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Abstract 

West Nile virus (WNV; family Flaviviridae) has been an annual public health concern in 

the continental United States since its introduction in 1999. It is particularly difficult to 

determine when and where human infections will occur because WNV is highly focal and 

amplifies in bird-mosquito cycles with incidental spillover to humans. WNV is transmitted by 

female mosquitoes in the genus Culex, most commonly Cx. tarsalis, Cx. pipiens, and Cx. 

quinquefasciatus. The mosquitoes’ capacity to transmit WNV depends on the environment, 

particularly temperature, resulting in seasonal cycles with most human cases occurring between 

July and September. WNV prevention is predominantly through vector management, consisting 

of a combination of larval and adult control. Integrated vector management programs in 

California conduct surveillance to monitor mosquito abundance and mosquito infection 

prevalence as a means for targeting control strategies, but these estimates are not adjusted for 

biases that could be induced by short-term variation in weather. This dissertation investigates 

the complicated relationship between environmental factors, entomological surveillance 

observations, and human WNV disease. 

Chapter 1 focused on the relationship between entomological surveillance indicators and 

risk for human WNV disease. In particular, we evaluated the ability of the vector index (VI), the 

product of mosquito abundance and infection prevalence, to predict periods of above-average 

WNV incidence. We used receiver operating characteristic (ROC) curves to identify the VI 

threshold that maximized sensitivity and specificity of these predictions and found that these 

thresholds were highly dependent on the dominant vector species in an area and the trap type 

used for targeting surveillance. We also used statistical models with observed entomological 

surveillance and human disease data aggregated to different spatial scales to examine the effect 

of spatial scale on the ability of the VI to predict human WNV disease incidence. These results 
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found cities to be the best balance between being small enough to be operationally relevant but 

large enough to have adequate predictive accuracy during high-risk periods. 

Chapter 2 considered short-term weather variability as a potential source of bias in 

entomological surveillance that may affect estimates of WNV disease risk. We collected 

mosquitoes and gathered weather data from 10 field sites equipped with devices to record 

mosquito counts, temperature, and wind speed every 15 minutes in the rice-growing region of 

northern California. We used the 15-minute mosquito data to estimate four outcomes for the 

primary WNV vector in the study area, Cx. tarsalis: the total overnight count, the onset time of 

evening host-seeking activity, the median time of nightly host-seeking activity, and the hour of 

peak host-seeking activity. We related each of these outcomes to the wind speed and 

temperature recorded at a range of times in the afternoon leading to the host-seeking night 

through statistical models and found both wind speed and temperature at 20:00, or just prior to 

the onset of host-seeking, to be the best predictors of all four outcomes. These predictable 

factors will help guide the timing of vector control applications to maximize their effects on the 

local vector population, thus reducing the overall risk of WNV transmission. 

Chapter 3 applied spatio-temporal predictive models that accounted for ecological 

factors and were capable of highlighting gaps in surveillance coverage for estimating risk of 

WNV transmission. We used a generalized additive model (GAM) to model the nonlinear weekly 

seasonal trends of Cx. tarsalis abundance in a range of land use types using trap count data for 

the years 2008-2020 collected by 20 Central Valley mosquito and vector control districts in 

California. Overall, the model captured strong seasonal patterns in abundance, modified by local 

land use and ephemeral spatio-temporal anomalies. Models maintained a similar predictive 

accuracy for out-of-sample data compared to that for the training data set. To determine the 

ability of the model to extrapolate from known surveillance locations, we then used the GAM to 

predict weekly Cx. tarsalis abundance at unmeasured locations across a 2.5-km grid of the 



ix 
 

Central Valley. We found that these predictions were most accurate when the nearest observed 

trap was within 2 km and one week prior.  

Taken together, these three chapters provide a basis for improving WNV risk estimation 

through entomological surveillance. These chapters will inform efforts to prevent human WNV 

disease through a more complete understanding of the link between WNV vector dynamics and 

the risk of human disease, improving the ability to predict risk and target mosquito control. 



1 

 

Introduction: West Nile virus in the 
United States 

History 
West Nile virus (WNV) is an arbovirus of the family Flaviviridae and is a member of the 

Japanese encephalitis subgroup (Calisher et al. 1989). It was first isolated from the blood of a 

febrile woman in the West Nile District of Uganda in 1937 and experiments at that time found it 

to be neurotropic and immunologically related to Japanese B encephalitis and Saint Louis 

encephalitis (SLE) viruses (Smithburn et al. 1940). Throughout much of its recorded history, 

WNV outbreaks were mainly limited to the Mediterranean basin, particularly in Israel, Egypt, 

and Eastern Europe (Sejvar 2003, Zeller and Schuffenecker 2004, Kramer et al. 2008), until the 

first identification of WNV in North America in 1999 (Nash et al. 2001). Genetic analyses 

revealed that these initial North American viral isolates were most closely related to isolates 

from a goose in Israel the prior year, pointing to the Eastern Mediterranean as the likely source 

of the virus causing this initial outbreak, possibly through the transport of infected birds or 

mosquitoes (Lanciotti et al. 1999). WNV then spread rapidly across the continental United 

States, reaching California by 2003 (Reisen et al. 2004, Murray, Mertens, et al. 2010, Roehrig 

2013, Hadfield et al. 2019, Kramer et al. 2019). It is now the most commonly reported arboviral 

disease in humans in the United States (McDonald et al. 2019). WNV also has the widest 

geographic range of any arbovirus, being found in both temperate and tropical regions on every 

continent except Antarctica (Kramer et al. 2008, Ciota and Kramer 2013, Reisen 2013, Ciota 

2017). 

In California, WNV invaded an area supporting endemic arboviruses including SLE and 

western equine encephalomyelitis (WEE) viruses (Howitt 1939, Sudia et al. 1971, Reisen, Hardy, 

et al. 1992, 1995). SLEV is a member of the Japanese encephalitis virus subgroup of the genus 

Flavivvirus and is very closely related to WNV. Both viruses are maintained in an enzootic 
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transmission cycle among similar avian hosts and mosquito vectors (Gruwell et al. 2000, 

Hollidge et al. 2010). Additionally, viral challenge studies found evidence of cross protection 

against infection in birds (Fang and Reisen 2006). However, WNV appears to be more virulent 

in birds. SLEV has not been associated with avian mortality unless modified to more closely 

resemble WNV (Kramer and Bernard 2001, Lord and Day 2004, Fang and Reisen 2006, 

Maharaj et al. 2018). Subsequent to the invasion of WNV in California, there were no 

environmental detections of SLEV in California after 2003 as WNV emerged as the dominant 

arbovirus in the state until its reappearance in 2015 (Reisen, Lothrop, et al. 2008, White et al. 

2016, Swetnam et al. 2020). Although WEEV is an alphavirus, it also maintains an enzootic 

transmission cycle similar to WNV and SLEV (Reisen et al. 2003).  

Transmission and ecology 
WNV is an enzootic virus that maintains a transmission cycle between mosquito vectors 

and avian reservoir hosts (McLean et al. 2001). Although WNV is primarily vectored by 

mosquitoes in the genus Culex, vector competence studies have found other genera, including 

Aedes, to be competent when experimentally infected with different WNV strains (Sardelis et al. 

2001, 2002, Turell, O’Guinn, et al. 2001, Turell, Sardelis, et al. 2001, Goddard et al. 2002, 

Tiawsirisup et al. 2008). Many passerine birds develop sufficiently elevated levels of viremia 

when infected with WNV to be infective to mosquitoes, particularly American crows, house 

finches, house sparrows, jays, American robins, and grackles (Komar et al. 2003, Wheeler et al. 

2009, 2012, Lampman et al. 2013, Reisen et al. 2013). Given the role of birds in the 

transmission cycle, only mosquito species that frequently take bloodmeals from competent 

avian host species are relevant to transmission in nature. Of particular importance are Cx. 

tarsalis and the Cx. pipiens complex (Cx. pipiens and Cx. quinquefasciatus), which are both 

competent vectors that frequently feed upon avian species (Mclver 1968, Turell, Sardelis, et al. 

2001, Kilpatrick, Daszak, et al. 2006, Hamer et al. 2009, Molaei et al. 2010, Farajollahi et al. 

2011, Montgomery et al. 2011, Savage and Kothera 2012, Thiemann et al. 2012, Fitzpatrick et al. 
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2019, Kothera et al. 2020). Furthermore, these mosquito species are important bridge vectors 

for spillover transmission events to mammals, as there is evidence of shifting blood feeding 

behavior towards mammals after the preferred avian host species migrate (Tempelis et al. 1965, 

Reisen and Reeves 1990, Kilpatrick, Kramer, et al. 2006, Kent et al. 2009, Thiemann et al. 

2011). Additionally, it has been demonstrated that WNV infection risk is lower in areas with 

higher avian biodiversity, diverting bloodmeals towards less competent hosts (Ezenwa et al. 

2006, Johnson et al. 2012, Campbell et al. 2013, Levine et al. 2017).  

The Cx. pipiens complex is comprised of several genetically distinct but morphologically 

similar species, of which the primary species of medical importance are Cx. pipiens and Cx. 

quinquefasciatus (Mattingly et al. 1951, Fonseca et al. 2004, Farajollahi et al. 2011, Turell 2012). 

These mosquitoes thrive in urban areas, breeding in small, stagnant pools produced by urban 

infrastructure, often exploiting underground storm drains (Metzger et al. 2008, Reisen 2012). 

Cx. pipiens are generally found in the north whereas Cx. quinquefasciatus are found in the 

south, although a wide zone of cohabitation extending over most of California exists where the 

two species interbreed and form hybrids (Barr 1957, Urbanelli et al. 1997, Kothera et al. 2009, 

2012, Nelms, Kothera, et al. 2013). The primary distinction between Cx. pipiens and Cx. 

quinquefasciatus is the ability to undergo reproductive diapause during winter, which is a 

period of inactivity induced by the cooling temperature and shortening daylength during which 

reproduction is paused while mosquitoes shelter in thermo-insulated areas (Eldridge 1987a). Cx. 

pipiens is able to enter reproductive diapause, enabling it to survive harsher winter climates, 

whereas Cx. quinquefasciatus cannot, thereby limiting its northern range (Barr 1957, Eldridge 

1987a, Farajollahi et al. 2011, Meuti et al. 2015). Hybrids of the two species are able to diapause, 

but at different rates depending on the species of the female (Meuti et al. 2015). Hybrids are also 

potentially more efficient vectors of WNV than either pure species (Vaidyanathan and Scott 

2007, Ciota et al. 2013). Similar to Cx. pipiens, Cx. tarsalis are able to enter reproductive 

diapause to survive in harsh winter climates (Reisen, Smith, et al. 1995, Nelms, Macedo, et al. 
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2013). However, unlike the Cx. pipiens complex, Cx. tarsalis are generally associated with 

irrigated agriculture, particularly rice fields, where they can breed in open clean water sources 

(Bailey et al. 1965, Reisen et al. 1989, Reisen and Reeves 1990, Walton et al. 1990, Reisen 2012) 

 Temperature has a significant effect on WNV ecology through two main mechanisms. 

The first is its effect on the mosquito life cycle. As temperatures increase, the length of time 

between a blood meal and oviposition, known as the gonotrophic cycle, decreases (Reisen and 

Reeves 1990, Reisen, Milby, Presser, et al. 1992). This shortening of the gonotrophic period 

means that mosquitoes take more frequent blood meals, increasing the odds of becoming 

infected with WNV (Hartley et al. 2012), particularly among mosquitoes unable to undergo 

autogenous development (Reisen and Reeves 1990, Hartley et al. 2012). Furthermore, larval 

development time is shortest at warmer temperatures, although mortality increases when 

average temperatures exceed 30°C (Reisen et al. 1989, Rueda et al. 1990, Ciota et al. 2014). The 

combination of a faster gonotrophic period and shorter larval development time contributes to 

increased mosquito abundance associated with higher temperatures both at short time lags of 

one to two weeks and longer seasonal time lags (Reisen, Cayan, et al. 2008, Chuang et al. 2011, 

Wang et al. 2011, Poh et al. 2019, Ripoche et al. 2019). Thus, mosquito abundance tends to peak 

during the summer months, with some regional variability among species (Reisen, Milby, and 

Meyer 1992, Reisen, Milby, Presser, et al. 1992, Barker et al. 2010). 

 The second important effect of temperature on WNV transmission is shortening the 

extrinsic incubation period (EIP), which is the length of time necessary for a mosquito to 

become infectious following an infective blood meal (Dohm et al. 2002, Reisen et al. 2006, 

Kilpatrick et al. 2008, Richards et al. 2008, Danforth et al. 2015, 2016). At a basic level, 

mosquitoes require at least two blood meals to be able to transmit virus to host: one blood meal 

to become infected and one blood meal to transmit. A short EIP means that mosquitoes are 

more likely to survive long enough to become infectious, leading to greater infection prevalence 

in mosquito populations and increased WNV disease incidence in humans (Reisen, Lothrop, et 
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al. 1995, Ruiz et al. 2010, Keyel et al. 2019). The primary mechanism for this is the increased 

blood meal frequency at higher temperatures rather than mosquito survival, which is negatively 

associated with temperature (Eldridge 1968, Reisen and Reeves 1990, Reisen 1995, Ciota et al. 

2014). The temperature dependence of the EIP is an established property for many vector-borne 

pathogens, including dengue, Zika, and malaria (Tjaden et al. 2013, Shapiro et al. 2017, Winokur 

et al. 2020). 

 Mosquito populations and WNV transmission dynamics are further impacted by 

variations in seasonal precipitation. There is an inconsistent pattern in the relationship between 

Culex spp. vector population dynamics and precipitation depending on larval ecology, with some 

studies showing a positive association after the creation of rural surface pools (DeGaetano 2004, 

Reisen, Cayan, et al. 2008, Chuang et al. 2011, Karki et al. 2016) whereas others showed mixed 

results, especially for species exploiting urban drainage system (Deichmeister and Telang 2011, 

Wang et al. 2011, Day et al. 2015). However, drought periods have been associated with 

increased mosquito infection rates as well as increases in human WNV disease incidence, 

possibly through higher contact rates between mosquitoes and birds or because, 

counterintuitively, mosquito breeding sites are not readily washed out through rainfall events 

(Shaman et al. 2005, Ruiz et al. 2010, Wang et al. 2010, Johnson and Sukhdeo 2013, Paull et al. 

2017). 

Epidemiology 
 Between the first outbreak in the New York City area in 1999 and 2019, the most recent 

year for which data are official, 51,801 cases of WNV disease and 2,390 deaths have been 

reported in the United States, with 7,131 cases and 332 deaths reported in California (Centers for 

Disease Control and Prevention et al. 2020, California Department of Public Health 2021). 

Approximately 80% of infections result in asymptomatic cases, while the majority of 

symptomatic cases involve a mild febrile illness characterized by fever, head and body aches, 

joint pain, and rash after an incubation period of 2-14 days (Hubálek 2001, Murphy et al. 2005, 
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Sejvar and Marfin 2006, Zou et al. 2010, Rudolph et al. 2014, Ronca et al. 2019). Fewer than 1% 

of infections develop into West Nile neuroinvasive disease (WNND), which occurs when the 

virus enters the central nervous system and can involve encephalitis, meningitis, or other 

nervous system symptoms and has a 10% fatality rate (Mostashari et al. 2001, Davis et al. 2006, 

Sejvar and Marfin 2006, Lindsey et al. 2010, Carson et al. 2012, Betsem et al. 2017). The risk of 

experiencing WNND increases in elderly individuals and individuals with 

immunocompromising pre-existing conditions (Lindsey et al. 2010, Snyder, Cooksey, et al. 

2020, McDonald et al. 2021). WNND may involve long-term sequelae up to one decade after the 

initial infection and have a high estimated economic burden for affected individuals (Carson et 

al. 2006, Sejvar 2007, Sejvar et al. 2008, Barber et al. 2010, Murray, Walker, et al. 2010, Barrett 

2014, Murray et al. 2014, Staples et al. 2014, Patel et al. 2015, Weatherhead et al. 2015). The 

mild, non-specific symptoms of non-neuroinvasive disease cases are often underreported due to 

patients not seeking medical care or to misdiagnoses if WNV testing is not conducted, leading to 

approximately 60% of reported cases being of WNND (Silk et al. 2010, Zou et al. 2010, 

Vanichanan et al. 2016, McDonald et al. 2021). However, WNND can also be underdiagnosed, 

making it difficult to accurately determine the overall WNV burden in the United States 

(Lindsey et al. 2016). Studies of blood donors attempt to elucidate this problem, with one study 

estimating that approximately 7 million people were infected between 1999 and 2016 (Busch et 

al. 2006, Planitzer et al. 2009, Petersen et al. 2013, Ronca et al. 2019).  

 Because of the nature of mosquito population and viral dynamics, transmission is highly 

seasonal with most cases occurring during the summer months (Zeller and Schuffenecker 2004, 

Cruz-Pacheco et al. 2009, Lindsey et al. 2010, McDonald et al. 2021). There is strong spatial 

heterogeneity for WNV transmission as well, with the highest incidence observed in agricultural 

Midwestern counties (Eisen et al. 2010, Lindsey et al. 2010, Bowden et al. 2011, Chuang et al. 

2012, McDonald et al. 2021). Cx. tarsalis is associated with WNV transmission in these rural 

areas whereas the Cx. pipiens complex, among other Culex species, is implicated in urban areas 



7 

 

of the United States (Molaei et al. 2006, 2010, Reisen et al. 2009, Kwan, Kluh, Madon, and 

Reisen 2010, Trawinski and Mackay 2010, Deichmeister and Telang 2011, Schurich et al. 2014, 

Dunphy et al. 2019, Rochlin et al. 2019, Poh et al. 2020). Year-to-year variability in incidence 

also appears to be dependent on immunity levels in avian populations (Kwan, Kluh, et al. 2012). 

California presents a microcosm of WNV transmission cycles in the United States, where 

Cx. tarsalis is found in large numbers around irrigated agriculture in the Central Valley and the 

Cx. pipiens complex dominates the transmission cycle in the more urbanized and densely 

populated Southern California (Sudia et al. 1971, Kwan, Kluh, Madon, and Reisen 2010, Kovach 

and Kilpatrick 2018). The highest case numbers are found in the Southern California region, 

although the highest incidence is observed in the Central Valley, similar to the spatial patterns 

observed in the contiguous United States (Snyder, Feiszli, et al. 2020, Danforth et al. 2021).  

Prevention and control 
 Although there are several effective equine vaccines against WNV licensed for veterinary 

use, no such vaccine yet exists for humans (Ng et al. 2003, Gardner et al. 2007, Kaiser and 

Barrett 2019). Protection of the public health relies on WNV prevention through a combination 

of personal protective actions and local vector control districts enacting integrated vector 

control (Gubler et al. 2000, Gujral et al. 2007, Nasci and Mutebi 2019). The capacity for vector-

borne disease prevention has greatly increased since the first detection of WNV in the United 

States (Hadler et al. 2015, Ramírez et al. 2018), although funding for these programs is highly 

variable despite increasing trends in vector-borne disease incidence (Beard et al. 2019, Kading 

et al. 2020, Ronca et al. 2021). Vector control efforts range from routine biological or chemical 

larvicidal treatments of breeding habitats to aerial applications of adulticide in response to 

elevated risk indicators (California Department of Public Health Vector Borne Diseases Section 

2005, California Department of Public Health et al. 2020). Such measures have been shown to 

be effective at reducing mosquito populations, thereby limiting the opportunity for contact 

between mosquitoes and people, as well as WNV infection rates in mosquitoes (Carney et al. 



8 

 

2008, Elnaiem et al. 2008, Holcomb et al. 2021). Furthermore, there is no evidence of adverse 

human health effects to insecticide applications (Macedo et al. 2010, Geraghty et al. 2013) and 

peripheral effects on nontarget insects appears to be limited to small-bodied arthropods (Boyce 

et al. 2007, Pokhrel et al. 2018). 

Tools for risk estimation 
 Because of the enzootic transmission cycle and potential delay in recognizing mild WNV 

disease cases, it is often too late to prevent further disease once the first cases are detected. 

Thus, entomological surveillance to monitor for increases in WNV activity in local mosquito 

populations is critical for prevention of human infection with WNV. In California, a network of 

vector control districts was established during the first half of the 20th century and enhanced in 

order to prevent infections with circulating arboviruses such as WEEV (Stead and Peters 1953, 

Eldridge 1987b, Mosquito & Vector Control Association of California 2021). Arboviral risk is 

often best estimated through the entomological inoculation rate (EIR), which originally was 

defined for malarial transmission systems and represents the average number of infectious bites 

per person during a defined time period (Hay et al. 2005). The EIR is the product of the vector 

to human density ratio, the mosquito biting rate, the proportion of mosquitoes biting humans, 

and the proportion of mosquitoes that are infectious. In practice, the vector to human density 

ratio and proportion of mosquitoes that are infectious components of this equation are 

approximated through routine surveillance estimates of mosquito abundance and mosquito 

infection prevalence, respectively, and are widely used as entomological indicators for risk of 

WNV transmission (California Department of Public Health et al. 2020). The product of these 

quantities is the vector index (VI), which is the number of infected female mosquitoes in an area 

(Gujral et al. 2007). 

Studies of WNV outbreaks across the United States have demonstrated links between 

these specific mosquito indices and human WNV infection risk. In Maricopa County, Arizona, in 

2010, epidemiologists found increased abundance of Cx. quinquefasciatus in the outbreak area, 
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with abundance peaking approximately 1-2 weeks before human infections (Godsey Jr. et al. 

2012, Colborn et al. 2013). In Davis, California, a study during the peak transmission season 

showed spatial and temporal associations between WNV-infected vectors and human WNV 

infections, similar to results observed in an outbreak in Texas (Nielsen et al. 2008, Martinez et 

al. 2017). In the 2012 WNV epidemic in Dallas, Texas, elevated VIs were associated with high-

incidence areas (Chung et al. 2013). Further, numerous retrospective statistical models have 

identified associations between each of the commonly used entomological risk indicators and 

human WNV disease incidence across a variety of WNV transmission settings (Andreadis et al. 

2004, Gujral et al. 2007, Bolling et al. 2009, Liu et al. 2009, Kilpatrick and Pape 2013, Fauver et 

al. 2016, Giordano et al. 2017, Karki et al. 2017, 2020, Talbot et al. 2019). 

Risk assessments for WNV typically include both mosquito abundance and mosquito 

infection prevalence and often include environmental information (i.e., temperature). Many 

states also use dead bird reports and sentinel chicken seroconversions as early warning 

indicators for potential WNV transmission to humans. Clusters of dead birds have been linked 

to human cases up to several months in advance (Eidson et al. 2001, Mostashari et al. 2003, 

Julian et al. 2004, Carney et al. 2008, Nielsen et al. 2008, Carney et al. 2011, Kwan, Park, et al. 

2012) while sentinel chicken seroconversions can serve as a proxy for WNV activity in an area, 

although by the time seroconversions are detected it is often too late to prevent human 

infections (Kwan, Kluh, Madon, Nguyen, et al. 2010). In California, these elements are 

incorporated into the Mosquito-Borne Virus Surveillance and Response Plan, which assigns risk 

levels to surveillance observations during the prior two weeks and assigns appropriate measures 

to take in response. The three risk levels range are normal season, with the recommendation of 

maintaining normal vector control operations with an emphasis on larval control; emergency 

planning, with the recommendation to increase adult mosquito surveillance and viral testing 

and implement localized adult mosquito control; and epidemic conditions, with the 
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recommendation to broaden the scope of mosquito surveillance and initiate area-wide ground- 

and/or air-based adult mosquito control (California Department of Public Health et al. 2020).  

Dissertation scope 
 This dissertation research focuses on the relationship between entomological 

surveillance data and human WNV disease in California. The first chapter explores this 

relationship empirically through receiver operating curve analyses and statistically at a variety of 

course and fine control-relevant spatial scales to identify the entomological threshold at which 

human disease risk increases. This chapter helps to fill a gap in vector control knowledge by 

utilizing information already collected by districts to identify optimal entomological “trigger 

points” for enacting mosquito control. The second chapter examines the relationship between 

daily weather conditions and nightly mosquito host-seeking activity through statistical models 

to identify potential biases in mosquito abundance estimation and identify optimal time frames 

for control to have maximum impact on host-seeking mosquito populations. This chapter 

improves interpretation of mosquito abundance estimates, and by extension risk assessment. 

Finally, the third chapter evaluates a spatio-temporal modelling approach for estimating risk 

where surveillance coverage is limited and applies this method to predict mosquito abundance. 

This chapter enhances tools for spatial risk estimation already in place by evaluating mosquito 

abundance at a fine spatial scale in the near-term future. Taken together, these chapters will 

improve the use of entomological surveillance data for risk estimation and WNV disease 

prevention in California. 
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Abstract 
West Nile virus (WNV; family Flaviviridae) is a zoonotic arbovirus that is maintained in 

transmission cycles between avian hosts and mosquito vectors of the genus Culex, making the 

risk of spillover transmission to humans difficult to predict. Human infections are associated 

with increases in the abundance of infected female mosquitoes, which is estimated as the 

product of nightly mosquito trap counts and WNV infection prevalence, known as the vector 

index (VI). Vector control agencies conduct surveillance of mosquito populations to monitor for 

increases in this metric and enact organized insecticide measures when action thresholds are 

reached. However, action thresholds are determined by each agency based on their local context 

and experience, and objective methods for defining action thresholds have not been established. 

In this study, we analyzed mosquito surveillance and reported human disease data from six 

representative vector control districts representing different ecological regions of California and 

aggregated these data weekly at four spatial scales: district, census county division, city, and zip 

code. We used receiver operating characteristic (ROC) curves to evaluate the ability of observed 

weekly VIs to predict whether the following three weeks would exceed the average WNV disease 

incidence for that three-week period in a variety of settings. Additionally, we related weekly VI 

observations to human WNV disease incidence in the following three weeks for each of the four 

spatial scales through hierarchical generalized linear models and compared model performance 

across spatial scales. We found the VI to be positively associated with the cumulative incidence 

of human WNV disease in the following three weeks. Best empirical VI thresholds for predicting 

high-risk periods varied by mosquito control agency and the primary vector mosquito species 

and trap type from which the VI was derived. Following a comparison of spatial scales, city-level 

data aggregation represented a scale coarse enough to include adequate surveillance data for 

accurate predictions yet fine enough to be actionable for targeting mosquito control. The results 

of this study will help guide decisions about antecedent thresholds for enacting vector control 

aimed at reducing local WNV transmission risk.  
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1.1 Introduction 
West Nile virus (WNV; family Flaviviridae) is a zoonotic encephalitic arbovirus that can 

infect mammals, including humans, and is the most common cause of arboviral disease in 

humans in the United States (McDonald et al. 2019). It amplifies in an avian-mosquito cycle 

with incidental spillover to mammalian hosts, which typically do not produce high enough 

viremias to infect mosquitoes (McLean et al. 2001, Hayes et al. 2005, Ciota 2017). The primary 

vectors for WNV are mosquitoes within the genus Culex, with transmission in the western 

United States dominated by Cx. tarsalis and the Cx. pipiens complex (Goddard et al. 2002, 

Rochlin et al. 2019). California experiences annual seasonal transmission of WNV and has 

recorded 7,258 symptomatic human WNV infections and 320 deaths since its introduction into 

the state in 2003 (Snyder et al. 2020, California Department of Public Health 2021). Although 

most WNV infections remain asymptomatic, approximately 20% of infections lead to a febrile 

illness and a small fraction (< 1%) of infections will develop into severe West Nile neuroinvasive 

disease (WNND), which has a fatality rate of approximately ten percent (Lindsey et al. 2010, 

Petersen et al. 2013). The risk for developing WNND increases in older individuals and 

individuals with weakened immune systems (Nash et al. 2001, Lindsey et al. 2010, Murray et al. 

2013). There is no specific treatment for WNV infection and although an equine vaccine is 

licensed to protect equids, no such vaccine has been approved for humans (Beasley 2011, Kaiser 

and Barrett 2019). This means that disease prevention relies primarily on a combination of 

personal protective actions against mosquito bites (i.e., wearing insect repellent) and organized 

mosquito control enacted by local vector control agencies to reduce infected mosquitoes during 

periods of increased transmission risk (Gubler et al. 2000, California Department of Public 

Health et al. 2020). 

Vector control agencies throughout California conduct surveillance of sentinel chickens, 

dead birds, and mosquitoes to monitor risk of WNV spillover to humans. Detections of WNV 

infections in birds trigger intensified surveillance and control efforts, but in most areas, 
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entomological data indicating increasing mosquito abundance and infection prevalence serve as 

the primary basis for initiating adult mosquito control (California Department of Public Health 

et al. 2020). Previous outbreak studies have shown that increased risk for human WNV disease 

is related to increased abundance of mosquitoes in the genus Culex (Bolling et al. 2009, Colborn 

et al. 2013, Kilpatrick and Pape 2013) and increased mosquito infection prevalence (Liu et al. 

2009, Kwan et al. 2010, Giordano et al. 2017, Karki et al. 2017, 2020, Dunphy et al. 2019), both 

of which are measured routinely through mosquito trapping and arboviral testing. The vector 

index (VI) is the product of mosquito abundance and WNV infection prevalence and measures 

the relative abundance of infected female mosquitoes (Gujral et al. 2007). Despite its use as an 

entomological indicator of human infection risk to guide vector control programs, there is little 

published information about its ability to predict increases in human WNV incidence accurately, 

and there is no established action threshold to identify times and places for initiating mosquito 

control. A number of studies have found the VI to be predictive of human WNV disease 

incidence several weeks later in both epidemic and endemic transmission settings (Bolling et al. 

2009, Jones et al. 2011, Kwan et al. 2012, Chung et al. 2013, Colborn et al. 2013, Kilpatrick and 

Pape 2013, Fauver et al. 2016, Uelmen et al. 2021). Studies by Kwan et al. (2012) and Kilpatrick 

and Pape (2013) evaluated the accuracy of these predictions, finding high predictive value for 

the cost of entomological surveillance alone (Kwan et al. 2012, Kilpatrick and Pape 2013), 

although Uelmen et al. (2021) suggested that the VI was not more accurate than abundance or 

infection prevalence alone. Fauver et al. (2016) addressed the implications for integrated vector 

management, suggesting that a universal action threshold would be inappropriate given the 

heterogeneous nature of the VI. 

 We were interested in whether we could identify data-based VI thresholds for different 

geographic regions when the risk of human WNV disease begins to increase and the geographic 

scale that is most informative for predicting this rising incidence. To that end, this study aimed 

to characterize the relationship between the VI and reported human disease incidence, to 
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estimate objective mosquito control action thresholds, and to determine whether such 

thresholds were generalizable across agencies and geographic regions with different vector 

species. The models developed in this study will improve prediction of when and where human 

disease would be expected to occur. This method of comparing models across geographic scales 

while controlling for demographic features will be informative for indicating the most 

appropriate spatial scale for enacting adult mosquito control. Overall, the results of this study 

will improve the evidence basis for antecedent vector control actions to reduce the risk of human 

WNV disease. 

1.2 Methods 
1.2.1 Ethics statement 

This study was approved as minimal risk by the Institutional Review Board (IRB) of the 

University of California, Davis (FWA: 00004557, IORG: 0000251; Project ID 916060-1) and by 

the California Committee for the Protection of Human Subjects (FWA: 00000681; Project ID 17-

02-2895).  

1.2.2 Study area 
The study area consisted of six mosquito and vector control districts (MVCDs) across 

California encompassing the counties of Los Angeles, Orange, Placer, Sacramento, Stanislaus, 

and Yolo (Figure 1.1). These six counties span diverse ecological regions, from the mixed-urban 

agricultural landscape of the Central Valley (Placer, Sacramento, Stanislaus, Yolo) to highly 

urbanized areas of Southern California (Los Angeles, Orange) and comprise approximately 39% 

of California’s population, or more than 15.3 million people (US Census Bureau 2012). The 

Central Valley and Southern California also have contributed approximately 95% of WNV 

disease case reports in the state (California Department of Public Health 2021). The MVCDs 

included in the study vary in their vector control practices in response to high WNV 

transmission risk, ranging from a mix of aerial and ground-based insecticide treatments in 
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Sacramento, Yolo, and Stanislaus Counties to exclusively ground-based treatments in Los 

Angeles and Orange Counties. 

1.2.3 Data  
All entomological data relating to the surveillance of adult Culex tarsalis and the Cx. 

pipiens complex (Cx. pipiens, Cx. quinquefasciatus and their intergrades), including geolocated 

trap sites, trap type, mosquito abundance records, and arbovirus testing results, were obtained 

from collaborating MVCDs (see acknowledgements) for the years 2006-2016 via the VectorSurv 

Gateway (VectorSurv 2021). We restricted these data to observations from CO2-baited 

(Newhouse et al. 1966) and gravid traps (Cummings 1992), which specifically target adult female 

mosquitoes in the genus Culex. Arbovirus testing was conducted either by the collaborating 

MVCD or by the Davis Arbovirus Research and Training (DART) Laboratory and consisted of 

testing batches (pools) of up to 50 mosquitoes of the same species for the presence of arboviral 

RNA by RT-PCR (Brault et al. 2015). The minimum infection prevalence then was calculated per 

1,000 mosquitoes using bias-corrected maximum likelihood estimation in the binGroup R 

package version 2.2-1 (Hepworth and Biggerstaff 2017, Zhang et al. 2018). Mosquito abundance 

and arbovirus prevalence estimates that result from these traps may differ due to their attraction 

of different demographic segments of the adult female mosquito population. CO2-baited traps 

utilize dry ice to emit carbon dioxide to attract host-seeking mosquitoes and generally attract 

large numbers of nulliparous females (Newhouse et al. 1966), whereas gravid traps utilize 

organic infusions to attract gravid ovipositing mosquitoes, which are generally older, have 

ingested and digested at least one blood meal, and therefore yield greater estimates of infection 

prevalence (Reiter 1987, Cummings 1992). Gravid traps tend to be ineffective at collecting Cx. 

tarsalis, as this species tends to lay eggs in open, irrigated areas with clean water sources (Bailey 

et al. 1965, Reisen et al. 1992).  

Reported human case data, including onset date and patient addresses, were obtained 

from the California Department of Public Health for the same years (2006-2016) following IRB 
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approval for the use of potentially identifiable data. Because WNV disease is a notifiable disease, 

this registry encompassed all reported symptomatic cases of WNND and West Nile fever (WNF) 

during the time period, which were not differentiated for the purposes of this study. Finally, 

spatial census data were obtained from the United States Census Bureau Tiger/LINE database 

for county, census county division, city, and zip code tabulation by area boundaries and 

population information (US Census Bureau 2012). Cities with populations over 300,000 were 

subdivided further into neighborhoods based on administrative units defined by the respective 

city governments to better represent mosquito control-relevant spatial units. From the 2010 

census, the cities in the study area that fell into this category were Los Angeles, Sacramento, 

Anaheim, and Santa Ana. Population density was calculated as the number of persons per 

square mile within each spatial scale. 

We applied a spatial overlay to the geolocated mosquito trap sites and human WNV 

disease case addresses to determine the relevant jurisdictional boundary for each of the four 

spatial scales. Mosquito trap counts and mosquito pool testing results were aggregated for all 

traps within a spatial boundary in each week and year, and numbers of human cases were 

tabulated by week and year within a spatial boundary. All data were matched in time and space. 

Observations were considered at the weekly level to examine the effect of the VI on WNV disease 

incidence. The VI for a given week was calculated separately by species and trap type, excluding 

any observations of Cx. tarsalis in gravid traps, by multiplying the observed abundance per trap-

night by the concurrent maximum likelihood estimate of infection rate per 1,000 female 

mosquitoes (Gujral et al. 2007). WNV disease incidence per million was calculated by dividing 

the number of cases recorded during each week in a location by that location’s population (in 

millions) as recorded in the 2010 census (US Census Bureau 2012). 

Data were restricted to 14 weeks from the beginning of July to the end of September to 

capture the peak periods of WNV activity for each of the years 2006-2016. Weeks with no record 

of any mosquito surveillance were not included. Additionally, we excluded surveillance 
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observations that were collected by other agencies outside the collaborating MVCDs’ defined 

operating boundaries. 

1.2.4 Statistical analyses 
The outcome variable to be predicted by statistical models was defined as the number of 

human cases, based on date of symptom onset, occurring within each 3-week period following a 

single week’s entomological surveillance. The lag from observed entomological data and future 

cases in the following three weeks accounted for expected lags due to viral transmission 

dynamics, such the extrinsic incubation period in mosquitoes and delays from infection to the 

onset of symptoms in human cases and allowed us to evaluate the near-future predictive value of 

the VI. Initial model selection focused on city-level data as a spatial scale that was small enough 

to provide targets for vector control decisions and large enough to reduce stochastic variation in 

the VI-WNV disease relationship. The goal was to determine a VI threshold to define a cutoff 

point at which the entomological data could identify higher-than-average WNV risk.  

We used receiver operating characteristic (ROC) curve analyses to determine the best VI 

threshold for predicting whether incidence in the following three weeks exceeded the spatial 

unit’s overall average incidence for that same three-week period (hereafter: typical incidence). 

Observations with VI values of 0 were excluded because adult mosquito control decisions would 

not be triggered by perceived epidemic risk in the absence of detected mosquitoes or virus 

activity. The best threshold was the VI that maximizes the sum of sensitivity and specificity 

when compared to whether or not typical incidence was actually exceeded (Fawcett 2006).  

Finally, we fitted a negative binomial regression model of the number of WNV disease 

cases, controlling for species and trap type, population density, and the random effects of 

district on baseline WNV disease incidence and the relationship between the VI and WNV 

disease incidence. For the model, we included all VI observations, including values of 0, that 

were below the 95th percentile of observed positive VI values to reduce the undue effect of high 

outliers due to sparse surveillance sampling. This model was fitted to all spatial scales to 
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demonstrate how spatial scale affects the predictive ability of the VI through ROC curve 

analyses. All statistical analyses were carried out in R version 4.0.3 (R Core Team 2020) using 

the pROC package version 1.17.0.1 (Robin et al. 2011) and lme4 package version 1.1-27 (Bates et 

al. 2015). 

1.3 Results 
Overall, 1,666 cases of WNV disease were reported in humans within the study area and 

time period. Total case numbers were greatest in highly urbanized Greater LA County VCD and 

Orange County MVCD, representing 70% of all cases, whereas incidence was highest in the more 

rural Yolo County within the Sacramento-Yolo MVCD, which had a cumulative incidence of 64.6 

cases per 100,000 people (Table 1.1). Across the study area, there was temporal and geographic 

variability in entomological WNV detections as seen in Figure 1.2a. In many years, high VIs in 

Southern California were not associated with high VIs in the Central Valley. Similarly, there 

were clear seasonal and geographic trends to mean WNV disease incidence throughout the study 

period, with incidence peaking slightly earlier in the Central Valley districts than in the Southern 

California districts (Figure 1.2b). Individually, greater VI was associated with increased WNV 

disease case incidence for all data combined (Figure 1.3a) and after stratification by district, 

although the magnitude of the association varied by district (Figure 1.3b) and by mosquito 

species and trap type (Figure 1.3c). 

In general, mean infection prevalence was lower for Cx. tarsalis than for the Cx. pipiens 

complex in CO2-baited traps, with an average difference in means of 2.06 per 1,000 females 

(Table 1.2). Cx. tarsalis was captured only rarely in gravid traps, leading to extremely low 

abundance estimates and unstable infection prevalence estimates, therefore data from Cx. 

tarsalis in gravid traps were excluded from analyses. The mean VI for Cx. tarsalis in CO2-baited 

traps tended to be higher relative to the mean VI for the Cx. pipiens complex in the rural Central 

Valley districts compared to the urbanized Southern California districts where Cx. tarsalis is less 

widespread. Relative usage of the trap types varied among districts, with Placer MVCD and 
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Turlock MAD using CO2-baited traps almost exclusively whereas other districts routinely used 

both types (Table 1.2). The low number of collections with gravid traps in Placer MVCD and 

Turlock MAD were excluded from further analysis.  

Universal ROC analyses including all city-week observations with non-zero VIs indicated 

that the optimal overall VI thresholds for discriminating between high and low risk for WNV 

disease incidence during the subsequent three-week period ranged from 498 to 1,043, 

depending on the species and trap type for which the VI was estimated (Table 1.3). However, 

stratified analysis by district revealed variability among districts in optimal local VI thresholds 

(Table 1.3). In the Central Valley districts, thresholds were very similar across species and trap 

types in Turlock MAD and Sacramento County, which both feature a mix of urbanized areas and 

irrigated agriculture. However, in Placer MVCD and Yolo County where rice fields are a highly 

productive source of Cx. tarsalis, much higher thresholds were observed for Cx. tarsalis in CO2-

baited traps than in the other districts. In the Southern California districts, which span much of 

the urbanized landscape in the greater Los Angeles area, thresholds across the three districts 

were similar to each other for the two species in CO2-baited traps, although we were unable to 

estimate a threshold in San Gabriel Valley for Cx. tarsalis in CO2-baited traps as there were no 

city-weeks with non-zero VI observations that were associated with a three-week period 

exceeding typical WNV disease incidence. 

In general, VI thresholds tended to be higher when estimated from gravid traps than 

from either Cx. tarsalis or the Cx. pipiens complex in CO2-baited traps. Estimates from CO2-

baited traps were similar for both species in all districts except Placer MVCD and Yolo County 

due to large numbers of Cx. tarsalis associated with rice cultivation increasing the observed 

non-zero VIs in these districts. The discriminatory ability of the VI was driven by the 

distribution of non-zero VI observations for each species-trap type combination, thus higher 

thresholds were identified for city-weeks with greater observed VIs during the study period 

(Figure S1.1). For 294 city-weeks where both a CO2-baited trap and a gravid trap were used to 
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collect Cx. pipiens, the VI estimates from gravid traps were consistently greater than the CO2-

baited trap counterparts (Figure S1.2).  

The lowest VI threshold was 132 for Cx. tarsalis in CO2-baited traps based on 470 city-

weeks with non-zero VI observations in Sacramento County, whereas the highest was 1,046 for 

the Cx. pipiens complex in gravid traps based on 777 city-weeks with non-zero VI observations 

in Greater LA County VCD (Table 1.3). These thresholds were exceeded in 10.73% and 13.80% of 

all city-weeks during the study period, respectively (Table S1.1). The greatest threshold 

exceedance frequency was for the Cx. pipiens complex in San Gabriel Valley MVCD, where an 

estimated VI threshold of 582 was exceeded in 17.66% of 402 city-week observations (Table 1.3, 

Table S1.1). The VI thresholds identified here tended to have higher sensitivity for detecting 

above-normal WNV disease incidence in the next three weeks when VI estimates were based on 

the predominant WNV vector species in each district (Table S1.2). 

The positive predictive value (PPV) was highest for the district-level model and 

decreased at finer spatial scales that had increased stochastic variability (Table 1.4). The PPV 

ranged from 40% at the coarsest district aggregation level to 13% at the finest zip code 

aggregation level. Sensitivity increased as aggregate area size decreased, with the exception of 

zip code, ranging from 63% at the district level to 73% at the city level. Specificity did not follow 

a singular trend across scales. The highest area under the ROC curve (AUC) was observed for the 

census county division model at 74%, but a nearly identical AUC of 73% was observed with the 

city-level data (Table 1.4, Figure 1.4). 

The final city-level model showed that the VI was a statistically significant predictor of 

human WNV disease incidence. After controlling for the combined effects of species and trap 

type and the random effect of district, there was a significant increase in the incidence of human 

WNV disease cases as a function of the VI. On average, each 500-unit increase in the VI was 

associated with a 78% (95% CI: 54-105%) increase in WNV disease incidence during the next 

three weeks, with little variation among districts (Table S1.3). Observations from the Cx. pipiens 
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complex in gravid traps and from Cx. tarsalis in CO2-baited traps were significantly associated 

with lower baseline human WNV disease incidence in the next three weeks compared to Cx. 

pipiens complex in CO2-baited traps after controlling for the VI and variation in baseline WNV 

disease incidence among districts (Table S1.3). Population density interacted negatively with the 

VI such that increases in both VI and population density were associated with decreased 

incidence. There was wide variation in baseline incidence among districts, ranging from 40% 

lower in Sacramento County to 139% higher in Yolo County, than the average 2.39 cases per 

million people (95% CI: 1.65-3.45 cases per million). The predicted WNV disease incidence for a 

range of VI estimates in a city of approximately 35,000 people reflected the baseline differences 

in incidence between the districts (Figure 1.5). All else held equal, the greatest numbers of cases 

would be expected for this city in Yolo County while predictions for the remaining districts were 

clustered together. 

1.4 Discussion 
This study characterized the relationship between entomological surveillance and human 

WNV disease incidence through statistical models and evaluated the generalizability of this 

relationship across different vector control districts with different ecological settings and vector 

species. Our findings corroborated studies showing that entomological surveillance outcomes, 

specifically the VI, were positively associated with human WNV disease incidence (Winters et al. 

2008, Jones et al. 2011, Kwan et al. 2012, Kilpatrick and Pape 2013, Fauver et al. 2016, Uelmen 

et al. 2021). We extended previous findings by characterizing the generalizability of the 

relationship and identifying a threshold for predicting periods of higher-than-average human 

WNV disease incidence for enacting adult vector control. Initial analyses between VI and human 

WNV disease incidence showed a positive relationship, lending support to the presence of a VI 

threshold for predicting high-risk periods. 

The average relationship between the VI and WNV disease incidence was driven strongly 

by the districts with large populations and more data that met this study’s inclusion criteria. 
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Further, VI thresholds for exceedance of typical incidence were driven by the density of VI 

observations that were greater than 0 in each category of mosquito species and trap type. For 

the Cx. pipiens complex, the threshold for VIs estimated from CO2-baited traps was lower than 

VIs estimated from gravid traps. Because VIs from gravid traps were typically greater than from 

CO2-baited traps, the distribution of VIs considered for classifying WNV risk also was shifted 

towards higher values. Similarly, VI thresholds from Cx. tarsalis tended to be higher than for 

the Cx. pipiens complex in CO2-baited traps in districts where Cx. tarsalis was the more 

abundant WNV vector species. Although Cx. tarsalis is not commonly associated with urban 

areas, the thresholds for this species in Southern California were similar to those observed in the 

Central Valley districts characterized by rice fields, an important larval habitat for Cx. tarsalis 

which is associated with high abundance estimates (Pitcairn et al. 1994, Wekesa et al. 1996). 

However, these thresholds in Southern California were based on a small number of city-weeks 

with non-zero VIs, indicating a more focal distribution of Cx. tarsalis around limited irrigated 

agriculture and wetlands compared to its more widespread distribution in the rural areas of the 

Central Valley.  

The final model showed that the incidence of human WNV disease in the three weeks 

following a VI observation increased significantly as the VI increased. This increase in risk was 

not significantly different among districts after controlling for trap type and species. 

Interestingly, Cx. tarsalis collected in CO2-baited traps and the Cx. pipiens complex in gravid 

traps were associated with lower WNV disease incidence than was the Cx. pipiens complex in 

CO2-baited traps. Gravid traps tend to collect older, ovipositing mosquitoes, which are more 

likely to be infected with WNV than mosquitoes collected from CO2-baited traps, thus yielding 

higher VI estimates (Cummings 1992). Collections of Cx. tarsalis also tend to yield higher VI 

estimates in rural areas than the Cx. pipiens complex as it is found in large numbers around 

irrigated agriculture (Reisen 2012). Therefore, higher VI observations in these two surveillance 
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situations were related to periods with no WNV disease incidence, which is intermittent at the 

city level of data aggregation, contributing to the negative association seen in this model. 

We were unable to control for the effect of vector control measures currently in place in 

our models. Vector control agencies typically respond to high VIs through adulticiding 

measures, which may reduce the subsequent risk of WNV transmission to humans through a 

reduction of the infected vector population (Elnaiem et al. 2008). The Central Valley districts 

tend to respond to entomological observations through broad-scale aerial insecticide 

applications, whereas the urban Southern California districts strictly use ground-based adult 

mosquito control. Large-scale aerial measures are effective at immediately reducing both 

mosquito abundance and mosquito infection prevalence, leading to an ultimate reduction in 

human cases (Carney et al. 2008, Elnaiem et al. 2008, Holcomb et al. 2021). However, mosquito 

numbers tend to rebound quickly during the summer months due to adult emergence from large 

aquatic habitats, which are not directly impacted by adulticidal applications or through 

immigration from neighboring, unsprayed areas, making repeated applications necessary 

(Mitchell et al. 1970, Holcomb et al. 2021). In contrast, ground-based methods are also effective 

at reducing mosquito numbers, but only when the insecticide physically reaches the mosquitoes. 

An abundance of urban landscaping that creates refugia for mosquitoes could make these 

control methods less effective than expected (Lothrop et al. 2002, Bonds 2012). We attempted 

to account for differences in control methods by allowing the relationship between VI and 

human WNV disease to vary by district. However, the timing, location, or type of vector control 

applied during the study period may have impacted entomological observations within the same 

district, and this model was unable to take temporal variation in control responses into account. 

Future studies that account for the type and duration of vector control measures on both 

mosquito abundance and infection prevalence would likely see a stronger association between 

the VI and WNV disease incidence. 
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Although there was little variability in the relationship between VI and WNV disease 

among districts, there was a significant association between the combined effect of population 

density and the VI on WNV disease incidence, which decreased in the most densely populated 

cities as VI increased. This holds with findings that human WNV disease in the western United 

States is associated with increased proportions of agricultural land, particularly irrigated 

agriculture (Eisen et al. 2010, Bowden et al. 2011, Kovach and Kilpatrick 2018). This is because 

the primary vector in rural areas is Cx. tarsalis rather than the Cx. pipiens complex, which is the 

primary vector in the highly urbanized cities in southern California, although the Cx. pipiens 

complex are also found around urban centers within the Central Valley. These areas more 

closely resemble eastern and midwestern US metropolitan areas where transmission is driven by 

mosquitoes of the Cx. pipiens complex, which are more adapted to urban infrastructure 

(Trawinski and Mackay 2010, Deichmeister and Telang 2011, Landau and van Leeuwen 2012, 

Reisen 2012). Although the entomological observations included in this study were reasonably 

balanced between Southern California and Central Valley districts, the majority of observations 

were derived from traps placed in more densely populated and urbanized cities in these two 

regions, which may be under-accounting for the enzootic Cx. tarsalis-agriculture transmission 

cycle that contributes to the highest WNV incidence in the country in the Great Plains and other 

heavily agriculturalized counties, where lower population density increases the stochastic 

variability of WNV disease incidence despite low case numbers (Centers for Disease Control and 

Prevention et al. 2020). 

The predictive value of our model differs drastically across different spatial scales. At the 

coarsest district scale, high-risk periods were predicted with greater accuracy because larger 

areas are more representative of actual disease risk. However, at finer scales, whether disease 

occurs in a particular spatial area is highly variable, thus lowering the predictive accuracy. The 

model using city-level data correctly predicted high-risk periods in the next three weeks 19% of 

the time. The zip code level model performed worse than the city-level model, in large part 
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because zip code areas tended to be smaller than cities. Despite the low PPV, the sum of 

sensitivity and specificity, a metric that maximizes correct positive and negative classifications, 

and the area under the ROC curve were nearly identical to those found for the larger census 

county division aggregation. The observed sensitivity of 73% for the model using city-level data 

means that nearly three-quarters of high-risk periods were correctly identified using antecedent 

VI estimates. In the case of disease prevention, high sensitivity is preferred to high specificity, 

and sensitivity was equal to or higher than specificity in all the models we examined. Other 

studies assessing the accuracy of the VI in predicting human WNV disease in Los Angeles and 

Colorado found higher areas under the curve, sensitivities, specificities, and PPVs than we 

observed, but typically utilized coarser spatial and temporal scales and used a presence/absence 

outcome rather than exceedance of typical incidence (Kwan et al. 2012, Kilpatrick and Pape 

2013). However, Kilpatrick and Pape (2013) also evaluated the ability of the VI to predict the 

detection of at least four cases at the county level in a 3-week moving window similar to our 

lagged period, and also found a high PPV. However, these studies did not consider the spatial 

heterogeneity of the VI within large areas nor the fact that vector control operates at finer scales 

than its entire jurisdiction. A recent study in Chicago found that the VI was highly predictive of 

the presence/absence of human WNV cases at a 1 km spatial scale, which is smaller than the 

units used in our study, but mosquito abundance or infection prevalence were better predictors 

than the VI at coarser scales (Uelmen et al. 2021). Based on our findings, we maintain that the 

city level, with large cities divided by their administrative boundaries, is the most actionable 

scale in terms of balancing the scope of vector control with the probability of human WNV 

disease cases and the accuracy of predictions of high-risk periods.  

A limitation to our study that contributes to better model prediction at larger spatial 

scales is that fine geographic heterogeneity in both the VI and WNV disease incidence was 

smoothed over larger areas. At finer spatial scales, there was a higher rate of dropping 

observations due to the lack of spatial matching, and we did not account for instances where 
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entomological surveillance occurred in one city and cases occurred in a neighboring city, 

particularly in dense urban areas where humans and mosquitoes can easily move across city 

boundaries. Another limitation was data quality, particularly human data. Human case data are 

matched to the patient’s residential address, which is not necessarily the site of infection, and we 

were unable to include cases that were not reported with an address in the analysis. 

Additionally, human case data relies on passive surveillance of WNV disease, and WNF cases are 

often underdiagnosed or possibly misdiagnosed if serological testing is not conducted (Gyure 

2009, Silk et al. 2010). Having a more robust accounting of symptomatic infections would 

increase the quantity of entomological surveillance observations that are spatially and 

temporally matched to human outcome data and improve overall model estimation. We also did 

not include demographic variables with known associations with WNV disease because we 

focused on factors that resulted from surveillance observations. 

Overall, our study has demonstrated that the VI can predict human WNV disease with 

relative accuracy during the next three weeks at a range of spatial scales relevant to vector 

control. Increases in entomological indices as approximated with the VI were associated with 

increases in human WNV disease incidence, even after adjusting for operational differences 

among districts. Furthermore, our study also demonstrated that a universal VI threshold for 

making vector control decisions is inappropriate across a state as geographically diverse as 

California. Different regions have different vector species, which in turn contributed to varying 

the relationships between VI and human WNV disease. Vector control districts across the state 

that use the VI as an indicator of human WNV disease risk should consider the combination of 

individual district-level surveillance and control practices and population characteristics within 

a defined boundary for the VI to have predictive meaning and decision-making relevance. 
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1.6 Tables and figures 
Table 1.1. Summary statistics for WNV disease cases and demographic 

characteristics by vector control district. Statistics are calculated using data from all cities 

and towns within each district, regardless of entomological surveillance observations. 

 

N** (%) 

Cumulative 
number of 

WNV disease 
cases (%) 

Cumulative 
incidence of 

WNV disease 
per 100,000 

Total district 
population 

(median city 
size) 

Median 
population 

density 
(persons/mi2) 

Greater LA 
County VCD 109 (35) 700 (42) 15.3 

4,583,288 
(29,712) 8,170.6 

Orange County 
MVCD 

60 (19) 505 (30) 14.6 3,448,069 
(49,062) 

5,561.0 

Placer MVCD 23 (7) 38 (2) 12.2 
310,795 
(1,963) 609.1 

Sacramento 
County* 

39 (12) 128 (8) 9.1 1,401,823 
(31,184.5) 

3,000.4 

San Gabriel 
Valley MVCD 49 (16) 188 (11) 9.7 1,932,308 

(30,912) 7,792.9 

Turlock MAD 22 (7) 34 (2) 8.8 387,115 
(3,689.5) 

3,106.5 

Yolo County* 13 (4) 73 (5) 64.6 112,898 
(1,542) 675.5 

*Sacramento and Yolo Counties are part of Sacramento-Yolo MVCD. 

**All incorporated cities and census-designated places
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Table 1.2. Summary of entomological surveillance data by district using data aggregated by city. 

 
Trap 
type N** (%) 

Mean Cx. 
tarsalis 

abundance 
per trap-night 

Mean Cx. 
pipiens* 

abundance 
per trap-night 

Mean Cx. 
tarsalis 
infection 

prevalence† 

Mean Cx. 
pipiens* 
infection 

prevalence† 

Mean Cx. 
tarsalis vector 

index† 

Mean Cx. 
pipiens* 

vector index† 

Greater LA 
County VCD 

CO2 49 (17.1) 4.9 25.7 6.3 6.5 36.5 160.1 
Gravid 2,407 (82.9) < 1 57.6 NA 8.4 NA 427.1 

Orange County 
MVCD 

CO2 1,135 (30.5) 5.3 7.1 1.5 7.4 14.6 88.3 
Gravid 2,592 (69.5) < 1 36.3 NA 9.1 NA 366.6 

Placer MVCD 
CO2 1,248 (97.3) 28.8 71.4 2.5 3.4 129.7 35.3 
Gravid 34 (2.7) < 1 8.5 NA 0.5 NA 12.1 

Sacramento 
County‡ 

CO2 5,642 (68.6) 12.9 8.9 6.7 6.0 58.2 31.1 
Gravid 2,580 (31.4) < 1 10.4 NA 10.8 NA 87.6 

San Gabriel 
Valley MVCD 

CO2 223 (35.2) 1.9 3.5 4.1 9.2 22.7 27.9 
Gravid 410 (64.8) < 1 39.7 NA 8.7 NA 328.5 

Turlock MAD 
CO2 731 (98.5) 12.5 37.0 2.8 4.3 45.5 135.0 
Gravid 11 (1.5) < 1 1.3 NA 0.0 NA 0.0 

Yolo County‡ 
CO2 1,762 (70.7) 58.3 6.7 3.0 4.6 157.3 16.5 
Gravid 730 (29.3) < 1 7.2 NA 7.4 NA 53.5 

*Cx. pipiens complex: Cx. pipiens, Cx. quinquefasciatus and intergrades. 

**Number of city-weeks with entomological surveillance. 

†per 1,000 mosquitoes. 

‡Sacramento and Yolo Counties are part of Sacramento-Yolo MVCD. 
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Table 1.3. Vector index thresholds for classifying high risk of WNV disease at city 

scale in each district for each of the two major trap types targeting Culex spp. 

mosquitoes. 

Region District VI thresholds – Cx. 
tarsalis (N*) 

VI thresholds – Cx. pipiens complex 
(N*) 

CO2-baited traps CO2-baited traps Gravid traps 
All districts 498 (806) 574 (715) 1,043 (2,139) 

Southern 
California 

Greater LA County VCD 413 (8) 550 (76) 1,046 (777) 
Orange County MVCD 383 (14) 237 (65) 759 (702) 
San Gabriel Valley 
MVCD 

NA 552 (17) 582 (107) 

Central 
Valley 

Turlock MAD 152 (22) 174 (102) NA 
Sacramento County** 132 (470) 160 (370) 485 (475) 
Yolo County** 487 (178) 121 (47) 440 (78) 

 Placer MVCD 498 (108) 181 (38) NA 
*Number of city-weeks with a VI above 0. 

**Sacramento and Yolo Counties are part of Sacramento-Yolo MVCD. 

 

Table 1.4. Comparing negative binomial model performance among spatial scales. 

Models contain a population offset and the random effects of district while controlling for the 

vector index, the combination of species and trap type, and population density. 

Spatial scale 
Positive 

predictive value Sensitivity Specificity 
Area under the 

curve 
District 0.40 0.64 0.47 0.54 
Census County 
Division 0.34 0.58 0.78 0.74 

City 0.17 0.80 0.54 0.73 
Zip Code 0.13 0.67 0.61 0.70 
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Table S1.1. Number of city-weeks with entomological surveillance during the study 

period and percentage of city-weeks for which the observed VI exceeded the 

threshold for higher-than-average human WNV risk in each district. 

District Cx. tarsalis Cx. pipiens complex 
 CO2 traps Gravid traps CO2 traps Gravid traps 
 N % N % N % 
All districts 5,443 6.28 5,763 7.63 8,612 6.78 
Greater LA 
County VCD 

104 4.81 391 11.00 2,347 13.80 

Orange 
County 
MVCD 

500 1.40 631 6.50 2,514 13.09 

Placer 
MVCD 

687 7.42 556 4.32 34 NA** 

Sacramento 
County* 

2,843 10.73 2,793 6.59 2,576 6.17 

San Gabriel 
Valley 
MVCD 

70 5.71 153 1.31 402 17.66 

Turlock 
MAD 

290 4.83 437 17.39 11 NA** 

Yolo 
County* 

949 7.59 802 3.99 728 3.57 

*Sacramento and Yolo Counties are part of Sacramento-Yolo MVCD. 

**None of these city-weeks observed a VI greater than 0, so these observations were not 

included in the empirical ROC analysis to estimate a VI threshold.
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Table S1.2. Empirical ROC results for using the VI to classify higher-than-average risk of human WNV disease by 

district. 

District Cx. tarsalis Cx. pipiens complex 
 CO2 traps CO2 traps Gravid traps 
 

Sensitivity Specificity 
Positive 

predictive 
value 

Sensitivity Specificity 
Positive 

predictive 
value 

Sensitivity Specificity 
Positive 

predictive 
value 

All districts 0.80 0.34 0.20 0.28 0.84 0.35 0.48 0.62 0.31 
Greater LA 
County 
VCD 

1.00 0.50 0.40 0.77 0.46 0.23 0.53 0.52 0.26 

Orange 
County 
MVCD 

0.57 0.57 0.57 0.88 0.60 0.78 0.71 0.49 0.43 

Placer 
MVCD 

0.81 0.59 0.32 0.55 0.74 0.46 NA NA NA 

Sacramento 
County* 

0.48 0.68 0.18 0.64 0.52 0.19 0.75 0.36 0.18 

San Gabriel 
Valley 
MVCD 

NA NA NA 0.33 1.00 1.00 0.47 0.78 0.29 

Turlock 
MAD 

0.75 0.78 0.43 0.37 0.83 0.43 NA NA NA 

Yolo 
County* 

0.70 0.52 0.33 0.56 0.81 0.60 0.78 0.43 0.42 

*Sacramento and Yolo Counties are part of Sacramento-Yolo MVCD. 
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Table S1.3. Results from the hierarchical negative binomial regression model 

using the city-level data aggregation. 

 Variable Rate ratio 
(95% CI) 

P-value 

Fixed effects Intercept* 2.39 (1.65,3.45) < 0.0001 
VI (per 500-unit change) 1.78 (1.54, 2.05) < 0.0001 
Population density (per 
1,000 persons/mi2) 

1.06 (1.04, 1.08) < 0.0001 

Cx. pipiens complex in 
gravid traps 

0.71 (0.63, 0.80) < 0.0001 

Cx. tarsalis in CO2 traps 0.90 (0.79, 1.02) 0.0967 
VI-population density 
interaction 

0.99 (0.98, 
1.00) 

0.0632 

Random effects Greater LA County VCD 0.74 0.94 
Orange County MVCD 1.24 1.05 
Placer MVCD 1.05 1.01 
Sacramento County** 0.60 0.89 
San Gabriel Valley MVCD 0.62 0.90 
Turlock MAD 1.20 1.04 
Yolo County** 2.39 1.21 

 

*The rate ratio for the intercept is the baseline rate of WNV disease. 

**Sacramento and Yolo Counties are part of Sacramento-Yolo MVCD. 
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Figure 1.1. Map of the study area in California. Mosquito and vector control districts 

range from encompassing a single county, multiple counties, or partial counties. Counties are 

represented by orange polygons with gray outlines while districts are represented by black 

outlines. State and county boundaries were obtained from the 2010 TIGER/Line shapefiles 

prepared by the United States Census Bureau (US Census Bureau 2012) and mosquito and 

vector control district boundary shapefiles were obtained from the Mosquito and Vector Control 

Association of California (Mosquito & Vector Control Association of California 2017). 
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Figure 1.2. Weekly geometric mean city-scale vector index (A) and human WNV 

disease incidence during the subsequent three weeks (B) for districts in the 

Central Valley (blue) and Southern California (red). The VI was calculated as the 

product of mosquito abundance and WNV infection prevalence per 1,000 mosquitoes, and 

geometric means are shown for both VI and WNV disease incidence to reduce the influence of 

outliers. The y-axis of the VI panel is on the log scale to better reveal patterns over time. 
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Figure 1.3. The unadjusted relationship between the vector index and WNV disease 

incidence in the subsequent three weeks. Panel A shows the overall relationship. Panel B 

shows the relationship stratified by district. Panel C shows the relationship stratified by trap 

type and mosquito species of the VI observation. The curves show the fitted values from linear 

models of lagged incidence by VI. 
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Figure 1.4. Receiver operating characteristic curves for models fitted to different 

spatial aggregations of observed entomological and epidemiological data. Curves 

closer to the upper-left corner indicate the greatest sensitivity and specificity. 
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Figure 1.5. The number of human WNV disease cases predicted to occur in the 

three weeks following a range of observed vector indices in a city of 35,000 people 

in each district for a range of entomological and demographic scenarios. Rural was 

defined as having a population density of  500 persons/mi2, suburban had 501-2,500 

persons/mi2, and urban had 2,501-10,000 persons/mi2. 
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Figure S1.1. Density of VI observations for city-weeks where the VI exceeded 0 

from different combinations of species and trap types in cities among the districts 

under consideration. The x-axis has been limited to an upper bound of 5,000 for 

visualization. The vertical red line indicates the VI threshold that maximizes sensitivity and 

specificity for the prediction of the next three weeks observing higher than average WNV disease 

incidence. 
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Figure S1.2. The difference in vector indices between paired CO2-baited and gravid 

traps. Paired traps are traps run during the same week in the same city. VI observations from 

gravid traps are higher, on average, than from CO2-baited traps. 
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Abstract 
West Nile virus (WNV) is an arbovirus that circulates in the environment between mosquito 

vectors and avian reservoir hosts and can infect mammals through the bite of infected 

mosquitoes. The risk of WNV infection in humans is monitored partly through estimates of 

vector abundance, but these estimates are not adjusted for the effects of short-term variation in 

weather, despite demonstrated associations with trap counts. Our study aims to evaluate the 

interactions of daily weather variability and mosquito host-seeking activity in a WNV-endemic 

region of California. We collected Culex tarsalis mosquitoes from ten traps fitted with infrared 

sensors to detect mosquitoes entering the traps at 15-minute intervals, temperature at 15-minute 

intervals, and wind speed at 1-minute intervals during the months of July and August 2019. 

From these collections, we estimated four key outcomes for Cx. tarsalis host-seeking activity: 

the number of Cx. tarsalis per night, the time of host-seeking onset, the duration of host-

seeking, and the hour with the highest Cx. tarsalis count. We related each of these outcomes to 

antecedent weather conditions through statistical models and found that each of the outcomes 

was highly sensitive to wind speed and temperature in the evening just before the onset of host-

seeking activity. In all, windier evenings were associated with fewer mosquitoes being collected 

overnight, a later start to host-seeking activity, a longer duration of host-seeking, and a later 

hour of peak activity, whereas warmer evenings generally had the opposite impact, with the 

exception of its effect on the duration of evening activity. The results from this study will help 

guide mosquito control decisions through understanding weather-induced biases in mosquito 

trap counts and to optimize the timing of adult mosquito control operations to maximize their 

effect on vector populations.  
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2.1 Introduction 
 Mosquitoes of the genus Culex are a public health concern as vectors of multiple zoonotic 

arboviruses, including West Nile virus (WNV), Saint Louis encephalitis virus, and western 

equine encephalomyelitis virus (Sudia et al. 1971, Rochlin et al. 2019). WNV in particular is the 

leading cause of human arboviral disease in the United States (McDonald et al. 2019). WNV is 

maintained in the environment through an avian-mosquito cycle with occasional spillover to 

mammalian hosts (McLean et al. 2001). In California, the predominant vectors are Cx. tarsalis 

and the Cx. pipiens complex (Cx. pipiens and Cx. quinquefasciatus) (Goddard et al. 2002, 

Reisen et al. 2004, Rochlin et al. 2019). As there is no licensed vaccine against WNV for 

humans, disease prevention relies on a combination of personal protective measures and 

mosquito control by local vector control agencies (Gubler et al. 2000, California Department of 

Public Health et al. 2020). The decision to enact adult mosquito control to rapidly decrease 

vector populations when periods of epidemic risk are detected typically depends on two 

entomological surveillance endpoints which have been related to transmission of WNV: 

mosquito abundance (Bolling et al. 2009, Colborn et al. 2013, Kilpatrick and Pape 2013) and 

mosquito infection prevalence (Liu et al. 2009, Kwan et al. 2010, Giordano et al. 2017, Karki et 

al. 2017). To estimate these metrics, vector control agencies conduct routine surveillance 

trapping, typically using a combination of CO2-baited and gravid traps to target the host-seeking 

and oviposition site seeking stages of the mosquito life cycle, respectively (Newhouse et al. 1966, 

Reiter 1987, Cummings 1992). However, a limitation of this approach is that estimates of 

mosquito abundance do not take nightly variability due to weather into account. Instead, trap 

counts are taken to represent the true state of vector abundance, which could over- or under-

estimate the risk of WNV transmission to humans. 

 Most studies have investigated the effects of weather patterns on mosquito population 

dynamics. The effects of temperature on mosquitoes is well-documented, with many studies 

agreeing that warmer temperatures at a range of time lags are positively associated with 
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increased mosquito counts (Hribar et al. 2010, Chuang et al. 2011, Deichmeister and Telang 

2011, Lebl et al. 2013, Montarsi et al. 2015, Karki et al. 2016, Groen et al. 2017, Moise et al. 2018, 

Ripoche et al. 2019), but the effect of wind speed is less studied and more variable (Hribar et al. 

2010, Lebl et al. 2013, Karki et al. 2016, Endo and Eltahir 2018). Much less is known about the 

direct impact of weather variability on mosquito host seeking activity. Several studies found that 

increasing wind speeds overnight were associated with reductions in trap counts (Bailey et al. 

1965, Bidlingmayer et al. 1995, Hoffmann and Miller 2003) while another found positive 

associations between temperature and mosquito trap counts but no effect of wind speed (Hribar 

2017). In addition to the effect on total nightly trap counts, daily weather variability may have an 

impact on the timing of mosquito host-seeking activity within each night. Typically, Culex spp. 

mosquitoes are most active shortly after sunset, with a smaller morning peak of activity (Bailey 

et al. 1965, Reisen et al. 1997, Veronesi et al. 2012), but this timing is subject to seasonal, 

meteorological, and spatial variability (Bailey et al. 1965, Bidlingmayer 1985, Veronesi et al. 

2012, Montarsi et al. 2015). To our knowledge, no study of Culex host-seeking behavior has 

examined the effect of antecedent daily weather variability on both total counts per trap night 

and the timing of host-seeking activity. Herein, we examined how daily weather, specifically 

temperature and wind speed, impacted the timing of Cx. tarsalis host-seeking activity and trap 

counts. This would serve to identify the best times for targeting mosquito control given the 

antecedent weather conditions and to understand how weather anomalies may cause bias in 

abundance estimates used in WNV risk assessment. 

2.2 Methods 
2.2.1 Study area 

We collaborated with Placer Mosquito and Vector Control District (PMVCD) and 

Sacramento-Yolo Mosquito and Vector Control District (SYMVCD) to select ten continuously 

operating trap sites spanning a contiguous region of western Placer County, northwestern 

Sacramento County, and eastern Yolo County. These sites were chosen based on high historical 
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mosquito abundance estimates in order to maximize statistical power to detect any effects of 

weather on mosquito trap counts. The nearest sites were separated by a distance of 3.5 km, 

whereas the most distant sites were separated by a distance of 43.7 km (Figure 2.1). This region 

is characterized by a Mediterranean climate with hot, dry summers and is largely agricultural. 

All ten sites were located adjacent to irrigated agriculture, which predominantly consisted of rice 

fields, but also included corn, hay, almonds, and pastures for livestock grazing. Mosquito host-

seeking activity typically occurs along ecotones (Lothrop et al. 2002), and therefore most 

trapping sites were located near brush or other vegetation with two located next to tree cover to 

maximize the capture rate of host-seeking females.  

2.2.2 Mosquito collection 
BG-Counter (BGC) traps are modified BG-Sentinel traps manufactured by Biogents that 

utilize a grid of infrared sensors to record counts of mosquito-sized objects entering the trap’s 

collection bag and then transmit those counts at 15-minute intervals to an online server 

(Pruszynski 2016). They can be operated continuously as long as they are connected to a power 

source. The BGC traps used for this study were baited with compressed CO2 released at 400 mL 

per minute to attract host-seeking mosquitoes. These were already in place at each of the ten 

sites by the start of the study period on July 3, 2019 and were operated continuously beyond the 

scope of the study period, which ended on September 6, 2019. The traps and 20-lb CO2 cylinders 

were housed within locked cages made up of wire mesh coarse enough for mosquitoes to pass 

through unencumbered. In Placer MVCD, this mesh’s openings were 3 by 1.5 cm while in 

Sacramento-Yolo MVCD, the openings were approximately 4 by 7.5 cm. Although the design of 

the cages differed slightly between the two MVCDs, all had the trap’s entry point approximately 

1 m above ground level (Figure 2.2). Because the automated counts of BGC traps are based only 

on size, we collected mosquitoes from each of the ten traps three times per week during July and 

two times per week during August and. All collections occurred before 11:00h. Note that all 

times referenced in this study were in the local time, Pacific Daylight Time (UTC-7). After every 
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trap collection event, mosquitoes were immobilized using triethylamine and trap catches were 

identified to species and counted within 24 hours of collection. 

In addition to the BGC traps, we operated CO2-baited traps one night per week ≤ 100 m 

from each BGC trap to assess any differences in species composition between the two trap types 

and to understand whether inferences made from BGC trap counts could be generalizable to 

trap types more commonly used for WNV surveillance. During July, these were John W. Hock 

Company CDC Miniature Light Traps (Model 512; Gainesville, FL; 

https://www.johnwhock.com/products/mosquito-sandfly-traps/cdc-miniature-light-trap/) 

baited using ≈2 pounds of dry ice pellets as the CO2 source, while during August, the CDC 

Miniature Light Traps were fitted to a John W. Hock Company Collection Bottle Rotator (Model 

1512; Gainesville, FL; https://www.johnwhock.com/products/programmable-

collection/collection-bottle-rotator/) that could change collection cups up to 7 times during the 

trapping event, allowing us to compare the broad timing of mosquito activity between the BGC 

and CO2-baited traps (Hock 2015). These rotator traps were set up for an overnight collection 

event before 18:00h and were collected alongside the respective BGC traps the following 

morning. The rotator plate was programmed to change collection cups at 20:00h, 21:00h, 

22:00h, 00:00h, 02:00h, 04:00h, and 06:00h (Appendix 2.6.2, Table S2.2). We followed the 

same collection and counting procedure as for BGC trap collections. Any collection during which 

the BGC or CO2-baited trap encountered a technical problem was discarded.  

2.2.3 Weather recording 
In addition to the infrared grid to detect objects entering the trap, BGC traps were fitted 

with environmental sensors that record temperature, relative humidity, ambient light, and 

precipitation and transmit 15-minute averages along with the counts of mosquito-sized objects 

(Pruszynski 2016). To monitor wind speed, we installed a HOBO USB Micro Station Data 

Logger (Model #H21-USB; Bourne, MA; https://www.onsetcomp.com/products/data-

loggers/h21-usb/ with a Davis Wind Speed and Direction Smart Sensor (Model #S-WCF-M003; 
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Bourne, MA; https://www.onsetcomp.com/products/sensors/s-wcf-m003/) anemometer/wind 

vane attachment at each of the BGC trap enclosures before the start of the study period. These 

sensors recorded wind speed, maximum wind speed (gust speed), and wind direction at 1-

minute intervals until the end of the study period. The anemometer and wind vane were 

approximately 2 m above ground level (Figure 2.2). Discontinuities in recorded air temperatures 

caused by direct sunlight on the BGC sensor housing during certain afternoon intervals were 

corrected using weather station data derived from the National Oceanic and Atmospheric 

Administration and the California Irrigation Management Information System (Snyder 1984, 

Menne et al. 2012) as described in Appendix 2.6.1. 

2.2.4 Species composition comparison 
For paired CO2-baited (both traditional and rotator) and BGC trap collections, we 

estimated the proportions of each trap count that were comprised of the three predominant 

species in this area, Cx. tarsalis, Cx. pipiens, and Anopheles freeborni. These proportions were 

statistically compared using intraclass correlation coefficients (ICC) using the R package “irr”, 

version 0.84.1, which test for agreement between paired observations (Gamer et al. 2019). A 

high ICC value would indicate that the species distribution did not differ between the two trap 

types. 

2.2.5 Estimation of nightly mosquito activity 
We began by comparing the ratio of manual mosquito counts to automated counts from 

the BGC traps, where a ratio of 1 indicates parity between the two counts. To ensure accurate 

mosquito counts and weather information, we excluded 28 collection events where the natural 

log of this ratio was ≥ 1 standard deviation above or below of the mean log ratio to capture 

variation around the mean ratio while excluding collections that would result in unreliable 15-

minute count estimates. We used the log of the ratios because ratios are multiplicative quantities 

and to reduce the influence of outliers. Additionally, we excluded daily observations where the 

full 24-hour period was not recorded to ensure that we had full coverage of diurnal weather as 
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well as nocturnal mosquito activity. We then approximated 15-minute counts of Cx. tarsalis 

using the method described in Appendix 2.6.2. Hereafter, “mosquito activity” refers to Cx. 

tarsalis activity. 

We divided each 24-hour day into three periods to delineate different landmarks during 

a host-seeking event. We used the R package “suncalc”, version 0.5.0 (Thieurmel and 

Elmarhraoui 2019) to estimate the sun’s elevation at 15-minute intervals and defined the 

daytime period as when the sun’s elevation was greater than 10° above the horizon, typically 

from 07:00-18:00h. Mosquito counts during the daytime period were excluded from further 

analyses due to negligible trap counts. Night and morning were separated at 01:00h to 

differentiate between the two primary overnight peaks in activity. The total overnight trap count 

was the cumulative number of mosquitoes that entered the trap during the night and morning 

periods. Mosquito activity onset was defined as the first 15-minute interval during the nighttime 

period that recorded a trap count above 0. We then calculated the elapsed time in minutes from 

sunset to the time of activity onset (hereby referred to as time to onset) using daily sunset times 

estimated from the “suncalc” package to account for changes in the photoperiod across the study 

period. We also calculated the cumulative mosquito count and cumulative proportion of total 

count for the entire night and morning periods to estimate the timing at which landmark 

percentiles in mosquito collections occurred (Figure S2.3). We used these estimates to create a 

variable capturing the duration of the evening peak in activity, which we defined as the elapsed 

time in minutes from the time of activity onset to the time at which 50% of a given night’s total 

count had entered the trap. Finally, we estimated the hour with the highest single count of Cx. 

tarsalis to evaluate the potential impact of a single 1-hour mosquito control event on the host-

seeking population and assessed this outcome as the elapsed time, in minutes, since 12:00h. 

Ties were broken by taking the earlier time. 
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2.2.6 Statistical analyses 
We evaluated the relationship with weather separately for four outcomes: 1) the total 

overnight trap count; 2) the time to activity onset; 3) the duration of evening activity; and 4) the 

hour with the highest total mosquito count. The onset, duration, and peak outcomes were 

modelled using linear regression whereas the total count outcome was modeled with negative 

binomial regression. For the three models of outcomes relating to the timing of mosquito 

activity throughout the night, we restricted the data to trap-nights when at least 50 mosquitoes 

were collected to avoid stochastic temporal variation associated with lower trap catches. 

Additionally, we further restricted the data used in the model for the nighttime peak in mosquito 

activity by excluding trap-nights where the peak occurred after midnight because we wanted to 

exclude broader host-seeking activity and focus on the primary period of Cx. tarsalis host-

seeking. All models included site as a random effect to account for differences in mosquito 

populations at different locations.  

Model selection was based on Bayesian Information Criterion (BIC) (Schwarz 1978). 

Wind speed, temperature, and relative humidity as observed on the hour from 12:00-20:00h 

initially were evaluated separately to determine the best-fitting time point for each factor before 

performing stepwise model selection by sequentially adding and removing variables at the best-

fitting time points until the BIC was no longer reduced through the addition or removal of a 

variable. Other factors under consideration were the study day for all outcomes, time to activity 

onset for the duration, peak, and count outcomes, and duration of evening activity for the count 

outcome. All variables in the final models except study day were standardized by mean-

centering and dividing by the standard deviation (SD). After establishing the best-fitting set of 

variables for each outcome, we compared the BIC for that model to models using weather 

measured at different time points to determine how much information may be lost by using 

weather observed at different times in the afternoon. Finally, we evaluated the change in model 

fit for each of the best-fitting models when using weather variables recorded at the Sacramento 



  

68 
  

Metropolitan Airport meteorological station (Station ID WBAN:93225; Latitude/Longitude 

38.69556°/-121.58972°) (Menne et al. 2012) to assess whether the observed relationships could 

be generalizable to publicly available weather data from a fixed location. All statistical analyses 

were conducted in R version 4.0.3 using the “lme4” package, version 1.1-23 (Bates et al. 2015, R 

Core Team 2020). 

2.3 Results 
2.3.1 Mosquito collections 

In all, there were 219 unique trapping intervals from the 10 BGC trap sites representing a 

total of 710 trap-nights between July 3 and September 6, 2019. Of these, 104 BGC collections 

were paired with either a CO2-baited trap or a rotator trap. Eleven (5%) of these 219 BGC 

trapping events experienced a technical problem with the trap that invalidated the collection 

and were removed from further analysis. An additional 28 (13%) had a manual:automatic count 

ratio > 1 SD above or below the mean and were also excluded, along with 38 trap-nights that did 

not fulfill the criterion of 96 consecutive 15-minute periods in 24 hours, leaving 165 unique 

trapping events over 492 trap-nights for analysis. These BGC trap collections yielded 222,054 

mosquitoes representing nine species (Table 2.1). Of these, 218 (< 0.1%) were males and were 

discarded. The most common species that in both trap types were Cx. tarsalis (69.0%), Cx. 

pipiens (16.9%), and An. freeborni (11.7%; Table 2.1), which differed in their geographic 

distribution (Figure 2.3). The BGC traps generally collected more mosquitoes than the CO2-

baited traps. The correlation for the proportion of Cx. tarsalis in total trap counts between the 

two trap types was 0.64 (Table 2.1). This gives evidence that conclusions made for Cx. tarsalis in 

BGC traps could be generalizable to the CO2-baited traps more typically used for WNV 

surveillance. Overall, the timing of mosquito activity per hour was similar between the BGC and 

the rotator traps, although higher proportions of mosquitoes were collected during evening in 

rotator traps (Figure 2.4). 
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2.3.2 Weather 
The mean daily minimum and maximum temperatures of trap-nights included in the 

statistical analyses were 16.37°C (SD 1.97°C) and 33.54°C (SD 2.03°C), respectively. There was a 

clear diel temperature pattern, with the coolest average temperature observed from 05:00-

06:00h while highest average temperature was observed between 16:00-17:00h (Figure 2.5a). 

The average daily wind speed was 4.4 km/h (SD 2.5), with hourly averages ranging from 3.13 

km/h between 06:00-07:00h to 5.21 km/h between 14:00-15:00h (Figure 2.5b). The corrected 

daily temperature profiles based on the observed air temperatures at nearby meteorological 

stations were similar to those observed at sites with external temperature sensors (Appendix 

2.6.3).  

2.3.3 Time of weather measurement for predicting host-seeking outcomes 
Initial model selection for the best-fitting weather variables began with wind speed for 

all four models. However, each model had a different best-fitting time for measuring wind 

speed, which limited the times for temperature and relative humidity in the stepwise selection 

procedure. Wind speed and temperature were consistently found as important meteorological 

predictors of all four Cx. tarsalis host-seeking outcomes whereas relative humidity was not 

found to add any information once temperature was included in the models. When comparing 

the final model formulations fitted using wind speed and temperature every hour from 12:00h-

20:00h, we found that the best-fitting time for predicting all four outcomes was consistently at 

20:00h, although the difference in BIC within models was negligible, with a maximum 1.4% 

change between the lowest and highest BIC seen in the total overnight count model (Figure 

S2.4). 

2.3.4 Model results 
The nightly Cx. tarsalis count for trap-nights included in the model ranged from 1 to 

7,501, with a median of 178.5 and SD of 479.67. There was strong spatial heterogeneity among 

sites (Figure 2.3a). The model fitted an average baseline count of 273 Cx. tarsalis, ranging from 

151 to 1,011 depending on the site. Independently, each 3 km/h increase in wind speed above the 
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mean was associated with the total count being reduced by nearly 25% and each 2°C increase in 

temperature above the mean was associated a 51% increase in total count (Table 2.2). This 

model also adjusted for study day, the timing of activity onset, and the duration of evening 

activity. Later-than-average activity onset was associated with a reduction in total mosquito 

count, whereas longer-than-average duration was associated with more mosquitoes being 

collected.  

The onset of host-seeking activity occurred most frequently during the hour from 20:00h 

to 21:00h on nights when at least 50 mosquitoes were collected, with a mean of 16.06 minutes 

after sunset (SD: 11.36 minutes). From the final model, the average onset of mosquito activity 

occurred approximately 20 minutes after sunset on any given day, although this ranged from 

10.62 minutes to 27.00 minutes, depending on the site. Wind speed at 20:00h had a stronger 

impact than temperature, although the effect sizes for both were modest. Every 3 km/h increase 

in wind speed above the mean was associated with a 2-minute delay in the start of mosquito 

host-seeking activity, whereas each 2°C increase in temperature above the mean delayed onset 

by 1.5 minutes (Table 2.2). This model adjusted for study day, which was associated with activity 

onset occurring closer to sunset as the study period progressed.  

The time of the collection of the median mosquito on a given night was more variable 

than the time of the first mosquito, primarily ranging from shortly after activity onset to more 

than three hours after activity onset (mean: 153.72 minutes; SD: 74.86 minutes). Evening 

mosquito activity was generally completed before 01:00h. The final model predicted that the 

median mosquito would arrive approximately 2.5 hours after the onset of mosquito activity, on 

average, again varying by site from just over one hour to over four hours. Each of the weather 

conditions included in the model independently had positive effects, where increases above the 

respective means were associated with lengthening the duration of evening activity (Table 2.2). 

Additionally, the combined effect of higher-than-average wind speed and temperature was 

associated with a moderation of the individual positive effects of these two factors. This model 
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also adjusted for study day and the timing of activity onset (the outcome of the previous model). 

Notably, later-than-average activity onset was associated with shortening the duration of 

evening activity (Table 2.2).  

Culex tarsalis counts typically reached their maximum within one hour of sunset, 

between 21:00h and 22:00h. The observed mean time of the peak hour was 21:18h. The fitted 

model predicted the peak of activity to occur at 21:48h, on average, with variation between 

21:08h and 23:00h depending on the site. This model was very similar to that of the onset of 

mosquito activity, where with each 3 km/h increase in wind speed or 2°C increase in 

temperature above their respective means delayed the time of the peak hour by more than 10 

minutes, while each subsequent week of the study period was associated with the peak occurring 

6 minutes earlier than during the previous week (Table 2.2). The time of activity onset relative to 

sunset did not have an effect on the timing of the peak in activity. The median number of Cx. 

tarsalis collected during the fitted peak hour was 86.93% of the number collected during the 

observed peak hour compared to 68.75% of the peak count during the hour beginning at 22:00h 

(Figure 2.6). 

2.3.9 Generalizability of weather measurements 
We compared model performance for each of the respective best-fitting models using 

wind speed and temperature records from the Sacramento Metropolitan Airport meteorological 

station and found that the change in fit for all four models was negligible compared to fitting the 

model with weather recorded at each individual site. The greatest loss in model fit was a 1.02% 

increase in BIC for the model predicting the duration of evening host-seeking activity (Table 

2.3). The model predicting the total overnight mosquito count saw no change in BIC when using 

fixed point versus site-specific weather. 

2.4 Discussion 
 Routine surveillance estimating mosquito abundance was highly sensitive to daily 

weather fluctuations. Culex tarsalis host-seeking endpoints are intertwined such that 
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accounting for weather fluctuations alone was insufficient for examining variability in the timing 

of host-seeking activity and the overnight trap counts used to estimate relative mosquito 

abundance as an indicator of arbovirus risk. Unlike prior studies that examined the effects of 

weather conditions at the time of the mosquito observation, we analyzed the effects of weather 

at a range of times during the afternoon leading to the collection event to aid vector control 

agencies in predicting the periods of highest adult female mosquito activity for enacting 

mosquito control. We observed that the onset of Cx. tarsalis host-seeking activity was highly 

correlated with sunset time and was most intense during the first half of the night. This is 

consistent with the findings of prior studies regarding Cx. tarsalis host-seeking behavior (Bailey 

et al. 1965, Reisen et al. 1997, Godsey et al. 2010). We found wind speed and temperature to be 

the most important factors affecting all the outcomes we observed, and the relationships were 

consistent regardless of the time in the afternoon used for the models. We also found that 

mosquito outcomes were related to each other, although we only considered antecedent 

outcomes as possible predictors for outcomes that occurred as the host-seeking night evolved. 

Although we cannot discount the possibility that overall lower counts may have impacted the 

detection of the first host-seeking mosquitoes, this was somewhat alleviated by excluding nights 

with fewer than 50 total mosquitoes from the host-seeking timing outcomes. 

Generally, days with above-average winds resulted in fewer Cx. tarsalis collected during 

a trap-night, later onset and peak of Cx. tarsalis host-seeking activity, and a longer duration of 

the first half of host-seeking activity. The mechanism for the effects of wind speed on host-

seeking activity was not clear. It has been suggested that host-seeking behavior of mosquitoes is 

greatly reduced at wind speeds beyond 3 km/h (Service 1980), so it is possible that the observed 

effect of wind speed on activity onset and peak was due to mosquitoes sheltering until more 

favorable conditions develop. We did observe slightly lower mean wind speeds at night, 

although nighttime wind speeds were more variable than during the day (Figure 2.4). The effect 

of increased wind speeds depressing trap catch has been documented previously (Bailey et al. 
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1965, Bidlingmayer 1985, Bidlingmayer et al. 1995, Hoffmann and Miller 2003, Gray et al. 2011) 

and could be the result of flight suppression as previously discussed or dispersal of the CO2 lure 

resulting in fewer mosquitoes being attracted to the trap. One study suggested direct flight 

suppression as a possible mechanism (Bidlingmayer et al. 1995). However, another study 

posited that the CO2 dispersal theory is more likely (Hoffmann and Miller 2003), although 

studies on the relationship between high winds, CO2 plume dispersal, and mosquito attraction 

are limited (Lacey and Cardé 2011, Cummins et al. 2012). Regardless of the mechanism, Cx. 

tarsalis abundance estimates generated from traps that were in place on windier days would 

underestimate vector density as a metric of WNV risk. Conversely, collections taken on calmer 

days would be closer to true estimates of vector density in an area. Higher wind speeds also may 

limit the effectiveness of adult mosquito control by dispersing mosquito activity throughout the 

night and minimizing the host-seeking population that would be impacted by a single control 

event, which typically lasts for one hour. 

Contrary to the observed effects of increasing wind speed, higher-than-average 

temperatures had the effect of increasing the overall number of Cx. tarsalis collected during a 

trap-night and accelerating the start and time of the peak hour of Cx. tarsalis host-seeking 

activity in the evening. However, temperature also had a positive association with the duration 

of the first half of an evening’s host-seeking activity after adjusting for the time of activity onset. 

Other studies have also shown the positive effects of nightly temperature on overnight trap 

counts (Bidlingmayer 1985, Hribar 2017), which could at least partially be attributed to 

mosquitoes being less active at cooler temperatures (Bailey et al. 1965, Bidlingmayer 1985). 

Possibly some of the positive effect of temperature on trap counts resulted from the lagged effect 

of temperature on mosquito populations due to the increased rate of reproduction for 

mosquitoes at higher temperatures and temporal autocorrelation of temperature (Hribar et al. 

2010, Chuang et al. 2011, Lebl et al. 2013, Ciota et al. 2014, Montarsi et al. 2015, Karki et al. 

2016, Groen et al. 2017, Moise et al. 2018, Ripoche et al. 2019). The effect of temperature on the 
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timing of host-seeking activity by Cx. tarsalis is less well-established, although it could also be 

attributed to optimum temperature ranges for mosquito flight (Rudolfs 1925, Bidlingmayer 

1974). Nevertheless, other studies examining the relationship between temperature and the 

timing of mosquito host-seeking have not clearly identified such associations (Bidlingmayer 

1974, Reisen et al. 1997, Veronesi et al. 2012). 

The ability to predict which hour during a night will represent the peak for Cx. tarsalis 

host-seeking activity is important for vector control agencies to target adult mosquito control 

measures in ways that impact the greatest proportion of the active vector population. Our study 

found that the peak hour of Cx. tarsalis activity was best predicted by the same set of variables 

influencing the start of host-seeking activity, namely late evening wind speed and temperature 

and study day, likely because of the timing of peak activity once host-seeking has begun. In our 

study, the peak hour typically began within three hours of activity onset. This range is in line 

with that identified for Cx. tarsalis in southern California and Colorado (Reisen et al. 1997, 

Godsey et al. 2010). Assuming vector control agencies have one hour in a given night to conduct 

a pesticide application, modifying mosquito control practices to commence at the start of the 

peak hour of mosquito activity predicted from the day’s weather conditions would reach, on 

average, over 80% of the number of Cx. tarsalis females active during the actual peak hour. In 

comparison, only 66% of these mosquitoes would be impacted if consistently beginning 

operations at the fixed time of 22:00h. This does not necessarily mean that all host-seeking 

mosquitoes during this hour would be impacted by adulticide, nor that non-host-seeking 

mosquitoes would not be affected. However, targeting the peak hour would likely also have a 

greater reach on the non-host-seeking population as well and could have an overall impact of 

reducing the risk of WNV transmission by further decreasing the vector population, but this is 

beyond the scope of this study. It should be noted that there are other necessary meteorological 

conditions, such as temperature inversion, that need to be met in order for vector control 

operations to proceed, which we also did not evaluate. A caveat to this result is we did not 
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investigate potential differences in host-seeking activity between parous and nulliparous 

mosquitoes. Because parous mosquitoes are more likely to be infectious, targeting their peak 

hour of activity would likely have a greater impact on WNV risk reduction.  

We observed very little loss of model performance by using weather conditions recorded 

from a fixed, publicly available source of meteorological data versus using site-specific weather 

conditions recorded earlier in the day. However, it is important to note that the Sacramento 

Metropolitan Airport meteorological station used as the source of our fixed-point weather data 

was surrounded by landscape similar to the trap sites, thus temperature or wind speed 

observations from this station may be more correlated to those at the trap sites than a more 

urban meteorological station, for example. This means it would not be necessary to deploy 

weather monitoring devices at routine surveillance sites in order to project the course of 

mosquito host-seeking activity throughout the night, but care should be taken to ensure that the 

weather estimates come from a reliable source within as close an environment to the locations of 

interest as possible. This also does not diminish the importance of understanding local 

meteorological phenomena such as temperature inversion for the successful deployment of 

adult mosquito control. Additionally, although model fit was progressively poorer when using 

time points farther from the start of mosquito activity, the change relative to fitting the models 

using weather at 20:00h remained very low, indicating that vector control agencies can 

determine in advance whether conditions would be suitable for reaching a high enough 

proportion of potential vectors and allocate resources accordingly. 

A limitation to this study is the use of imperfect trapping methods for sampling 

mosquitoes. A recent study on the trapping efficiency of BG-Sentinel traps for collecting Aedes 

aegypti females found that 8% of trap encounters resulted in capture when using only CO2 as an 

attractant (Amos et al. 2020). Similar levels of trapping efficiency were observed for both Cx. 

tarsalis and Cx. quinquefasciatus capture rates in CO2-baited traps that are commonly used in 

arbovirus surveillance (Cooperband and Cardé 2006). This limitation should not result in 
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differential bias in our mosquito collections because we collected mosquitoes in line with 

standard surveillance practices for WNV vectors using CO2 as an attractant, although one study 

of Cx. tarsalis in southern California found higher trapping efficiency when observed counts per 

trap-night were lowest (Reisen and Lothrop 1995). Regardless, it is important to acknowledge 

that these trap counts represent a small fraction of the host-seeking vector population in this 

area. 

With this study, we have shown that the timing and magnitude of host-seeking activity 

by Cx. tarsalis in a rice-growing region of northern California is highly dependent on weather 

conditions prior to the start of mosquito activity. In all, a better understanding of how host-

seeking mosquito vectors respond to daily fluctuations in weather conditions will help improve 

WNV risk estimation and targeting of mosquito control measures and ultimately reduce WNV 

transmission in this area. 
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2.6 Appendix 
2.6.1 BG-Counter temperature correction 
The BG-Counter temperature sensors are directly on the trap beneath a plastic rain shade, so are 

susceptible to temperature fluctuations when subjected to direct sunlight at the hottest times of 

the day (Figure 2.2). Thus, we devised a correction to the 15-minute temperature observations 
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that better represents the true air temperature experienced at these sites. First, we gathered data 

from eight nearby meteorological stations monitored by the National Oceanic and Atmospheric 

Administration (NOAA) and the California Irrigation Management Information System (CIMIS) 

(Table S2.1) (Snyder 1984, Menne et al. 2012) and calculated the inverse-distance weighted 

mean hourly temperature using stations within 20 km of each site (R package “sp”, version 1.4-5 

(Pebesma and Bivand 2005, Bivand et al. 2013)) (Figure S2.1). We then took the average 

temperature during the nighttime hours of 21:00h-06:00h for each date and site separately and 

centered each 15-minute weighted average temperature observation on this mean. We chose 

these times because the temperature profiles in Appendix 2.6.3 (i.e., the daily temperature plots 

at each site) indicated little difference between weather station and BG-Counter temperature 

observations at those times. As the weather station temperature is hourly, values on the hour 

were repeated for each 15-minute period within the hour. Next, we calculated the median of the 

centered temperature for every 15-minute period using a moving window of the current week 

and one week before and after at each site. We used the median to reduce the potential effect of 

outliers. Finally, we added the nighttime mean temperature back to the median centered 

temperature to return to the original temperature scale. 

2.6.2 Estimation of 15-minute Culex tarsalis counts 
During the second month of mosquito collections, we placed a collection bottle rotator on a CO2-

baited trap 2 nights per week at each of the trap sites. These rotators were programmed to 

change collection bag at regular intervals throughout the night (Table S2.2), and the collections 

were speciated in the same manner as described in the paper. We estimated the proportion all 

mosquitoes collected during each rotator interval that were Cx. tarsalis (Figure S2.2). Using the 

start time of the rotator intervals, we determined the cup to which every hour of the day would 

have been associated in order to create a 24-hour profile of the proportion Cx. tarsalis, with a 

proportion of 0 applied during hours when the rotators were not in operation (i.e., 10:00h-

18:00h). Finally, we fitted a generalized additive model of the proportion Cx. tarsalis against 
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hour of the day to create a smoothed 24-hour profile using the R package “mgcv”, version 1.8-34 

(Wood 2017). The smoothed hourly proportions were then multiplied to the 15-minute counts of 

mosquitoes that occurred during the same hour of the day to approximate the number of Cx. 

tarsalis every 15 minutes. 

2.6.3 Temperature corrections 
These daily time series show temperature at the sites that had two temperature recording 

devices. The black line is the observed temperature from the BGC trap, the red line is the 

observed temperature from the external temperature sensor, and the blue line is the corrected 

temperature following the procedure described in 2.5.1. 
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2.7 Tables and figures 
Table 2.1. Counts of female mosquitoes by species. The total number collected in BG-

Counter and in CO2-baited traps are presented. The Intraclass correlation coefficient (ICC) 

represents the degree of similarity between paired collections. 

Species Total collected in 
BG-Counter traps 
(%) 

Total collected in 
CO2-baited traps 
(%) 

Total in all 
trap types (%) 

ICC for the 
proportion of 
counts (95% CI) 

Culex tarsalis 153,685 (69.3) 7,758 (64.2) 161,443 (69.0) 0.64 (0.48-0.76) 
Culex pipiens 38,825 (17.5) 603 (5.0) 39,428 (16.9) 0.33 (0.11-0.52) 
Anopheles freeborni 24,392 (11.0) 3,091 (25.6) 27,483 (11.7) 0.61 (0.45-0.74) 
Culex stigmatasoma 2,695 (1.2) 127 (1.0) 2,822 (1.2)  
Aedes melanimon 856 (0.4) 337 (2.8) 1,193 (0.5)  
Aedes sierrensis 830 (0.4) 146 (1.2) 976 (0.4)  
Culex erythrothorax 533 (0.2) 27 (0.2) 560 (0.2)  
Anopheles 
franciscanus 

12 (≈0) 0 (0) 12 (≈0)  

Culiseta incidens 8 (≈0) 0 (0) 8 (≈0)  
Total 221,836 (100) 12,089 (100) 233,925  
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Table 2.2. Model results. Unadjusted and adjusted estimates for factors associated with each of the four outcomes. All variables 

were mean-centered where appropriate and scaled by the variable’s standard deviation. 

Model Variable Mean 
 

Scaling factor Unadjusted estimate 
(95% CI) 

Adjusted estimate 
(95% CI) 

Number of Cx. tarsalis 
collected overnight (count)† 

(N=490) 

Wind speed* (km/h) 3.28 km/h 3.00 km/h 0.73 (0.68, 0.78) 0.76 (0.70, 0.82) 

Temperature* (°C) 25.93°C 1.99°C 1.28 (1.21, 1.36) 1.49 (1.32, 1.69) 

Study day  7 days 1.01 (0.98, 1.03) 0.97 (0.95, 0.99) 

Onset of host-seeking 
activity (min) 

20.35 min 26.93 min 0.82 (0.76, 0.89) 0.85 (0.79, 0.91) 

Duration of evening 
activity (min) 

153.83 min 78.88 min 1.26 (1.16, 1.37) 1.26 (1.18, 1.36) 

Temperature-day 
interaction 

  NA 0.96 (0.93, 0.98) 

Onset of host-seeking activity, 
relative to sunset (min)‡ 

(N=427) 

Wind speed* (km/h) 3.28 km/h 3.00 km/h 1.99 (0.82, 3.16) 2.24 (1.01, 3.48) 

Temperature* (°C) 25.93°C 1.99°C 1.01 (0.06, 1.95) 1.49 (0.52, 2.47) 

Study day  7 days -0.80 (-1.15, -0.44) -0.63 (-0.99, -0.27) 

Duration of evening host-
seeking activity (min)‡ (N=427) 

Wind speed* (km/h) 3.28 km/h 3.00 km/h 13.72 (6.61, 20.83) 16.49 (8.92, 24.06) 

Temperature* (°C) 25.93°C 1.99°C 3.24 (-2.52, 8.99) 8.82 (2.99, 14.64) 

Onset of host-seeking 
activity (min) 

16.06 min 11.36 min -8.98 (-15.52, -2.43) -13.75 (-20.08, -7.40) 

Wind-temperature 
interaction 

  NA -12.02 (-17.28, -6.75) 

Peak hour of Cx. tarsalis 
activity (elapsed time since 

12:00) ‡ (N=381) 

Wind speed (km/h) 3.28 km/h 3.00 km/h 10.23 (4.15, 16.31) 11.00 (5.02, 16.99) 

Temperature (°C) 25.93°C 1.99°C 9.09 (4.02, 14.16) 10.26 (5.32, 15.20) 

Study day  7 days -7.03 (-8.83, -5.24) -6.11 (-7.89, -4.33) 

†Mixed effects negative binomial regression model with random intercept for site. Estimates presented as rate ratios. Significant 

effects are present when the 95% confidence interval excludes 1.00. 

‡Mixed effects linear regression model with random intercept for site. Significant effects are present when the 95% confidence 

interval excludes 0.00. 

*Weather variable measured at 20:00h. 
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Table 2.3. Generalizability of meteorological information. The Bayesian information 

criterion (BIC) was compared for models using weather measured at individual trap sites versus 

using weather from a publicly available source. 

Model BIC – site-specific 
weather data 

BIC – publicly 
available, fixed-point 
weather data 

Percent increase in BIC 
for publicly available 
weather data 

Number of Cx. tarsalis 
collected overnight 

5,379.4 5,380.6 0.02% 

Onset of host-seeking 
activity, relative to 
sunset 

3,188.9 3,193.1 0.13% 

Duration of evening 
host-seeking activity 

4,716.9 4,764.8 1.02% 

Peak hour of Cx. 
tarsalis activity 

4,042.5 4,059.5 0.42% 

 

Table S2.1. Meteorological stations included in inverse distance-weighted mean 

temperature. 

Station Name Station ID Source* Latitude, Longitude 
Bryte 155 CIMIS 38.59916°, -121.5404° 
Davis 006 CIMIS 38.53569°, -121.7764° 
Dixon 121 CIMIS 38.41556°, -121.7869° 
Lincoln Regional Airport Karl Harder Field WBAN:00205 NOAA 38.90900°, -121.3510° 
Sacramento Metropolitan Airport WBAN:93225 NOAA 38.69556°, -121.5897° 
Verona 235 CIMIS 38.79794°, -121.6114° 
Winters 139 CIMIS 38.50126°, -121.9785° 
Woodland 226 CIMIS 38.67272°, -121.8117° 

*NOAA: National Oceanic and Atmospheric Administration (Menne et al. 2012); CIMIS: 

California Irrigation Management Information System (Snyder 1984). 

 

Table S2.2. Schedule of collection bottle rotators. 

 Time interval 
Cup 1 18:00-20:00 
Cup 2 20:00-21:00 
Cup 3 21:00-22:00 
Cup 4 22:00-00:00 
Cup 5 00:00-02:00 
Cup 6 02:00-04:00 
Cup 7 04:00-06:00 
Cup 8 06:00-10:00 
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Figure 2.1. Map of the study area. Trap sites are represented by blue circles and major 

cities in each county are labelled and represented by green triangles. State and county 

boundaries were obtained from the Database of Global Administrative Areas (GADM 2018). 
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Figure 2.2. Examples of the BG-Counter trap configurations. Panel A shows the cage 

design in Sacramento-Yolo MVCD while Panel B shows the design in Placer MVCD. All traps 

were fitted with 1) a BGC trap, including the infrared sensor and temperature recording device.; 

2) an anemometer and wind vane recording wind speed and direction every 1 minute; 3) a 20-lb 

CO2 cylinder; 4) a solar panel; and 5) a 12V battery for powering the trap. 
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Figure 2.3. Spatial distribution of selected mosquito species. The mean count per trap-

night of Cx. tarsalis is shown at the top-left, at each site of Cx. tarsalis, Cx. pipiens at the top-

right, and An. freeborni at the lower-left. County boundaries were obtained from the Database 

of Global Administrative Areas (GADM 2018). 
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Figure 2.4. Hourly mosquito collections in BG-Counter and CO2-baited traps with a 

collection bottle rotator (Rotator trap). Bars represent the proportion of all mosquitoes, 

regardless of species, collected during each hour of the day by the two trap types. Hourly 

proportions that had a significant Pearson’s chi-square test statistic with a Bonferroni 

adjustment for multiple comparisons are denoted above the bars. The number of stars 

represents the level of significance: **** for p < 0.0001, *** for p < 0.001, ** for p < 0.01, and * 

for p < 0.1.  
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Figure 2.5. Observed hourly temperature and wind speed. Panel A shows temperature 

in Celsius and Panel B shows wind speed in kilometers per hour. 

 

 

Figure 2.6. Proportion of night’s maximum single-hour Cx. tarsalis count 

potentially impacted by two timings of mosquito control. The boxplots show the 

distribution of the proportion of the observed peak Cx. tarsalis count captured if predicting the 

peak hour from weather conditions (top) or using a fixed time to estimate the peak hour 

(bottom). The right side of the x-axis indicates better agreement with the actual peak hour of 

activity.  
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Figure S2.1. Map of meteorological stations included in inverse distance-weighted 

temperature. Red circles represent trap sites and blue triangles represent meteorological 

stations noted in Table S2.1. State and county boundaries were obtained from the Database of 

Global Administrative Areas (GADM 2018). 

 

 

Figure S2.2. Proportion Cx. tarsalis during each rotator trap interval. Aggregated 

over all CO2-baited rotator trap collections. 
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Figure S2.3. Estimated time of different percentiles of a night’s count. For each 

percentile, the bars show the time of night e.g., 10% of the night’s total Cx. tarsalis count had 

entered the trap. 
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Figure S2.4. Comparison of the Bayesian information criterion for models using 

weather observed at different hours. The BIC values are evaluated as the percent change 

from the lowest observed BIC. The NA indicator on the x-axis marks models that did not include 

weather variables as predictors. 
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Abstract 
West Nile virus (WNV) is a zoonotic arbovirus that cycles between avian hosts and 

mosquito vectors, particularly mosquitoes in the genus Culex, that can spill over to humans 

through the bites of infected mosquitoes. As there is no licensed vaccine for use in humans, 

disease prevention relies on mosquito control with entomological surveillance guiding the 

application of adulticides in an area when risk indicators, particularly mosquito abundance and 

WNV infection prevalence in mosquitoes, become elevated. Because vector control districts 

often operate with limited resources, knowledge of where and when upcoming high-risk periods 

are expected, and the certainty of that estimate, is critical for allocating resources appropriately. 

We employed a generalized additive model (GAM) to estimate spatio-temporal trends in Cx. 

tarsalis abundance in the Central Valley of California, the region with the highest WNV 

incidence in the state. The model was validated through a k-fold cross-validation procedure and 

used to predict weekly Cx. tarsalis abundance across the Central Valley for the years 2016-2020 

using data observed up to the week prior to that being predicted in order to mimic the 

progression of knowledge during a surveillance season. The GAM found strong seasonal 

patterns in abundance, modified by local land use and spatio-temporal anomalies. Additionally, 

the models maintained a similar predictive accuracy for out-of-sample data compared to that for 

the training data set. We then predicted Cx. tarsalis one week in the future at sites within 10 km 

of an observed trap within the prior four weeks. We further estimated the uncertainty around 

these predictions to visualize not only where Cx. tarsalis abundance would be expected to be 

high, but also where lack of surveillance coverage limits the utility of predictions. We observed 

predictions to be most accurate when the nearest observed trap was within 2 km and one week 

prior, thus limiting the window of utility for making short-term future predictions of abundance. 

Ultimately these results provided a step towards improved spatial risk estimation of WNV 

transmission, specifically of future high-risk periods in a high-incidence region of California. 
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3.1 Introduction 
 West Nile virus (WNV; family Flaviviridae) is a zoonotic encephalitic arbovirus of 

annual concern across most of the U.S. WNV is maintained and amplified in bird-mosquito 

cycles, with incidental spillover to mammalian hosts through bridge vectors, typically within the 

genus Culex (Reisen et al. 2004, Rochlin et al. 2019). There is no licensed vaccine to protect 

humans against WNV disease, so population-level disease prevention relies on vector control to 

reduce biting of infectious mosquitoes on humans (Gubler et al. 2000, Rose 2001, Kaiser and 

Barrett 2019). The need for vector control is assessed through routine surveillance of mosquito 

populations by local vector control agencies to monitor for increases in mosquito abundance 

and/or infection prevalence in mosquitoes (California Department of Public Health et al. 2020). 

Both of these metrics have been associated with detections of human cases (Bolling et al. 2009, 

Colborn et al. 2013, Kilpatrick and Pape 2013, Karki et al. 2017, Talbot et al. 2019) and are able 

to be reduced with the timely application of vector control in response to elevated risk levels 

(Carney et al. 2008, Holcomb et al. 2021). WNV activity in an area is further estimated through 

detections of WNV through the passive surveillance of dead birds and seroconversions in 

sentinel chicken flocks in some areas, which can trigger intensified mosquito surveillance efforts 

(California Department of Public Health et al. 2020). 

The California Mosquito-Borne Virus Surveillance and Response Plan (hereafter: 

Response Plan) delineates a risk assessment for interpreting surveillance observations, 

incorporating mosquito abundance, mosquito infection prevalence, dead bird infections, 

sentinel chicken seroconversions, and daily mean temperature through inverse-distance 

weighting into a risk surface for the state . The Response Plan map is produced weekly using 

information recorded over the preceding two weeks but lacks a predictive aspect to forecast how 

WNV activity in an area will evolve in the near-term future. Additionally, there is no measure of 

uncertainty due to different levels of surveillance coverage, where some risk estimates may be 

unreliable due to high stochastic variability from small sample sizes.  
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 Although the highest case numbers in California are concentrated in the Los Angeles 

area of southern California, the highest incidence tends to occur in the rural, sparsely populated 

areas of the Central Valley (Snyder et al. 2020). Furthermore, WNV risk is heterogeneously 

distributed within these high-risk counties when incidence is examined on a finer spatial scale 

(Danforth et al. 2021). The vector Cx. tarsalis has been associated with high rates of WNV 

transmission in regions defined by irrigated agriculture in the United States, which provides key 

larval habitat for this species (Bailey et al. 1965, Sudia et al. 1971, Reisen et al. 2009, Eisen et al. 

2010, Schurich et al. 2014, Kovach and Kilpatrick 2018, Dunphy et al. 2019, Rochlin et al. 2019). 

In California, the abundance of Cx. tarsalis varies seasonally and geographically and is found in 

high abundance in the Central Valley and irrigated areas of the southern desert (Reisen, 

Lothrop, Presser, et al. 1995, Barker et al. 2010). Cx. tarsalis are also more competent vectors of 

WNV and more likely to act as bridge vectors through opportunistic feeding than mosquitoes in 

the Cx. pipiens complex (Reisen et al. 2005, 2013, Thiemann et al. 2012, Rochlin et al. 2019), 

making it more likely that an infectious mosquito comes into contact with a person and thereby 

contributing to the high incidence observed in Cx. tarsalis-dominated areas. 

Mosquito abundance forecasts and prediction uncertainty are elements that have not yet 

been incorporated into the Response Plan’s risk assessment. Space-time models such as 

generalized additive models (GAMs) offer a simple method for producing forecasts based on 

historical and current trends. GAMs feature the ability to model nonlinear relationships as 

smooth functions rather than linear coefficients (Wood 2017) and previously have been applied 

for modeling spatio-temporal trends in mosquito abundance (Hwang et al. 2020, Wang et al. 

2020, Holcomb et al. 2021). However, the use of GAMs in this context has been primarily 

retrospective with the intention of understanding factors affecting mosquito population 

dynamics. Here, we apply GAMs that incorporate observed surveillance information to forecast 

weekly Cx. tarsalis abundance across unsampled locations of the Central Valley of California for 

the peak WNV transmission season for five historical surveillance years. This study will provide 



  

110 
  

a useful tool for understanding WNV risk patterns in areas where surveillance coverage is 

limited or nonexistent and for identifying where additional vector control activity may be 

warranted.  

3.2 Methods 
3.2.1 Study area 
 This study focused on one of the regions of California where Cx. tarsalis is highly 

abundant. The Central Valley is a large, elongated valley predominantly characterized by 

irrigated agriculture, including rice, and is bounded by the Sierra Nevada to the east, the Coast 

Range to the west, the Cascade Mountains to the north, and the Tehachapi Mountains to the 

south. There are 31 vector control districts that operate throughout the Central Valley (Figure 

3.1), of which 20 districts met maintained records of CO2-baited trap collections in the 

VectorSurv Gateway database (see acknowledgements).  

3.2.2 Mosquito abundance data 
 Entomological surveillance data relating to adult mosquito abundance for the years 

2006-2020 were obtained from the VectorSurv Gateway through data request #53 (VectorSurv 

2021). These data encompassed all CO2-baited trap collections for all districts whose data were 

available in the database. We focused on CO2-baited traps as these are a standard method for 

collecting host-seeking female mosquitoes and readily capture adult Cx. tarsalis (Newhouse et 

al. 1966, Reisen and Pfuntner 1987, Reisen et al. 2000). We excluded traps set by districts 

outside of the study region as well as traps above 300 m (≈1000 ft) elevation, where the 

transition to mountainous landscape provides less suitable Cx. tarsalis habitat (Barker et al. 

2009, Schurich et al. 2014). The elevation at each trap site was drawn from the R package 

“elevatr”, version 0.4.1 (Hollister 2021). Each mosquito collection event was associated with the 

date of collection, the number of trap-nights for which the trap was operated, and the GPS 

coordinates of the trap. We used the collection date to estimate the epidemiologic week of 

collection using the R package “lubridate”, version 1.7.10 (Grolemund and Wickham 2011). 
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Because of low surveillance numbers during the winter months, any observations occurring 

during week 53 were treated as week 52. We then created an indicator for the week since the 

start of the study period (year-week) by multiplying the epidemiologic week by the number of 

years since 2006. 

3.2.3 Environmental data 
 Trap coordinates were projected to NAD83/California Albers (EPSG: 3310) and a range 

of buffers were applied to each unique trap location during each year: 0.1 km, 0.5 km, 1 km, 2 

km, and 5 km. We estimated the proportion coverage between 0 (no coverage within each buffer 

of the trap) to 1 (full coverage within each buffer of the trap) of land use categories from the 

USDA Cropland data for each of the years 2008-2020. These data have 30-meter resolution and 

incorporate the National Land Cover Database as the non-agricultural layers (Homer et al. 2015, 

USDA National Agricultural Statistics Service Cropland Data Layer 2020). Cropland data prior 

to 2008 were at a coarser resolution, so these years were excluded from the study. Land use 

types were categorized into seven groups relevant for discriminating Cx. tarsalis habitat and 

abundance: cover crops, developed land, orchards and vineyards, rice fields, row crops, 

wetlands, and unsuitable habitat, such that the sum of proportions of the seven groups within 

each buffer zone equaled 1 (Table S3.1). We separated rice fields from other irrigated agriculture 

because of its singular relationship with Cx. tarsalis habitat (Hoy et al. 1971, Pitcairn et al. 

1994). Temperature data were derived from the North American Land Data Assimilation System 

dataset (Xia et al. 2012). We calculated the daily mean temperature for each day of the study 

period, which we then aggregated by week to estimate the mean temperature for the two weeks 

prior to the week of mosquito collection. The raster pixel values for mean temperature during 

the week of the collection event and the two weeks prior to the collection event were extracted at 

each trap location using the R package “raster”, version 3.4-5 (Hijmans 2020). 
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3.2.4 Statistical analyses 
 To model the relative abundance of Cx. tarsalis, we fitted a negative binomial GAM for 

the Central Valley using the R package “mgcv”, version 1.8-34 (Wood 2011, 2017). The model 

structure for establishing smooth functions of seasonality followed the structure introduced by 

Holcomb et al. (2021), which allowed the nonlinear effects of epidemiologic week to vary by 

percent coverage of each land use category. The model included an offset for the number of trap-

nights of collection, the combined effects of [X, Y] point location of the trap and year-week to 

capture overall spatio-temporal trends at each site, and the average temperature over the two 

weeks prior to the week of trapping. In addition, the model contained a seasonal term for each of 

the land use groups to capture the seasonality of Cx. tarsalis abundance within different 

ecologic zones. We used the Akaike information criterion (AIC) to select the buffer zone for land 

use that produced the best-fitting model. We also used the AIC to evaluate whether certain 

similar land use categories within the best-fitting buffer zone could be grouped for a more 

parsimonious model. 

 The final model was validated by training 10 individual models with a random subset of 

90% of the data, withholding the remaining 10% for testing. We estimated the Dawid-Sebastiani 

scores (DSS) and logarithmic scores (LS) of the predicted values using the R package 

“surveillance”, version 1.19.1 (Czado et al. 2009). The DSS and LS are penalties comparing the 

expectation of the probability mass function for the negative binomial distribution to the 

observed value at a given set of covariates and are minimized when the expectation matches the 

true value (Gneiting and Raftery 2007, Czado et al. 2009, Paul and Held 2011). The mean DSSs 

LSs of predicting the training versus testing subsets were compared through paired sample t-

tests to examine the ability of the models to predict Cx. tarsalis abundance at sites that were not 

recorded, where p-values below 0.05 would indicate a differing predictive ability. We used both 

scores to confirm that the chosen score did not impact the observed results. 
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 We tested the predictive ability of the final model by repeating the 10-fold cross-

validation process for a series of models iteratively adding weeks of data and randomly 

withholding 10% of the traps operated during the final week included in the data from model 

fitting. We repeated this process for each week from the beginning of April through the end of 

October for each of the years 2009-2020. The mean DSSs and LSs of predicting the training 

versus testing subsets were compared as before. We started with the year 2009 because at least 

one year of data was required to estimate a seasonal trend. We also compared the mean fitted 

Cx. tarsalis abundance from the 10 models at the traps run during the week following the last 

week in the model to the observed abundance at each of those locations. This allowed us to 

assess the utility of the model at predicting abundance at unmeasured locations and understand 

how increasing data availability impacted model prediction. 

Finally, we predicted weekly abundance per CO2-baited trap-night on a 2.5-km uniform 

spatial grid for the beginning of April through the end of October (weeks 14-44) for each of the 

years 2016-2020 by sequentially fitting models using data observed up to the week before the 

week being predicted. Weekly predictions were made by taking the mean estimated abundance 

from 1,000 random draws of the posterior distribution of the model, a multivariate normal 

distribution, and a 95% prediction interval around the mean was calculated from the 2.5% and 

97.5% quantiles of the estimates (Wood 2017). To reduce prediction error, we restricted 

predictions to points within 10 km of observed trapping locations in the four weeks prior to the 

prediction week. We restricted predictions within a buffer of 10 km from observed surveillance 

locations based on a conservative estimate of Cx. tarsalis flight range (Dow et al. 1965, Reisen et 

al. 1992, Reisen and Lothrop 1995). All statistical analyses were conducted in R (version 4.0.5) 

(R Core Team 2021). 

3.3 Results 
 Between 2008 and 2020, 161,257 trapping events were sampled from 10,511 unique 

trapping locations within the study area (Table 3.1). We observed that 4,188 (39.84%) of these 
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unique locations were sampled in more than one year, with 106 (1.01%) being sampled in all 

years. There were higher concentrations of traps around the populated areas of the Central 

Valley (Figure 3.1). Agriculture of all types covered almost half of the land within 1 km of trap 

locations while developed areas covered the highest single proportion of land within the 1 km 

trap buffer, on average (Table 3.1). Overall, there was a distinct seasonal trend in Cx. tarsalis 

abundance (Figure 3.2). Mean abundance across all years peaked between epidemiologic weeks 

28-39, corresponding to approximately the beginning of July through the end of September, 

with smaller early-season peaks in weeks 14 and 18. 

 The AIC indicated that the best buffer zone for estimating land use around the trap sites 

was 1 km. The more parsimonious models combining the non-rice agriculture categories or open 

water and wetlands were not better fitting than the full model, so all seven land use variables 

were retained for the final model. All smooth terms included in the final model were highly 

significant (p-value < 0.0001) and the AIC of the model without the separate seasonal trends by 

land use indicated that model fit was improved by including the land use stratification. The 

smooth function estimates are presented in Figure 3.3. Variability in Cx. tarsalis abundance was 

explained largely by the spatio-temporal terms and seasonal variation in rice fields and 

wetlands. In terms of model validation, the differences in the paired mean LSs and DSSs for the 

training data versus the testing data were not statistically different (Table 3.2) and there was no 

difference in model residuals between the testing and training data (Figure S3.1). 

 When predicting at trap sites withheld from model-fitting, we observed no differences in 

the LS or DSS trends between training, testing, and prediction data (Figure 3.4). LSs in all years 

were higher in the middle of the prediction season, corresponding to the period of greatest Cx. 

tarsalis abundance, and did not vary across years, indicating that accumulating data history did 

not improve model fitting. This trend was not observed with the DSSs. The average predicted 

counts from the 10 validation models for each prediction week tended to be similar during the 

weeks with the highest average Cx. tarsalis abundance, but the model did not capture the high 
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early-season abundance during 2017, instead predicting high early-season counts in 2018 

(Figure 3.5). When examining scores for observations within 10 km of a trap in the prior four 

weeks, LSs indicated that the model performed better at predicting abundance when predictions 

were within 1 week of another trap within 5 km or within 2 weeks of a trap within 1 km, limiting 

the window of utility for model predictions of Cx. tarsalis abundance. However, this pattern was 

not observed for the DSSs (Figure 3.6). 

 Prediction points were an average of 4.62 (SD: 2.60) km from the nearest trap operated 

during the prior four weeks and the nearest traps were set an average of 1.64 (SD: 0.95) weeks 

prior to the prediction week. The land cover composition in the immediate surroundings of the 

prediction points (i.e., within 1 km) was generally similar to that of the trap sites, although the 

prediction locations had lower proportion coverage of developed land due to the higher density 

of observed trap locations near developed areas (Figure S3.2). There was overall moderate 

correlation (0.45) by the Spearman’s rank correlation coefficient between the predicted 

abundance and the observed abundance at the nearest trap to the prediction point. Correlation 

coefficients were highest between predicted and observed points when the predictions were 

closest in both space and time to the nearest observed trap and decreased as the predictions 

became farther from the nearest trap (Figure 3.7). 

The overall predicted spatio-temporal patterns of Cx. tarsalis abundance showed low 

estimated abundance coinciding with low trap coverage in the early part of the season, with a 

peak of both coverage and predicted abundance in the middle part of the season, and then with a 

decline in surveillance at the end of the season (Figure 3.8). The highest abundance was 

predicted to occur in the northern extent of the primary Central Valley corridor (Sutter-Yuba 

MVCD and Yolo County) as well as to the southwest of the Central Valley (Fresno Westside MAD 

and western Merced County MAD). Urban centers throughout the valley stood out as regional 

pockets with lower predicted abundance. As a measure of uncertainty around the predicted 

estimates, the width of the 95% prediction interval was greatest at points with the highest 
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predicted abundance (Figure 3.8). There was variation among years in the extent of surveillance 

coverage in the four weeks prior to prediction as well as the magnitude of predicted abundance 

(Fig S3.3). The weekly prediction and prediction interval rasters for all years are available as 

supplementary geoTIFF files. 

3.4 Discussion 
 Our study demonstrated an efficient method for utilizing antecedent surveillance 

observations to both spatially and temporally predict Cx. tarsalis abundance at unmeasured 

locations. This species is an important vector of WNV in rural areas of the western United States 

(Reisen et al. 2009, Kovach and Kilpatrick 2018, Dunphy et al. 2019, Rochlin et al. 2019) and 

abundance estimates are a key feature of local WNV risk assessments (California Department of 

Public Health et al. 2020). Our approach modelled the spatial heterogeneity in entomological 

surveillance coverage and assessed the ability to generate short-term future abundance 

estimates based on current data. We evaluated the large geographic area of the Central Valley, 

which has the highest human WNV disease incidence in the state (Snyder et al. 2020). This 

region is ecologically diverse and includes extremely productive habitat for Cx. tarsalis, 

particularly irrigated agriculture such as rice and vegetated wetlands (Hoy et al. 1971, Pitcairn et 

al. 1994, Kwasny et al. 2004).  

 There was variability in surveillance coverage both within and among districts. WNV 

vector surveillance typically is concentrated around inhabited areas where preventative 

measures would be most beneficial, and this was reflected in the distribution of unique trap 

locations throughout the study area and study period. However, the modelling approach we 

used allowed us to estimate Cx. tarsalis abundance at areas that were not sampled. Cross-

validations evaluated the ability of the model to predict abundance at unmeasured sites and 

times by comparing fitted model abundance estimates to the observed counts in both the 

modelled training data and the withheld testing data. That there was no significant difference in 

DSSs or LSs between the training and testing data for any of the ten fitted cross-validation 



  

117 
  

models indicated that the model could be used to incorporate sites without surveillance coverage 

within the Central Valley, for example through historical data. We also saw no difference in 

DSSs or LSs in the weekly model cross-validation over time, meaning that the addition of 

surveillance years did not improve model estimation. The increased scores during the period of 

greatest Cx. tarsalis abundance reflected greater variability in counts at the maxima of the 

distribution, whereas the fitted distributions better captured observed Cx. tarsalis counts during 

the low periods of the season.  

 We saw a clear seasonal trend in Cx. tarsalis abundance throughout the study area. The 

main peak in mean abundance occurred during the summer with negligible counts recorded 

during the winter. This is consistent with the seasonal patterns of Cx. tarsalis abundance 

observed in California (Reisen and Reeves 1990, Reisen et al. 1992, Barker et al. 2010) and 

elsewhere in the United States (Snow and Pickard 1956, Bolling et al. 2009, Fauver et al. 2016, 

Vincent et al. 2020). The smaller springtime peaks in abundance are associated with the 

flooding of managed wetlands in conjunction with warming temperatures triggering oviposition 

by overwintering females (Kwasny et al. 2004, Reisen and Wheeler 2019).  

 In our model, variations in Cx. tarsalis abundance were strongly driven by seasonal 

effects in rice fields and in wetlands, which are two habitats most associated with high Cx. 

tarsalis counts in California (Sudia et al. 1971, Pitcairn et al. 1994, Wekesa et al. 1996). 

Accordingly, we also observed the highest predicted Cx. tarsalis abundance during the middle of 

the surveillance season where rice is cultivated in Yolo County and Sutter-Yuba MVCD and 

around a cluster of national wildlife refuges in the later part of the season in western Merced 

County MAD and Fresno Westside MAD (US Fish and Wildlife Service 2021). There was a lower 

seasonal effect in urban areas on Cx. tarsalis abundance, which was expected as this has been 

found in lower numbers within urbanized environments (Reisen and Reeves 1990, Schurich et 

al. 2014). Furthermore, incursions into populated areas are generally limited to the urban 

periphery as Cx. tarsalis flight dispersal is typically within 2 km of larval emergence sites, 
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although dispersal up to 25 km has been observed downwind (Bailey et al. 1965, Dow et al. 1965, 

Reisen et al. 1992, Reisen and Lothrop 1995). On a small scale, this limited incursion was 

observed by interpolating Cx. tarsalis counts from traps placed throughout a city, with higher 

abundance observed at the edges (Nielsen et al. 2008).  

The predicted surfaces reflected how Cx. tarsalis abundance varies over the course of a 

season and from year to year. By refitting models sequentially adding observed weeks of data, 

we were able to simulate the progression of surveillance-based knowledge of Cx. tarsalis 

activity. This approach used past and current information to infer spatial patterns in the near-

term future, which has not previously been attempted. We saw overall low estimated abundance 

during the early weeks of each season for the districts that conducted surveillance during that 

time. Surveillance coverage intensified into the middle of the season when estimated abundance 

was highest across the valley, followed by a waning of estimated abundance towards the 

conclusion of the season. Other studies mapping Cx. tarsalis abundance have not considered 

temporal trends, have been limited to suitability models, or have encompassed a limited spatial 

domain (Tachiiri et al. 2006, Nielsen et al. 2008, Larson et al. 2010). One study that did account 

for seasonality only assessed predictions at the trap locations that provided observations for 

model fitting (Schurich et al. 2014). 

Our spatio-temporal models for risk-mapping improved on the Response Plan for 

estimating vector abundance, which uses retrospective data to estimate the current week’s risk 

and does not incorporate environmental factors other than temperature. Our resolution was also 

higher than the Response Plan, which allowed us to visualize spatial heterogeneity between 

primary Cx. tarsalis habitat around irrigated agriculture and wetlands and the less suitable 

urban and suburban cores. We were further able to visualize uncertainty around the estimates, 

which was highest in areas with greatest predicted Cx. tarsalis abundance due to a combination 

of larger standard errors for higher predicted counts, thus increasing the margin of error, and 

lower trap densities in areas where Cx. tarsalis abundance is greatest, thus reducing the sample 
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size for estimating spatio-temporal effects. The latter explanation is corroborated by comparing 

the landscape composition of the observed trap sites to that of the prediction sites, where the 

observed traps had a higher proportion of developed land within 1 km of the site than the 

prediction points. We retained similarity to the Response Plan by only predicting abundance for 

zones within 10 km of traps run in the prior four weeks, which allowed risk estimation to evolve 

as more information about the observed trap counts was known.  

The predicted abundance across the 2.5 km gridded surface was only moderately 

correlated with the observed abundance at the prediction point’s nearest trap, but this was 

expected as the nearest trap could be a minimum of one week prior to prediction, and week to 

week changes in abundance estimates could be quite large. Furthermore, we did not account for 

the application of vector control during the study period. Elevated abundance estimates of Cx. 

tarsalis trigger the intensification of adult mosquito control measures aimed at reducing the risk 

of WNV transmission to humans and have been shown to be effective, if temporally limited 

(Elnaiem et al. 2008, Holcomb et al. 2021). However, these applications could reduce observed 

Cx. tarsalis counts during the weeks being predicted, which the model would not have captured, 

thus reducing the correlation between observed and predicted abundance. However, as these 

models were intended to provide a basis for WNV risk estimation in the near-term future, the 

absence of a vector control term in the model means that districts can assess abundance as a risk 

indicator in the absence of intervention.  

 Although this study encompassed most of the primary Cx. tarsalis range in California, 

there are populations in southern California, notably in the Coachella Valley and Orange 

County, that we did not include in our analyses. These regions feature different landscape 

composition, different seasonality, and Cx. tarsalis distribution concentrated around wetlands 

as opposed to the widespread distribution around irrigated agriculture in the Central Valley 

(Walton et al. 1990, Reisen, Lothrop, and Hardy 1995). Therefore, models for Cx. tarsalis in the 
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Central Valley would not necessarily be applied for Cx. tarsalis abundance elsewhere in the 

state. 

Overall, our study demonstrated the utility of routine surveillance data combined with 

environmental information at estimating the spatio-temporal abundance of Cx. tarsalis, an 

important vector of WNV in the western United States. The models developed here will serve as 

a starting point for improved spatio-temporal risk assessments for WNV transmission. The 

standardized approach for evaluating the contribution of land cover around a trap means that 

the model could be further developed into a tool to produce mosquito abundance estimates that 

integrate and extend existing surveillance data, providing a basis for risk estimates at 

unobserved locations and/or future time periods. Ultimately this knowledge, alongside data-

based limits on uncertainty, will help direct vector control resources to areas of need. 

3.5 Acknowledgements 
 The authors acknowledge the following mosquito control districts for the usage of 

routine arbovirus surveillance data: Butte County Mosquito and Vector Control, Consolidated 

Mosquito Abatement, Delano Mosquito Abatement, Delta Mosquito and Vector Control, East 

Side Mosquito Abatement, Fresno Mosquito and Vector Control, Fresno Westside Mosquito 

Abatement, Glenn County Mosquito and Vector Control, Kern County Mosquito and Vector 

Control, Kings Mosquito Abatement, Madera County Mosquito and Vector Control, Merced 

County Mosquito Abatement, Placer Mosquito and Vector Control, Sacramento-Yolo Mosquito 

and Vector Control, San Joaquin County Mosquito and Vector Control, Shasta Mosquito and 

Vector Control, Sutter-Yuba Mosquito and Vector Control, Tulare Mosquito Abatement, Turlock 

Mosquito Abatement, Westside Mosquito and Vector Control. 

 

 

 



  

121 
  

3.6 Tables and figures 
Table 3.1. Descriptive statistics for traps in the Central Valley. 

Factor Values 
Sample size (trap-nights) 161,257  
Unique trap sites 10,511 
Mean Cx. tarsalis abundance per trap-night (SD) 29.6 (152.2) 
Mean weekly average temperature in °C (range) 25.3 (0.7-39.7) 
Mean percent cover crops coverage within 1 km of traps (SD) 15.3% (18.5%) 
Mean percent developed area coverage within 1 km of traps (SD) 34.2% (34.2%) 
Mean percent orchards and vines coverage within 1 km of traps (SD) 18.2% (23.3%) 
Mean percent rice field coverage within 1 km of traps (SD) 0.4% (3.6%) 
Mean percent row crops coverage within 1 km of traps (SD) 3.9% (9.1%) 
Mean percent wetlands coverage within 1 km of traps (SD) 2.0% (5.8%) 
Mean percent unsuitable habitat coverage within 1 km of traps (SD) 26.1% (24.3%) 

 

Table 3.2. Mean logarithmic and Dawid-Sebastiani scores from k-fold cross-

validation. The final model was evaluated through 10-fold cross-validation, randomly 

withholding 10% of the data for testing and fitting a training model to the remaining 90% of the 

data.  

 Dawid-Sebastiani score Logarithmic score 
Model number Training Testing Training Testing 
1 9.80 9.75 3.47 3.46 
2 10.37 9.35 3.47 3.49 
3 10.37 10.40 3.47 3.46 
4 10.32 10.45 3.47 3.48 
5 10.25 10.52 3.47 3.47 
6 9.80 9.23 3.47 3.46 
7 10.20 9.93 3.47 3.48 
8 10.31 10.66 3.47 3.45 
9 10.27 9.21 3.47 3.46 
10 10.25 10.97 3.47 3.47 
Average of all models 10.19 10.05 3.47 3.47 
Paired t-test statistic 
(P-value) 

-0.79 (0.45)  -0.77 (0.46)  
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Table S3.1. USDA Cropland data categories and groups for analysis. 

USDA category Group for 
analysis 

 USDA category Group for 
analysis 

Alfalfa Cover crops  Hops Row crops 
Almonds Orchards and 

vineyards 
 Lentils Row crops 

Apples Orchards and 
vineyards 

 Lettuce Row crops 

Apricots Orchards and 
vineyards 

 Millet Cover crops 

Aquaculture Unsuitable habitat  Mint Row crops 
Asparagus Row crops  Misc. fruits, vegetables Row crops 
Avocados Orchards and 

vineyards 
 Mixed forest Unsuitable habitat 

Background Unsuitable habitat  Mustard Cover crops 
Barley Cover crops  Nectarines Orchards and 

vineyards 
Barren Unsuitable habitat  Undefined Unsuitable habitat 
Blueberries Row crops  Oats Cover crops 
Broccoli Row crops  Olives Orchards and 

vineyards 
Buckwheat Cover crops  Onions Row crops 
Cabbage Row crops  Open water Unsuitable habitat 
Camelina Cover crops  Oranges Orchards and 

vineyards 
Caneberries Row crops  Other crops Row crops 
Canola Cover crops  Other hay, non-alfalfa Cover crops 
Cantaloupes Row crops  Other small grains Cover crops 
Carrots Row crops  Other tree crops Orchards and 

vineyards 
Cauliflower Row crops  Peaches Orchards and 

vineyards 
Celery Row crops  Peanuts Row crops 
Cherries Orchards and 

vineyards 
 Pears Orchards and 

vineyards 
Chickpeas Row crops  Peas Row crops 
Christmas trees Unsuitable habitat  Pecans Orchards and 

vineyards 
Citrus Orchards and 

vineyards 
 Peppers Row crops 

Clover, wildflowers Cover crops  Perennial ice, snow Unsuitable habitat 
Corn Row crops  Pistachios Orchards and 

vineyards 
Cotton Row crops  Plums Orchards and 

vineyards 
Cucumbers Row crops  Pomegranates Orchards and 

vineyards 
Barley/corn Cover crops  Pop or orn corn Row crops 
Barley/sorghum Cover crops  Potatoes Row crops 
Corn/soybeans Row crops  Prunes Orchards and 

vineyards 
Durum 
wheat/sorghum 

Cover crops  Pumpkins Row crops 

Lettuce/barley Row crops  Radishes Row crops 
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Lettuce/cantaloupe Row crops  Rapeseed Cover crops 
Lettuce/cotton Row crops  Rice Rice fields 
Lettuce/durum wheat Row crops  Rye Cover crops 
Oats/corn Cover crops  Safflower Cover crops 
Soybeans/oats Row crops  Shrubland Unsuitable habitat 
Triticale/corn Cover crops  Sod, grass seed Cover crops 
Winter wheat/corn Cover crops  Sorghum Cover crops 
Winter wheat/cotton Cover crops  Soybeans Cover crops 
Winter 
wheat/sorghum 

Cover crops  Speltz Cover crops 

Winter 
wheat/soybeans 

Cover crops  Spring wheat Cover crops 

Deciduous forest Unsuitable habitat  Squash Row crops 
Developed, high 
intensity 

Developed land  Strawberries Row crops 

Developed, low 
intensity 

Developed land  Sugar beets Row crops 

Developed, medium 
intensity 

Developed land  Sugarcane Row crops 

Developed, open 
space 

Developed land  Sunflower Row crops 

Dry beans Row crops  Sweet corn Row crops 
Durum wheat Cover crops  Sweet potatoes Row crops 
Eggplants Row crops  Switchgrass Cover crops 
Evergreen forest Unsuitable habitat  Tobacco Row crops 
Fallow/idle cropland Unsuitable habitat  Tomatoes Row crops 
Flaxseed Cover crops  Triticale Cover crops 
Forest Unsuitable habitat  Turnips Row crops 
Garlic Row crops  Vetch Cover crops 
Gourds Row crops  Walnuts Orchards and 

vineyards 
Grapes Orchards and 

vineyards 
 Water Unsuitable habitat 

Grassland/pasture Unsuitable habitat  Watermelons Row crops 
Greens Row crops  Wetlands Wetlands 
Herbaceous wetlands Wetlands  Winter wheat Cover crops 
Herbs Row crops  Woody wetlands Wetlands 
Honeydew melons Row crops    
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Figure 3.1. Map of the study area in California. Vector control district boundaries are 

shown with dark grey borders with the study districts highlighted in green. Unique trapping 

locations are indicated by transparent black circles. Areas with the highest trap density show up 

in darker black. Major urban centers (from north to south: Redding, Roseville, Sacramento, 

Stockton, Modesto, Merced, Fresno, Visalia, Bakersfield) are denoted by orange triangles. State 

boundaries were obtained from the Database of Global Administrative Areas (GADM 2018) and 

mosquito and vector control district boundary shapefiles were obtained from the Mosquito and 

Vector Control Association of California (Mosquito & Vector Control Association of California 

2017).  
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Figure 3.2. Seasonal trend of Culex tarsalis abundance in the Central Valley. The 

solid lines show the weekly mean Cx. tarsalis abundance per trap-night across all sites and years 

within the study region. The shaded band shows the 95% confidence interval around the mean.
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Figure 3.3. Generalized additive model (GAM) smooth functions. The spatio-temporal 

effect is depicted on a gradient from lowest (green) to highest (red). This image shows a 

representative time point of the spatio-temporal surface, the middle of July for 2020. For the 

one-dimensional smooths (green confidence interval bands), the y-axis represents the effect on 

Cx. tarsalis abundance for each unit of the x-axis.
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Figure 3.4. Weekly mean Dawid-Sebastiani scores (DSS) and log scores (LS) from 10 cross-validation models per 

week. 
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Figure 3.5. Comparison of weekly average observed and fitted Culex tarsalis 

abundance at surveillance locations for the years 2016-2020. The solid and dashed 

lines represent the mean abundance per week and year and the shaded bands show the 95% 

confidence interval around the means. We focused here on the years 2016-2020 because these 

were the years for which gridded surfaces were predicted.



  

 
  

129

 

Figure 3.6. Mean Dawid-Sebastiani scores (DSS) are shown in Panel A and log scores (LS) in Panel B for weekly 

predictions made at traps within different spatial and temporal ranges from traps run during the prior four weeks. 

The lower-left pixels represent instances where the closest trap was within 1 km and 1 week prior to the fitted trap whereas the upper-

right pixels represent instances where the closest trap was 5-10 km from and 4 weeks prior to the fitted trap. Lower values indicated 

better fits. Note that the DSSs are shown on the natural log scale.
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Figure 3.7. Spearman’s rank correlation coefficient between predicted abundance 

and observed abundance at the nearest traps to the prediction location. Correlations 

were assessed for predictions where the nearest trap was a range of distances and weeks prior 

from the prediction locations and prediction weeks. The lower-left pixel represents instances 

where the closest trap was within 1 km of and 1 week prior to the prediction whereas the upper-

right pixel shows instances where the closest trap was over 9 km from and 4 weeks prior to the 

prediction. 
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Figure 3.8. Gridded predictions and estimates of predictive uncertainty, shown as 

the width of the 95% prediction intervals. Predictions were made on a uniform 2.5-km 

grid for points within 10 km of a traps operated within four weeks prior to the prediction week. 

Column (A) shows the beginning (Week 14, March 29-April 4), column (B) the middle (Week 29, 

July 12-18), and column (C) the end (Week 44, October 25-31) of the season in 2020. State 

boundaries were obtained from the Database of Global Administrative Areas (GADM 2018) and 

mosquito and vector control district boundary shapefiles were obtained from the Mosquito and 
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Vector Control Association of California (Mosquito & Vector Control Association of California 

2017).  

 

 

Figure S3.1. K-fold cross-validation model residuals. The model was evaluated through 

10-fold cross-validation, randomly withholding 10% of the data for testing and fitting a training 

model to the remaining 90% of the data. The log-residuals were calculated by subtracting the 

natural log of the model fitted value from the natural log of the observed Cx. tarsalis count. 
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Figure S3.2. Comparison of land cover composition surrounding observed trap 

sites and prediction points for the years 2016-2020. The prediction locations were less 

likely to be surrounded by developed area within 1 km than the trap sites that were used to fit 

the models. 
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Figure S3.3. Prediction rasters for the middle of the season (Week 29) for each of 

the years 2016-2020. Predictions were made for points within 10 km of a trap run in the four 

weeks prior to the prediction week. State boundaries were obtained from the Database of Global 

Administrative Areas (GADM 2018) and mosquito and vector control district boundary 

shapefiles were obtained from the Mosquito and Vector Control Association of California 

(Mosquito & Vector Control Association of California 2017).  
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Conclusions and Summary 
 

 The maintenance and amplification cycle of West Nile virus (WNV) between avian 

reservoir hosts and mosquito vectors makes prediction of high-risk periods notoriously difficult 

in time and space. However, previous studies have linked certain environmental indicators with 

increased risk for human infections. This dissertation made use of routinely collected 

entomological data combined with easily accessible environmental data to provide tools for 

improving the estimation of WNV transmission risk and decision-making to enact vector control 

with the goal of human WNV disease prevention.  

 Chapter 1 examined the direct relationship between an entomological risk indicator, the 

vector index (VI), and human WNV disease incidence. The VI combines mosquito abundance 

and mosquito infection prevalence and is commonly used by vector control districts as a 

guideline for enacting vector control when the VI becomes elevated. However, a specific VI 

threshold indicating the transition between minimal and high risk of WNV transmission to 

humans has not yet been established. I utilized eleven years of historical entomological 

surveillance and reported human case data from six mosquito and vector control districts across 

California with two objectives. First, I examined the empirical relationship between the 

antecedent city-level weekly VI and the cumulative WNV disease incidence during the following 

three weeks. I used receiver operating characteristic (ROC) curve analyses, a method typically 

employed for establishing diagnostic testing thresholds, to determine the VI threshold which 

best predicted whether the observed incidence was higher than the typical three-week average 

for a given city. These thresholds varied depending on vector control district jurisdiction and the 

species and trap type data from which the VI was estimated. The thresholds were also 

dependent on the distribution of VIs for a given species and trap type. For example, in rural 

districts where Culex tarsalis is the predominant vector, I observed higher VI thresholds for Cx. 

tarsalis than for the Cx. pipiens complex, the predominant vector in urban areas. Furthermore, 
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the sensitivities and specificities of the estimated thresholds for predicting high-risk periods 

were highest for the dominant vector species in a given district.  

 The second aim of Chapter 1 was to evaluate the effect of spatial scale on the ability of the 

VI to predict human WNV disease incidence, because vector control operations typically work at 

the level of a small city, but WNV case occurrence can be sporadic at that scale. The same 

negative binomial regression model was applied to the same weekly data as the ROC analyses 

but was aggregated at four control-relevant spatial scales: district-wide, census county division, 

city, and zip code. Through ROC analysis of the modelled outcome, a positive predictive value of 

0.17, sensitivity of 0.80, and specificity of 0.54 was found using city-level data, demonstrating a 

good balance between being small enough to be operationally relevant but large enough to have 

enough data to produce accurate predictions of high-risk periods. 

 Chapter 2 focused on the direct association between daily weather conditions and 

mosquito host-seeking activity to understand how single-day weather anomalies during 

trapping events could be introducing bias in trap counts used to estimate mosquito abundance. 

As mosquito abundance is a core component of the VI, misrepresentations of this metric could 

influence risk perception and the need for mosquito control efforts. For this chapter, mosquitoes 

and weather information were collected at ten trap sites around the rice-growing area of western 

Placer County, northern Sacramento County, and eastern Yolo County for two months during 

the peak mosquito season. This region was characterized by large populations of Cx. tarsalis, the 

rural WNV vector in California. A novel mosquito trap was used at each of the ten sites that 

featured a sensor to detect mosquito-sized objects entering the trap and recorded these counts 

every fifteen minutes to evaluate four outcomes: the overnight Cx. tarsalis count, the time when 

Cx. tarsalis host-seeking activity began, the time when the middle of Cx. tarsalis host-seeking 

activity occurred in a night, and the hour with the highest Cx. tarsalis count.  

Each of these outcomes were related through statistical models to the wind speed and 

temperature recorded at a range of times in the afternoon leading to the host-seeking night. I 
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found both wind speed and temperature at 20:00h, or just prior to the onset of host-seeking, on 

average, to be significant predictors of all four outcomes. Notably, increasing wind speed was 

associated with lower overnight Cx. tarsalis activity whereas increasing temperature was 

associated with increased activity. What’s more, there was little information loss using weather 

recorded earlier in the day, giving the opportunity for vector control districts to use this 

information to prepare for the upcoming evening. By evaluating the hour with the highest Cx. 

tarsalis count overnight, I identified predictable factors to guide the timing of adulticide 

applications that would have the maximum impact on a local vector population and thereby 

reduce the overall risk of WNV transmission. 

Chapter 3 spatially estimated and predicted WNV risk. Spatial risk was depicted 

previously through the VectorSurv Gateway, the database for vector-borne disease surveillance 

in California, but these maps lacked both an estimate of uncertainty and the ability to predict 

risk in the near-term future. I focused initially on the prediction of Cx. tarsalis abundance in the 

Central Valley of California as the first element of a WNV risk estimation plan. The Central 

Valley experiences the highest WNV incidence in the state and has widespread distribution of 

Cx. tarsalis produced by irrigated agriculture. I used a spatio-temporal generalized additive 

model (GAM) to describe the nonlinear weekly seasonal trends of Cx. tarsalis abundance in a 

range of environments using thirteen years’ worth of entomological surveillance data collected 

by vector control districts in the Central Valley. Overall, the model captured strong seasonal 

patterns in abundance, modified by local land use and ephemeral spatio-temporal anomalies. 

Models maintained a similar predictive accuracy for out-of-sample data compared to that for the 

training data set. 

I used historical trap count data to mimic the progression of a surveillance season by 

fitting the model in series, sequentially adding weeks of data, and predicting weekly abundance 

across a 2.5 km grid of the Central Valley within 10 km of an observed trap for the week after the 

final week in the data used to fit that week’s model. Overall, I observed an expected spatio-
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temporal trend in Cx. tarsalis abundance across the predicted surface, with the highest 

abundance predicted to occur mid-summer around the rice growing areas of the northern 

Central Valley and around the wetland preserves of the southwestern Central Valley in all years. 

I also saw higher uncertainty around these high abundance areas where trap coverage was 

sparse.  

Taken together, these three chapters provide a basis for improving WNV risk estimation 

through entomological surveillance. I worked closely with vector control districts across 

California to ensure that I were asking the right questions and working with data in a 

reproducible and generalizable way. Through this dissertation, I have shown how the VI could 

be used effectively as a threshold for identifying future high-risk periods but was most useful 

when tailored to the surveillance circumstances of the area being evaluated. I identified how the 

VI may be biased due to variability in the trap counts used to estimate mosquito abundance and 

thereby helped to improve the efficiency of vector control measures. Finally, I established a 

simple spatio-temporal model for Cx. tarsalis abundance that could be developed into a tool for 

enhanced spatial WNV risk estimation. Ultimately, these chapters will inform efforts to prevent 

human WNV disease through a more complete understanding of the link between WNV vector 

dynamics and the risk of human disease, improving the ability to predict risk and target 

mosquito control. 




