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The use of high-strength steel reinforcement in seismic design of bridges is currently
under investigation. Several benefits will come from its use, which includes a reduction in the

construction time, a reduction in congestion and cost savings, among others.

Lotfizadeh (2019) performed an experimental work at the University of California San

Diego to study the use of large-diameter high-strength steel reinforcement in earthquake resisting
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bridge elements. Part of the study considered a quasi-static test of a full-scale bridge column
extending into a Type Il shaft (enlarged diameter shaft) all reinforced with high-strength ASTM

A706 Grade 80 reinforcement.

Data obtained from the study was used through this research to calibrate a detailed
nonlinear finite element model. For this purpose, continuum 3D elements with fracture-plastic
constitutive material law were used to represent the concrete and line elements with uniaxial
constitutive materials to characterize the axial stress-strain response of high-strength steel

reinforcement.

Calibration of the constitutive laws with the experimental data gave a good prediction of
the overall and local behavior. The analysis was able to capture the opening and closure of
flexural cracks by providing a lower limit to the tensile concrete stress, with smear tension

stiffening.

The numerical simulation’s state of the art can fit the overall response of analytical
models with a pretest, but to our knowledge, the distribution of the spread plasticity is usually
not addressed or shown. In this research, a comprehensive study of both responses is addressed.
Even when the model captured the overall structural behavior, the spread plasticity did not match

with the experimental data as well as it did with the overall response.
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INTRODUCTION

Nowadays non-linear finite element analyses are often used to predict the behavior of
single elements or entire structures. With constant improvements and updates, the capabilities of
finite element analysis (FEA) software are regularly increasing, adding the necessary tools and
settings to incorporate a broad spectrum of behaviors. A wide range of material models are
available, from simplified and straightforward to complex and very sophisticated representations.
However, one may ask if the predicted behavior observed from the analysis would represent well
the actual response of a structure and its components, particularly when subjected to cyclic

reversals.

Understanding how material models work is crucial. Many parameters are set to reflect
these specific behaviors. Therefore, researchers should perform a calibration of the material
model parameters prior to implementing them in the desired model. Simply assuming as a fact

that the numerical simulation provides a fair prediction of the behavior reflects poor practice.

An experiment was performed at the University of California San Diego, as part of the
project “High-Strength Steel Reinforcement in Critical Regions of Earthquake-Resistant Bridge”
funded by the California Department of transportation (Caltrans) (Lotfizadeh, 2019), with a
focus on columns extending into Type Il shafts. A full-scale test specimen entirely reinforced
with ASTM A706 Grade 80 reinforcement was designed, built and tested quasi-statically at the
Charles Lee Powell Structural Laboratories. The test specimen was well instrumented with
electrical-foil strain gages applied directly to the reinforcing bars, and externally mounted linear
variable differential transformers (LVDT) to characterize the overall response, and observe the

behavior of this new type of reinforcement.



The scope of this thesis is to develop a 3D non-linear detailed finite element model of the
experiment. The model representing the test setup was done with the software ATENA® Studio
from Cervenka Consulting. A comparison between the test specimen behavior and the numerical
response obtained with the model is made, as well as parametric analyses to determine the

relevance of the material parameters in the response obtained with the FEA.



CHAPTER 1: LITERATURE REVIEW
The literature review was focused on researches that used solid finite elements to
described reversed cyclic loading of tests conducted quasi-statically or dynamically. Three
studies will be reviewed, which were done by Rashid et al. (2000), Murcia-Delso (2013) and

Moharrami et al. (2017).

1.1  ANACAP - RASHID J.,, DAMERON R. & DOWELL R.
The authors (Rashid et al., 2000) used the routine ANACAP within ABAQUS to assess
the applicability of continuum based methods to predict the behavior of reinforced concrete

structures.

The concrete model in ANACAP considers the tensile behavior with a smeared crack
concept with no healing of cracks upon closure; the compression behavior accounts for
softening. The yield surface used by the material is a function of the first and second invariants
of the stress tensor and the effective stress position on the stress-strain curve. Figure 1-1(a)
shows the possible stress-strain paths that the compression curve can take under cyclic loading.
The model accounts for shear behavior by reducing the shear modulus as a function of the crack
opening strain, the deficiencies of using such a model are corrected by adding a sub-model for
shear retention in the open-crack regime (when the model over-estimates) and shear-shedding in

the closed crack regime (when the model under-estimates).

For the steel model, a bond behavior is introduced to account for bond-slip. The model

used is the one proposed by Dameron (1995), with a Priestley bond-failure criterion. Figure 1-1



(b) shows how the rooted bond-slip model changes the failure surface of the unloading and

reloading curves when the local bond-failure criterion is met.
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Figure 1-1: (a)Analytical cyclic stress-strain curve, (b) Rebar bond-slip model (Rashid et al., 2000).

The authors used dynamic and quasi-static experiments to review software capabilities.
Hines et al. (1999) at UC San Diego performed the quasi-static tests used, and the dynamic

experiment was part of the CAMUS International Benchmark.

The quasi-static test corresponded of a composite reinforced concrete wall with confined
circular columns at the ends. The analysis performed used half-symmetry of the test setup, with
3D solid elements. As input parameters of the materials were the design concrete compressive
strength and the stress-strain measured curves of the reinforcement. Figure 1-2 shows the results
of the model and test for ductility ratios of one and six. The predictions of the program match
well the results of the experiment, as well as the failure mode (fracture of the vertical

reinforcement).
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Figure 1-2: Quasi-static model and test hysteresis loops for ductility ratios of one and six (Rashid et al., 2000).

The authors discuss the results of two shaking table tests. The first corresponds to a five-
story two-cantilever wall connected by floors at each level and the bottom by a heavily
reinforced footing. The structure was 1/3 scale, design to the PS92 French code and tested at the
Saclay French shaking table. The model used half symmetry, with 3D solid elements, and
suggested material properties. Additionally, the shear-shedding formulation of the program was
activated. The model also accounted for the geometry and mass of the shaking table. Figure 1-3
shows the time-history responses of the test and the prediction of the model, which fits quite

well. Also, the model predicted the time and mode of failure.

The second test comprised a 1/10 scaled prestressed reactor containment. The structure
was subjected to a series of design level earthquakes with increasing amplitude motion until
failure. The experiments were performed at the Tadotsu Engineering Laboratory at Japan. Since
the failure mode of the test was led by shear, the use of the shear stiffness for cracked concrete
gave a better match of the overall behavior. Due to the comparisons of the test and model results
a shear-failure criterion was developed. The criterion considers the failure of the structure when

a shear strain reached 0.5% averaged in any cross-section. Also, an essential finding of the



analytical model was that assuming a fixed value of damping would give poor predictions. The

authors developed a crack-consistent damping model to overcome this.
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Figure 1-3: Dynamic model and test time-history responses (Rashid et al., 2000).



1.2 ABAQUS - MURCIA DELSO J.

Murcia-Delso (2013) did his doctoral dissertation focusing on bond-slip and development
of longitudinal reinforcing bars in enlarges pile shafts, which is the subject of study. For this, the
author used the finite element program ABAQUS to model large-scale tests of column-shaft

assemblies.

The model considered a symmetry plane. Continuum 3D elements were used for
concrete; beam elements for longitudinal reinforcement, and truss elements for the transverse
reinforcement. Additionally, the author created a constitutive law for a contact element between
the longitudinal bars and the concrete to account for bond-slip. Truss elements considered perfect
bond. Even though the steel was modeled with beam elements, the program was not able to

predict the buckling of the rebar.

Continuum elements had assigned a concrete damage plasticity model as constitutive
law. This law considers the strain tensor divided into an elastic and plastic component. The stress
tensor is related to the elastic stiffness, which to account for stiffness degradation a d scalar

parameter is introduced.
oc=E:(e—¢€P) (1.2)
E=(1-4d)E, (1.2)

The constitutive law uses a yield surface of the damage plasticity model, defined as a

function of the invariants I; and Js.

F = —al +/3]; + B(&2, & )(Omax) — ¥(~Gmar)] — cc(&}) (13)



Where (-) are the Macaulay brackets, o and y are constants, § and ¢, are variables that
depend on the equivalent compression plastic strain (¢7) and equivalent tension plastic strain

(€7). B is defined as follows:

ﬁzﬂ(l—a)—(1+a) (1.4)

ct(élf)

With ¢, (éf) and c; (52?) are the tensile and compressive cohesion in the yield surface.

Compression and tensile uniaxial tests calibrate these variables.

The plastic potential depends on the invariants and an additional parameter y which
represents the dilatation angle of the concrete. Then the rate of the plastic strain is given in (1.5),

where A is the plastic multiplier.
G = /3], + 2 tan(¥) (1.5)
p_ 596G
e =1% (1.6)

The rate of the history variables is given in (1.6).

& = 1(E) Py and & = (1= 7(8)) i (L7)
0 if 5 =0
0) =153, 1.8
(@) 22100 rherwise (1.8)
Zi=1|01|

With €7, = &P, €9 .. = €F  where ¢ > ¢ > &P,

The damage parameter d used to compute the stress tensor is a function of the damage

parameter in tension (d;) and compression (dc).



(1-d) = (1 — s,d, (é'f)) (1 — s.d, (ef)) (1.9)

st=1—wr(@)ands, =1 —w.(1—-7(5)) (1.10)

Where w, and w; control the stiffness degradation in compression and tension, and

uniaxial tests in compression or tension calibrate d; and d:.

Figure 1-4 presents the uniaxial representation of the model.

(e
g, A
AN
F s Kiiacoimniaasin
......... cu
(T/H
(T~ 1 pammnare
E
A :
(1-d )E,
l - (/‘ )l'.‘., i s
~ >
> > 4 % ‘ £
gl & £, o €, t

(a) uniaxial tension (b) uniaxial compression

Figure 1-4: Uniaxial tension and compression in plastic damage concrete model (Murcia-Delso, 2013).

For the steel model, the author chooses to use a rate-independent elasto-plasticity model
with linear kinematic hardening for the beam elements, and with exponential kinematic

hardening for truss elements.

The model uses the Von Mises yield condition. Definition of the yield function and
plastic flow has the same formulation given in (1.11), with ¢’ and o’ are the deviatoric part of the

stress tensor (o) and the backstress tensor (o).



F(o,a) = \/Z (¢/ —a):(c'—a)—o, (1.12)

The backstress tensor controls the translation of F in the stress space due to kinematic

hardening.

The author, as already mentioned, developed the constitutive model for the contact
element that considers the bond-slip relation. The model takes into account the normal and
tangential relative displacements. The implementation can be found elsewhere (Murcia-Delso,

2013).
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Figure 1-5: Comparison between test specimen and the analytical model of the lateral load versus
displacement (Murcia-Delso, 2013).

Since the concrete model is not able to represent well the opening and closure of flexural

cracks, the author provided a contact condition to the column-shaft and shaft-footing interfaces.

Figure 1-5 shows the overall behavior comparison between the analytical model and the
two test specimens. The analytical model overestimated the maximum load carrying capacity by
7% and 10% for specimen one and two. The gradual drop of the load carrying capacity caused by

P-delta effects was well represented. However, one of the major drawbacks of the model



prediction is the overestimation of the energy dissipation. This is mainly because the concrete

model was not able to account for the open and closure of flexural cracks.



1.3 LS-DYNA - MOHARRAMI M. & KOUTROMANOS I.

Moharrami et al. (2017) implemented a constitutive model for reinforced concrete in LS-
DYNA. For the concrete, it was based on a tri-axial constitutive model, and for the reinforcement
steel, the model accounted for low cycle fatigue. The concrete was modeled as continuum 3D

solid elements and the reinforcing bar as beam elements.

The concrete constitutive model combines an elastoplastic law with rotated smeared
crack formulation, where the strain is divided into elastic, plastic and cracking strains. The yield
surface is a function of the stress tensor and the hardening variable «, that express the cumulative

effect of inelastic deformation.

f{8} 1) = —[al, +7(8,€)/3]] = c.(k) = 0 (1.12)

Where I, is the first invariant of the stress tensor, J, is the second deviatoric invariant.
r(6, e) describes the effect of the third deviatoric invariant, and a is a dimensionless material

parameter.
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Figure 1-6: (a) Hardening-softening law. (b) Unloading direction of the crack model (Moharrami &
Koutromanos, 2017).

The function c. is represented in Figure 1-6 (a) and has the following formulation:
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cc()) =21+ )T+ a2+ a)K) = (1 + a2 + )K)| = fres (1.13)

Where fis Is the residual compressive strength and f, and a are material constants.

In the evolution of «, a confined parameter is introduced, d. Considering this parameter as

zero will lead into under-estimation of ductility capacity and sooner strength degradation.

The rate ok « is proportional to the plastic strain rate in the direction of the minimum

principal stress % . Gy is the compressive fracture energy, h is the element size, r is a
omin

weight factor, and f; is the uniaxial compressive strength.

a(1+(n/\37)) TP

k=(1—-1)—2_.29 ., (1.14)

(ch/h) Jo | omin

A rotating smeared crack model is used to capture damage associated with tensile cracks.

The formulation represented in Figure 1-6 (b) is given below.

Ei~fini

Gi=c|A—Me T +M| =123 (1.15)

With M the ratio of residual tensile strength over tensile strength, and &;,,; the strain at the

onset of softening (Figure 1-6 (b)).

fi K = Ko _
¢ = { ‘ = Q-Mf (1.16)

cc and A, =
f_cft K > K t Gft/h
The model could capture bar buckling since a beam element was used. The element had 9
integration points along the cross-section, and one along the length. A Kim and Koutromanos

constitutive law was used. This law is an enhancement of the Dodd and Restrepo material model.

11



Additionally, a rupture-criterion was introduced, based on the accumulation of a continuous
quantity D. The rate of D is given below. The failure occurs when D becomes D¢. Where D,

and t are material parameters.

7 2t
b= (E) & />0 (1.17)
0 f<0

The continuum element and beam elements used different nodes to account for bond-slip.
1D contact elements connected the nodes, using springs in the axial direction and constraining
the displacement of the nodes in the other directions. The springs had an elastoplastic
constitutive material law, which was a bilinear approximation of the Murcia-Delso curve. Since
the expected behavior would not be dominated by bond-failure and pullout of reinforcing bars,

the use of the curve would work well.

The authors used dynamic and quasi-static experiments to validate material models. The
analysis considered under quasi-static loading: RC post-tensioned walls tested under, U-shaped
walls under bidirectional loading; and for the dynamic loading: a bridge pier. For the quasi-static,
the following results consider damping. A comparative analysis to examine the effects of the
damping in quasi-static problems was assessed. The results indicate that damping primarily

affects the elastic behavior, and later the effect is negligible.

12
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Figure 1-7: (a) Reinforcement detail, (b) elevation and geometric configuration, (c) computational model
(Moharrami & Koutromanos, 2017).

The authors used test results on post-tension RC wall done by Pakiding et al. (2014). An
elastoplastic constitutive law with kinematic hardening represented the tendons. Experimental
data gave the yield strength and hardening slope. An autogenous strain introduced the pre-
stressing. Figure 1-7 (a) and (b) show the detail of the reinforcement and geometric
configuration of the test specimens. The comparison of the analytical results with the test
specimen is presented in Figure 1-8. The predicted results give roughly the same strength for the
positive and negative direction of loading. However, the test specimen had a higher strength for
the positive cycles. The authors also indicate that the sequence of damage predicted by the model

was in agreement with the one seen in the test.

The analytical model was able to capture the buckling of the reinforcement in the
boundary elements. For the first specimen, the model predicted buckling at the same cycle as in
the test. For the second wall, the analytical model predicted buckling during the second cycle,

and in the experiment, it was seen during the last cycle.
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Figure 1-8: Comparison from experimental and analytical results (Moharrami & Koutromanos, 2017).
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Figure 1-9: (a) elevation and geometric configuration (b) Reinforcement detail, (c) computational model
(Moharrami & Koutromanos, 2017).

Beyer et al. (2008) tested the U-shaped walls used in the analysis. Figure 1-9 (a) and (b)
shows the test setup and reinforcement details of the test specimen. The wall was loaded in the x
and y direction. Figure 1-10 shows the comparison of the overall behavior of the test specimen
and the analytical model for each direction. The initial stiffness and peak strengths are in

agreement with the test specimen.
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Figure 1-11: (a) elevation and geometric configuration with reinforcement detail, (b) computational model
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Schoettler et al. (2012) tested a bridge column at the shake table of UCSD, which was
subjected to a sequence of ten ground motions. Figure 1-11 (a) displays the test specimen and

reinforcement detail.
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The model agrees with the experimental data at the first yielding. It also gives a
reasonable agreement on the start of rebar buckling, and rupture. Figure 1-12 shows the drift
ratio history for the subjected ground motions. The analytical response and experimental data are
given. It is noticeable that the dynamic results of the models do not provide the same fit as the

quasi-static models, but the prediction of important damage points matches well the experimental

data.
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The authors investigated the effects of strain penetration in modelling. The comparison of
the overall behavior of the analytical model and the test specimen is depicted in Figure 1-13, and
according to this it was stated that it has a minor impact and leads to higher stiffness and peak

strength.
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Figure 1-13: Effect of strain penetration in Wall 2 of Pakiding et al. (Moharrami & Koutromanos, 2017)
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14 SUMMARY

The research here presented Rashid et al. (2000); Murcia-Delso (2013); and Moharrami et
al. (2017), shows the implementation of detailed non-linear finite element analysis in the
prediction and postdiction of the response of reinforced concrete elements to validate their use.
All the authors used programs that based the concrete material in continuum 3D elements with

fracture-plastic constitutive models.

The prediction of the overall behavior was well captured, in the sense of strength capacity
and stiffness prediction. However, none of the investigations gave, as a result, the distribution of

the deflection capacity and compare it to the tests results.

The use of beam elements to represent the reinforcement applied with the correct
constitutive law could predict bar buckling. Nevertheless, once the fracture of the bar took place,

it had to be manually removed from the model (Moharrami & Koutromanos, 2017).

From the results seen, it is recommended to use constitutive material laws that can
capture the open and closure of flexural cracks, to be able to consider the pinching effect on the
hysteresis of the elements. Otherwise, contact elements distributed along the portion where

cracking are expected should be thought to account for this effect.

Another important conclusion of the analysis corresponds to the use of this type of model
predictions in shaking table tests where a damping ratio consistent with the level of cracking of

the element should be considered (if possible) over a constant value.
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CHAPTER 2: CASE STUDY
The case study used to calibrate a detailed non-linear finite element model is a column
extending into type Il shaft. Which studied the column-shaft interface of a bridge column
extending into a Type Il shaft designed following Caltrans specifications, and reinforced with
high-strength ASTM A706 Grade 80 bars. Type Il shafts correspond to a pile shaft continuous
with the column, where the shaft has an enlarged diameter as shown in Figure 2-1. These
components are designed such that the plastic hinge will form at or above the shaft-column

interface, providing an easier inspection after an earthquake.

— Column

I
i — Enlarged shaft

oI

'
Concentric b
column and

Enlarged
shaft c@es@ Shaftge

inforci
SIQEDI'CIHQ

Section C-C Section D-D
TYPE Il SHAFTS

Figure 2-1: (a) Type Il Pile Shafts (Caltrans, 2006) (b) interface of column-shaft (Lotfizadeh, 2019).

Due to the difference in the shaft and column diameter, there are two reinforcing cages,
where column cage extends into the shaft cage and is terminated at a certain distance, creating a

non-contact lap splice between both reinforcements.

Since there are no code requirements for the dimensions of the development length of a

Gr.80 reinforcement, this was address during the research project (Lotfizadeh, 2019). As a result
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of this research, Lotfizadeh used a scaled dimension of the tension development length of a
Gr.60 reinforcement (i.e., 80 ksi/60 ksi) given by AASHTO LRFD Bridge Design Specifications

(2010).

2.1 TESTS SETUP, SPECIMEN REINFORCEMENT AND GEOMETRY

The test specimen was built at full scale at the Charles Lee Powell Laboratories. It had a
column diameter of 4 ft. and a shaft diameter of 6 ft., the longitudinal reinforcement of the
column was 14 #14, which gives a reinforcement ratio of 0.0174, with double #5 hoops spaced at
5in. at the first 4 ft. that provides a transverse ratio of 0.011, and then spaced at 8 in., that gives a
transverse ratio of 0.0071. The shaft was reinforced with 20 #18 longitudinal reinforcement,
which provides a longitudinal reinforcement ratio of 0.019. For the transverse reinforcement, #7
hoops spaced at 5 in. were used, which gives a transverse ratio of 0.00376. Figure 2-2 shows the
elevation of the test specimen. Figure 2-3 and Figure 2-4 shows the section cuts of the shaft and

column with the reinforcement detail.
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Figure 2-2: Elevation of test setup (Lotfizadeh, 2019).
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Figure 2-3: Cross section of column (Lotfizadeh, 2019).
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Figure 2-4: Cross section of shaft (Lotfizadeh, 2019).

The tests setup considered two additional elements are shown in Figure 2-2. The top
element, refer in the following as hammerhead, and the lower element, placed between the

reaction floor and the shaft called footing.

The hammerhead served to apply the lateral and additional vertical load to the column.
The element was 8 ft. x 8 ft. in plan and 2 ft. height. Two actuators that ranged between the
reaction wall of the laboratory and the hammerhead applied the lateral load. The stroke of this
actuators was 48 in. and were placed at mid-stroke, the maximum load that each of these could
apply was 220 kips. Figure 2-5 displays a render of the test setup, where it can be seen the two
lateral actuators anchor to the reaction wall. To simulate an 8.6% axial load ratio on the column,
an external axial load was applied using post-tensioning rods connected to the hammerhead
shown in Figure 2-5 and Figure 2-6. The rods applied a total load of 800 kips, kept quasi-
constant throughout the entire test. Figure 2-7 displays the reinforcement details of the

hammerhead.
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Horizontal Actuators

&—— Axial load rods

Figure 2-5: 3D view of test setup (Lotfizadeh, 2019).

Figure 2-6: 3D View of test setup of application of external load (Lotfizadeh, 2019).

23



SECTION F-F SECTION H-H

2" 0D PVC DUCT

@ 25"0DPVC DUCT\

2 4 2
p [ [
1' 2" OD PVC DUCT o Q| q j
- (TYP) \ >
@A{ \O\% ; #6 ASTM A706
% OW 8' GRADE 80 (TYP)
8 6 qll
% Lallo] - | —2.5" 0D PVC DUCT
qiiisiiiae A

" . |
>

Figure 2-7: Cross section of hammerhead (Lotfizadeh, 2019).

The footing served to anchor the specimen to the strong floor. The dimensions were 14 ft.
x 8 ft. in plan, and 4 ft. height. It had four cone PVC ducts as shown in Figure 2-8, to
accommodate the displaced form of the post-tensioned rods that applied the vertical load to the
hammerhead. The additional ducts shown in these figures worked to anchor the test to the
reaction floor. Figure 2-9 shows the reinforcement detail of this section, which was design to

remain elastic throughout the test.
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Figure 2-8: Footing elevation showing PVC ducts (Lotfizadeh, 2019).
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Figure 2-9: Cross section of footing (Lotfizadeh, 2019).
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2.2 MATERIALS AND CONSTRUCTION PROCESS

The construction process considered four stages, shown in Figure 2-11. The first stage
considered the placement of the reinforcement of the footing and PVC ducts, and the cage
reinforcement of the shaft. Placing the concrete of the footing was also part of this stage. Figure

2—12 shows a picture of part of this process.

The second stage consisted of the placement of the concrete in the shaft. Since the
longitudinal reinforcement of the column started at 6in higher than the footing-shaft interface,
the cage of the column was placed sitting over four threated bars. The threated bars had a nut at
the interface with the footing, to adjust the height to make sure of the plumbness of the column
cage. The threated bars were welded at the top with the bottom of the longitudinal reinforcement
of the column, see Figure 2—-10. Due to the large diameter of the shaft, a steel casing was used as

formwork, see Figure 2-13.

Shaft Cage Column
Cage
Shaft
Adjustment
* Nuts
-6
Footing | - e | PE TS B N Ry il
. P LA : S : ; - “ . e , ) a B
AAAAAAAAA :

Figure 2-10: Sketch of adjustment threated bars used to place the column cage.
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STAGE 1 STAGE 2
CONCRETE PLACEMENT FOR FOOTING CONCRETE PLACEMENT FOR TYPE Il EXTENDED
SHAFT

STAGE 3 STAGE 4
CONCRETE PLACEMENT FOR COLUMN CONCRETE PLACEMENT FOR HAMMERHEAD

Figure 2-11: Construction stages (Lotfizadeh, 2019).

The third stage cast the column itself. Since the formwork used was Sonotube ®, see
Figure 2-14. The column was cast in two stages. The first part was 48 in. height and upon

setting, the remainder of the column was cast in the second part.

The hammerhead had additional vertical and longitudinal PVC ducts that were placed to
anchor the lateral actuators, and the post-tensioned rods that applied the vertical load, and was

cast in the fourth stage.
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Figure 2-13: Second stage of the construction process (Lotfizadeh, 2019).
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Figure 2-14: The Sonotube® used as formwork for the column (Lotfizadeh, 2019).

The concrete specified strength was 5000 psi, with a maximum aggregate size of 1 in.

The reinforcement was Gr.80 ASTM A706.

Concrete cylinder compression tests were made for the concretes of the first three
construction stages. Since the hammerhead was not in the scope of this research, there is no
concrete cylinder compression test data. Table 2-1 shows the concrete parameters at the day of

testing (DOT).
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Table 2-1: Concrete parameters (Lotfizadeh, 2019).

Region Max. Aggregate | w/cm Ratio | Age of Concrete f! Slum
& Size [in.] [%] at DOT [days] [ksi] | p[in.]
Colump Plastic 0.75 45 57 517 6.0
Hinge
Column 5.5
Elsewhere 0.75 45 57 5.08
Shaft 0.75 45 75 4.93 5.5

As part of the project two additional uniaxial compression tests were performed to obtain
the compressive fracture energy, the specimens were from a different concrete pour but with the
same mix. As it is known (Van Mier et al., 1997), the test setup can affect the softening part of
the stress-strain curve of the concrete. The friction in the platens and the slenderness of the

specimen affects it. The executed tests were performed using steel platens, where one end was

free of rotating, and the other was fixed. The specimen had a hydrostone capping at both ends.

The test specimen was a cylinder of 6 in. diameter and 12 in. tall, so the slenderness was 1.5

(H/D).

The compressive fracture energy (Gg) is defined as the absorbed energy per unit of area

in the fracture zone. Table 2-2 lists the compressive fracture energy taken from the strength to

the 20% of ¢ (i.e., the shaded area in Figure 2-15).

Table 2-2: Compressive Fracture Energy of Specimens (Lotfizadeh, 2019).

Specimen Gt [Ib. /in.] (at 6/00=0.20)
SPECO01 119
SPEC02 156

Nakamura & Higai (2001), related the compressive fracture energy (post-peak energy) to

the tensile fracture energy, which is used later on this research.
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Figure 2-15: Typical axial displacement-stress response at a test cylinder (Lotfizadeh, 2019).

All the reinforcing steel in the test specimen conformed with ASTM A706 Grade 80
(A706/A706M-16). Tensile tests were carried out to obtain basic mechanical properties. For #5
circular hoops the tensile tests were performed by straightening the hoops per Caltrans Test 670
(CTM, 2013). No experimental data was available for the #7 circular hoops. Table 2-3 lists the
properties for straight bars and straightened circular hoops, where f,, is the yield strength, f,, is

the ultimate tensile strength, g, the onset of strain hardening and &, the uniform strain (i.e.

strain ,at f;,,).

Table 2-3: Steel Parameters (Lotfizadeh, 2019)

Bar ID fy Esh fsu Esu fsu/
ar [Ksi] [%] [ksi] [%] Ty
#18 81.9 0.610 110 11.9 1.35
#14 87.0 0.783 114 11.3 1.31
#5 87.8 -@ 115 11.1 1.31
W No visible yield plateau.
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2.3 INSTRUMENTATION

The test specimen was instrumented with a dense array of 5 mm electrical foil strain in
the longitudinal reinforcement of the column (88), transverse reinforcement of the column (22),
longitudinal reinforcement of the shaft (48), and transverse reinforcement of the shaft (14), for a

total of 172 strain gauges. Figure 2-16 and Figure 2-17 presents the location of these strains.
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o
50"+ 1500744145008
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Figure 2-16: Column electrical foil strain location (Lotfizadeh, 2019).
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Figure 2-17: Shaft electrical foil strain location (Lotfizadeh, 2019).

The test specimen had 48 vertical linear potentiometers placed in the shaft (20) and
column (28), and 10 diagonal (6) and horizontal (4) linear potentiometers. The rods of the linear
potentiometers placed in the column were able to cross the entire transverse formwork since they
were placed before pouring the concrete. However, since the shaft had a steel casing as
formwork, it was not possible to set the shaft rods before pouring the concrete, which was done

later by drilling into the hard concrete. Figure 2-18 shows a transverse cut of the column and

shaft with the location of the rods. Figure 2-19 displays the vertical position.
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Figure 2-18: Rods of vertical linear potentiometers (Lotfizadeh, 2019).
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Figure 2-19: Vertical location for potentiometers (Lotfizadeh, 2019).

Additionally, it had three string potentiometers at the height of the shaft-column interface

(1) and the mid-height of the hammerhead (2), shown in Figure 2—20.
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Figure 2-20: String potentiometers location (Lotfizadeh, 2019).

2.4 LOADING PROTOCOL

Loading was applied to the specimen via 2-500 Kkips capacity +48 in. stroke servo-
controlled actuators. The actuators were deployed horizontally between a reaction wall and the
mid-depth of the specimen’s hammerhead. Testing was carried out quasi-statically at the Charles
Lee Powell Structural Research Laboratories of the University of California at San Diego.
Testing was carried out using a prescribed load then lateral displacement controlled the loading

protocol, see Figure 2-21.
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Figure 2-21: Displacement protocol recorded for the test. (Lotfizadeh, 2019).

2.5 TEST RESULTS

In the following, a summary of the most important observations and key results used in

this work to validate the analytical FE model are described here. Lotfizadeh (2019) gives a

detailed description.

2.5.1 Global behavior

Figure 2-22 shows the lateral load versus lateral displacement hysteretic response. The
test specimen displayed a typical ductile flexural response. The flexural strength was attained at
the column base and maintained at large drift ratios. The hysteretic response was characterized

by round and stable loops (i.e., very little change in response upon repetition of the loop).

Considerable strength degradation was seen once the p,=5 cycles at 9.94% column drift

ratio (i.e., the lateral displacement divided by the column height of 17 ft., 204 in.) begun. By the
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end of the second cycle at this displacement, the lateral strength had decreased by 4% of the peak
value recorded in the first cycle. By the end of the third cycle, the lateral strength had decreased
by 7% of the peak value recorded on the first cycle. Only one cycle at p, = 6 at 10.7% column
drift ratio was performed, since the damage included many fractured column longitudinal bars

and the degradation in the lateral strength was substantial.

Column Drift Ratio (%)

400 1 T T l T T

Load (kip)

30

Lateral Displacement (in.)

Figure 2-22: Actuator lateral load versus lateral displacement at hammerhead. (Lotfizadeh, 2019)
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Figure 2-23: Normalized column moment versus column drift ratio. (Lotfizadeh, 2019)

Figure 2-23 displays the normalized base column moment versus the column drift ratio
hysteretic response. The base column moment was computed from the deformed geometry of the
specimen and using the actuator forces and the force and eccentricity of the post-tensioning roads
placed to simulate axial force in the specimen, and at 204 in. from the column base. This moment
was normalized by the ideal moment M; computed with simplified flexure theory and using

measured material properties corresponding to the materials at the column base.

Before the first positive peak of p =2, at a column drift ratio of 2.95%, the first sign of
concrete flaking was observed in the south face. After the peak of the same cycle, at the
unloading with a column drift ratio of 3.99%, spalling in the same face of the column was
observed. The first signed of bar buckling was observed at the peak of the second cycle at p =5

at a column drift ratio of 9.949%.
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Figure 2-24 shows the lateral displacement contributions at the positive and negative
peak displacements computed from the linear potentiometers placed along the shaft and column,
as a percentage of the total displacement measured externally at the hammerhead shown in the
X-axis of the figure. The linear potentiometers in the lower column, in yellow, corresponded to
the first 48 in. (22% of the column height); and the linear potentiometers in the upper column, in

purple, the following 99 in. (representing 48.5% of the column height).

This figure reveals that the largest contribution of the lateral displacement was due to

flexure in the lower portion of the column where plastic hinge eventually developed.

Positive Cycles Negative Cycles
0.5 0.9 09
‘ : 4 | shaft Flexure
[ FER
| |ZTIcCol Flexure - lower col
[ Col Flexure - upper col
[ Col Shear

17

1.9

56.2 67.2

0.8 0.6
Run 1 2 3 4 5 6 1 2 3 4 5 6
Disp. (in) 3.99 815 12.23 16.25 203 21.95 4.07 820 14.85 16.35 20.51 24.01

Figure 2-24: Lateral deflection contributions (Lotfizadeh, 2019).

Figure 2-25 shows the normalized moment Mpy; measured at 194.875 in. from the
column base, where plastic hinging was very pronounced, versus the normalized curvature, and
the normalized moment at the column base versus the fixed end rotation caused chiefly by strain
penetration. These two figures display the hysteretic response observed locally in these two parts

of the column, where most of the inelastic action and energy dissipated took place in the test
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specimen. The cycles are only displayed until p, = 5. For the plastic hinge region, the curvature
was calculated considering the first 3 pairs of vertical potentiometers above the column base and

excluding the potentiometers that monitored the fixed end rotation.
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Figure 2-25: (a) Normalized moment-curvature at plastic hinge region PH, and (b) normalized moment-
rotation at the shaft-column interface region FER (Lotfizadeh, 2019).

The electrical foil strain gauges of bar 1 and bar 3 shown in Figure 2-16 were used to
obtain the strain distribution at the peak displacements of the first cycle of ductility 1, 2, 3 and 4.

Figure 2-26 and Figure 2-27 shows the strain distributions. The electrical foil strain gauges of

bar 3 at u,=3 gave wrong lectures of strains.
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2.5.2 Test observations

The damage in the test specimen was recorded. Most of the damage was encountered in
the plastic hinge region, i.e., within the first 48 in. of the column. Figure 2-28 shows the
interface between the column and the shaft at the end of the load control cycles. In the figure, the
cracks of the east face of the column are marked with red (for the negative cycles) and black (for

negative cycles). There were radial cracks in the shaft at the end of the load control cycles.

At the end of the displacement control cycles, fracture of rebar and considerable concrete
crushing was observed. A 3D cloud image processing is shown in Figure 2—-29 for the north face

and Figure 2—30 for the south face (Lotfizadeh, 2019).

GRBO TYPE L SHAFT
W19 20%

END OF 757, LoD
CowTROL OfCLE

(ErsT FACE)

Figure 2-28: Picture of test-specimen at the shaft column interface at the end of the 75% load control cycle
(Lotfizadeh, 2019).
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Figure 2-29: Damage after the completion of the test at the north face (Lotfizadeh, 2019).

Figure 2-30: Damage after the completion of the test at the south face (Lotfizadeh, 2019).
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CHAPTER 3: MATERIAL MODELS
ATENA Studio from Cervenka Consulting was the software chosen to perform the
nonlinear analysis. This finite element program is specialized to model reinforced concrete
structures. The author created a 3D finite element model with GID. GID specializes in pre-
processing given a friendly user interface to generate the model. ATENA Studio performed the

analysis and post-processing.
The material models used in this investigation are discussed in the following sections.

3.1 CONCRETE MODELS
The concrete model used is the facture-plastic constitutive model (named as
CC3DNonLinCementitious2). It is a combination of a plasticity model (for compression) with a

fracture model (for tension) (Cervenka et al., 2018).

The material model formulation is based on the decomposition of the strain vector into

the elastic, plastic, and fracturing strains:
&ij = & + eipj + sifj (3.1)
The stress evolution is based on the following formulation:
(n)aij = (n_l)al-j + Ejjia Mgy — Mgy, — Ae,{l) (3.2)

Where E corresponds to the elastic stiffness tensor. The fracture and plastic concrete

models are reviewed below.
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Fracture

For the tensile behavior of the concrete, the fracture model is based on the classical
orthotropic smeared crack formulation and crack band model. The Rankine criterion is used.

There are two models of the smeared cracks, the fixed-crack model and the rotated crack model.

For the fixed-crack model, the crack direction is given by the principal stress direction at
the onset of crack initiation. At this point, the direction of principal stresses is fixed and
represents the material orthotropic axis. In further loading steps, the difference between the

principal stress and strain directions produces shear stresses in the crack plane.

For the rotated crack model, the direction of the principal stress coincides with the

principal strains at every step, leading into no shear stresses at the crack plane.

The Rankine criterion:

Fl=oy -fi<0 (3:3)

l

Where o';;" is the trial tensile strength in local axes of the element, calculated with the

elastic predictor, and f;; is the tensile strength in the material direction i.

O-i’]F = O'l-’}l_l + EijklAS,kl (34)
IfF/ >0
F/ = o[ — f} = o/f — Euyhe'u — fi; = 0 (35)

Assuming the increment in fracturing strain Ae’y; is always perpendicular to the failure

surface F/, and that only one surface is being checked (“k”), we can state that:
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Introducing Ae'/;; into Fif, the fracture multiplier is computed by:

AJ = T (wit™) (3.7)
Exkkr '
wihe® = L (&) + A1) (3.8)

L. is defined as the element size projected in the direction of the crack. And &/, is the

maximal fracturing strain reached during loading.

fi (wi***) is dependent on the crack opening. For pre-peak tensile stress, a linear
behavior is assumed. For post-peak behavior, the exponential crack opening law derived

experimentally by Hordijk et al. (1991) is used. The expressions used are stated below.

O'_ w 3 —c W/ w 3 —
f—t,—[1+(c1—) ]e 2 Wtc—W—tC(1+c1)e Ca (3.9

Wtc
Gr
Wee = 5.14F (3.10)

Where wy,. is the crack opening at the complete release of stress. It is important to notice
that w,. is different to the maximum crack opening. Reported maximum crack openings were

around 400-500 pm and larger.

G is the fracture energy that by definition is the amount of energy needed to create a unit

crack area. Gy is the area under the curve shown in Figure 3-1.
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o is the crack cohesion (normal stresses 1,2,3). The parameters c; and ¢, correspond to 3
and 6.93 respectively and were calculated to fit experimental data from Hordijk and other

authors.

finite element ’

Figure 3-1: Tensile softening (Cervenka et al., 2018).

Plasticity

For the plastic surface, the failure surface given by Menétrey- Willam (1995) was used.
The model is formulated in the Haigh-Westergaard coordinate system. The relation between the

stress vector and the Haigh-Westergaard coordinates is shown below.

o £ cos(0)
[02] =—|¢|+ \Ep cos(8 — 27/3) (3.11)
93 $ cos(6 + 2”/3)

With ¢ the hydrostatic stress invariant, p the deviatoric stress invariant, and 6 the

deviatoric stress angle.

The model is based on three parameters that involve properties of uniaxial tests such as

the compressive strength f,/, tensile strength £/, and an out of roundness parameter e.
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p1? p £
E,(¢,p,0) = [‘/1'5/7;] +m[mc,r(e,e) +J§fc,] —c=0 (3.12)

Where m is presented as in the original model and c evolves through crushing/yielding.

The function r(0, e) gives the shape of a triple symmetric elliptic.

m=3 () —(f) _e (313)

fiff et

4(1-e?) cos?(8)+(2e—1)?
2(1—e2) cos(8)+(2e—1)[4(1—e2) cos2(0)+5e2—4e] /2

r(0,e) = (3.14)

1(.P 2
e = (2)) (3.15)

fé

fc’(sg’q) indicates the hardening/softening law, based on the uniaxial compressive test.
And efq represents the equivalent plastic strain. Figure 3-2 depicts the laws used by the program.

As it can be seen the plastic surface (Fp) is not unique, and it evolves with the equivalent plastic

strain 5.

* =21,

s/=fJE

Figure 3-2: Hardening/softening laws used in CC3DNonLinCementitiuos model (Cervenka et al., 2018).
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The hardening is modeled with a linear and nonlinear branch. The nonlinear curve is

governed by:

Ecp

Py Ecp—¢& 2
foleeqp) = Flao+ (Fle = fleo) [1 - (222 (316)

With ', representing the stress at the onset of nonlinear hardening and &, the strain at

which fc’ is reached in a uniaxial test.

From Figure 3-2, the softening branch is linear and based on displacements. In this
figure, wy is the critical compressive displacement from Van Mier’s formulation. L. is the
crushing band calculated for each FE as the projection of the element size in the direction of the

minimum compressive stress.

Since the softening is a function of the displacement instead of strain, mesh objectivity is

introduced to the formulation (Nakamura & Higai, 2001).

Wy parameter is assumed as a material property, as it was found by Van Mier et al. (1997).
Van Mier (1984) found a value of -0.5 mm (-0.0197 in.), and Nakamura & Higai found -2.5 mm
(-0.0984 in.) (Cervenka et al., 2018). As we can see this parameter is not well understood, and
different authors have found different values. In 2001, RILEM released recommendations for the
test method to measure strain-softening behavior of concrete under uniaxial load. From values
found in a Round Robin test, considering the recommendations above, the values for wy range

around -0.75 mm (-0.0295 in.) (Van Mier et al., 1997).

Regarding the out of roundness parameter, a.k.a. eccentricity, it will control the relation

between the uniaxial and equibiaxial compressive strength. Figure 3—-3 represents the relation
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when g; = 0. A value of 0.52 it is recommended by Cervenka Consulting, that is equivalent to

consider f',. = 1.14f'., which is in agreement with Kupfer et al. (1969).

Figure 3-3: Influence of eccentricity on biaxial strength for the 3 parameter criterion

(Menetrey & Willam, 1995).

The plastic potential GPgoverns the direction of the plastic flow. GP is a function that

depends on parameter B. B defines the volumetric change during crushing (positive means

expansion, negative values mean contraction, and if it is equal to zero the volume is preserved).

GP(@) = B+2 = BE+p

(3.17)

The iterative process to recover the new stress state is based on a predictor-corrector

formula. The input parameters are:

-1 -1
(D, @O A™

m_ _ (-1 Py _ -t p _ _t
O'l'j = O-ij + Eijkl(Agkl - Agkl) = O-ij — EijklAgkl = O-ij

50

(3.18)

—aoF (3.19)

ij



0).

Where aitj is the elastic predictor, computed as:
0;i = (n_l)O'ij + EijklA(n)Ekl (320)
Where ‘75 is the plastic corrector, computed as:

P =F?(af; — af}) = FP(of; — M Emy;) = 0 (3.21)

t
With mij = aGp(GU) .

6ai,-

For the first iteration, the plastic multiplier increment will be set equal to zero (AA=1 =

If 7 > 0, then the failure criterion is violated, and the procedure is:
Compute the return direction (i)ml- j
Compute A2+ with Fp(afj — A/li+1E(i)mij, ("‘l)gl.].) =0

Evaluate [, = Fp(aitj — MFEOm, m"”efj + AATHY (i)ml-j)

Then as long as |A2t — A2 > e
it2 . p A/li+1—A/1i
AATe = AAY — f; P 7
i+1 L
n, 967 (aly-0a 42 Omy)
Y aO'l']'

if_z = Fp(Uitj — Al”zEaﬂ)mU-, (n—l)ggﬂj + A/1i+2(i+1)mij)

51



p
i+2 <0

Then if

p
i, =0 do

End of the algorithm, update:

(n)g.p. =
U

™,

P _ ¢p
do i+1 = Ji+2
P _ £P i _ Agi
fP=fh,  mat=aa
= fih, AT =0A22
(n—l)g_p +Ali+1(i+1)m”

ij ij

— At i+1(+1)
—_ Gij - A E mij
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3.2 REINFORCEMENT MODELS
There are two ways of considering reinforcement in ATENA. The first is using a uniaxial
material associated with line elements, and the second is through smeared reinforcement

associated with the concrete material in 3D elements (Cervenka et al., 2018).

For the case of the uniaxial elements, the program allows considering the cyclic response
of the reinforcement through Menegotto-Pinto (1973) cyclic model. The backbone curve of the

steel corresponds to a multilinear stress-strain curve.

The implementation of the Menegotto-Pinto (M-P) model differs from the one given in

Filippou et al. (1983). The model is based on the following formulations:

(1-b)e*

0" = be +m (3.22)

o = (0p — 0,)0" + 0, (3.23)
x _ €7 &r

&= (3.24)
_p _ af

R =R, .Y (3.25)

The parameters c;, ¢, and Ry are experimentally determined. Typical values for this in the
original implementation of the model range between 20, 18.5 and 0.15 respectively. However, in

ATENA the recommended values are 4, 500, 50.

Figure 3—4 shows the comparison between M-P given by Steel02 Material in OpenSees
(2013) and the M-P obtained from ATENA. For the Steel02 the setting was taken as: the yield

strength and elastic modulus set from the test values obtained for bar #14, the strain hardening
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ratio (b) as 0.012, Ry as 20, cR1 as 0.9 and cr2 as 0.08, al as 0.039, a2 and a4 as 1 and a3 as

0.029.
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Figure 3—4: Comparison between OpenSees and ATENA implementation of Menegotto-Pinto.

From the figure, the curve with the parameters recommended by ATENA fits better with

the curve given by OpenSees (2013) for the first cycle.

Deactivating the compressive response of the reinforcement is possible. If activated,

buckling in the rebar is assumed, and the strength of the element is considered negligible.

The bond-slip of the rebar can be accounted with three different models provided by the
software. These are the CEB-FIB model code from 1990, the bar bond slip law by Bigaj (1999),

and a user-defined law.
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The user-defined law is a bond slip-bond strength definition, i.e., no elastic bond slip is
considered in the bond mode, and only when the bond strength is reached the bar starts to slip. It

should not start from zero strength for zero slip (0.11).

3.2.1 CEB-FIB 1990 Model Code
The model given by CEB-FIP (1990) gives the bond stress for a monotonic loading

calculated as a function of the relative displacement s.

s a
(Tmax(5/s,) 0<s<s;
Tmax 5:<Ss<s,
T= S—5; < (3.22)
| Tmax — (Tmax - Tf) S3—5, S < S =53
Tf S3<S
T Tmax

| |
|
I |
| |
! |
| |
[ |
| |

o f------ o
| I ‘
I I I
| | I
| ! I
59 S, S5 slips

Figure 3-5: Bond-slip model by CEB-FIB 1990 (Cervenka et al., 2018)

The parameters used for the model considers a ribbed bar. Table 3-1 shows the
parameters used. These values are applicable only in loading states where the concrete is not

subjected to lateral tension.
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Table 3-1: Parameters for defining the mean bond stress-slip relationship. (CEB-FIP, 1990)

Column Column Column Column
2 3 4 5
Unconfined concrete® Confined concretet
Good All other Good All other
hond bond bond bﬂ_n rl
conditions conditions conditions conditions
5 0.6 mm 1.6 mm 1.0 mm 1.0mm
5 0.6 mm .6 mm 30mm 3.0mm
5 1.0mm 2.5mm Clear rib Ch:ar_ rib
' spacing spacing
o 0.4 0.4 0.4 0.4 _
T 2.0/ 1.0y7,s 25 1.25,/f.
Tl. 0' 1 5\.: miax 0' I sthI 0'4"fmux i ﬂ 'MTIIIH‘

*F

ailure by splitting of the concrete.

tFailure by shearing of the concrete between the ribs,

To use columns 2 and 3 (unconfined concrete), minimum requirements are set:

» Concrete cover ¢ = 1¢;

» Minimum transverse reinforcement Ag; i = 0.25n4;

To use columns 4 and 5 (well-confined concrete), the requirements are:

» Concrete cover ¢ = 5¢;

» Clear spacing > 10¢;

» Closely spaced transverse reinforcement Ag; > nA;

» Or high transverse pressure p = 7.5MPa

Where n is the number of bars enclosed by the stirrups, As; area of stirrups (two legs) over

a length equal to the anchorage length, and A the area of one bar.
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3.2.2 Bond Model by Bigaj

The model is based on the experimental investigation made by Bigaj (1999) on her
doctoral dissertation. For the first stage, between points 1 and 2 shown in the figure below, a bi-
linear curve is used. Table 3-2 lists the coordinates of the points 1 through 4, where D represents

the reinforcement bar radius.

Th

Figure 3-6: Bond-slip model by Bigaj 1999 (Cervenka et al., 2018)
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Table 3-2: Parameters for defining bond strength-slip relation (Cervenka et al., 2018).

Concrete | Bond Point 1 Point 2 | Point 3 Point 4
Type quality
Excelent |s/D 0.000 0.020 0.044 0.480
7/ ng‘ 0.500 3.000 0.700 0.000
b " cu
£ <60
Good s/ D 0.000 0.030 0.047 0.480
7,/,J0.8 J:"u 0.500 2.000 0.700 0.000
Bad s/D 0.000 0.040 0.047 0.480
r,/J0.8 f;; 0.500 1.000 0.700 0.000
Excelent |s/D 0.000 0.012 0.030 0.340
7,/ 1’0_88 j:u 0.600 2.500 0.900 0.000
S =60
Good s/ D 0.000 0.020 0.030 0.340
7,/ ’0.88 j:u 0.600 1.900 0.900 0.000
Bad s/D 0.000 0.025 0.030 0.340
7,/ fo.88 -f:u 0.600 1.100 0.900 0.000

For a cyclic loading analysis, an additional model is available called memory bond
material. This model uses the previously mentioned bond-slip models as a backbone. Once the
bond stress sign changes, an additional parameter t; determines the maximum bond stress. 1; lies
between T,.; < T < T4 The residual bond stress is the last value from the bond strength-bond

slip function.
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- Tbond

Figure 3-7: Memory bond working diagram (Cervenka et al., 2018).

So

Si =S;j1+ ASi (323)

The loading range |s| = Spax

The unloading range —s,,4x < S < Smax

As =0 T=17 (3.25)

As <0 T=-7g (3.26)
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CHAPTER 4: BASED MODEL AND INPUT PARAMETERS
The author modeled the geometry of the test specimen in the GID interface, introducing a

series of simplifications to achieve a faster run process. The simplifications consisted in:

» Where elastic behavior was observed in the test, the author added an elastic material
(instead of reinforced concrete), i.e., the hammerhead and footing.
» A point displacement at mid-height and mid-width of the hammerhead (instead of two

points used in the test) introduced the displacement protocol.

A unique feature was the post-tensioning rods which applied the additional axial load to
the column see Figure 2-5. The fixity points of the rods are the bottom of the reaction floor, from
this point the PT follows the trajectory of the hammerhead adding P-6 effect to the overall

behavior.

In the model, the PT rods were modeled as external cables (CCExternal Cable), applying
the prestress as an initial strain. Applying the prestress as initial stress did not introduce an axial
load to the system. The Young’s Modulus was made equal to Epr/10 to emulate the test setup

where the force in these rods was actively controlled and maintained reasonably constant.

Figure 4-1 shows the fix-points of the PT rods. For this, the footing considered the height

of the reaction floor and the footing itself.
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— PTRods
@® Fixity Point
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Figure 4-1: Fixity point of post-tension rods.

At the interface between the column pier and the shaft, a slim volume of 3 in. height
placed at the base of the column was set to consider the cold joint formed in this region. It had

the same properties as the plastic hinge with a reduce tensile strength.

41 MATERIALS FOR VOLUME ELEMENTS

Figure 4-2 shows the list of materials used for volume elements in the model.

s
Tl
I
!

List of Materials Names

Elastic

Column 2

|
B columni
|

Column —reduce f:
Shaft

|

i
i
i
i

Figure 4-2: Color code of concrete materials used.
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Table 4-1 shows the parameters wused. These are required to use
CC3DNonLinCementitious2 explained in Chapter 3.1. The author used the compression strength
and Young’s modulus obtained from the concrete cylinder compression tests given in Chapter
2.2. The researcher only performed one split-cylinder test for this project, which provided a

tensile strength of 0.45 ksi.

Activation of crack spacing and minimum crack spacing was not necessary to introduce
since the mesh was refined enough. The tension stiffening, aggregate interlock, the shear factor

(sr) and the unloading factor (fy) were not activated.

Since there was no experimental data of the fracture energy Gy (no wedge-splitting test),

the author used the formulation proposed by Vos (1983) and given by ATENA manuals.
Gre[MN/m] = 0.000025f/[MPal] (4.2)

The formulation given above was calibrated using results by Peterson (1981) , shown in
Figure 4-3, and considering that the tensile strength is within the upper 95% limit proposed by

CEB-FIP.

The fixed-crack material parameter determines at which maximum residual tensile stress
level the crack direction gets fixed. In other words, 0 means the use of a fully rotated crack
model, and 1 means using a fixed-crack model (Chapter 3.1). Values between 0 and 1 determine
the crack direction locking level. For example, using 0.7 fixes the crack direction as soon it
opens so far that the softening law drops to 0.7 times the initial tensile strength. A fully rotated

cracked model was used (value set as 0).
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Figure 4-3: Calibration of fracture energy versus
cylindrical compressive strength (Vos, 1983).

The plastic strain at peak load called ., was determined by dividing the compressive
strength by Young’s modulus. f,, corresponded to the onset of nonlinearity and determined as
the average of the values found with the experimental data given in Chapter 2. Figure 4-4 shows
both of these parameters.

Compressne stre

?f=ﬁﬁ

£

.

Figure 4-4: Left figure: Peak compressive strain and onset of crushing. Right figure: compressive strength
reduction (ATENA ®).

wy corresponds to the critical compressive displacement explained in Chapter 3.1. F.
reduction is a parameter that reduces the compressive strength due to cracking. Figure 4-4 shows

the r. value.

In the miscellaneous parameters: the density of the material is set; this parameter is for a
dynamic problem (not the case of this study). The thermal expansion coefficient is also set,
which would not influence the research. The eccentricity is the parameter defining the shape of

the failure surface, explained in Chapter 3.1, and kept as the 0.52 recommended by Cervenka

63



Consulting. The last parameter corresponds to the direction of the plastic flow  mentioned in
Chapter 3.1, the values given can vary in a range between -5 and 5, where a negative value
corresponds to compaction and a positive to expansion. Figure 4-5 shows the schematic return

direction with a positive, zero or negative plastic flow.

>

Sqrt(2.J,)

c
Return Y
direction /" |\\

p:

£=1,/Sqrt(3)

Figure 4-5: Return plastic flow direction (Cervenka et al., 2018).
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Table 4-1: Input parameters for volume elements.

Column | Column | Column
Shaft reduce f; 1 2
Concrete
Base Material Prototype CC3DNonLinCementitious2
Young's Modulus [ksi] 3695.7 3751.3 | 3751.3 3557.7
Poisson Ratio 0.20 0.2 0.2 0.2
Tension Strength [ksi] 0.45 0.1 0.45 0.45
Compression Strength [ksi] -4.93 -5.17 -5.17 -5.08
Tensile
Activate Crack Spacing no no no no
Crack spacing - - - -
Activate crack spacing min no no no no
Crack spacing min - - - -
Activate tension stiffening no no no no
Tension stiffening - - - -
Activate aggregate interlock no no no no
Aggregate Size [in.] - - - -
Activate shear factor no no no no
Shear factor - - - -
Activate unloading
factor no no no no
Unloading factor - - - -
Fracture energy [Ib. /in.] 0.44 0.44 0.44 0.44
Fixed-crack 0 0 0 0
Compressive

Plastic Strain EPS-CP -0.0013 -0.0014 | -0.0014 | -0.0014
Onset of crushing Feo -, -2.33 288 -28| -2.73
(linearity limit)

Critical comp disp-WD [in.] -0.197 -0.197 | -0.197 -0.197
Fc Reduction 1 1 1 1
Miscellaneous.

Rho-Density [Ib./in’] | 8.67E-08 | 8.67E-08 |8.67E-08| 8.67E-08
Thermal Expansion Alpha [F] 6.67E-06 | 6.67E-06 |6.67E-06| 6.67E-06
Eccentricity-EXC 0.52 0.52 0.52 0.52
Dir. of Plastic Flow-BETA 0 0 0 0
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4.2 MATERIALS FOR 1D ELEMENTS
Figure 4-6 shows the list of materials used for the 1D element in the model. These
correspond to the mild reinforcement used in the column and shaft and the post-tension

reinforcement.

List of 1D Elements

PT-rods

#14 Bars (Column longitudinal)

#18 Bars (Shaft longitudinal)

Sisi= #5 Bars (Column transverse)

s Sais = #7 Bars (Shaft transvers)

Figure 4-6: List of 1D element names.

Table 4-2 shows the input parameters that characterize the mild reinforcement used in the
column and shaft, based on the coupon tests. For #7 since there was no data available, the author
based the stress-strain on the #6 results. The longitudinal reinforcement used a four linear
function to describe the backbone curve. The transverse reinforcement used a three linear
function for the backbone curve. For the cyclic response, the author used the Menegotto-Pinto

built in ATENA ®.

In the miscellaneous parameters, the density and thermal expansion parameters were set;

however, these are not used during the analysis. If the reinforcement in compression is activated,
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the element will have the same backbone curve for tension and compression. If the reinforcement
has low bending stiffness is recommended not to enable this setting, to simulate the buckling in

the reinforcement under compressive forces.

In the element geometry parameters, the type of geometrical non-linearity (linear or
nonlinear) is introduced. Here the type of bond is set, by default the program considerers the bar
to be perfectly bonded with the surrounding volume elements. The settings for embedded short
bars and quadratic elements indicate if the volume elements have quadratic interpolation

functions between nodes and if the rebar is smaller than the 3D volumes (coarser mesh).

Table 4-3 shows the input parameters used for the bond law of the longitudinal

reinforcement of the column. A user-defined function was used for the base model.
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Table 4-2: Input parameters for mild reinforcement.

| No1s No 14 No5 | No7
Basic
Material Prototype CCyclingReinf
Young's Modulus [ksi] 29123 27760 28160 29000
Profile [in.] 2.25 1.75 0.625 0.875
Number of profiles 1 1 1 1
Reinforcement Function
Yield Strength YS [ksi] 81.9 87 87.8 84.6
Number of multilinear values 5 5 4 4
eps2 [-] 0.01497 0.02393 | 0.0192 | 0.02533
f2 [ksi] 90 100 105 105
eps3 [-] 0.03233 0.033 | 0.04367 | 0.05067
f3 [ksi] 100 105 114 115
epsd [-] 0.061 0.06567 | 0.1109 | 0.10624
f4 [ksi] 108 113 115 119.5
eps5 [-] 0.11904 0.1134 - -
f5 [ksi] 110.4 114.3 - -
Menegotto-Pinto
Bauschinger exp-R 2 2 2 2
C1 5000 5000 5000 5000
C2 20 20 20 20
Miscellaneous
Rho Density [Ib./in%] 0.284 0.284 0.284 0.284
Thermal Expansion-Alpha [FY) 6.7E-06 6.7E-06 | 6.7E-06 | 6.7E-06
Active in compression yes yes yes yes
Element Geometry
Name #18 shaft #14 col #5 col #7 shaft
Geometrical Non-Linearity Non-Linearr Non-Linear Linearn Linear
Bar with
Geom Type Normal memory| Normal | Normal
bond

Embedded Reinf. yes yes yes yes

minimum [in.] 2 2 2 2
Embedded short bars yes yes yes yes
Quadratic elements no no no no
default application yes yes yes yes
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Table 4-3: Input parameters for bars with a bond.

No 14

Bar with memory bond
Bar end fixed none
max bond strength 1000 psi
friction unload
coefficient 50 psi
function for bond slip From user
slip (length unit) 1 0 [in.]
bond strength 1 0.1 [-]
slip (length unit) 2 0.04 [in.]
bond strength 2 1 []
slip (length unit) 3 0.07 [in.]
bond strength 3 1 [-]
slip (length unit) 4 1.72 [in.]
bond strength 4 04 []

For the post-tension rebar Table 4-4 and Table 4-5 shows the parameters used.

Table 4-4: Input parameters for Post-tensioned rebar.

Basic
Material Prototype CCyclingReinf
Young's Modulus [ksi] 2900
Profile [in.] 1.75
Number of profiles 1
Reinforcement Function
Yield Strength YS [ksi] 140
Number of multilinear values 2
eps2 [-] 0.6
2 [ksi] 150
Menegotto-Pinto
Bauschinger exp-R 4
c1 500
C2 50
Miscellaneous

Rho Density [Ib./in.?] 0.2836
Thermal Expansion-

Alpha [F] 6.67E-06
Active in compression no
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Table 4-5: Input parameters for Post-tensioned rebar.

Element Geometry
Name PT
Geometrical Non-Linearity Linear
Geom. Type cable
Embedded Reinforcement no
Embedded short bars no
Quadratic elements no
Default application yes

4.3 MESH AND PROCESS SETTINGS
The program assigns the mesh independently for each volume. Table 4-6 shows the type
of element used. Linear interpolation functions between nodes were used. ATENA meshes the

linear elements directly. The program creates a node at each intersection with a volume element.

Table 4-6: Element type for the mesh of volumes.

Volume Element Type
Hammerhead Tetrahedra
Column Hexahedra
Shaft Hexahedra
Footing Hexahedra
Steel Plates Tetrahedra

Figure 4-7 shows the prescribed number of element in height indicated for the volumes
that represent the column, shaft, and footing. Also, the picture displays the quality of the mesh
for the tetrahedra and hexahedra. The column and shaft had the same mesh in plan view, so each
node at the shaft-column interface connected both elements. The mesh at the interface is visible

in Figure 4-8.
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Figure 4-7: Volume mesh size (number of divisions in height) and mesh quality for (a) Tetrahedra elements
and (b) hexahedra elements.

Figure 4-8: Section cut of column mesh at the column-shaft interface.

Three master-slave conditions were used to connect the volume elements that did not

share nodes (mesh independently). These interfaces were the hammerhead to the column, the
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shaft with the footing, and the steel plates with the hammerhead and footing. The master

condition is given to the volume with the coarser mesh.

Table 4-7 presents the problem data setups. The method of resolution of the nonlinear
static problem was set as Modified Newton-Raphson. The process was analyzed leaving one core
of the system free (humber of threads). And two processes were run simultaneously. The
computer in which it was analyzed had 4 cores and 8 logical processors. For the processor type,

changing from 32bits to 64bits reduced the time of process significantly.

Table 4-7: ATENA Process Settings.

Global Settings
Type of problem Static Analysis
Processor Type 64bit
Number of threads -1
Solution Parameters
Method Newton-Raphson
Displacement Error 0.01
Residual Error 0.01
Absolute Residual Error 0.01
Energy Error 0.0001
Iteration Limit 400
Optimize Band Sloan
Stiffness Type Elastic Predictor
Assemble Stiffness Matrix Each step
Solver PARDISO
Pardiso Required accuracy 0.00000001
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CHAPTER 5: BASE MODEL RESULTS
This chapter presents the comparison between the overall behavior and the specific
response between the base model and the test. As mentioned in Chapter 2, the test specimen was
heavily instrumented with vertical potentiometers (LVDT). The author replicated the monitor
points in the model, with the same vertical location, but for modeling convenience, the horizontal
distance was kept constant and differed from the test specimen. Table 5-1 shows the horizontal

spacing for the model monitoring points.

Table 5-1: Monitor horizontal distance in model.

Horizontal distance
[ft.]
Shaft 3
Column 2

The author divided the column into two sections: column 1 that represents the first 48 in.
and is where the plastic hinge developed; and column 2 which corresponds to the upper part of
the column. So, the first three panels of vertical potentiometers relate to the results shown as

column 1, and the last four panels are considered column 2.

The comparative analysis presented considered checking the following graphs:

Actuator Load v/s Displacement at mid-height mid-width of the hammerhead.
Normalized moment-curvature at the plastic hinge.
Normalized moment - curvature at the shaft-column interface.

Lateral deflection contributions.

vV VYV Vv VvV V

Strains in south and north bars at peak displacements.
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In the following, an explanation of how the author developed these graphs from the

model data is presented.

Actuator Load v/s Displacement at mid-height mid-width of the hammerhead.

The program gives directly the reaction at the point where the displacement is prescribed.

Normalized moment - curvature at the plastic hinge.

The author used the following procedure to get the moment and curvature at the plastic

hinge region:

Moment:

H ) Mo1
M = Ryt - (Hcol + % - Hcg, col 1 monitor ~ 3[in. ]) + Weor - (T o MOZ) + Wyn -
(M01 — MO02) + Lpy - cosa - (M01 — M02) (5.1)
MO1
a = atan 5.2
<Hhh/2+HCOl+HSh‘1ft+Hf00t+Hlab slab) ( )

Where:

Ract
Heo
Hpp
Hgpare
Heoot

Hlab slab

Actuator Load, [Kip].
Column height, [in.].
Hammerhead height, [in.].
Shaft height, [in.].
Footing height, [in.].

Laboratory reaction floor height, [in.]
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Heg cor1monitor 1N€ height of the centroid of gravity of column 1, [in.].

MO01 Horizontal displacement measure at mid-height mid-width of

the hammerhead, [in.].

MO02 Horizontal displacement measure shaft at mid-width, [in.].
Weor The weight of Column (1 and 2), [kip].

Wy, The weight of hammerhead, [kip].

Lpr Post-tension Load, [kip].

a Angle measure from the original vertical axis to PT-rod

alignment, [rad].

Curvature:

0 = 31, atan (2eri—tueris) (5.3)
SLvpTia = Zit1a ~ Zia (5.4)
SLvpr,ib = Zi+1b — Zib (5.5)
p="9/ dh (5.6)

Where 8,ypriq and Spypr,ip is the relative vertical displacement between point “i” and

“i+1” in the same vertical axis a or b. And dh is the vertical distance between the three first

panels. An important remark is made to this part, since the curvature was not calculated for each

panel, but for the three first panels giving a “smeared” curvature over this region.

The moment is normalized by the cross-section area times the diameter and the

compressive strength. The curvature is normalized by the diameter.
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Normalized moment - curvature at the shaft-column interface.

Calculation of the moment followed (5.1) where the height multiplied by the actuators

forces changes to the one given in (5.7). a is considered as provided in (5.2).

Moment:

H . M01
M = Rae, + (Hoop + 222 = 1.5[in.]) + Weor - (55

2 — MO2) + Wiy, - (MO1 — MO2) + Lpr -

cosa-(M01— MO02) (5.7)

The curvature follows the same procedure as the one given in (5.6), where only one panel

of vertical potentiometers is considered, and dh is equal to 3 in.

Lateral deflection contributions

The displacement contribution considered the flexural response of the shaft, column 1,
and column2, and the fixed end rotation (FER). With the rotation at each LVDT the flexural

displacement is:

_ SLvpT,ib—SLVDT,ia
0; = atan( va[in] ) (5.8)

A= 6; - hy (5.9)

h; is the vertical distance from the center of the LVDT to the top of the hammerhead.
Then adding the contribution of the vertical potentiometers placed in each section gives the
flexural displacement contribution. Using of the same procedure, but considering a height of 3

in. (at the base of the column), the FER was obtained.
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A remark must be made to this calculation, the contribution of each vertical potentiometer

was made on its own and then added by region (not the smear contribution by sector).

Figure 5-1 shows a reduced displacement history used to decrease the time of the

analysis.

25 T T T T = T

15 - Y:12.23
10 L Y 8.15

Y399

/Y 408

S Y -8.21

Displacement (in)
o

-20

-25 : :

Figure 5-1: Reduce displacement protocol.

Figure 5-2 shows the overall behavior of the test specimen compared with the analytical
model. From the graph, the analytical model has convergence issues before the end of the
displacement protocol. Figure 5-3 gives a close up by ductility cycle. From this, the overall
behavior of the analytical model matches well the specimen behavior. For the first cycle, the
dissipated energy of the model is higher than the test. In the second cycle, the model predicts a
higher strength of around 10%, and it is not capable of predicting the change in stiffness at the

re-loading of the negative cycle. For the third cycle, the strength matches between model and
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specimen, but the model is not able to predict the change in stiffness also seen in the second

cycle.

400 T T T T T T T T

300 r

T

200

T

100

Load (kip)

-100

-200 Test Specimen

Analytical Model

-300

1 1 1

-400 I ! I I I
25 20 15 -10 -5 0 5 10 15 20 25

Lateral Displacement (in)

Figure 5-2: Actuator Load versus displacement at hammerhead.
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Figure 5-3: Actuator Load versus displacement at hammerhead per ductility displacement cycle.

Figure 5-4 and Figure 5-5 shows the normalized moment curvature of the analytical

model and test specimen. Figure 5-4 displays the moment-curvature for the first two

displacement ductility cycles, with the yield curvature given by Priestley (2003) for a circular

column. The yield strain was obtained from the monotonic tensile test of the #14 bar (0.00313).

0, =2.257/,
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Figure 5-4: First cycles of normalized moment curvature.

From the figure, it is possible to identify that the prediction of the yield curvature given
by the model is in good agreement with the one from Priestley. However, the test specimen
behaves more elastically for the positive cycle than for the negative, which makes the yield
curvature predicted by the formulation to have an offset with the actual one. Also, the test
specimen has an asymmetric behavior in the curvature at the first 48 in. of the column. The

analytical model predicts an asymmetry. However, this is reduced in comparison with the one

from the experiment.

The change in stiffness at the re-loading of the second negative cycle is more pronounced

in this region than at the overall behavior. The base model was not able to capture this feature.
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Figure 5-5: Normalized moment-curvature at the plastic hinge region.

Figure 5-5 shows the complete comparison of the normalized moment-curvature curve;
this does not present the last displacement ductility cycle for the test (ductility 6). From the
figure, the normalized flexural capacity at the peak displacement of the third cycle is in

agreement with the one predicted (positive 1%, negative 3% difference), but at the end of the

negative cycle, the normalized curvature is 38% off.
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Figure 5-6: Normalized moment-rotation at the column-shaft interface.

Figure 5-6 shows the normalized moment-rotation at the column-shaft interface. The
prediction of the model underestimates the rotation capacity at this region. Also, the model

predicts a stiffer behavior in the first cycles than the specimen.

Figure 5-7 shows the lateral deflection contribution of the test specimen at the left and at
the analytical model at the right. The value from the experiment corresponds to the average of
the positive and negative first cycle of the different displacement ductility. The analytical model
has convergence issues during the third cycle. Table 5-2 gives the detail and a comparison
between the model values and the test values. It is noticeable that the model accounts for a higher
flexural displacement at the shaft and it reduces the contribution of the fixed end rotations (FER).
At the end of the experiment, the vertical potentiometers at the base of the specimen were not

reading any data.
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Figure 5-7: Displacement Contribution.
Table 5-2: Displacement contributions.
Test Base Model M/Test
CDR (%) [ 1.98 4.01 6.64 799 10 113|198 4.01 6.64|1.98 4.01 6.64
Ma 1 2 3 4 5 6 1 2 3 1 2 3

Shaft 73 45 30 25 21 07117 587 31159 131 1.05
FER 23.8 294 289 36.2 381 00|966 882 84041 03 0.29
Coll 24.0 385 43.7 46.7 482 61.7|219 413 521091 1.07 1.19
Col2 236 155 111 96 84 25248 17.1 13 (105 1.11 1.14

CDR : Column Drift Ratio
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CHAPTER 6: PARAMETRIC ANALYSIS

A series of analysis ran modifying the material parameters to see the influence in the

behavior.

6.1 CONCRETE PARAMETERS

6.1.1 Tension Stiffening (C)

The factor represents the relative limiting value of tensile strength in the tension softening
diagram. Figure 6-1 shows how the tensile stress cannot drop below c.,f,. By CEB-FIP (1990)

Model code the recommended value for c;s for an instantaneous loading is 0.4 and for a long-

term loading 0.25.

.
T
Ll TN

-----
________

Figure 6-1: Tension stiffening parameter.

Table 6-1: Tension stiffening models and run time.

Model Modifications Ru[r;g]m © | Last Step Run ;')rgit[e:::'] @
M1 Not active 10.75 427 7.27
M2 Active with c,s=0.2 89.50 1108 18.63
M3 Active with ¢, = 0.4 37.28 637 10.23
M4 Active with ¢s = 0.6 36.28 583 7.91

84




Table 6-1 presents the different parameters considered for the tension stiffening. The base
model recognized this as inactive which gave problems of convergence with at the third loading
cycle. Once the tension stiffening is active, the most noticeable from this table is the program can
go further on the displacement cycles. By considering the value of ci as 0.2, the analysis runs
until the last positive displacement cycle. The fastest run process until the 300 steps was by

considering this factor inactive.

400 400
200 200
B g ‘
53 3
S 00— — 3 0= < —
<] IS
) S
~ ~
-200 -200
Test data Test data
c,_ not active c _=0.2
ts ts
-400 -400
-20 -10 0 10 20 -20 -10 0 10 20
Lateral Displacement (in) Lateral Displacement (in)
400 400
200 200
g ‘ g
= 3
s O—FA S — - o/ ]
<] IS
S S
~ ~
-200 -200
Test data Test data
c. =0.4 c,=0.6
ts ts
-400 -400
-20 -10 0 10 20 -20 -10 0 10 20
Lateral Displacement (in) Lateral Displacement (in)

Figure 6-2: Actuator load versus lateral displacement, for different tension stiffening parameters.

Figure 6-2 shows the comparison of the curve load versus displacement. Considering the
tension stiffening as active allows the constitutive model to capture pinching in the response.
Also, by activating the parameter, improves the convergence of the analysis. For the study with
Cis taken as 0.2 (blue curve), the analysis had convergence issues starting the fifth displacement

cycle; this translates into the unsmooth curve at this cycle.
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For a better comparison purpose, Figure 6-2 shows the first five cycles of displacement

ductility. Only the model with ¢ equal to 0.2, which goes into px=6 (Column Drift Ratio (CDR)

of 11.3%), the test results exhibits two cycles at pa=5 (CDR=10%) as well as the last

displacement ductility.
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Figure 6-3: Normalized moment curvature at PH region, for different tension stiffening parameters.

Figure 6-3 shows the normalized moment curvature, and Figure 6-4 shows the same

graph considering the first two ductility displacement cycles and the yielding curvature given by

Priestley (2003) in the latter chapter. As well as Figure 6-2, Figure 6-3 shows the first five

cycles of displacement ductility. Only the model with ¢ equal to 0.2 shows all the cycles for the

test result.
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Figure 6-4: First cycles of normalized moment curvature at PH region, for different tension stiffening
parameters.

Figure 6-4 shows that the model agrees with the yielding curvature proposed by
Priestley, as well as the test for the negative cycle. The main difference between the prediction
and test specimen is that the latter is more flexible for the positive cycle, and the yielding
curvature is higher than the predicted by the model and the formulation. Between the models,
activating the tension stiffening gives a necking on the hysteresis which traduces into lower
energy dissipation. All the analyses predict a higher strength than the test for the first two cycles,
and all the models predict a fairly symmetric curvature incursion for the positive and negative
cycles, but for the test specimen the incursion in curvature it is not symmetric (negative second
cycle ®D of -0.0194 radians and positive cycle ®D of 0.0275 radians). The area under the curve
for the first cycles, for the model without the tension stiffening activated, is higher than the one
from the test specimen, and is lesser than the one with the parameter enabled; the model that is

closer to the test specimen would be the one without activating it.
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Regarding the comparison in the higher cycles, activation of the parameter allows the
program to go further on the displacement protocol and allows having a noticeable necking of
the curve. The model better captures the strength and curvature at the positive higher cycles. It is
important to notice the asymmetry of the test specimen, as well as the over-estimation of the

curvature by the model for cycles higher than py=3 (CDR=6.64%).
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Figure 6-5: Normalized moment-rotation at the column-shaft interface, for different tension stiffening
parameters.

Figure 6-5 shows the moment-rotation for the fixed end rotation region. The analysis

with the ¢ activated resembles the behavior observed in the test. However, the models under-

estimate the rotation capacity of this region.
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Figure 6-6: Lateral displacements contribution calculated for test specimen and thorough analysis for
different tension stiffening parameters.

From Figure 6-6 it is noticeable that activating the tension stiffening allows for an
increase in the displacement contribution of the FER. For the model with inactive ¢ the
contribution is around 9%, and it doubles when it is activated. The model that suits better the
distribution is the model considering a value of ¢ 0.6, since this is the value that gives a higher

matched for the FER.
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Table 6-2: Displacement contributions in %, for ¢ set to 0.2.

Cs=0.2 M/Test
CDR (%) | 1.98 4.01 6.64 7.99 10 11.3 1198 4.01 6.64 7.99 10 11.3
Ha 1 2 3 4 5 6 1 2 3 4 5 6

Shaft | 11.2 6.22 3.73 282 201 158|153 138 13 1.11 097 23
FER 152 16.6 15.7 154 16.7 157|064 057 05 042 044 -

Coll 226 39.7 499 522 585 634|094 103 11 112 122 103
Col2 24.8 15.7 116 10.8 6.41 5.23|1.05 1.01 1 113 0.77 2.12

Table 6-3: Displacement contributions in %, for ¢ set to 0.4.

¢s=0.4 M/Test
CDR (%) | 1.98 4.01 6.64 799|198 4.01 6.64 7.99
Ha 1 2 3 4 1 2 3 4

Shaft |10.8 584 349 263|148 13 117 104
FER 18.2 22 203 193 (0.76 0.75 0.7 0.53
Coll 23.8 395 505 54 (099 1.03 1.15 1.16
Col2 244 146 9.08 7.35|1.03 0.94 0.82 0.77

Table 6-4: Displacement contributions in %, for c set to 0.6.

¢=0.6 M/Test
CDR (%) | 1.98 4.01 6.64 799|198 4.01 6.64 7.99
Ha 1 2 3 4 1 2 3 4

Shaft | 10.2 541 3.2 22 |140 1.20 1.09 0.87
FER 209 242 229 235|088 083 0.79 0.65
Coll 246 40.7 50.7 541|102 106 116 1.16
Col2 239 137 83 59 (101 089 0.75 0.61
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6.1.2 Aggregate interlock

The aggregate interlock activates the use of the shear strength of the cracked concrete

calculated using the modified compression field theory by Vecchio and Collins (1991). The

comparison of enabling it with the maximum size of the aggregate was assessed.

Table 6-5 shows the parameters used and the time that the program took to complete the

process. The activation of the setting gives a longer time of analysis, even though the steps

analyzed where less.

Table 6-5: Aggregate interlock models and run time.

I Run Time Last | Run Time [hrs.]
Model Modifications [hrs] Step @ 300 steps
M1 Not active 10.75 427 7.27
Active with maximum

M2 aggregate size (0.75[in.]). 16.68 419 10.6

400 400

300 r 300 r

200 r 200
__ 100 | __ 100 |
) )
§ 0 \‘g— 0

-100
-200
-300

-400

Figure 6-7: Comparison of curve load versus lateral displacement, for different aggregate interlock

Figure 6-7 shows the comparison of the curve of the applied actuator load and the

displacement measure at the hammerhead. The overall behavior is almost identical for both
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models. The analyses give an over-estimate of 8% on the strength of the test specimen at the

peak of the py=2 (CDR=4.01%) and the third peak an under-estimation of around 1.8%.

From the comparison of the normalized moment-curvature of the plastic hinge region
shown in Figure 6-8, both models give a higher initial stiffness than the one seen in the test
specimen. Also, the initial flexural capacity at the peak of the first cycle is higher. The main
difference between the models is the convergence issues that it has by activating the parameter
and the higher time that the process takes to run. Moreover, by enabling the setting, the energy
dissipation is less than by not activating it. The model gives an additional rotation capacity in the

negative cycles in comparison with the test specimen.
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Figure 6-8: Normalized moment curvature at PH region, for different aggregate interlock parameters.

Figure 6-9 shows the first two cycles of the normalized moment-curvature shown in

Figure 6-8. The activation of the parameter does not change much the predicted behavior.
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Figure 6-9: First cycles of normalized moment curvature at PH region, for different aggregate interlock

parameters.
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Figure 6-10: Normalized moment-rotation at the shaft-column interface, for different aggregate interlock
parameters.

Figure 6-10 shows the normalized moment-rotation for the fixed end rotation. The

models under-estimate the rotation and over-estimate the flexural capacity of this region.
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Figure 6-11: Lateral displacements contribution calculated for test specimen and thorough analysis for
aggregate interlock parameters.

Figure 6-11 shows the displacement contribution of each section of the column, which is
given in detail in Table 6-6. Both models provide roughly the same displacement contributions,

where both of them sub-estimate the contribution due to FER.

Activating the parameter does not change in extent the response of the predicted

behavior, but it does introduce convergence issues.
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Table 6-6: Displacement contributions in %, for aggregate interlock activated.

A.l. active M/Test
CDR (%) | 1.98 4.01 6.64|198 4.01 6.64
Ha 1 2 3 1 2 3

Shaft | 115 5.7 3.1 |157 126 1.03
FER 111 91 82 | 047 031 0.28
Coll 189 37.2 47.0(0.79 0.97 1.07
Col2 249 183 150|105 1.18 1.35

6.1.3 Shear Factor (sg)
The activation of the shear factor sg will set a value to use in the calculation of cracked
shear stiffness. sg links the stiffness in mode Il to mode I. This factor is related to the shear

retention factor () as follows (Havlasek & Kabele, 2017):

Dy = spDys (6.1)

G, = BG (6.2)
_ Dp

ﬁ - Di+G (63)

A sg factor of 20 recommended by Cervenka Consulting was used (value based on
experiments performed by Walraven 1981) (Cervenka et al., 2018), as well as a value of 200
suggested in the paper “Prediction of shear failure of large beam based on fracture mechanics”

(Cervenka et al., 2016).

Table 6-7 presents the models analyzed to compare the use of this parameter and the time
of the process. The fastest model was the one that did not activate the shear factor parameter.
The model with the activation of the setting using the value recommended by Cervenka

Consulting was the one who presented convergence issues at the earliest step stage.
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Table 6-7: Shear Factor models and run time.

e - Run Time Last Run Time [hrs.]
Model Modifications [hrs] Step @ 300 steps
M1 Shear Factor not activated 10.75 427 7.27
M2 Sg= 20 (recommended by ATENA 13.92 415 10.78
Manual)
Sg= 200 (recommended in paper,
M3 (Cervenka et al., 2016). 2172 462 12817
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Figure 6-12: Comparison of curve load versus lateral displacement, for different shear factor parameters.

From Figure 6-12, the overall response of the structure at these drift levels does not
change by changing s;. The models over-estimate the strength at the end of the first positive
displacement cycle around 8% and under-estimate the strength at the end of the second
displacement cycle around 2%. The models do not capture the change in slope at the reloading of

the structure, attributed to the closure of the concrete flexural cracks.
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Figure 6-13: Normalized moment curvature at PH region, for different shear factor parameters.

Figure 6-13.shows the normalized moment-curvature at the plastic hinge. The models
predict a higher initial stiffness for the positive loading direction. The analyses present a slight
variation on the behavior at the unloading of p,=3 (CDR=6.64%), where the one with a higher
shear factor gives a reduction in around 8% of the normalized curvature at the negative peak

response, but it is off the experimental results by 33%.
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Figure 6-14: First cycles of normalized moment-curvature at PH region, for different shear factor

parameters.

Figure 6-14 displays the first two ductility displacement of the normalized moment-
curvature at the plastic hinge. The figure also shows, in the segmented line, the yield curvature
given by Priestley, which fits well with the model's prediction. However, the test specimen for

the positive cycles gives a higher ductility than the one predicted by the model and by Priestley’s

formulation.
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Figure 6-15: Normalized moment-rotation at the shaft-column interface, for different shear factor

parameters.

Figure 6-15 shows the normalized moment-rotation at the shaft-column interface. The
models do not capture the behavior of this region. The analyses over-predict the stiffness and

under-estimates the rotation capacity, compared to the test results.

From Figure 6-16, the displacement contribution does not change much with the
variation of sg. The significant difference would be at the shaft displacement contribution. Table
6-8 shows the percentage of the total displacement that each region contributes and the relation

with the test specimen.
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Figure 6-16: Lateral displacements contribution calculated for test specimen and thorough analysis for
different shear factor parameters.

Table 6-8: Displacement contributions in %o, for different shear factor parameters.

sg=20 M/Test se=200 M/Test
CDR (%) | 1.98 4.01 6.64|198 4.01 664|198 4.01 6.64|1.98 4.01 6.64
Ha 1 2 3 1 2 3 1 2 3 1 2 3

Shaft | 119 6.2 3.1 |163 139 103|115 55 3.0 |157 122 0.99
FER 99 97 7.8 (042 033 0.27|111 9.2 81 |0.47 031 0.28
Coll 216 406 528|090 106 1.21|18.8 374 479|0.78 097 1.10
Col2 25.0 169 128|106 1.10 1.15|249 178 151|105 1.15 1.37

The predicted behavior of the model does not change much by varying this parameter in

the range prescribed, but it does introduce convergence issues to the analysis.
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6.1.4 Unloading Factor (Fy)
The unloading factor (fy) controls the crack closure stiffness. This parameter should be
higher or equal to 0 and less than 1, where 0 means that the unloading goes to the origin and 1

means that the unloading direction is parallel to the initial elastic stiffness.

Table 6-9 shows the unloading factors used to compare its effect and the time of the
process. The base model (Model 1) has the lowest run time. Model 2 has the lowest number of

steps analyzed.

Table 6-9: Unloading Factor models and run time.

e Run Time Last | Run Time [hrs.]
Model Modifications [hrs.] Step @ 300 steps

M1 Not active 10.75 427 1.27

Active fy=0.99
M2 (values must be less than 1) 12.87 246 -

M3 Active fy=0 20.15 469 13.32
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Figure 6-17: Comparison of curve load versus lateral displacement, for different unloading factor
parameters.

From Figure 6-17, the three models over-estimate the strength at the end of the p,=2
(CDR=4.01%) by 8% and it under-estimates by 1.8% at the positive peak of p =3
(CDR=6.64%). From the figure, considering the unloading direction as parallel to the initial
stiffness gives higher dissipated energy than the actual response of the test specimen, as well as
the other models. Not activating this factor, or considering an unloading factor of 0 (unloading
goes to the origin), captures better the response of the specimen for the unloading of pa=1

(CDR=1.98%).
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Figure 6-18: Normalized moment-curvature at PH region, for different unloading factor parameters.

Figure 6-18 shows the local response of the plastic hinge region. The models over-
estimate the initial stiffness of the first cycle. Model 2 (unloading parallel to initial stiffness)
gives higher normalized curvature at the end of the negative loading of =2 (CDR=4.01%), also
at the end of this cycle in the unloading process experience convergence issues. At the reloading
process of the third ductility displacement cycle, the models are not able to capture the increase
in stiffness associated with the closure of the cracks. However, the model that gives a slight
change in slope would be Model 3, where the unloading is assumed to go to the origin. This
model experience convergence issues at the beginning of the loading process of the fourth

ductility displacement cycle.
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Figure 6-19: First cycles of normalized moment-curvature at PH region, for different unloading parameters.

From Figure 6-19, we can see that activating this parameter increases the ductility in the
plastic hinge. Priestley’s yield curvature fits well with the model prediction, but the test

specimen is more flexible for the positive cycle. Any model does not capture this flexibility.
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Figure 6-20: Normalized moment-rotation at the shaft-column interface, for different unloading parameters.

Figure 6-20 presents the normalized moment-rotation calculated at the column-shaft
interface. For the negative branch of p,=3 (CDR=6.64%), the model that considers unloading to

the origin (fy=0) gives a higher rotation (24% under the specimen 6). No model can capture well

the response at the interface.

Figure 6-21 shows the displacement contributions for each ductility displacement cycles.
All the models failed to consider the contribution made by the fixed end rotation. Also, the
unloading factor parameter does not have a significant role in the contribution made by the
plastic hinge (column 1). The main differences between models are the contributions of the
flexural displacement in the shaft and the upper section of the column (column 2). Table 6-10

presents the percentages of the displacement contributions.
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Figure 6-21: Lateral displacements contribution calculated for test specimen and thorough analysis for
different unloading factor parameters.

Table 6-10: Displacement contributions in %, for different unloading factor parameters.

fu,=0.99 M/Test fu=0 M/Test
CDR (%) | 1.98 4.01 198 4.01|1.98 4.01 6.64|1.98 4.01 6.64
Ha 1 2 1 2 1 2 3 1 2 3

Shaft |11.8 59 |161 130|116 592 3.14|159 132 1.05
FER 101 84 | 043 0.29|10.1 7.75 104|042 0.26 0.36
Coll 21.7 428|090 1.11|213 416 503|0.89 1.08 1.15
Col2 252 16.3|1.07 105|252 17.2 129|106 1.11 1.17

From the results, if the model does not present convergence issues by activating the

parameter, it seems advisable to employ a value of 0.
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6.1.5 Fracture Energy (Gg)
For the base model, the formulation given by Vos (1983) was used to compute the
fracture energy. Gs is compared with the value obtained by the formulation given by Nakamura

& Higai (2001) that relates the compressive fracture energy (Gs.)with the tensile fracture

energy(Gyse).

Applying this formulation to the values obtained by Lotfizadeh (2019), an average value
of 0.55 Ib. /in. was found. Table 6-11 presents the values reported of Gs. by Lotfizadeh and those

of G computed from equation 6.4.

Table 6-11: Compressive fracture energy found by Lotfizadeh and the tensile fracture energy found using the
formulation by Nakamura & Higai.

Table 6-12 shows the models used and the process time. The model that took less time

was with fracture energy of 0.44 Ib. /in.; also, this model is the one that goes further in the steps.

Specimen | Gy [lb. /in] | Gg[lb. /in]
SPECO1 119 0.476
SPEC02 156 0.624

Table 6-12: Tensile fracture energy models and run time.

Model | Modifications Ru[r;rTS'.l]m | Last Step ng értl)rtr)]it[er;)rss']
M1 G = 0.44[lIb. /in.] 10.75 427 7.27
M2 Gt = 0.1[lb. /in.] 19.28 388 12.18
M3 G = 0.55[Ib. /in.] 12.82 333 10.41
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Figure 6-22: Comparison of curve load versus lateral displacement, for different fracture energy parameters.

Figure 6-22 shows the load versus displacement of the test specimen and the models. By
changing the fracture (tensile) energy to a higher value or lower of the one recommended by
Cervenka Consulting (2018) gives convergence issues at a sooner step. The strength at the end of
HMa=2 (CDR=4.01%) of the test is in better agreement with the model with higher Gy (5.4%).
However, for Model 1 and Model 2 the values are off by 6% and 7% respectively. For the
positive peak of py=3 (CDR=6.64%), the predicted strength is higher by around 3% for the three

models.

108



Test data Test data

= ooy G,=0.1(1bin) = ooy G,=0.44(lb/in)

o L Qo L
é 0.005 \‘g. 0.005
> 0 ~ — = 0 ~—
< <
(9] Q
€ .0.005 € .0.005
3 3

-0.01 1 0.01

-0.015 : : -0.015 :

0.1 -0.05 0 0.05 0.1 0.1 -0.05 0 0.05 0.1
@D (rad) @D (rad)
Test data

> oo G,=0.55(lbin)
N ©
:Q: 0.005 |
> 0 — A e —
<
[\7]
€ .0.005
3

-0.01

-0.015

-0.1 -0.05 0 0.05 0.1
®D (rad)

Figure 6-23: Comparison of normalized moment-curvature at PH region, for different fracture energy
parameters.

Figure 6-23 shows the normalized moment-curvature graphs of the plastic hinge region.
The curvature for all the models is under-predicted for the positive second displacement ductility
and over-predicted for the negative part of this cycle. For py=3 (CDR=6.64%), in the positive
loading, the three models gave a good match in curvature and flexural capacity. But in the
negative loading, the models Model 2 and Model 3 cannot go that far into the analysis, and for

Model 1 the curvature prediction is overestimated by 41%.
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Figure 6-24: First cycles of normalized moment-curvature at PH region, for different fracture energy
parameters.

Figure 6-24 presents the first two displacement ductility cycles with the yield curvature
predicted by Priestley. The test specimen is more flexible than the prediction given by the
analytical model as well as by Priestley’s formulation for the positive loading. For the negative
loading, the models and test provide a better match with Priestley’s formulation, where the

model that gives the better prediction is the one with lower tensile fracture energy.
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Figure 6-25: Normalized moment-rotation at the shaft-column interface, for different fracture energy
parameters.

Figure 6-25 displays the normalized moment-rotation at the shaft-column interface.

Changing the tensile fracture energy (Gg) does not affect much this behavior at this displacement

level.

Figure 6-26 gives the displacement contribution (in percentage) by region of the

structure. Modifying Gy does not have an impact on the displacement contribution of the FER,

which is the displacement contribution that it is by far off on the model predictions. The

displacement contribution does not varied much by changing the parameter in the range given.

Table 6-13 shows the values presented in Figure 6—26.
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Figure 6-26: Comparison of displacements contributions, for different fracture energy parameters.

Table 6-13: Displacement contributions in %, for different fracture energy parameters

Gq = 0.1[Ib/in.] M/Test G = 0.55[Ib/in.] M/Test
CDR (%) | 1.98 4.01 6.64|198 4.01 664|198 4.01 664|198 4.01 6.64
Ha 1 2 3 1 2 3 1 2 3 1 2 3

Shaft | 11.2 6.14 3.35|154 137 1.13|119 563 39162 125 131
FER 942 7.75 104 | 04 0.26 036|943 905 79| 04 031 0.27
Coll 215 422 46.1|0.89 11 1.05|224 411 47 1093 1.07 1.08
Col2 247 168 158 |1.04 109 143|251 16.8 151.06 1.09 1.38
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6.1.6 Fixed-crack Model

The base model used a rotated cracked model since a fixed-crack model gave
convergence issues. In the following, the convergence problems are evident by showing the
response for three different values of this parameter. Table 6-13 gives the variation in the

parameters used, and the time that the analysis took to run. From the table models without the

fully rotated crack model crushed at puy=1 (CDR=1.98%).

Table 6-14: Fixed-crack models and run time.

ee Run Time Run Time [hrs.
Model | Modifications Last Step [hrs.]
[hrs.] @ 300 steps
M1 Fixed-crack setto 0 10.75 427 7.27
M2 Fixed-crack set to 1 13.07 120 -
M3 Fixed-crack set to 0.5 14.65 130 -
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Figure 6-27: Comparison of curve load versus lateral displacement, for different crack models.
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Figure 6-27 shows the comparison of the overall behavior of the test and the analytical

models. From this, it is clear that a fixed-crack model was unsuccessful for this work.
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Figure 6-28: First cycles of normalized moment-curvature at PH region, for different crack models.

Since the models added to the base model only could run within the first displacement
ductility cycle, just the comparison of the moment-curvature for the first two cycles is given in
Figure 6-28. From this, it is clear that a poor prediction of the plastic hinge region is the result of

considering crack models that are not the rotated one.

Figure 6-29 presents the normalized moment-rotation for the shaft-column interface.

From this, the models are not capable of predicting the rotation at the interface.
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Figure 6-29: Normalized moment-rotation at the shaft-column interface, for different crack models.
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Figure 6-30: Lateral displacements contribution calculated for test specimen and thorough analysis for
different crack models.
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Table 6-15: Displacement contributions in %, for different crack models.

Value=1 | M/Test | Value=0.5 | M/Test
CDR (%) 1.98 1.98 1.98 1.98
Ha 1 1 1 1
Shaft 11.6 1.58 9.15 1.25
FER 6.66 0.28 5.72 0.24
Coll 22.5 0.94 23.9 1
Col2 29.1 1.23 28.5 1.2

Figure 6-30 shows the percentage of the displacement contributions given in numeric
values in Table 6-15. Modifying this parameter does not affect the displacement contribution of

the fixed end rotations, where the predictions are worst.

The author suggests the use of a rotated crack model instead of the fixed-crack model to

avoid convergence issues with cyclic analysis.

6.1.7 Critical compression displacement (wg)

Three values, additional to the one used in the base model, were employed to review the
effect of the critical compression displacement in the model predictions. Table 6-16 presents the
values used and the process time for these models. From it, the model that went further into the
displacement cycles was the base model. The base model had a higher value of wy, which is ten

times the value recommended by Cervenka Consulting (2018).
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Table 6-16: Critical compression displacement models and run time

Run Time | Last | Run Time [hrs.]

Model Modifications [hrs] Step @ 300 steps
M1 wqg =-0.197[in.] 10.75 427 71.27
Wqg =-0.0197[in.], recommended per i
M2 Cervenka Consulting (2018) 103 221
wy =-0.0984[in.], found by
M3 Nakamura & Higai (2001). 15.96 390 115
wy =-0.0295[in.], value from Round i
M4 Robin test. (Van Mier, 1984) 12.77 230
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Figure 6-31: Comparison of curve load versus lateral displacement, for different critical compression
displacement values.

Figure 6-31 shows the overall behavior of the test with the predictions of the models.
From this the model that represents better the curve if the one with wg= -0.0295 in. For this
model the strength and curvature matches within 2% of error. Figure 6-32 displays the close up

of this mode for the first two cycles.
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Figure 6-32: First two cycles of curve load versus displacement, for wy=-0.0295in.
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Figure 6-33: Normalized moment-curvature at PH, for different critical compression displacement values.

Figure 6-33 presents the normalized moment-curvature for the plastic hinge region. All
the models over-estimate the curvature at the end of the negative loading of puxy=2 (CDR=4.01%).
The lesser the value of wy was taken the smaller was the over-estimation. Also, the lower the

value of wy the less the flexural capacity at peak displacement.
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Figure 6-34: First cycles of normalized moment-curvature at PH region, for different critical compression
displacement values.

Figure 6-34 gives the first two cycles of the normalized moment-curvature with the yield
curvature predicted by Priestley (2003). The test specimen in the positive loading direction is
more flexible than the predictions by the models and by Priestley’s formulation. As already

mentioned, the strength in the projection is lower by reducing the values of wy.
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Figure 6-35: Normalized moment-rotation at shaft-column interface, for different critical compression
displacement values.

Shown in Figure 6-35 is the normalized moment-rotation at the shaft-column interface.

None of the models can capture the displacement capacity of this region.

Figure 6-36 gives in percentages the displacement contributions. Changing the parameter
does not change much of the overall response. The models over predict the shaft flexural
displacement contribution and under-predict the capacity of the shaft-column interface. The

graph in Figure 6-36 is based on the values given in Table 6-17 and Table 6-18.

In light of the results, the parameter does not change much the predictions. However, the
author recommends the use of the value -0.0295 in. due to the fitting of the overall behavior for

the first two cycles.
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Figure 6-36: Lateral displacements contribution calculated for test specimen and thorough analysis for
different critical compression displacement values.
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Table 6-17: Displacement contributions in %, for different critical compression displacement values.

wg=-0.0984[in.] M/Test

CDR (%) | 1.98 4.01 6.64| 198 4.01 6.64

™ 1 2 3 1 2 3
Shaft |11.5 5.99 3.17 | 1.58 1.33 1.07
FER |9.98 9.82 829|042 033 0.29
Coll |21.4 41.7 50.1|0.89 1.08 1.15
Col2 |253 163 12.6|1.07 1.06 1.14

Table 6-18: Displacement contributions in %, for different critical compression displacement values.

wy=-0.0295[in.] M/Test wy=-0.0197[in.] M/Test

CDR (%) 1.98 4.01 198 4.01 | 1.98 401 |198 4.01

Ma 1 2 1 2 1 2 1 2
Shaft 11.5 5.2 157 1.15 | 113 5.0 155 1.1
FER 10.4 10.8 0.44 037 | 10.2 9.7 0.43 0.33

Coll 21.6 41.9 090 1.09 | 21.8 46.8 | 0.91 1.22
Col2 24.7 14.9 1.04 096 | 24.6 135 | 1.04 0.87

6.1.8 Fc Reduction

As mentioned earlier, Fc reduction is a parameter that reduces the compressive strength
due to imposed tensile strain following the Modified Compression Field Theory (Collins and
Mitchell, 1991). The value of the compressive strength cannot drop further than f’; times r..
Table 6-19 gives the different reduction values used and the time that the analysis took. From the

table, the fastest model was the base model.
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Table 6-19:

Fc reduction models and run times.

e . Run Time Run Time [hrs.]
Model Modifications [hrs] Last Step @ 300 steps
M1 Fc=1 10.75 427 1.27
M2 Fc=0.6 18.25 407 13.85
M3 Fc=0.2 22.22 374 14.41
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Figure 6-37: Comparison of curve load versus lateral displacement, for different r. values.

Figure 6-37 shows the effect that the reduction on the compressive strength has on the
prediction of the cyclic response. As lower the value, the loss of strength at the subsequent cycles
increases. Leading into a better match at the peak strength of the second cycle, but it diverges at
the peak of the third cycle. Considering a value of 0.2 for r., gives convergence issues after the

positive cycle of uy=3 (CDR=6.64%).
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Figure 6-38: Comparison of normalized moment-curvature at PH, for different r, values.

Figure 6-38 shows the normalized moment curvature of the plastic hinge region. As it
was expected changing the value of the reduction factor affects the flexural capacity of the

plastic hinge at higher displacement ductility cycles, but the curvature at the peak displacement

does not change dramatically.
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Figure 6-39: First cycles of normalized moment-curvature at PH, for different r, values.

Figure 6-39 shows the normalized moment-curvature for the first two displacement
ductility cycles, with Priestley’s formulation for the yield curvature. The model that has a better
agreement with Priestley’s yield curvature is the one that does not consider the reduction of the
compressive strength. However, using a value of less than one gives a better agreement on the

flexural capacity at the end of the second cycle. The models do not predict well the curvature of

the specimen.
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Figure 6-40: Normalized moment-rotation at the shaft-column interface, for different r, values.

The comparison presented in Figure 6-40 shows that any model can predict the
displacement capacity at the shaft-column interface. All the models underestimate the rotation

capacity; however, the flexural capacity at the peaks is well captured.

Figure 6-41 compares the distributions of the displacements through the specimen. And
Table 6-20 gives the values in percentages of the displacement contributions shown in the figure.
The parameter does not have a significant impact on the distribution. Also, this parameter does

not have a great effect on the contribution of the displacement of the fixed end rotation.
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Table 6-20: Displacement contributions in %, for different r. values.
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re=0.6 M/Test re=0.2 M/Test
CDR (%) | 1.98 4.01 6.64|198 4.01 664|198 4.01 664|198 4.01 6.64
Ha 1 2 3 1 2 3 1 2 3 1 2 3
Shaft 11 5.82 25151 1.3 0.84 | 10.8 5.55 251148 124 0.82
FER 9.72 799 9.26 041 0.27 032]9.29 754 95039 0.26 0.33
Coll 22.7 439 536|094 1.14 1.23 | 23.7 45.2 501099 117 1.14
Col2 25.2 174 126 |1.07 1.12 1.14 | 24.8 17 13 | 1.05 1.1 1.19

In conclusion, this parameter should not be taken less than 0.6 to improve the fitting of

the strength reduction over cycles. It is important to notice that using a value of 0.6 might come

with a decrease in the incursion in the displacement cycles due to convergence problems.
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6.1.9 Direction of plastic flow (B)
The plastic flow parameter controls the direction of return of the plastic flow. It is related
to the expansion or contraction of the material. The program supports values between -5 and 5.

However, values greater than 0.5 gave convergence issues at early stages of the analysis, so they

were not considered.

From Table 6-21 the fastest model was the base model, with B set as zero. Then
considering B as 0.1 or -0.1 had the same rate of the process, but if the material accepted

contraction, the program could go further in the steps analyzed.

Table 6-21: Direction of plastic flow models and run times.

Model Modifications Run Time [hrs.] Last Step ng ;-(I)r(T)]zt[e};)rsS.]
M1 B =0 10.75 427 7.27
M2 B =0.5 9.27 200 -
M3 g =0.1 12.25 320 11.71
M4 B =-0.1 18.67 463 11
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Figure 6-42: Comparison of curve load versus lateral displacement, for different p values.

From the overall predicted behavior shown in Figure 6-42, it is clear that changing the
capacity of the material to contract or expand does not changes the response of the model at this

displacement levels.
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Figure 6-43: Comparison of normalized moment-curvature at PH region, for different g values.

In Figure 6-43 the normalized moment-curvature of the plastic hinge region is presented.

Differences between the model that considers contraction and the model that considers 3 as zero

are clear starting at uy=3 (CDR=6.64%). For this cycle, the model with contraction had less

curvature capacity at the negative branch, with an error of 28% instead of 38%. Also, in this

cycle, the model that can contract has less energy dissipation than the one with B equals zero.
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Figure 6-44: First cycles of normalized moment-curvature at PH region, for different p values.

Figure 644 gives the first two cycles of the normalized moment-curvature at the plastic
hinge with the predicted yield curvature from Priestley (2003). The variation between the models
for this displacement level is minor. The model predictions for the yield curvature match the one

given by Priestley. The test specimen was more flexible for the positive cycle than for the

negative.

In Figure 6-45 the normalized moment-rotation at the shaft-column interface is shown.
The model that allows contraction of the material at py=3 (CDR=6.64%) gives a higher rotation

capacity than the other models. However, no models can capture the behavior observed in the

test specimen.
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Figure 6-45: Normalized moment-rotation at the shaft-column interface, for different g values.

Figure 6-46 presents the distribution of the lateral displacement capacity within the
element height. The values are shown in Table 6-22 and Table 6-23, given in percentages of the
total displacement at the cycle. From this, the model that offers a better match with the fixed end

rotation displacement contribution is the model that considers contraction of the concrete. Due to
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this improvement, the author recommends the use of f=-0.1.
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Figure 6-46: Lateral displacements contribution calculated for test specimen and thorough analysis for
different p values.

Table 6-22: Displacement contributions in %, for different g values.

B=0.5 M/Test B=0.1 M/Test
CDR (%) [ 1.98 4.01|1.98 4.01| 1.98 401 6.64 | 1.98 401 6.64
Ha 1 2 1 2 1 2 3 1 2 3
Shaft | 115 6.48|1.57 1.44 1171 652 3.27 | 1.60 145 1.10
FER |10.5 10.8|0.44 0371019 9.67 810 | 043 033 0.28
Coll |21.3 36.4|0.89 0.95|21.87 39.24 46.93| 091 1.02 1.07
Col2 25 17.3|1.06 1.12|24.63 16.67 1429 | 1.04 108 1.29
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Table 6-23: Displacement contributions in %o, for different p values.

B=-0.1 M/Test
CDR (%) | 1.98 4.01 6.64|198 4.01 6.64
™ 1 2 3 1 2 3
Shaft 11.5 6.15 297|157 1.37 1
FER 11.1 958 10 |0.47 0.33 0.35
Coll 21.2 403 499|088 1.05 1.14
Col2 249 171 125|106 1.1 1.13

6.2 STEEL PARAMETERS

6.2.1 Menegotto-Pinto

The parameters of the Menegotto-Pinto (M-P) formulation implemented in the program
correspond to R, ¢; and c,. Table 6-24 shows the values used for analysis and the time that the
program took to process. The model that ran further into the displacement ductility cycles was

Model 4. The model that had the shortest incursion in the displacement ductility cycles was

Model 3. The fastest model was the based model.

Table 6-24: Menegotto-Pinto models and run time.

Model Modifications Ru[?]gls'.l]m ¢ Last Step ng gggit[er;f']
M1 R=2 ¢,=5000 ¢,=20 10.75 427 7.27
M2 R=4 ¢,=500 c,=50 18.13 450 10.5
M3 R=4 ¢,=5000 ¢,=20 18.58 360 10.43
M4 R=2 ¢1=500 ¢,=20 18.82 470 10.65
M5 R=2 ¢,=5000 ¢,=50 14.32 410 10.86

Figure 6-47 shows the overall behavior of the analytical models and the test specimen.
From the graphs, if c; is reduced the strength at the peak displacement increases by 3% for the

second cycle and 7% for the third cycle. By increasing c,, the strength increases at the peak
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displacement by 1% for the second cycle and less than 1% for the third cycle. Increasing R to the
double also gave a higher strength at the peak displacements, in 4% and 6% for the second and

third cycles.
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Figure 6-47: Comparison of curve load versus lateral displacement, for different M-P Parameters.

Figure 6-48 presents the normalized moment-curvature for the plastic hinge region. The
initial positive stiffness of the models is higher than the specimen; this also holds for the second
displacement ductility in the second quadrant. However, for p,=3 (CDR=6.64%), in the same
quadrant, the prediction from the models’ suites well for all the models except Model 2, which

gives a higher flexural capacity and a lower ductility. For the fourth quadrant, it is noticeable that
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all the models from p,=2 (CDR=4.01%) on over-estimate the ductility capacity of the test

Specimen.
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Figure 6-48: Comparison of normalized moment-curvature at the PH region, for M-P parameters values.

Figure 6-49 shows the first two cycles of the normalized moment curvature, with the
yielding curvature given by Priestley’s formulation. All the models agree well with the
prediction given by Priestley’s prediction, but this does not fit with the specimen behavior for the

positive cycles.
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Figure 6-49: First cycles of normalized moment-curvature, for different M-P parameters.

Figure 6-50 presents the normalized moment-rotation at the shaft-column interface. From
the figure, it is clear that the reinforcement in this region plays a significant role in the prediction
of the behavior. In Chapter 3.2 the author compared the stress-strain curve for a bar with the
parameters presented here. The one that gave a wider loop (R=4 ¢;=500 c,=50) is the one that

offers the more full loop for the response.
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Figure 6-50: Normalized moment-rotation at the shaft-column interface, for different M-P parameters.

Figure 6-51 gives the lateral displacement contribution of each region of the test
specimen as well as the predicted by the models. Table 6-26 presents the values in percentages
shown in the figure. It is clear that all the models under-estimate the rotation at the interface
between the shaft and the column. The model that gives a better agreement on the distribution of

the displacement is Model 1.
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Figure 6-51: Lateral displacements contribution calculated for test specimen and thorough analysis for
different M-P parameters.

Table 6-25: Displacement contributions in %, for different M-P parameters.

R=4 ¢,=500 c,=50 M/Test R=4 ¢,=5000 c,=20 M/Test
CDR (%) | 1.98 4.01 6.64|198 401 6.64|198 401 6.64 |198 4.01 6.64
Ha 1 2 3 1 2 3 1 2 3 1 2 3

Shaft 116 6.25 386|158 139 13115 655 3.732|157 146 1.25
FER 9.88 836 9.73|042 0.28 0.34|997 816 9959|042 0.28 0.34
Coll 215 396 46.9|0.89 1.03 1.07|21.6 404 4591 | 09 105 1.05
Col2 25.2 174 13.4|1.07 112 1.21| 249 17 1435|1.06 1.10 1.30
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Table 6-26: Displacement contributions in %, for different M-P parameters.

R=2 c1=500 c2=20 M/Test R=2 ¢1=5000 c2=50 M/Test
CDR(%) | 1.98 4.01 6.64 |198 4.01 6.64|198 401 6.64 |198 4.01 6.64
Ma 1 2 3 1 2 3 1 2 3 1 2 3
Shaft 11.2 6.26 348 | 153 139 117|115 6.7 3.3519| 158 149 1.13
FER 103 843 853 | 043 0.29 0.29 |9.53 106 10.091| 04 0.36 0.35
Coll 216 398 494 09 1.04 113|219 392 48959091 1.02 1.12
Col2 249 17 136 | 106 1.1 123|245 16.5 12.021|1.04 1.07 1.09

6.2.2 Activation of reinforcement in compression
ATENA provides a manual activation of the rebar in compression. Assessment of the
activation is presented. Table 6-27 shows the time that the models took to process. The program

was able to run into further steps by activating the compression.

From Figure 6-52, it is clear that there is no considerable change in the overall behavior

considering or not the compression, for this displacement ductility range.

Table 6-27: Activation of compression models and run time.

e Run Time Run Time [hrs.]
Model Modifications [hrs] Last Step @ 300 steps
M1 Compression activated 10.75 427 7.27
M2 Compression not activate 14.42 410 10.63
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Figure 6-52: Comparison of curve load versus lateral displacement, for active/inactive rebar compression.

Figure 6-53 shows the normalized moment-curvature graph. By not activating the
compression, there is a slight reduction in energy dissipation (2%) at the third displacement
ductility cycle. Figure 6-54 shows the first two cycles of the normalized moment-curvature with
the yield curvature given by Priestley’s formulation. There is no change in the predictions of the
models at this stage. Also, both models agree well with the yielding curvature provided by

Priestley and fail to predict the flexibility at the positive first cycles of the test specimen.
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Figure 6-55: Normalized moment-rotation at shaft-column interface, for active/inactive rebar compression.

Figure 6-55 presents the normalized moment-rotation at the shaft-column interface. The
activation of the parameter does not change the behavior of this region at this level of
displacement regarding the peak values of strength and rotation capacity. At py=3 (CDR=6.64%)

the loop given by the model without the activation of the compression provides a fuller loop.

From Figure 6-56 and Table 6-28, it is clear that there is no significant change in the
results by activating or deactivating the compression on the rebar. However, since it gives a

slight improvement in the contribution of the displacement at the fixed end rotations, it is

advisable to consider it.
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Figure 6-56: Lateral displacements contribution calculated for test specimen and thorough analysis for
active/inactive rebar compression.

Table 6-28: Displacement contributions in %, for active/inactive rebar compression.

Compression

L M/Test Compression active M/Test
inactive

CDR (%) | 1.98 4.01 6.64|198 4.01 6.64|198 401 6.64 |198 4.01 6.64

Ha 1 2 3 1 2 3 1 2 3 1 2 3
Shaft | 11.7 6.12 3.31|160 1.36 1.11|11.7 587 3.1295|159 131 1.05
FER 10.1 9.23 86042 031 030|9.66 882 8437|041 03 0.29
Coll 21.7 412 514|090 1.07 118|219 413 5214|091 107 1.19
Col2 249 16.8 127|105 109 1.15|24.8 171 12603 |1.05 111 1.14
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6.2.3 Bond-Slip Law
Reviews of three bond-slip laws are presented, i.e., user-defined, CEB-FIP code and
Bigaj(1999) (see Chapter 3.2). For the user-defined law change in the maximum bond strength

and friction unloading parameter was made, as established in Table 6-29.

Table 6-29: User Defined Laws used.

Max Bond Strength |Friction Unloading
[psi] [psi]
Memory bond user-defined law 1a 1000 50
Memory bond user-defined law 1b 2200 50
Memory bond user-defined law 1c 1000 200

Table 6-30 presents the models and the time that the analysis took. The fastest process

was the one with Bigaj (1999) bond-slip law.

Table 6-30: Bond-Slip models and run times.

e Run Time | Last | Run Time [hrs.]
Model Modifications [hrs] Step @ 300 steps
M1 Memory bond user-defined law la 10.75 497 797
(BS1a)
Memory bond user-defined law 1b
M2 (BS1b) 14.37 361 11.06
M3 Memory bond user-defined law 1c 14.42 407 11.06
(BS1c)
M4 Memory bond CEB-FIP law 15.13 383 11.17
M5 Memory bond Bigaj (1999). 9.88 415 7.16
M6 Fixed bar 15.88 420 9.33

Figure 6-57 shows the overall behavior predicted by the models with different bond-slip

laws and the results from the test specimen. The prediction fits well the response; however, it is
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not capable of capturing the opening and closure of the flexural cracks. The curve is not affected

by the change in the parameters of the bond slip at this displacement level.
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Figure 6-57: Comparison of curve load versus lateral displacement, for different bond-slip laws.

Figure 6-58 displays the comparison of the normalized moment-curvature for the plastic
hinge region. For the first two ductility cycles, the models predict the same behavior. For the
third displacement cycle, the base model (BS 1) is the one that predicts the higher ductility at the
negative peak displacement (38% of error), the models that predict the lower ductility are BS1c,

Bigaj and fixed bar with 26% of error.
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Figure 6-58: Comparison of normalized moment-curvature at PH region, for different bond-slip laws.

Figure 6-59 shows the first two cycles of the normalized moment-curvature at the plastic
hinge region, with the yield curvature predicted by Priestley (2003). The models give a good
correlation with the prediction of Priestley, but for the positive cycle, the structure is more

flexible, which leads to higher yield ductility.
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Figure 6-59: First cycles of normalized moment-curvature at PH region, for different bond-slip laws.

Figure 6-60 presents the normalized moment-rotation at the shaft-column interface. The

model that gives the higher energy dissipation is BS1b. Increasing the friction parameter in the

user-defined bond-slip law provides a higher rotation capacity at the end of puy=3 (CDR=6.64%).

From these curve the one that fits better is BS1c.
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Figure 6-60: Normalized moment-rotation at the shaft-column interface, for different bond-slip laws.

Figure 6-61 displays the displacement distribution over the height of the specimen.
Moreover, in Table 6-31 through Table 6-33, the percentage of the contribution of the total
displacement by the regions of the test specimen is provided. From the figure, the bond-slip
model that offers the best prediction for the displacement contribution of the shaft-column

interface is BS1c.

After a review of the results, the author recommends the use of the model BS1c.
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Table 6-31: Displacement contributions in %o, for different bond-slip laws.

BS 1b M/Test BS 1c M/Test
CDR (%) | 1.98 4.01 6.64| 198 4.01 6.64 | 1.98 4.01 6.64 | 198 401 6.64
Ma 1 2 3 2 3 1 2 3 1 2 3
Shaft |11.3 6.0 3.4 | 155 134 1.16 11.3 6.0 29| 154 134 0.99
FER 82 88 98| 035 030 0.34 10.1 8.1 10.6 | 042 0.27 0.37
Coll 21.7 415 458| 090 1.08 1.05 215 41.8 499 | 090 1.09 1.14
Col2 257 170 149 1.09 1.10 1.34 25.1 16.9 13.1| 1.06 1.09 1.19
Table 6-32: Displacement contributions in %, for different bond-slip laws.
CEB-FIP M/Test Bigaj M/Test
CDR(%) | 1.98 4.01 6.64 198 4.01 6.64 | 1.98 4.01 6.64 | 198 4.01 6.64
Ma 1 2 3 2 3 1 2 3 1 2 3
Shaft 11.8 58 34162 129 113 11.9 6.1 33| 163 136 1.12
FER 75 95 10.7|0.32 0.32 0.37 7.1 8.6 96| 030 0.29 0.33
Coll 21.2 39.7 448|0.88 1.03 1.02 21.5 39.7 490| 090 1.03 1.12
Col2 26.0 17.2 16.0|1.10 1.11 1.45 25.8 17.3 13.8| 1.09 1.12 1.25

Table 6-33: Displacement contributions in %, for different bond-slip laws.

Fixed Bar M/Test
CDR (%) | 1.98 4.01 6.64 | 198 4.01 6.64
Ha 1 2 3 1 2 3
Shaft 11.3 5.76 3.23 | 154 128 1.08
FER 8.12 9.27 9.36| 034 0.32 0.32
Coll 21.5 405 50| 0.90 1.05 1.14
Col2 25,6 166 13.8| 1.08 1.08 1.24
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6.3 SUMMARY
Activating the tension stiffening (cis) parameter allows the program to run further into the

displacement cycles. A value of 0.6 gave a better fit with the overall as well as the components.

The activation of aggregate interlock, the shear factor and the reinforcement active in
compression did not add a better fitting to the response, and it made it, in some cases, harder to

converge. This is also the case of modifying the fracture energy.

The unloading factor set to zero capture some opening and closure effect; however, it is
minor in comparison to the ci parameter. Considering that the concrete can contract (B) also

provided some necking into the hysteresis.

For cyclic analysis, the author advises using a rotated crack model instead of a fixed-

crack model, since the latest has convergence issues at an early stage.

Accounting for a reduction in the compressive strength due to cracking (Fc) as 0.6

provided a better fit of the strength at the peak displacements of the second and third cycles.

Using a critical compression value of -0.0295 in. rather than -0.197 in. provides a better
agreement on the overall curve for the first two cycles, but it shortens the steps that the program

can run before experiencing convergence problems.

For the Menegotto-Pinto (M-P) settings, the values used in the base model gives a
reasonable match. The M-P has an impact on the response of the fixed end rotation region. For
the bond-slip law considering a user-defined law with a maximum bond strength of 1 ksi and
unloading friction of 200 psi gave a well fit. However, the maximum bond strength provided is

lesser than the value found by Lotfizadeh (2019) on his research.
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The model that gave a better fit in the overall behavior and the local behavior was the
base model with the tension stiffening active set as 0.6. The strains at the peak displacements of
the most north and most south bar of the column were obtained from the model, and are
presented in Figure 6-62 and Figure 6-63. B1 corresponds to the bar at the north that is shown
with a continuous line, and B3 is the bar at the south shown with a segmented line. In black, line

the experimental data measured with electrical foil strain gauges for these bars is displayed.

Also, in red are the base model strains and in blue the model that fits best.
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Figure 6-62: Strain distribution over height at peak displacements.

For the first cycle, in the positive loading direction, the tensile strains in bar 3 in the test
specimen are higher than the predicted. For the bar that is under compression (bar 1), the models
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predict higher strains. For the second cycle, in the positive loading direction, the models predict
localization of the plasticity for both bars, which in the test was more noticeable for the bar in
tension. In the negative direction, the localization in compression strain predicted by the models
is higher than the seen in the tests. For the third cycle in the positive loading direction, the
models gave a relatively good fit. However, for the negative direction, the test results show
negative strains for the bar under tension which the models predicts not in magnitude but the

change of sign.
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Figure 6-63: Strain distribution over height at peak displacements.
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CONCLUSIONS
This thesis describes the calibration and validation of a detailed nonlinear finite element
model of a reinforced concrete Type 1l shaft built at full scale and tested by Lotfizadeh (2019) in
the Charles Lee Powell Structural Research Laboratories. ATENA was the computer software of
choice used throughout in this work with the concrete modeled with a fracture-plasticity

constitutive model available in the library of constitutive material relationships in this software.

An extensive parametric work was carried out to calibrate the model. Computed overall
lateral displacement-lateral deflection responses and local normalized moment-normalized
curvature and normalized moment and column fixed-end were compared with experimental

measurements reported by Lotfizadeh (2019).

One of the greatest difficulties observed in the computational work is convergency. Many
models ran partially and then stopped converging. Convergence problems were acute when using

a fixed-crack model.

This research successfully predicted the overall response of the test specimen, and
predicted well some local responses but felt somewhat short in reproducing accurately the fixed-
end rotation at the column to shaft interface due to bar bond slip (strain penetration) of the
column longitudinal bars which where lap-spliced with the pile longitudinal reinforcement via a

non-contact lap-splice.
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