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Internal Variability and Regional Climate Trends in an Observational Large Ensemble

KAREN A. MCKINNON AND CLARA DESER

Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

(Manuscript received 28 December 2017, in final form 10 May 2018)

ABSTRACT

Recent observed climate trends result from a combination of external radiative forcing and internally

generated variability. To better contextualize these trends and forecast future ones, it is necessary to properly

model the spatiotemporal properties of the internal variability. Here, a statistical model is developed for

terrestrial temperature and precipitation, and global sea level pressure, based upon monthly gridded ob-

servational datasets that span 1921–2014. Themodel is used to generate a synthetic ensemble, eachmember of

which has a unique sequence of internal variability but with statistical properties similar to the observational

record. This synthetic ensemble is combined with estimates of the externally forced response from climate

models to produce an observational large ensemble (OBS-LE). The 1000 members of the OBS-LE display

considerable diversity in their 50-yr regional climate trends, indicative of the importance of internal variability

on multidecadal time scales. For example, unforced atmospheric circulation trends associated with the

northern annular mode can induce winter temperature trends over Eurasia that are comparable in magnitude

to the forced trend over the past 50 years. Similarly, the contribution of internal variability to winter pre-

cipitation trends is large across most of the globe, leading to substantial regional uncertainties in the am-

plitude and, in some cases, the sign of the 50-yr trend. The OBS-LE provides a real-world counterpart to

initial-condition model ensembles. The approach could be expanded to using paleo-proxy data to simulate

longer-term variability.

1. Introduction

Internal variability is expected to be a prominent

contributor to uncertainties in projections of regional

climate in the coming decades (Räisänen 2001; Hawkins

and Sutton 2011; Deser et al. 2012b, 2014; Thompson

et al. 2015). The uncertainty emerges in part from the

dominant influence of the chaotic atmospheric circula-

tion on regional climate variability, which limits the

useful time scale of initial condition forecasts and is as-

sociated with a substantial spread of multidecadal trends

(Hawkins and Sutton 2009b; Deser et al. 2016;

McKinnon et al. 2017). Improved knowledge of the

range of possible regional climate trends that could oc-

cur because of sampling of different sequences of in-

ternal variability is important when developing

adaptation and mitigation strategies (Woodruff 2016),

as well as for communicating the range of regional

trends that are consistent with a climate change signal

(Patt and Dessai 2005; Deser et al. 2012a; Hawkins

et al. 2014).

One way to assess the contribution of internal vari-

ability to uncertainty in climate trends is through the use

of ensembles of climate model simulations. The most

straightforward type of ensemble for this purpose is an

initial-condition ensemble, which uses a single climate

model and forcing scenario, but slightly different initial

conditions for each member of the ensemble (Collins

and Allen 2002). Most initial condition ensembles are

created through perturbing atmospheric initial condi-

tions (e.g., Roeckner et al. 2003; Sterl et al. 2008; Deser

et al. 2012b; Kay et al. 2015); these small perturbations

quickly propagate such that each ensemble member

experiences a different sequence of weather and climate

fluctuations. Internal variability can also be assessed

using multimodel ensembles (e.g., Tebaldi and Knutti

2007; Polvani and Smith 2013; Swart et al. 2015) such as

the ensemble from phase 5 of the Coupled Model In-

tercomparison Project (CMIP5) (Taylor et al. 2012),
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although in this case the spread across ensemble mem-

bers is also due to differences in model physics and ef-

fective radiative forcing.

Analysis of model ensembles has shed light on the

often surprisingly large influence of internal variability

on various climatemetrics includingmultidecadal trends

in air temperature, precipitation, sea ice fraction, and

sea level rise (e.g., van Oldenborgh et al. 2013; Hu and

Deser 2013; Wettstein and Deser 2014; Swart et al. 2015;

Deser et al. 2016), the midlatitude atmospheric response

to El Niño–Southern Oscillation (Deser et al. 2017), the

response of the climate system to volcanoes (McGraw

et al. 2016; Lehner et al. 2016), the time of emergence of

anthropogenic warming (Lehner et al. 2017), and the

evolution of global mean temperature (Dai et al. 2015),

among many other examples. As such, it is increasingly

common to assess climate models based on whether the

observations lie within the spread of a model ensemble

as has long been done for weather models (Gneiting and

Raftery 2005). The spread across the ensemble in thus

interpreted as indicative of the uncertainty in estimating

various parameters from the limited observational re-

cord (Deser et al. 2017).

This approach, however, is only valid if the climate

model ensemble accurately simulates the spatiotempo-

ral covariance structure of the real world, which is gen-

erally not the case (Ault et al. 2013; Laepple and

Huybers 2014; Thompson et al. 2015; McKinnon et al.

2017). An alternative approach is to optimally utilize the

observational record, with an eye toward being able to

quantify the role of internal variability in various climate

processes. One way to do so is to create a statistical

model that can be used to generate alternate sequences

of weather and climate variability that are consistent

with the statistics of the observed record. The variability

in the statistical model can then be treated in a manner

analogous to the output from an initial condition climate

model ensemble.

The choice of statistical model depends on the appli-

cation at hand. In the simplest case, a time series model

can be fit at every grid box (Thompson et al. 2015) or to a

global-mean quantity (Brown et al. 2015). In this case,

only the temporal variability is modeled, and no spatial

information is retained. Others have developed more

complex models that include spatial information, often

via modeling the evolution of dominant patterns of

variability (Navarra et al. 1998; Beltrán et al. 2012;

Salazar et al. 2016), among other approaches.

McKinnon et al. (2017) used a nonparametric block

bootstrap method to model North American winter

temperatures, such that the spatial covariance structure

was easily retained. Here, we extend on that work by

adding a dependence on dominant large-scale modes of

sea surface temperature (SST) variability because their

low-frequency variability is not captured through our

block bootstrapping methodology. We then apply the

updated statistical model to all seasons, land regions,

and additional climate variables.

While the focus of McKinnon et al. (2017) and this

work is on 50-yr trends, the modeling approach could be

used analogously to examine the influence of internal

variability on trends over shorter or longer time scales,

as well as on other quantities such as the uncertainty in

climatologies based on a fixed period of record. The

output from the statistical model can also be used to

evaluate the representation of internal variability in

comprehensive climate models. In this paper, we will

assess the variability in past and future trends in tem-

perature and precipitation over land, with a focus on

boreal winter and links to the large-scale atmospheric

circulation. We begin with a description of the obser-

vational datasets and climate model output used to

construct our statistical model in section 2, followed by

derivation of the statistical model and its validation us-

ing the 40-member Community Earth System Model,

version 1, Large Ensemble (CESM1-LE) in section 3.

The range of 50-yr trends simulated by the statistical

model for both the past (1965–2014) and future (2015–

64) is discussed in sections 4–7, and the work is sum-

marized in section 8.

2. Data and model output

Temperature data are from the Berkeley Earth Sur-

face Temperature (BEST) dataset at 18 resolution; the
dataset is created through spatiotemporal interpolation

(kriging) of in situ station measurements (Rohde et al.

2013). Precipitation data are from the Global Pre-

cipitation Climatology Centre (GPCC) at 18 resolution,
and are also based on in situ gauge measurements

(Schneider et al. 2017). Sea level pressure (SLP) data are

at 28 resolution from the Twentieth Century Reanalysis

version 2c, which only assimilates surface pressure ob-

servations and uses sea ice concentrations, sea surface

temperatures, and time-varying radiative forcing as

boundary conditions (Compo et al. 2011).

The statistical model makes use of monthly indices of

three dominant modes of SST variability: Niño-3.4,
which is an average of SSTs over 108N–108S, 1708–
1208W, to represent El Niño–Southern Oscillation

(ENSO; https://www.esrl.noaa.gov/psd/gcos_wgsp/

Timeseries/Data/nino34.long.data); the leading prin-

cipal component time series of SSTs over the North

Pacific to represent the Pacific decadal oscillation

(PDO; http://research.jisao.washington.edu/pdo/PDO.

latest.txt); and the average of SSTs over the North
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Atlantic (08–808N) to represent the Atlantic multidecadal

oscillation (AMO; https://www.esrl.noaa.gov/psd/data/

correlation/amon.us.long.data). We note that the global-

mean SST has been subtracted prior to defining the PDO

and AMO indices.

Ensembles of climate model simulations are used to

both validate the methodology and provide an estimate

of the forced response to climate change. The primary

model ensemble we use is the CESM1-LE, a 40-member

initial condition ensemble. Each member of the en-

semble was created through small perturbations to the

initial atmospheric temperatures on 1 January 1920 of a

single parent simulation that begins in 1850 (Kay et al.

2015). These perturbations grow and propagate through

the climate system, such that each member experiences

a different sequence of internal variability. All simula-

tions are driven by a common radiative forcing, namely

the estimated historical forcing until 2005, and the rep-

resentative concentration pathway 8.5 (RCP8.5) scenario

thereafter (Lamarque et al. 2010, 2011; Meinshausen

et al. 2011). The forced response is estimated as the mean

across the 40 members of the CESM1-LE, under the as-

sumption that 40 members is sufficient to average out

internal variability. The time series of ENSO, PDO, and

AMO for each model simulation are calculated using the

Climate Variability and Diagnostic Package (Phillips

et al. 2014). We will also draw on the CMIP5 ensemble

(Taylor et al. 2012) as an alternative source of in-

formation for the forced response, estimated as the av-

erage across the 37models that provide sufficient data for

our analysis. In this calculation, only one ensemble

member is taken from each model to avoid biasing the

results toward the physics of any given model.

All variables are averaged from monthly values into

three-month seasons (DJF, MAM, JJA, and SON). The

period 1921–2014 is used to estimate the characteristics

of the observed variability based on data and model

output availability. The analysis focuses on 50-yr trends

in the past (1965–2014) and future (2015–64) over land,

excluding Antarctica where there are insufficient data.

Unless noted otherwise, results for DJF are presented in

the main paper and for JJA in the supplemental mate-

rial; those for MAM and SON are available by request

from the corresponding author.

3. Model and validation

Wemodel temperature, precipitation, and SLP across

space and timeXi,t, where the superscript i indicates spatial

location, and the superscript t indicates time. Each variable

is a linear combination of its mean state bi
0, its response to

anthropogenic influence bi
FF

t, its response to large-scale

SST modes bi,m
M Mm,t, and residual variability «i,t. The

time series Ft represents the temporal structure of an-

thropogenic influence, and the three time series Mm,t

represent the evolution ofENSO, PDO, andAMO,where

the superscript m indicates each of the three modes.

Combining these terms, we denote the spatiotemporal

evolution of temperature, precipitation, and SLP as

Xi,t 5bi
0 1bi

FF
t 1 �

3

m51

bi,m
M Mm,t 1 «i,t. (1)

All b coefficients are estimated using ordinary least

squares regression on data from 1921 to 2014.

The time series of anthropogenic influence F t is esti-

mated using the Dai et al. (2015) method, although we

have extended the approach to both precipitation and

SLP. The method is based upon the assumption that the

global-mean ensemble-mean time series of a given var-

iable in a climate model can be used to represent

the temporal structure of the true forced response. In

our formulation, F t is the global-mean ensemble-mean

temperature, precipitation, or SLP time series calcu-

lated from the 40 members of the CESM1-LE, and bi
F

can be interpreted as the grid box–scale sensitivity to

anthropogenic influence for each variable, assuming

sufficient separability between the forced trend and low-

frequency variability.

The bi,m
M Mm,t terms allow for the explicit modeling of

the dependence of temperature, precipitation, and SLP

on three large-scale modes of SST variability: ENSO,

PDO, and AMO. Note that this term was not in the

original formulation of McKinnon et al. (2017) but is

included here to address the possible influence of low-

frequency SST variability on terrestrial surface climate.

Because of some collinearity between the modes, par-

ticularly ENSO and the PDO, Mm,t is composed of

three orthogonalized time series calculated from prin-

cipal component (PC) analysis of the original observed

ENSO, PDO, and AMO time series. Modes 1 and 3

collectively explain the ENSO and PDO time series,

whereas mode 2 is almost perfectly correlated with the

AMO. The SST pattern associated with each mode is

calculated by regressing SSTs from the HadISST, ver-

sion 1.1, dataset (Rayner et al. 2003) onto the orthogo-

nalized mode time series (Fig. 1 for DJF; see Fig. S1 in

the supplemental material for JJA). The orthogonalized

modes are qualitatively similar to the first three empir-

ical orthogonal functions (EOFs) of detrended global

SSTs (cf. Fig. 4 in Messié and Chavez 2011).

The spatial pattern associated withmode 1 is typical of

ENSO, with large anomalies in the eastern and central

tropical Pacific, anomalies of the same sign in the east-

ern North Pacific, and anomalies of the opposite sign

in the western and central North Pacific. The SSTs
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associated with mode 3 also maximize in the eastern and

central tropical Pacific, although the meridional extent

of the anomalies is smaller, and the western and central

North Pacific anomalies are of the same sign. The pat-

tern associated with mode 2 is typical of the AMO, with

anomalies of opposite sign in the Atlantic sector of each

hemisphere, and maximum anomalies in the subpolar

North Atlantic. The spectra of all three modes are red,

with the AMO showing the greatest increase in power

with decreasing frequency (Fig. 1). The spectra ofmodes

1 and 3 both show an increase in power in the 2–7-yr

band associated with ENSO. Analogous to the in-

terpretation of b̂i
F , the b̂i,m

M values estimated for each

grid box are indicative of the local sensitivity to each

SST mode for each variable.

The spatial structure of the regression coefficients

relating each mode to DJF temperature over land is

shown in Fig. 2 (see Fig. S2 in the supplemental material

for JJA). There is a significant positive relationship be-

tween the first mode and temperature over Canada and

Alaska as well as a significant negative relationship to

temperature in the southeastern United States, consis-

tent with the known influence of ENSO and the PDO

(e.g., Trenberth et al. 1998; Mantua and Hare 2002).

There are also weak but significant positive relationships

over much of SouthAmerica, Africa, andAustralia. The

relationship between the other two modes and DJF

temperature tends to be weaker, with smaller regions of

significance. Mode 2 is associated with positive tem-

perature anomalies in northeastern Canada, adjacent to

the primary center of action of the AMO SST pattern.

Mode 3 is associated with cooler Alaskan temperatures

and warmer temperatures east of the Great Lakes, as

well as warming around Mongolia. Given the larger and

more significant regression coefficients associated with

mode 1 compared to the latter two modes, the results

would likely be qualitatively similar if it were the only

mode included in the statistical model.

To further understand the primary controls on tem-

perature variability in Eq. (1), we examine the power

spectra of each term for three representative grid boxes

chosen based on the strength of their relationship to the

SST modes (Fig. 2). For all three locations, there is a

clear time scale separation between the forced compo-

nent bi
FF

t (red) and the original time series (blue) for

periods shorter than approximately 30 yr; that is, the

variability associated with the forced component is at

least two orders of magnitude smaller than that of the

original time series in this frequency band. At the grid

box closest to Warsaw, Poland, which is representative

of most locations, there is also only a minimal contri-

bution to temperature variability from the sum of the

FIG. 1. The spatial pattern and temporal behavior of ENSO, PDO, and AMO, and their surrogates. Modes 1 and 3 collectively explain

ENSO and PDO, while mode 2 represents the AMO. (top) The sea surface temperature pattern associated with eachmode. (middle) The

time series of each mode (thick black line), and four example surrogates (thin gray lines). Each surrogate is offset in the vertical by three

units for visual clarity. (bottom) The power spectra of each mode (thick black line) and its 95% confidence interval (light gray shading,

outlined by thin black lines). The 95% range of the spectra for the surrogate time series is shown in the dark gray shading. See text for

details.
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three modes (green), such that the power spectrum of

the anomalies «i,t (teal) is quite similar to that of the full

time series at periods shorter than 20–30 yr. At the grid

boxes closest to Chicken, Alaska, and Atlanta, Georgia,

which are representative of a small minority of locations,

the contribution of the three SST modes to temperature

variability is nonnegligible, indicating the importance of

explicitly modeling this relationship.

Conceptually similar results are found for DJF pre-

cipitation (Fig. 3; see Fig. S3 in the supplemental ma-

terial for JJA), although the regions where there are

significant links to the modes are somewhat different

and more numerous. However, even at the grid boxes

closest to locations such as Indianapolis, Indiana,

and Chihuahua, Mexico, where there are large and

significant regression coefficients, the contribution of

the modes to interannual precipitation variability re-

mains small, typically an order of magnitude less than

the full time series (see power spectra in Fig. 3). As a

result, the spectral behavior of the full time series Xi,t

and the residual variability «i,t are very similar at periods

less than 20 yr, beyond which the forced trend becomes

important.

After accounting for the forced trend and three SST

modes, the null hypothesis of white noise for the residual

variability cannot be rejected based on the Ljung–Box

test at the 5% level for 97% of the global land area for

DJF temperature (95% for precipitation). Similar re-

sults are found for JJA (not shown). Thus, the residual

anomalies can be interpreted as ‘‘climate noise’’

FIG. 2. Contribution of ENSO, PDO, andAMO to interannualDJF temperature variability estimated over 1921–

2014. Modes 1 and 3 collectively explain ENSO and the PDO, while mode 2 represents the AMO. (right) The

sensitivity of DJF temperature to the three dominant SST modes (see Fig. 1) estimated via linear regression.

Stippling indicates an insignificant relationship using a false discovery rate of 10%; p values at each grid box are

estimated using a two-sided Student’s t test. (left) Power spectra for three representative grid boxes, indicated by

the location of the stars in the maps. In all cases, there is a clear separation of time scales between the inferred

forced trend (red) and the residual anomalies (teal). In a small number of locations, represented by the grid boxes

closest to Chicken, Alaska (teal star), and Atlanta, Georgia (purple star), the contribution of the SST modes to

temperature variability (green) is nontrivial. More typically, as represented by the grid box closest to Warsaw,

Poland (red star), the fractional contribution of the SST modes to temperature variability is small.
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(Madden 1981) resulting from sampling of weather vari-

ability, and their spatial structure contains information

about the spatial covariance of this variability.

4. Simulating alternative realities

While Eq. (1) can be fit to the observed set of climate

variables as illustrated in the previous section, it can also

be used to generate a synthetic ensemble of unforced

climate histories that could have been observed had a

different sequence of internal variability unfolded. To

do so, it is necessary to produce counterfactual versions

of the time series of the SST modes and residual vari-

ability, which will require us to make a number of as-

sumptions that we first examine for their credibility.

First, we assume that the SST modes and residual

variability are stationary; that is, they have not shown a

response to anthropogenic influence from 1921 to the

present and will not in the next 50 years. ENSO and the

PDO have not shown any robust changes in their

statistics over the historical record [Deser et al. 2012c;

Newman et al. 2016; although Smith et al. (2016) have

suggested a potential role of aerosol forcing], nor is

there any consensus among climatemodels that they will

change significantly over the next 50 years (Lapp et al.

2012; Chen et al. 2017). Larger changesmay occur by the

end of the twenty-first century, however. For example,

Zhang and Delworth (2016) find that the PDO in their

model weakens by approximately 20% and its period

shortens from 20 to 12 yr in response to an abrupt dou-

bling of CO2, and Zhou et al. (2014) find that, even

without a change in ENSO properties, ENSO tele-

connections over North America may shift by the end of

the century. For now, we assume the simplest model of

no change, and note that the methodology could be

easily adapted given knowledge of the future statistical

properties of either mode. The role of external forcing in

the AMO is under active debate, with some studies

suggesting a response to aerosol changes during the

second half of the twentieth century (Otterå et al. 2010;

FIG. 3. As in Fig. 2, but for precipitation. Indianapolis, Indiana (teal star), and Chihuahua, Mexico (purple star),

are representative of locations with a significant linear relationship between mode 1 and interannual precipitation

variability, whereas Warsaw, Poland (red star), is again representative of locations with insignificant linear re-

lationships with the mode time series.
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Booth et al. 2012; Murphy et al. 2017) and others in-

dicating little sensitivity to anthropogenic radiative

forcing (Knight 2009; Zhang et al. 2013). Thus our as-

sumption that the mode statistics are stationary remains

an important caveat in our study, although we note that

modes 2 and 3 have a much smaller influence on ter-

restrial temperature and precipitation variability than

internal atmospheric circulation anomalies on the time

scales considered here (Figs. 2 and 3).

To the best of our knowledge, there is also not evi-

dence for significant observed changes in unforced in-

terannual variability of temperature, precipitation, and

SLP. Note that this stands in contrast to subseasonal

variability, which does appear to have decreased over

high-latitude continents, possibly in association with

Arctic amplification (Screen 2014; Rhines et al. 2017).

To assess whether there may be significant changes in

the future, we compare the unforced components of

interannual variability simulated by the CESM1-LE

during 1965–2014 and 2015–64, estimated as the re-

sidual from the ensemble mean. At almost all locations

over land, there are no significant changes in interannual

variability in either winter or summer (Fig. S4 in the

supplemental material). The only exceptions are DJF

precipitation over central Africa and the southern

Arabian Peninsula and JJA precipitation southeast of

the Mediterranean Sea.

Second, we assume that the SST modes do not have

initial-value predictability. The presence of initial-value

predictability would imply a reduction in the spread of

the counterfactual versions of the time series of each

mode at the beginning of the time period beingmodeled.

The Fourier phase randomization method we employ,

discussed below, will instead produce a set of time series

whose spread is constant in time. This is likely a sim-

plification, since there some is evidence that the PDO

and AMO exhibit predictability out to about a decade

(Hawkins and Sutton 2009a; Branstator et al. 2012; Ding

et al. 2016), although others find that the time scales of

predictability are more limited (Alexander et al. 2008;

Newman et al. 2016). Given the current state of

knowledge, we proceed under the assumption of no

initial-condition predictability, and note that the model

could be easily modified to incorporate predictability if

identified at a later date. Furthermore, our focus is on

50-yr trends, well beyond the time scale of any proposed

initial-condition predictability.

Given the sufficient credibility of our assumptions, we

proceed to generate the synthetic ensemble. The ap-

proach taken for the component of variability related to

the SSTmodes is distinct from the approach used for the

residual variability because of their different temporal

structures as outlined below.

To create alternative SST mode time series, we

employ a surrogate data approach to produce an en-

semble of time series that have the samemean, variance,

and autocovariance of the original data but are other-

wise random. The surrogate time series are produced by

transforming the original data into the Fourier domain,

multiplying its Fourier phases by uniformly distributed

random phases, and then transforming back into the

time domain (Theiler et al. 1992; Schreiber and Schmitz

2000). The power spectra of the resulting surrogates are

largely within the 95% confidence interval of the ob-

served spectrum [estimated as in Percival and Walden

(1993)], although the power of the surrogates tend to-

ward smaller values within the confidence interval, es-

pecially at low frequencies, likely related to the known

whitening effect of the Fourier phase randomization

procedure (Fig. 1). This issue could be ameliorated by

applying various adaptive iterative methods (Schreiber

and Schmitz 2000). By combining these surrogate time

series of each mode with the regression coefficients es-

timated from the observed record b̂i,m
M , it is possible to

produce spatiotemporal patterns of temperature, pre-

cipitation, and SLP anomalies that could have occurred

given a different sampling of the ENSO, PDO, and

AMO time series.

To generate surrogate sets of the residual variability

«i,t we take advantage of the minimal year-to-year

memory in each of our climate variables after explicitly

modeling the forced trend and dependence on large-

scale SST modes, and perform a block bootstrap pro-

cedure. The observed values of the residual variability

are grouped into time blocks of 2 yr, and the blocks are

randomly resampled with replacement to produce sur-

rogate sets of residual variability. By performing the

block bootstrap in time only, the full spatial structure of

the anomalies in temperature, precipitation, and SLP is

retained. The block length is chosen to be 2 yr as a bal-

ance between having time blocks that are sufficiently

large compared to the scale of temporal autocorrelation

but retaining enough blocks to generate adequate vari-

ability between bootstrap samples. Note that, in the case

of autocorrelated and short time series, a bootstrapping

approach will not tend to satisfy both of these consid-

erations entirely. First, although the residuals are largely

indistinguishable from white noise at the 5% level (see

end of section 3), weak interannual correlations may still

exist. Second, our 94-yr record is unlikely to contain a

complete sampling of the possible variability. Both of

these effects will lead to small underestimates of the

variability in the bootstrapped ensemble that will be

quantified below [seeMcKinnon et al. (2017) for further

discussion of the use of the block bootstrap in this

context].
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Both the randomization of the mode time series and

the block bootstrap are performed 1000 times to

produce a synthetic observational ensemble of temper-

ature, precipitation, and SLP data. Because the same

surrogate SST mode time series and resampling of years

are used for each variable in each ensemble member, it

is possible to examine not only the internal variability

of a single variable, but also the relationships between

the internal variability of different variables.

As inMcKinnon et al. (2017), the full process is validated

within the context of the CESM1-LE itself. Ideally, the

synthetic ensemble produced through the process outlined

above would have variability consistent with a true initial

condition ensemble. It is possible to test this conjecture by

fitting Eq. (1) to individual members of the CESM1-LE,

producing a synthetic ensemble based on a single member,

and comparing the statistics of the synthetic ensemble to

that of the true initial condition ensemble. Consistent with

the remainder of our analysis, we compare the spread

(as measured by the standard deviation s) of 50-yr

(1965–2014) trends across the CESM1-LE-based syn-

thetic ensemble ŝsynthCESM1-LE with that simulated by the

actual CESM1-LE ŝCESM1-LE. Biases induced by the

methodology are quantified by fractional error, calcu-

lated as (ŝCESM1-LE 2 ŝsynthCESM1-LE)/ŝsynthCESM1-LE.

Maps of the fractional error are shown in Figs. 4c and

5c for DJF temperature and precipitation, respectively.

Analogous maps for JJA are shown in Figs. S6 and S7 of

the supplemental material. In general, the spread of

trends is underestimated in the synthetic CESM1-LE as

compared to the actual CESM1-LE, as expected based

upon the use of the bootstrapping procedure. For both

temperature and precipitation during DJF and JJA, the

magnitude of the fractional error is less than 11% at the

majority of grid boxes, and less than 27% for tempera-

ture (23% for precipitation) at 85% of locations. The

largest errors (50%–60%) occur for DJF temperatures

over Amazonia and JJA temperatures over central

Canada. Fractional errors for SLP are generally ,20%

over the extratropics but reach 40%–50% over the

FIG. 4. Trend variability in the synthetic observational ensemble (synthObs), the NCAR CESM1-LE, and val-

idation of the synthetic ensemble methodology for DJF temperature. (a) The standard deviation of 50-yr (1965–

2014) linear temperature trends across the 1000 members of the synthObs. (b) The standard deviation of 50-yr

linear temperature trends across the 40 members of the CESM1-LE. (c) The fractional error of the synthetic

ensemble methodology, estimated as (ŝCESM1-LE 2 ŝsynthCESM1-LE)/ŝsynthCESM1-LE. (d) The fractional difference be-

tween CESM1-LE- and observational-based estimates of the standard deviation of 50-yr linear temperature trends,

that is, [(a)2 (b)]/(b). Stippling indicates locations where the difference is insignificant using a false discovery rate

of 10%; p values are estimated at each grid box as the probability that the difference between the CESM1-LE and

the synthetic observational ensemble could occur from applying the same methodology to individual members of

the CESM1-LE.
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eastern equatorial Pacific and tropical Indian Ocean in

both seasons (Figs. S5c and S8c). The large errors in SLP

over the tropical oceans are unsurprising, since strong

ocean–atmosphere coupling will tend to redden SLP

variability in these regions; the red noise behavior ap-

pears to persist even after accounting for the three SST

modes. Accordingly, the present study emphasizes the

extratropics.

For context, the errors induced by the proposed

methodology (Figs. 4c and 5c for DJF and Figs. S6 and

S7 for JJA) are compared to those associated with using

the CESM1-LE in place of the synthetic ensemble. The

fractional difference between the two ensembles is cal-

culated analogously as (ŝCESM1-LE 2 ŝsynthObs)/ŝsynthObs,

where ŝsynthObs is the spread in 50-yr trends in the obser-

vationally based synthetic ensemble (Figs. 4d and 5d for

DJF and Figs. S6 and S7 for JJA). The synthetic ensemble

offers a large improvement over the CESM1-LE in

simulating a realistic spread of 50-yr trends in temperature

and precipitation over land. For example, the CESM1-LE

overestimates the spread in 50-yr trends of DJF temper-

ature (Fig. 4d) by more than 35% in the western United

States (358–508N, 1108–1208W) and 45% in eastern Aus-

tralia (108–408S, 1358–1508E), while the errors in the syn-

thetic ensemble in the same areas (Fig. 4c) are 10% and

4%, respectively. Note that the North American biases in

the CESM1-LE are slightly less than those found in

McKinnon et al. (2017) in regions affected by ENSO,

highlighting the importance of including the modes in our

statistical model. The biases in the CESM1-LE are even

more significant for DJF precipitation (Fig. 5d), with an

overestimate in the western United States of nearly 70%

and an underestimate in the Amazon region of Brazil

(08–158S, 458–658W) of over 50%, compared to errors

of magnitude 9% and 11% in the synthetic ensemble

(Fig. 5c). Many other regions also show biases in the

CESM1-LE exceeding 50% or more for both quantities

and seasons. For SLP, the biases in the synthetic ensemble

are generally comparable to those in the CESM1-LE,

except over parts of the northern continents in JJA where

the CESM1-LE underestimates the variability in 50-yr

trends by 30%–40% (cf. Figs. S5c,d and S8c,d).

As shown above, the statistical model offers an im-

provement over the CESM1-LE in its simulation of in-

ternal variability. However, unlike a true initial

condition ensemble, it cannot inform about the forced

component of climatic trends, defined as the ‘‘true’’ re-

sponse to radiative forcing uncontaminated by sampling

of internal variability. We thus replace the mean of the

synthetic ensemble with an estimate of the forced

component based on climate model ensembles. Our

primary estimate of the forced component is the en-

semblemean of the CESM1-LE, but we alsomake use of

the ensemble mean of the 37 CMIP5models. The forced

FIG. 5. As in Fig. 4, but for precipitation.
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component of terrestrial temperature and precipitation

trends, in addition to global SLP trends, from 1965 to

2014 based on the CESM1-LE are shown in Fig. 6 for

DJF (see Fig. S9 in the supplemental material for JJA),

and those based on CMIP5 are in Figs. S10 and S11.

The forced trend in DJF temperature from 1965–2014

based on the CESM1-LE (Fig. 6a) is positive every-

where, with magnitudes generally between 18 and 28C
(50 yr)21 in the Northern Hemisphere (NH) but reach-

ing 38C (50 yr)21 at some Arctic coastal locations,

and ,18C (50 yr)21 in the Southern Hemisphere (SH).

The forced trend in DJF precipitation (Fig. 6c) is gen-

erally positive north of 308N, with maximum values [5–

10mm month21 (50 yr)21] over western Europe and

parts of eastern North America. Remaining land areas

show more regional patterns of forced precipitation

trends, with pronounced wetting [.10–25mm month21

(50 yr)21] throughout tropical southern Africa, much of

Australia, and parts of Brazil and Argentina, and com-

parable amplitude drying in Mexico, the Maritime

Continent, southern Africa, and northwestern Australia

among other locations. Forced trends in SLP are gen-

erally small [magnitudes ,0.5 hPa (50 yr)21] with the

exception of the SH extratropics in association with

stratospheric ozone depletion (Polvani et al. 2011). The

forced trend from the CMIP5 ensemble is similar to that

from the CESM1-LE, although some differences are

evident such as greater warming at high northern lati-

tudes and larger wetting over western Eurasia and much

of North America (Fig. S10 in the supplemental

material).

It would also be possible to center the ensemble on

observationally based estimates of the forced trend

calculated using dynamical adjustment (Smoliak et al.

2015; Deser et al. 2016; Lehner et al. 2017) or statistical

methods such as ensemble empirical mode decomposi-

tion (Lee and Ouarda 2012), but we do not pursue these

directions in the current work. The synthetic ensem-

ble recentered on the forced component from the

CESM1-LE is termed the observational large ensemble

(OBS-LE).

5. Hemispheric-scale variability in the
observational large ensemble

What is the range of possible 50-yr trends that could

arise from observed unforced internal variability? To

begin to answer this question, we first identify the

FIG. 6. Ensemble-mean linear trends from the NCAR CESM1-LE for DJF (a),(b) temperature and (c),

(d) precipitation for (left) the past (1965–2014) and (right) the next (2015–64) 50 years. Trends in SLP are indicated

by contours (dashed contours are negative), with a contour interval of61 hPa (50 yr)21, beginning with contours of

60.5 hPa (50 yr)21.
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dominant patterns of variability in 50-yr trends (1965–

2014) of SLP across the 1000 members of the OBS-LE,

cognizant of the large influence of circulation on

temperature and precipitation in the extratropics,

especially during winter. The patterns are identified

by applying an EOF analysis to the set of 1000 SLP

trend maps from the OBS-LE for each hemisphere

separately [poleward of 108 in either hemisphere; see

Deser et al. (2012b) for a similar calculation]. The

associated temperature and precipitation trends are

created by regressing the 1000 temperature and pre-

cipitation trends at each grid box onto the normalized

principal components of the SLP trend EOFs in their

respective hemispheres.

The leading SLP trend EOF in the NH, which ac-

counts for 30% of the variance of trends, shows a dipole

pattern between the high and middle latitudes that

closely resembles the negative polarity of the northern

annular mode (NAM); note that the sign of the EOF is

arbitrary (Figs. 7a,c). Similarly, the first EOF in the SH

captures much of the structure of the southern annular

mode (SAM), although the midlatitude anomalies are

weaker than typical of the interannual SAM pattern

(Thompson and Wallace 2000). It is well known that

interannual variability in the annular modes has an im-

portant influence on temperature and precipitation (e.g.,

Thompson andWallace 2000, 2001; Hendon et al. 2007),

and the same is true for the variability in trends as shown

in Fig. 7. In particular, NHSLP trendEOF1 is associated

with cooling across most of Eurasia, and a dry–wet

precipitation dipole between southern and northern

Europe. Other surface climate impacts include cooling

over the southeastern United States, warming in Can-

ada, Alaska, Greenland, the western United States,

North Africa, and the Middle East, and drying of the

eastern United States. Similar NH patterns in SLP,

temperature, and precipitation are produced when the

SLP trend EOF is calculated using only the Atlantic–

Eurasian sector (not shown). The SH SLP trend EOF1

shows climate impacts typical of a negative SAM, in-

cluding drying of a large fraction of Australia and south-

ern Africa, and wetting over parts of South America.

The second NH SLP trend EOF, which accounts for

18% of the SLP trend variance, resembles the Pacific–

North American (PNA) pattern whose primary center

of action is located over the North Pacific; an additional

FIG. 7. The regressionmaps of (a),(b) temperature and (c),(d) precipitation and SLP (contours in all panels) onto

the first two normalized PCs of 50-yr (1965–2014)DJF SLP trends across theOBS-LE. Contour interval is60.5 hPa

(50 yr)21 (dashed contours are negative), and the zero contour is suppressed. SLP PCs are calculated separately for

each hemisphere (poleward of 108) but are shown on the same map for conciseness. The fraction of variance

explained by the first two PCs is 30% and 18% in the NH (34% and 21% in the SH), respectively.
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center of action is found over north-central Eurasia

(Figs. 7b,d). This SLP trend pattern is associated with

large-scale cooling from Alaska to the Great Lakes,

and across central Eurasia, as well as weaker-amplitude

warming over the southeastern United States and the

Arctic coastlines of Eurasia and northeastern Green-

land. Precipitation impacts include a drying of the

Iberian Peninsula and Mexico, as well as a moistening

of the Pacific Northwest and southeastern United

States. Much of the structure of the SLP trend EOF2 is

reproduced as SLP trend EOF1 by restricting the do-

main to the PNA sector (not shown). The second SLP

trend EOF in the SH is associated with relatively zonal

anomalies over the Southern Ocean north of East

Antarctica, and a wavelike structure over the Pacific

sector. In its positive projection, this EOF is largely

associated with a cooling and wetting of Australia and

South Africa, and anomalies of mixed sign over South

America.

The EOF analysis highlights the substantial magni-

tudes of 50-yr trends in temperature and precipitation

that can occur as a result of unforced variability in the

large-scale atmospheric circulation. For many regions,

these amplitudes rival those of the forced trends

determined from climate model ensembles. For

example, a positive (negative) two-standard-deviation

departure of NH SLP trend first principal component

(PC1) is associated with an average temperature trend

over northern Eurasia (508–708N, 108–1608E) of21.38C
(11.38C). Given a forced trend of 1.58C (50 yr)21 for

the same region based on the CESM1-LE [2.48C
(50 yr)21 based on CMIP5], it is clear that internal

variability related to the atmospheric circulation can

have a nonnegligible impact on trends. The relative

importance of unforced climate trends assessed from

the OBS-LE and forced climate trends evaluated from

climate model ensembles is further quantified in

section 7.

FIG. 8. The regressionmaps of (a),(b) temperature and (c),(d) precipitation and SLP (contours in all panels) onto

the PC1 of 50-yr (1965–2014) SLP trends for two modifications of the OBS-LE. (left) The dominant pattern in SLP

and associated temperature and precipitation trends across amodified ensemble created excluding any dependence

on the SST modes. The fraction of variance explained by the first EOF is 33% in the NH (37% in the SH). (right)

The dominant pattern in SLP and associated temperature and precipitation trends across a modified ensemble

created excluding any residual variability beyond the trend and SST modes. The fraction of variance explained by

the first EOF is 57% in the NH (62% in the SH). Contour interval is 60.5 hPa (50 yr)21 (dashed contours are

negative), and the zero contour is suppressed. SLP PCs are calculated separately for each hemisphere (poleward of

108) but are shown on the same map for conciseness.
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6. Relative roles of SST modes and midlatitude
atmospheric variability

The two dominant EOFs of SLP trend variability and

their associated climate impacts are, by design, a function

of the surrogate ENSO, PDO, and AMO time series and

the bootstrapped residual atmospheric variability. It is of

interest to understand the relative contributions of each.

In the context of the statisticalmodel, this question can be

easily answered by producing two alternative versions of

the OBS-LE after fitting Eq. (1) to the data: one that

removes the contribution of the SSTmodes via setting the

bi,m
M to zero, and a second that removes the contribution

of the residual variability by setting «i,t to zero. Note that

this is distinct from the model of McKinnon et al. (2017),

which did not include the contribution of themodeswhen

fitting the original statistical model; therefore, variability

linearly related to the modes was included in the residual

term. To understand the dominantmodes of variability in

trends in each of these modified versions of the OBS-LE,

we again perform an EOF analysis on the trends in SLP,

and assess their projection onto trends in temperature

and precipitation.

The dominant EOF of the DJF SLP trends in the first

modified version of the OBS-LE, which excludes the

contribution from the three SST modes (Figs. 8a,c), is

very similar to the first EOF of the full OBS-LE in both

hemispheres. The primary difference is the lack of var-

iability around the Aleutian low, and a correspondingly

weaker relationship with temperature around Alaska.

The SLP, temperature, and precipitation trend varia-

tions throughout Eurasia, however, are almost identical

to what was found for the complete OBS-LE, indicating

that the dominant pattern of Eurasian trend variability is

controlled by intrinsic atmospheric variability.

The dominant pattern of variability in SLP trends for

the second modified version of the OBS-LE, which ex-

cludes the contribution from the residual variability

(Figs. 8b,d), is primarily associated with changes in the

strength of the Aleutian low—an iconic response to

ENSO and the PDO—and in this sense is related the

second EOF of the full OBS-LE; however, it lacks the

center of action over northern Eurasia and its amplitude

over the Eastern Hemisphere part of the Southern

Ocean is muted compared to EOF2 of the full OBS-LE.

Accordingly, the similarities in the associated tempera-

ture and precipitation trends are mainly confined to

North America and the southern continents. The

strong link between SLP trend variability in this ver-

sion of the OBS-LE and North American temperature

FIG. 9. Range of 50-yr DJF temperature trends from the OBS-LE for the (a),(b) past (1965–2014) and (c),

(d) future (2015–2064). (left) The trend maps for the member associated with the 10th percentile of NH extra-

tropical (308–908N) land-average temperature trends. (right) The trend maps for the member associated with the

90th percentile of NH extratropical (308–908N) land-average temperature trends. The 10th and 90th percentileDJF

temperature trends for the past (future) are 1.148 and 1.988C (50 yr)21 [3.898 and 4.738C (50 yr)21], respectively.

(Boxes indicate the regions used for the histograms in Figs. 11a,b.)
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and precipitation trends highlights the importance of

improving our understanding of whether and how

ENSO and the PDO may change in a future climate.

7. Diversity of regional temperature and
precipitation trends in the OBS-LE

The prior two sections highlighted the patterns of

temperature and precipitation trend variability associ-

ated with dominant circulation regimes, thereby pro-

viding one lens with which to examine the range of

trends possible as a result of internal variations. A

complementary view can be found through examining

the members of the OBS-LE themselves. To do so in a

succinct manner, we rank the members of the OBS-LE

according to their terrestrial temperature (or pre-

cipitation) trends between 1965 and 2014 averaged

over the extratropical NH (308–908N). The patterns of

temperature change associated with the 10th and 90th

percentiles of the ensemble, as measured by the NH

extratropical land trend, are shown in Fig. 9 for DJF

(see Fig. S13 in the supplemental material for JJA). For

trends over the past 50 years, the 10th percentile en-

semble member shows cooling over western Canada

and north-central Eurasia of 18–28C (50 yr)21 in mag-

nitude, maximum warming of 38C (50 yr)21 across

central Europe and Asia, and relatively uniform

warming of around 18C (50 yr)21 elsewhere. In con-

trast, the 90th percentile ensemble member shows

temperature increases almost everywhere, with the

greatest warming over northeastern North America

and southwestern Russia exceeding 48C over 50 years

(Figs. 9a,b).

Assuming that changes in interannual variability are

small between the periods 1965–2014 and 2015–64 (see

section 4 and Fig. S4), it is possible to similarly exam-

ine the spatial pattern associated with the 10th and

90th percentile of terrestrial extratropical temperature

trends by replacing the historical ensemble mean

temperature trend with a future projection. Using the

RCP8.5 emission scenario and again drawing on the

ensemble mean of the CESM1-LE as our forced com-

ponent, we extend the OBS-LE to 2064. Because this

‘‘future OBS-LE’’ relies on the same variability sta-

tistics as our historical OBS-LE, the spread across the

ensemble is unchanged. It is, however, of note that—

in a future scenario—the ratio of the spread of land

temperatures relative to the magnitude of the forced

signal is reduced. In other words, as the world con-

tinues to warm, the fractional uncertainty in trends

caused by internal variability will be reduced because

of the larger forced signal. Nevertheless, the imprint of

internal atmospheric circulation variability is still ap-

parent in the same regions as before, where relatively

FIG. 10. As in Fig. 9, but for precipitation. The 10th and 90th percentile NH extratropical land DJF precipitation

trends for the past (future) are 0.30 and 3.03mm month21 (50 yr)21 [3.78 and 6.51mm month21 (50 yr)21], re-

spectively. (Boxes indicate the regions used for the histograms in Figs. 11c,d.)
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muted warming trends [,18C (50 yr)21] occur in the

10th percentilemember compared to trends.38C(50yr)21

in the 90th percentile member (Figs. 9c,d).

We next examine the 10th and 90th percentile mem-

bers of the ensemble as measured by the DJF NH

extratropical land precipitation trends (Fig. 10; see

Fig. S14 in the supplemental material for JJA). In the

10th percentile member, much of central and eastern

Europe exhibits a drying trend, while the 90th percentile

member shows wetting. Differences in the sign of the

precipitation trends between the 10th and 90th percen-

tile members are also evident in Alaska, the southeast-

ernUnited States, and parts of theMiddle East. Looking

into the future (2015–64), internal variability can still

affect even the sign of the trend despite the larger forced

wetting over the NH continents (recall Fig. 6), for ex-

ample over much of Europe and the Middle East.

To further illustrate the relative contributions of in-

ternal variability and radiative forcing to temperature

and precipitation trends, we examine the distributions of

theDJF trends for the past and next 50 years in theOBS-

LE in a select number of regions: Eurasia, Alaska, the

Mediterranean region, and the eastern United States.

Boxes outlining the regions are shown in Figs. 9 and 10.

The regions were chosen because of their high sensitivity

to atmospheric variability based on the EOF analysis

summarized in Fig. 7. Temperature trends in both

Eurasia and Alaska (Figs. 11a,b) show a clear shift to-

ward more positive values in the next 50 years, but still

exhibit substantial overlap with those of the past 50

years such that a wide range of trends [18–58C (50 yr)21

for Eurasia, 28–68C (50 yr)21 for Alaska] is possible in

both the past and the future. Unlike temperature, DJF

precipitation trends in the Mediterranean region and

eastern United States (Figs. 11c,d) show a smaller ra-

diatively forced component compared to the internal

component. Indeed, the Mediterranean region shows

almost complete overlap between the distributions of

past and future 50-yr trends, with both centered

near zero and ranging between approximately

620mmmonth21 (50 yr)21. A slightly larger shift to-

ward positive precipitation trends can be seen in the

eastern United States in the future relative to the past,

although the overlap as a result of internal variability is

again substantial, with trends between 215 and

125mmmonth21 (50 yr)21 being possible in both time

periods. The large spread relative to the forced signal for

precipitation trends indicates the difficulty of inferring

an anthropogenic climate change signal in any single

multidecadal record of temperature or precipitation.

To generalize the foregoing results, we calculate the

signal-to-noise ratio (SNR) at each grid box, defined as

the magnitude of the forced trend divided by the stan-

dard deviation of trends across the OBS-LE. We do this

FIG. 11. Histograms of DJF (a),(b) temperature and (c),(d) precipitation trends over the past (blue; 1965–2014) and

next (red; 2015–64) 50 years in the OBS-LE. See text and Figs. 9 and 10 for definition of regions.
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for temperature and precipitation, and for the past and

future (Fig. 12; see Figs. S15–S17 in the supplemental

material for JJA and CMIP5 ensemble mean). The

larger the ratio, the more the climate change signal is

emerging from the climate noise.

As expected because of their relatively low variability,

the regions with the highest SNR for DJF temperature

are in the tropics. In contrast, about 10% of the global

landmasses covering large regions of North America,

Eurasia, and Australia exhibit a DJF temperature SNR

less than one, indicating that the expected standard de-

viation of temperature trends from 1965 to 2014 is on par

with the forced signal. The average terrestrial DJF

temperature SNR is 2.2 for the historical period. The

picture is quite different for the future period, when the

global warming signal is much larger: the average DJF

temperature SNR rises to 6.3, and 95% of land grid

boxes have a SNR over 2.5.

Because the spread of 50-yr DJF precipitation trends

is large compared to the magnitude of the forced trend,

the SNRs are substantially smaller than those for tem-

perature. Specifically, the SNR for precipitation trends

over the past 50 years is less than 1 across 93% of land

grid boxes and has an average value of 0.4; as such, it is

difficult to identify a climate change signal in DJF pre-

cipitation trends at the gridbox level. The signal emerges

more clearly for future trends in the NH midlatitudes

because the forced signal is larger. Nevertheless, even

for DJF precipitation trends over the next 50 years, the

global land average SNR is only 1.1. Thus, the forced

future trend signal remains less prominent in pre-

cipitation compared to temperature.

8. Summary and discussion

We have developed an observational large ensemble

that draws upon the observational record to constrain its

internal variability, and upon model ensembles to de-

termine its radiatively forced component. The members

of the OBS-LE provide information about the magni-

tude of the contribution of internal variability to im-

portant climate metrics such as multidecadal trends.

By design, the variability in the OBS-LE is a function

of three dominant SST modes—ENSO, PDO, and

AMO—as well as residual variability, primarily associ-

ated with internal atmospheric dynamics. In most re-

gions of the world, the contribution of the SST modes to

interannual DJF temperature, precipitation, and SLP

FIG. 12. The SNR in the OBS-LE for 50-yr trends in the (a),(c) past (1965–2014) and (b),(d) future (2015–64) for

DJF (top) temperature and (bottom) precipitation. SNR is estimated as the magnitude of the ensemble mean 50-yr

trend normalized by the standard deviation of trends across the ensemble.
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variability is small compared to the forced trend and

residual variability. The primary exception is North

America, where teleconnections link the tropical Pacific

to North Pacific atmospheric circulation, with an asso-

ciated impact on both temperature and precipitation

across parts of the continent. In contrast, we find that

Eurasian surface climate variability is less strongly

linked to the SST modes, and more strongly influenced

by atmospheric variability.

Over the past 50 years, the contribution of internal

variability to terrestrial climate trends is nonnegligible.

Although temperatures are expected to rise with ele-

vated greenhouse gas concentrations, individual mem-

bers of the OBS-LE can exhibit large swaths of cooling

across the extratropics. Assuming the accuracy of the

forced trend inferred from the CESM1-LE, the obser-

vations can be viewed as one member of the OBS-LE

that happened to have anomalously large warming over

parts of the NH including western Canada, Greenland,

and Scandinavia resulting from sampling of internal

variability. These regions of warming led the observations

to have a 50-yr trend over the global landmasses that was

0.238C (50yr)21 greater than the forced trend from the

CESM1-LE, but it is important to remember that an al-

ternative reality of more warming or more cooling would

both be consistent with the same climate change signal.

Looking to the future, the warming signal becomes

sufficiently large that it is almost certain that all terres-

trial locations will warm between 2015 and 2064, re-

gardless of internal variability. The same cannot be said

of precipitation, for which the SNR barely exceeds unity

even in the next 50 years, although the signal of in-

creasing precipitation across the NH midlatitudes does

begin to emerge from the noise.

While the focus of this work has been on variability

across the OBS-LE, the observationally based ensemble

can also be used as a tool for model validation. Because

each member of the OBS-LE contains self-consistent

spatiotemporal fields of temperature, precipitation, and

SLP, it is possible to compare both the variability and

covariability in the OBS-LE with that from climate

models. As shown in Figs. 4d and 5d, the CESM1-LE has

large biases in the spread of 50-yr temperature and

precipitation trends over land that should be accounted

for before interpreting the model output as a represen-

tation of past or future reality. Additional work is nec-

essary to understand the origins of these model biases,

but given the close coupling of temperature and pre-

cipitation, one avenue of inquiry is the nature and

strength of the coupling in the real world versus the

model simulations. The members of the OBS-LE gen-

erally show the expected (e.g., Trenberth and Shea

2005) negative correlation between temperature and

precipitation trends in the summer hemisphere and

positive correlation in the winter hemisphere (Fig. 13).

Superimposed upon this pattern, however, are impor-

tant deviations such as a negative temperature–

precipitation correlation during the cold season in

Mexico, the interior western United States, and western

Canada, and positive correlations during the warm

season along the north coast of Canada and Eurasia.

Determining whether model ensembles reproduce these

structures is important for assessing both model physics

and the credibility of future projections.

Neither statistical nor dynamical models alone are suffi-

cient to understand the climate system. Here, we have

combined information about interannual variability from

the observed world with model-based estimates of the

forced response to anthropogenic influence in order to

better approximate the role of internal variability in climatic

trends. The analysis has been limited to the period of reli-

able instrumental records, but analogous approaches could

be applied to longer records from paleo-proxy data in order

to better estimate the longer-term variability in the climate

system. In addition, there is scope for expanding the OBS-

LE methodology to other quantities of interest such as

ocean temperatures, sea ice, and soil moisture that are

characterized by longer-term persistence.
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