthly decisions and the threshold policy (respectively, using KMP instead

of AMP and imposing monthly decisions and the threshold policy). Columns (l) and (m)

represent the errors of our approximation approaches. Our approximations [AMP+HWP]

and [KMP+HWP] produce, on average, 7.54%. and 12.03% errors, respectively. The largest

errors we observed among our instances for these approximations are 10.86% and 14.33%,

respectively. Note a portion of these errors could be due to the error introduced by the LB

because, as we previously stated in §2.3.2, LB relaxes two key constraints and is an ex-post

optimization. In short, columns (l) and (m) indicate our approximation procedures provide

excellent solutions for this very difficult problem.

Columns (n)-(r) provide the coefficient of variation for the percentage saving for the five

approximation / bounding procedures. The largest coefficient of variation that we observed

was 5.20% (see the last row in column (o)), implying stable performance of these methods

across the 300 testing realizations.
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Table 2.2: Impact of inputs on the performance of our approximation approaches

changing %error vs AMP %error vs LB coefficient of variation (%)

factor KMP AMP+
HWP

KMP+
HWP

AMP KMP AMP+
HWP

KMP+
HWP

LB AMP KMP AMP+
HWP

KMP+
HWP

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

G ↑↓ ↓ ↑↓ ↓ ↓ ↓ ↓ — — — — —

L ↑↓ ↑↓ ↑↓ ↓ ↓ ↓ ↓ — — — — —

k̆m, h̆m, K, H ↑↓ — ↑↓ ↓ ↓ ↓ ↓ — — — — —

h̆m, H — — — — — ↓ — — — — — —

K, H — — — ↑ — ↑ — ↓ ↓ ↓ ↓ ↓

Next, we discuss how the parameters G, L, km, hm, K, and H impact the performance

of our approximations/bounding procedures. Table 2.2 provides a summary of Table 2.1,

demonstrating how the errors and coefficient of variations are impacted by an increase in the

values of the parameters. The rows in Table 2.2 summarize the corresponding rows in Table

2.1. We make the following observations:

• Increasing the number of groups G, while keeping the other factors constant, decreases

the relative errors of our approximations, because of an increase in the magnitude of

saving. We did not observe any significant change in the coefficient of variations when

G increases.

• Increasing the maximum call length L improves the saving by all five approaches. The

reason we observe “↑↓” in columns (b)-(d) is that by increasing L, the saving by AMP

improves sharply first and modestly afterwards.

• Increasing k̆m, h̆m, K, and H obviously increases the saving by all five approaches.

• Increasing the hours limits h̆m and H increases the saving under all five approaches,

and decreases the relative error of our approximations (columns (e)-(h)).

• Increasing the annual calls and hours limits (K and H) improves the saving under all

five approaches, and increases the percentage errors of [AMP] and [AMP+HWP].

In Figure 2.9, we compare the solutions of [AMP+HWP] and [KMP+HWP] on the

instance that corresponds to the fifth row of Table 2.1. Figures 2.9(a)-(c) respectively show
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Figure 2.9: Comparing the solutions of [AMP+HWP] and [KMP+HWP] (for the fifth instance
in Table 2.1)
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the total hours allocated to each month (h∗m), the threshold level for each month (Z∗
m), and

the difference in the hours used in each month by these two approaches (the“calls” counterpart

of this figure is also presented in Figure 2.10). Note when hours allocated by [KMP+HWP]

is zero, its threshold is irrelevant.

As the figures indicate, the [KMP+HWP] approach allocates very small amount of

resources in the first half of the year and then increases the allocation to large amounts in the

next months. The threshold values that these two approaches use are plotted in figure 2.9b.

The threshold values are generally slightly smaller for the [AMP+HWP] approach during

the peak consumption months (i.e. June to October). Based on this observation, one would

expect that the [KMP+HWP] approach assigns more calls during the peak months. We have

calculated the difference between the total number of consumed hours by the [AMP+HWP]

approach and the [KMP+HWP] approach and plotted the distribution of these values for

each month in figure 2.9c. The plot demonstrates that the average number of hours consumed

by these two approaches are similar in all the months. However, we can observe that for

some realizations the [AMP+HWP] approach assigns more calls during May and for some

realizations the [KMP+HWP] approach assigns more calls during June and September.

As we conjectured in §2.4.3, [AMP+HWP] allocates more resources in the early months

(relative to [KMP+HWP]), while it controls the consumption of these resources by employing

an appropriate threshold level (see Jan-Apr in Figure 2.9). On the other hand, in the last few

month, the allocations, threshold levels, and consumed hours by these two approaches are

very similar (see Oct-Dec in Figure 2.9). In summer, and particularly in July and August,

which are the hottest months and the main focus of DLCC programs, both approaches have

similar solutions. Note [AMP+HWP] controls overflows, and hence has the flexibility to

consume some of the resources in the early months. On the other hand, because [KMP+HWP]

consumes less early in the year, it compensates in June and September, consuming more

than [AMP+HWP] in these two months. Overall, both approaches consume almost all of the

resources, although [KMP+HWP] performs this task slightly suboptimally. Recall from Table
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Figure 2.11: The number of hours assigned to different groups in different months by the two
approaches.
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Figure 2.12: The number of calls assigned to different groups in different months.

2.1 that the difference in the amount of saving produced by [AMP+HWP] and [KMP+HWP]

is very small.

Figure 2.11 shows the number of hours assigned to each group, in each month, by our

disaggregation method HWP. Observe both [AMP+HWP] and [KMP+HWP] maintain a

balance allocation of hours across groups throughout the horizon. We observed a similar

result for the assignment of calls in Figure 2.12. Thus, our observations and motivation for

designing HWP (see §2.5) are confirmed by our numerical analysis, that is, HWP assigns

resources to groups in a balanced manner. As we previously stated, a balanced allocation

of calls and hours is a fair allocation, which is managerially appealing and desirable for the
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DLCC participants.

In summary, we presented the results of our numerical experiments demonstrating the

remarkable performance of our approximations. We provided a numerical analysis on how

different factors of our problem influence the percentage errors and coefficient of variations.

We also presented a comparative analysis of the solution features of our approximation

methods.

Next, we present the results of applying our approximation procedures to an industrial

instance. We begin by assessing the quality of our solution approach using real data from

CAISO. We also report the outcome of implementing our approach at a leading utility firm,

which is a member of CAISO, and serves millions of people in California. This work consisted

of two phases. In phase 1, we used publicly-available data from CAISO to evaluate our

heuristic approach. We measured the potential cost reduction, and performed sensitivity

analysis to address the non-monetary concerns of the managers (§2.6.1, §2.6.2, §2.6.3, and

§2.6.4). In phase 2, based on the outcomes of an earlier version of our approximation, the firm

implemented our approach (§2.6.5). Post implementation, we improved our approximation

method based on the recommendations of the review team. Our results in phase 1 are updated

and reflect our current approach.

2.6.1 Data collection and parameters estimation

Demand-forecasting models. Utility companies in general, and our partner company especially,

have elaborate models for long-term and short-term forecasting of their demand, which is

proprietary and can’t be disclosed in the dissertation. Consequently, to establish the quality

of our solution approach, we developed two simple forecasting models. For long-term planning

purposes, we used the historical distribution of the ECPs to simulate the ECPs of the days

in each month. We used the model for the aggregate-level planning in AMP and KMP. On

the other hand, we developed an auto-regression model to forecast the demand for the next

few days. The short-term forecasting model is used in our scenario-based disaggregation
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algorithm. We used the CAISO’s hourly energy-consumption data from 2014 to 2021 to

build and evaluate these models. In the following, we provide more details on the forecast

models. In particular, we first briefly explain the long-term forecasting approach that we used

for aggregate-level planing and then elaborate on the short-term forecasting model for our

scenario-based disaggregation. We acknowledge that there are many alternative sophisticated

forecasting models that are available and could be used for both short and long-term estimate

of energy consumption.

As explained earlier, we use the historical distribution of ECPs to generate the ECPs of

the days for each month. Specifically, for a given day in a certain month, we take random

samples from the ECPs of the corresponding month in previous years. By concatenating the

generated ECPs for all the days of the year, we then construct a sample for the entire year.

This procedure is repeated to generate multiple year-long samples for the aggregate-level

planning. Although we should not expect to get precise forecasts for each day, these samples

reflect the relative total consumption over different months fairly accurately.

On the other hand, we developed a simple auto-regression model to forecast the demand

in the next few days. We used the data from 2014 to 2020 to build a model with the

following explanatory variables: (i) month dummies, (ii) weekend dummy (iii) hour-of-day

dummies, (iv) one-day and two-day lags of the hourly load consumption. Table 2.3 shows

the coefficient of each variable in the regression model. Coefficients for months should be

interpreted relative to month 1. As Table 2.3 indicates, hourly electricity consumption

rates are significantly higher in June, July, August, and September relative to the baseline

(January). Similarly, coefficients for hours should be interpreted relative to hour 1 (00:00 am

to 1:00 am). The results suggest the consumption rate is lower at night and has a peak around

8:00 pm. Moreover, the consumption is higher during weekdays. Last, higher consumption

today corresponds to higher consumption tomorrow and lower consumption the day after

tomorrow. The average and standard deviation of the hourly load are 26,370 MWh and

4,860 MWh, respectively. The in-sample adjusted R-squared of our model is 91.7%, which
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demonstrates that the model is an accurate fit to the training data for short-term forecasting.

Moreover, step-wise regression determined that all variables are statistically significant at

the 1% level. Next, we used the learned model to predict the 2021 hourly consumption rates.

Our results indicate that the Mean Absolute Percentage Error (MAPE) on the test data (i.e.

out-of-sample) is 4.5%.

Table 2.3: Coefficient of variables in the auto-regressive model

Variable Coefficient Variable Coefficient Variable Coefficient
Month (2) -98.23 Year (2019) -396.31 Hour (14) 1030.02
Month (3) -189.35 Year (2020) -421.22 Hour (15) 1190.44
Month (4) -133.62 Weekend -1850.53 Hour (16) 1360.56
Month (5) 121.98 Hour (2) -266.61 Hour (17) 1549.85
Month (6) 1081.10 Hour (3) -438.51 Hour (18) 1792.22
Month (7) 1788.71 Hour (4) -520.89 Hour (19) 1892.79
Month (8) 1819.65 Hour (5) -477.40 Hour (20) 1864.70
Month (9) 1201.61 Hour (6) -263.64 Hour (21) 1752.59
Month (10) 309.50 Hour (7) 87.82 Hour (22) 1432.97
Month (11) -46.69 Hour (8) 368.67 Hour (23) 916.70
Month (12) 86.46 Hour (9) 531.77 Hour (24) 386.34
Year (2015) -13.06 Hour (10) 629.83 1-Day Lag 0.79
Year (2016) -69.38 Hour (11) 716.13 2-Day Lag -0.05
Year (2017) -49.48 Hour (12) 796.21 - -
Year (2018) -190.03 Hour (13) 884.76 - -
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Figure 2.13: Predicted vs actual hourly consumption rates for the first weeks of July, August,
and September using the CAISO 2021 data.

In Figure 2.13, we plot the predicted versus actual consumption rates for the first weeks

of July, August, and September 2021 using the CAISO data. Although our model is generally

fairly accurate, it sometimes under predicts or over predicts a group of samples that are

associated with large consumption rates. This might be due to the lack of sufficient number
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of observations from these cases or related to the inherent difficulty of predicting high-

consumption events. By taking a closer look at the prediction time series data, one can

observe that our model sometimes misses daily trends when there are sudden positive or

negative jumps in the consumption rate from one day to the next day. Since one-day lag is

the most recent piece of information that is being used by our model for making predictions

for any given day, promptly catching up with these jumps is generally a challenging task.

However, the results indicate that the model always corrects its prediction at most one day

after such drastic changes in the consumption trend occur.
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Figure 2.14: The first figure presents the scatter plot of predicted vs actual hourly consumption
rates using the CAISO 2021 data (lighter colors correspond to higher density of observations).
The second figure plots the month-by-month probabilities of large under-prediction and
over-prediction by the model (left axis) as well as mean forecast error (right axis) using the
same data. Accurate prediction is defined as having an absolute forecast error of at most 2
GWh.

In Figure 2.14a, we present the scatter plot of actual versus predicted consumption rates

for all the test samples (January to December 2021). Furthermore, the month-by-month

probabilities of large under-prediction and over-prediction of hourly consumption rates by

the model, as measured by having 2 GWh or more forecast error on the test data, are

presented in Figure 2.14b. Notice that the threshold level has been determined in a way that

reflects concerns of practitioners regarding the forecasting accuracy of the model. In addition,
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we show the mean monthly forecast errors on the same plot. As the figures indicate, the

probability of accurate forecast on unseen data, even in the worst case (i.e. September), is

still above 70%, which is acceptable from a practical perspective. Even though the model

may systematically over-predict or under-predict the consumption rates on unseen data due

to a variety of factors, we observe that the mean forecast errors are very close for different

months.

Cost-function estimation. To estimate the cost function, we fitted a quadratic curve to

the marginal generation cost [NSP12] as a function of total capacity with a zero intercept.

This fit resulted in cost function f(z) = 0.0229z3, where z denotes the load in GWh (note

the total cost function is of degree 3 because the marginal cost is quadratic). The R-square

of the fit was 0.8.

2.6.2 Comparison with prior practice

We compare the performance of our approach with the firm’s prior practice on CAISO data.

This step was crucial in demonstrating the financial benefits of our model and convincing

the firm to adopt our approach. The DLCCs that firm offers allow up to one call per day,

10 calls per month, and 100 calls per year for each group. The total hours are limited to 20

hours per month and 180 hours per year. Most of the firm’s service areas have 20 customer

groups. Because the firm expects to expand its existing DLCCs or offer them in new service

areas in the future, it asked us to consider 10 to 25 groups in our experiments.

The firm’s prior practice. The firm’s prior practice employed a single fixed threshold over

the entire year. For confidentiality reasons, we are unable to disclose the threshold. We are

only allowed to state that it would be equivalent to 36 GWh if the practice were to apply

throughout CAISO. At the beginning of each day, if the forecast ECP indicated the peak

load would exceed the threshold, the firm would generate and assign calls to groups to reduce

the consumption to the fixed threshold. Although the contracts stated that a single call could

last for up to six hours, an internal tradition sought to achieve the target level by using calls
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that were exactly two hours long. If two-hour calls were not sufficient, the firm used calls

that were three hours long. The main reason the firm preferred to use two-hour or three-hour

calls was to save the longer calls for reducing load during emergency events (see §2.6.4).

The firm used a rotational policy, as that in DA, to call groups. Groups were called in the

order of 1 to G recursively. At the beginning of each day if the number of two-hour calls for

reducing peak load to 36 GWh is less than or equal to the number of groups and the number

of groups that have at least one remaining call and 2 remaining hours is at least equal to the

number of calls to be made, then the calls are assigned to groups. The available number of

calls and hours for each group in the current month and in the year are updated. On the

other hand, if the number of 2-hour calls exceeds the number of groups, then the algorithm

checks whether the number of 3-hour calls is less than or equal to the number of groups and

the number of groups that have at least one remaining call and 3 remaining hours is at least

equal to the number of 3-hour calls. If this is the case, then the 3-hour calls are assigned to

groups.

Comparison with the firm’s prior practice. To make a fair comparison, we run our model

with L = 2. Table 2.4 shows the additional percentage reduction in cost when we use our

model instead of the firm’s prior approach. For example, for the instance with 10 groups, our

suggested approach reduces the total cost by 1.79% over the utility’s prior practice. Despite

excluding the possibility of using three-hour calls, our solution approach could have reduced

the total cost by 3.11%, on average, and as much as 4.70%. We repeated this experiment

with L = 3 and obtained similar results. Intuitively, when L = 2, the constraints on calls and

hours to each group still allow our model to use shorter (compared to L = 3) but more calls

to reduce the peak load to optimal thresholds in each month. Note our solution only uses

calls that are at most two hours long, but the prior practice had the option to use three-hour

calls. The capital-intensive nature of the utility industry makes these savings highly valuable.

Additionally, if we account for other financial benefits of reducing the peak-load consumption,

such as reducing the number of blackouts and abating greenhouse gas emissions and pollution
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from electricity generators, the total benefit is much larger.

Table 2.4: Our approximation vs the firm’s prior practice (L = 2, k̆m = 10, h̆m = 20, ∀m,K =
100, H = 180)

number of groups 10 15 20 25 average

cost savings 1.79% 2.47% 3.49% 4.70% 3.11%

We also investigated the effect of using a single threshold throughout the horizon versus

dynamically updating the threshold each month. We modified our algorithm to select one

threshold for the entire year, at the beginning of the year, and employ that same threshold

throughout the year. In our industrial instances with 10 and 20 groups, the expected saving

decreased by 6.15% and 5.42%, respectively. Thus, we conclude a large portion of our saving

is due to appropriately determining a threshold value as well as the effectiveness of our

disaggregation procedure HWP, whereas a relatively smaller portion of our saving is due to

customizing the threshold for each month. The value of customizing the threshold for each

month increases if the number of groups decreases, monthly constraints become tighter, and

the consumption significantly changes with-in a month.

2.6.3 Risk analysis

In addition to expected costs, managers are also concerned about the risk of adverse events.

Measures of risk that our partner utility company monitors are (a) likelihood of power

consumption exceeding some critical level, (b) the number of days in which the power

consumption exceeds a given critical level, and (c) the expected total power generated above

a critical level. Minimizing costs may not result in minimizing these measures of risk due

to uncertainty in electricity demand. Recall we allocate resources to each month and set a

threshold level for the month in the aggregate-level planning. However, the threshold level

that minimizes the expected cost may not be the same as the threshold level that minimizes

risk. Intuitively, a higher threshold level may decrease the likelihood of having higher peak

loads, because fewer resources will be consumed for cutting lower consumption levels.
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Figure 2.15: Total energy consumption above different critical load levels during peak months
for different choices of threshold.

Figure 2.15 illustrates our risk analysis. As we stated earlier, we consider the total energy

generated when the system load is above a critical level as a measure of the risk of network

failure. To quantify the risk of our approach, we generated a set of sample ECPs for 2021

using historical data from 2014 to 2020, and applied our approach to each sample to allocate

calls and hours over the entire year. Then, we computed the total energy consumption above

different critical levels for each sample. Figure 2.15 shows the average over the samples for

the peak months. The horizontal axis indicates the critical load levels and the vertical axis

is the total power generated above these critical levels during the month. We compare the

risk before and after applying our approach, for different critical levels (asterisks denote the

cost-minimizing thresholds found by our approach).

As expected, the total consumption above all critical levels decreases after applying

our approach. We also observed that manually increasing the threshold level above the

cost-minimizing level increases the odds of shaving off higher levels of consumption, which

decreases the total consumption above higher critical levels. In other words, the risk of network

failure due to high system demands decreases when we slightly increase the cost-minimizing

threshold level. Indeed, as a drawback, choosing a higher threshold level increases the cost of

generating electricity. The experimental results demonstrate that tightening (decreasing) the

threshold doesn’t offer any advantage as the total consumption measure is increased for high
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cutoff values.

Our approximation (KMP+HWP) extends to allow the managers to obtain a right balance

between the expected cost and risk, by leveraging the monthly threshold levels. We extend

KMP as follows. In month m, let am denote a given acceptable expected total consumption

above some critical value Zm. When we construct our KMP instance, we determine the

monthly costs Φm(k, h) as follows. Given k and h, we select a cost-minimizing threshold from

all potential threshold levels that have at most am expected consumption above the critical

value. Note if the utility requires a too small am, no threshold may achieve this goal. In this

case, the utility may consider increasing the participants and/or resources (calls and hours).

The monthly threshold that we use as an input for HWP also needs to be selected from

all potential thresholds that have at most am hours of violation. Other components of our

methodology readily extend to incorporating the risk of exceeding thresholds. Furthermore,

our approximation similarly extends if the utility wishes to use other risk measures such as

the probability of exceeding a critical value.

2.6.4 Managerial considerations

Based on the performance of our model, the utility firm’s director of the DR program

expressed interest in adopting the model. But before proceeding, the director asked us to

investigate a few additional issues. DLCCs are a new type of DR program, and their growth

depends on customers’ willingness to sign up and authorize utility firms to interrupt their

consumption. Although financial incentives play an important role in customers’ adoption

of DLCCs, other factors potentially influence customer participation. The experiments that

we report next aimed to address the critical concerns of the managers that mostly focused

on enhancing participating customers’ experience and encouraging more participation in the

DLCC programs. In the remainder, we list these managerial concerns and discuss how we

addressed them.

Fewer but longer calls. Some of the managers were concerned about the number of calls,
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and suggested that the firm uses fewer but longer calls. They believed the number of calls

(monthly and annual) could be annoying to existing customers and result in a negative word

of mouth about the DLCCs. They were curious to see the effect of reducing the number

of calls by a factor of 10% to 30%. To address this scenario, we ran new experiments with

our model using L = 6, h̆m = 20,∀m, and H = 180. We also considered 10 and 20 groups.

For monthly and annual calls, we used k̆m = ⌊10(1− ε)⌋ , ∀m, and K = ⌊100(1− ε)⌋, with ε

denoting the reduction factor and ⌊·⌋ denoting the floor function. We tried 5%, 10%, 15%,

20%, 25%, and 30% for ε. Interestingly, we found reducing the monthly and annual number

of calls from their base values (10 and 100) does not decrease the savings. With h̆m = 20, ∀m,

and H = 180, allowing for calls of up to six hours (vs. 2 or 3 hours) compensates for the

reduction in the number of calls, even when the reduction is 30%. Therefore, if the firm

ultimately decides to use fewer but longer calls, doing so without sacrificing the savings is

possible. In other words, given the aforementioned values of L, Hm, H, and G, the number

of calls (Km and K) are not binding, even if their values are reduced by a factor of 30%.

Imposing minimum call duration. Some managers were in favor of not disturbing

customers for one-hour calls, and suggested using a lower limit of two hours on the duration

of calls. We proposed two ways of incorporating this lower limit in our approximation. First,

if the length of a call in Algorithm 1 is less than two hours, the call continues until it reaches

the minimum duration of two hours. In this approach, the load could drop below the optimal

threshold in some hours. Second, if the duration of a call does not meet the minimum

duration, the call is not generated in the first place. In this approach, the load may exceed

the optimal threshold in some hours. After proposing these approaches, the managers asked

us to use the first approach. We ran our experiments with L = 6, k̆m = 10, h̆m = 20,∀m,

K = 100, H = 180, and G = 20, adding a constraint that calls should be at least two hours.

The results showed a small change of 0.02% in cost. Thus, we concluded that, given the

parameters of the firm’s DLCCs, imposing a lower limit of two hours while using L = 6 does

not have a significant effect.
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Reserving calls for emergencies. Some managers strongly felt that they should not use all

the calls and hours. Rather, they should reserve some of the calls and hours for managing the

peak load during unpredictable and irregular events, such as a sudden shock to the system.

The managers’ recommendation was to keep the same number of calls and hours in the

contract, but internally reserve 10%, 15%, or even 20% of the calls and hours. To examine the

effect of this strategy on cost, we repeated our experiments with L = 6, but this time we used

k̆m = ⌊10(1− ε)⌋ , h̆m = ⌊20(1− ε)⌋ ,∀m, K = ⌊100(1− ε)⌋, and H = ⌊180(1− ε)⌋, with ε

equal to 5%, 10%, 15%, and 20%. This way, 5% to 20% of calls and hours were reserved for

rare events. Our numerical analysis indicated that if only less than 10% of calls and hours

are reserved, then cost increases by between 0.11% and 0.71%. On the other hand, if the

firm wants to be more conservative and reserve 15% to 20% of calls and hours, then cost will

increase by more than 1% (between 1.31% and 1.47%) when there are 20 and 25 groups. The

reason cost increases for G = 20 is the same for 0.15 and 0.2 is as follows: when ε = 0.15,

there are several groups with non-zero slacks for calls and hours in the optimal solution.

When ε increases to 0.2, the algorithm assigns additional calls and hours to the groups with

slacks and it can achieve the same reduce-to thresholds as when ε = 0.15. Thus the increase

in cost is the same for 0.15 and 0.2. However, at ε = 0.2, the annual hour constraint becomes

binding for all the groups, so the curve will start to increase if ε increases beyond 0.2. Calls

and hours that are not used in a given month do not carry over to future months, so the firm

forfeits the value of these tokens if it ends up not using them. Therefore, the firm should

select the level of reservation carefully and not be overly conservative.

Fair allocation of calls to groups. Some managers were interested in seeing the distributions

of total calls and hours made to groups over a year, for fairness considerations. Figures 2.16

and 2.17 show the histograms of the annual calls and hours assigned to 20 groups under our

model and the firm’s prior practice. Under the firm’s prior practice, the average number of

annual calls is 27, the standard deviation is 1.91 calls, and the majority of groups receive

28 calls in a year. The difference between the maximum and minimum number of calls is
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14. Under our model, the average number of annual calls is 36.71, the standard deviation

is 1.12 calls, and the majority of groups receive 37 calls in a year. The difference between

the maximum and minimum number of calls is 7. Naturally, our algorithm makes more calls

because it uses the calls and hours to reduce the load in each month to the threshold that

would minimize the total cost. However, the distribution of annual calls in our model has a

lower coefficient of variation.

Under the firm’s prior practice, over a year, the average and standard deviation of annual

hours are 54 and 3.81, respectively, and the difference between the maximum and minimum

hours 28. The distribution of annual hours in our model has an average and standard

deviation of 161.94 and 9.73 hours, respectively, and the difference between the maximum

and minimum hours is 60. Thus, the distribution of annual hours has a higher range, but

lower coefficient of variation compared to the prior practice. As a result, the coefficient of

variation is lower than the firm’s practice. Note our model uses more hours because it uses

calls longer than two and three hours (up to 6 hours) if necessary- and targets thresholds

that may be below the firm’s previously used threshold.
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Figure 2.16: Histograms of annual calls (G = 20, L = 6, km = 10, hm = 20, ∀m,K = 100, H =
180).

We also compared the number of days between consecutive calls to the same group to see

how frequently our model would call groups. Figure 2.18 shows the histograms of the number

of days between consecutive calls to the same group. Under the firm’s practice, the average
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Figure 2.17: Histograms of annual hours (same parameters as Figure 2.16).

and standard deviation of days between consecutive calls are 3.66 and 2.57, and the majority

of the groups are called every two days. On the other hand, our model calls groups every

9.42 days, on average, with a standard deviation of 3.41 days. Also, most groups are called

every nine days. Thus, our model calls customers less frequently. Recall an advantage of our

approach is to assign calls to groups while minimizing the imbalance among groups, which

results in fair allocation of these calls. Our above numerical studies confirms this aspect of

our approach.

Figures 2.16, 2.17, and 2.18 together assured the managers that the load-reduction policies

of our model do not lead to excessive variability in calls and hours across the groups and

that although our model uses longer hours, it interrupts customers’ energy consumption less

frequently.

Load-shifting behavior. DLCCs contractually prohibit customers from deliberately shifting

the load from peak to off-peak periods. The punitive clauses in contracts dissuade most

customers from load shifting, and the technology that is used in remote control devices enables

utilities to detect violations. Nevertheless, the managers believed some customers would still

shift the peak load. They conjectured that 10% of customers shift 10% to 20% of the peak load

to off-peak periods. The managers were interested in measuring the impact of this violation

on cost. We modeled this behavior in our experiments and observed that load shifting did not

result in off-peak periods becoming new peak periods. Because higher consumption during
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Figure 2.18: Histograms of days between calls (same parameters as Figure 2.16).

off-peak periods generates revenue for the utility firm, the firm does not need to be concerned

as long as load shifting does not create a new peak period. If load shifting results in the

creation of new peak periods, then the firm could penalize customers who violate the contract.

Note if load shifting to off-peak periods is allowed, our approximation approach could be

used as long as it does not generate a new peak.

Shorter call lengths on hot days. Some managers suggested that calls be limited to a

maximum of two or three hours during hot summer days, to avoid the potential negative

impacts of having to reduce load at extreme heat. Because reducing the maximum duration

of daily calls may result in a larger number of calls or longer hours over a year, we were asked

to check the effect of using a variable maximum call duration on total cost as well as the

average number of calls and hours over a year. To address this concern, we considered three

scenarios: when L = 2 in summer (July to September) and L = 6 otherwise, when L = 3

in summer and L = 6 otherwise, and when L = 6 throughout the year (the benchmark).

We found reducing L in the summer months to two or three did not increase the cost. We

observed that varying L has a minimal effect on the average annual hours, but it increases the

number of calls received over a year. Restricting the duration of summer calls to three hours

maximum results in a 7.82% (for 10 groups) to 14.32% (for 20 groups) increase in the average

number of annual calls. A further restriction of calls to two hours in the summer increases the

average number of annual calls by 26.52% (for 10 groups) to 33.24% (for 20 groups). Thus,

56



placing a tight restriction on the duration of calls can actually backfire; although limiting the

maximum call length alleviates the negative impact of long daily interruptions, customers

may end up receiving more calls, thereby creating a different negative impact. Therefore, the

firm should pursue a moderate reduction in the maximum call duration in summer months.

Setting contract terms. Fine tuning the contract terms is an important managerial

concern. To capture the effect of contract terms, we repeated our industrial instance with 10

groups for the cases of 10% fewer/more calls/hours. In Table 2.5, each cell shows the change

in total saving relative to the base case. For example, if we have 10% fewer calls and hours,

the total saving reduces by 10.37%. Using this table, we observe a change in the number of

hours is more consequential than a similar change in the number of calls. This table is a

valuable decision support tool for effectively designing DLCCs.

Table 2.5: Marginal change in saving (G = 10)

-10% hours base values +10% hours

-10% calls -10.37% -0.16% 5.41%

base values -8.26% 0.00% 9.52%

+10% calls -8.21% 0.00% 9.77%

Table 2.5 can also be used to understand the consequences if the firm wishes to keep the

same contract terms but internally reserves some of the calls and hours for managing the

peak load during unpredictable and irregular events, such as a sudden shock to the system;

for example, reserving 10% of calls and hours decreases the expected saving by 10.37%. Last,

our numerical results indicates reducing L from six to four hours does not have an impact on

saving. Fixing all calls to be three hours long decreases the saving by 5.22%.

The impact of demand fluctuation. Higher volatility in demand due to climate change

will increase the value of DLCCs. Higher volatility implies higher peak consumption levels.

CAISO reported that on September 6th 2022 the energy consumption set a new record at

52 Gigawatts. The utilities sent text messages to all users requesting them to reduce power.

This proved to be highly effective. To illustrate the impact of higher volatility, we conducted
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additional experiments and presented the results below.

We use shifted historical distribution of the ECPs to simulate our training and testing

realizations. The simulations are based on our short term forecasting model. To see how

a higher/lower fluctuation impacts our solution, we use a small example with G = 4, L =

3, k̆m = 5, h̆m = 10, K = 20, and H = 40, and repeat our experiment with different noise

levels. We let the standard deviation of the random noise change from 40% to 160%, in the

increments of 20% (100% fluctuations refer to the base value). Figure 2.19 shows the result

of this experiment. Each data point is the average of five randomly generated instances,

where each instance has 300 training and 300 testing realizations. In this figure, we let the

expected saving of [KMP+HWP] with a noise level of 100% be the base value. We normalize

all expected saving values relative to the base value (100% fluctuations); for example, when

fluctuation is 160% (i.e., 60% higher than the base case), the expected saving of [KMP+HWP]

is 4.51% higher than the base value. We observe that the saving increases when the fluctuation

increases. Hence, DLCCs are more advantageous when the demand patterns are more volatile.

Furthermore, we observe the expected saving of LB increases faster than that of KMP and

[KMP+HWP]. This result is simply because in our lower bound we consider each realization

separately and assume we know with certainty the consumption throughout the year. Thus,

obviously, increasing fluctuations significantly benefits the lower bound. Simply put, as the

noise level increases, the lower bound becomes looser. Therefore, the increased difference

between LB and [KMP+HWP] does not necessarily mean our approximation error increases

when the fluctuations increase.

2.6.5 Real-world implementation

The approval to implement our approximation method was based on the results of our

numerical experiments as well as the analysis of the CAISO data, which clearly indicated

superiority of our approach to the prior ad-hoc method. Later in the implementation, we

used the firm’s data, their adapted demand models, and the firm’s historical demand and
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Figure 2.19: Impact of higher/lower fluctuations

desired threshold levels. We discuss some of the issues and implementation complications

below.

As explained earlier, the firm has its own short-term and long-term demand-forecasting

models, which are much more sophisticated than the simple models that we used in our

experiments. In addition to employing various data sources and incorporating the domain

knowledge of their forecast team, a key difference between their forecast models and ours is

that the firm’s managers are more concerned about the capability of the model to accurately

predict the peak-load consumption. The modular design of our algorithm allowed us to

conveniently replace our basic model with the firm’s model in the actual implementation

phase.

The second complexity was the time of notice of calls to customers and its implications

on demand-forecasting accuracy and customer compliance. Although our model could use

and benefit from the most recent estimate of the demand, generated in the early morning,

and schedule the calls based on that, some managers did not authorize the “early morning”

notifications of the calls, because they had a strong preference to give more time to subscribers

to prepare for the scheduled events. Hence, giving “one-day notice” became the preferred

mode of operation.

Additionally, the managers needed to approve the scheduled events prior to dispatching

them to the customers. In general, some managers were reluctant to approve long calls (five-
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and six-hour calls) to customer groups, particularly when the peak-load demand was not

much higher than the desired threshold consumption level. We were informed that about

11 percent of the long calls, five and six hours, were not scheduled as recommended and

were replaced with four-hour calls. To incorporate the management overriding policy, the

schedulers used an ad-hoc approach to schedule additional calls to compensate for these

changes, which resulted in more calls being scheduled, as expected.

Customer compliance was another complication in our implementation. Although the

data showed that at most 4% of the customers did not comply with the scheduled calls, the

variability in customer compliance was a concern. Our model does not consider the variability

that compliance introduces. In section §2.7, we consider stochastic customer compliance with

scheduled calls.

Despite some discrepancies between the optimal events scheduled by our model and

the actual events used after management approval, our model helped the firm reduce costs

significantly. We were informed the additional reduction in cost after implementation of our

model was approximately 4%. As we mentioned earlier, the total saving increases even further

if we add the medium- to long-term benefits of curtailing energy consumption during peak

periods, such as the positive impact on the environment and a higher reliability of the grid.

2.7 Model Extension: Stochastic Customer Compliance

We extend our analyses to incorporate stochastic customer compliance behavior and discuss

its implications for our solution approach. First of all, notice that participating customers in

DLCC programs are contractually obliged to comply with the ”calls” assigned by the utility

companies. These contracts usually contain a penalty clause for not fully adhering to the

calls. Moreover, utility companies usually send couple of notices to increase the likelihood

of customer compliance. The historical data provided to us by our partner utility company

indicate 97.4% of the time the customers fully comply with the assigned calls.
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Consider scheduling a call to a group with start and end times t′ and t′′, respectively.

Recall, assuming full compliance, the total reduction in consumption in period t ∈ {t′, . . . , t′′}

due to this call is 1, recalling we have normalized the reduction per group to 1. To model

compliance uncertainty, we assume the compliance in period t, denoted by χt, has an arbitrary

distribution Fχ(·) with mean µ, for example, uniform distribution χt ∼ U [0.8, 1]. We assume

Fχ(·) is identical across different periods, groups, and calls. Under these assumptions, a call

from t′ to t′′, in expectation, reduces the total consumption by µ in each period t ∈ {t′, . . . , t′′}.

Although we assume χt has a uniform distribution, one may also use a truncated normal

distribution by, first, generating a normally distributed number with mean µ and standard

deviation ς, and, then, truncating it to be between 0 and 1. On the other hand, the Beta

distribution can also be used as a more natural alternative than the truncated normal

distribution for modeling the compliance probability. In this case, we set α =
(
1−µ
σ2 − 1

µ

)
µ2

and β = α
(
1
µ
− 1
)
to get a Beta distribution with mean µ and standard deviation σ. We have

repeated our numerical experiments with several alternative distributions and our observations

were consistent with those for the uniform distribution.

Let f(.) denote the hourly cost function (see Appendix 2.9), and assume this function

is identical across different periods. Consider an arbitrary period t with a known initial

consumption r ∈ {0, 1, . . . , Z}. Let k ∈ {0, 1, . . . , G} calls be active in this period; that is, k

groups are on call in period t. The ith call (i ∈ {1, . . . , k}) reduces the total consumption by

χi. Thus, the expected cost in period t is

ϖr,k := Eχ1,...,χk

[
f

(
r −

k∑
i=1

χi

)]
.

We use simulation to estimate ϖr,k for all r ∈ {0, 1, . . . , Z} and k ∈ {0, 1, . . . , G}. We simulate

300 scenarios for
∑k

i=1 χi to estimate ϖr,k in our numerical experiments. These simulations

are performed in a reasonable amount of time for the chosen distributions of Fχ(·).

In the following, we present a lower bound and argue a greedy algorithm can be used for
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calculating its value. Moreover, we explain estimating the monthly costs Φm(k, h), which is

the key component of KMP that is affected by allowing stochasticity in the compliance rate.

We also discuss extending Algorithm 1 to calculate daily calls {ld,s,i}i, which affects our loss

function Ψm,d(·) in HWP. First, we discuss how to extend the lower bound algorithm. Under

stochastic compliance, we compute our lower bound as:

LB := E{r̃mdt}m,d,t


min∑

m,d,t Rmdt≤Gmin{H,LK},∑
d,t Rmdt≤Gmin{h̆m,Lk̆m}, ∀m,∑

t Rmdt≤GL, ∀m, d,
Rmdt∈{0,1,...,G}, ∀m, d, t,

{∑
m,d,t

Eχ1,...,χRmdt

[
f

(
r̃mdt −

Rmdt∑
i=1

χi

)]}


= E{r̃mdt}m,d,t


min∑

m,d,t Rmdt≤Gmin{H,LK},∑
d,t Rmdt≤Gmin{h̆m,Lk̆m}, ∀m,∑

t Rmdt≤GL, ∀m, d,
Rmdt∈{0,1,...,G}, ∀m, d, t,

{∑
m,d,t

ϖr̃mdt,Rmdt

}


where r̃mdt is the initial consumption in period t of day d of month m, in a given testing

realization, and Rmdt denotes the number of active calls in this period. For any R ∈

{0, 1, . . . , G− 1}, the marginal change ϖr̃,R −ϖr̃,R+1 is non-increasing in R. Therefore, the

minimization problem in our lower bound is solved using a greedy algorithm as follows. At

an iteration, assume so far we have assigned R◦
mdt to period t of day d in month m. We

compute the marginal change ϖr̃,R◦ −ϖr̃,R◦+1 for all available periods (i.e., the periods to

which assigning an extra call is feasible) throughout the horizon, and assign one call to the

period with the largest marginal change. We repeat until no available period is left.

The approximation scheme of [KMP+HWP] can also be conveniently extended to the

stochastic compliance setting. The only impacted element of KMP is Φm(k, h), which denotes

the expected cost in month m if k calls and h hours are available. To estimate Φm(k, h), for

each potential threshold Z, we need to compute the expected cost for each training realization
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of month m. For a fixed threshold Z and a given day in a training realization, we estimate

the expected cost as follows. When we schedule calls, we approximately assume each active

call deterministically reduces the consumption by µ. We schedule as many calls as needed to

reduce the consumption below threshold Z (in expectation). For a fixed threshold Z, in a

given period t with initial consumption r, because we assume each active call deterministically

reduces the consumption by µ, we can compute the number of calls that must be active in

period t to reduce the consumption r below Z. Therefore, for a given ECP and threshold Z,

the total hours is fixed and computed as ĥmd :=
∑T

t=1⌈
[rmdt−Z]+

µ
⌉. To compute the number of

calls, we use Algorithm 1 except that in line 5, we update the load as r̄t := r̄t − µ. After we

schedule calls, we compute the expected cost by incorporating the stochasticity around µ; if

the initial consumption in period t is r and we have scheduled R calls to be active in this

period, the expected cost in period t is ϖr,R. We repeat this procedure for each potential

Z and select the one that has the smallest expected cost for the month. After estimating

Φm(k, h), for all m, k, and h, we solve KMP.

By solving KMP, we determine the total calls k∗m and hours h∗m to be used in month m as

well as the threshold Z∗
m. To deploy these calls and hours in month m, we solve HWP on

a daily basis. The only impacted elements of HWP are {ld,s,i}i and Ψm,d(·). Similar to our

above explanation, we use modified Algorithm 1 to determine {ld,s,i}i. Note the input for

estimating Ψm,d(·) is {ld,s,i}i; that is, Ψm,d(·) is impacted through {ld,s,i}i. In short, HWP

extends to the case of uncertain compliance simply by applying the modified Algorithm 1 to

determine {ld,s,i}i.

Numerical experiments. We solved our 25 simulated instances (introduced in §2.6) using

a uniformly distributed compliance between 65% and 85%. The average error of KMP+HWP

increased from 12.03% (for the case of deterministic full compliance, recalling from the first

paragraph of §2.6) to 12.21%. Thus, we conclude our generalized approximation for the case

of uncertain compliance performs remarkably well.

We performed additional experiments using a small example with G = 4, L = 3, k̆m =
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Figure 2.20: Performance of our approximation with uncertain (uniformly distributed)
compliance. The approximation error is measured as % error in comparison to the lower
bound. In figure (a), we set the range size to 20%. Similarly, we set mean compliance to 50%
in figure (b).

5, h̆m = 10, K = 20, and H = 40, to investigate the impact of the mean compliance as well

as its variability. In Figure 2.20(a), we analyze the impact of mean compliance changing

from 10% to 90%, whereas the range of the uniform distribution is kept constant at 20%;

for example, if the mean compliance is 10%, the compliance uniformly belongs to the range

[0, 20%]. Similarly, in Figure 2.20(b), we test the changes in the variability by varying the

range size between 0% and 80%, while keeping the mean compliance constant at 50%; for

example, if the range size is 80%, the compliance uniformly belongs to the range [10%, 90%].

To obtain each data point, we use 300 training and 300 testing realizations. To compute the

expected cost of our solution for a testing realization, after HWP assigns calls to today, we

identify the number of active calls in each period and use our pre-computed values ϖr,R to

determine the expected cost.

The error values in Figure 2.20 are computed by comparing the expected cost of our

solution with the lower bound. Because no assumption is made while computing our lower

bound, the reported errors in Figure 2.20 include all errors in our approximation. We observe,

under stochastic compliance, the total error of our extended approximation remains small and

the performance of our approximation is robust when mean and/or variability of compliance
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change. As one would expect, we observe a modest increase in the error when the mean

compliance decreases and/or when the variability increases. We also observe in Figure 2.20(a)

a large error for the case of mean compliance of 10%, which is an unrealistic case in our

application because DLCCs have significantly high compliance rates. Nevertheless, our

approximation does not perform well when the mean compliance is significantly small.

Note as compliance variability increases, the odds of achieving the threshold decreases. In

our application, the compliance variability is small and the threshold is not strictly enforced,

and hence, our above extension is appropriate for our application. Ahead we discuss extending

our approximation if achieving the threshold (with a given probability , e.g., 95%) is strictly

enforced by the utility.

Insights on why our generalization works. We provide an intuition on the excellent

performance of our extension for the case of uncertain compliance. Recall the expected cost

in period t is

ϖr,k := Eχ1,...,χk

[
f

(
r −

k∑
i=1

χi

)]
,

whereas we schedule calls using an approximate expected cost

ϖ̂r,k := f

(
r −

k∑
i=1

E[χi]

)
.

Because f is a smooth function and the variability of χi is low (consistent with our practical

application), the two values ϖr,k and ϖ̂r,k are very close. Furthermore, as ϖr,k ≥ ϖ̂r,k, we are

always underestimating the cost. Hence, using ϖ̂r,k to schedule calls is a good approximation.

After determining the schedule of calls, we use the exact values ϖr,k to compute the expected

cost.

Achieving the threshold with a given probability. Our generalized approximation achieves

the threshold in expectation, whereas an actual realization may slightly exceed the threshold.

This approach is appropriate in our application because in practice, achieving the threshold
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is desirable but strictly enforcing the threshold is not necessary. We briefly discuss the

implications of strictly enforcing the threshold below. Assume a utility requires achieving the

threshold with a given probability a at least. Assume χis are i.i.d. For each period t, we can

compute the number of active calls needed to reduce the consumption to the threshold with

probability a. Thus, given a daily consumption profile and a threshold, with certainty, we

determine the number of active calls needed in each period of the day. Given this information,

the rest of our approach extends as we explained above. The only difference between our

former generalization and this one is that- if the compliance variability is high, in the latter

case, we may need to assign additional calls to a period so that we can achieve the threshold

with probability a; however, the former case schedules calls solely based on the expected

compliance rate.

2.8 Conclusion

The high cost and long lead time of investments in power systems combined with the lack of

efficient storage technologies makes reducing peak loads an important yet challenging task.

The importance of managing peak loads is growing with rapid changes in the climate. Climate

change is resulting in extreme weather that in turn is causing record-setting peak-energy-

consumption levels.9 In this research work, we study direct load control contracts (DLCCs),

a class of incentive-based demand-response programs that enable utility firms to reduce the

load during peak periods. DLCCs are becoming more popular among utilities. Efficient

implementation of these contracts is not a trivial task, because the energy-consumption

pattern varies across days, and monthly and annual limits are placed on the number of times

and hours that customers can be called to reduce their load.

Experiments with data from CAISO verify that using our solution approach for managing

9https://www.cbsnews.com/sanfrancisco/news/california-rolling-blackouts-power-grid-heat-wave-hot-
weather/ (retrieved on September 12, 2022).
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peak load is highly beneficial. Moreover, a large utility firm in California that used our

optimization framework achieved a significant reduction in cost. Our model also provided

insights for managers about the effects of changing the features of DLCCs. For example, we

observed that our model maintains a low variability in the number of calls and hours across

the groups, and it calls customers for longer hours if necessary, but the calls are made less

frequently. Because our modeling framework captures the most salient features of DLCCs,

and the solution scheme is aligned with managerial considerations, our analytical framework

can be implemented in other utility firms that use DLCCs, perhaps with some customization.

For example, if a utility allows daily/weekly thresholds, our approach can be modified to

incorporate this additional feature. For this scenario, we can also theoretically analyze the

worst-case error of using flat-tops solutions when calls are at most one hour.

The DLCCs studied in this chapter contractually indicate that load shifting is not allowed.

Our numerical analysis indicated the load-shifting is not likely to be a challenge in our

application, because our approximation could be used if load shifting does not create new

peaks. Future research needs to perform a more thorough analysis of these variations of

DLCCs by modeling the stochastic behavior of customers in response to calls.

Finally, the DLCC studied in this work captures most of the features of the DLCC

contracts offered by many utility companies. However, more research is needed to address

the contracts that allow non-equal group size and dynamic enrolment in these programs.
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2.9 Appendix A: Mathematical Model for the Deterministic Version of P

In the deterministic special case of P, denoted by DDP, we know (with certainty) the

consumption rate at any time over the contract horizon. In this deterministic setting, let rmdt

denote the energy consumption during period t of day d in month m. Let binary variable

xmdgt ∈ {0, 1} be 1 if group g is called in period t of day d in month m, and 0 otherwise.

Quantity
∑G

g=1 xmdgt is the number of groups that are on call in period t of day d in month

m.

We assume each hour of a call reduces the load by one unit (e.g., 1 GWh). This assumption

is without loss of generality because if, instead, each hour of a call reduces the load by r̄

GWh, rmdt would be measured as r̄ GWh. Therefore, after assigning calls to groups, the

energy consumption in period t of day d in month m becomes rmdt −
∑G

g=1 xmdgt. We also

assume, for ease of presentation, rmdt is sufficiently large such that rmdt −
∑G

g=1 xmdgt ≥ 0,

for all m, d, and t.

Let fmdt(rmdt −
∑G

g=1 xmdgt) denote the cost function in period t of day d in month m if

the consumption (before reduction) is rmdt and the number of groups on call is
∑G

g=1 xmdgt.

In addition, let binary variable ymdgt ∈ {0, 1} be 1 if a call to group g starts in period t of

day d in month m, and 0 otherwise. DDP is formulated as

(DDP) min
M∑
m=1

Dm∑
d=1

T∑
t=1

fmdt

(
rmdt −

G∑
g=1

xmdgt

)
(2.8a)

s.t.
M∑
m=1

Dm∑
d=1

T∑
t=1

ymdgt ≤ K, ∀g, (2.8b)

M∑
m=1

Dm∑
d=1

T∑
t=1

xmdgt ≤ H, ∀g, (2.8c)

Dm∑
d=1

T∑
t=1

ymdgt ≤ k̆m, ∀m, g, (2.8d)
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Dm∑
d=1

T∑
t=1

xmdgt ≤ h̆m, ∀m, g, (2.8e)

T∑
t=1

xmdgt ≤ L, ∀m, g, d = 1, . . . ,Dm, (2.8f)

ymdgt ≥ xmdgt − xmdg,t−1, ∀m, g, t ≥ 2, d = 1, . . . ,Dm, (2.8g)

ymdg1 ≥ xmdg1, ∀m, g, d = 1, . . . ,Dm, (2.8h)

T∑
t=1

ymdgt ≤ 1, ∀m, g, d = 1, . . . ,Dm, (2.8i)

xmdgt, ymdgt ∈ {0, 1}, ∀m, g, t, d = 1, . . . ,Dm. (2.8j)

The objective function (2.8a) minimizes the total energy-consumption cost throughout the

planning horizon. Constraints (2.8b)-(2.8e) impose the yearly and monthly limits on the total

number of calls and hours assigned to each group. Constraint (2.8f) ensures the duration of

each call does not exceed L. Constraints (2.8g)-(2.8i) guarantee the continuity of calls and

that each group is called at most once in one day.

2.10 Appendix B: Proofs

2.10.1 Proof of Proposition 1

Proof of part (a). Consider the 2-Partition problem [GJ79] with 2n elements A = {a1, . . . , a2n},

such that ai ∈ Z+, for all i, and
∑2n

i=1 ai = 2B. Can A be divided into two disjoint subsets

of size n, such that the sum of the elements in each subset equals B? Consider a specific

instance of the deterministic version of P, denoted by DDP: G = 2,M = 1, K = k̆1 = n,H =

h̆1 = B,D1 = 2n, T ≥ maxi{ai}, and L ≥ maxi{ai}. The ith day has an ECP of length ai

and height 1 such that if a call of length ai is assigned to a group on the ith day, a saving

of ai will be achieved, whereas if the group cannot receive the full-length call because of its

contractual limits, the saving will be strictly less than ai. Note the total load over the horizon
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is equal to 2B.

Suppose the 2-partition problem has a feasible solution that divides A into disjoint subsets

A1 and A2 of size n. Then, by assigning the ECPs in A1 (i.e., calls of length ai ∈ A1) to one

of the groups and the ECPs in A2 (i.e., calls of length a′i ∈ A2) to the other group, we can

achieve a total saving of 2B. If the 2-partition problem has no feasible solution, the sum of

the elements in either A1 or A2 exceeds B. Without loss of generality, assume the sum of the

elements in A1 (A2) is larger (smaller) than B. Given that each group can be called up to n

times for a total duration of up to B hours, the saving from A1 is B and the saving from A2

is strictly less than B. Thus, the total saving is strictly less than 2B.

Proof of part (b). We use the Numerical 3-Dimensional Matching problem (NMP), which

is known to be strongly NP-complete [GJ79]. Consider disjoint sets C1 = {a1, . . . , an}, C2 =

{an+1, . . . , a2n}, and C3 = {a2n+1, . . . , a3n}, each containing n elements of sizes ai ∈ Z+ for

1 ≤ i ≤ 3n, and let B ∈ Z+. Can C1 ∪ C2 ∪ C3 be partitioned into n disjoint subsets

A1, A2, . . . , An, such that each Ai contains exactly one element from each of C1, C2, and C3,

and
∑

ai∈Aj
ai = B for 1 ≤ j ≤ n?

Consider the following instance of DDP:G = n, M = 3, Dm = n, k̆m = 1, h̆m ≥ maxi{ai},

for all m, K = 3, H = B, T ≥ maxi{ai}, and L ≥ maxi{ai}. The energy consumption over

the three month horizon is illustrated below.

Suppose NMP has a feasible solution. Then, by assigning the ECPs in Aj (i.e., the 3 calls,

1 call per month) to group 1 ≤ j ≤ n, we can achieve a total saving of nB. If NMP does

not have a feasible solution, a subset exists with the sum of elements exceeding B. Because

each group can be called at most once per month and for a total of B hours over the three
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months, the total saving will be strictly less than nB.

Proof of part (c). Consider the 3-Partition problem [GJ79] with the set of 3n elements

A = {a1, . . . , a3n}, such that ai ∈ Z+, B
4
< ai <

B
2
, for all i, and

∑3n
i=1 ai = nB. Consider

an instance of DDP where G = 3n, group i has one remaining call and remaining hours ai,

and L ≥ maxi{ai}. Consider the following ECP for the last day, when a total load of nB is

distributed over B hours, and the load is zero for the rest of the day.

Suppose the 3-partition problem has a feasible solution and A can be divided into n

disjoint subsets A1, . . . , An of size 3, such that the sum of the elements in each subset is

B. Then, we assign the jth layer of the ECP to the three groups for which ai ∈ Aj, for all

1 ≤ j ≤ n and achieve a total saving of nB. If the 3-partition problem does not have a

feasible solution, subsets Aj and Aj′ exist such that the sum of their elements is larger and

smaller than B, respectively. Because each group has one remaining call, the saving from Aj

will be B, whereas the saving from Aj′ will be less than B; thus, the total saving across all

subsets will be strictly less than nB.

2.10.2 Proof of Theorem 1

At each iteration of the while-loop, Algorithm 1 creates a call, denoted by η̄, with starting time

ts and end time te. Consider the first iteration of the while-loop. If the energy consumption

never exceeds Z, ts does not exist, and no call is created in the while-loop. Otherwise, a call

is created in the first iteration of the while-loop. Let us denote this call by η̄, its starting

time by ts, and its ending time by te. We need to show an optimal solution for DLP exists
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that satisfies the following condition: j′ exists such that xj′t = 1, for all t ∈ {ts, ts+1, . . . , te},

xj′t = 0, for all t ̸∈ {ts, ts + 1, . . . , te}, yj′ts = 1, and yj′t = 0, for all t ̸= ts. After we prove

this result, we fix the values of xj′ts and yj′ts and solve the reduced problem. The reduced

problem has the same structure with J − 1 potential calls, and the energy consumption has

been reduced by one unit during hours ts to te. By repeating this logic, the while-loop finds

the minimum number of calls to eliminate the area above Z.

Consider the first iteration of the while-loop and assume ts exists such that ts = min{t| 1 ≤

t ≤ T, r̄t > Z}. Because of constraint (2.3b), in an optimal solution of DLP, j′ exists such

that xj′ts = 1. The algorithm creates a call with starting time ts and end time te such that

te = min {ts + L− 1,min{t|ts ≤ t ≤ T, r̄t > r̄t+1}}. We aim to show an optimal solution

for DLP exists such that xj′t = 1, for all t ∈ {ts, ts + 1, . . . , te}, and xj′t = 0, for all

t ̸∈ {ts, ts + 1, . . . , te}. Note either ts = 1 or xj′t = 0, for all t ∈ {1, 2, . . . , ts − 1} (because of

constraint (2.3b)). Therefore, we need to prove xj′t = 1, for all t ∈ {ts, ts + 1, . . . , te}, and

xj′t = 0, for all t ∈ {te + 1, te + 2, . . . , T}. Note if te = T , we only need to prove xj′t = 1,

for all t ∈ {ts, ts + 1, . . . , te}; hence, without loss of generality, assume te < T . Moreover,

it is sufficient to show xj′t = 1, for all t ∈ {ts, ts + 1, . . . , te}, and xj′te+1 = 0 (because of

constraints (2.3d)-(2.3g)).

We first prove an optimal solution for DLP exists such that xj′t = 1, for all t ∈ {ts, ts +

1, . . . , te}. Suppose to the contrary that in any optimal solution for DLP, t′ exists such that

t′ := min{t| ts + 1 ≤ t ≤ te, xj′t = 0}. Note Z < r̄t′−1 ≤ r̄t′ , and hence,
∑

j xj,t′−1 ≤
∑

j xj,t′

(because of constraint (2.3b)). Therefore, j′′ exists such that xj′′,t′−1 = 0 and xj′′,t′ = 1.

Moreover, yj′′,t′ = 1. This observation means that two calls are made: one is active during

ts to t′ − 1 and the other is active during t′ to t′′, for some t′′ ≥ t′. We change this optimal

solution as follows: let the first call be active during ts to t′ and the second call be active

during t′ + 1 to t′′ (if t′ = t′′ the second call is eliminated meaning the objective value of DLP

decreases by 1, and if t′ < t′′, the objective value remains the same). The duration of the first
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call is increased by 1 and becomes t′ − ts + 1. This increase satisfies constraint (2.3c) because

t′ − ts + 1 ≤ te − ts + 1 ≤ (ts + L− 1)− ts + 1 ≤ L.

Moreover, note the duration of the second call is reduced and it automatically satisfies

constraint (2.3c). Thus, the modified solution is feasible for DLP and its objective value

is at least as good as that of the original solution. Therefore, the modified solution is also

optimal and t′ has increased by 1. By repeating this procedure while t′ exists satisfying

t′ := min{t| ts+1 ≤ t ≤ te, xj′t = 0}, we create an optimal solution such that no such t′ exists.

Hence, an optimal solution for DLP exists such that xj′t = 1, for all t ∈ {ts, ts + 1, . . . , te}.

Next, we aim to prove an optimal solution for DLP exists such that xj′t = 1, for all

t ∈ {ts, ts + 1, . . . , te}, and xj′te+1 = 0. Consider the following two cases.

Case 1: ts+L−1 > min{t|ts ≤ t ≤ T, r̄t > r̄t+1}. Then, te = min{t|ts ≤ t ≤ T, r̄t > r̄t+1}

and te < ts+L−1. Suppose to the contrary that in any optimal solution that satisfies xj′t = 1,

for all t ∈ {ts, ts + 1, . . . , te}, for some j′, we have xj′te+1 = 1. Therefore, consider an optimal

solution such that j′ exists for which xj′t = 1, for all t ∈ {ts, ts + 1, . . . , te, te + 1}. Let t′ be

such that xj′t′ = 1 and xj′t′+1 = 0. Thus, t′ ≥ te + 1 and xj′,t = 1, for t ∈ {ts, ts + 1, . . . , t′},

and xj′,t = 0, for t ̸∈ {ts, ts + 1, . . . , t′}. In other words, we have a call that is active during ts

to t′. Note

Z < r̄ts ≤ r̄ts+1 ≤ · · · ≤ r̄te > r̄te+1

⇒
∑
j

xj,ts ≤
∑
j

xj,ts+1 ≤ · · · ≤
∑
j

xj,te >
∑
j

xj,te+1,

because of constraint (2.3b). Therefore, j′′ and t′′ ∈ {ts + 1, . . . , te} exist such that xj′′,t = 1,

for t ∈ {t′′, t′′ + 1, . . . , te}, and xj′′,t = 0, for t ̸∈ {t′′, t′′ + 1, . . . , te}. We modify this optimal

solution as follows: xj′,t = 0, for t ∈ {te + 1, . . . , t′}, and xj′′,t = 1, for t ∈ {te + 1, . . . , t′} (we

do not change the values of other variables). This modified solution is feasible for DLP and
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its objective value is the same. Therefore, we have created an optimal solution satisfying

xj′t = 1, for all t ∈ {ts, ts + 1, . . . , te}, and xj′te+1 = 0.

Case 2: ts + L− 1 ≤ min{t|ts ≤ t ≤ T, r̄t > r̄t+1}. Then, te = ts + L− 1. In this case,

xj′te+1 = 0 because of constraint (2.3c).

So far, we have proven Algorithm 1 finds an optimal solution for DLP. Next, we argue this

optimal solution is found in time complexity O(JT ). The while-loop iterates at most J times.

At each iteration of the while-loop, ts is found (or its nonexistence is verified) in O(T ). In line

3, te is also found in O(T ). Line 5 requires at most L operations (≤ O(T )). Therefore, each

iteration of the while-loop is performed in time complexity of O(T ). Thus, the computational

time complexity of Algorithm 1 is O(JT ), and hence, the proof is complete.

2.10.3 Proof of Theorem 2

We first provide an intuitive explanation for this error bound. To prove Theorem 2, we

consider an optimal solution for the aggregate problem and create a feasible solution for the

disaggregate problem. We show the portion of the aggregate solution that corresponds to a

month can be disaggregated such that the total hours assigned to any two groups differ by at

most L hours, and thereby, in each month, for each group, at most δL error may be created.

This step leads to a worst-case error of δGML, corresponding to the first part of the error

bound in Theorem 2. The second part of this bound is created while combining the monthly

solutions. We rotationally assign the monthly solutions to the groups. After this step, the

total hours assigned to any two groups differ by at most ML hours, and hence, we create at

most δGML error. Note, however, combining the monthly solutions may create no (little)

error if the annual limit H imposes no (little) further restriction on top of the monthly limits.

Obviously, if the annual limit H is relaxed, our rotational assignment creates no further

error. Therefore, the error we create in the second step depends on the restrictiveness of

the annual limit H and cannot be more than δ
((∑

m h̆m

)
−H

)
for each group. Thus, the

total error of the second step is bounded by the minimum of the two quantities, δGML and
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δG
((∑

m h̆m

)
−H

)
.

Let DDP and ADDP denote the deterministic versions of P and AMP without restricting

solutions to threshold-type policies. For ease of presentation, let vDDP and vADDP respectively

denote the optimal values of DDP and ADDP (these quantities are denoted by v′ and v′′ in

the main manuscript). Note ADDP is a relaxation of DDP, because a feasible solution of

DDP is always feasible for ADDP but the converse may not be true. Thus, vDDP ≥ vADDP,

which implies 0 is a lower bound on (vDDP − vADDP). Let CA denote the set of calls in the

optimal solution of ADDP. For call η ∈ CA, let m(η), d(η), t(η), and l(η) denote the month,

day, starting time, and duration of η. Our proof is based on showing a feasible solution for

DDP exists, denoted by C, such that the objective value of C, denoted by v(C), satisfies

v(C)− vADDP ≤ δG

(
ML+min

{
ML,

(
M∑
m=1

h̆m

)
−H

})
. (†)

After showing this result, and because vADDP ≤ vDDP ≤ v(C), we have

vDDP − vADDP ≤ v(C)− vADDP ≤ δG

(
ML+min

{
ML,

(
M∑
m=1

h̆m

)
−H

})
,

which completes the proof of Theorem 2.

Therefore, we need to prove C exists that satisfies (†). We present a procedure, given

in Algorithm 2, referred to as FDS (which stands for feasible disaggregate solution), which

creates a feasible solution for DDP.

In fact, given CA, we aim to determine the recipient group for each call η ∈ CA (the

duration of some of the calls may be reduced). Let g(η) denote the group that receives call

η ∈ CA. The output of procedure FDS is a set of calls C, where for each call η ∈ C the values

of m(η), d(η), t(η), l(η), and g(η) are known. In line 1 of procedure FDS, C̄m contains all

calls in month m, and we aim to assign these calls to groups. These calls are sorted in line 3.

The first G calls are referred to as class 1 (CLS(η)=1), the second G calls are referred to as
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Algorithm 2: Procedure FDS.

Input: CA ; ▷ Attributes m(η), d(η), t(η), and l(η) are known ∀η ∈ CA
Output: C ; ▷ Attributes m(η), d(η), t(η), l(η), and g(η) are known ∀η ∈ C
Define C := {};
Define C̄m := {η ∈ CA |m(η) = m}, for all m = 1, . . . ,M.
for m = 1, 2, . . . ,M do

Sort the calls in C̄m in a non-increasing order of their durations.
Let ORD(η) ∈ {1, . . . , |C̄m|} denote the order of η in the sorted list, for all η ∈ C̄m.
Define CLS(η) := ⌈ORD(η)/G⌉, for all η ∈ C̄m.
Partition C̄m into ¯̄Cm1, . . . ,

¯̄CmG satisfying
(i) | ¯̄Cmg| ≥ | ¯̄Cm(g+1)|, for all g = 1, . . . , G− 1, and

(ii) d(η′) ̸= d(η′′) and CLS(η′) ̸=CLS(η′′), for all g, for all η′, η′′ ∈ ¯̄Cmg.
for g = 1, 2, . . . , G do

While
∑

η∈ ¯̄Cmg
l(η) > h̆m, reduce l(η) for some η ∈ ¯̄Cmg.

Let g′ := argming′′=1,...,G{
∑

η∈C I(g(η) = g′′)}.
Set g(η) = g′, for all η ∈ ¯̄Cmg.
Update C := C ∪ ¯̄Cmg.

for g = 1, 2, . . . , G do
While

∑
η∈C l(η)I(g(η) = g) > H, reduce l(η) for some η such that η ∈ C, g(η) = g.

class 2 (CLS(η)=2), and so on (lines 4 and 5). In line 6, C̄m is partitioned into G mutually

exclusive and collectively exhaustive subsets ¯̄Cm1, . . . ,
¯̄CmG such that each ¯̄Cmg contains at

most one call from each class and at most one call from each day. In addition, we require

that the subsets ¯̄Cmgs are sorted in a non-increasing order of their sizes. In lines 7-11, we

iteratively assign the largest subset to the group with the least assigned calls. We also reduce

the durations of some of the calls in line 8 so that the total hours assigned to a group in a

month is less than or equal to h̆m. Finally, in lines 13-15, we reduce the durations of some of

the calls so that the total hours assigned to each group is less than or equal to H. Lemma 1

establishes feasibility of procedure FDS.

Lemma 1. Given an optimal solution of ADDP, procedure FDS creates a feasible solution for

DDP.

Proof. We need to prove the produced set of calls C is a feasible solution for DDP. Note

76



ADDP has the following constraint:

G∑
g=1

Dm∑
d=1

T∑
t=1

ymdgt ≤ Gk̆m, ∀m.

Because of this constraint, we have |C̄m| ≤ Gk̆m, for all m. At iteration m, after creating

classes, some classes have exactly G calls and at most one class has less than G calls. Consider

a class with exactly G calls. Note we partition C̄m into G subsets and each subset can have

at most one call from a class; therefore, each subset ¯̄Cmg contains exactly one call from a

class that has exactly G calls. Thus, if all classes have exactly G calls, all subsets ¯̄Cmgs will

contain an equal number of calls. Now, consider a class with less than G calls. Each subset

receives at most one call from this class. Therefore, we have

∣∣∣| ¯̄Cmg′ | − | ¯̄Cmg′′ |
∣∣∣ ≤ 1, ∀m, g′, g′′. (2.9)

Next, we use a contradiction to show | ¯̄Cmg| ≤ k̆m, for all m and g. Suppose m′ and g′ exist

such that | ¯̄Cm′g′ | > k̆m′ . Thus, because of inequality (2.9), we must have | ¯̄Cm′g| ≥ k̆m′ , for all

g ̸= g′. This observation implies that |C̄m′| =
∑G

g=1 | ¯̄Cm′g| > Gk̆m′ , which is a contradiction

because |C̄m′ | ≤ Gk̆m′ . Therefore, we proved | ¯̄Cmg| ≤ k̆m, for all m, g. A subset ¯̄Cmg contains

some calls in month m that are assigned to a group in line 10. Therefore, procedure FDS

satisfies constraint (2.8d). Moreover, in line 8, we reduce the durations of some of the calls so

that the sum of durations of calls in ¯̄Cmg is less than or equal to h̆m. Thus, procedure FDS

satisfies constraint (2.8e).

Next, we show procedure FDS also satisfies constraints (2.8b) and (2.8c). Using an

induction, we show that at the end of iteration m of the for -loop (lines 2-12), set C satisfies

∣∣∣∣∣
(∑
η∈C

I(g(η) = g′)

)
−

(∑
η∈C

I(g(η) = g′′)

)∣∣∣∣∣ ≤ 1, ∀g′, g′′, (2.10)
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meaning the number of calls assigned to different groups differs by at most one. At the end of

iteration m = 1, inequality (2.10) is satisfied because of inequality (2.9). Assume inequality

(2.10) is satisfied at the end of iteration m. Thus, K ′ exists such that some groups have been

assigned K ′ calls and some groups have been assigned K ′ +1 calls during months 1 to m. Let

G ′ denote the set of groups that have been assigned K ′ calls and G ′′ denote the set of groups

that have been assigned K ′ + 1 calls. In month m+ 1, we want to assign ¯̄Cm+1,1, . . . ,
¯̄Cm+1,G

to groups. Note g′ and K ′′ exists such that ¯̄Cm+1,g contains K
′′ + 1 calls, for all g = 1, . . . , g′,

and ¯̄Cm+1,g contains K
′′ calls, for all g = g′ + 1, . . . , G. Exactly one of the following two cases

happens.

Case 1: |G ′| ≥ g′. Then, let G ′
sub ⊆ G ′ such that |G ′

sub| = g′. Assume without loss of

generality that ¯̄Cm+1,1, . . . ,
¯̄Cm+1,g′ are assigned to groups in G ′

sub. At the end of iteration m+1,

we have:
∑

η∈C I(g(η) = g) = K ′+K ′′+1, for all g ∈ G ′
sub∪G ′′, and

∑
η∈C I(g(η) = g) = K ′+K ′′,

for all g ̸∈ G ′
sub ∪ G ′′.

Case 2: |G ′| < g′. Then, let G ′′
sub ⊆ G ′′ such that |G ′′

sub| = G − g′. Assume without

loss of generality that ¯̄Cm+1,g′+1, . . . ,
¯̄Cm+1,G are assigned to groups in G ′′

sub. At the end of

iteration m + 1, we have:
∑

η∈C I(g(η) = g) = K ′ + K ′′ + 1, for all g ∈ G ′ ∪ G ′′
sub, and∑

η∈C I(g(η) = g) = K ′ +K ′′ + 2, for all g ̸∈ G ′ ∪ G ′′
sub.

Therefore, in either cases, inequality (2.10) is satisfied at the end of iteration m + 1.

Moreover, inequality (2.10) is satisfied at the end of iteration m = M.

Next, we prove that at the end of iteration m = M,
∑

η∈C I(g(η) = g) ≤ K, for all g,

using a contradiction. Suppose g′ exists such that
∑

η∈C I(g(η) = g′) > K. Thus, because

of inequality (2.10), we must have
∑

η∈C I(g(η) = g) ≥ K, for all g ̸= g′. This observation

implies |CA| =
∑G

g=1

∑
η∈C I(g(η) = g) > GK, which is a contradiction because |CA| ≤ GK

due to the following constraint in ADDP:

G∑
g=1

M∑
m=1

Dm∑
d=1

T∑
t=1

ymdgt ≤ GK.
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Therefore, procedure FDS satisfies constraint (2.8b). Moreover, in line 14, we reduce

the durations of some of the calls so that the sum of durations of calls that are assigned to

each group is less than or equal to H. Thus, procedure FDS satisfies constraint (2.8c). It

follows that the produced set of calls C is a feasible solution for DDP, and hence, the proof is

complete. □

So far, we have proven C is a feasible solution for DDP. Next, we show C satisfies (†). The

values of vADDP and v(C) are obtained using the following equations:

vADDP =
M∑
m=1

Dm∑
d=1

T∑
t=1

f
(
rmdt −

∑
η∈CA: m(η)=m, d(η)=d

I
(
t(η) ≤ t < t(η) + l(η)

))
, (2.11)

v(C) =
M∑
m=1

Dm∑
d=1

T∑
t=1

f
(
rmdt −

∑
η∈C: m(η)=m, d(η)=d

I
(
t(η) ≤ t < t(η) + l(η)

))
. (2.12)

Using equation (2.12), we have

v(C) =
M∑
m=1

Dm∑
d=1

T∑
t=1

f

(
rmdt −

∑
η∈C: m(η)=m, d(η)=d

I
(
t(η) ≤ t < t(η) + l0(η)− l−(η)

))
,

where l0(η) denotes the initial duration of η and l−(η) is the total reduction in the duration

of η that is performed in lines 8 and 14 of procedure FDS. For each η ∈ C, we have

0 ≤ l−(η) ≤ l0(η). Then,

v(C) =
M∑
m=1

Dm∑
d=1

T∑
t=1

f

(
rmdt −

∑
η∈C: m(η)=m, d(η)=d

I
(
t(η) ≤ t < t(η) + l0(η)

)
+

∑
η∈C: m(η)=m, d(η)=d

I
(
t(η) + l0(η)− l−(η) ≤ t < t(η) + l0(η)

))
.

To simplify the notation, let

zmdt := rmdt −
∑

η∈C: m(η)=m, d(η)=d

I
(
t(η) ≤ t < t(η) + l0(η)

)
,
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∆zmdt :=
∑

η∈C: m(η)=m, d(η)=d

I
(
t(η) + l0(η)− l−(η) ≤ t < t(η) + l0(η)

)
,

for all m, d, t. Therefore, we have

v(C) =
M∑
m=1

Dm∑
d=1

T∑
t=1

f(zmdt +∆zmdt)

=
M∑
m=1

Dm∑
d=1

T∑
t=1

(
f(zmdt) +

zmdt+∆zmdt∑
z′=zmdt+1

(f(z′)− f(z′ − 1))

)

= vADDP +
M∑
m=1

Dm∑
d=1

T∑
t=1

zmdt+∆zmdt∑
z′=zmdt+1

(
f(z′)− f(z′ − 1)

)
.

Note, to obtain the second line, we add and subtract f(zmdt), f(zmdt + 1), . . . , f(zmdt +

∆zmdt − 1). To obtain the third line, we apply the definition of vADDP given in equation

(2.11).

Recall we assume rmdt is sufficiently large such that
∑G

g=1 xmdgt ≤ rmdt, for all m, d, t;

hence, zmdt ≥ 0, for all m, d, t. Moreover, ∆zmdt ≥ 0, for all m, d, t, because the value of

the function I(·) is either 0 or 1. Finally, zmdt +∆zmdt ≤ rmdt, for all m, d, t. Consider the

definition of δ and note δ ≥ f(z)− f(z − 1), for all 1 ≤ z ≤ rmdt, for all m, d, t. Then, we

have

v(C) − vADDP ≤
M∑
m=1

Dm∑
d=1

T∑
t=1

zmdt+∆zmdt∑
z′=zmdt+1

δ

= δ

M∑
m=1

Dm∑
d=1

T∑
t=1

(
zmdt+∆zmdt∑
z′=zmdt+1

1

)

= δ

M∑
m=1

Dm∑
d=1

T∑
t=1

∆zmdt

= δ
M∑
m=1

Dm∑
d=1

T∑
t=1

 ∑
η∈C: m(η)=m, d(η)=d

I
(
t(η) + l0(η)− l−(η) ≤ t < t(η) + l0(η)

)
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= δ
∑
η∈C

T∑
t=1

I
(
t(η) + l0(η)− l−(η) ≤ t < t(η) + l0(η)

)

= δ
∑
η∈C

 t(η)+l0(η)−1∑
t=t(η)+l0(η)−l−(η)

1


= δ

∑
η∈C

l−(η).

Define l−1 (η) and l
−
2 (η) as the reduction in the duration of η that is performed in lines 8

and 14 of procedure FDS, respectively. Then, l−(η) = l−1 (η) + l−2 (η). Therefore, we have:

v(C)− vADDP ≤ δ

(∑
η∈C

l−1 (η) +
∑
η∈C

l−2 (η)

)
. (2.13)

The following lemma is used in the remainder of the proof. Note that, for each η ∈ C, the

value of g(η) is known and g(η) ∈ {1, . . . , G}.

Lemma 2. Let CA be a feasible solution of ADDP and let C denote a solution generated by

applying procedure FDS to CA. Then, C satisfies

(a)
∑

η∈C: g(η)=g′, m(η)=m l
0(η)−

∑
η∈C: g(η)=g′′, m(η)=m l

0(η) ≤ L, for all g′, g′′, m, and

(b)
∑

η∈C: g(η)=g, m(η)=m l
0(η) ≤ h̆m + L, for all g, m.

Lemma 2 can be proven similar to [FDA22], and hence is skipped. Part (b) of Lemma 2

implies:

∑
η∈C: g(η)=g, m(η)=m

l−1 (η) ≤ L, ∀g, m

⇒
M∑
m=1

G∑
g=1

 ∑
η∈C: g(η)=g, m(η)=m

l−1 (η)

 ≤
M∑
m=1

G∑
g=1

L

⇒
∑
η∈C

l−1 (η) ≤ MGL. (2.14)
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Moreover, we have:

∑
η∈C: g(η)=g, m(η)=m

(
l0(η)− l−1 (η)

)
≤ h̆m, ∀g, m (2.15)

⇒
M∑
m=1

 ∑
η∈C: g(η)=g, m(η)=m

(
l0(η)− l−1 (η)

) ≤
M∑
m=1

h̆m, ∀g (2.16)

⇒
∑

η∈C: g(η)=g

(
l0(η)− l−1 (η)

)
≤

M∑
m=1

h̆m, ∀g. (2.17)

Because of line 14 of procedure FDS, we have:

∑
η∈C: g(η)=g

l−2 (η) =

 ∑
η∈C: g(η)=g

(
l0(η)− l−1 (η)

)−H

+

, ∀g (2.18)

⇒
∑

η∈C: g(η)=g

l−2 (η) ≤

(
M∑
m=1

h̆m

)
−H, ∀g, (2.19)

because of inequality (2.17) and noting that naturally we assume H <
∑M

m=1 h̆m, because

otherwise, the contractual limits on the total hours per group becomes redundant (which is

not a well-designed DLCC contract).

Lemma 3.
∑

η∈C: g(η)=g
(
l0(η)− l−1 (η)

)
≤ H +ML, for all g.

Proof of Lemma 3. Using Lemma 2(a), we have

∑
η∈C: g(η)=g′, m(η)=m

l0(η)−
∑

η∈C: g(η)=g′′, m(η)=m

l0(η) ≤ L, ∀g′, g′′, m

⇒
M∑
m=1

 ∑
η∈C: g(η)=g′, m(η)=m

l0(η)

−
M∑
m=1

 ∑
η∈C: g(η)=g′′, m(η)=m

l0(η)

 ≤ ML, ∀g′, g′′

⇒
∑

η∈C: g(η)=g′
l0(η)−

∑
η∈C: g(η)=g′′

l0(η) ≤ ML, ∀g′, g′′. (2.20)
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Next, we use a contradiction to prove Lemma 3. Assume g′ exists such that

∑
η∈C: g(η)=g′

(
l0(η)− l−1 (η)

)
> H +ML

⇒
∑

η∈C: g(η)=g′
l0(η) > H +ML. (2.21)

Using Equations (2.20) and (2.21), we have

∑
η∈C: g(η)=g

l0(η) > H, ∀g

⇒
∑
η∈C

l0(η) =
G∑
g=1

 ∑
η∈C: g(η)=g

l0(η)

 > GH,

which contradicts the following constraint in ADDP:

G∑
g=1

M∑
m=1

Dm∑
d=1

T∑
t=1

xmdgt ≤ GH.

Hence, the proof of Lemma 3 is complete. □

Using Lemma 3 and equation (2.18), we obtain
∑

η∈C: g(η)=g l
−
2 (η) ≤ ML, for all g.

Moreover, by applying equation (2.19), we find

∑
η∈C: g(η)=g

l−2 (η) ≤ min

{
ML,

(
M∑
m=1

h̆m

)
−H

}
, ∀g

⇒
∑
η∈C

l−2 (η) =
G∑
g=1

 ∑
η∈C: g(η)=g

l−2 (η)

 ≤ Gmin

{
ML,

(
M∑
m=1

h̆m

)
−H

}
. (2.22)

Combining equations (2.13), (2.14), and (2.22), we obtain

v(C)− vADDP ≤ δG

(
ML+min

{
ML,

(
M∑
m=1

h̆m

)
−H

})
,
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and hence, the proof of Theorem 2 is complete.

2.10.4 Proof of Theorem 3

Proof of part (a). KMP◦ minimizes
∑M

m=1 pm,3 subject to
∑M

m=1 pm,1 ≤ GK,
∑M

m=1 pm,2 ≤

GH, and pm ∈ conv(Pm), for all m. We use a contradiction. Let {p◦
m}m denote an

optimal solution, and assume m′ exists such that p◦
m′ is not on the lower envelop Em′ . Thus,

p̂m′ ∈ conv(Pm) exists such that p̂m′ = (p◦m′,1, p
◦
m′,2, p

◦
m′,3 − a), for some a > 0. In the optimal

solution, if we replace p◦
m′ with p̂m′ , the new solution is feasible and its objective value is∑M

m=1 p
◦
m,3 − a, which is strictly smaller than the optimal value.

Proof of part (b). Let {ν◦m,i}m,i denote an optimal solution for KMP◦. We prove an integral

optimal solution for KMP◦ exists. Define p◦m,ℓ :=
∑Nm

i=1 pm,i,ℓν
◦
m,i, for ℓ = 1, 2, which denote the

number of calls and hours, respectively, assigned to month m. Define S◦
1 := GK −

∑M
m=1 p

◦
m,1

and S◦
2 := GH −

∑M
m=1 p

◦
m,2 as the slack of constraints (2.4b) and (2.4c), respectively. If S◦

1

is fractional, some fractional p◦m,1 exists. By increasing such fractional p◦m,1’s and decreasing

S◦
1 , we obtain an alternative optimal solution with integral S◦

1 (because of Theorem 3(a) and

that Em is non-increasing in the number of calls). Repeating this procedure for S◦
2 , we obtain

an optimal solution with integral S◦
1 and S◦

2 . Consider the following problem:

min
M∑
m=1

Em(um,1, um,2) (2.23)

s.t.
M∑
m=1

um,ℓ =
M∑
m=1

p◦m,ℓ, ∀ℓ = 1, 2, (2.24)

⌊p◦m,ℓ⌋ ≤ um,ℓ ≤ ⌈p◦m,ℓ⌉, ∀m, ℓ = 1, 2, (2.25)

where um,ℓ is the decision variable. By adding slacks to constraints (2.25) and performing

some algebraic manipulations, constraints (2.25) is equivalent to constraints (2.26)-(2.28).

um,ℓ + S̄m,ℓ,1 = ⌈p◦m,ℓ⌉, ∀m, ℓ = 1, 2, (2.26)

84



S̄m,ℓ,1 + S̄m,ℓ,2 = ⌈p◦m,ℓ⌉ − ⌊p◦m,ℓ⌋, ∀m, ℓ = 1, 2, (2.27)

S̄m,ℓ,1, S̄m,ℓ,2 ≥ 0, ∀m, ℓ = 1, 2. (2.28)

Therefore, we minimize objective function (2.23) over the feasible set defined by constraints

(2.24) and (2.26)-(2.28). The coefficient matrix of constraints (2.24), (2.26), and (2.27) is

totally unimodular, and the right-hand-side values of these constraints are integral. Thus,

all extreme points are integral. Because, for all m, the lower envelop Em is linear over the

unit square [k, k + 1]× [h, h+ 1], for all k ∈ {0, 1, . . . , Gk̆m − 1} and h ∈ {0, 1, . . . , Gh̆m − 1},

the objective function is linear over the feasible set (because constraints (2.25) bounds the

feasible set by a unit square for each month). Thus, an extreme point is optimal. Therefore,

we proved an optimal solution exists with integral numbers of calls and hours for each month.

Proof of part (c). Note we assume, for each month, all combinations of calls and hours

have been enumerated; hence, for each m, pm,im exists such that pm,im,1 and pm,im,2 are equal

to the (integral) optimal numbers of calls and hours, respectively. We construct an integral

optimal solution for KMP◦ by setting νm,im = 1, for all m, and νm,i = 0, for all m and

i ̸= im (because we assume all pm,i’s are on the lower envelops). Thus, we proved an integral

optimal solution exists for KMP◦. This optimal solution is feasible for KMP and provides

the same objective value. Therefore, recalling KMP◦ is a relaxation of KMP, the integral

optimal solution that we obtained for KMP◦ is also optimal for KMP, and hence, the proof is

complete.

2.10.5 Proof of Proposition 2

We prove this proposition using a reduction from the 3-partition problem [GJ79], similar to

[FDA22]. Consider the 3-partition problem with the set of 3n elements A = {a1, . . . , a3n},

such that ai ∈ Z+, B
4
< ai <

B
2
, for all i, and

∑3n
i=1 ai = nB. Consider an instance of WP

where G = n, and each group has three calls and B hours. Let the ECPs in the month consist

of 3n days with profiles that exactly match the elements of the 3-partition problem. The
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3-partition problem has a feasible solution if A can be partitioned into G subsets of size B,

in which case the corresponding ECPs can be assigned to the G groups, where each group

receives three calls and B hours.

2.10.6 Proof of Theorem 4

DA allocates calls on a rotational basis to the groups and a call is randomly selected. A call

assigned to a group is executed only if the group has the necessary hours. To derive an upper

bound on the expected hours lost by DA, we ignore the AMP (KMP) limit on hours and

assume each group will be called k∗m
G

times. The loss in optimality depends on the number

of hours that are wasted because some calls were not executed due to lack of hours. If a

group reaches its hour limit on the τ th call, the hours assigned on subsequent k∗m
G

− τ calls are

wasted, and a portion of the τ th call may also be wasted. Note τ is the hitting time for the

sum of hours assigned to a group to reach or exceed the available hours h∗m
G
, which is defined

as

τ := min

{
t ∈ {0, 1, . . . }

∣∣∣∣∣
t∑
i=1

li ≥
h∗m
G

}
.

The expected number of calls wasted is

E

[
k∗m
G

− τ

∣∣∣∣∣ τ ≤ k∗m
G

]
.

Therefore, by Wald’s identity, the expected hours lost is

l̄

(
E

[
k∗m
G

− τ

∣∣∣∣∣ τ ≤ k∗m
G

]
+ ϵ

)
,
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where ϵ ∈ [0, 1) accounts for the shortages on the τ th call. Because the total hours available

per group are k∗m
G
l̄, the expected percentage lost is

G

k∗m

(
E

[
k∗m
G

− τ

∣∣∣∣∣ τ ≤ k∗m
G

]
+ ϵ

)
=

1

n
(E [n− τ | τ ≤ n] + ϵ) ,

where we let n = k∗m
G
. By [Sie68, Theorem 1], we have

lim
n→∞

τ − n√
nσl(l̄)−1

D−→ N (0, 1).

The expected number of calls unused is equivalent to the number of units salvaged in a

news-vendor problem when the stocking level is equal to the mean. Hence, in the limit we

get

lim
n→∞

E(n− τ |τ ≤ n) → β
√
nσl

1

l̄
.

The proof is completed by applying Wald’s identity to derive the expected hours lost and

dividing by the hours available to get the following limit on the percentage of hours lost as

the number of calls (n) increases:

lim
n→∞

βσl√
n l̄

+
ϵ

n
,

and hence, DA is asymptotically optimal.

2.11 Appendix C: Numerical Experiments and Figures

In this section, we provide some additional figures that we’ve omitted from the numerical

experiments section due to space considerations. In particular, Figure 2.21 compares

the number of consumed calls and hours by the AMP-HWP and KMP-HWP approaches.

Moreover, Figure 2.22 plots the difference between the number of consumed calls and hours by

these two approaches across different months. On the other hand, Figure 2.23 illustrates the
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number of allocated and consumed calls by AMP-HWP and KMP-HWP to different months.

Finally, Figure 2.24 presents the same plot for the number of hours. As the figures indicate,

the variation of the allocated resources is generally higher for AMP-HWP in comparison

with KMP-HWP. Furthermore, KMP-HWP keeps most of the resources for peak months,

while AMP starts to use the resources earlier. We observe that the allocation patterns of the

resources are also different, as discussed in the body of the chapter.
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Figure 2.21: Comparison of the number of consumed calls and hours by AMP and KMP in
different months.
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Figure 2.22: The difference between the number of consumed calls and hours by AMP and
KMP in different months.
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Figure 2.23: The number of allocated and consumed calls for AMP-HWP and KMP-HWP.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

10

20

30

40

50

60

Ho
ur

s

Allocated vs consumed hours for AMP-HWP
Allocated
Consumed

(a) AMP-HWP

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

10

20

30

40

50

60

Ho
ur

s

Allocated vs consumed hours for KMP-HWP
Allocated
Consumed

(b) KMP-HWP

Figure 2.24: The number of allocated and consumed hours for AMP-HWP and KMP-HWP.
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CHAPTER 3

A Framework for Modeling the Choice of Healthcare

Intervention Strategies

3.1 Introduction

As the public safety-net healthcare service provider for all the Riverside County’s residents,

the Riverside University Health System (RUHS) aims to improve the population-level quality

of care as well as access to health care services. The RUHS’s behavioral health department,

which offers community-based services to patients with behavioral health problems (i.e.

mental health conditions or substance abuse disorders), annually reaches to more than 50,000

people across the Riverside County. Having a professional team of approximately 1,000

full-time employees including clinicians, psychiatrists, peer specialists, and paraprofessionals,

RUHS offers services in three broad categories of mental health, substance use, and public

guardian programs primarily to individuals on Medi-Cal and Medicare insurance plans.

Their adult services are divided into eleven mental health clinic sites, six of which

accommodate older adults, along with three urgent care clinics and two inpatient facilities.

The adult clinics provide services including but not limited to psychiatric assessment, crisis

intervention, recovery management, case management, and medication services. Moreover,

housing assistance, outreach to mentally-ill homeless individuals, and inpatient hospitalization

are also part of their services for adult patients. On the other hand, the children’s mental

health clinics work closely with schools to provide services to children who encounter academic

problems as a result of severe emotional issues. The programs serving older adults focus
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on wellness, recovery, and resiliency of the customers in order to help them recover and

maintain a physical and emotionally healthy lifestyle. Preventive mental health services are

also provided to the at-risk population for homelessness, institutionalization, and substance

abuse.

Our research has been conducted in collaboration with administrative members of

RUHS and especially aimed at exploring opportunities for sustainable improvement of the

population’s health in the long-run. In the following, we briefly discuss the key ideas that

motivated our research, introduce the core components of our model, justify various aspects of

our modeling approach based on the characteristics of the case under study, and finally take

a look at the problem from a wider perspective. We also explain the mathematical structure

of our decision-making problem. Moreover, we will see that to estimate the parameters of the

optimization problem, we need to design a statistical disease progression model as well.

The main idea behind the current work was initially inspired by observing the key role that

decisions regarding the trade-off between two contradictory approaches for providing healthcare

services to a population play in the long-term health and well-being of the population. One

approach is providing care to patients as needed and another approach is providing early

intervention services. As [PPH16] explain, almost half of all the healthcare expenditures in the

US are associated with only the top 5% of the healthcare users. Consequently, implementing

appropriate preventive intervention strategies can potentially reduce the burden on society

significantly. On the other hand, the median age-of-onset for many life-time mental disorders

is known to be around the early 20s [KAA07]. Moreover, there is often a long delay of almost

one decade, on average, between the onset of symptoms and the beginning of intervention

[KCD05]. Therefore, preventive interventions play a crucial role, especially in the behavioral

healthcare sector. The impact of preventive interventions on the progression of behavioral

health disorders has been well studied in the literature [ADM18]. However, as mentioned,

there is an inherent trade-off in making decisions regarding the choice of intervention strategies.

Although improving the general health of the population by implementing early intervention
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strategies can reduce the corresponding potential expenditure in the future, it incurs an

additional cost as well which may not be desirable in resource-constrained systems.

Our modeling mechanism is supposed to capture the impact of decisions regarding the

choice of intervention on the dynamics of the population’s health and provide a quantitative

framework for evaluating long-term costs and benefits of such decisions. However, we do

not restrict the set of interventions to only preventive and regular interventions since such

distinction may not always be possible in practice. From a high-level perspective, we categorize

individuals into multiple groups and then model the impact of intervention strategies on

their disease progression paths. Our disease progression model doesn’t assume direct access

to the underlying health state of patients. Therefore, we use the physician observations for

categorizing the patient. We will briefly introduce a common approach for classifying patients

based on their functioning-level in the next section. The model is supposed to determine the

optimum assignment of available interventions to patients. For example, an optimal solution

to our problem may include assigning 40% of patients who are in the so-called moderate

condition at a given time period to an intervention package comprising case management

and medication as well as assigning the remaining 60% to another intervention package

consisting from regular psychotherapy and partial hospitalization. The impacts of these

intervention options on the disease progression of patients are then evaluated by estimating

the probability according to which patients transition into other health states after receiving

each intervention package. More specifically, a transition probability matrix can be estimated

for any arbitrary intervention package which indicates the proportion of the population that

transition from each category to each category during one period of time as a result of

receiving this intervention. We prefer a population-based modeling approach that studies the

aggregate impact of high-level decisions on the whole population. This way of looking at the

system is in contrast to modeling patient-level impacts of interventions and then adding up

the effects. We will later discuss the rationale behind this choice in the next sections.

To estimate the population-level transition rates of the planning problem, we need to have
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a model for the patient-level progression of disease. For this purpose, we employ a Continuous-

Time Hidden Markov Model (CT-HMM) which consists of an underlying Continuous-Time

Markov Chain (CTMC) for modeling the true health state of patient as well as an emission

model for generating the observational data based on the patient’s health state. We’ve chosen

a latent variable model since direct information on the patients’ underlying health state is

rarely available in the behavioral healthcare domain. Therefore, physician observation data

is used instead as a proxy for making inferences on the true health state. Moreover, the

continuous-time nature of this model allows us to describe the progression of disease as a

continuous variable using irregular discrete-time observations and nicely handles the missing

data problem.

We define a linear objective function for the planning problem. To understand the

motivation behind this choice, here we present a brief discussion on the revenue sources of

the system under study. The RUHS’s state funding is based on Medi-Cal 1991 and 2011

realignments that cover involuntary care and state hospitals. The Mental Health Services Act

(MHSA) also provides funding sources for outpatient care, full-service partnership programs,

and capital investment for programs covering the incarcerated, unemployed, and homeless

population. However, the administrators report an estimated annual $150 million funding

shortfall. Certain categories of services, such as those provided by Federally Qualified Health

Centers (FQHCs), are cost-reimbursed and represent a volume-dependent revenue opportunity.

In our framework, the healthcare service provider is assumed to receive a certain amount

of budget and is supposed to consume that budget on keeping a population of patients as

healthy as possible. The patients may require additional healthcare services, depending on

their condition, and incur some cost to the system. We divide the services that patients may

need into two major categories: 1- non-hospitalization services, and 2- hospitalization service.

Such a distinction between these two types of services has its roots in the payment system

under which RUHS operates. Specifically, our model assumes that payment to the provider

is performed based on a hybrid Fee For Service (FFS)-capitation system. In this payment
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scheme, non-hospitalization services are reimbursed according to an FFS payment system

while a capitation payment system is used for hospitalization services. The provider tries to

maximize the net payoff associated with the entire population of patients. We’ll later discuss

the link between the hybrid FFS-capitation payment system and the linearity of the objective

function. We use a cost measure as the objective function of our problem rather than the

common quality of life measures, such as Quality-Adjusted Life Years (QALY), due to some

inherent weaknesses of such measures which will be discussed in detail later.

Our model also incorporates resource consumption constraints. The mood disorders,

schizophrenia, and mental disorders related to substance abuse are the most prevalent

diseases and conditions among RUHS’s patients. These patients require a wide array of

services such as general psychiatry, trauma psychiatry, therapy for anxiety and mood disorders,

addiction medication, case management, group therapy, and neuropsychological testing. Each

service requires certain resources ranging from human resources (e.g. psychiatrists, social

workers, and nursing staff) to physical resources (e.g. hospital beds). We emphasize that

the nature and severity of patient’s condition significantly affect the type and frequency of

service needs. As an example, general psychotherapy sessions often work well for early-stage

depression, while patients suffering from acute schizophrenia or mood disorders (such as

major depression and bipolar disorder) might even need help around the clock. We model

the resource requirement and budget constraints by appropriately defining resource and cost

matrices. More specifically, for any given resource we consider a matrix that indicates the

amount of this resource required for providing a certain intervention to a patient in a certain

category. Such a matrix is then used for defining linear inequality constraint that provides an

upper bound on the total amount of this resource being consumed by any arbitrary solution

to the optimization problem. For example, an intervention package including partial or

full hospitalization may require one unit of hospital beds for patients in the so-called sever

category and half a unit of hospital beds for patients in the so-called moderate category

during one period of time. Similarly, a cost matrix is defined for the budget constraint. We
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do not impose any methodological restrictions on the type of resource that a service may

need in our model, however, we assume that the resource requirement parameters are known

and homogeneous among patients in a certain class of health state.

The inefficiency issues go beyond a certain sector of the healthcare industry and are

not limited to the geographical area of our study. It is well-known that although the US

per-capita spending on healthcare is more than any other developed country, this spending

has not resulted in better health outcomes such as life expectancy and the prevalence of

chronic conditions [GS08]. [GS18] conduct a critical review study on the evidence of the

inefficiency of the US healthcare system. The authors explore the fundamental differences

between the healthcare industry and competitive industries in which inefficient players will

naturally be eliminated from the market and put emphasis on the significance of reforming

all the organizational, financial, and operational aspects of the healthcare system as the only

way of improving the system-wide efficiency.

Although there is no theoretical limitation in our framework which prevents its application

to other healthcare sectors, the body of our research makes the most sense in the context of

modeling behavioral healthcare systems. In fact, the chronic nature of most of the behavioral

health conditions makes long-term planning for the choice of intervention strategies more

meaningful. The problem is still worth studying since behavioral health disorders are common

among the US populations. The reports provided by the National Institute of Mental Health

(NIMH) indicate that more than 46 million US adults experienced mental illness in the year

2017 and almost 11 million of them suffered from a Serious Mental Illness (SMI). The anxiety

disorder, clinical depression, Attention Deficit Hyperactivity Disorder (ADHD), bipolar

disorder, Post-Traumatic Stress Disorder (PTSD), schizophrenia, and autism are the most

common mental disorders in the United States. Mental health disorders can potentially have

adverse impacts on all the social, physical and economic aspects of the patient’s life and

generally result in a lower quality of life (see [DW11], [BB11], and [LDD17]). According to a

report by the Substance Abuse and Mental Health Services Administration (SAMHSA), the
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total U.S. mental health treatment spending is expected to reach approximately $240 billion

in 2021 which is 5.5% of expected nationwide health spending [SAM14]. We refer the readers

to the study by [Kna03] for more details about the hidden costs of mental health disorders

for the economy.

In general, the U.S. behavioral health care system is under-resourced. More specifically,

psychiatry is one of the top workforce shortages among all medical specialties and the number

per capita has a decreasing trend. [SNS18] estimate between 14,280 to 31,091 psychiatrist

workforce shortage in the year 2024. The authors further explain that although a slow

expansion is expected to happen after 2025, it is not clear whether it can resolve the shortage

in the next 30 years. Moreover, as a consequence of deinstitutionalization policies in the U.S.

mental health care system [SJ13], the number of public psychiatric beds fell from 340 to 17

beds per 100,000 population during the period 1955 to 2005 [TEG15]. A recent report by the

National Survey on Drug Use and Health (NSDUH) indicates that only 42% of adults with

a mental disorder received mental health services in the year 2017 [SAM18]. This, in turn,

highlights the importance of system-level efficiency improvements which make serving more

patients in the current under-resourced situation possible.

As an extension of the baseline disease progression model, we also present a more

sophisticated version of our CT-HMM model that allows for occasional observation of the

underlying health state. We will discuss the motivations behind presenting this extension

by highlighting the differences in the nature of diseases such as cancer and heart disease

with behavioral health conditions. Finally, we present a patient-level intervention planning

problem based on the extended model, which employs a single patient’s historical data for

decision-making.

The main contributions of our work are as follows. First, we develop a CT-HMM disease

progression model that incorporates the effect of healthcare interventions, and present an

efficient approach for learning the model parameters. We employ this model for estimating

the transition rates between different levels, which is a basis for population-level planning.

96



Second, we present an extension of the model with occasionally-observed underlying health

state. We then discuss how to estimate the underlying health state for a given patient based

on their historical data. Such estimation would be helpful for individual-level intervention

planning.

3.2 Literature Review

In this section, we briefly review the relevant literature in three major areas, each concerning

one aspect of our work: overview of the US healthcare system, disease progression modeling,

and healthcare intervention planning. In the first part, we start by providing a high-level

background on the traditional frameworks for economic evaluation of healthcare interventions.

Afterward, we mention some of the largest and most successful public health programs that

aim to improve the efficiency of healthcare systems in the US and across the globe. Finally, we

go over the fundamentals of healthcare payment systems to better understand the motivations

behind our choice of the planning objective function. In the disease progression part, we

mention some of the key characteristics of healthcare conditions that make development of

statistical models challenging. We also explain the motivation behind choosing CT-HMM

models for our work, and highlight some complex aspects of disease progression that our

model doesn’t cover. Lastly, we discuss the healthcare intervention planning literature at

both the population-level and patient-level. We refer the readers to [BHP09] for a review of

the literature on modeling and simulation in healthcare.

3.2.1 An Overview of the US Healthcare System

Economic analysis of healthcare interventions. A branch of the health economics literature

focuses on evaluating the costs and outcomes associated with healthcare interventions and

making comparisons among alternative treatment options. At first, notice that the distinction

between effectiveness and cost-effectiveness of healthcare interventions should be recognized
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[RBK05]. An intervention is said to be effective if it helps to improve clinical outcomes

such as disease symptoms and health-related quality of life measures. However, the goal of

economic analysis is to determine whether an intervention is worth its costs.

[Kna19] provides an extensive literature review on the economic analysis of behavioral

health interventions. The author conceptualizes three levels of decision-making questions: 1-

”how to best treat a specific disorder?”, 2- ”how to allocate the available resources within the

health care sector?”, and 3- ”how to allocate the available resources across different areas of

public policy?”. The way cost is measured is almost the same among all the levels, however,

outcome measurement requires totally different approaches. A certain class of economic

analysis tools is suggested by the author for each level of decision making questions. The

Cost-Effectiveness Analysis (CEA) is the most appropriate approach for making decisions

regarding specific health needs (e.g. choosing the best treatment option for a patient with

depression). Limiting the scope of the problem to one disease or condition makes it possible

to use patient-centered measures of clinical outcomes for the analysis [GCW11]. For example,

the Incremental Cost-Effectiveness Ratio (ICER) statistic for two given treatment options

is defined as the ratio of the difference in costs to the difference in health outcomes. This

ratio indicates how much cost the system incurs for each unit of additional benefit that the

patient receives if a certain alternative treatment option is provided. At a higher level, the

Cost-Utility Analysis (CUA) methods are suggested for modeling planning and resource

allocation in the public health sector. A well-defined measure of utility is though needed to

make comparisons across outcomes associated with different diseases and conditions possible.

Finally, the Cost-Benefit Analysis (CBA) methods which are supposed to inform the highest

level of decisions, involve comparisons among the different areas of public policy. Therefore,

an economic analysis at this level requires a monetary representation for clinical outcomes

which may not be always available [Fre10]. We refer the readers to [MVP11] for a critical

review of recent studies on economic analysis of preventive interventions for mental health

disorders.
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Among the aforementioned three layers of decision making, the first and second are closer

to our problem under study. However, we look at the problem from a broader perspective, in

the sense that we set our ultimate goal as minimizing the total cost incurred to the system in

the long-run by the entire population. Specifically, we’ve decided to use a cost measure instead

of health-related quality of life measures, such as QALY, which have been commonly used

as generic utility measures for cost-utility analyses by economics and healthcare researchers

[Tor06]. In the following, we discuss the rationale behind this choice. Despite all the advantages

that QALY measures have, such as comparability and explicitness, many studies cast doubt

on whether QALY measures are appropriate for healthcare planning and resource allocation

purposes. [CHK97] critically explore various aspects of QALY measures and highlight the

inherent weaknesses of this class of measures that can potentially make them inappropriate

for planning purposes. Specifically, they raise ethical questions such as ”who (e.g. the general

public, clinicians, politicians, etc.) is responsible for making value judgments concerning

the dimensions of well-being to be covered and valuation of health states?”. Moreover, the

authors bring out an underlying assumption required for using QALYs for planning purposes

which may not be widely agreed upon: ”a healthy year of life expectancy is taken to be of

equal value to everyone irrespective of their characteristics”. On the other hand, there are

some methodological challenges for using QALYs at the planning level as well. For example,

the QALY scores, measured under certain circumstances, are not easily generalizable to other

localities, different case-mixes, different medical practices, etc. Last but not least, the authors

explain that mental health care interventions are aimed more at improving life than extending

or saving a life. Therefore, providing behavioral interventions generally produces less QALYs

than interventions that significantly extend both life expectancy and quality of life which

means that maximizing health gains in this way is likely to result in the marginalization of

such interventions.

The public health perspective. To make the discussion more concrete, let’s review the

problem from the perspective of healthcare professionals and public health administrators. The
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World Health Organization (WHO) recognizes performing economic analysis as an essential

step within the process of identifying an efficient allocation of resources in healthcare systems.

However, they emphasize that such analysis is insufficient and needs to be systematically

weighed up against other objectives (e.g. fairness considerations) as well as implementation

issues (e.g. feasibility, acceptability, and sustainability) [Org06]. [MCP13] critically review

the challenges which are known to prevent practical usage of cost-effectiveness analysis

for resource allocation and priority setting in healthcare. Specifically, the authors refer

to the lack of generalizability, limited policy relevance, methodological confounding, and

implementation issues as main factors that have contributed to the limited practical impact

of cost-effectiveness studies on decisions making procedures. They also conduct case studies

on six real-world large-scale examples of priority setting programs in the context of behavioral

healthcare management, including the WHO’s Choosing Interventions that are Cost-Effective

(CHOICE) project, Oregon’s state Medicaid program called Oregon Health Plan (OHP), and

the Mental Health Economics European Network (MHEEN) program. The authors conclude

that adopting a narrow economic perspective is a common element among those projects

that failed to achieve their goal. Moreover, they emphasize the key role that offering a strong

technical foundation and including considerations outside the scope of economic analysis play

in the success of such programs. [EC08] review the literature on the use of economic evaluation

in local decision-making (i.e. both the meso and micro levels of management). The authors

add to the aforementioned list some other factors that have prevented the practical usage of

economic analysis, specifically in the US healthcare system. For example, they refer to some

institutional and political factors such as inflexibility of healthcare budgets, as well as some

cultural factors such as a general tendency for prioritizing efficiency over cost-effectiveness.

Indeed, the successful implementation of any planning framework, including ours, highly

depends on incorporating these considerations in the model.

Healthcare payment models. To understand the cost-based tradeoffs that healthcare

providers such as RUHS face, we need to be familiar with their funding mechanisms. The
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FFS payment system, under which the provider gets reimbursed proportional to the service

cost, is still one of the most common healthcare payment models in the US. It is well known

that the FFS payment system incentivizes a high volume of care rather than encouraging

providers to improve efficiency. In fact, many healthcare professionals and researchers believe

that the FFS payment system is the biggest obstacle in improving healthcare delivery [PK16].

Capitation payment is one of the most well-known alternatives for the FFS system. Under

this payment scheme, the insurer pays a fixed amount, often to a single organization, for

providing services to a patient during an entire period of time. This payment system has also

been widely criticized, especially for bearing the wrong risk to the providers. In the bundled

payment system, which is often referred to as a key component of recent healthcare reforms,

the provider is paid for managing a certain condition or disease over a pre-specified period of

time. The rationale behind this idea is that such a payment model gives provider incentives

for improving the quality of care since no additional payment will be performed for any kind

of complications that may happen during the aforementioned period of time. As explained

beforehand, RUHS operates under a payment system in which certain categories of services

are reimbursed according to the FFS payment scheme while a capitation payment system is

used for the rest of the service types.

[AMN17] compares the performance of a traditional FFS payment system with bundled

payment in a simple setting with one provider who makes decisions regarding only the

intensity of treatment. The authors highlight the financial risk that the provider bears as

the main weakness of this model and propose a hybrid FFS-bundled payment scheme as a

better alternative. [GTW19] compare the FFS and bundled payment systems in terms of

their impact of social welfare in a public healthcare system using a game-theoretic model.

[STY19] adopt a similar modeling approach for analyzing a hybrid payment system under

Yardstick competition. In modeling healthcare systems, it is often assumed that there are

three parties including an insurer, a provider, and a set of beneficiaries. In the literature, a

three-stage Stackelberg model is often used for capturing the impacts of interactions among
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these parties. However, here we do not study the game-theoretic aspect of the problem. We

will later elaborate on the mathematical details of the payment system under study.

3.2.2 Disease Progression Modeling

In this section, we mention the unique challenges of developing statistical models for disease

progression and then briefly review a few common State Transition Models (STMs). In the

next section, we will explain how these models have been used by the operations management

community for planning and resource allocation purposes. We refer the readers to [PFU18]

for a review of patient flow modeling approaches that we do not cover, such as queueing

models which are commonly used in analyzing hospital operations.

In the past couple of decades, standard practices for recording Electronic Health Records

(EHR) have significantly improved, and more data with a higher accuracy is now available as

a consequence. Developing mathematical models for disease progression has been a topic of

interest for researchers in a variety of fields, including operations management and statistics.

Our focus in this research project is on incorporating the effect of healthcare interventions on

disease progression. Such a statistical model would then allow for formulating an optimization

framework for choosing the best set of interventions under certain constraints at both the

population and individual levels. Developing accurate models for disease progression is

inherently a challenging task. The authors explain some aspects of this complexity in

[WSW14] very well:

• Unobserved health condition: What physicians observe during regular visits is usually

a noisy signal of the underlying disease state. In other words, accessing the true health

state of the patients requires accurate examination, which is often risky, expensive, or

even impossible (in certain domains such as behavioral healthcare).

• Discrete and irregularly-spaced observation times: Indeed, the underlying disease

progression happens continuously over time. However, physicians usually can only
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access discrete-time snapshots of this process. In many real-world EHR datasets, even

the duration of the time between consecutive visits varies, which makes traditional

discrete-time models inappropriate for capturing the trends. Therefore, a continuous-

time disease progression model is needed that is trained based on irregularly-spaced

discrete-time observations.

• The effect of interventions and covariates: Classical disease progression models often

assume that there are no external factors that can affect the course of disease progression.

However, in many situations the intervention decisions by the physician or covariates

such as age and gender can have an impact on how the disease progresses, and the

model should be able to incorporate these factors.

Biology papers in areas such as pharmacology often develop linear regression models for

tracking the changes of certain disease indicators over time or as a function of certain factors

[CB16, Mou12]. In the literature, long-term modeling of diseases based on EHR data is often

performed using state transition models. These models either assume the patients share the

same characteristics or control for these factors. A key issue in working with state transition

models is that sometimes it is difficult to represent the disease state using a limited number

of discrete states [CBS12].

There is an extensive body of literature on using Discrete-Time Markov Chains (DTMCs)

for modeling behavioral conditions (e.g. depression [AKG12]). On the other hand, CTMCs

that consider a continuous-time underlying process and add more complexity to the model

structure in this way have also been used in the past [GLL94]. There are many variations

of these models that each of them tries to improve upon the baseline models by relaxing

a certain assumption or adding some level of flexibility [LM13]. Hidden Markov Models

(HMMs) are an extended class of Markovian models in which the underlying process is

assumed to be unobserved. Hence, only a noisy signal is observed that is related to the

underlying variable via a statistical distribution. Specifically, CT-HMMs are constructed
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based on continuous-time underlying variables that are observed at discrete points in time,

which provides a great degree of flexibility for describing real-world data [LLL15].

Different aspects of these models have also been extended in the past [WSW14]. For

example, the Markovian assumption that the transitions of the underlying disease state

depend only on the current state of the system might be restrictive in some applications in

which the history (e.g. the duration of stay) also plays a role in the disease dynamics, and some

alternative approaches have been proposed for overcoming this limitation [SCS14, AV18, AS19].

Moreover, [AHS17] considers a model in which the physician decisions affect the duration

of time between consecutive visits. Training a CT-HMM disease progression model using

discrete-time irregular observations has been done in the past [LM13]. In this work, the

impact of covariates has also been incorporated into the model using the proportional hazards

approach. However, the main drawback of their parameter estimation method is that the

generator matrix is assumed to be diagonalizable in all the EM steps. We refer the readers to

[SGL19] for a similar paper that employs CT-HMMs for modeling healthcare data. Most of

the disease progression models that have been proposed in the literature ignore the effect

of healthcare interventions on the disease dynamics. However, there are some papers that

incorporate the impact of healthcare interventions on the physician observation. For example,

[SCS20] designs a DT-HMM with continuous observation values in which interventions shift

the distribution of the observations. The main advantage of this methodological framework

is that it allows for handling heterogeneous patient-specific intervention effects.

An underlying assumption in our model is that patients can be appropriately divided

into distinct groups. The concept of classification of patients based on their service needs

has been traditionally used in the healthcare industry for planning and reimbursement

purposes. For example, the Diagnosis-Related Groups (DRG) is widely used in hospital

payment systems in all the states and other countries as well. However, there is a body of

literature that argues diagnosis-based measures, such as DRG, are poor indicators of resource

utilization by patients, if considered alone [McC95]. In the context of behavioral healthcare,
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measures for the functioning level of patients (e.g. community living skills, negative social

behavior, affective distress, etc.) are often referred to as the best tools for determining the

service needs and appropriate levels of care. As an example, [USS03] propose an empirical

approach for clustering patients into a few groups of similar individuals based on their

characteristics, clinical history, and functioning-level. The authors then define levels of care

(e.g. brief intervention, medication, rehabilitation, etc.) and manually assign each class to an

appropriate level of care. We refer the readers to [BHC16] for an exhaustive review of the

functioning-level assessment instruments. The operations management community has also

developed resource allocation and planning models based on the notion of levels of care. A

classic example of such efforts is the work by [LDG86] in which the authors define a linear

programming model for assigning predefined service packages to patient groups. They used a

set of basic functioning level measures for clustering patients into various classes and manually

determine the set of allowable service packages for each class. In this research, we do not

restrict ourselves to a certain categorization mechanism and keep the model at the conceptual

level.

3.2.3 Healthcare Intervention Planning

In the following, we present a brief review of the intervention planning literature. At first,

we discuss some of the traditional approaches that have been proposed for population-level

planning. Afterward, we go over some patient-level planning models. In particular, we

introduce Markov Decision Processes (MDPs) as the most common framework for formulating

sequential decision-making problems. We then discuss how CT-HMMs can be used as a

baseline for estimating the initial state of POMDPs.

Population-level planning. The operations management community has previously used

state transition models for characterizing progression of disease at the population-level. In

this approach, a representative patient goes through a process with Markovian dynamics and

the probabilistic quantities of the resulting model will be used as estimators of the actual
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quantities. For example, [DIJ13] uses this approach for providing capacity allocation guidelines

in community-based healthcare delivery for chronic diseases. A stochastic optimization

problem then maximizes a measure of population health (e.g. QALYs) in a multi-period

decision-making setting. A similar approach has been proposed for modeling the optimal

screening problem for Hepatocellular Carcinoma by [LLV19]. Furthermore, Markovian models

have also been used in the literature for characterizing the visit patterns of patients, which is

crucial part in intervention policy outcome assessment and modeling [KVM11].

Despite all the advantages of population-level modeling framework in operations management

applications such as [CBD07], we have not found extensive use cases for these approaches in the

healthcare decision-making research literature [ES12]. As an example of the population-based

approaches, [DRR15] studies the problem of HIV screening and intervention. Specifically,

their method divides patients into different groups based on their health state and assumes

the transition rates between these groups (in a multi-period setting) is constant. Following

a more complex methodological framework, [HLZ19] formulates an approximate dynamic

programming problem and propose a multi-fidelity rollout algorithm for solving the multi-

period policy optimization problem. Other disease progression modeling techniques such

as using differential equations have also been employed in the literature for describing the

population-level spread of diseases such as HIV [ALB14]. In this paper, an optimization

problem then helps to make the best resource allocation decisions in order to keep the

population as healthy as possible based on a certain metric. Similarly, [NS17] studies the

problem of allocating inventory in humanitarian health settings using a population-based

model.

Patient-level planning. The traditional approach for incorporating the effect of healthcare

decisions and interventions on the course of disease is to formulate the problem using MDPs

rather than HMMs. Therefore, here we briefly review the reinforcement learning literature and

discuss the advantages and limitations of this approach. In the past few years, intervention

planning using RL methods has gained the attention of the healthcare research community
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[FMD20, GJM18, LSS20]. One of the most common frameworks for modeling the healthcare

sequential decision-making process is Dynamic Treatment Regimes (DTR) [CM14]. For more

details regarding the DTR approach as well as other applications of RL in healthcare modeling

and planning, please refer to [SLL11] and [YLN21]. Among the RL methods, the framework

developed by [FHD20] is the most similar one to our work. A discrete-time partially-observed

MDP with continuous observation values is used here for modeling the progression of Sepsis

disease. The authors suggest an EM algorithm for learning the parameters of their model

similar to an Input-Output HMM [BF94]. As the reinforcement learning framework was

originally developed for online settings that allow for active exploration, training models in

an offline setting using fixed datasets is a tricky task and requires special attention. We

refer the readers to [LKT20] for an overview of the offline reinforcement learning literature.

Specifically, safety is a critical issue in the healthcare domain in offline settings and there is a

body of literature on modifying RL techniques for such areas in which making mistakes can

be extremely risky and costly [FKS21].

The main advantage of employing POMDPs is that they naturally incorporate the effect

of healthcare decisions into the disease dynamics. On the other hand, the main disadvantage

of the RL framework is that most of the traditional RL algorithms are specialized for discrete-

time decision making applications. Although we face a discrete-time decision making problem

in our healthcare problems, we are also interested in capturing the true dynamics of the

underlying disease process, which is continuous-time, using irregularly-spaced discrete-time

observations. In the literature, there exist some complex methods for overcoming these

limitations of POMDPs [ASK20]. However, in this research work we prefer to use CT-

HMMs for modeling the healthcare data as the capabilities of these models for capturing the

complexities of EHR data have already been proven.
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3.3 Efficient Parameter Learning for CT-HMM Disease Progression Model

As part of formulating the intervention planning problem, we need to estimate the transition

rates of the patients between different health states. We will explain later in details how

a disease progression model can be used for this purpose. In the following, we setup the

foundation for learning CT-HMMs using discrete-time irregularly observed data based on a

technique that was developed by [LLL15].

3.3.1 Model Setup

Consider a dataset that includesN trajectories, each corresponding to the physician observations

of a certain disease. Denote by I and J , respectively, the number of discrete values that

the underlying health state and the physician observation can take. Moreover, let Tn be the

number of observations in the trajectory of patient n and τn1, · · · , τnTn be the observation

times. Define yτns
n ∈ {0, · · · , J − 1} (for s = 1, · · · , Tn) and zτn ∈ {1, · · · , I} (for the time

index τ ∈ R+) as the random variables that correspond to the observation and the underlying

latent state for patient n. Notice that z is continuous time, while y is discrete-time, as

explained earlier. In addition, define T̃n as the actual number of transitions of the underlying

health state, i.e. zτn. Similarly, suppose τ̃ ns (for 1 ≤ s ≤ T̃n) indicate the corresponding

transition times.

Let Q and P(∆τ) be I × I matrices that correspond to the generator matrix and the

transition probability function of the CT-HMM, respectively. The transition probability

functions for time period ∆τ will be P(∆τ) = exp(∆τQ) =
∑∞

l=0(∆τ)
l Ql

l!
. Here the model is

assumed to be time-homogeneous and power series expansion is used for defining the matrix

exponential. Furthermore, we define E(i, j) = P{yτns
n = j|zτns

n = i} (for any s = 1, · · · , Tn) as

the observation model. Assuming a binomial emission distribution with probability µi for

state i, we have E(i, j) =
(
J−1
j

)
µji (1− µi)

J−1−j for 1 ≤ i ≤ I, 0 ≤ j ≤ J − 1.
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3.3.2 Expectation Maximization Algorithm for Parameter Learning

Parameter learning for latent variable models is often performed using the EM algorithm

[Jac11]. [MHS07] presents an efficient technique for learning the parameters of CTMCs based

on discrete-time and irregularly-spaced observations. In this section, we’ll review a learning

algorithm for CT-HMMs based on this idea that was proposed by [LLL15].

Suppose we have a homogeneous dataset in terms of the parameters Q and E . The

complete-data likelihood for patient n can be represented in terms of y
τn 1:Tn
n (1 ≤ s ≤ T̃n)

and zτn in the following way:

Ln(Q, E|yτn 1:Tn
n , zτn) ≜ P{yτn 1:Tn

n , zτn|Q, E}

=
T̃n−1∏
s̃=1

[
Q[zτ̃ns̃

n , z
τ̃n s̃+1
n ]

−Q[zτ̃ns̃
n , zτ̃ns̃

n ]
× (−Q[zτ̃ns̃

n , zτ̃ns̃
n ]) eQ[z

τ̃ns̃
n ,z

τ̃ns̃
n ] (τ̃n s̃+1−τ̃n s̃)

]
×

Tn∏
s=1

E(zτns
n , yτns

n )

=
T̃n−1∏
s̃=1

[
Q[zτ̃ns̃

n , zτ̃n s̃+1
n ] × eQ[z

τ̃ns̃
n ,z

τ̃ns̃
n ] (τ̃n s̃+1−τ̃n s̃)

]
×

Tn∏
s=1

E(zτns
n , yτns

n )

where the transition probability of the underlying DTMC from zτ̃ns̃
n to z

τ̃n s̃+1
n is reflected in

Q[z
τ̃ns̃
n ,z

τ̃n s̃+1
n ]

−Q[z
τ̃ns̃
n ,z

τ̃ns̃
n ]

, and−Q[zτ̃ns̃
n , zτ̃ns̃

n ] eQ[z
τ̃ns̃
n ,z

τ̃ns̃
n ] (τ̃n s̃+1−τ̃n s̃) is the sojourn time probability distribution

of state zτ̃ns̃
n . Denote by χn ik (1 ≤ i, k ≤ I, k ̸= i) and ψn i (1 ≤ i ≤ I) the total number of

transitions and the total amount of time spent in each state by the underlying health state

variable. We can simplify the complete-data likelihood as:

Ln(Q, E|yτn 1:Tn
n , zτn) =

I∏
i=1

I∏
k=1,k ̸=i

Q[i, k]χn ik ×
I∏
i=1

eQ[i,i]ψn i ×
Tn∏
s=1

E(zτns
n , yτns

n )

For the dataset of N patients, the total complete-data likelihood is the multiplication of

these terms, i.e. L =
∏N

n=1 Ln. Clearly, we can not evaluate this function due to the existence

of latent variable z. Therefore, we assume an initial value (Q̃, Ẽ) for the set of parameters

is given and evaluate the expected log-likelihood EQ̃,Ẽ [logL(Q, E|y
τn 1:Tn
n )]. Afterward, we
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maximize this function and update the parameters. The EM iterations will continue until

convergence. We can expand the expected log-likelihood function as:

EQ̃,Ẽ [logL(Q, E|y
τn 1:Tn
n ] = EQ̃,Ẽ

[ N∑
n=1

I∑
i=1

I∑
k=1,k ̸=i

χn ik log(Q[i, k])

∣∣∣∣ yτn 1:Tn
n

]

+ EQ̃,Ẽ

[ N∑
n=1

I∑
i=1

Q[i, i]ψn i

∣∣∣∣ yτn 1:Tn
n

]
+ EQ̃,Ẽ

[ N∑
n=1

Tn∑
s=1

log(E(zτns
n , yτns))

∣∣∣∣ yτn 1:Tn
n

]

=
N∑
n=1

I∑
i=1

I∑
k=1,k ̸=i

(
log(Q[i, k])× EQ̃,Ẽ

[
χn ik | yτn 1:Tn

n

])

+
N∑
n=1

I∑
i=1

(
Q[i, i]× EQ̃,Ẽ

[
ψn i | yτn 1:Tn

n

])
+

N∑
n=1

Tn∑
s=1

(
EQ̃,Ẽ

[
log(E(zτns

n , yτns
n )) | yτn 1:Tn

n

])

By maximizing this function with respect to Q and E , we can update the parameters. In

particular, the solution of the generator matrix is:

Q̂[i, k] =

∑N
n=1 EQ̃,Ẽ

[
χn ik | y

τn 1:Tn
n

]∑N
n=1 EQ̃,Ẽ

[
ψn i | y

τn 1:Tn
n

] ; (k ̸= i) Q̂[i, i] = −
I∑

k=1,k ̸=i

Q̂[i, k]

The main challenge would then be to calculate the expected values of the χ and ψ

summary statistics. One of the most common approaches for calculating these quantities

for simpler HMM models is to use the Monte Carlo Expectation-Maximization (MCEM)

method in which a set of samples of the latent variable are generated based on the current

parameter values as well as the observed data, and then the expectations are approximated

by their samples averages [LC01]. In section 3.11.1 in the appendix, we consider a DT-HMM

model and describe a Gibbs sampling algorithm for generating samples from the posterior

of the graph. Afterward, we discuss how the expectations of the summary statistics can be

approximated using the generated samples. However, sample generation for CT-HMM models

with a complex structure is computationally challenging. In the literature, some approaches

for calculating these expectations have been proposed for situations in which the generator

matrix is diagonalizable [MHS07, WSW14], which is usually not the case in EM iterations.
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In the following, we’ll go over a recently proposed method that overcomes this issue.

3.3.3 An Efficient Approach for Evaluating the Expectations

In [LLL15], the authors develop an efficient technique for calculating these expectations. At

first, they define χ
τn (s)

n ik and ψ
τn (s)

n i as the corresponding values for the time period τn (s) =

(τns, τn s+1] and condition on the latent variables:

EQ̃,Ẽ
[
χn ik | yτn 1:Tn

n

]
=

Tn−1∑
s=1

I∑
ĩ=1

I∑
k̃=1

P{zτn s
n = ĩ, zτn s+1

n = k̃ | yτn 1:Tn
n }

×EQ̃,Ẽ
[
χ
τn (s)

n ik |zτn s
n = ĩ, zτn s+1

n = k̃
]

EQ̃,Ẽ
[
ψn i | yτn 1:Tn

n

]
=

Tn−1∑
s=1

I∑
ĩ=1

I∑
k̃=1

P{zτn s
n = ĩ, zτn s+1

n = k̃ | yτn 1:Tn
n }

×EQ̃,Ẽ
[
ψ
τn (s)

n i |zτn s
n = ĩ, zτn s+1

n = k̃
]

Hence, the E-step reduces to efficient calculation of the end-state conditioned expectations

EQ̃,Ẽ
[
χ
τn (s)

n ik |zτn s
n = ĩ, zτn s+1

n = k̃
]
, and EQ̃,Ẽ

[
ψ
τn (s)

n i |zτn s
n = ĩ, zτn s+1

n = k̃
]
as well as the

posterior probability P{zτn s
n = ĩ, zτn s+1

n = k̃ | yτn 1:Tn
n }. The posterior probability can be

calculated by constructing a time-inhomogeneous DT-HMM from the CT-HMM. Specifically,

the transition probability matrix of the DT-HMM between two given visits [τs, τs+1) will be

the transition probability function of the CT-HMM, i.e. P(τs+1 − τs) = exp((τs+1 − τs)Q̃).

Therefore, evaluating the posterior probability can be performed by calculating the probability

of the state sequence of the DT-HMM.

The remaining tricky part is the calculation of the expectations. To do so, the authors

suggest using a technique for representing the quantities as integrals based on the work

proposed by [HJ05] and [HJ11]:

EQ̃,Ẽ
[
χ
τn (s)

n ik |zτs = ĩ, zτs+1 = k̃
]
=

Q̃ik

(e(τs+1−τs)Q̃)ĩk̃

∫ (τs+1−τs)

0

(exQ̃)ĩi(e
(τs+1−τs−x)Q̃)kk̃ dx (3.1)
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EQ̃,Ẽ
[
ψ
τn (s)

n i |zτs = ĩ, zτs+1 = k̃
]
=

1

(e(τs+1−τs)Q̃)ĩk̃

∫ (τs+1−τs)

0

(exQ̃)ĩi(e
(τs+1−τs−x)Q̃)ik̃ dx (3.2)

Now, they use a classical trick for evaluating this convolution-like integral form. Specifically,

suppose B is an I × I matrix and we’re interested in evaluating
∫ t
0
exQ̃ B e(t−x)Q̃ dx. We can

construct matrix A =

Q̃ B

0 Q̃

 and calculate etA. The result of the integral would be equal

to the upper right corner of this matrix [Van78]. In our case, we choose B in a way that it

has zeros in all the elements and one in element (i, k) and use the (̃i, k̃)’th element as the

result of the integral.

3.4 Modeling Intervention

In this section, we reformulate the model to incorporating the effect of interventions and

covariates on disease progression. Although the modeling framework is general, our motivating

examples are behavioral conditions such as schizophrenia and bipolar disorder. We know that

for most behavioral conditions no information on the underlying health state is available to

physicians. Therefore, we assume in our model that access to the corresponding variable is

not possible and only a noisy signal in the form of physician observation data is available.

These observations can be the result of questionnaires or other clinical evaluation methods.

As discussed earlier, in these cases there are usually a set of intervention packages (e.g.

medication, case management, hospitalization, etc.) that each might be more appropriate for

certain categories of patients. Hence, the main trade-off is between the effectiveness of each

intervention and the resource consumption associated with it. Notice that our model doesn’t

impose monotonicity assumption on the strength or aggressiveness of the interventions.

From the modeling perspective, we show how parameterizing the generator matrix of the

CT-HMM using the proportional hazards method can be used for incorporating the impact

of interventions on disease progression (Figure 3.1). In the following, we’ll describe an EM
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Figure 3.1: Incorporating the effect of interventions into the model by parameterizing the
generator matrix.

algorithm for estimating the model parameters by employing the aforementioned ideas. We

refer the readers to a recent work by the author of this dissertation for more details [Gho22].

3.4.1 Model Setup

Let zτn indicate the continuous-time underlying health state. We use the notations of zτns
n

and z
τn (s)
n for the value of this variable at time point τns and the entire interval (τns, τn s+1].

Moreover, suppose yτns
n is the physician observation variable at visit time τns. An intervention

option (including ”no-intervention”) is chosen based on the observation at each visit time

and use uτns
n for denoting the corresponding variable. We assume access to a dataset of

N patient trajectories for (y, u), each of length Tn. All the three variables z, y, and u

take discrete values and we use the ranges {1, · · · , I}, {0, · · · , J − 1}, and {0, · · · , L− 1}

for them. The main parameters of the model include the generator matrix Q ∈ RI×I ,

the emission distribution E(i, j) = P(yτns
n = j | zτns

n = i), the intervention distribution

G(j, l) = P(uτns
n = l | yτns

n = j), and the initial health state distribution π ∈ RI . Both

the emission and intervention distributions are assumed to be binomial with parameters µi

(1 ≤ i ≤ I) and ηj (0 ≤ j ≤ J − 1), respectively.
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3.4.2 Parameterization of the Generator Matrix

In the context of behavioral healthcare, there are many covariates, such as age or gender,

that influence the disease progression dynamics. Moreover, we’re interested in incorporating

the impact of healthcare interventions into the model, as discussed earlier. One approach for

making the generator matrix of the CT-HMM a function of the interventions and covariates

is the proportional hazards method [Cox72]. In particular, the elements of the generator

matrix are defined to be exponential functions with the inputs being linear functions of the

interventions and covariates [KL85]. In mathematical terms, let wn ∈ RD be the covariate

vector. The generator matrix elements corresponding to each intervention l can be represented

as:

[Q]ikl = δikl exp(ρ
′

iklwn); 1 ≤ i, k ≤ I, k ̸= i, 0 ≤ l ≤ L− 1 (3.3)

[Q]iil = −
I∑

k=1,k ̸=i

[Q]ikl; 1 ≤ i ≤ I, 0 ≤ l ≤ L− 1 (3.4)

In the following, we use the notation Qn (s) for the generator matrix in the time period

(τs, τs+1], which has δik uτns
n

exp(ρ
′

ik uτns
n
wn) as its (i, k) elements.

3.4.3 EM Algorithm for Parameter Learning

Denote the set of parameters that we’re interested to estimate by Θ ≜ (π, ρ, δ, µ, η). Similar

to the previous model, we can formulate the complete-data likelihood as:

Ln(Θ) = P(uτn 1:Tn
n , yτn 1:Tn

n , zτnn |Θ) = P(uτnTn
n |yτnTn

n , η)P(yτnTn
n |zτnTn

n , µ)

×
Tn−1∏
s=1

[
P(zτn (s)

n |zτns
n ,uτns

n , ρ, δ)P(uτns
n |yτns

n , η)P(yτns
n |zτns

n , µ)

]
× P(zτn1

n )
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By taking the log of this function we get:

log Ln(Θ) = logP(zτn1
n ) +

Tn−1∑
s=1

[
logP(zτn (s)

n |zτns
n , uτns

n , ρ, δ)
]

+
Tn∑
s=1

[
logP(uτns

n |yτns
n , η) + logP(yτns

n |zτns
n , µ)

]
(3.5)

Clearly, the complete-data log likelihood function includes the latent variable z and can not

be evaluated. Hence, we assume Θ̃ ≜ (π̃, ρ̃, δ̃, µ̃, η̃) is given as an initial guess, and follow an

iterative approach in which the expectation of the log-likelihood function is calculated and

then the parameters are updated by maximizing E[log Ln(Θ)|uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃].

Let χ
τn (s)

n ik indicate the total number of transitions that the underlying health state variables

makes between visits (τns, τn s+1]. Similarly, denote by ψ
τn (s)

n i the sojourn time corresponding

to the same interval. The transition part of the likelihood function can then be simplified as:

P(zτn (s)
n |zτns

n ,uτns
n , ρ, δ) =

I∏
i=1

I∏
k=1
k ̸=i

[
Qn (s)

]χτn (s)
n ik

ik
×

I∏
i=1

exp
(
[Qn (s)]ii ψ

τn (s)

n i

)

logP(zτn (s)
n |zτns

n ,uτns
n , ρ, δ) =

I∑
i=1

I∑
k=1
k ̸=i

(
χ
τn (s)

n ik log([Qn (s)]ik)− ψ
τn (s)

n i [Qn (s)]ik

)

For the emission and intervention parts of the function we have:

logP(yτns
n |zτns

n , µ) =
I∑
i=1

[
log

(
J − 1

yτns
n

)
+ yτns

n log µi + (J − 1− yτns
n ) log(1− µi)

]
I{zτns

n = i}

logP(uτns
n |yτns

n , η) =
J−1∑
j=0

[
log

(
L− 1

uτns
n

)
+ uτns

n log ηj + (L− 1− uτns
n ) log(1− ηj)

]
I{yτns

n = j}

The initial state probability can also be written as logP(zτn1
n ) =

∑I
i=1 log πi I{zτn1

n = i}.
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Hence, the total function will be:

logL(Θ) =
N∑
n=1

log Ln(Θ) =
N∑
n=1

I∑
i=1

log(πi) I{zτn1
n = i}

+
N∑
n=1

Tn−1∑
s=1

I∑
i=1

I∑
k=1
k ̸=i

[
χ
τn (s)

n ik

(
log(δik uτns

n
) + ρ

′

ik uτns
n
wn
)
− ψ

τn (s)

n i δik uτns
n

exp(ρ
′

ik uτns
n
wn)

]

+
N∑
n=1

Tn∑
s=1

I∑
i=1

[
log

(
J − 1

yτns
n

)
+ yτns

n log(µi) + (J − 1− yτns
n ) log(1− µi)

]
I{zτns

n = i}

+
N∑
n=1

Tn∑
s=1

J−1∑
j=0

[
log

(
L− 1

uτns
n

)
+ uτns

n log(ηj) + (L− 1− uτns
n ) log(1− ηj)

]
I{yτns

n = j}

As discussed earlier, we need to take the expected value of the complete-data log likelihood

function with respect to the posterior distribution of the underlying health state:

E[log L(Θ)|uτn 1:Tn
n , yτn 1:Tn

n , Θ̃]

=
N∑
n=1

I∑
i=1

log(πi)P(zτn1
n = i |uτn 1:Tn

n , yτn 1:Tn
n , Θ̃)

+
N∑
n=1

Tn−1∑
s=1

I∑
i=1

I∑
k=1
k ̸=i

L−1∑
l=0

[
E
[
χ
τn (s)

n ik |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃
](

log(δikl) + ρ
′

iklwn
)

− E[ψτn (s)

n i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃] δikl exp(ρ
′

iklwn)

]
I{uτns

n = l}

+
N∑
n=1

Tn∑
s=1

I∑
i=1

[
log

(
J − 1

yτns
n

)
+ yτns

n log(µi) + (J − 1− yτns
n ) log(1− µi)

]
× P(zτns

n = i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃)

+
N∑
n=1

Tn∑
s=1

J−1∑
j=0

[
log

(
L− 1

uτns
n

)
+ uτns

n log(ηj) + (L− 1− uτns
n ) log(1− ηj)

]
I{yτns

n = j}

In the E-step, we calculate the posterior probability of the underlying health state as

well as the expected values of the end-state conditioned statistics. Afterward, in the M-step

we can update the parameters by maximizing the expected log likelihood function. For this
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purpose let γsn(i) = P(zτns
n = i |uτn 1:Tn

n , y
τn 1:Tn
n , Θ̃) (for 1 ≤ s ≤ Tn) and ν

s
n(i, k) = P(zτns

n =

i, zτn s+1
n = k |uτn 1:Tn

n , y
τn 1:Tn
n , Θ̃) (for 1 ≤ s ≤ Tn − 1) be the single-period and two-period

posterior probabilities. To optimize over the initial state probability, set πI = 1−
∑I−1

i′=1 πi′

and take the derivative to get:

∂

∂πi
E
[
log L(Θ)|uτn 1:Tn

n , yτn 1:Tn
n , Θ̃

]
=

∂

∂πi

I−1∑
i′=1

log(πi′)

( N∑
n=1

γ1n(i
′)

)

+
∂

∂πi
log(1−

I−1∑
i′=1

πi′)

( N∑
n=1

γ1n(I)

)
=

1

πi

( N∑
n=1

γ1n(i)

)
− 1

πI

( N∑
n=1

γ1n(I)

)

Hence, the optimal value for the parameter would be π̂i =
∑N

n=1 γ
1
n(i)∑I

i′=1

∑N
n=1 γ

1
n(i

′)
. For the emission

parameter µi, we have:

∂

∂µi
E
[
log L(Θ)|uτn 1:Tn

n , yτn 1:Tn
n , Θ̃

]
=

N∑
n=1

Tn∑
s=1

[
1

µi
yτns
n − 1

1− µi
(J − 1− yτns

n )

]
γsn(i)

=
1

µi

( N∑
n=1

Tn∑
s=1

yτns
n γsn(i)

)
− 1

1− µi

( N∑
n=1

Tn∑
s=1

(J − 1− yτns
n )γsn(i)

)

which implies µ̂i =
∑N

n=1

∑Tn
s=1 y

τns
n γsn(i)

(J−1)
∑N

n=1

∑Tn
s=1 γ

s
n(i)

(for 1 ≤ i ≤ I). Similarly, for the intervention

probabilities we have η̂j =
∑N

n=1

∑Tn
s=1 u

τns
n I{yτns

n =j}
(L−1)

∑N
n=1

∑Tn
s=1 I{y

τns
n =j}

(for 0 ≤ j ≤ J − 1). For the generator

matrix parameter δikl, the derivative would be:

∂

∂ δikl
E
[
log L(Θ)|uτn 1:Tn

n , yτn 1:Tn
n , Θ̃

]
=

1

δikl

N∑
n=1

Tn−1∑
s=1

E
[
χ
τn (s)

n ik |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃
]
I{uτns

n = l}

−
N∑
n=1

Tn−1∑
s=1

E[ψτn (s)

n i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃] exp(ρ
′

ikl wn)I{uτns
n = l}

which gives the following update rule:

δ̂ikl =

∑N
n=1

∑Tn−1
s=1 E

[
χ
τn (s)

n ik |uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃

]
I{uτns

n = l}∑N
n=1

∑Tn−1
s=1 E[ψτn (s)

n i |uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃] exp(ρ̂

′
ikl wn)I{uτns

n = l}
(3.6)
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Finally, we can use the Newton’s method for optimizing the remaining parameter ρikl:

∂

∂ ρikl
E[log L(Θ)|uτn 1:Tn

n , yτn 1:Tn
n , Θ̃] =

N∑
n=1

Tn−1∑
s=1

I{uτns
n = l}(

E[χτn (s)

n ik |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃)]− E[ψτn (s)

n i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃] δ̂ikl exp(ρ
′

iklwn)

)
wn (3.7)

∂2

∂ ρ2ikl
E[log L(Θ)|uτn 1:Tn

n , yτn 1:Tn
n , Θ̃] = −

N∑
n=1

Tn−1∑
s=1

I{uτns
n = l}(

E[ψτn (s)

n i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃] δ̂ikl exp(ρ
′

iklwn)

)
wnw

′

n (3.8)

In particular, one can update δ̂ based on 3.6 and then update ρ̂ according to 3.7 and 3.8.

Hence, the main challenge is in calculating the two aforementioned expectations as well as

the two probabilities γ and ν. Following the latent-state conditioning idea that we discussed

earlier, the expectations of the summary statistics can be represented in the following forms:

E[χτn (s)

n ik |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃)] =
I∑

i′=1

I∑
k′=1

E[χτn (s)

n ik |zτns
n = i

′
, zτn s+1
n = k

′
,uτn 1:Tn

n , yτn 1:Tn
n , Θ̃] νsn(i

′, k′)

E[ψτn (s)

n i |uτn 1:Tn
n , yτn 1:Tn

n , Θ̃] =
I∑

i′=1

I∑
k′=1

E[ψτn (s)

n i |zτns
n = i

′
, zτn s+1
n = k

′
,uτn 1:Tn

n , yτn 1:Tn
n , Θ̃] νsn(i

′, k′)

Thus, the same method suggested by [LLL15] is applicable for calculating the expectations.

Specifically, we evaluate the generator matrix using 3.3, 3.4 with l = uτns
n , and then represent

the integrals based on 3.1 and 3.2, which allows for efficient calculation of them.

3.4.4 Calculating the Posterior Probabilities

As discussed earlier, the idea is that we construct a time-inhomogeneous DT-HMM based on

the original CT-HMM and use the forward-backward algorithm for calculating the posterior

probabilities of the latent variables. Specifically, denote by z̃ the corresponding discrete-time

latent variable in the DT-HMM that we construct, and let the transition probability matrix

118



of this model be [P̃n (s)]ik = P(z̃s+1
n = k|z̃sn = i, uτns

n , Θ̃) =
[
e(τn s+1−τns)Q̃n (s)

]
ik
.

Define αsn(i) = P(z̃sn = i, uτn 1:s
n , yτn 1:s

n |Θ̃) and βsn(i) = P(uτn s+1:Tn
n , y

τn s+1:Tn
n |z̃sn = i,uτns

n , Θ̃)

as the forward and backward probabilities. In the following, we first present a set of dynamic

programming equations for efficient calculation of α and β, and then show how γ and

ν can be represented based on these quantities. Denote by µ̃ and η̃ the emission and

intervention parameters in the current EM iteration and suppose Ẽ(·, ·) and G̃(·, ·) indicate

the corresponding model. Moreover, notice that the transition probabilities P̃n (s−1) =

e(τns−τn s−1)Q̃n (s−1) and P̃n (s) = e(τn s+1−τns)Q̃n (s) are known since Q̃n (s) and Q̃n (s−1) are known

for the current parameter values and the intervention choices. Hence, we can formulate the

equations that govern the relationship between α variables and the β variables as:

αsn(i) =
I∑

k=1

P(z̃sn = i, z̃s−1
n = k, uτn 1:s

n , yτn 1:s
n |Θ̃)

=
I∑

k=1

P(uτns
n |yτns

n , Θ̃)P(yτns
n |z̃sn = i, Θ̃)P(z̃sn = i|z̃s−1

n = k,uτn s−1
n , Θ̃)

P(z̃s−1
n = k,uτn 1:s−1

n , yτn 1:s−1
n |Θ̃)

=
I∑

k=1

G̃(yτns
n , uτns

n ) Ẽ(i, yτns
n )

[
P̃n (s−1)

]
ki
αs−1
n (k) (3.9)

βsn(i) =
I∑

k=1

P(z̃s+1
n = k,uτn s+1:Tn

n , yτn s+1:Tn
n |z̃sn = i, uτns

n , Θ̃)

=
I∑

k=1

P(uτn s+2:Tn
n , yτn s+2:Tn

n |z̃s+1
n = k,uτn s+1

n , Θ̃)P(uτn s+1
n |yτn s+1

n , Θ̃)

P(yτn s+1
n |z̃s+1

n = k, Θ̃)P(z̃s+1
n = k|z̃sn = i, uτns

n , Θ̃)

=
I∑

k=1

G̃(yτn s+1
n ,uτn s+1

n ) Ẽ(k, yτn s+1
n )

[
P̃n (s)

]
ik
βs+1
n (k) (3.10)

The corner cases can also be determined by:

α1
n(i) = G̃(yτn1

n , uτn1
n ) Ẽ(i, yτn1

n )π̃i (3.11)
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βTn−1
n (i) =

I∑
k=1

G̃(yτnTn
n ,uτnTn

n ) Ẽ(k, yτnTn
n )

[
P̃n (Tn−1)

]
ik

(3.12)

Now, one can easily show that γsn(i) =
αs
n(i)β

s
n(i)∑I

i′=1 α
s
n(i

′)βs
n(i

′)
. Furthermore, notice that:

P(z̃sn = i, z̃s+1
n = k,uτn 1:Tn

n , yτn 1:Tn
n |Θ̃) = P(uτn s+2:Tn

n , yτn s+2:Tn
n |z̃s+1

n = k,uτn s+1
n , Θ̃)×

P(uτn s+1
n |yτn s+1

n , Θ̃)P(yτn s+1
n |z̃s+1

n = k, Θ̃)P(z̃s+1
n = k|z̃sn = i, uτn s

n , Θ̃)P(z̃sn = i, uτn 1:s
n , yτn 1:s

n , Θ̃)

= βs+1
n (k)G̃(yτn s+1

n ,uτn s+1
n ) Ẽ(k, yτn s+1

n )
[
P̃n (s)

]
ik
αsn(i)

P(z̃Tn−1
n = i, z̃Tnn = k,uτn 1:Tn

n , yτn 1:Tn
n |Θ̃) = G̃(yτnTn

n , uτnTn
n ) Ẽ(k, yτnTn

n )
[
P̃n (Tn−1)

]
ik
αTn−1
n (i)

Hence, the remaining probability can be represented based on α and β as:

νsn(i, k) =
G̃(yτn s+1

n ,uτn s+1
n ) Ẽ(k, yτn s+1

n )
[
P̃n (s)

]
ik
αsn(i) β

s+1
n (k)∑I

i′=1

∑I
k′=1 G̃(y

τn s+1
n ,u

τn s+1
n ) Ẽ(k′, yτn s+1

n )
[
P̃n (s)

]
i′ k′

αsn(i
′) βs+1

n (k′)
(3.13)

And the corner case would also be similar.

3.4.5 Numerical Experiments

To evaluate the quality of the discussed estimation algorithm, we perform numerical experiments

on synthetically-generated data. The algorithm has been implemented in R and visualizations

have been performed in Python. Please refer to GitHub1 for all the codes and results.

At first, we briefly explain the procedure that has been used for generating the samples.

For each patient, the number of visits is a random draw from a Gaussian distribution as

Tn ∼ round(N (µT , σ
2
T )). The inter-visit times are also determined based on a Gaussian

distribution (τn s+1 − τn s) ∼ N (µτ , σ
2
τ ) for 1 ≤ s ≤ Tn (we assume τn1 = 0). In the

simulations, we set I = 3, J = 10, and L = 3. We draw the initial state from a categorical

distribution zτn1
n ∼ Cat(π∗) that reflects our belief regarding the distribution of the underlying

1Refer to the CT-HMM directory in https://github.com/saeedghodsi93/Disease Progression Modeling HMM
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Figure 3.2: Synthetically-generated trajectories.

variable across the population. Similarly, the emission and intervention distributions are

categorical as yτn1
n ∼ Cat(E∗(zτn1

n , ·)) and uτn1
n ∼ Cat(G∗(yτn1

n , ·)). Age is also used as the

only covariate, and it is generated according to the mixture of two Gaussian distributions as

an ∼ paN (µa,y, σ
2
a,y) + (1− pa)N (µa,o, σ

2
a,o).

The remaining tricky part is generating the underlying health state variable. Suppose

ζ∗ and ι∗ are the transition matrix and the mean sojourn time parameters of the embedded

DTMC. For any time interval s, we calculate these parameters (i.e. ζ∗·,·,uτns
n

and ι∗·,uτns
n

) using

Q∗
·,·,uτns

n
. In a given state, we draw the sojourn time from (τ̃n s̃+1 − τ̃ns̃) ∼ Exp(ι∗

z
τ̃ns̃
n ,uτns

n

)

and the destination state from z
τ̃n s̃+1
n ∼ Cat(ζ∗

z
τ̃ns̃
n ,·,uτns

n

). Afterward, we record the transition

information and repeat the same procedure for the next move. The iterations stop whenever

τ̃n s̃+1 ≥ τns for some s̃. At the observation time, we generate the emission and intervention
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variables as discussed earlier.

The next step would then be to run the EM algorithm on the generated dataset and

estimate the parameters. To evaluate the performance of the algorithm, one can measure

the Root Mean Squared Error (RMSE) of the estimated parameter with respect to the true

parameter. Figure 3.3 plots the convergence of the parameters to the true parameters as

measured by RMSE. We observe that the algorithm is able to reconstruct the true parameters

givne enough number of samples and enough number of EM iterations.
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Figure 3.3: The RMSE plots for the estimated parameters.
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3.5 Population-Level Planning

Suppose we have a population of patients under support (e.g. through a hybrid FFS-capitation

healthcare payment system). The healthcare provider aims to keep the patients as healthy

as possible, under a set of resource and budget constraints. For this purpose, we employ

the learned disease progression model and formulate a planning problem that is supposed to

inform decisions regarding the choice of healthcare intervention strategies. In our framework,

the flow of patients is described using a population-level model. More specifically, we assume

the service needs of patients depends on the physician observation. Therefore, we divide

the patients into multiple groups based on their physician observation values, and analyze

the dynamics of the group populations based on the chosen intervention distributions. The

patient flow model that we propose is a linear model with deterministic stationary transition

rates which are estimated based on the learned disease progression model. We believe the

transitions of patients across different health states can be described appropriately using a

linear model and a potential source of non-linearity in our model should be incorporated in

resource consumption or budget constraints rather than the transition rates. Furthermore,

such a linear model makes it more straightforward to interpret the results. The stationarity

assumption also seems justifiable, since most probably the characteristics of the population

will not change drastically as long as the duration of the planning horizon is not too long.

Moreover, we solve the optimization problem again at the beginning of each time period, as

we’ll discuss later.

We model the decision problem as a multi-period planning problem and denote by

s = 0, 1, · · · , T the time index. Suppose there are a set of distinct packages of healthcare

interventions (including the no-intervention option) and each patient is allowed to receive

at most one of the intervention categories at any given time period. At time point s = 0,

the healthcare provider has access to the distribution of physician observations across the

population under support, and decides about the number of patients to which each intervention
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package is assigned for each period 1, · · · , T . Ideally, the provider would like to observe

the underlying health conditions and choose the intervention on that basis. However, the

most accurate available information is the initial physician observation data, and planning is

performed using this proxy. Hence, we assume that the cost and resource consumption that

are associated with providing interventions are determined based on the physician observation

variable rather than the underlying health condition. We use a Model Predictive Control

(MPC) optimization approach in which at the beginning of each period the planning is

performed for a horizon of length T given the existing information, and it is solved again at

the beginning of the next period when new information becomes available.

We model the provider’s objective as a linear function of the number of patients in different

physician observation categories. Specifically, we assume that patients in a given category j

may be referred by their physician to receive a non-hospitalization service during any given

period of time at the rate of κNHSP
j . Similarly, we denote by κHSP

j the rate at which a

patient in category j may receive a hospitalization service during any arbitrary period of time.

Notice that κNHSP
j and κHSP

j may be smaller or greater than one depending on many factors

including the duration of each time period. Let’s assume a non-hospitalization service and a

hospitalization service incur a fixed cost of SNHSPj and SHSPj to the system, respectively. Again,

we’re assuming the costs of these services for a given patient depend on physician observation

rather than the underlying health condition. As explained beforehand, we also assume that

payment to the provider is performed based on a hybrid FFS-capitation system. More

specifically, any non-hospitalization service provided to the patients is compensated according

to an FFS payment system with a coefficient Υ. Therefore, for any non-hospitalization service

that a patient in category j receives, the provider incurs a cost equal to SNHSPj and gets

reimbursed by an amount equal to Υ× SNHSPj . Following the literature, we assume Υ ≤ 1.

Define the average net cost per patient per period as βj = (1−Υ)κNHSP
j SNHSPj +κHSP

j SHSPj

(0 ≤ j ≤ J − 1). It seems safe to assume that κNHSP
j , κHSP

j , SNHSPj , and SHSPj are non-

decreasing in j or equivalently, βj is non-decreasing in j. Moreover, an additional lump sum
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Q̄ is paid for both the hospitalization and non-hospitalization services needed by each patient

during each period of time.

Let P s
j (0 ≤ j ≤ J − 1, 0 ≤ s ≤ T ) indicate the population in category j at time point s.

Without loss of generality, we assume the population is normalized in a way that
∑J−1

j=0 P
s
j = 1.

The provider’s net payoff per patient during the entire planning horizon, denoted by ω, can

be represented in the following way in terms of the distribution of population across health

states over time:

ω =
T∑
s=1

(Q̄−
J−1∑
j=0

βj P
s
j ) = T Q̄−

T∑
s=1

J−1∑
j=0

βj P
s
j

Notice that the initial population distribution is assumed to be given. Clearly, the provider’s

decisions do not affect the first term. Hence, maximizing the net payoff is equivalent to

minimizing the second term above. We represent the objective function of the provider’s

problem as F =
∑T

s=1

∑J−1
j=0 βjP

s
j . In other words, the provider is penalized in a linear way

as the distribution of population’s health state moves towards getting worse.

Denote by Xs
jl (0 ≤ j ≤ J − 1, 0 ≤ l ≤ L− 1, 1 ≤ s ≤ T ), the number of patients with

physician observation j who receive intervention l in time period [s− 1, s) (so
∑L−1

l=0 X
s
jl =

P s−1
j ). The total population in category j at time point s is composed of the set of patients

who transitioned to category j from all the other categories during time period [s− 1, s) as

well as patients who have remained in this category. Therefore, the flow of patients between

health states across the time can be represented in the following way:

P s
j
′ =

J−1∑
j=0

L−1∑
l=0

U j
′

jlX
s
jl; (∀ 0 ≤ j

′ ≤ J − 1, 1 ≤ s ≤ T )

where U j
′

jl represents the transition rate from category j to category j
′
under intervention

option l. More specifically, U j
′

jl is defied as the ratio of number of patients in category j who

received intervention option l and transitioned to category j
′
after one period of time divided

by the total number of patients in category j who received intervention option l in that period
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of time. We assume this ratio is deterministic and constant over time. Clearly, the transition

rates matrix should satisfy
∑J−1

j′=0
U j

′

jl = 1 for any any 0 ≤ j ≤ J − 1, 0 ≤ l ≤ L− 1. For the

moment, assume the rates are known. We’ll discuss the estimation approach later in this

section.

The objective function of the problem can be simplified as:

F(X) =
T∑
s=1

J−1∑
j′=0

βj′P
s
j′
=

T∑
s=1

J−1∑
j′=0

βj′ (
J−1∑
j=0

L−1∑
l=0

U j
′

jlX
s
jl) =

T∑
s=1

J−1∑
j=0

L−1∑
l=0

Xs
jl(

J−1∑
j′=0

βj′U
j
′

jl ) (3.14)

We can interpret the term
∑J−1

j′=0
βj′U

j
′

jl as the total expected contribution of a patient in group

j to the objective function during an arbitrary period of time, after receiving intervention

option l. Furthermore, the patient flow constraints can be simplified in the following way:

L−1∑
l=0

X1
j′ l

= P 0
j′
; (∀ 0 ≤ j

′ ≤ J − 1) (3.15)

L−1∑
l=0

Xs
j′ l

= P s−1

j′
=

J−1∑
j=0

L−1∑
l=0

U j
′

jlX
s−1
jl ; (∀ 0 ≤ j

′ ≤ J − 1, 2 ≤ s ≤ T ) (3.16)

We assume there are M resources in the system and R̄s
m (1 ≤ m ≤ M, 1 ≤ s ≤ T )

indicates the total amount of available resource m in time period [s− 1, s). Moreover, let’s

denote by Rm
jl (0 ≤ j ≤ J − 1, 0 ≤ l ≤ L− 1, 1 ≤ m ≤M) the amount of resource m required

for providing intervention l to a patient in category j for one period of time. Similarly, we

assume that there is a certain amount of available budget B̄ for the entire planning horizon

and providing intervention l to a patient in category j incurs a fixed cost Cjl. Furthermore,

some intervention options may be naturally unsuitable for certain classes of health states for

any reason. Consider all the pairs of indices (j, l) (0 ≤ j ≤ J − 1, 0 ≤ l ≤ L− 1) for which

we know that intervention l must be avoided for patients in category j. Define a hypothetical

resource consumption matrix indexed by m = 0 and set all the elements corresponding to

these pairs equal to 1. Also, fill all the other elements with zeros and set the amount of
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available resource m = 0 equal to zero in all the periods of time, i.e. R̄s
0 = 0 for all 1 ≤ s ≤ T .

By adding constraints that guarantee no resource m = 0 is being consumed at any given

period of time, we’re practically guaranteeing that the decision variables Xs
jl will be set to

zero for all of those pairs (j, l). The following resource consumption and budget constraints

then must be satisfied:

J−1∑
j=0

L−1∑
l=0

Xs
jlR

m
jl ≤ R̄s

m; (∀ 0 ≤ m ≤M, 1 ≤ s ≤ T ) (3.17)

T∑
s=1

J−1∑
j=0

L−1∑
l=0

Xs
jlCjl ≤ B̄ (3.18)

Notice that in our framework we do not explicitly model how many times an intervention

needs to be applied to patients during a given period of time. For example, a patient suffering

from major depression may need multiple psychotherapy sessions during one period of time,

while one session per period might be sufficient for a patient with early-stage depression.

The impact of this heterogeneity in intensity and frequency of required interventions is

reflected through resource consumption and intervention cost parameters. Specifically, for

some intervention options the resource consumption parameters Rm
jl are increasing in j.

On the other hand, the consumption of certain resources by some interventions is almost

independent from the disease severity. For example, a hospitalized patient requires a single

bed while the need for nursing staff may depend on the severity of the disease.

Finally, all the decision variables must have non-negative values:

Xs
jl ≥ 0; (∀0 ≤ j ≤ J − 1, 0 ≤ l ≤ L− 1, 1 ≤ s ≤ T ) (3.19)
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The optimization problem can then be formulated as:

min
X

F(X) =
T∑
s=1

J−1∑
j=0

L−1∑
l=0

Xs
jl(

J−1∑
j′=0

βj′U
j
′

jl )

s.t. 3.15, 3.16, 3.17, 3.18, 3.19

From the perspective of policy implementation, we prefer 0/1 solutions, since they make

application of the policy less challenging. In particular, implementing a fractional solution

requires assigning different interventions to patients with the same characteristics, which may

raise fairness issues. One way to resolve this issue would be to add integrality constraints

to the problem, which can potentially lead to making sub-optimal decisions. Although the

solution of the planning problem without integrality constraints is not guaranteed to be

integer in general, we expect the solution to be integer for the above problem, as it is an LP.

The only remaining part is to estimate the matrix U . To estimate the transition rates,

we use the learned disease progression model. Suppose we have estimated the parameter set

Θ̂ = (π̂, ρ̂, δ̂, µ̂, η̂) based on historical data. Moreover, assume the duration of each time period

is ∆τ . We model the flow of the population between different physician observation categories

based on the transitions of a representative patient. Let z̃0 and ỹ0 denote the underlying

health state and the physician observation variable, respectively, at the beginning of planning.

Similarly, define z̃1 and ỹ1 as the corresponding variables at the end of the first period.

Furthermore, suppose ũ1 is the intervention variable during the first period. As explained

earlier, we assume the initial distribution of ỹ is known, and plan for the entire horizon

s = 1, · · · , T . To do so, we approximate the transition rate between different categories of

ỹ for all the time periods with the transition rate of the first period. By minimizing the

expected objective function under the resource and budget constraints, we find the optimal

distribution of intervention assignments for each of the T time periods. However, at the

execution time we only execute the plan for the first period and plan again at the beginning

of the next period when the updated information on ỹ is available. As a consequence, the
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transition rates matrix will also be estimated again in the next execution step.

If the initial physician observation is ỹ0 = j, the posterior probability of the initial

underlying health state will be P(z̃0 = i | ỹ0 = j) = Ê(i,j) π̂i∑I

i
′
=1

Ê(i′ ,j) π̂
i
′
. Suppose the representative

patient is in state i at time point s = 0. The probability P(z̃1 = k | z̃0 = i, ũ1 = l) of transition

to state k in time point 1 under intervention ũ1 = l can then be estimated as
[
e∆τ Q̂l

]
ik
where

Q̂l is the estimated generator matrix for intervention l (notice that here we’re assuming the

population is homogeneous). Hence, the posterior distribution of the underlying health state

at time point s = 1 can then be expressed as:

P(z̃1 = k | ỹ0 = j, ũ1 = l) =
I∑
i=1

P(z̃0 = i, z̃1 = k | ỹ0 = j, ũ1 = l)

=
I∑
i=1

P(z̃1 = k | z̃0 = i, ũ1 = l)P(z̃0 = i | ỹ0 = j) =

∑I
i=1 Ê(i, j) π̂i

[
e∆τ Q̂l

]
ik∑I

i′=1 Ê(i
′ , j) π̂i′

By aggregating over all the possible values for j and l, we can calculate the distribution of z̃1:

P(z̃1 = k) =
J−1∑
j=0

L−1∑
l=0

P(z̃1 = k | ỹ0 = j, ũ1 = l)P(ỹ0 = j, ũ1 = l)

=
J−1∑
j=0

L−1∑
l=0

∑I
i=1 Ê(i, j) π̂i

[
e∆τ Q̂l

]
ik∑I

i′=1 Ê(i
′ , j) π̂i′

X1
jl =

J−1∑
j=0

L−1∑
l=0

ϱkjlX
1
jl (3.20)

where ϱkjl =
∑I

i=1 Ê(i,j) π̂i
[
e∆τ Q̂l

]
ik∑I

i
′
=1

Ê(i′ ,j) π̂
i
′

is known for given values of j, l, and k. Notice that∑I
k=1 ϱ

k
jl = 1, which implies that

∑I
k=1 P(z̃

1 = k) = 1, as expected. The distribution of

physician observation at time point s = 1 can then be calculated as:

P 1
j′
= P(ỹ1 = j

′
) =

I∑
k=1

P(ỹ1 = j
′ | z̃1 = k)P(z̃1 = k) =

I∑
k=1

Ê(k, j ′)
( J−1∑

j=0

L−1∑
l=0

ϱkjlX
1
jl

)

=
J−1∑
j=0

L−1∑
l=0

( I∑
k=1

Ê(k, j ′) ϱkjl
)
X1
jl =

J−1∑
j=0

L−1∑
l=0

U j
′

jl X
1
jl (3.21)
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where the transition rate U j
′

jl =
∑I

k=1 Ê(k, j
′
) ϱkjl =

∑I
i=1 Ê(i,j) π̂i

(∑I
k=1 Ê(k,j

′
)
[
e∆τ Q̂l

]
ik

)
∑I

i
′
=1

Ê(i′ ,j) π̂
i
′

is known

for given values of j, l, and j
′
. As Equations 3.20 and 3.21 indicate, both the distributions

of the underlying health state and the physician observation can be represented linearly in

terms of the decision variable X1
jl.

3.6 Model Extension: Occasionally-Observed Underlying Health Conditions

In this section, we study some other healthcare domains that have different characteristics

than those behavioral conditions that we’ve been considering so far. Specifically, we develop an

alternative disease progression model in which the underlying health condition is occasionally

revealed through accurate examination. For example, echocardiogram, which is a type of

ultrasound imaging test, helps physicians to analyze the structure and function of heart

in patients with potential heart disease. This information is much more detailed than the

results of typical examinations, lab tests, and blood pressure measurement. Therefore, it

is reasonable to assume that it gives a measure of the actual underlying health condition

of the patient. Similarly, biopsy as well as a variety of imaging tests such as Computerized

Tomography (CT) scan, Magnetic Resonance Imaging (MRI), Positron Emission Tomography

(PET) scan, and X-ray are used as tools for cancer diagnosis. However, accurate examination

is often costly and imposes some risks to the patient. Hence, such detailed examinations

occur only when physician observations that are collected during regular tests and visits

suggest that the patient’s health condition is getting worse. In this section, we modify the

baseline disease progression model by assuming that the underlying health condition variable

is occasionally observed by accurate examination.

Although our model has few restrictive assumptions and can potentially fit to a variety of

contexts with minor adjustments, we consider maintenance therapy for cancer as our main

medical domain. Maintenance therapy targets patients in the remission phase, and tries to

prevent the cancer’s return or delay the growth of advanced cancer after the initial treatment.
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Hormonal therapy, immunotherapy, and chemotherapy are the most important categories

of interventions that are commonly used during maintenance therapy. Besides the choice of

intervention type, in this context it is crucial to accurately tune the dosage of the medication

or aggressiveness of the tissue removal. In particular, prescribing a high dosage of medication

or removing too much of the body tissues may result in side effects on other body organs.

In addition to the above modification, we assume the chosen intervention at any given

period has a direct effect on the physician observation in the next period. In other words,

the intervention may also affect the physician observation through a separate direct path

in addition to affecting the underlying course of disease progression. The rationale behind

this idea is that in some certain healthcare domains interventions have negligible impact

on slowing or reversing the progression trend of the disease. However, they may serve as

a symptoms-control mechanism, which means that they have a direct effect on what the

physician observes. For example, symptom-control medications that are sometimes prescribed

for patients with terminal illness mainly affect the physician observations rather than the

actual course of disease progression. Therefore, in our extended model we assume that there

is a link from the intervention variable of each time period to the corresponding physician

observation variable of the next time period. Notice that the strength of the relationship

between intervention and physician observation may decay over time due to issues related

to medication adherence in cases in which there is a long between-visit time. Although

the amount of time between consecutive visits can potentially vary in our model, for the

sake of mathematical simplicity here we assume that the effect of intervention on physician

observation is constant across all the periods.

3.6.1 Model Setup

For patient n, denote by On ⊆ {1, · · · , Tn} the set of indices that correspond to regular visit

times. Moreover, let O′
n be the complement of On, i.e. the set of indices that correspond

to accurate examination. By definition, the variable z is unobserved during regular visits,
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Figure 3.4: A modified version of the CT-HMM disease progression model in which the z
variables are sometimes directly observed and used for choosing the intervention (shadowed
nodes indicate unobserved variables). Moreover, the chosen intervention at any given time
period has a direct effect on the physician observation in the next period.

but observed in accurate examinations. We consider two decision making mechanisms that

correspond to these two types of visits. Specifically, binomial distributions with parameters

ηj (0 ≤ j ≤ J − 1) map the physician observations to the intervention choice in regular

visits, similar to the baseline model. On the other hand, separate binomial distributions

with parameters η
′
i (1 ≤ i ≤ I) map the distribution of underlying health condition to

the interventions in accurate-examination periods. Also, suppose the direct intervention

distribution is denoted by G ′
(i, l) = P(uτns

n = l | zτns
n = i). In Figure 3.4, we present the

graphical model associated with the described scenario. As the figure illustrates, variable

yτns
n is affected by both zτns

n and uτn s−1
n . Hence, we model yτns

n as a binomial distribution with

parameter µil for z
τns
n = i (1 ≤ i ≤ I) and uτn s−1

n = l (0 ≤ l ≤ L− 1). We also denote the

emission distribution by E(i, l, j) = P(yτns
n = j | zτns

n = i,uτn s−1
n = l). Needless to explain,

there is no variable yτns
n in periods s ∈ O′

n.
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3.6.2 Parameter Learning via the EM Algorithm

The set of parameters that we’re interested to estimate is Θ = (π, ρ, δ, µ, η, η
′
). The complete-

data log-likelihood can be expressed in the following way, similar to Equation 3.5:

log Ln(Θ) = logP(zτn1
n ) +

Tn∑
s=1

[
logP(uτns

n |yτns
n , η) + logP(yτns

n |zτns
n ,uτn s−1

n , µ)
]
I{s ∈ On}

+
Tn∑
s=1

logP(uτns
n |zτns

n , η
′
) I{s ∈ O′

n}+
Tn−1∑
s=1

[
logP(zτn (s)

n |zτns
n , uτns

n , ρ, δ)
]

where uτn0
n = 0 is assumed as the initial intervention before the first visit. By defining the

variables χ
τn (s)

n ik and ψ
τn (s)

n i as in the baseline model, the log probabilities can be written as:

logP(zτn (s)
n |zτns

n ,uτns
n , ρ, δ) =

I∑
i=1

I∑
k=1
k ̸=i

(
χ
τn (s)

n ik log([Qn (s)]ik)− ψ
τn (s)

n i [Qn (s)]ik

)

logP(yτns
n |zτns

n ,uτn s−1
n , µ) =

I∑
i=1

L−1∑
l=0

[
log

(
J − 1

yτns
n

)
+ yτns

n log µil + (J − 1− yτns
n ) log(1− µil)

]
× I{zτns

n = i} I{uτn s−1
n = l}

logP(uτns
n |yτns

n , η) =
J−1∑
j=0

[
log

(
L− 1

uτns
n

)
+ uτns

n log ηj + (L− 1− uτns
n ) log(1− ηj)

]
I{yτns

n = j}

logP(uτns
n |zτns

n , η
′
) =

I∑
i=1

[
log

(
L− 1

uτns
n

)
+ uτns

n log η
′

i + (L− 1− uτns
n ) log(1− η

′

i)

]
I{zτns

n = i}

The complete-data log-likelihood for all the patients will then be:

log L(Θ) =
N∑
n=1

log Ln(Θ) =
N∑
n=1

I∑
i=1

log(πi) I{zτn1
n = i}

+
N∑
n=1

Tn−1∑
s=1

I∑
i=1

I∑
k=1
k ̸=i

[
χ
τn (s)

n ik

(
log(δik uτns

n
) + ρ

′

ik uτns
n
wn
)
− ψ

τn (s)

n i δik uτns
n

exp(ρ
′

ik uτns
n
wn)

]

133



+
N∑
n=1

Tn∑
s=1

I∑
i=1

L−1∑
l=0

[
log

(
J − 1

yτns
n

)
+ yτns

n log(µil) + (J − 1− yτns
n ) log(1− µil)

]
× I{zτns

n = i, uτn s−1
n = l, s ∈ On}

+
N∑
n=1

Tn∑
s=1

J−1∑
j=0

[
log

(
L− 1

uτns
n

)
+ uτns

n log(ηj) + (L− 1− uτns
n ) log(1− ηj)

]
I{yτns

n = j, s ∈ On}

+
N∑
n=1

Tn∑
s=1

I∑
i=1

[
log

(
L− 1

uτns
n

)
+ uτns

n log(η
′

i) + (L− 1− uτns
n ) log(1− η

′

i)

]
I{zτns

n = i, s ∈ O′

n}

Let’s take expectation with respect to the posterior distribution of the unobserved variables:

E[log L(Θ)|uτn obs
n , yτn obs

n , zτn obs
n , Θ̃] =

N∑
n=1

I∑
i=1

log(πi) I{zτn1
n = i, 1 ∈ O′

n}

+
N∑
n=1

I∑
i=1

log(πi)P(zτn1
n = i |uτn obs

n , yτn obs
n , zτn obs

n , Θ̃) I{1 ∈ On}

+
N∑
n=1

Tn−1∑
s=1

I∑
i=1

I∑
k=1
k ̸=i

L−1∑
l=0

[
E
[
χ
τn (s)

n ik |uτn obs
n , yτn obs

n , zτn obs
n , Θ̃

](
log(δikl) + ρ

′

iklwn
)

− E[ψτn (s)

n i |uτn obs
n , yτn obs

n , zτn obs
n , Θ̃] δikl exp(ρ

′

iklwn)

]
I{uτns

n = l}

+
N∑
n=1

Tn∑
s=1

I∑
i=1

L−1∑
l=0

[
log

(
J − 1

yτns
n

)
+ yτns

n log(µil) + (J − 1− yτns
n ) log(1− µil))

]
× P(zτns

n = i |uτn obs
n , yτn obs

n , zτn obs
n , Θ̃) I{uτn s−1

n = l, s ∈ On}

+
N∑
n=1

Tn∑
s=1

J−1∑
j=0

[
log

(
L− 1

uτns
n

)
+ uτns

n log(ηj) + (L− 1− uτns
n ) log(1− ηj)

]
I{yτns

n = j, s ∈ On}

+
N∑
n=1

Tn∑
s=1

J−1∑
j=0

[
log

(
L− 1

uτns
n

)
+ uτns

n log(η
′

j) + (L− 1− uτns
n ) log(1− η

′

j)

]
I{zτns

n = i, s ∈ O′

n}

Assuming that we’ve calculated the above posterior probability and conditional expectations,

the updated parameters in the E-step can be calculated by maximizing the expected complete-

data log-likelihood with respect to Θ. Define γsn(i) = E(I{zτns
n = i} | uτn obs

n , yτn obs
n , zτn obs

n , Θ̃)

(for 1 ≤ s ≤ Tn) and νsn(i, k) = E(I{zτns
n = i, zτn s+1

n = k} | uτn obs
n , yτn obs

n , zτn obs
n , Θ̃) (for
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1 ≤ s ≤ Tn−1). Notice that γ simplifies to an indicator function or a probability, respectively,

if z has been observed or has not been observed. Similarly, ν can be simplified based on

whether z has been observed at time periods s and s+ 1. In mathematical terms:

γsn(i) = I{zτns
n = i, s ∈ O′

n}+ P(zτns
n = i |uτn obs

n , yτn obs
n , zτn obs

n , Θ̃) I{s ∈ On}

νsn(i, k) = I{zτns
n = i, zτn s+1

n = k, s ∈ O′

n, s+ 1 ∈ O′

n}

+ P(zτn s+1
n = k |uτn obs

n , yτn obs
n , zτn obs

n , Θ̃) I{zτns
n = i, s ∈ O′

n, s+ 1 ∈ On}

+ P(zτns
n = i |uτn obs

n , yτn obs
n , zτn obs

n , Θ̃) I{zτn s+1
n = k, s ∈ On, s+ 1 ∈ O′

n}

+ P(zτns
n = i, zτn s+1

n = k |uτn obs
n , yτn obs

n , zτn obs
n , Θ̃) I{s ∈ On, s+ 1 ∈ On}

For π, the optimal value is determined as π̂i =
∑N

n=1 γ
1
n(i)∑I

i′=1

∑N
n=1 γ

1
n(i

′)
(for 1 ≤ i ≤ I). Similarly,

the optimal values for µ, η, and η
′
will be:

µ̂il =

∑N
n=1

∑Tn
s=1 y

τns
n γsn(i) I{uτn s−1

n = l, s ∈ On}
(J − 1)

∑N
n=1

∑Tn
s=1 γ

s
n(i) I{u

τn s−1
n = l, s ∈ On}

; (1 ≤ i ≤ I, 0 ≤ l ≤ L− 1)

η̂j =

∑N
n=1

∑Tn
s=1 u

τns
n I{yτns

n = j, s ∈ On}
(L− 1)

∑N
n=1

∑Tn
s=1 I{yτns

n = j, s ∈ On}
; (0 ≤ j ≤ J − 1)

η̂
′

i =

∑N
n=1

∑Tn
s=1 u

τns
n I{zτns

n = i, s ∈ O′
n}

(L− 1)
∑N

n=1

∑Tn
s=1 I{zτns

n = i, s ∈ O′
n}

; (1 ≤ i ≤ I)

For updating δ and ρ, equations 3.6, 3.7, and 3.8 can be used in their original form.

Therefore, in the E-step we need to calculate γ and ν as well as the two conditional

expectations. We further decompose the conditional expectations as:

E[χτn (s)

n ik |uτn obs
n , yτn obs

n , zτn obs
n , Θ̃] =

I∑
i′=1

I∑
k′=1

E[χτn (s)

n ik |zτns
n = i

′
, zτn s+1
n = k

′
,uτn obs

n , yτn obs
n , zτn obs

n , Θ̃] νsn(i
′, k′)

E[ψτn (s)

n i |uτn obs
n , yτn obs

n , zτn obs
n , Θ̃] =
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I∑
i′=1

I∑
k′=1

E[ψτn (s)

n i |zτns
n = i

′
, zτn s+1
n = k

′
,uτn obs

n , yτn obs
n , zτn obs

n , Θ̃] νsn(i
′, k′)

The end-state conditioned expectations can be calculated similar to the previous section.

Consequently, the main remaining challenge would be to calculate γ and ν, which are

respectively equivalent to calculating P(zτns
n = i |uτn obs

n , yτn obs
n , zτn obs

n , Θ̃) for s ∈ On and

P(zτns
n = i, zτn s+1

n = k |uτn obs
n , yτn obs

n , zτn obs
n , Θ̃) for s, s+ 1 ∈ On. In the following, we develop a

forward-backward algorithm for efficiently calculating these probabilities.

3.6.3 The Forward-Backward Algorithm

Similar to the previous case, construct a time-inhomogeneous DT-HMM from the CT-HMM

by defining the transition probability function of the DT-HMM to be equal to [P̃n (s)]ik =

P(z̃s+1
n = k|z̃sn = i, uτns

n , Θ̃) =
[
e(τn s+1−τns)Q̃n (s)

]
ik
where z̃ is the discrete-time latent variable

of our DT-HMM and Q̃n (s) is the generator matrix, associated with interval (τns, τn s+1]. For

a given time period s, denote by z
τn (s)+
n the set of underlying health condition variables after

visit s that correspond to direct observation through accurate examination. In other words,

z
τn (s)+
n includes all z

τns′
n variables such that s

′
> s and s

′ ∈ O′
n. Moreover, let y

τn (s)+
n denote

physician observation variables after visit s, i.e. yτn s+
n includes all y

τn s′
n for which s′ > s

and s ∈ On. Finally, let u
τn (s)+
n = u

τn s+1:Tn
n be the set of interventions after visit s. From

a conceptual point of view, this group consists of all the variables after visit s for which

the values are known. Similarly, define the second group z
τn (s)−
n , y

τn (s)−
n , and u

τn (s)−
n as the

corresponding variables to the previous group for at or before time period s. Notice that the

union of these two sets covers all the variables for which the values are known. The forward

probability associated with visit s will then be αsn(i) = P(z̃sn = i,u
τn (s)−
n , y

τn (s)−
n , z

τn (s)−
n |Θ̃).

We define αsn(i) only for i = z̃sn when the underlying condition at time point s has been

directly observed via accurate examination (i.e. s ∈ O′
n). The backward probability is also

defined as βsn(i) = P(uτn (s)+
n , y

τn (s)+
n , z

τn (s)+
n |z̃sn = i, uτns

n , Θ̃) in a similar way.
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In the following, we’ll present a set of dynamic programming equations that allow for

efficient calculation of α and β. Depending on whether s ∈ On and s− 1 ∈ On, there are four

cases for calculation of α. More specifically:

s− 1 ∈ On, s ∈ On : αsn(i) =
I∑

k=1

P(z̃sn = i, z̃s−1
n = k, u

τn (s)−
n , y

τn (s)−
n , z

τn (s)−
n |Θ̃)

=
I∑

k=1

P(uτns
n |yτns

n , Θ̃)P(yτns
n |z̃sn = i, uτn s−1

n , Θ̃)×

P(z̃sn = i|z̃s−1
n = k,uτn s−1

n , Θ̃)P(z̃s−1
n = k, u

τn (s−1)−
n , y

τn (s−1)−
n , z

τn (s−1)−
n |Θ̃)

=
I∑

k=1

G̃(yτns
n ,uτns

n ) Ẽ(i, uτn s−1
n , yτns

n )
[
P̃n (s−1)

]
ki
αs−1
n (k) (3.22)

s− 1 ∈ O′

n, s ∈ On : αsn(i) = G̃(yτns
n ,uτns

n ) Ẽ(i, uτn s−1
n , yτns

n )
[
P̃n (s−1)

]
z̃s−1
n i

αs−1
n (z̃s−1

n ) (3.23)

s− 1 ∈ On, s ∈ O′

n : αsn(z̃
s
n) =

I∑
k=1

G̃ ′
(z̃sn,u

τns
n )

[
P̃n (s−1)

]
k z̃sn

αs−1
n (k) (3.24)

s− 1 ∈ O′

n, s ∈ O′

n : αsn(z̃
s
n) = G̃ ′

(z̃sn,u
τns
n )

[
P̃n (s−1)

]
z̃s−1
n z̃sn

αs−1
n (z̃s−1

n ) (3.25)

For the calculation of β, we have two cases based on s+ 1 ∈ On:

s+ 1 ∈ On : βsn(i) =
I∑

k=1

P(z̃s+1
n = k,u

τn (s)+
n , y

τn (s)+
n , z

τn (s)+
n |z̃sn = i,uτns

n , Θ̃)

=
I∑

k=1

P(uτn (s+1)+
n , y

τn (s+1)+
n , z

τn (s+1)+
n |z̃s+1

n = k,uτn s+1
n , Θ̃)P(uτn s+1

n |yτn s+1
n , Θ̃)

P(yτn s+1
n |z̃s+1

n = k,uτn s
n , Θ̃)P(z̃s+1

n = k|z̃sn = i, uτns
n , Θ̃)

=
I∑

k=1

G̃(yτn s+1
n , uτn s+1

n ) Ẽ(k,uτn s
n , yτn s+1

n )
[
P̃n (s)

]
ik
βs+1
n (k) (3.26)

s+ 1 ∈ O′

n : βsn(i) = G̃ ′
(z̃s+1
n ,uτn s+1

n )
[
P̃n (s)

]
i z̃s+1

n
βs+1
n (z̃s+1

n ) (3.27)
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Notice that βsn(i) is defined only for i = z̃sn if s ∈ O′
n. The boundary conditions will also be:

1 ∈ On :α1
n(i) = G̃(yτn1

n ,uτn1
n ) Ẽ(i,uτn 0

n , yτn1
n )π̃i (3.28)

1 ∈ O′

n :α1
n(z̃

1
n) = G̃ ′

(z̃1n,u
τn1
n ) π̃z̃1n (3.29)

Tn ∈ On : βTn−1
n (i) =

I∑
k=1

G̃(yτnTn
n ,uτnTn

n ) Ẽ(k, uτnTn−1
n , yτnTn

n )
[
P̃n (Tn−1)

]
ik

(3.30)

Tn ∈ O′

n : βTn−1
n (i) = G̃(z̃Tnn ,uτnTn

n )
[
P̃n (Tn−1)

]
i z̃Tnn

(3.31)

where βTn−1
n (i) is defined only for i = z̃Tn−1

n if Tn − 1 ∈ O′
n. Now, we can calculate the

posterior probabilities that we are interested in as:

P(zτns
n = i |uτn obs

n , yτn obs
n , zτn obs

n , Θ̃) =
αsn(i)β

s
n(i)∑I

i′=1 α
s
n(i

′)βsn(i
′)

(3.32)

P(zτns
n = i, zτn s+1

n = k |uτn obs
n , yτn obs

n , zτn obs
n , Θ̃) =

G̃(yτn s+1
n ,uτn s+1

n ) Ẽ(k, uτn s
n , yτn s+1

n )
[
P̃n (s)

]
ik
αsn(i) β

s+1
n (k)∑I

i′=1

∑I
k′=1 G̃(y

τn s+1
n ,u

τn s+1
n ) Ẽ(k′,uτn s

n , y
τn s+1
n )

[
P̃n (s)

]
i′ k′

αsn(i
′) βs+1

n (k′)
(3.33)

The boundary cases need to be handled separately, similar to the baseline model.

3.6.4 Numerical Experimentation

We generate synthetic data to validate our algorithm as in Section 3.4.52. Specifically, we

assume that physicians order accurate examination with a certain probability whenever

the observation in a regular visit indicates the patient’s health condition suggests that the

disease has progressed to high-risk states. Consequently, a snapshot of the underlying health

condition will be available in the next visit. Similarly, the physician decides whether to repeat

the accurate examination for the next period or go back to the regular-visits regimen based

on the observed underlying health condition. We model the probability according to which

2Refer to directory CTHMM-Ext2 in https://github.com/saeedghodsi93/Disease Progression Modeling HMM
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Figure 3.5: An example of the generated synthetic data. In periods that correspond to
accurate examination, the value of z is observed instead of y.
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the accurate-examination decision at a given time period is made as a logistic function of the

observation that was made in either the regular or accurate examination during the previous

visit. In mathematical terms, P(s ∈ O′
n) =

exp(Υ)
1+exp(Υ)

, where Υ is an increasing linear function

of yτn s−1
n or zτn s−1

n , depending on the case. The rest of the data generation procedure remains

almost the same. The only difference with the baseline case is that this time we generate yτns
n

based on a binomial distribution with parameter µil for i = zτns
n and l = uτn s−1

n . We assume

uτn0
n = 0, which means that the lowest level of intervention (possibly no intervention) was

being administered until the first visit time.
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Figure 3.6: Convergence of the EM estimated parameters to their true values for different
sample sizes (the η̂ plot is eliminated since it is constant after the first iteration). As the
results indicate, convergence is faster than the baseline model (i.e. Figure 3.3).
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Figure 3.5 illustrates an example of the generated synthetic data. We present the

convergence plots for variables π̂, δ̂, µ̂, and η̂
′
in Figure 3.6. One can argue that the

convergence rates should be faster than the baseline model mainly due to the fact that being

able to occasionally observe the underlying health condition provides the algorithm with

more accurate information. However, having an additional link from uτn s−1
n to yτns

n makes

the structure of the model more complex and reduces the convergence rates as a result. We

observe that with the same number of samples, the extended model converges slightly faster

and the ultimate errors are smaller than the baseline model. Hence, the effect of having

occasional access to the latent variable dominates the other effect. Indeed, the rate at which

the latent variable is observed plays a key role in the algorithm’s convergence rate.

3.7 Individual-Level Intervention Planning

In this section, we consider a patient-level planning scenario in which the history of the

patient is used for estimating the posterior distribution of their underlying health state at

the current time. The goal would then be to choose an intervention that minimizes the total

expected disutility over the planning horizon. There are two main factors that contribute to

the disutility: 1- the discomfort associated with being in a certain underlying health state, 2-

the risk associated with receiving each intervention option. For example, the patient suffers

from a certain level of pain while being in each stage of cancer. On the other hand, an

aggressive intervention such as removing cancer as well as some healthy tissues around it via

surgery puts the patient at the risk of side effects. Hence, we define the total disutility as

the addition of two terms that each corresponds to one of the aforementioned components.

Designing an appropriate and timely intervention plan requires keeping track of the changes

in the underlying health state over time.
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Figure 3.7: Given the patient’s history (i.e. yτ1:T , uτ1:T−1) and the model parameters, the
posterior distribution of the underlying health state zτT can be evaluated. The intervention
u, which affects the generator matrix Q̂(u) can then be chosen in a way that the expected
disutility is minimized. The disutility Ω is modeled as a function of the patient’s underlying
health state z̃ at the end of the planning period (i.e. at time τT +∆τ).

3.7.1 Single-Period Planning

Suppose we have estimated the parameter set Θ̂ = (π̂, ρ̂, δ̂, µ̂, η̂) using a training dataset.

Consider a new patient for which the history of physician observations yτ1:T as well as the

prescribed interventions uτ1:T−1 is available up to the current time period. Define Ωz as

a measure of disutility that depends on the patient’s underlying unobserved health state.

Moreover, let Ωu indicate the disutility associated with the intervention riskiness. We define

the total disutility as Ω = Ωz + Ωu. In this section, we study the simplest version of the

intervention planning problem, that is a single-period optimization problem. Specifically,

we assume to have a planning period of fixed length ∆τ and try to minimize the expected

disutility at the end of the planning period. In mathematical terms, we would like to choose

an intervention u at time period T that minimizes E[Ω] during period [τT , τT +∆τ) (refer to

Figure 3.7). Thus, we develop an optimization problem that minimizes the expected disutility,

given the patient’s history.

Let w indicates the covariate vector for the patient. The single-period intervention

planning problem aims to find the optimal intervention at time period T , denoted by ũ, given
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w, yτ1:T , and uτ1:T−1 . Therefore, we essentially need to evaluate the conditional expected

disutility E[Ω|ũ, yτ1:T ,uτ1:T−1 , w, Θ̂] during period [τT , τT +∆τ), which can be broken to the

sum of Ωu and E[Ωz|ũ, yτ1:T ,uτ1:T−1 , w, Θ̂] at time τT +∆τ . By applying the law of iterated

expectations we can simplify the second term of the objective as E[Ωz|ũ, yτ1:T ,uτ1:T−1 , w, Θ̂] =

E
[
E[Ωz|zτT ] | ũ, yτ1:T ,uτ1:T−1 , w, Θ̂

]
, where the outer expectation is calculated with respect to

the posterior probability of the underlying health state given the historical data, which is

proportional to P(zτT , yτ1:T ,uτ1:T−1 |w, Θ̂). This joint probability can be factorized as:

P(zτT = i, yτ1:T ,uτ1:T−1 |w, Θ̂) =
I∑

k=1

P(zτT = i, zτT−1 = k, yτ1:T ,uτ1:T−1 |w, Θ̂)

=
I∑

k=1

P(yτT | zτT = i, Θ̂)P(zτT = i | zτT−1 = k,uτT−1 , w, Θ̂)P(zτT−1 = k, yτ1:T−1 ,uτ1:T−1 |w, Θ̂)

=
I∑

k=1

Ê(i, yτT )
[
P̂(T−1)

]
ki
αT−1(k)

where
[
P̂(T−1)

]
ki
indicates the transition probability of the corresponding time-inhomogeneous

DT-HMM in the time period [τT−1, τT ), and α
T−1(k) is the forward probability at time T − 1,

which can be efficiently calculated via Equations 3.9 and 3.11. The posterior probability of

zτT would then be:

P(zτT = i | yτ1:T ,uτ1:T−1 , w, Θ̂) =

∑I
k=1 Ê(i, yτT )

[
P̂(T−1)

]
ki
αT−1(k)∑I

i′=1

∑I
k=1 Ê(i

′ , yτT )
[
P̂(T−1)

]
ki′
αT−1(k)

(3.34)

Hence, we can represent the aforementioned expected disutility as:

E[Ωz|ũ, yτ1:T ,uτ1:T−1 , w, Θ̂] =
I∑
i=1

E[Ωz|zτT = i, ũ, w, Θ̂]P(zτT = i | yτ1:T ,uτ1:T−1 , w, Θ̂)

=

∑I
i=1

∑I
k=1 E[Ωz|zτT = i, ũ, w, Θ̂] Ê(i, yτT )

[
P̂(T−1)

]
ki
αT−1(k)∑I

i′=1

∑I
k=1 Ê(i

′ , yτT )
[
P̂(T−1)

]
ki′
αT−1(k)

(3.35)

Now, let’s focus on calculating E[Ωz|zτT = i, ũ, w, Θ̂]. The generator matrix associated
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with applying intervention ũ on a given patient with covariates w can be expressed as

[Q̂(ũ)]ĩi = δ̂ĩi ũ exp(ρ̂
′

ĩi ũ
w), where i and ĩ are the initial and final health states, respectively.

This generator matrix can be used for estimating the transition probability function of the

CT-HMM as Pũ(∆τ) = exp(∆τQ̂(ũ)) =
∑∞

m=0(∆τ)
m Q̂(ũ)m

m!
. Starting from state zτT = i, the

probability distribution of the underlying health state at the end of planning period will

then be P(z̃ = ĩ | zτT = i, ũ, w, Θ̂) =
[
Pũ(∆τ)

]
ĩi
. For any given value of the underlying health

state z̃ = ĩ, we approximate Ωz with a known constant Ωz
ĩ
= E[Ωz|z̃ = ĩ]. Hence, the above

expectation can be expressed as:

E[Ωz|zτT = i, ũ, w, Θ̂] =
I∑
ĩ=1

Ωz
ĩ
P(z̃ = ĩ | zτT = i, ũ, w, Θ̂) =

I∑
ĩ=1

Ωz
ĩ

[
Pũ(∆τ)

]
ĩi

(3.36)

where w implicitly affects Pũ(∆τ). Replacing Equation 3.36 back in Equation 3.35 will give

us a simplified representation of the expected disutility given y and w:

E[Ωz|ũ, yτ1:T ,uτ1:T−1 , w, Θ̂] =

∑I
i=1

∑I
k=1

∑I
ĩ=1Ω

z
ĩ

[
Pũ(∆τ)

]
ĩi
Ê(i, yτT )

[
P̂(T−1)

]
ki
αT−1(k)∑I

i′=1

∑I
k=1 Ê(i

′ , yτT )
[
P̂(T−1)

]
ki′
αT−1(k)

As discussed earlier, choosing the intervention option ũ = l contributes a component Ωu
l to

the disutility due to its additional risk of experiencing side effects. The optimal decision,

given the limited knowledge that we have about zτT based on the observed history, would

then be:

ũhist = argmin
0≤l≤L−1

Ωu
l +

I∑
i=1

I∑
k=1

I∑
ĩ=1

Ωz
ĩ

[
Pl(∆τ)

]
ĩi
Ê(i, yτT )

[
P̂(T−1)

]
ki
αT−1(k) (3.37)

which can be calculated efficiently.

To quantify the impact of using the entire history of patient for decision making, we

compare it with two alternative cases. If we had perfect knowledge about the underlying

health state at the current period, i.e. zτT = i for some known i, then we could’ve chosen
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the optimal intervention as ũ∗ = argmin
0≤l≤L−1

Ωu
l +

∑I
ĩ=1Ω

z
ĩ

[
Pl(∆τ)

]
ĩi
. On the other hand,

we consider a case in which the only piece of information that is used for decision making

is the physician’s observation at the current period yτT (rather than the entire history).

In this scenario, the posterior probability of zτT is P(zτT = i | yτT , w, Θ̂) = Ê(i,yτT ) π̂i∑I

i
′
=1

Ê(i′ ,yτT ) π̂
i
′
.

Consequently, the optimal decision would be:

ũlast = argmin
0≤l≤L−1

Ωu
l +

I∑
i=1

I∑
ĩ=1

Ωz
ĩ

[
Pl(∆τ)

]
ĩi
Ê(i, yτT ) π̂i (3.38)

3.7.2 Numerical Experimentation on Synthetic Data

To quantify the impact of using the entire patient history for planning, we use Monte Carlo

simulation. Specifically, we generate a dataset of training patient records that is used for

estimating the model parameters. Afterward, we generate a test dataset that contains

historical records for a set of patients. We then compare the single-period sub-optimality of

the aforementioned two approaches versus the optimal planning approach in which we have

full information about the underlying health condition at the planning time. All the codes

are publicly available on GitHub3. We present the details regarding the choice of parameters

in the appendix.

First, we compare the aforementioned two approaches based on their estimated distribution

of the current underlying health state. In particular, we’re interested to investigate the added

value of having access to the entire patient history for estimating the underlying health state at

the current time period. Therefore, for each patient in the test set we estimate the distribution

of zτT once using the entire history and once using only the last physician observation data.

For each one of these two cases, we take the state with the highest probability as the predicted

state and compare it with the ground truth. By averaging over the entire test set, we obtain

3Refer to the Planning directory in https://github.com/saeedghodsi93/Disease Progression Modeling HMM
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the following normalized confusion matrix for the predicted zτT :

”entire history”:


0.11 0.13 0.03

0.06 0.25 0.08

0.01 0.09 0.24

 , ”last observation”:


0.18 0.00 0.09

0.14 0.00 0.25

0.01 0.03 0.30


where the rows correspond to the true value of zτT (up to down) and the columns correspond

to the predicted value (left to right). Although it seems that using the entire history decreases

the prediction accuracy for states 1 and 3, we observe that using only the last physician

observation data makes prediction of state 2 extremely inaccurate. The overall prediction

accuracy for the two cases are 60% and 48%, respectively.

As our measure of the optimal (i.e. full-information) disutility, for each patient in the test

set we find ũ∗ and use the optimal objective value Ω∗ = Ωu
ũ∗ +

∑I
ĩ=1Ω

z
ĩ

[
Pũ∗(∆τ)

]
ĩi
(where

i = zτT is known) as our target disutility. On the other hand, we find ũhist and ũlast according

to equations 3.37 and 3.38, respectively, and calculate the corresponding actual expected

disutilities as Ωhist = Ωu
ũhist

+
∑I

ĩ=1 Ω
z
ĩ

[
Pũhist(∆τ)

]
ĩi
and Ωlast = Ωu

ũlast
+
∑I

ĩ=1 Ω
z
ĩ

[
Pũlast(∆τ)

]
ĩi

(where i = zτT is the true state). To evaluate the effect of having access to more data on the

decision-making outcome, we first compare the decisions ũhist and ũlast with ũ∗:

”entire history”:


0.15 0.08 0.01

0.09 0.20 0.11

0.02 0.05 0.29

 , ”last observation”:


0.16 0.0 0.08

0.13 0.0 0.27

0.01 0.02 0.33


Here rows correspond to ũ∗ (up to down) and columns correspond to ũhist and ũlast (left

to right). As the confusion matrices indicate, using the entire history leads to choosing

intervention 3 with a higher probability whenever it is the optimal intervention. The

overall accuracy of making the optimal decision is 64% and 49%, respectively, for these

two cases. Notice that we’ve intentionally designed the true model in a way that choosing

the optimal intervention requires making an accurate estimation for the underlying health
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state. Specifically, the the optimal choice is l = 0, l = 1, and l = 2 when zτT = 1, zτT = 2,

and zτT = 3, respectively. Finally, we calculate the disutility sub-optimality values as

(Ωhist−Ω∗)/Ω∗ = 7.3% and (Ωlast−Ω∗)/Ω∗ = 10.6%. In other words, using the entire history

as a proxy for estimating the underlying health state increases the disutility by 7.3%, while

using only the last physician observation increases the disutility to 10.6%.

3.7.3 Multi-Period Planning

In this section, we present a multi-period formulation for the planning problem. In particular,

we assume the parameter set Θ̂ = (π̂, ρ̂, δ̂, µ̂, η̂) has been estimated using a training dataset.

Moreover, we assume access to the history of physician observations yτ1:T as well as the

prescribed interventions uτ1:T−1 . We then formulate an infinite-horizon reinforcement learning

planning problem by estimating the environment parameters based on Θ̂ to determine ũs

(s = 1, 2, · · · ) in a way that the total expected discountedw disutility is minimized. Similar to

the population-level planning section, here we follow a model predictive control approach as

well, i.e. only the first action is executed and the optimization problem is solved again at the

beginning of the next period when new data becomes available. Since the underlying health

condition is assumed to be unobserved, we use a discrete-time partially-observed MDP model

for planning. We discuss how traditional POMDP solver algorithms can be used for finding

the optimal course of interventions.

The underlying health state, physician observation, and intervention are called ”state”,

”observation”, and ”action”, respectively, in the terminology of the POMDP literature. The

”reward”Ωs(ũ
s, z̃s) associated with each planning period can be broken down to the sum of Ωu

ũs

(i.e. the intervention component) and Ωz
z̃s (i.e. the health state component) respectively. The

total discounted reward would then be Ω =
∑∞

s=1 ϱ
s−1 Ωs, where ϱ is the discount factor. The

initial state probability (i.e. P(z̃0) = P(zτT )) can be determined according to Equation 3.34

based on the patients historical data. The transition matrix of the underlying health state,

given intervention ũ at any arbitrary time period, will also be Pũ(∆τ) = exp(∆τQ̂(ũ)) =
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Figure 3.8: Multi-period planning, based on the patient’s history.

∑∞
m=0(∆τ)

m Q̂(ũ)m

m!
, where Q̂(ũ) is the estimated generator matrix. We denote the transition

kernel by T for future reference. Finally, the observation distribution is given by Ê .

For POMDPs, the belief distribution over the latent state, i.e. bs(i) := P(z̃s = i|ỹ1:s, ũ1:s)

(1 ≤ i ≤ I), is known to be a sufficient statistic [Sag18]. Thus, a deterministic intervention

policy can be formulated as a mapping from the space of belief distribution over the current

latent health state to the space of interventions, i.e. Π : ∆I → {0, · · · , L − 1}, where ∆I

is the I-dimensional probability simplex. In the following, we consider an infinite-horizon

Point-Based Value Iteration (PBVI) algorithm [PGT03] for solving our POMDP. We refer the

readers to [SPK13] for a comprehensive review of different variations of the PBVI algorithm

and to [WS19] for a finite-horizon version of the algorithm. Define the belief-action value

function associated with policy Π as:

Q(b, l; Π) = E
[ ∞∑
s=1

ϱs−1Ω(ũs, z̃s) | b0 = b, ũ1 = l
]

where the interventions are determined according to ũs+1 = Π(bs) for s ≥ 1. The optimal

policy would then be Π∗ = argmax
Π

Q(b, l; Π). Denote by Q∗ the optimal belief-action value

function, i.e. Q∗(b, l) = Q(b, l; Π∗). Furthermore, define the optimal belief value function as
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V ∗(b) = maxl Q
∗(b, l). The Bellman update equation can be expressed as:

Q∗(b, l) = ⟨Ω̃l, b⟩+ ϱ
J−1∑
j=0

P(ỹ′
= j | b, l)V ∗(b̃)

where Ω̃l = Ωs(l, ·) and b̃(k) := P(k | b, i, j) (1 ≤ k ≤ I).

It is known that V ∗(b) is a piecewise-linear convex function of b [Son78]. Specifically, the

value function can be represented using a set of vectors Γ as V ∗(b) = max
α∈Γ

⟨α, b⟩. Exact Value

Iteration algorithms update the set Γ at each iteration by running the complete Bellman

backup procedure. It turns out that the set Γ grows exponentially with each iteration

in exact Value Iteration algorithms. Hence, PBVI algorithms try to make the procedure

computationally tractable by evaluating the Bellman backup on only a finite subset S ⊂ ∆I

of belief values. In particular, let’s fix b ∈ S and define a transformed version of Γ for each

l and j as Γ̃lj := {α̃ | α̃(i) =
∑I

k=1 α(k) Til(k) E(k, j); ∀ 1 ≤ i ≤ I, α ∈ Γ}, where T is the

transition kernel and E is the emission distribution. After some algebra, the Bellman update

equation can be written as:

Q∗(b, l) = ⟨Ω̃l, b⟩+ ϱ
J−1∑
j=0

max
α̃∈Γ̃lj

⟨α̃, b⟩

Let α∗
l (b; Γ) := Ω̃l + ϱ

∑J−1
j=0 argmax

α̃∈Γ̃lj

⟨α̃, b⟩ and observe that Q∗(b, l) = ⟨α∗
l (b; Γ), b⟩.

Therefore, the Bellman backup at belief b can be constructed as

α∗(b; Γ) := argmax
{α∗

l (b;Γ) | 0≤l≤L−1}
⟨α∗

a(b; Γ), b⟩

To be more specific, had we ran the complete Bellman backup on Γ, then α∗(b; Γ) would have

been the value-maximizing vector in the resulting set of vectors at belief b. PBVI algorithms

start by choosing an initial set of belief points S(0) as well as an initial value function set of

vectors Γ(0) and update these sets iteratively. At iteration n, point-based Bellman backup is
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performed for updating the value function set of vectors as Γ(n+1) = {α∗(b; Γ(n)) | b ∈ S(n)}.

Many different approaches have been proposed for constructing the set S(n+1) based on S(n).

For example, one strategy would be to choose beliefs evenly spaced on a grid. Alternatively,

one can add belief points that are farthest to the current set S(n). Following any one of these

strategies, we can update the sets and find the optimal course of interventions.

3.8 Conclusion

In this chapter, we studied the problem of data-driven healthcare intervention planning

for both behavioral and medical healthcare sectors. Specifically, we provided a discussion

on the inefficiency issues in the US healthcare system and reviewed the existing literature

from the economic and public health perspectives. Our research was originally motivated by

observing the trade-off between providing care as needed versus early intervention, which

is common especially within the behavioral healthcare sector. Therefore, we formulated a

population-level intervention planning problem for providing guidelines regarding assignment

of intervention packages to patient groups. The main challenge in data-driven planning is

in appropriate estimation of the transition rates based on historical data. To do so, we

developed a statistical disease progression model that describes the continuous-time process of

disease using discrete-time irregularly-spaced observations. Our main contribution here is to

present an efficient EM algorithm for estimating the parameters of the CT-HMM model. We

generated synthetic data and provided a numerical analysis for the convergence of parameters

to the true values.

In an extended version of the model, we assumed the underlying health state is occasionally

observable. The motivation for this model is the fact that for certain medical domains accurate

examination is possible, but often expensive and risky. For example, in caner maintenance

therapy the physician can order biopsy to examine the true underlying health condition of the

patient, but it is done only in certain circumstances. Our extended model also incorporates
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the direct effect of interventions on physician observations. For the case of cancer maintenance

therapy, some interventions such as medication play the role of symptom alleviation rather

than improving the underlying health condition. Therefore, we added a direct link from

interventions to physician observations in the model. We developed an EM algorithm for

efficiently estimating the parameters and demonstrated the convergence of our algorithm

using synthetically generated data. Finally, we analyzed the individual-level intervention

planning problem in both the single-period and multi-period settings.
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3.9 Appendix A: Baseline Model

3.9.1 Simulation Setup

In this section, we provide more details regarding the numerical experiments of the baseline

model. We refer the readers to [Gho22] for more details. Specifically, we set the time

parameters of the trajectories as µT = 10, σT = 3, µτ = 10, στ = 3. Moreover, we set the age

parameters as µa,y = 25, σa,y = 5, µa,o = 50, σa,o = 10, pa = 0.25. The transition parameters

of the underlying CTMC are:

ζ∗·,·,0 =


0.00 0.60 0.40

0.20 0.00 0.80

0.10 0.90 0.00

 , ζ∗·,·,1 =


0.00 0.80 0.20

0.60 0.00 0.40

0.30 0.70 0.00

 , ζ∗·,·,2 =


0.00 0.90 0.10

0.80 0.00 0.20

0.50 0.50 0.00


where the last dimension corresponds to the intervention. The mean time spent in each state

are also set according to:

ι∗·,0 =
[
4 6 20

]
, ι∗·,1 =

[
9 12 10

]
, ι∗·,2 =

[
11 10 7

]
Hence, the true generator matrix parameters are:

δ∗·,·,0 =


− 0.15 0.10

0.03 − 0.13

0.00 0.04 −

 , δ∗·,·,1 =


− 0.09 0.02

0.05 − 0.03

0.03 0.07 −

 , δ∗·,·,2 =


− 0.08 0.01

0.08 − 0.02

0.07 0.07 −


Moreover, the age coefficients are set to:

ρ∗·,·,0 = ρ∗·,·,1 = ρ∗·,·,2 =


− 0.020 0.020

0.015 − 0.015

0.010 0.010 −


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Assuming the age of an individual is 50 years, we’ll get the following parameters:

Q∗
·,·,0 =


− 0.68 0.41 0.27

0.07 −0.35 0.28

0.01 0.07 −0.08

 , Q∗
·,·,1 =


− 0.30 0.24 0.06

0.11 −0.18 0.07

0.05 0.12 −0.16



Q∗
·,·,2 =


− 0.25 0.22 0.02

0.17 −0.21 0.04

0.12 0.12 −0.24


The true initial health state probability is set to π∗ =

[
expm(1000×Q∗

·,·,0)
]
0,· = (0.03, 0.19, 0.77).

The reason behind this choice is that it makes the initial state probability equal to the

stationary distribution of the no-intervention option. Finally, the emission and intervention

probabilities are set to µ∗ = (0.1, 0.5, 0.9) and

η∗ = (0.04, 0.15, 0.26, 0.32, 0.43, 0.51, 0.62, 0.77, 0.81, 0.90)

For the starting value of the initial health state parameter, we chose π̃ = (0.33, 0.33, 0.33).

The corresponding parameters of the underlying CTMC are also set to:

ζ̃·,·,0 =


0.00 0.50 0.50

0.30 0.00 0.70

0.20 0.80 0.00

 , ζ̃·,·,1 =


0.00 0.60 0.40

0.40 0.00 0.60

0.40 0.60 0.00

 , ζ̃·,·,2 =


0.00 0.70 0.30

0.60 0.00 0.40

0.40 0.60 0.00



ι̃·,0 =
[
5 8 12

]
, ι̃·,1 =

[
6 10 10

]
, ι̃·,2 =

[
9 8 4

]
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We’ll get the following starting values for the generator matrix parameters:

δ̃·,·,0 =


− 0.10 0.10

0.04 − 0.09

0.02 0.07 −

 , δ̃·,·,1 =


− 0.10 0.07

0.04 − 0.06

0.04 0.06 −

 , δ̃·,·,2 =


− 0.08 0.03

0.07 − 0.05

0.10 0.15 −


For the age parameters, we set:

ρ̃·,·,0 = ρ̃·,·,1 = ρ̃·,·,2 =


− 0.01 0.01

0.01 − 0.01

0.01 0.01 −


Moreover, the emission and intervention parameters are chosen as µ̃ = (0.45, 0.65, 0.7) and

η̃ = (0.01, 0.03, 0.06, 0.08, 0.45, 0.48, 0.51, 0.55, 0.91, 0.97).

3.9.2 An Overview of the Algorithm

Here we provide an end-to-end description of the estimation algorithm. For calculating the

conditional expectations corresponding to each interval (τns, τn s+1], we first construct Q̃n (s)

based on 3.3, 3.4. Afterward, the integral ξik =
∫ τn s+1−τns

0
exp

(
xQ̃n (s)

)
Bik exp

(
(τn s+1 −

τns − x)Q̃n (s)

)
dx is calculated for all (i, k). To do so, we evaluate exp

(
(τn s+1 − τns)Aik

)
for Aik =

Q̃n (s) Bik

0 Q̃n (s)

 and the upper right part of the result gives us the matrix that

we’re looking for. For ĩ and k̃ being the values of the end states, we can find the (i, k)-th

expectation of 3.1, 3.2 in the (̃i, k̃)-th element of the matrix.
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Algorithm 3: The estimation algorithm

Input: Θ̃ = (π̃, δ̃, ρ̃, µ̃, η̃)
Output: Θ̂ = (π̂, δ̂, ρ̂, µ̂, η̂)
Data: (yτns

n , uτns
n )
∣∣
1≤s≤Tn

for 1 ≤ n ≤ N

while not converged do
E-step: for 1 ≤ n ≤ N

• Calculate αsn(i) based on 3.9, 3.11 and βsn(i) based on 3.10, 3.12

• Calculate γsn(i) =
αs
n(i)β

s
n(i)∑I

i′=1 α
s
n(i

′)βs
n(i

′)
and νsn(i, k) using 3.13

• Calculate E[χτn (s)

n ik |uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃)] and E[ψτn (s)

n i |uτn 1:Tn
n , y

τn 1:Tn
n , Θ̃]

M-step:

• Set π̃i =
∑N

n=1 γ
1
n(i)∑I

i′=1

∑N
n=1 γ

1
n(i

′)
, µ̃i =

∑N
n=1

∑Tn
s=1 y

τns
n γsn(i)

(J−1)
∑N

n=1

∑Tn
s=1 γ

s
n(i)

, η̃j =
∑N

n=1

∑Tn
s=1 u

τns
n I{yτns

n =j}
(L−1)

∑N
n=1

∑Tn
s=1 I{yτns

n =j}

• Update δ̃ikl based on 3.6 and ρ̃ikl based on 3.7, 3.8

return π̂ = π̃, δ̂ = δ̃, ρ̂ = ρ̃, µ̂ = µ̃, η̂ = η̃

3.10 Appendix B: Intervention Planning

3.10.1 Implementation Details

The details of implementation for the planning section are very similar to those of the baseline

model. In the following, we’ll present the set of parameters that we used for generating the

training and test datasets. We experiment with different values for the training set size Ntrain,

but fix the test size at Ntest = 10, 000.

To set the generator matrix, we construct the transition probability matrix of the embedded

DTMC in the following way:

ζ∗·,·,0 =


0.00 0.90 0.10

0.20 0.00 0.80

0.10 0.90 0.00

 , ζ∗·,·,1 =


0.00 0.70 0.30

0.65 0.00 0.35

0.15 0.85 0.00

 , ζ∗·,·,2 =


0.00 0.55 0.45

0.50 0.00 0.50

0.60 0.40 0.00


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The mean sojourn times associated with each of the states are defined as:

ι∗·,0 =
[
18 5 25

]
, ι∗·,1 =

[
9 11 10

]
, ι∗·,2 =

[
4 8 6

]
Consequently, the true baseline generator matrix elements can then be constructed as:

δ∗·,·,0 =


− 0.05 0.01

0.04 − 0.16

0.00 0.04 −

 , δ∗·,·,1 =


− 0.08 0.03

0.06 − 0.03

0.01 0.08 −

 , δ∗·,·,2 =


− 0.14 0.11

0.06 − 0.06

0.10 0.07 −


For our 50-years old example patient, the true generator matrix will be:

Q∗
·,·,0 =


− 0.15 0.14 0.02

0.08 −0.42 0.34

0.01 0.06 −0.07

 , Q∗
·,·,1 =


− 0.30 0.21 0.09

0.13 −0.19 0.07

0.02 0.14 −0.16



Q∗
·,·,2 =


− 0.68 0.37 0.31

0.13 −0.26 0.13

0.16 0.11 −0.27


and the corresponding probability distribution of the initial state is π∗ =

[
expm(1000 ×

Q∗
·,·,0)
]
0,· = (0.12, 0.14, 0.72). To make it difficult for the algorithm to extract information about

the underlying health state from the physician observation, we choose µ∗ = (0.45, 0.55, 0.75).

As a consequence, states 1 and 2 would lool like relatively similar when we only consider

the physician observation data. The other parameters are mostly the same as the baseline

simulation. We choose the disutility coefficients associated with different underlying health

states as Ω· = (2, 7, 13).
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Figure 3.9: DT-HMM model with interventions at visit times.

3.11 Appendix C: Discrete-Time Model

3.11.1 MCEM Parameter Learning for a DT-HMM Disease Progression Model

As we discussed in Section 3.3.2, for simpler models such as DT-HMMs an alternative

for calculating the aforementioned expectations and posterior probabilities would be to

approximate them via the Monte Carlo approach. In particular, consider a DT-HMM disease

progression model with interventions at visit times as in Figure 3.9. In this section, we discuss

an MCEM parameter learning algorithm that approximates the posterior probabilities by

generating samples from the posterior distribution of the latent variables of the graphical

model based on the Gibbs sampling approach.

Similar to the baseline case, suppose we have N patients in the healthcare system and let

Tn indicate the number of observations for patient n. In any time period s ∈ {1, · · · , Tn},

denote by zsn, y
s
n, and usn the underlying health state, physician observation, and intervention

variables and suppose they are all discrete-valued as in the continuous-time case. The

transition probability matrix of the underlying DTMC that governs the dynamics of process

z between periods (s, s+ 1] is denoted by Q ∈ RI×I×L. Specifically, for the given intervention

usn = l, the I × I matrix [Q]·,·,l determines the transition rates of the underlying process

between periods (s, s+ 1]. Needless to explains, we have I(I − 1)L free parameters for our

transition rates matrix. Again, the emission distribution E(i, j) = P(ysn = j | zsn = i) and
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intervention distribution G(j, l) = P(usn = l | ysn = j) (1 ≤ s ≤ Tn) are assumed to be binomial

with parameters µi (1 ≤ i ≤ I) and ηj (0 ≤ j ≤ J − 1), respectively. Finally, we denote by

π ∈ RI the vector of initial probabilities of z.

Let Θ ≜ (π,Q, µ, η). The complete-data log-likelihood for patient n can be expressed as:

log Ln(Θ) = logP(z1n) +
Tn−1∑
s=1

[
logP(zs+1

n |zsn,usn,Q)
]
+

Tn∑
s=1

[
logP(usn|ysn, η) + logP(ysn|zsn, µ)

]
For a given realization of z, the function log Ln(Θ) can be simplified, in the following way:

logP(zs+1
n |zsn,usn,Q) =

I∑
i=1

I∑
k=1

L−1∑
l=0

log[Q]i,k,l I{zsn = i, zs+1
n = k} I{usn = l}

The complete-data log-likelihood for all the patients will then be:

logL(Θ) =
N∑
n=1

log Ln(Θ) =
N∑
n=1

I∑
i=1

log(πi) I{z1n = i}

+
N∑
n=1

Tn−1∑
s=1

I∑
i=1

I∑
k=1

L−1∑
l=0

log[Q]i,k,l I{zsn = i, zs+1
n = k} I{usn = l}

+
N∑
n=1

Tn∑
s=1

I∑
i=1

[
log

(
J − 1

ysn

)
+ ysn log(µi) + (J − 1− ysn) log(1− µi)

]
I{zsn = i}

+
N∑
n=1

Tn∑
s=1

J−1∑
j=0

[
log

(
L− 1

usn

)
+ usn log(ηj) + (L− 1− usn) log(1− ηj)

]
I{ysn = j}

Define the initial parameters Θ̃ ≜ (π̃, Q̃, µ̃, η̃). The expected complete-data log-likelihood is:

E[log L(Θ)|u1:Tn
n , y1:Tnn , Θ̃] =

N∑
n=1

I∑
i=1

log(πi)P(z1n = i |u1:Tn
n , y1:Tnn , Θ̃)

+
N∑
n=1

Tn−1∑
s=1

I∑
i=1

I∑
k=1

L−1∑
l=0

log[Q]i,k,l P(zsn = i, zs+1
n = k | u1:Tn

n , y1:Tnn , Θ̃) I{usn = l}

+
N∑
n=1

Tn∑
s=1

I∑
i=1

[
log

(
J − 1

ysn

)
+ ysn log(µi) + (J − 1− ysn) log(1− µi)

]
P(zsn = i |u1:Tn

n , y1:Tnn , Θ̃)
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+
N∑
n=1

Tn∑
s=1

J−1∑
j=0

[
log

(
L− 1

usn

)
+ usn log(ηj) + (L− 1− usn) log(1− ηj)

]
I{ysn = j}

Define γsn(i) = P(zsn = i |u1:Tn
n , y1:Tnn , Θ̃) (for 1 ≤ s ≤ Tn) and νsn(i, k) = P(zsn = i, zs+1

n =

k |u1:Tn
n , y1:Tnn , Θ̃) (for 1 ≤ s ≤ Tn−1). In the M-step, we can update the parameters according

to π̂i =
∑N

n=1 γ
1
n(i)∑I

i′=1

∑N
n=1 γ

1
n(i

′)
, µ̂i =

∑N
n=1

∑Tn
s=1 y

s
nγ

s
n(i)

(J−1)
∑N

n=1

∑Tn
s=1 γ

s
n(i)

, η̂j =
∑N

n=1

∑Tn
s=1 u

s
nI{ysn=j}

(L−1)
∑N

n=1

∑Tn
s=1 I{ysn=j}

, and [Q̂]i,k,l =∑N
n=1

∑Tn−1
s=1 νsn(i,k) I{usn=l}∑I

k̃=1

∑N
n=1

∑Tn−1
s=1 νsn(i,k̃) I{usn=l}

. Hence, the problem reduces to calculation or approximation

of γ and ν. The direct approach for calculating these probabilities would be to use the

forward-backward algorithm. On the other hand, we can approximate the probabilities by

generating samples from the posterior of the latent variables. In the following, we present

both of these approaches and compare their results.

To directly calculate these probabilities, we construct a time-inhomogeneous DT-HMM

from our original DT-HMM, by defining the transition probability function of the DT-HMM

to be equal to [P̃n (s)]ik = P(zs+1
n = k|zsn = i, usn, Θ̃) =

[
Q̃
]
i,k,usn

for the interval (s, s + 1].

We start by calculating γsn(i). The forward and backward probabilities are defined as

αsn(i) = P(zsn = i, u1:s
n , y

1:s
n |Θ̃) and βsn(i) = P(us+1:Tn

n , ys+1:Tn
n |zsn = i,usn, Θ̃), respectively. The

dynamic programming equations for calculating the forward and backward variables are:

αsn(i) =
I∑

k=1

G̃(ysn,usn) Ẽ(i, ysn)
[
P̃n (s−1)

]
ki
αs−1
n (k)

α1
n(i) = G̃(y1n,u1

n) Ẽ(i, y1n)π̃i

βsn(i) =
I∑

k=1

G̃(ys+1
n ,us+1

n ) Ẽ(k, ys+1
n )

[
P̃n (s)

]
ik
βs+1
n (k)

βTn−1
n (i) =

I∑
k=1

G̃(yTnn ,uTnn ) Ẽ(k, yTnn )
[
P̃n (Tn−1)

]
ik

The posterior probabilities γ and ν can then be calculated as γsn(i) =
αs
n(i)β

s
n(i)∑I

i′=1 α
s
n(i

′)βs
n(i

′)
and

νsn(i, k) =
G̃(ys+1

n ,us+1
n ) Ẽ(k,ys+1

n )
[
P̃n (s)

]
ik
αs
n(i)β

s+1
n (k)∑I

i′=1

∑I
k′=1 G̃(y

s+1
n ,us+1

n ) Ẽ(k′,ys+1
n )
[
P̃n (s)

]
i′ k′

αs
n(i

′)βs+1
n (k′)

using α and β.
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Now, we present our alternative Monte Carlo approach for approximating the posterior

probabilities. Specifically, we generate a set of samples from the joint distribution of

the graphical model (i.e. P(u1:Tn
n , y1:Tnn , z1:Tnn |Θ̃)) using to the Gibbs sampling strategy,

and approximate the posterior probabilities γsn(·), νsn(·, ·) by the corresponding sample

averages. Since u1:Tn
n and y1:Tnn are known, we essentially need to generate samples from

P(z1:Tnn |u1:Tn
n , y1:Tnn , Θ̃). Hence, the sample generation procedure reduces to calculating the

conditional distribution of each node zsn given the rest of the nodes as well as the current

parameter estimate Θ̃:

P(zsn = i | z1:s−1
n , zs+1:Tn

n ,u1:Tn
n , y1:Tnn , Θ̃) = P(zsn = i | zs−1

n , zs+1
n ,us−1

n ,usn, y
s
n, Θ̃)

∝ P(zsn = i, zs+1
n ,usn, y

s
n | zs−1

n ,us−1
n , Θ̃)

= P(zs+1
n | zsn = i, usn, Θ̃)P(usn | ysn, Θ̃)P(ysn | zsn = i, Θ̃)P(zsn = i | zs−1

n ,us−1
n , Θ̃)

= [Q̃]i,zs+1
n ,usn

G̃ysn,u
s
n
Ẽi,ysn [Q̃]zs−1

n ,i,us−1
n

(3.39)

The boundary equations will be:

P(z1n = i | z2:Tnn ,u1:Tn
n , y1:Tnn , Θ̃) = P(z1n = i | z2n,u1

n, y
1
n, Θ̃) ∝ P(z1n = i, z2n,u

1
n, y

1
n, Θ̃)

= P(z2n | z1n = i, u1
n, Θ̃)P(u1

n | y1n, Θ̃)P(y1n | z1n = i, Θ̃)P(z1n = i, Θ̃)

= [Q̃]i,z2n,u1n G̃y1n,u
1
n
Ẽi,y1n π̃i (3.40)

P(zTnn = i | z1:Tn−1
n ,u1:Tn

n , y1:Tnn , Θ̃) = P(zTnn = i | zTn−1
n ,uTn−1

n ,uTnn , y
Tn
n , Θ̃)

∝ P(zTnn = i,uTnn , y
Tn
n | zTn−1

n ,uTn−1
n , Θ̃)

= P(uTnn | yTnn , Θ̃)P(yTnn | zTnn = i, Θ̃)P(zTnn = i | zTn−1
n ,uTn−1

n , Θ̃)

= [Q̃]zTn−1
n ,i,uTn−1

n
G̃yTnn ,uTnn

Ẽi,yTnn (3.41)

Notice that we used d-separation of the graph nodes for simplifying the conditional distributions

(refer to Figure 3.9). The normalized conditional probabilities can now be calculated using

equations 3.39, 3.40, 3.41 by dividing each probability by the sum of all the similar probabilities
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for different values of i.

In practice, we need to generate a separate set of samples for any given patient n, which

is utilized for approximating γsn(·) and νsn(·, ·) for 1 ≤ s ≤ Tn. Suppose m = 1, 2, · · · iterates

over the samples that we generate. Furthermore, let zsn, (m) be the value of z at time period s

for the m-th sample that we generate. We follow an ordered Gibbs sampling strategy that

naturally performs thinning with factor Tn. Specifically, in any iteration m, we sequentially

update the values of all the nodes zsn for s = 1, · · · , Tn one by one, according to the normalized

versions of equations 3.39, 3.40, and 3.41. Afterward, we consider the entire series z1:Tnn as our

m-th sample. In other words, we update all the dimensions from sample m to sample m+ 1,

rather than updating only one dimension. We start the Gibbs sampling procedure with a

random instance z1:Tnn, (0) that is generated according to Tn independent uniform distributions

over the set {1, · · · , Tn}. We throw away the first B samples that we generate in the burn-in

period and use the next M samples for approximating the posterior probabilities:

γsn(i) = E[I{zsn = i} |u1:Tn
n , y1:Tnn , Θ̃] ≈ 1

M

B+M∑
m=B+1

I{zsn, (m) = i} (3.42)

νsn(i, k) = E[I{zsn = i, zs+1
n = k} |u1:Tn

n , y1:Tnn , Θ̃] ≈ 1

M

B+M∑
m=B+1

I{zsn, (m) = i, zs+1
n, (m) = k} (3.43)

A detailed description of the parameter estimation procedure is presented in Algorithm 4.

We set the number of burn-in samples as B = 0.1M .

3.11.2 Numerical Experiments

To validate our proposed approach, we generate synthetic data and implement the MCEM

algorithm4. We then compare the results with the direct approach (i.e. using the forward-

backward algorithm) in different cases. Specifically, we generate N IID samples from the

graphical model presented in Figure 3.9. For each sample, we simulate the number of visits

4Refer to the DT-HMM directory in https://github.com/saeedghodsi93/Disease Progression Modeling HMM
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Algorithm 4: An MCEM algorithm for learning the DT-HMM parameters

Input: Initial parameters Θ̃ = (π̃, Q̃, µ̃, η̃)
Output: Estimated parameters Θ̂ = (π̂, Q̂, µ̂, η̂)
Data: A set of N IID samples, each including (ysn, u

s
n)
∣∣
1≤s≤Tn

for 1 ≤ n ≤ N

while not converged do
E-step (forward-backward): for 1 ≤ n ≤ N

• Calculate αsn(i) and β
s
n(i)

• Calculate γsn(i) and ν
s
n(i, k)

E-step (Gibbs sampling): for 1 ≤ n ≤ N

• Generate z1:Tnn, (0) following IID distributions Unif({1, · · · , I})

• For 1 ≤ m ≤ B +M , generate z1:Tnn, (m) according to equations 3.39, 3.40, 3.41

• Remove burn-in samples and approximate γsn(·), νsn(·, ·) via equations 3.42, 3.43

M-step:

• Update the parameters as π̂i =
∑N

n=1 γ
1
n(i)∑I

i′=1

∑N
n=1 γ

1
n(i

′)
, µ̂i =

∑N
n=1

∑Tn
s=1 y

s
nγ

s
n(i)

(J−1)
∑N

n=1

∑Tn
s=1 γ

s
n(i)

,

η̂j =
∑N

n=1

∑Tn
s=1 u

s
nI{ysn=j}

(L−1)
∑N

n=1

∑Tn
s=1 I{ysn=j}

, [Q̂]i,k,l =
∑N

n=1

∑Tn−1
s=1 νsn(i,k) I{usn=l}∑I

k̃=1

∑N
n=1

∑Tn−1
s=1 νsn(i,k̃) I{usn=l}

return π̂ = π̃, Q̂ = Q̃, µ̂ = µ̃, η̂ = η̃

according to a rounded Normal distribution Tn ∼ round(N (µT , σ
2
T )). We assume that we have

at least two visits per patient. Let I = 3, J = 10, and L = 3. The initial underlying health

state node is generated as z1n ∼ Cat(π∗). The first physician observation variable will then

be generated according to y1n ∼ Cat(E∗(z1n, ·)). Similarly, we generate the first intervention

variable as u1
n ∼ Cat(G∗(y1n, ·)). Now, we iterate over the time period index s = 2, · · · , Tn

and generate the underlying health state variable, physician observation variable, and the

intervention variable. Specifically, we first generating the health state variable according

to zsn ∼ Cat([Q̃]zs−1
n ,·,us−1

n
). Afterward, we generate the physician observation variable as

ysn ∼ Cat(E∗(zsn, ·)) and the intervention variable as usn ∼ Cat(G∗(ysn, ·)). Figure 3.10 presents

an example of the samples that we’ve generated following this procedure.
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Figure 3.10: An example of the generated DT-HMM synthetic data.

We chose the mean and standard deviations of the number of visits per patient as µT = 10,

σT = 3. We then chose the following transition probability matrix:

Q∗
·,·,0 =


0.20 0.45 0.35

0.10 0.30 0.60

0.10 0.15 0.75

 , Q∗
·,·,1 =


0.40 0.40 0.20

0.30 0.25 0.45

0.10 0.30 0.60

 , Q∗
·,·,2 =


0.55 0.30 0.15

0.40 0.35 0.25

0.20 0.45 0.35


where the first two indices iterate over i ∈ {1, · · · , I}, k ∈ {1, · · · , I}, and the last index

iterates over the set of intervention options l ∈ {0, · · · , L − 1}. We also set the true

initial health state distribution parameter as π∗ = (0.11, 0.21, 0.67), which is the stationary

distribution of Q∗
·,·,0. Furthermore, we set the emission probabilities as µ∗ = (0.15, 0.5, 0.8).

Ultimately, the intervention probabilities, associated with different observations will be set to:

η∗ = (0.04, 0.15, 0.26, 0.32, 0.43, 0.51, 0.62, 0.77, 0.81, 0.90)
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As our initial parameters for the EM algorithm, we set π̃ = (0.33, 0.33, 0.33). Moreover, we

choose the initial transition probability matrix as:

Q̃·,·,0 =


0.60 0.20 0.20

0.40 0.40 0.20

0.40 0.30 0.30

 , Q̃·,·,1 =


0.20 0.50 0.30

0.50 0.30 0.20

0.20 0.50 0.30

 , Q̃·,·,2 =


0.20 0.40 0.40

0.40 0.10 0.50

0.30 0.10 0.60


Finally, set µ̃ = (0.45, 0.65, 0.7) and η̃ = (0.01, 0.03, 0.06, 0.08, 0.45, 0.48, 0.51, 0.55, 0.91, 0.97).

We plot RMSE for different dataset sizes and different number of Monte Carlo samples

as a function of the EM iteration in figure 3.11. Although there is an initial jump in the

error terms associated with some of the parameters, we observe that all the estimation errors

would eventually converge to zero if the dataset size, the number of Monte Carlo samples,

and the number of iterations are large enough. Moreover, we can study the effect of the

number of Monte Carlo samples in the overall estimation accuracy by comparing the results

of Gibbs sampler with the results of the forward-backward algorithm. In this case, it seems

that M = 100 will give us an accurate result if the sample size is large enough, while we

might need more samples for moderate sample sizes. Notice that the scale of the errors vary

due to the difference between the scale of the parameters and the difference between the

quality of the initial points that we’ve chosen.
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Figure 3.11: Convergence of the EM estimated parameters to their true values for different
sample sizes.

165



REFERENCES

[AA13] Jamshid Aghaei and Mohammad-Iman Alizadeh. “Demand response in smart
electricity grids equipped with renewable energy sources: A review.” Renewable
and Sustainable Energy Reviews, 18:64–72, 2013.

[ACW17] Majid Al-Gwaiz, Xiuli Chao, and Owen Q Wu. “Understanding how generation
flexibility and renewable energy affect power market competition.” Manufacturing
& Service Operations Management, 19(1):114–131, 2017.

[ADM18] Celso Arango, Covadonga M Dı́az-Caneja, Patrick D McGorry, Judith Rapoport,
Iris E Sommer, Jacob A Vorstman, David McDaid, Oscar Maŕın, Elena Serrano-
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