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 ABSTRACT OF THE THESIS 

 

Detailed Finite Element of a Type II Bridge Column Shaft Reinforced with High-Strength Steel. 

 

by 

 

Valentina Alejandra Vásquez 

Master of Science in Structural Engineering 

University of California San Diego, 2019    

Professor José I. Restrepo, Chair    

 

The use of high-strength steel reinforcement in seismic design of bridges is currently 

under investigation. Several benefits will come from its use, which includes a reduction in the 

construction time, a reduction in congestion and cost savings, among others. 

Lotfizadeh (2019) performed an experimental work at the University of California San 

Diego to study the use of large-diameter high-strength steel reinforcement in earthquake resisting 
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bridge elements. Part of the study considered a quasi-static test of a full-scale bridge column 

extending into a Type II shaft (enlarged diameter shaft) all reinforced with high-strength ASTM 

A706 Grade 80 reinforcement. 

Data obtained from the study was used through this research to calibrate a detailed 

nonlinear finite element model. For this purpose, continuum 3D elements with fracture-plastic 

constitutive material law were used to represent the concrete and line elements with uniaxial 

constitutive materials to characterize the axial stress-strain response of high-strength steel 

reinforcement. 

Calibration of the constitutive laws with the experimental data gave a good prediction of 

the overall and local behavior. The analysis was able to capture the opening and closure of 

flexural cracks by providing a lower limit to the tensile concrete stress, with smear tension 

stiffening.  

The numerical simulation’s state of the art can fit the overall response of analytical 

models with a pretest, but to our knowledge, the distribution of the spread plasticity is usually 

not addressed or shown. In this research, a comprehensive study of both responses is addressed. 

Even when the model captured the overall structural behavior, the spread plasticity did not match 

with the experimental data as well as it did with the overall response. 

 



 

1 

 

 INTRODUCTION  

Nowadays non-linear finite element analyses are often used to predict the behavior of 

single elements or entire structures. With constant improvements and updates, the capabilities of 

finite element analysis (FEA) software are regularly increasing, adding the necessary tools and 

settings to incorporate a broad spectrum of behaviors. A wide range of material models are 

available, from simplified and straightforward to complex and very sophisticated representations. 

However, one may ask if the predicted behavior observed from the analysis would represent well 

the actual response of a structure and its components, particularly when subjected to cyclic 

reversals. 

Understanding how material models work is crucial. Many parameters are set to reflect 

these specific behaviors. Therefore, researchers should perform a calibration of the material 

model parameters prior to implementing them in the desired model. Simply assuming as a fact 

that the numerical simulation provides a fair prediction of the behavior reflects poor practice. 

An experiment was performed at the University of California San Diego, as part of the 

project “High-Strength Steel Reinforcement in Critical Regions of Earthquake-Resistant Bridge” 

funded by the California Department of transportation (Caltrans) (Lotfizadeh, 2019), with a 

focus on columns extending into Type II shafts. A full-scale test specimen entirely reinforced 

with ASTM A706 Grade 80 reinforcement was designed, built and tested quasi-statically at the 

Charles Lee Powell Structural Laboratories. The test specimen was well instrumented with 

electrical-foil strain gages applied directly to the reinforcing bars, and externally mounted linear 

variable differential transformers (LVDT) to characterize the overall response, and observe the 

behavior of this new type of reinforcement. 
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The scope of this thesis is to develop a 3D non-linear detailed finite element model of the 

experiment. The model representing the test setup was done with the software ATENA
®

 Studio 

from Cervenka Consulting. A comparison between the test specimen behavior and the numerical 

response obtained with the model is made, as well as parametric analyses to determine the 

relevance of the material parameters in the response obtained with the FEA. 
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 CHAPTER 1: LITERATURE REVIEW 

The literature review was focused on researches that used solid finite elements to 

described reversed cyclic loading of tests conducted quasi-statically or dynamically. Three 

studies will be reviewed, which were done by Rashid et al. (2000), Murcia-Delso (2013) and 

Moharrami et al. (2017). 

 

1.1 ANACAP - RASHID J., DAMERON R. & DOWELL R.  

The authors (Rashid et al., 2000) used the routine ANACAP within ABAQUS to assess 

the applicability of continuum based methods to predict the behavior of reinforced concrete 

structures. 

The concrete model in ANACAP considers the tensile behavior with a smeared crack 

concept with no healing of cracks upon closure; the compression behavior accounts for 

softening. The yield surface used by the material is a function of the first and second invariants 

of the stress tensor and the effective stress position on the stress-strain curve. Figure 1–1(a) 

shows the possible stress-strain paths that the compression curve can take under cyclic loading. 

The model accounts for shear behavior by reducing the shear modulus as a function of the crack 

opening strain, the deficiencies of using such a model are corrected by adding a sub-model for 

shear retention in the open-crack regime (when the model over-estimates) and shear-shedding in 

the closed crack regime (when the model under-estimates). 

For the steel model, a bond behavior is introduced to account for bond-slip. The model 

used is the one proposed by Dameron (1995), with a Priestley bond-failure criterion. Figure 1–1 
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(b) shows how the rooted bond-slip model changes the failure surface of the unloading and 

reloading curves when the local bond-failure criterion is met.  

  

Figure 1–1: (a)Analytical cyclic stress-strain curve, (b) Rebar bond-slip model (Rashid et al., 2000). 

The authors used dynamic and quasi-static experiments to review software capabilities. 

Hines et al. (1999) at UC San Diego performed the quasi-static tests used, and the dynamic 

experiment was part of the CAMUS International Benchmark. 

The quasi-static test corresponded of a composite reinforced concrete wall with confined 

circular columns at the ends. The analysis performed used half-symmetry of the test setup, with 

3D solid elements. As input parameters of the materials were the design concrete compressive 

strength and the stress-strain measured curves of the reinforcement. Figure 1–2 shows the results 

of the model and test for ductility ratios of one and six. The predictions of the program match 

well the results of the experiment, as well as the failure mode (fracture of the vertical 

reinforcement).  
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Figure 1–2: Quasi-static model and test hysteresis loops for ductility ratios of one and six (Rashid et al., 2000). 

The authors discuss the results of two shaking table tests. The first corresponds to a five-

story two-cantilever wall connected by floors at each level and the bottom by a heavily 

reinforced footing. The structure was 1/3 scale, design to the PS92 French code and tested at the 

Saclay French shaking table. The model used half symmetry, with 3D solid elements, and 

suggested material properties. Additionally, the shear-shedding formulation of the program was 

activated. The model also accounted for the geometry and mass of the shaking table. Figure 1–3 

shows the time-history responses of the test and the prediction of the model, which fits quite 

well. Also, the model predicted the time and mode of failure. 

The second test comprised a 1/10 scaled prestressed reactor containment. The structure 

was subjected to a series of design level earthquakes with increasing amplitude motion until 

failure. The experiments were performed at the Tadotsu Engineering Laboratory at Japan. Since 

the failure mode of the test was led by shear, the use of the shear stiffness for cracked concrete 

gave a better match of the overall behavior. Due to the comparisons of the test and model results 

a shear-failure criterion was developed. The criterion considers the failure of the structure when 

a shear strain reached 0.5% averaged in any cross-section. Also, an essential finding of the 
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analytical model was that assuming a fixed value of damping would give poor predictions. The 

authors developed a crack-consistent damping model to overcome this. 

 

Figure 1–3: Dynamic model and test time-history responses (Rashid et al., 2000).  
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1.2 ABAQUS - MURCIA DELSO J. 

Murcia-Delso (2013) did his doctoral dissertation focusing on bond-slip and development 

of longitudinal reinforcing bars in enlarges pile shafts, which is the subject of study. For this, the 

author used the finite element program ABAQUS to model large-scale tests of column-shaft 

assemblies.  

The model considered a symmetry plane. Continuum 3D elements were used for 

concrete; beam elements for longitudinal reinforcement, and truss elements for the transverse 

reinforcement. Additionally, the author created a constitutive law for a contact element between 

the longitudinal bars and the concrete to account for bond-slip. Truss elements considered perfect 

bond. Even though the steel was modeled with beam elements, the program was not able to 

predict the buckling of the rebar.  

Continuum elements had assigned a concrete damage plasticity model as constitutive 

law. This law considers the strain tensor divided into an elastic and plastic component. The stress 

tensor is related to the elastic stiffness, which to account for stiffness degradation a d scalar 

parameter is introduced.  

𝜎 = 𝐸: (𝜀 − 𝜀𝑝) (1.1) 

𝐸 = (1 − 𝑑)𝐸0 (1.2) 

The constitutive law uses a yield surface of the damage plasticity model, defined as a 

function of the invariants I1 and J2. 

𝐹 =
1

1−𝛼
[𝛼𝐼1 +√3𝐽2 + 𝛽(𝜀�̃�

𝑝, 𝜀�̃�
𝑝)〈�̂�𝑚𝑎𝑥〉 − 𝛾〈−�̂�𝑚𝑎𝑥〉] − 𝑐𝑐(𝜀�̃�

𝑝) (1.3) 
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Where 〈∙〉 are the Macaulay brackets, α and γ are constants, β and cc are variables that 

depend on the equivalent compression plastic strain (𝜀�̃�
𝑝
) and equivalent tension plastic strain 

(𝜀�̃�
𝑝
). Β is defined as follows: 

𝛽 =
𝑐𝑐(�̃�𝑐

�̇�
)

𝑐𝑡(�̃�𝑐
�̇�
)
(1 − 𝛼) − (1 + 𝛼) (1.4) 

With 𝑐𝑐 (𝜀�̃�
�̇�) and 𝑐𝑡 (𝜀�̃�

�̇�) are the tensile and compressive cohesion in the yield surface. 

Compression and tensile uniaxial tests calibrate these variables. 

The plastic potential depends on the invariants and an additional parameter ψ which 

represents the dilatation angle of the concrete. Then the rate of the plastic strain is given in (1.5), 

where �̇� is the plastic multiplier. 

𝐺 = √3𝐽2 +
𝐼1

3
𝑡𝑎𝑛(𝜓) (1.5) 

𝜀̇𝑝 = �̇�
𝜕𝐺

𝑑𝜎
 (1.6) 

The rate of the history variables is given in (1.6). 

𝜀�̃�
�̇� = 𝑟(𝜎.̂)𝜀̇�̂�𝑚𝑎𝑥  and   𝜀�̃�

�̇� = (1 − 𝑟(𝜎.̂))𝜀̇�̂�𝑚𝑖𝑛 (1.7) 

𝑟(𝜎.̂) = {
0                   𝑖𝑓 𝜎.̂ = 0 
∑ 〈�̅��̂�〉
3
𝑖=1

∑ |�̅��̂�|
3
𝑖=1

       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1.8) 

With 𝜀̇�̂�𝑚𝑎𝑥 = 𝜀1̇
𝑝
,  𝜀̇�̂�𝑚𝑖𝑛 = 𝜀3̇

𝑝
 , where 𝜀1̇

𝑝 ≥ 𝜀2̇
𝑝 ≥ 𝜀3̇

𝑝
. 

The damage parameter d used to compute the stress tensor is a function of the damage 

parameter in tension (dt) and compression (dc). 
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(1 − 𝑑) = (1 − 𝑠𝑡𝑑𝑐 (𝜀�̃�
�̇�
)) (1 − 𝑠𝑐𝑑𝑡 (𝜀�̃�

�̇�
)) (1.9) 

𝑠𝑡 = 1 − 𝑤𝑡𝑟(�̅�.̂) and 𝑠𝑐 = 1 − 𝑤𝑐(1 − 𝑟(𝜎.̂)) (1.10) 

Where wc and wt control the stiffness degradation in compression and tension, and 

uniaxial tests in compression or tension calibrate dc and dt. 

Figure 1–4 presents the uniaxial representation of the model. 

 

Figure 1–4: Uniaxial tension and compression in plastic damage concrete model (Murcia-Delso, 2013). 

For the steel model, the author chooses to use a rate-independent elasto-plasticity model 

with linear kinematic hardening for the beam elements, and with exponential kinematic 

hardening for truss elements. 

The model uses the Von Mises yield condition. Definition of the yield function and 

plastic flow has the same formulation given in (1.11), with σ’ and α’ are the deviatoric part of the 

stress tensor (σ) and the backstress tensor (α). 



 

8 

 

𝐹(𝜎, 𝛼) = √
3

2
(𝜎′ − 𝛼′): (𝜎′ − 𝛼′) − 𝜎𝑦 (1.11) 

The backstress tensor controls the translation of F in the stress space due to kinematic 

hardening. 

The author, as already mentioned, developed the constitutive model for the contact 

element that considers the bond-slip relation. The model takes into account the normal and 

tangential relative displacements. The implementation can be found elsewhere (Murcia-Delso, 

2013). 

 

Figure 1–5: Comparison between test specimen and the analytical model of the lateral load versus 

displacement (Murcia-Delso, 2013). 

Since the concrete model is not able to represent well the opening and closure of flexural 

cracks, the author provided a contact condition to the column-shaft and shaft-footing interfaces. 

Figure 1–5 shows the overall behavior comparison between the analytical model and the 

two test specimens. The analytical model overestimated the maximum load carrying capacity by 

7% and 10% for specimen one and two. The gradual drop of the load carrying capacity caused by 

P-delta effects was well represented. However, one of the major drawbacks of the model 
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prediction is the overestimation of the energy dissipation. This is mainly because the concrete 

model was not able to account for the open and closure of flexural cracks. 
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1.3 LS-DYNA - MOHARRAMI M. & KOUTROMANOS I. 

Moharrami et al. (2017) implemented a constitutive model for reinforced concrete in LS-

DYNA. For the concrete, it was based on a tri-axial constitutive model, and for the reinforcement 

steel, the model accounted for low cycle fatigue. The concrete was modeled as continuum 3D 

solid elements and the reinforcing bar as beam elements. 

The concrete constitutive model combines an elastoplastic law with rotated smeared 

crack formulation, where the strain is divided into elastic, plastic and cracking strains. The yield 

surface is a function of the stress tensor and the hardening variable κ, that express the cumulative 

effect of inelastic deformation. 

𝑓({�̂�}, 𝜅) =
1

1−𝛼
[𝛼𝐼1 + 𝑟(𝜃, 𝑒)√3𝐽2] − 𝑐𝑐(𝜅) = 0 (1.12) 

Where 𝐼1is the first invariant of the stress tensor, 𝐽2 is the second deviatoric invariant. 

𝑟(𝜃, 𝑒) describes the effect of the third deviatoric invariant, and α is a dimensionless material 

parameter.  

 

Figure 1–6: (a) Hardening-softening law. (b) Unloading direction of the crack model (Moharrami & 

Koutromanos, 2017). 

The function cc is represented in Figure 1–6 (a) and has the following formulation: 
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𝑐𝑐(𝜅) =
𝑓0

𝑎
[(1 + 𝑎)√(1 + 𝑎(2 + 𝑎)𝜅) − (1 + 𝑎(2 + 𝑎)𝜅)] ≥ 𝑓𝑟𝑒𝑠 (1.13) 

Where fres is the residual compressive strength and f0 and a are material constants.  

In the evolution of κ, a confined parameter is introduced, d. Considering this parameter as 

zero will lead into under-estimation of ductility capacity and sooner strength degradation. 

The rate ok κ is proportional to the plastic strain rate in the direction of the minimum 

principal stress 
𝜕𝑔

𝜕�̂�
|
�̂�𝑚𝑖𝑛

. Gfc is the compressive fracture energy, h is the element size, r is a 

weight factor, and fc is the uniaxial compressive strength. 

�̇� = (1 − 𝑟) ∙
𝑐𝑐

(
𝐺𝑓𝑐

ℎ
⁄ )
∙
𝜕𝑔

𝜕�̂�
|
�̂�𝑚𝑖𝑛

∙ 𝑒

𝑑(1+(𝐼1 √3𝐽2⁄ ))
(−𝐼1 3⁄ )

𝑓𝑐
⁄

  (1.14) 

A rotating smeared crack model is used to capture damage associated with tensile cracks. 

The formulation represented in Figure 1–6 (b) is given below. 

�̂�𝑖 = 𝑐𝑡 [(1 − 𝑀)𝑒
−𝜆𝑡

�̂�𝑖−�̂�𝑖𝑛𝑖
𝑓𝑡 +𝑀]       𝑖 = 1,2,3  (1.15) 

With M the ratio of residual tensile strength over tensile strength, and 𝜀�̂�𝑛𝑖 the strain at the 

onset of softening (Figure 1–6 (b)). 

𝑐𝑡 = {
𝑓𝑡                  𝜅 ≤ 𝜅0     
𝑐𝑐

𝑓𝑐
𝑓𝑡              𝜅 > 𝜅0

 and 𝜆𝑡 =
(1−𝑀)𝑓𝑡

2

𝐺𝑓𝑡
ℎ
⁄

 (1.16) 

The model could capture bar buckling since a beam element was used. The element had 9 

integration points along the cross-section, and one along the length. A Kim and Koutromanos 

constitutive law was used. This law is an enhancement of the Dodd and Restrepo material model. 
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Additionally, a rupture-criterion was introduced, based on the accumulation of a continuous 

quantity D. The rate of D is given below. The failure occurs when D becomes Dcr. Where Dcr  

and t are material parameters. 

�̇� = {
(
𝑓

𝑓𝑦
)
2𝑡

𝜀�̇�     𝑓 > 0

0                    𝑓 ≤ 0
       (1.17) 

The continuum element and beam elements used different nodes to account for bond-slip. 

1D contact elements connected the nodes, using springs in the axial direction and constraining 

the displacement of the nodes in the other directions. The springs had an elastoplastic 

constitutive material law, which was a bilinear approximation of the Murcia-Delso curve. Since 

the expected behavior would not be dominated by bond-failure and pullout of reinforcing bars, 

the use of the curve would work well. 

The authors used dynamic and quasi-static experiments to validate material models. The 

analysis considered under quasi-static loading: RC post-tensioned walls tested under, U-shaped 

walls under bidirectional loading; and for the dynamic loading: a bridge pier. For the quasi-static, 

the following results consider damping. A comparative analysis to examine the effects of the 

damping in quasi-static problems was assessed. The results indicate that damping primarily 

affects the elastic behavior, and later the effect is negligible.  
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Figure 1–7: (a) Reinforcement detail, (b) elevation and geometric configuration, (c) computational model 

(Moharrami & Koutromanos, 2017). 

The authors used test results on post-tension RC wall done by Pakiding et al. (2014). An 

elastoplastic constitutive law with kinematic hardening represented the tendons. Experimental 

data gave the yield strength and hardening slope. An autogenous strain introduced the pre-

stressing. Figure 1–7 (a) and (b) show the detail of the reinforcement and geometric 

configuration of the test specimens. The comparison of the analytical results with the test 

specimen is presented in Figure 1–8. The predicted results give roughly the same strength for the 

positive and negative direction of loading. However, the test specimen had a higher strength for 

the positive cycles. The authors also indicate that the sequence of damage predicted by the model 

was in agreement with the one seen in the test. 

The analytical model was able to capture the buckling of the reinforcement in the 

boundary elements. For the first specimen, the model predicted buckling at the same cycle as in 

the test. For the second wall, the analytical model predicted buckling during the second cycle, 

and in the experiment, it was seen during the last cycle. 
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Figure 1–8: Comparison from experimental and analytical results (Moharrami & Koutromanos, 2017). 

 

Figure 1–9: (a) elevation and geometric configuration (b) Reinforcement detail, (c) computational model 

(Moharrami & Koutromanos, 2017). 

Beyer et al. (2008) tested the U-shaped walls used in the analysis. Figure 1–9 (a) and (b) 

shows the test setup and reinforcement details of the test specimen. The wall was loaded in the x 

and y direction. Figure 1–10 shows the comparison of the overall behavior of the test specimen 

and the analytical model for each direction. The initial stiffness and peak strengths are in 

agreement with the test specimen.  
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Figure 1–10: Comparison from experimental and analytical results (Moharrami & Koutromanos, 2017). 

 

Figure 1–11: (a) elevation and geometric configuration with reinforcement detail, (b) computational model 

(Moharrami & Koutromanos, 2017). 

Schoettler et al. (2012) tested a bridge column at the shake table of UCSD, which was 

subjected to a sequence of ten ground motions. Figure 1–11 (a) displays the test specimen and 

reinforcement detail.  
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Figure 1–12: Comparison of analytical and experimental drift history for the subjected ground motions. 

The model agrees with the experimental data at the first yielding. It also gives a 

reasonable agreement on the start of rebar buckling, and rupture. Figure 1–12 shows the drift 

ratio history for the subjected ground motions. The analytical response and experimental data are 

given. It is noticeable that the dynamic results of the models do not provide the same fit as the 

quasi-static models, but the prediction of important damage points matches well the experimental 

data.  
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The authors investigated the effects of strain penetration in modelling. The comparison of 

the overall behavior of the analytical model and the test specimen is depicted in Figure 1–13, and 

according to this it was stated that it has a minor impact and leads to higher stiffness and peak 

strength. 

 

Figure 1–13: Effect of strain penetration in Wall 2 of Pakiding et al. (Moharrami & Koutromanos, 2017) 
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1.4 SUMMARY 

The research here presented Rashid et al. (2000); Murcia-Delso (2013); and Moharrami et 

al. (2017), shows the implementation of detailed non-linear finite element analysis in the 

prediction and postdiction of the response of reinforced concrete elements to validate their use. 

All the authors used programs that based the concrete material in continuum 3D elements with 

fracture-plastic constitutive models.  

The prediction of the overall behavior was well captured, in the sense of strength capacity 

and stiffness prediction. However, none of the investigations gave, as a result, the distribution of 

the deflection capacity and compare it to the tests results.  

The use of beam elements to represent the reinforcement applied with the correct 

constitutive law could predict bar buckling. Nevertheless, once the fracture of the bar took place, 

it had to be manually removed from the model (Moharrami & Koutromanos, 2017).  

From the results seen, it is recommended to use constitutive material laws that can 

capture the open and closure of flexural cracks, to be able to consider the pinching effect on the 

hysteresis of the elements. Otherwise, contact elements distributed along the portion where 

cracking are expected should be thought to account for this effect. 

Another important conclusion of the analysis corresponds to the use of this type of model 

predictions in shaking table tests where a damping ratio consistent with the level of cracking of 

the element should be considered (if possible) over a constant value.  
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 CHAPTER 2: CASE STUDY 

The case study used to calibrate a detailed non-linear finite element model is a column 

extending into type II shaft. Which studied the column-shaft interface of a bridge column 

extending into a Type II shaft designed following Caltrans specifications, and reinforced with 

high-strength ASTM A706 Grade 80 bars. Type II shafts correspond to a pile shaft continuous 

with the column, where the shaft has an enlarged diameter as shown in Figure 2–1. These 

components are designed such that the plastic hinge will form at or above the shaft-column 

interface, providing an easier inspection after an earthquake.  

 
 

Figure 2–1: (a) Type II Pile Shafts (Caltrans, 2006) (b) interface of column-shaft (Lotfizadeh, 2019). 

Due to the difference in the shaft and column diameter, there are two reinforcing cages, 

where column cage extends into the shaft cage and is terminated at a certain distance, creating a 

non-contact lap splice between both reinforcements.   

Since there are no code requirements for the dimensions of the development length of a 

Gr.80 reinforcement, this was address during the research project (Lotfizadeh, 2019). As a result 

Enlarged shaft

Column
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of this research, Lotfizadeh used a scaled dimension of the tension development length of a 

Gr.60 reinforcement (i.e., 80 ksi/60 ksi) given by AASHTO LRFD Bridge Design Specifications 

(2010). 

2.1 TESTS SETUP, SPECIMEN REINFORCEMENT AND GEOMETRY 

The test specimen was built at full scale at the Charles Lee Powell Laboratories. It had a 

column diameter of 4 ft. and a shaft diameter of 6 ft., the longitudinal reinforcement of the 

column was 14 #14, which gives a reinforcement ratio of 0.0174, with double #5 hoops spaced at 

5 in. at the first 4 ft. that provides a transverse ratio of 0.011, and then spaced at 8 in., that gives a 

transverse ratio of 0.0071. The shaft was reinforced with 20 #18 longitudinal reinforcement, 

which provides a longitudinal reinforcement ratio of 0.019. For the transverse reinforcement, #7 

hoops spaced at 5 in. were used, which gives a transverse ratio of 0.00376. Figure 2–2 shows the 

elevation of the test specimen. Figure 2–3 and Figure 2–4 shows the section cuts of the shaft and 

column with the reinforcement detail.  
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Figure 2–2: Elevation of test setup  (Lotfizadeh, 2019). 

 

Figure 2–3: Cross section of column  (Lotfizadeh, 2019). 
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Figure 2–4: Cross section of shaft  (Lotfizadeh, 2019). 

The tests setup considered two additional elements are shown in Figure 2–2. The top 

element, refer in the following as hammerhead, and the lower element, placed between the 

reaction floor and the shaft called footing. 

The hammerhead served to apply the lateral and additional vertical load to the column. 

The element was 8 ft. x 8 ft. in plan and 2 ft. height. Two actuators that ranged between the 

reaction wall of the laboratory and the hammerhead applied the lateral load. The stroke of this 

actuators was 48 in. and were placed at mid-stroke, the maximum load that each of these could 

apply was 220 kips. Figure 2–5 displays a render of the test setup, where it can be seen the two 

lateral actuators anchor to the reaction wall. To simulate an 8.6% axial load ratio on the column, 

an external axial load was applied using post-tensioning rods connected to the hammerhead 

shown in Figure 2–5 and Figure 2–6. The rods applied a total load of 800 kips, kept quasi-

constant throughout the entire test. Figure 2–7 displays the reinforcement details of the 

hammerhead. 
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Figure 2–5: 3D view of test setup  (Lotfizadeh, 2019). 

 

Figure 2–6: 3D View of test setup of application of external load (Lotfizadeh, 2019). 

Horizontal Actuators

Axial load rods

Column

Shaft



 

24 

 

 

Figure 2–7: Cross section of hammerhead (Lotfizadeh, 2019). 

The footing served to anchor the specimen to the strong floor. The dimensions were 14 ft. 

x 8 ft. in plan, and 4 ft. height. It had four cone PVC ducts as shown in Figure 2–8, to 

accommodate the displaced form of the post-tensioned rods that applied the vertical load to the 

hammerhead. The additional ducts shown in these figures worked to anchor the test to the 

reaction floor. Figure 2–9 shows the reinforcement detail of this section, which was design to 

remain elastic throughout the test. 
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Figure 2–8: Footing elevation showing PVC ducts (Lotfizadeh, 2019). 

 

Figure 2–9: Cross section of footing (Lotfizadeh, 2019). 

  

2
1
2
" 9" 2

1
2
"

2.5" OD PVC DUCT

2' 4' 2'

CONE PVC DUCT

9" OD TOP

2.5" OD BOTTOM

2
1
2
" 9" 2

1
2
"

1' 2' 2' 1'

SECTION H-H

14'

4'

G

2.5" OD PVC DUCT

4'

2' (TYP)

SECTION E-E

#6 ASTM A706

GRADE 80 (TYP)

#9 ASTM A706

GRADE 80 (TYP)

4'

(TYP)

G

1'

SECTION G-G

14'

8' #9 ASTM A706

GRADE 80 (TYP)

1'

2'

(TYP)

8'



 

26 

 

 

2.2 MATERIALS AND CONSTRUCTION PROCESS 

The construction process considered four stages, shown in Figure 2–11. The first stage 

considered the placement of the reinforcement of the footing and PVC ducts, and the cage 

reinforcement of the shaft. Placing the concrete of the footing was also part of this stage. Figure 

2–12 shows a picture of part of this process. 

The second stage consisted of the placement of the concrete in the shaft. Since the 

longitudinal reinforcement of the column started at 6in higher than the footing-shaft interface, 

the cage of the column was placed sitting over four threated bars. The threated bars had a nut at 

the interface with the footing, to adjust the height to make sure of the plumbness of the column 

cage. The threated bars were welded at the top with the bottom of the longitudinal reinforcement 

of the column, see Figure 2–10. Due to the large diameter of the shaft, a steel casing was used as 

formwork, see Figure 2–13. 

 

Figure 2–10: Sketch of adjustment threated bars used to place the column cage. 
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Figure 2–11: Construction stages (Lotfizadeh, 2019). 

The third stage cast the column itself. Since the formwork used was Sonotube ®, see 

Figure 2–14. The column was cast in two stages. The first part was 48 in. height and upon 

setting, the remainder of the column was cast in the second part.  

The hammerhead had additional vertical and longitudinal PVC ducts that were placed to 

anchor the lateral actuators, and the post-tensioned rods that applied the vertical load, and was 

cast in the fourth stage. 
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Figure 2–12: First stage of the construction process (Lotfizadeh, 2019). 

 

Figure 2–13: Second stage of the construction process (Lotfizadeh, 2019). 
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Figure 2–14: The Sonotube® used as formwork for the column (Lotfizadeh, 2019). 

The concrete specified strength was 5000 psi, with a maximum aggregate size of 1 in. 

The reinforcement was Gr.80 ASTM A706. 

Concrete cylinder compression tests were made for the concretes of the first three 

construction stages. Since the hammerhead was not in the scope of this research, there is no 

concrete cylinder compression test data. Table 2-1 shows the concrete parameters at the day of 

testing (DOT).  
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Table 2-1: Concrete parameters (Lotfizadeh, 2019). 

Region Max. Aggregate 

Size [in.] 
w/cm Ratio 

[%] 
Age of Concrete 

at DOT [days] 
𝑓𝑐
′  

[ksi]  
Slum

p [in.] 

Column Plastic 

Hinge 0.75  45 57 5.17  6.0 

Column 

Elsewhere 0.75  45 57 5.08  5.5 

Shaft 0.75  45 75 4.93  5.5 
 

As part of the project two additional uniaxial compression tests were performed to obtain 

the compressive fracture energy, the specimens were from a different concrete pour but with the 

same mix. As it is known (Van Mier et al., 1997), the test setup can affect the softening part of 

the stress-strain curve of the concrete. The friction in the platens and the slenderness of the 

specimen affects it. The executed tests were performed using steel platens, where one end was 

free of rotating, and the other was fixed. The specimen had a hydrostone capping at both ends. 

The test specimen was a cylinder of 6 in. diameter and 12 in. tall, so the slenderness was 1.5 

(H/D). 

The compressive fracture energy (Gfc) is defined as the absorbed energy per unit of area 

in the fracture zone. Table 2-2 lists the compressive fracture energy taken from the strength to 

the 20% of f’c (i.e., the shaded area in Figure 2–15). 

Table 2-2: Compressive Fracture Energy of Specimens (Lotfizadeh, 2019). 

Specimen Gfc [lb. /in.] (at σ/σ0=0.20) 

SPEC01 119 

SPEC02 156 

 

Nakamura & Higai (2001), related the compressive fracture energy (post-peak energy) to 

the tensile fracture energy, which is used later on this research.  
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Figure 2–15: Typical axial displacement-stress response at a test cylinder (Lotfizadeh, 2019). 

All the reinforcing steel in the test specimen conformed with ASTM A706 Grade 80 

(A706/A706M-16). Tensile tests were carried out to obtain basic mechanical properties. For #5 

circular hoops the tensile tests were performed by straightening the hoops per Caltrans Test 670 

(CTM, 2013). No experimental data was available for the #7 circular hoops. Table 2-3 lists the 

properties for straight bars and straightened circular hoops, where 𝑓𝑦 is the yield strength, 𝑓𝑠𝑢 is 

the ultimate tensile strength, 𝜀𝑠ℎ the onset of strain hardening and 𝜀𝑠𝑢 the uniform strain (i.e. 

strain ,at 𝑓𝑠𝑢). 

Table 2-3: Steel Parameters (Lotfizadeh, 2019) 

Bar ID 
𝑓𝑦 𝜀𝑠ℎ 𝑓𝑠𝑢 𝜀𝑠𝑢 𝑓𝑠𝑢

𝑓𝑦
⁄  

[ksi] [%] [ksi] [%] 

#18 81.9 0.610 110 11.9 1.35 

#14 87.0 0.783 114 11.3 1.31 

#5 87.8 - 
(1)

 115 11.1 1.31 
(1) No visible yield plateau. 

  

Gfc
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2.3 INSTRUMENTATION 

The test specimen was instrumented with a dense array of 5 mm electrical foil strain in 

the longitudinal reinforcement of the column (88), transverse reinforcement of the column (22), 

longitudinal reinforcement of the shaft (48), and transverse reinforcement of the shaft (14), for a 

total of 172 strain gauges. Figure 2–16 and Figure 2–17 presents the location of these strains. 

 

Figure 2–16: Column electrical foil strain location (Lotfizadeh, 2019). 
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Figure 2–17: Shaft electrical foil strain location (Lotfizadeh, 2019). 

The test specimen had 48 vertical linear potentiometers placed in the shaft (20) and 

column (28), and 10 diagonal (6) and horizontal (4) linear potentiometers. The rods of the linear 

potentiometers placed in the column were able to cross the entire transverse formwork since they 

were placed before pouring the concrete. However, since the shaft had a steel casing as 

formwork, it was not possible to set the shaft rods before pouring the concrete, which was done 

later by drilling into the hard concrete. Figure 2–18 shows a transverse cut of the column and 

shaft with the location of the rods. Figure 2–19 displays the vertical position. 

 

Figure 2–18: Rods of vertical linear potentiometers (Lotfizadeh, 2019). 
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Figure 2–19: Vertical location for potentiometers (Lotfizadeh, 2019). 

Additionally, it had three string potentiometers at the height of the shaft-column interface 

(1) and the mid-height of the hammerhead (2), shown in Figure 2–20.  
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Figure 2–20: String potentiometers location (Lotfizadeh, 2019). 

 

2.4 LOADING PROTOCOL 

Loading was applied to the specimen via 2-500 kips capacity ±48 in. stroke servo-

controlled actuators. The actuators were deployed horizontally between a reaction wall and the 

mid-depth of the specimen’s hammerhead. Testing was carried out quasi-statically at the Charles 

Lee Powell Structural Research Laboratories of the University of California at San Diego. 

Testing was carried out using a prescribed load then lateral displacement controlled the loading 

protocol, see Figure 2–21. 
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Figure 2–21: Displacement protocol recorded for the test. (Lotfizadeh, 2019). 

 

2.5 TEST RESULTS 

In the following, a summary of the most important observations and key results used in 

this work to validate the analytical FE model are described here. Lotfizadeh (2019) gives a 

detailed description. 

2.5.1 Global behavior 

Figure 2–22 shows the lateral load versus lateral displacement hysteretic response. The 

test specimen displayed a typical ductile flexural response. The flexural strength was attained at 

the column base and maintained at large drift ratios. The hysteretic response was characterized 

by round and stable loops (i.e., very little change in response upon repetition of the loop). 

Considerable strength degradation was seen once the µΔ=5 cycles at 9.94% column drift 

ratio (i.e., the lateral displacement divided by the column height of 17 ft., 204 in.) begun. By the 
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end of the second cycle at this displacement, the lateral strength had decreased by 4% of the peak 

value recorded in the first cycle. By the end of the third cycle, the lateral strength had decreased 

by 7% of the peak value recorded on the first cycle. Only one cycle at µΔ = 6 at 10.7% column 

drift ratio was performed, since the damage included many fractured column longitudinal bars 

and the degradation in the lateral strength was substantial. 

 

Figure 2–22: Actuator lateral load versus lateral displacement at hammerhead. (Lotfizadeh, 2019) 
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Figure 2–23: Normalized column moment versus column drift ratio. (Lotfizadeh, 2019) 

Figure 2–23 displays the normalized base column moment versus the column drift ratio 

hysteretic response. The base column moment was computed from the deformed geometry of the 

specimen and using the actuator forces and the force and eccentricity of the post-tensioning roads 

placed to simulate axial force in the specimen, and at 204 in. from the column base. This moment 

was normalized by the ideal moment 𝑀𝑖 computed with simplified flexure theory and using 

measured material properties corresponding to the materials at the column base.  

Before the first positive peak of µΔ=2, at a column drift ratio of 2.95%, the first sign of 

concrete flaking was observed in the south face. After the peak of the same cycle, at the 

unloading with a column drift ratio of 3.99%, spalling in the same face of the column was 

observed. The first signed of bar buckling was observed at the peak of the second cycle at µΔ=5 

at a column drift ratio of 9.94%.  
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Figure 2–24 shows the lateral displacement contributions at the positive and negative 

peak displacements computed from the linear potentiometers placed along the shaft and column, 

as a percentage of the total displacement measured externally at the hammerhead shown in the 

X-axis of the figure. The linear potentiometers in the lower column, in yellow, corresponded to 

the first 48 in. (22% of the column height); and the linear potentiometers in the upper column, in 

purple, the following 99 in. (representing 48.5% of the column height). 

This figure reveals that the largest contribution of the lateral displacement was due to 

flexure in the lower portion of the column where plastic hinge eventually developed.  

 

Figure 2–24: Lateral deflection contributions (Lotfizadeh, 2019). 

Figure 2–25 shows the normalized moment 𝑀𝑃𝐻 measured at 194.875 in. from the 
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specimen. The cycles are only displayed until µΔ = 5. For the plastic hinge region, the curvature 

was calculated considering the first 3 pairs of vertical potentiometers above the column base and 

excluding the potentiometers that monitored the fixed end rotation. 

 

Figure 2–25: (a) Normalized moment-curvature at plastic hinge region PH, and (b) normalized moment-

rotation at the shaft-column interface region FER (Lotfizadeh, 2019). 

The electrical foil strain gauges of bar 1 and bar 3 shown in Figure 2–16 were used to 

obtain the strain distribution at the peak displacements of the first cycle of ductility 1, 2, 3 and 4. 

Figure 2–26 and Figure 2–27 shows the strain distributions. The electrical foil strain gauges of 

bar 3 at µΔ=3 gave wrong lectures of strains. 
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Figure 2–26: Strain distribution at south and north bar at Δy and 2Δy. 

 

Figure 2–27: Strain distribution at south and north bar at 3Δy and 4Δy. 
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2.5.2 Test observations 

The damage in the test specimen was recorded. Most of the damage was encountered in 

the plastic hinge region, i.e., within the first 48 in. of the column. Figure 2–28 shows the 

interface between the column and the shaft at the end of the load control cycles. In the figure, the 

cracks of the east face of the column are marked with red (for the negative cycles) and black (for 

negative cycles). There were radial cracks in the shaft at the end of the load control cycles. 

At the end of the displacement control cycles, fracture of rebar and considerable concrete 

crushing was observed. A 3D cloud image processing is shown in Figure 2–29 for the north face 

and Figure 2–30 for the south face (Lotfizadeh, 2019). 

 

Figure 2–28: Picture of test-specimen at the shaft column interface at the end of the 75% load control cycle 

(Lotfizadeh, 2019). 
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Figure 2–29: Damage after the completion of the test at the north face (Lotfizadeh, 2019). 

 

Figure 2–30: Damage after the completion of the test at the south face (Lotfizadeh, 2019). 
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 CHAPTER 3: MATERIAL MODELS 

ATENA Studio from Cervenka Consulting was the software chosen to perform the 

nonlinear analysis. This finite element program is specialized to model reinforced concrete 

structures. The author created a 3D finite element model with GID. GID specializes in pre-

processing given a friendly user interface to generate the model. ATENA Studio performed the 

analysis and post-processing. 

The material models used in this investigation are discussed in the following sections. 

3.1 CONCRETE MODELS 

The concrete model used is the facture-plastic constitutive model (named as 

CC3DNonLinCementitious2). It is a combination of a plasticity model (for compression) with a 

fracture model (for tension) (Cervenka et al., 2018). 

The material model formulation is based on the decomposition of the strain vector into 

the elastic, plastic, and fracturing strains: 

𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝑒 + 𝜀𝑖𝑗

𝑝 + 𝜀𝑖𝑗
𝑓
     (3.1) 

The stress evolution is based on the following formulation: 

𝜎𝑖𝑗 =
(𝑛)

𝜎𝑖𝑗 + 𝐸𝑖𝑗𝑘𝑙(∆𝜀𝑘𝑙 − ∆𝜀𝑘𝑙
𝑝 − ∆𝜀𝑘𝑙

𝑓
)

(𝑛−1)
               (3.2) 

Where E corresponds to the elastic stiffness tensor. The fracture and plastic concrete 

models are reviewed below. 
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Fracture 

For the tensile behavior of the concrete, the fracture model is based on the classical 

orthotropic smeared crack formulation and crack band model. The Rankine criterion is used. 

There are two models of the smeared cracks, the fixed-crack model and the rotated crack model. 

For the fixed-crack model, the crack direction is given by the principal stress direction at 

the onset of crack initiation. At this point, the direction of principal stresses is fixed and 

represents the material orthotropic axis. In further loading steps, the difference between the 

principal stress and strain directions produces shear stresses in the crack plane. 

For the rotated crack model, the direction of the principal stress coincides with the 

principal strains at every step, leading into no shear stresses at the crack plane. 

The Rankine criterion: 

 𝐹𝑖
𝑓
= 𝜎′𝑖𝑖

𝑡
− 𝑓𝑡𝑖

′ ≤ 0  (3.3) 

Where 𝜎′𝑖𝑖
𝑡
 is the trial tensile strength in local axes of the element, calculated with the 

elastic predictor, and 𝑓𝑡𝑖
′  is the tensile strength in the material direction i.  

𝜎𝑖𝑗
′𝑡 = 𝜎𝑖𝑗

′𝑛−1 + 𝐸𝑖𝑗𝑘𝑙∆𝜀′𝑘𝑙 (3.4) 

If 𝐹𝑖
𝑓
> 0 

𝐹𝑖
𝑓
= 𝜎𝑖𝑖

′𝑛 − 𝑓𝑡𝑖
′ = 𝜎𝑖𝑖

′𝑡 − 𝐸𝑖𝑖𝑘𝑙∆𝜀
′
𝑘𝑙 − 𝑓𝑡𝑖

′ = 0               (3.5) 

Assuming the increment in fracturing strain ∆𝜀′𝑘𝑙  is always perpendicular to the failure 

surface 𝐹𝑓, and that only one surface is being checked (“k”), we can state that: 
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∆𝜀′𝑓𝑖𝑗 = Δ𝜆
𝜕𝐹𝑘

𝑓

𝜕𝜎𝑖𝑗
                       (3.6) 

Introducing ∆𝜀′𝑓𝑖𝑗  into 𝐹𝑖
𝑓
, the fracture multiplier is computed by: 

∆𝜆 =
𝜎𝑘𝑘
′𝑡 −𝑓𝑡

′(𝑤𝑘
𝑚𝑎𝑥)

𝐸𝑘𝑘𝑘𝑘
                  (3.7) 

𝑤𝑘
𝑚𝑎𝑥 = 𝐿𝑡(𝜀�̂�𝑘

′𝑓
+ Δ𝜆)                  (3.8) 

Lt is defined as the element size projected in the direction of the crack. And 𝜀�̂�𝑘
′𝑓

 is the 

maximal fracturing strain reached during loading. 

𝑓𝑡
′(𝑤𝑘

𝑚𝑎𝑥) is dependent on the crack opening. For pre-peak tensile stress, a linear 

behavior is assumed. For post-peak behavior, the exponential crack opening law derived 

experimentally by Hordijk et al. (1991) is used. The expressions used are stated below. 

𝜎

𝑓𝑡
′ = [1 + (𝑐1

𝑤

𝑤𝑡𝑐
)
3

] 𝑒−𝑐2
𝑤
𝑤𝑡𝑐⁄ −

𝑤

𝑤𝑡𝑐
(1 + 𝑐1

3)𝑒−𝑐2              (3.9) 

𝑤𝑡𝑐 = 5.14
𝐺𝑓

𝑓𝑡
′                           (3.10) 

Where 𝑤𝑡𝑐 is the crack opening at the complete release of stress. It is important to notice 

that 𝑤𝑡𝑐 is different to the maximum crack opening. Reported maximum crack openings were 

around 400-500 µm and larger. 

𝐺𝑓  is the fracture energy that by definition is the amount of energy needed to create a unit 

crack area. 𝐺𝑓 is the area under the curve shown in Figure 3–1. 
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σ is the crack cohesion (normal stresses 1,2,3). The parameters c1 and c2 correspond to 3 

and 6.93 respectively and were calculated to fit experimental data from Hordijk and other 

authors. 

 

Figure 3–1: Tensile softening (Cervenka et al., 2018). 

Plasticity 

For the plastic surface, the failure surface given by Menétrey- Willam (1995) was used. 

The model is formulated in the Haigh-Westergaard coordinate system. The relation between the 

stress vector and the Haigh-Westergaard coordinates is shown below. 

[

𝜎1
𝜎2
𝜎3
] =

1

√3
[

𝜉
𝜉
𝜉
] + √

2

3
𝜌 [

cos(𝜃)

cos(𝜃 − 2𝜋 3⁄ )

cos(𝜃 + 2𝜋 3⁄ )

]              (3.11) 

With 𝜉 the hydrostatic stress invariant, 𝜌 the deviatoric stress invariant, and θ the 

deviatoric stress angle. 

The model is based on three parameters that involve properties of uniaxial tests such as 

the compressive strength 𝑓𝑐
′, tensile strength 𝑓𝑡

′, and an out of roundness parameter e. 
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𝐹𝑝(𝜉, 𝜌, 𝜃) = [√1.5
𝜌

𝑓𝑐
′]
2

+𝑚 [
𝜌

√6𝑓𝑐
′ 𝑟(θ, 𝑒) +

𝜉

√3𝑓𝑐
′] − 𝑐 = 0          (3.12) 

Where m is presented as in the original model and c evolves through crushing/yielding. 

The function 𝑟(θ, 𝑒) gives the shape of a triple symmetric elliptic. 

𝑚 = 3
(𝑓𝑐
′)
2
−(𝑓𝑡

′)
2

𝑓𝑐
′𝑓𝑡
′

𝑒

𝑒+1
                             (3.13) 

 𝑟(𝜃, 𝑒) =
4(1−𝑒2) cos2(𝜃)+(2𝑒−1)2

2(1−𝑒2) cos(𝜃)+(2𝑒−1)[4(1−𝑒2) cos2(𝜃)+5𝑒2−4𝑒]
1
2⁄
       (3.14) 

𝑐 = (
𝑓𝑐
′(𝜀𝑒𝑞

𝑝
)

𝑓𝑐
′ )

2

                                   (3.15) 

𝑓𝑐
′(𝜀𝑒𝑞

𝑝 ) indicates the hardening/softening law, based on the uniaxial compressive test. 

And 𝜀𝑒𝑞
𝑝  represents the equivalent plastic strain. Figure 3–2 depicts the laws used by the program. 

As it can be seen the plastic surface (Fp) is not unique, and it evolves with the equivalent plastic 

strain 𝜀𝑒𝑞
𝑝

.  

 

Figure 3–2: Hardening/softening laws used in CC3DNonLinCementitiuos model (Cervenka et al., 2018). 
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The hardening is modeled with a linear and nonlinear branch. The nonlinear curve is 

governed by: 

𝑓𝑐(𝜀𝑒𝑞𝑝) = 𝑓′𝑐0 + (𝑓′𝑐 − 𝑓′𝑐0)√1 − (
𝜀𝑐𝑝−𝜀𝑒𝑞𝑝

𝜀𝑐𝑝
)
2

                 (3.16) 

With 𝑓′𝑐0 representing the stress at the onset of nonlinear hardening and 𝜀𝑐𝑝 the strain at 

which fc’ is reached in a uniaxial test. 

From Figure 3–2, the softening branch is linear and based on displacements. In this 

figure, wd is the critical compressive displacement from Van Mier’s formulation. Lc is the 

crushing band calculated for each FE as the projection of the element size in the direction of the 

minimum compressive stress.  

Since the softening is a function of the displacement instead of strain, mesh objectivity is 

introduced to the formulation (Nakamura & Higai, 2001).  

wd parameter is assumed as a material property, as it was found by Van Mier et al. (1997). 

Van Mier (1984) found a value of -0.5 mm (-0.0197 in.), and Nakamura & Higai found -2.5 mm 

(-0.0984 in.) (Cervenka et al., 2018). As we can see this parameter is not well understood, and 

different authors have found different values. In 2001, RILEM released recommendations for the 

test method to measure strain-softening behavior of concrete under uniaxial load. From values 

found in a Round Robin test, considering the recommendations above, the values for wd range 

around -0.75 mm (-0.0295 in.) (Van Mier et al., 1997). 

Regarding the out of roundness parameter, a.k.a. eccentricity, it will control the relation 

between the uniaxial and equibiaxial compressive strength. Figure 3–3 represents the relation 
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when 𝜎3 = 0. A value of 0.52 it is recommended by Cervenka Consulting, that is equivalent to 

consider 𝑓′𝑏𝑐 = 1.14𝑓′𝑐, which is in agreement with Kupfer et al. (1969).  

 

Figure 3–3: Influence of eccentricity on biaxial strength for the 3 parameter criterion  

(Menetrey & Willam, 1995). 

The plastic potential 𝐺𝑝governs the direction of the plastic flow. 𝐺𝑝 is a function that 

depends on parameter β. β defines the volumetric change during crushing (positive means 

expansion, negative values mean contraction, and if it is equal to zero the volume is preserved). 

𝐺𝑝(𝜎) = 𝛽
𝐼1

√3
+√2𝐽2 = 𝛽𝜉 + 𝜌                (3.17) 

The iterative process to recover the new stress state is based on a predictor-corrector 

formula. The input parameters are: 

𝜎
(𝑛−1)

𝑖𝑗      𝜀
(𝑛−1)

𝑖𝑗
𝑝             ∆ 𝜀

(𝑛)
𝑖𝑗                 (3.18) 

𝜎𝑖𝑗 =
(𝑛)

𝜎𝑖𝑗 + 𝐸𝑖𝑗𝑘𝑙(∆𝜀𝑘𝑙 − ∆𝜀𝑘𝑙
𝑝 ) = 𝜎𝑖𝑗

𝑡 −
(𝑛−1)

𝐸𝑖𝑗𝑘𝑙∆𝜀𝑘𝑙
𝑝 = 𝜎𝑖𝑗

𝑡 − 𝜎𝑖𝑗
𝑝         (3.19) 
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Where 𝜎𝑖𝑗
𝑡  is the elastic predictor, computed as: 

𝜎𝑖𝑗
𝑡 = 𝜎𝑖𝑗 + 𝐸𝑖𝑗𝑘𝑙∆ 𝜀𝑘𝑙

(𝑛)(𝑛−1)
                   (3.20) 

Where 𝜎𝑖𝑗
𝑝  is the plastic corrector, computed as: 

𝑓𝑖
𝑝 = 𝐹𝑝(𝜎𝑖𝑗

𝑡 − 𝜎𝑖𝑗
𝑝) = 𝐹𝑝(𝜎𝑖𝑗

𝑡 − ∆𝜆𝑖𝐸𝑚𝑖𝑗) = 0                (3.21) 

With 𝑚𝑖𝑗 =
𝜕𝐺𝑝(𝜎𝑖𝑗

𝑡 )

𝜕𝜎𝑖𝑗
 . 

For the first iteration, the plastic multiplier increment will be set equal to zero (∆𝜆𝑖=1 =

0).  

If 𝑓𝑖
𝑝 > 0, then the failure criterion is violated, and the procedure is: 

 Compute the return direction  𝑚𝑖𝑗
(𝑖)

 

 Compute ∆𝜆𝑖+1  with   𝐹𝑝(𝜎𝑖𝑗
𝑡 − ∆𝜆𝑖+1𝐸 𝑚𝑖𝑗

(𝑖)
, 𝜀𝑖𝑗

𝑝(𝑛−1)
) = 0 

 Evaluate  𝑓𝑖+1
𝑝 = 𝐹𝑝(𝜎𝑖𝑗

𝑡 − ∆𝜆𝑖+1𝐸 𝑚𝑖𝑗
(𝑖)

, 𝜀𝑖𝑗
𝑝 +

(𝑛−1) ∆𝜆𝑖+1 𝑚𝑖𝑗
(𝑖)

) 

 Then as long as   |∆𝜆𝑖 − ∆𝜆𝑖+1| > 𝑒 

     ∆𝜆𝑖+2 = ∆𝜆𝑖 − 𝑓𝑖
𝑝 ∆𝜆𝑖+1−∆𝜆𝑖

𝑓
𝑖+1
𝑝
−𝑓

𝑖
𝑝  

     𝑚
(𝑖+1)

𝑖𝑗 =
𝜕𝐺𝑝(𝜎𝑖𝑗

𝑡 −∆𝜆𝑖+2𝐸 𝑚𝑖𝑗
(𝑖)

)

𝜕𝜎𝑖𝑗
 

  𝑓𝑖+2
𝑝 = 𝐹𝑝(𝜎𝑖𝑗

𝑡 − ∆𝜆𝑖+2𝐸 𝑚𝑖𝑗
(𝑖+1) , 𝜀𝑖𝑗

𝑝(𝑛−1) + ∆𝜆𝑖+2 𝑚𝑖𝑗
(𝑖+1) ) 
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 Then if   𝑓𝑖+2
𝑝
< 0    do  𝑓𝑖+1

𝑝
= 𝑓𝑖+2

𝑝
      ∆𝜆𝑖+1 = ∆𝜆𝑖+2 

𝑓𝑖+2
𝑝 ≥ 0    do  𝑓𝑖

𝑝 = 𝑓𝑖+1
𝑝

       ∆𝜆𝑖 = ∆𝜆𝑖+1 

𝑓𝑖+1
𝑝 = 𝑓𝑖+2

𝑝       ∆𝜆𝑖+1 = ∆𝜆𝑖+2 

End of the algorithm, update: 

𝜀𝑖𝑗
𝑝 =

(𝑛)
𝜀𝑖𝑗
𝑝(𝑛−1)
+ ∆𝜆𝑖+1 𝑚

(𝑖+1)
𝑖𝑗 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑡 −

(𝑛)
𝜆𝑖+1 𝐸 𝑚

(𝑖+1)
𝑖𝑗 
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3.2 REINFORCEMENT MODELS 

There are two ways of considering reinforcement in ATENA. The first is using a uniaxial 

material associated with line elements, and the second is through smeared reinforcement 

associated with the concrete material in 3D elements (Cervenka et al., 2018).  

For the case of the uniaxial elements, the program allows considering the cyclic response 

of the reinforcement through Menegotto-Pinto (1973) cyclic model. The backbone curve of the 

steel corresponds to a multilinear stress-strain curve.  

The implementation of the Menegotto-Pinto (M-P) model differs from the one given in 

Filippou et al. (1983). The model is based on the following formulations: 

𝜎∗ = 𝑏𝜀∗ +
(1−𝑏)𝜀∗

(1+𝜀∗𝑅)
1
𝑅⁄
               (3.22) 

𝜎 = (𝜎0 − 𝜎𝑟)𝜎
∗ + 𝜎𝑟                   (3.23) 

𝜀∗ =
𝜀−𝜀𝑟

𝜀0−𝜀𝑟
                                     (3.24) 

𝑅 = 𝑅0 −
𝑐1𝜉

𝑐2+𝜉
                            (3.25) 

The parameters c1, c2 and R0 are experimentally determined. Typical values for this in the 

original implementation of the model range between 20, 18.5 and 0.15 respectively. However, in 

ATENA the recommended values are 4, 500, 50. 

Figure 3–4 shows the comparison between M-P given by Steel02 Material in OpenSees 

(2013) and the M-P obtained from ATENA. For the Steel02 the setting was taken as: the yield 

strength and elastic modulus set from the test values obtained for bar #14, the strain hardening 
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ratio (b) as 0.012, R0 as 20, cR1 as 0.9 and cr2 as 0.08, a1 as 0.039, a2 and a4 as 1 and a3 as 

0.029.  

 

Figure 3–4: Comparison between OpenSees and ATENA implementation of Menegotto-Pinto. 

From the figure, the curve with the parameters recommended by ATENA fits better with 

the curve given by OpenSees (2013) for the first cycle.  

Deactivating the compressive response of the reinforcement is possible. If activated, 

buckling in the rebar is assumed, and the strength of the element is considered negligible.  

The bond-slip of the rebar can be accounted with three different models provided by the 

software. These are the CEB-FIB model code from 1990, the bar bond slip law by Bigaj (1999), 

and a user-defined law.  
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The user-defined law is a bond slip-bond strength definition, i.e., no elastic bond slip is 

considered in the bond mode, and only when the bond strength is reached the bar starts to slip. It 

should not start from zero strength for zero slip (0.1τb). 

3.2.1 CEB-FIB 1990 Model Code  

The model given by CEB-FIP (1990) gives the bond stress for a monotonic loading 

calculated as a function of the relative displacement s. 

𝜏 =

{
 
 

 
 𝜏𝑚𝑎𝑥(

𝑠
𝑠1⁄ )

𝛼
                                          0 ≤ 𝑠 ≤ 𝑠1

𝜏𝑚𝑎𝑥                                                        𝑠1 < 𝑠 ≤ 𝑠2

𝜏𝑚𝑎𝑥 − (𝜏𝑚𝑎𝑥 − 𝜏𝑓) (
𝑠−𝑠2

𝑠3−𝑠2
)       𝑠2 < 𝑠 ≤ 𝑠3

𝜏𝑓                                                  𝑠3 < 𝑠

                (3.22) 

 

Figure 3–5: Bond-slip model by CEB-FIB 1990 (Cervenka et al., 2018) 

The parameters used for the model considers a ribbed bar. Table 3-1 shows the 

parameters used. These values are applicable only in loading states where the concrete is not 

subjected to lateral tension. 
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Table 3-1: Parameters for defining the mean bond stress-slip relationship. (CEB-FIP, 1990) 

 

To use columns 2 and 3 (unconfined concrete), minimum requirements are set: 

 Concrete cover 𝑐 = 1𝜙𝑠 

 Minimum transverse reinforcement 𝐴𝑠𝑡,𝑚𝑖𝑛 = 0.25𝑛𝐴𝑠  

To use columns 4 and 5 (well-confined concrete), the requirements are: 

 Concrete cover 𝑐 ≥ 5𝜙𝑠 

 Clear spacing > 10𝜙𝑠 

 Closely spaced transverse reinforcement 𝐴𝑠𝑡 > 𝑛𝐴𝑠  

 Or high transverse pressure 𝑝 ≥ 7.5𝑀𝑃𝑎 

Where n is the number of bars enclosed by the stirrups, Ast area of stirrups (two legs) over 

a length equal to the anchorage length, and As the area of one bar. 
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3.2.2 Bond Model by Bigaj 

The model is based on the experimental investigation made by Bigaj (1999) on her 

doctoral dissertation. For the first stage, between points 1 and 2 shown in the figure below, a bi-

linear curve is used. Table 3-2 lists the coordinates of the points 1 through 4, where D represents 

the reinforcement bar radius.  

 

Figure 3–6: Bond-slip model by Bigaj 1999 (Cervenka et al., 2018) 
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Table 3-2: Parameters for defining bond strength-slip relation (Cervenka et al., 2018). 

 

For a cyclic loading analysis, an additional model is available called memory bond 

material. This model uses the previously mentioned bond-slip models as a backbone. Once the 

bond stress sign changes, an additional parameter τ1 determines the maximum bond stress. τ1 lies 

between 𝜏𝑟𝑒𝑠 ≤ 𝜏 ≤ 𝜏𝑚𝑎𝑥. The residual bond stress is the last value from the bond strength-bond 

slip function. 
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Figure 3–7: Memory bond working diagram (Cervenka et al., 2018).  

So 

𝑠𝑖 = 𝑠𝑖−1 + ∆𝑠𝑖                   (3.23) 

The loading range |𝑠| ≥ 𝑠𝑚𝑎𝑥 

𝜏 = 𝑓(𝑠)                                 (3.24) 

The unloading range −𝑠𝑚𝑎𝑥 < 𝑠 < 𝑠𝑚𝑎𝑥 

∆𝑠 ≥ 0         𝜏 = 𝜏1                (3.25) 

∆𝑠 ≤ 0         𝜏 = −𝜏1             (3.26) 
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 CHAPTER 4: BASED MODEL AND INPUT PARAMETERS 

The author modeled the geometry of the test specimen in the GID interface, introducing a 

series of simplifications to achieve a faster run process. The simplifications consisted in: 

 Where elastic behavior was observed in the test, the author added an elastic material 

(instead of reinforced concrete), i.e., the hammerhead and footing.  

 A point displacement at mid-height and mid-width of the hammerhead (instead of two 

points used in the test) introduced the displacement protocol.  

A unique feature was the post-tensioning rods which applied the additional axial load to 

the column see Figure 2–5. The fixity points of the rods are the bottom of the reaction floor, from 

this point the PT follows the trajectory of the hammerhead adding P-δ effect to the overall 

behavior. 

In the model, the PT rods were modeled as external cables (CCExternal Cable), applying 

the prestress as an initial strain. Applying the prestress as initial stress did not introduce an axial 

load to the system. The Young’s Modulus was made equal to EPT/10 to emulate the test setup 

where the force in these rods was actively controlled and maintained reasonably constant.  

Figure 4–1 shows the fix-points of the PT rods. For this, the footing considered the height 

of the reaction floor and the footing itself.  
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Figure 4–1: Fixity point of post-tension rods.  

At the interface between the column pier and the shaft, a slim volume of 3 in. height 

placed at the base of the column was set to consider the cold joint formed in this region. It had 

the same properties as the plastic hinge with a reduce tensile strength. 

4.1 MATERIALS FOR VOLUME ELEMENTS 

Figure 4–2 shows the list of materials used for volume elements in the model.  

 

Figure 4–2: Color code of concrete materials used. 
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Table 4-1 shows the parameters used. These are required to use 

CC3DNonLinCementitious2 explained in Chapter 3.1. The author used the compression strength 

and Young’s modulus obtained from the concrete cylinder compression tests given in Chapter 

2.2. The researcher only performed one split-cylinder test for this project, which provided a 

tensile strength of 0.45 ksi. 

Activation of crack spacing and minimum crack spacing was not necessary to introduce 

since the mesh was refined enough. The tension stiffening, aggregate interlock, the shear factor 

(sF) and the unloading factor (fU) were not activated. 

Since there was no experimental data of the fracture energy Gft (no wedge-splitting test), 

the author used the formulation proposed by Vos (1983) and given by ATENA manuals.  

𝐺𝑓𝑡[𝑀𝑁 𝑚⁄ ] = 0.000025𝑓𝑡
′[𝑀𝑃𝑎]             (4.1) 

The formulation given above was calibrated using results by Peterson (1981) , shown in 

Figure 4–3, and considering that the tensile strength is within the upper 95% limit proposed by 

CEB-FIP.  

The fixed-crack material parameter determines at which maximum residual tensile stress 

level the crack direction gets fixed. In other words, 0 means the use of a fully rotated crack 

model, and 1 means using a fixed-crack model (Chapter 3.1). Values between 0 and 1 determine 

the crack direction locking level. For example, using 0.7 fixes the crack direction as soon it 

opens so far that the softening law drops to 0.7 times the initial tensile strength. A fully rotated 

cracked model was used (value set as 0).  
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Figure 4–3: Calibration of fracture energy versus 

 cylindrical compressive strength (Vos, 1983). 

The plastic strain at peak load called 𝜀𝑐𝑝 was determined by dividing the compressive 

strength by Young’s modulus. 𝑓𝑐0 corresponded to the onset of nonlinearity and determined as 

the average of the values found with the experimental data given in Chapter 2. Figure 4–4 shows 

both of these parameters. 

 

Figure 4–4: Left figure: Peak compressive strain and onset of crushing. Right figure: compressive strength 

reduction (ATENA ®). 

𝑤𝑑 corresponds to the critical compressive displacement explained in Chapter 3.1. Fc 

reduction is a parameter that reduces the compressive strength due to cracking. Figure 4–4 shows 

the rc value. 

In the miscellaneous parameters: the density of the material is set; this parameter is for a 

dynamic problem (not the case of this study). The thermal expansion coefficient is also set, 

which would not influence the research. The eccentricity is the parameter defining the shape of 

the failure surface, explained in Chapter 3.1, and kept as the 0.52 recommended by Cervenka 
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Consulting. The last parameter corresponds to the direction of the plastic flow β mentioned in 

Chapter 3.1, the values given can vary in a range between -5 and 5, where a negative value 

corresponds to compaction and a positive to expansion. Figure 4–5 shows the schematic return 

direction with a positive, zero or negative plastic flow. 

 

Figure 4–5: Return plastic flow direction (Cervenka et al., 2018). 
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Table 4-1: Input parameters for volume elements. 

      
Shaft 

Column 
reduce ft 

Column 
1 

Column 
2 

Concrete 

Base Material Prototype  CC3DNonLinCementitious2 

Young's Modulus [ksi] 3695.7 3751.3 3751.3 3557.7 
Poisson Ratio   0.20 0.2 0.2 0.2 
Tension Strength [ksi] 0.45 0.1 0.45 0.45 
Compression Strength [ksi] -4.93 -5.17 -5.17 -5.08 

Tensile 

Activate Crack Spacing   no no no no 

Crack spacing   - - - - 
Activate crack spacing min no no no no 

Crack spacing min   - - - - 
Activate tension stiffening no no no no 
Tension stiffening   - - - - 
Activate aggregate interlock no no no no 
Aggregate Size [in.] - - - - 
Activate shear factor   no no no no 
Shear factor   - - - - 
Activate unloading 
factor   no no no no 

Unloading factor   - - - - 
Fracture energy [lb. /in.] 0.44 0.44 0.44 0.44 
Fixed-crack   0 0 0 0 

Compressive 

Plastic Strain EPS-CP   -0.0013 -0.0014 -0.0014 -0.0014 
Onset of crushing Fco 
(linearity limit) 

[ksi] -2.33 -2.88 -2.88 -2.73 

Critical comp disp-WD [in.] -0.197 -0.197 -0.197 -0.197 
Fc Reduction   1 1 1 1 

Miscellaneous. 

Rho-Density [lb./in.3] 8.67E-08 8.67E-08 8.67E-08 8.67E-08 

Thermal Expansion Alpha  [F-1] 6.67E-06 6.67E-06 6.67E-06 6.67E-06 
Eccentricity-EXC   0.52 0.52 0.52 0.52 
Dir. of Plastic Flow-BETA   0 0 0 0 
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4.2 MATERIALS FOR 1D ELEMENTS 

Figure 4–6 shows the list of materials used for the 1D element in the model. These 

correspond to the mild reinforcement used in the column and shaft and the post-tension 

reinforcement. 

 

Figure 4–6: List of 1D element names. 

Table 4-2 shows the input parameters that characterize the mild reinforcement used in the 

column and shaft, based on the coupon tests. For #7 since there was no data available, the author 

based the stress-strain on the #6 results. The longitudinal reinforcement used a four linear 

function to describe the backbone curve. The transverse reinforcement used a three linear 

function for the backbone curve. For the cyclic response, the author used the Menegotto-Pinto 

built in ATENA ®. 

In the miscellaneous parameters, the density and thermal expansion parameters were set; 

however, these are not used during the analysis. If the reinforcement in compression is activated, 



 

67 

 

the element will have the same backbone curve for tension and compression. If the reinforcement 

has low bending stiffness is recommended not to enable this setting, to simulate the buckling in 

the reinforcement under compressive forces. 

In the element geometry parameters, the type of geometrical non-linearity (linear or 

nonlinear) is introduced. Here the type of bond is set, by default the program considerers the bar 

to be perfectly bonded with the surrounding volume elements. The settings for embedded short 

bars and quadratic elements indicate if the volume elements have quadratic interpolation 

functions between nodes and if the rebar is smaller than the 3D volumes (coarser mesh).   

Table 4-3 shows the input parameters used for the bond law of the longitudinal 

reinforcement of the column. A user-defined function was used for the base model.  
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Table 4-2: Input parameters for mild reinforcement. 

      No 18 No 14 No 5 No 7 

Basic 

Material Prototype   CCyclingReinf 

Young's Modulus [ksi] 29123 27760 28160 29000 
Profile 

 
[in.] 2.25 1.75 0.625 0.875 

Number of profiles   1 1 1 1 

Reinforcement Function 

Yield Strength YS [ksi] 81.9 87 87.8 84.6 
Number of multilinear values 5 5 4 4 
eps2 

 
[-] 0.01497 0.02393 0.0192 0.02533 

f2 
 

[ksi] 90 100 105 105 
eps3 

 
[-] 0.03233 0.033 0.04367 0.05067 

f3 
 

[ksi] 100 105 114 115 
eps4 

 
[-] 0.061 0.06567 0.1109 0.10624 

f4 
 

[ksi] 108 113 115 119.5 
eps5 

 
[-] 0.11904 0.1134 - - 

f5 
 

[ksi] 110.4 114.3 - - 

Menegotto-Pinto 

Bauschinger exp-R   2 2 2 2 
C1 

 
  5000 5000 5000 5000 

C2 
 

  20 20 20 20 

Miscellaneous 

Rho Density [lb./in.3] 0.284 0.284 0.284 0.284 

Thermal Expansion-Alpha [F-1] 6.7E-06 6.7E-06 6.7E-06 6.7E-06 
Active in compression   yes yes yes yes 

Element Geometry 

Name     #18 shaft #14 col #5 col #7 shaft 
Geometrical Non-Linearity   Non-Linear Non-Linear Linear Linear 

Geom Type   Normal 
Bar with 
memory 

bond 
Normal Normal 

Embedded Reinf.   yes yes yes yes 

  minimum [in.] 2 2 2 2 
Embedded short bars   yes yes yes yes 
Quadratic elements   no no no no 
default application   yes yes yes yes 
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Table 4-3: Input parameters for bars with a bond. 

  No 14 

Bar with memory bond 

Bar end fixed none   
max bond strength 1000 psi 
friction unload 
coefficient  50 psi 
function for bond slip From user   
slip (length unit) 1 0 [in.] 
bond strength 1 0.1 [-] 
slip (length unit) 2 0.04 [in.] 

bond strength 2 1 [-] 
slip (length unit) 3 0.07 [in.] 
bond strength 3 1 [-] 
slip (length unit) 4 1.72 [in.] 
bond strength 4 0.4 [-] 

 

For the post-tension rebar Table 4-4 and Table 4-5 shows the parameters used. 

Table 4-4: Input parameters for Post-tensioned rebar. 

Basic 

Material Prototype 
 

CCyclingReinf 
 Young's Modulus [ksi] 2900 
Profile 

 
[in.] 1.75 

Number of profiles 
 

1 

Reinforcement Function 

Yield Strength YS [ksi] 140 
Number of multilinear values 2 
eps2 

 
[-] 0.6 

f2 
 

[ksi] 150 

Menegotto-Pinto 

Bauschinger exp-R 
 

4 
C1 

  
500 

C2 
  

50 

Miscellaneous 

Rho Density [lb./in.3] 0.2836 
Thermal Expansion-
Alpha [F-1] 6.67E-06 
Active in compression 

 
no 
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Table 4-5: Input parameters for Post-tensioned rebar. 

Element Geometry 

Name 
  

PT 
Geometrical Non-Linearity Linear 

Geom. Type 
 

cable 

Embedded Reinforcement no 
Embedded short bars 

 
no 

Quadratic elements 
 

no 
Default application   yes 

 

4.3 MESH AND PROCESS SETTINGS 

The program assigns the mesh independently for each volume. Table 4-6 shows the type 

of element used. Linear interpolation functions between nodes were used. ATENA meshes the 

linear elements directly. The program creates a node at each intersection with a volume element. 

Table 4-6: Element type for the mesh of volumes.  

Volume Element Type 

Hammerhead Tetrahedra 

Column Hexahedra 

Shaft Hexahedra 

Footing Hexahedra 

Steel Plates Tetrahedra 

 

Figure 4–7 shows the prescribed number of element in height indicated for the volumes 

that represent the column, shaft, and footing. Also, the picture displays the quality of the mesh 

for the tetrahedra and hexahedra. The column and shaft had the same mesh in plan view, so each 

node at the shaft-column interface connected both elements. The mesh at the interface is visible 

in Figure 4–8. 
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Figure 4–7: Volume mesh size (number of divisions in height) and mesh quality for (a) Tetrahedra elements 

and (b) hexahedra elements. 

 

 

Figure 4–8: Section cut of column mesh at the column-shaft interface. 

Three master-slave conditions were used to connect the volume elements that did not 

share nodes (mesh independently). These interfaces were the hammerhead to the column, the 
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shaft with the footing, and the steel plates with the hammerhead and footing. The master 

condition is given to the volume with the coarser mesh.  

Table 4-7 presents the problem data setups. The method of resolution of the nonlinear 

static problem was set as Modified Newton-Raphson. The process was analyzed leaving one core 

of the system free (number of threads). And two processes were run simultaneously. The 

computer in which it was analyzed had 4 cores and 8 logical processors. For the processor type, 

changing from 32bits to 64bits reduced the time of process significantly. 

Table 4-7: ATENA Process Settings. 

Global Settings 

Type of problem  Static Analysis 

Processor Type 64bit 

Number of threads -1 

Solution Parameters 

Method Newton-Raphson 

Displacement Error 0.01 

Residual Error 0.01 

Absolute Residual Error 0.01 

Energy Error 0.0001 

Iteration Limit 400 

Optimize Band Sloan 

Stiffness Type Elastic Predictor 

Assemble Stiffness Matrix Each step 

Solver PARDISO 

Pardiso Required accuracy 0.00000001 
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 CHAPTER 5: BASE MODEL RESULTS 

This chapter presents the comparison between the overall behavior and the specific 

response between the base model and the test. As mentioned in Chapter 2, the test specimen was 

heavily instrumented with vertical potentiometers (LVDT). The author replicated the monitor 

points in the model, with the same vertical location, but for modeling convenience, the horizontal 

distance was kept constant and differed from the test specimen. Table 5-1 shows the horizontal 

spacing for the model monitoring points.  

Table 5-1: Monitor horizontal distance in model. 

  
Horizontal distance 

[ft.] 

Shaft 3 

Column  2 
 

The author divided the column into two sections: column 1 that represents the first 48 in. 

and is where the plastic hinge developed; and column 2 which corresponds to the upper part of 

the column. So, the first three panels of vertical potentiometers relate to the results shown as 

column 1, and the last four panels are considered column 2. 

The comparative analysis presented considered checking the following graphs: 

 Actuator Load v/s Displacement at mid-height mid-width of the hammerhead. 

 Normalized moment-curvature at the plastic hinge. 

 Normalized moment - curvature at the shaft-column interface. 

 Lateral deflection contributions. 

 Strains in south and north bars at peak displacements. 
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In the following, an explanation of how the author developed these graphs from the 

model data is presented. 

Actuator Load v/s Displacement at mid-height mid-width of the hammerhead. 

The program gives directly the reaction at the point where the displacement is prescribed.  

Normalized moment - curvature at the plastic hinge. 

The author used the following procedure to get the moment and curvature at the plastic 

hinge region: 

Moment: 

𝑀 = 𝑅𝑎𝑐𝑡 ∙ (𝐻𝑐𝑜𝑙 +
𝐻ℎℎ

2
− 𝐻𝑐𝑔, 𝑐𝑜𝑙 1 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 − 3[𝑖𝑛. ]) +𝑊𝑐𝑜𝑙 ∙ (

𝑀01

2
−𝑀02) +𝑊ℎℎ ∙

(𝑀01 −𝑀02) + 𝐿𝑃𝑇 ∙ 𝑐𝑜𝑠 𝛼 ∙ (𝑀01 −𝑀02)           (5.1) 

𝛼 = atan(
𝑀01

𝐻ℎℎ
2⁄ +𝐻𝑐𝑜𝑙+𝐻𝑠ℎ𝑎𝑓𝑡+𝐻𝑓𝑜𝑜𝑡+𝐻𝑙𝑎𝑏 𝑠𝑙𝑎𝑏

)      (5.2) 

Where: 

𝑅𝑎𝑐𝑡 Actuator Load, [kip]. 

𝐻𝑐𝑜𝑙 Column height, [in.]. 

𝐻ℎℎ Hammerhead height, [in.]. 

𝐻𝑠ℎ𝑎𝑓𝑡 Shaft height, [in.]. 

𝐻𝑓𝑜𝑜𝑡 Footing height, [in.]. 

𝐻𝑙𝑎𝑏 𝑠𝑙𝑎𝑏 Laboratory reaction floor height, [in.]  
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𝐻𝑐𝑔, 𝑐𝑜𝑙 1 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 The height of the centroid of gravity of column 1, [in.]. 

𝑀01 Horizontal displacement measure at mid-height mid-width of 

the hammerhead, [in.]. 

𝑀02 Horizontal displacement measure shaft at mid-width, [in.]. 

𝑊𝑐𝑜𝑙 The weight of Column (1 and 2), [kip].  

𝑊ℎℎ The weight of hammerhead, [kip]. 

𝐿𝑃𝑇 Post-tension Load, [kip]. 

𝛼 Angle measure from the original vertical axis to PT-rod 

alignment, [rad]. 

Curvature: 

𝜃 = ∑ 𝑎𝑡𝑎𝑛 (
𝛿𝐿𝑉𝐷𝑇,𝑖𝑏−𝛿𝐿𝑉𝐷𝑇,𝑖𝑎

24[𝑖𝑛.]
)4

𝑖=1                (5.3) 

𝛿𝐿𝑉𝐷𝑇,𝑖𝑎 = 𝑧𝑖+1𝑎 − 𝑧𝑖𝑎                  (5.4) 

𝛿𝐿𝑉𝐷𝑇,𝑖𝑏 = 𝑧𝑖+1𝑏 − 𝑧𝑖𝑏                 (5.5) 

∅ = 𝜃 𝑑ℎ⁄  (5.6) 

Where 𝛿𝐿𝑉𝐷𝑇,𝑖𝑎  and 𝛿𝐿𝑉𝐷𝑇,𝑖𝑏 is the relative vertical displacement between point “i” and 

“i+1” in the same vertical axis a or b. And 𝑑ℎ is the vertical distance between the three first 

panels. An important remark is made to this part, since the curvature was not calculated for each 

panel, but for the three first panels giving a “smeared” curvature over this region. 

The moment is normalized by the cross-section area times the diameter and the 

compressive strength. The curvature is normalized by the diameter.  



 

76 

 

Normalized moment - curvature at the shaft-column interface. 

Calculation of the moment followed (5.1) where the height multiplied by the actuators 

forces changes to the one given in (5.7). α is considered as provided in (5.2).   

Moment: 

𝑀 = 𝑅𝑎𝑐𝑡 ∙ (𝐻𝑐𝑜𝑙 +
𝐻ℎℎ

2
− 1.5[𝑖𝑛. ]) +𝑊𝑐𝑜𝑙 ∙ (

𝑀01

2
−𝑀02) +𝑊ℎℎ ∙ (𝑀01 −𝑀02) + 𝐿𝑃𝑇 ∙

𝑐𝑜𝑠 𝛼 ∙ (𝑀01 −𝑀02)           (5.7) 

The curvature follows the same procedure as the one given in (5.6), where only one panel 

of vertical potentiometers is considered, and dh is equal to 3 in. 

Lateral deflection contributions 

The displacement contribution considered the flexural response of the shaft, column 1, 

and column2, and the fixed end rotation (FER). With the rotation at each LVDT the flexural 

displacement is: 

𝜃𝑖 = 𝑎𝑡𝑎𝑛 (
𝛿𝐿𝑉𝐷𝑇,𝑖𝑏−𝛿𝐿𝑉𝐷𝑇,𝑖𝑎

24[𝑖𝑛.]
) (5.8) 

∆𝑖= 𝜃𝑖 ∙ ℎ𝑖             (5.9) 

ℎ𝑖 is the vertical distance from the center of the LVDT to the top of the hammerhead. 

Then adding the contribution of the vertical potentiometers placed in each section gives the 

flexural displacement contribution. Using of the same procedure, but considering a height of 3 

in. (at the base of the column), the FER was obtained.  
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A remark must be made to this calculation, the contribution of each vertical potentiometer 

was made on its own and then added by region (not the smear contribution by sector).  

Figure 5–1 shows a reduced displacement history used to decrease the time of the 

analysis.  

 

Figure 5–1: Reduce displacement protocol. 

Figure 5–2 shows the overall behavior of the test specimen compared with the analytical 

model. From the graph, the analytical model has convergence issues before the end of the 

displacement protocol. Figure 5–3 gives a close up by ductility cycle. From this, the overall 

behavior of the analytical model matches well the specimen behavior. For the first cycle, the 

dissipated energy of the model is higher than the test. In the second cycle, the model predicts a 

higher strength of around 10%, and it is not capable of predicting the change in stiffness at the 

re-loading of the negative cycle. For the third cycle, the strength matches between model and 
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specimen, but the model is not able to predict the change in stiffness also seen in the second 

cycle.  

 

Figure 5–2: Actuator Load versus displacement at hammerhead. 
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Figure 5–3: Actuator Load versus displacement at hammerhead per ductility displacement cycle. 

Figure 5–4 and Figure 5–5 shows the normalized moment curvature of the analytical 

model and test specimen. Figure 5–4 displays the moment-curvature for the first two 

displacement ductility cycles, with the yield curvature given by Priestley (2003) for a circular 

column. The yield strain was obtained from the monotonic tensile test of the #14 bar (0.00313).  

∅𝑦 = 2.25
𝜀𝑠𝑦

𝐷⁄  (5.10) 
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Figure 5–4: First cycles of normalized moment curvature. 

From the figure, it is possible to identify that the prediction of the yield curvature given 

by the model is in good agreement with the one from Priestley. However, the test specimen 

behaves more elastically for the positive cycle than for the negative, which makes the yield 

curvature predicted by the formulation to have an offset with the actual one. Also, the test 

specimen has an asymmetric behavior in the curvature at the first 48 in. of the column. The 

analytical model predicts an asymmetry. However, this is reduced in comparison with the one 

from the experiment. 

The change in stiffness at the re-loading of the second negative cycle is more pronounced 

in this region than at the overall behavior. The base model was not able to capture this feature.  
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Figure 5–5: Normalized moment-curvature at the plastic hinge region. 

Figure 5–5 shows the complete comparison of the normalized moment-curvature curve; 

this does not present the last displacement ductility cycle for the test (ductility 6). From the 

figure, the normalized flexural capacity at the peak displacement of the third cycle is in 

agreement with the one predicted (positive 1%, negative 3% difference), but at the end of the 

negative cycle, the normalized curvature is 38% off. 
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Figure 5–6: Normalized moment-rotation at the column-shaft interface. 

Figure 5–6 shows the normalized moment-rotation at the column-shaft interface. The 

prediction of the model underestimates the rotation capacity at this region. Also, the model 

predicts a stiffer behavior in the first cycles than the specimen. 

Figure 5–7 shows the lateral deflection contribution of the test specimen at the left and at 

the analytical model at the right. The value from the experiment corresponds to the average of 

the positive and negative first cycle of the different displacement ductility. The analytical model 

has convergence issues during the third cycle. Table 5-2 gives the detail and a comparison 

between the model values and the test values. It is noticeable that the model accounts for a higher 

flexural displacement at the shaft and it reduces the contribution of the fixed end rotations (FER). 

At the end of the experiment, the vertical potentiometers at the base of the specimen were not 

reading any data. 
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Figure 5–7: Displacement Contribution.  

Table 5-2: Displacement contributions. 

  Test Base Model M/Test 

CDR (%) 1.98 4.01 6.64 7.99 10 11.3 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 3 4 5 6 1 2 3 1 2 3 

Shaft 7.3 4.5 3.0 2.5 2.1 0.7 11.7 5.87 3.1 1.59 1.31 1.05 

FER 23.8 29.4 28.9 36.2 38.1 0.0 9.66 8.82 8.4 0.41 0.3 0.29 

Col1 24.0 38.5 43.7 46.7 48.2 61.7 21.9 41.3 52 0.91 1.07 1.19 

Col2 23.6 15.5 11.1 9.6 8.4 2.5 24.8 17.1 13 1.05 1.11 1.14 

CDR : Column Drift Ratio  
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 CHAPTER 6: PARAMETRIC ANALYSIS 

A series of analysis ran modifying the material parameters to see the influence in the 

behavior.  

6.1 CONCRETE PARAMETERS 

6.1.1 Tension Stiffening (cts) 

The factor represents the relative limiting value of tensile strength in the tension softening 

diagram. Figure 6–1 shows how the tensile stress cannot drop below 𝑐𝑡𝑠𝑓𝑡. By CEB-FIP (1990) 

Model code the recommended value for cts for an instantaneous loading is 0.4 and for a long-

term loading 0.25. 

 

Figure 6–1: Tension stiffening parameter. 

Table 6-1: Tension stiffening models and run time. 

Model Modifications 
Run Time 

[hrs.] 
Last Step 

Run Time [hrs.] @ 

300 steps 

M1 Not active 10.75 427 7.27 

M2 Active with cts = 0.2 89.50 1108 18.63 

M3 Active with cts = 0.4 37.28 637 10.23 

M4 Active with cts = 0.6 36.28 583 7.91 
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Table 6-1 presents the different parameters considered for the tension stiffening. The base 

model recognized this as inactive which gave problems of convergence with at the third loading 

cycle. Once the tension stiffening is active, the most noticeable from this table is the program can 

go further on the displacement cycles. By considering the value of cts as 0.2, the analysis runs 

until the last positive displacement cycle. The fastest run process until the 300 steps was by 

considering this factor inactive. 

 

Figure 6–2: Actuator load versus lateral displacement, for different tension stiffening parameters. 

Figure 6–2 shows the comparison of the curve load versus displacement. Considering the 

tension stiffening as active allows the constitutive model to capture pinching in the response. 

Also, by activating the parameter, improves the convergence of the analysis. For the study with 

cts taken as 0.2 (blue curve), the analysis had convergence issues starting the fifth displacement 

cycle; this translates into the unsmooth curve at this cycle. 
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For a better comparison purpose, Figure 6–2 shows the first five cycles of displacement 

ductility. Only the model with cts equal to 0.2, which goes into µΔ=6 (Column Drift Ratio (CDR) 

of 11.3%), the test results exhibits two cycles at µΔ=5 (CDR=10%) as well as the last 

displacement ductility. 

 

Figure 6–3: Normalized moment curvature at PH region, for different tension stiffening parameters. 

Figure 6–3 shows the normalized moment curvature, and Figure 6–4 shows the same 

graph considering the first two ductility displacement cycles and the yielding curvature given by 

Priestley (2003) in the latter chapter. As well as Figure 6–2, Figure 6–3 shows the first five 

cycles of displacement ductility. Only the model with cts equal to 0.2 shows all the cycles for the 

test result. 
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Figure 6–4: First cycles of normalized moment curvature at PH region, for different tension stiffening 

parameters. 

Figure 6–4 shows that the model agrees with the yielding curvature proposed by 

Priestley, as well as the test for the negative cycle. The main difference between the prediction 

and test specimen is that the latter is more flexible for the positive cycle, and the yielding 

curvature is higher than the predicted by the model and the formulation. Between the models, 

activating the tension stiffening gives a necking on the hysteresis which traduces into lower 

energy dissipation. All the analyses predict a higher strength than the test for the first two cycles, 

and all the models predict a fairly symmetric curvature incursion for the positive and negative 

cycles, but for the test specimen the incursion in curvature it is not symmetric (negative second 

cycle ΦD of -0.0194 radians and positive cycle ΦD of 0.0275 radians). The area under the curve 

for the first cycles, for the model without the tension stiffening activated, is higher than the one 

from the test specimen, and is lesser than the one with the parameter enabled; the model that is 

closer to the test specimen would be the one without activating it. 
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Regarding the comparison in the higher cycles, activation of the parameter allows the 

program to go further on the displacement protocol and allows having a noticeable necking of 

the curve. The model better captures the strength and curvature at the positive higher cycles. It is 

important to notice the asymmetry of the test specimen, as well as the over-estimation of the 

curvature by the model for cycles higher than µΔ=3 (CDR=6.64%).   

 

Figure 6–5: Normalized moment-rotation at the column-shaft interface, for different tension stiffening 

parameters. 

Figure 6–5 shows the moment-rotation for the fixed end rotation region. The analysis 

with the cts activated resembles the behavior observed in the test. However, the models under-

estimate the rotation capacity of this region. 
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Figure 6–6: Lateral displacements contribution calculated for test specimen and thorough analysis for 

different tension stiffening parameters. 

From Figure 6–6 it is noticeable that activating the tension stiffening allows for an 

increase in the displacement contribution of the FER. For the model with inactive cts the 

contribution is around 9%, and it doubles when it is activated. The model that suits better the 

distribution is the model considering a value of cts 0.6, since this is the value that gives a higher 

matched for the FER. 
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Table 6-2: Displacement contributions in %, for cts set to 0.2. 

  cts=0.2 M/Test 

CDR (%) 1.98 4.01 6.64 7.99 10 11.3 1.98 4.01 6.64 7.99 10 11.3 

 µΔ 1 2 3 4 5 6 1 2 3 4 5 6 

Shaft 11.2 6.22 3.73 2.82 2.01 1.58 1.53 1.38 1.3 1.11 0.97 2.3 

FER 15.2 16.6 15.7 15.4 16.7 15.7 0.64 0.57 0.5 0.42 0.44 - 

Col1 22.6 39.7 49.9 52.2 58.5 63.4 0.94 1.03 1.1 1.12 1.22 1.03 

Col2 24.8 15.7 11.6 10.8 6.41 5.23 1.05 1.01 1 1.13 0.77 2.12 
 

Table 6-3: Displacement contributions in %, for cts set to 0.4. 

 
cts=0.4 M/Test 

CDR (%) 1.98 4.01 6.64 7.99 1.98 4.01 6.64 7.99 

µΔ 1 2 3 4 1 2 3 4 

Shaft 10.8 5.84 3.49 2.63 1.48 1.3 1.17 1.04 

FER 18.2 22 20.3 19.3 0.76 0.75 0.7 0.53 

Col1 23.8 39.5 50.5 54 0.99 1.03 1.15 1.16 

Col2 24.4 14.6 9.08 7.35 1.03 0.94 0.82 0.77 
 

Table 6-4: Displacement contributions in %, for cts set to 0.6.  

 
cts=0.6 M/Test 

CDR (%) 1.98 4.01 6.64 7.99 1.98 4.01 6.64 7.99 

µΔ 1 2 3 4 1 2 3 4 

Shaft 10.2 5.41 3.2 2.2 1.40 1.20 1.09 0.87 

FER 20.9 24.2 22.9 23.5 0.88 0.83 0.79 0.65 

Col1 24.6 40.7 50.7 54.1 1.02 1.06 1.16 1.16 

Col2 23.9 13.7 8.3 5.9 1.01 0.89 0.75 0.61 

 

  



 

91 

 

6.1.2 Aggregate interlock 

The aggregate interlock activates the use of the shear strength of the cracked concrete 

calculated using the modified compression field theory by Vecchio and Collins (1991). The 

comparison of enabling it with the maximum size of the aggregate was assessed. 

Table 6-5 shows the parameters used and the time that the program took to complete the 

process. The activation of the setting gives a longer time of analysis, even though the steps 

analyzed where less.  

Table 6-5: Aggregate interlock models and run time. 

Model Modifications 
Run Time 

[hrs.] 

Last 

Step 

Run Time [hrs.]  

@ 300 steps 

M1 Not active 10.75 427 7.27 

M2 
Active with maximum 

aggregate size (0.75[in.]). 
16.88 419 10.6 

 

 

Figure 6–7: Comparison of curve load versus lateral displacement, for different aggregate interlock 

parameters. 

Figure 6–7 shows the comparison of the curve of the applied actuator load and the 

displacement measure at the hammerhead. The overall behavior is almost identical for both 
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models. The analyses give an over-estimate of 8% on the strength of the test specimen at the 

peak of the µΔ=2 (CDR=4.01%) and the third peak an under-estimation of around 1.8%.  

From the comparison of the normalized moment-curvature of the plastic hinge region 

shown in Figure 6–8, both models give a higher initial stiffness than the one seen in the test 

specimen. Also, the initial flexural capacity at the peak of the first cycle is higher. The main 

difference between the models is the convergence issues that it has by activating the parameter 

and the higher time that the process takes to run. Moreover, by enabling the setting, the energy 

dissipation is less than by not activating it. The model gives an additional rotation capacity in the 

negative cycles in comparison with the test specimen. 

 

Figure 6–8: Normalized moment curvature at PH region, for different aggregate interlock parameters. 

Figure 6–9 shows the first two cycles of the normalized moment-curvature shown in 

Figure 6–8. The activation of the parameter does not change much the predicted behavior.  
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Figure 6–9: First cycles of normalized moment curvature at PH region, for different aggregate interlock 

parameters. 

 

Figure 6–10: Normalized moment-rotation at the shaft-column interface, for different aggregate interlock 

parameters. 

Figure 6–10 shows the normalized moment-rotation for the fixed end rotation. The 

models under-estimate the rotation and over-estimate the flexural capacity of this region. 
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Figure 6–11: Lateral displacements contribution calculated for test specimen and thorough analysis for 

aggregate interlock parameters. 

Figure 6–11 shows the displacement contribution of each section of the column, which is 

given in detail in Table 6-6. Both models provide roughly the same displacement contributions, 

where both of them sub-estimate the contribution due to FER. 

Activating the parameter does not change in extent the response of the predicted 

behavior, but it does introduce convergence issues. 

  



 

95 

 

Table 6-6: Displacement contributions in %, for aggregate interlock activated. 

  A.I. active M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 

µΔ 1 2 3 1 2 3 

Shaft 11.5 5.7 3.1 1.57 1.26 1.03 

FER 11.1 9.1 8.2 0.47 0.31 0.28 

Col1 18.9 37.2 47.0 0.79 0.97 1.07 

Col2 24.9 18.3 15.0 1.05 1.18 1.35 

 

6.1.3 Shear Factor (sF) 

The activation of the shear factor sF will set a value to use in the calculation of cracked 

shear stiffness. sF  links the stiffness in mode II to mode I. This factor is related to the shear 

retention factor (β) as follows (Havlásek & Kabele, 2017): 

𝐷𝐼𝐼 = 𝑠𝐹𝐷𝐼,𝑆                    (6.1) 

𝐺𝑐 = 𝛽𝐺                          (6.2) 

𝛽 =
𝐷𝐼𝐼

𝐷𝐼𝐼+𝐺
                   (6.3) 

A sF factor of 20 recommended by Cervenka Consulting was used (value based on 

experiments performed by Walraven 1981) (Cervenka et al., 2018), as well as a value of 200 

suggested in the paper “Prediction of shear failure of large beam based on fracture mechanics” 

(Cervenka et al., 2016). 

Table 6-7 presents the models analyzed to compare the use of this parameter and the time 

of the process. The fastest model was the one that did not activate the shear factor parameter. 

The model with the activation of the setting using the value recommended by Cervenka 

Consulting was the one who presented convergence issues at the earliest step stage. 



 

96 

 

Table 6-7: Shear Factor models and run time. 

Model Modifications 
Run Time 

[hrs.] 

Last 

Step 

Run Time [hrs.] 

@ 300 steps 

M1 Shear Factor not activated 10.75 427 7.27 

M2 
sF= 20 (recommended by ATENA 

Manual) 
13.92 415 10.78 

M3 
sF= 200 (recommended in paper, 

(Cervenka et al., 2016). 
21.72 462 12.87 

 

Figure 6–12: Comparison of curve load versus lateral displacement, for different shear factor parameters. 

From Figure 6–12, the overall response of the structure at these drift levels does not 

change by changing sF. The models over-estimate the strength at the end of the first positive 

displacement cycle around 8% and under-estimate the strength at the end of the second 

displacement cycle around 2%. The models do not capture the change in slope at the reloading of 

the structure, attributed to the closure of the concrete flexural cracks. 
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Figure 6–13: Normalized moment curvature at PH region, for different shear factor parameters. 

Figure 6–13.shows the normalized moment-curvature at the plastic hinge. The models 

predict a higher initial stiffness for the positive loading direction. The analyses present a slight 

variation on the behavior at the unloading of µΔ=3 (CDR=6.64%), where the one with a higher 

shear factor gives a reduction in around 8% of the normalized curvature at the negative peak 

response, but it is off the experimental results by 33%.  
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Figure 6–14: First cycles of normalized moment-curvature at PH region, for different shear factor 

parameters. 

Figure 6–14 displays the first two ductility displacement of the normalized moment-

curvature at the plastic hinge. The figure also shows, in the segmented line, the yield curvature 

given by Priestley, which fits well with the model's prediction. However, the test specimen for 

the positive cycles gives a higher ductility than the one predicted by the model and by Priestley’s 

formulation.  
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Figure 6–15: Normalized moment-rotation at the shaft-column interface, for different shear factor 

parameters. 

Figure 6–15 shows the normalized moment-rotation at the shaft-column interface. The 

models do not capture the behavior of this region. The analyses over-predict the stiffness and 

under-estimates the rotation capacity, compared to the test results. 

From Figure 6–16, the displacement contribution does not change much with the 

variation of sF. The significant difference would be at the shaft displacement contribution. Table 

6-8 shows the percentage of the total displacement that each region contributes and the relation 

with the test specimen. 
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Figure 6–16: Lateral displacements contribution calculated for test specimen and thorough analysis for 

different shear factor parameters. 

Table 6-8: Displacement contributions in %, for different shear factor parameters. 

  sF=20 M/Test sF=200 M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 

µΔ 1 2 3 1 2 3 1 2 3 1 2 3 

Shaft 11.9 6.2 3.1 1.63 1.39 1.03 11.5 5.5 3.0 1.57 1.22 0.99 

FER 9.9 9.7 7.8 0.42 0.33 0.27 11.1 9.2 8.1 0.47 0.31 0.28 

Col1 21.6 40.6 52.8 0.90 1.06 1.21 18.8 37.4 47.9 0.78 0.97 1.10 

Col2 25.0 16.9 12.8 1.06 1.10 1.15 24.9 17.8 15.1 1.05 1.15 1.37 
 

The predicted behavior of the model does not change much by varying this parameter in 

the range prescribed, but it does introduce convergence issues to the analysis. 
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6.1.4 Unloading Factor (FU) 

The unloading factor (fU) controls the crack closure stiffness. This parameter should be 

higher or equal to 0 and less than 1, where 0 means that the unloading goes to the origin and 1 

means that the unloading direction is parallel to the initial elastic stiffness. 

Table 6-9 shows the unloading factors used to compare its effect and the time of the 

process. The base model (Model 1) has the lowest run time. Model 2 has the lowest number of 

steps analyzed. 

Table 6-9: Unloading Factor models and run time. 

Model Modifications 
Run Time 

[hrs.] 

Last 

Step 

Run Time [hrs.] 

@ 300 steps 

M1 Not active 10.75 427 7.27 

M2 
Active fU = 0.99 

 (values must be less than 1) 
12.87 246 - 

M3 Active fU = 0 20.15 469 13.32 
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Figure 6–17: Comparison of curve load versus lateral displacement, for different unloading factor 

parameters. 

From Figure 6–17, the three models over-estimate the strength at the end of the µΔ=2 

(CDR=4.01%) by 8% and it under-estimates by 1.8% at the positive peak of µΔ=3 

(CDR=6.64%). From the figure, considering the unloading direction as parallel to the initial 

stiffness gives higher dissipated energy than the actual response of the test specimen, as well as 

the other models. Not activating this factor, or considering an unloading factor of 0 (unloading 

goes to the origin), captures better the response of the specimen for the unloading of µΔ=1 

(CDR=1.98%). 
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Figure 6–18: Normalized moment-curvature at PH region, for different unloading factor parameters. 

Figure 6–18 shows the local response of the plastic hinge region. The models over-

estimate the initial stiffness of the first cycle. Model 2 (unloading parallel to initial stiffness) 

gives higher normalized curvature at the end of the negative loading of µΔ=2 (CDR=4.01%), also 

at the end of this cycle in the unloading process experience convergence issues. At the reloading 

process of the third ductility displacement cycle, the models are not able to capture the increase 

in stiffness associated with the closure of the cracks. However, the model that gives a slight 

change in slope would be Model 3, where the unloading is assumed to go to the origin. This 

model experience convergence issues at the beginning of the loading process of the fourth 

ductility displacement cycle. 



 

104 

 

 

Figure 6–19: First cycles of normalized moment-curvature at PH region, for different unloading parameters. 

From Figure 6–19, we can see that activating this parameter increases the ductility in the 

plastic hinge. Priestley’s yield curvature fits well with the model prediction, but the test 

specimen is more flexible for the positive cycle. Any model does not capture this flexibility. 
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Figure 6–20: Normalized moment-rotation at the shaft-column interface, for different unloading parameters. 

Figure 6–20 presents the normalized moment-rotation calculated at the column-shaft 

interface. For the negative branch of µΔ=3 (CDR=6.64%), the model that considers unloading to 

the origin (fU=0) gives a higher rotation (24% under the specimen θ). No model can capture well 

the response at the interface.  

Figure 6–21 shows the displacement contributions for each ductility displacement cycles. 

All the models failed to consider the contribution made by the fixed end rotation. Also, the 

unloading factor parameter does not have a significant role in the contribution made by the 

plastic hinge (column 1). The main differences between models are the contributions of the 

flexural displacement in the shaft and the upper section of the column (column 2). Table 6-10 

presents the percentages of the displacement contributions. 
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Figure 6–21: Lateral displacements contribution calculated for test specimen and thorough analysis for 

different unloading factor parameters. 

Table 6-10: Displacement contributions in %, for different unloading factor parameters. 

  fU=0.99 M/Test fU=0 M/Test 

CDR (%) 1.98 4.01 1.98 4.01 1.98 4.01 6.64 1.98 4.01 6.64 

µΔ 1 2 1 2 1 2 3 1 2 3 

Shaft 11.8 5.9 1.61 1.30 11.6 5.92 3.14 1.59 1.32 1.05 

FER 10.1 8.4 0.43 0.29 10.1 7.75 10.4 0.42 0.26 0.36 

Col1 21.7 42.8 0.90 1.11 21.3 41.6 50.3 0.89 1.08 1.15 

Col2 25.2 16.3 1.07 1.05 25.2 17.2 12.9 1.06 1.11 1.17 

 

From the results, if the model does not present convergence issues by activating the 

parameter, it seems advisable to employ a value of 0. 
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6.1.5 Fracture Energy (Gft) 

For the base model, the formulation given by Vos (1983) was used to compute the 

fracture energy. Gft is compared with the value obtained by the formulation given by Nakamura 

& Higai (2001) that relates the compressive fracture energy (𝐺𝑓𝑐)with the tensile fracture 

energy(𝐺𝑓𝑡). 

𝐺𝑓𝑐 = 250𝐺𝑓𝑡 (6.4) 

Applying this formulation to the values obtained by Lotfizadeh (2019), an average value 

of 0.55 lb. /in. was found. Table 6-11 presents the values reported of Gfc by Lotfizadeh and those 

of Gft computed from equation 6.4. 

Table 6-11: Compressive fracture energy found by Lotfizadeh and the tensile fracture energy found using the 

formulation by Nakamura & Higai. 

Specimen Gfc [lb. /in.] Gft [lb. /in.] 

SPEC01 119 0.476 

SPEC02 156 0.624 

 

Table 6-12 shows the models used and the process time. The model that took less time 

was with fracture energy of 0.44 lb. /in.; also, this model is the one that goes further in the steps. 

Table 6-12: Tensile fracture energy models and run time. 

Model Modifications 
Run Time 

[hrs.] 
Last Step 

Run Time [hrs.] 

@ 300 steps 

M1 Gft = 0.44[lb. /in.] 10.75 427 7.27 

M2 Gft = 0.1[lb. /in.] 19.28 388 12.18 

M3 Gft = 0.55[lb. /in.] 12.82 333 10.41 
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Figure 6–22: Comparison of curve load versus lateral displacement, for different fracture energy parameters. 

Figure 6–22 shows the load versus displacement of the test specimen and the models. By 

changing the fracture (tensile) energy to a higher value or lower of the one recommended by 

Cervenka Consulting (2018) gives convergence issues at a sooner step. The strength at the end of 

µΔ=2 (CDR=4.01%) of the test is in better agreement with the model with higher Gft (5.4%). 

However, for Model 1 and Model 2 the values are off by 6% and 7% respectively. For the 

positive peak of µΔ=3 (CDR=6.64%), the predicted strength is higher by around 3% for the three 

models. 
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Figure 6–23: Comparison of normalized moment-curvature at PH region, for different fracture energy 

parameters. 

Figure 6–23 shows the normalized moment-curvature graphs of the plastic hinge region. 

The curvature for all the models is under-predicted for the positive second displacement ductility 

and over-predicted for the negative part of this cycle. For µΔ=3 (CDR=6.64%), in the positive 

loading, the three models gave a good match in curvature and flexural capacity. But in the 

negative loading, the models Model 2 and Model 3 cannot go that far into the analysis, and for 

Model 1 the curvature prediction is overestimated by 41%. 
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Figure 6–24: First cycles of normalized moment-curvature at PH region, for different fracture energy 

parameters. 

Figure 6–24 presents the first two displacement ductility cycles with the yield curvature 

predicted by Priestley. The test specimen is more flexible than the prediction given by the 

analytical model as well as by Priestley’s formulation for the positive loading. For the negative 

loading, the models and test provide a better match with Priestley’s formulation, where the 

model that gives the better prediction is the one with lower tensile fracture energy. 
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Figure 6–25: Normalized moment-rotation at the shaft-column interface, for different fracture energy 

parameters. 

Figure 6–25 displays the normalized moment-rotation at the shaft-column interface. 

Changing the tensile fracture energy (Gft) does not affect much this behavior at this displacement 

level. 

Figure 6–26 gives the displacement contribution (in percentage) by region of the 

structure. Modifying Gft does not have an impact on the displacement contribution of the FER, 

which is the displacement contribution that it is by far off on the model predictions. The 

displacement contribution does not varied much by changing the parameter in the range given. 

Table 6-13 shows the values presented in Figure 6–26. 
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Figure 6–26: Comparison of displacements contributions, for different fracture energy parameters. 

Table 6-13: Displacement contributions in %, for different fracture energy parameters 

  Gft = 0.1[lb/in.] M/Test Gft = 0.55[lb/in.] M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 3 1 2 3 1 2 3 1 2 3 

Shaft 11.2 6.14 3.35 1.54 1.37 1.13 11.9 5.63 3.9 1.62 1.25 1.31 

FER 9.42 7.75 10.4 0.4 0.26 0.36 9.43 9.05 7.9 0.4 0.31 0.27 

Col1 21.5 42.2 46.1 0.89 1.1 1.05 22.4 41.1 47 0.93 1.07 1.08 

Col2 24.7 16.8 15.8 1.04 1.09 1.43 25.1 16.8 15 1.06 1.09 1.38 
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6.1.6 Fixed-crack Model 

The base model used a rotated cracked model since a fixed-crack model gave 

convergence issues. In the following, the convergence problems are evident by showing the 

response for three different values of this parameter. Table 6-13 gives the variation in the 

parameters used, and the time that the analysis took to run. From the table models without the 

fully rotated crack model crushed at µΔ=1 (CDR=1.98%). 

Table 6-14: Fixed-crack models and run time. 

Model Modifications 
Run Time 

[hrs.] 
Last Step 

Run Time [hrs.] 

@ 300 steps 

M1 Fixed-crack set to 0 10.75 427 7.27 

M2 Fixed-crack set to 1 13.07 120 - 

M3 Fixed-crack set to 0.5 14.65 130 - 

 

Figure 6–27: Comparison of curve load versus lateral displacement, for different crack models. 
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Figure 6–27 shows the comparison of the overall behavior of the test and the analytical 

models. From this, it is clear that a fixed-crack model was unsuccessful for this work. 

 

Figure 6–28: First cycles of normalized moment-curvature at PH region, for different crack models. 

Since the models added to the base model only could run within the first displacement 

ductility cycle, just the comparison of the moment-curvature for the first two cycles is given in 

Figure 6–28. From this, it is clear that a poor prediction of the plastic hinge region is the result of 

considering crack models that are not the rotated one. 

Figure 6–29 presents the normalized moment-rotation for the shaft-column interface. 

From this, the models are not capable of predicting the rotation at the interface. 
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Figure 6–29: Normalized moment-rotation at the shaft-column interface, for different crack models. 

 

Figure 6–30: Lateral displacements contribution calculated for test specimen and thorough analysis for 

different crack models. 
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Table 6-15: Displacement contributions in %, for different crack models. 

 
Value=1 M/Test Value=0.5 M/Test 

CDR (%) 1.98 1.98 1.98 1.98 

µΔ 1 1 1 1 

Shaft 11.6 1.58 9.15 1.25 

FER 6.66 0.28 5.72 0.24 

Col1 22.5 0.94 23.9 1 

Col2 29.1 1.23 28.5 1.2 

 

Figure 6–30 shows the percentage of the displacement contributions given in numeric 

values in Table 6-15. Modifying this parameter does not affect the displacement contribution of 

the fixed end rotations, where the predictions are worst. 

The author suggests the use of a rotated crack model instead of the fixed-crack model to 

avoid convergence issues with cyclic analysis. 

 

6.1.7 Critical compression displacement (wd) 

Three values, additional to the one used in the base model, were employed to review the 

effect of the critical compression displacement in the model predictions. Table 6-16 presents the 

values used and the process time for these models. From it, the model that went further into the 

displacement cycles was the base model. The base model had a higher value of wd, which is ten 

times the value recommended by Cervenka Consulting (2018). 
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Table 6-16: Critical compression displacement models and run time 

Model Modifications 
Run Time 

[hrs.] 

Last 

Step 

Run Time [hrs.] 

@ 300 steps 

M1 wd =-0.197[in.] 10.75 427 7.27 

M2 
wd =-0.0197[in.], recommended per 

Cervenka Consulting (2018)  
10.3 221 - 

M3 
wd =-0.0984[in.], found by 

Nakamura & Higai (2001). 
15.96 390 11.5 

M4 
wd =-0.0295[in.], value from Round 

Robin test. (Van Mier, 1984) 
12.77 230 - 

 

 

Figure 6–31: Comparison of curve load versus lateral displacement, for different critical compression 

displacement values. 

Figure 6–31 shows the overall behavior of the test with the predictions of the models. 

From this the model that represents better the curve if the one with wd= -0.0295 in. For this 

model the strength and curvature matches within 2% of error. Figure 6–32 displays the close up 

of this mode for the first two cycles.  
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Figure 6–32: First two cycles of curve load versus displacement, for wd=-0.0295in. 

 

Figure 6–33: Normalized moment-curvature at PH, for different critical compression displacement values. 

Figure 6–33 presents the normalized moment-curvature for the plastic hinge region. All 

the models over-estimate the curvature at the end of the negative loading of µΔ=2 (CDR=4.01%). 

The lesser the value of wd was taken the smaller was the over-estimation. Also, the lower the 

value of wd the less the flexural capacity at peak displacement. 
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Figure 6–34: First cycles of normalized moment-curvature at PH region, for different critical compression 

displacement values. 

Figure 6–34 gives the first two cycles of the normalized moment-curvature with the yield 

curvature predicted by Priestley (2003). The test specimen in the positive loading direction is 

more flexible than the predictions by the models and by Priestley’s formulation. As already 

mentioned, the strength in the projection is lower by reducing the values of wd.  
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Figure 6–35: Normalized moment-rotation at shaft-column interface, for different critical compression 

displacement values. 

Shown in Figure 6–35 is the normalized moment-rotation at the shaft-column interface. 

None of the models can capture the displacement capacity of this region.  

Figure 6–36 gives in percentages the displacement contributions. Changing the parameter 

does not change much of the overall response. The models over predict the shaft flexural 

displacement contribution and under-predict the capacity of the shaft-column interface. The 

graph in Figure 6–36 is based on the values given in Table 6-17 and Table 6-18. 

In light of the results, the parameter does not change much the predictions. However, the 

author recommends the use of the value -0.0295 in. due to the fitting of the overall behavior for 

the first two cycles. 
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Figure 6–36: Lateral displacements contribution calculated for test specimen and thorough analysis for 

different critical compression displacement values. 
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Table 6-17: Displacement contributions in %, for different critical compression displacement values. 

  wd=-0.0984[in.] M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 3 1 2 3 

Shaft 11.5 5.99 3.17 1.58 1.33 1.07 

FER 9.98 9.82 8.29 0.42 0.33 0.29 

Col1 21.4 41.7 50.1 0.89 1.08 1.15 

Col2 25.3 16.3 12.6 1.07 1.06 1.14 
 

Table 6-18: Displacement contributions in %, for different critical compression displacement values. 

  wd=-0.0295[in.] M/Test wd=-0.0197[in.] M/Test 

CDR (%) 1.98 4.01 1.98 4.01 1.98 4.01 1.98 4.01 

 µΔ 1 2 1 2 1 2 1 2 

Shaft 11.5 5.2 1.57 1.15 11.3 5.0 1.55 1.1 

FER 10.4 10.8 0.44 0.37 10.2 9.7 0.43 0.33 

Col1 21.6 41.9 0.90 1.09 21.8 46.8 0.91 1.22 

Col2 24.7 14.9 1.04 0.96 24.6 13.5 1.04 0.87 

 

6.1.8 Fc Reduction 

As mentioned earlier, Fc reduction is a parameter that reduces the compressive strength 

due to imposed tensile strain following the Modified Compression Field Theory (Collins and 

Mitchell, 1991). The value of the compressive strength cannot drop further than f’c times rc. 

Table 6-19 gives the different reduction values used and the time that the analysis took. From the 

table, the fastest model was the base model. 
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Table 6-19: Fc reduction models and run times. 

Model Modifications 
Run Time 

[hrs.] 
Last Step 

Run Time [hrs.] 

@ 300 steps 

M1 Fc=1 10.75 427 7.27 

M2 Fc=0.6 18.25 407 13.85 

M3 Fc=0.2 22.22 374 14.41 

 

 

Figure 6–37: Comparison of curve load versus lateral displacement, for different rc values. 

Figure 6–37 shows the effect that the reduction on the compressive strength has on the 

prediction of the cyclic response. As lower the value, the loss of strength at the subsequent cycles 

increases. Leading into a better match at the peak strength of the second cycle, but it diverges at 

the peak of the third cycle. Considering a value of 0.2 for rc, gives convergence issues after the 

positive cycle of µΔ=3 (CDR=6.64%). 
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Figure 6–38: Comparison of normalized moment-curvature at PH, for different rc values. 

Figure 6–38 shows the normalized moment curvature of the plastic hinge region. As it 

was expected changing the value of the reduction factor affects the flexural capacity of the 

plastic hinge at higher displacement ductility cycles, but the curvature at the peak displacement 

does not change dramatically. 
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Figure 6–39: First cycles of normalized moment-curvature at PH, for different rc values. 

Figure 6–39 shows the normalized moment-curvature for the first two displacement 

ductility cycles, with Priestley’s formulation for the yield curvature. The model that has a better 

agreement with Priestley’s yield curvature is the one that does not consider the reduction of the 

compressive strength. However, using a value of less than one gives a better agreement on the 

flexural capacity at the end of the second cycle. The models do not predict well the curvature of 

the specimen. 
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Figure 6–40: Normalized moment-rotation at the shaft-column interface, for different rc values. 

The comparison presented in Figure 6–40 shows that any model can predict the 

displacement capacity at the shaft-column interface. All the models underestimate the rotation 

capacity; however, the flexural capacity at the peaks is well captured. 

Figure 6–41 compares the distributions of the displacements through the specimen. And 

Table 6-20 gives the values in percentages of the displacement contributions shown in the figure. 

The parameter does not have a significant impact on the distribution. Also, this parameter does 

not have a great effect on the contribution of the displacement of the fixed end rotation. 
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Figure 6–41: Lateral displacements contribution calculated for test specimen and thorough analysis for 

different rc values. 

Table 6-20: Displacement contributions in %, for different rc values. 

  rc = 0.6 M/Test rc = 0.2 M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 3 1 2 3 1 2 3 1 2 3 

Shaft 11 5.82 2.5 1.51 1.3 0.84 10.8 5.55 2.5 1.48 1.24 0.82 

FER 9.72 7.99 9.26 0.41 0.27 0.32 9.29 7.54 9.5 0.39 0.26 0.33 

Col1 22.7 43.9 53.6 0.94 1.14 1.23 23.7 45.2 50 0.99 1.17 1.14 

Col2 25.2 17.4 12.6 1.07 1.12 1.14 24.8 17 13 1.05 1.1 1.19 

 

In conclusion, this parameter should not be taken less than 0.6 to improve the fitting of 

the strength reduction over cycles. It is important to notice that using a value of 0.6 might come 

with a decrease in the incursion in the displacement cycles due to convergence problems.  
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6.1.9 Direction of plastic flow (β) 

The plastic flow parameter controls the direction of return of the plastic flow. It is related 

to the expansion or contraction of the material. The program supports values between -5 and 5. 

However, values greater than 0.5 gave convergence issues at early stages of the analysis, so they 

were not considered. 

From Table 6-21 the fastest model was the base model, with β set as zero. Then 

considering β as 0.1 or -0.1 had the same rate of the process, but if the material accepted 

contraction, the program could go further in the steps analyzed.  

Table 6-21: Direction of plastic flow models and run times. 

Model Modifications Run Time [hrs.] Last Step 
Run Time [hrs.] 

@ 300 steps 

M1 β =0 10.75 427 7.27 

M2 β =0.5 9.27 200 - 

M3 β =0.1 12.25 320 11.71 

M4 β =-0.1 18.67 463 11 
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Figure 6–42: Comparison of curve load versus lateral displacement, for different β values. 

From the overall predicted behavior shown in Figure 6–42, it is clear that changing the 

capacity of the material to contract or expand does not changes the response of the model at this 

displacement levels.  
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Figure 6–43: Comparison of normalized moment-curvature at PH region, for different β values. 

In Figure 6–43 the normalized moment-curvature of the plastic hinge region is presented. 

Differences between the model that considers contraction and the model that considers β as zero 

are clear starting at µΔ=3 (CDR=6.64%). For this cycle, the model with contraction had less 

curvature capacity at the negative branch, with an error of 28% instead of 38%. Also, in this 

cycle, the model that can contract has less energy dissipation than the one with β equals zero. 
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Figure 6–44: First cycles of normalized moment-curvature at PH region, for different β values. 

Figure 6–44 gives the first two cycles of the normalized moment-curvature at the plastic 

hinge with the predicted yield curvature from Priestley (2003). The variation between the models 

for this displacement level is minor. The model predictions for the yield curvature match the one 

given by Priestley. The test specimen was more flexible for the positive cycle than for the 

negative. 

In Figure 6–45 the normalized moment-rotation at the shaft-column interface is shown. 

The model that allows contraction of the material at µΔ=3 (CDR=6.64%) gives a higher rotation 

capacity than the other models. However, no models can capture the behavior observed in the 

test specimen. 
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Figure 6–45: Normalized moment-rotation at the shaft-column interface, for different β values. 

Figure 6–46 presents the distribution of the lateral displacement capacity within the 

element height. The values are shown in Table 6-22 and Table 6-23, given in percentages of the 

total displacement at the cycle. From this, the model that offers a better match with the fixed end 

rotation displacement contribution is the model that considers contraction of the concrete. Due to 

this improvement, the author recommends the use of β= -0.1. 
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Figure 6–46: Lateral displacements contribution calculated for test specimen and thorough analysis for 

different β values. 

Table 6-22: Displacement contributions in %, for different β values. 

  β = 0.5 M/Test β = 0.1 M/Test 

CDR (%) 1.98 4.01 1.98 4.01 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 1 2 1 2 3 1 2 3 

Shaft 11.5 6.48 1.57 1.44 11.71 6.52 3.27 1.60 1.45 1.10 

FER 10.5 10.8 0.44 0.37 10.19 9.67 8.10 0.43 0.33 0.28 

Col1 21.3 36.4 0.89 0.95 21.87 39.24 46.93 0.91 1.02 1.07 

Col2 25 17.3 1.06 1.12 24.63 16.67 14.29 1.04 1.08 1.29 
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Table 6-23: Displacement contributions in %, for different β values. 

  β = -0.1 M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 3 1 2 3 

Shaft 11.5 6.15 2.97 1.57 1.37 1 

FER 11.1 9.58 10 0.47 0.33 0.35 

Col1 21.2 40.3 49.9 0.88 1.05 1.14 

Col2 24.9 17.1 12.5 1.06 1.1 1.13 

 

6.2 STEEL PARAMETERS 

6.2.1 Menegotto-Pinto 

The parameters of the Menegotto-Pinto (M-P) formulation implemented in the program 

correspond to R, c1 and c2. Table 6-24 shows the values used for analysis and the time that the 

program took to process. The model that ran further into the displacement ductility cycles was 

Model 4. The model that had the shortest incursion in the displacement ductility cycles was 

Model 3. The fastest model was the based model. 

Table 6-24: Menegotto-Pinto models and run time. 

Model Modifications 
Run Time 

[hrs.] 
Last Step 

Run Time [hrs.] 

@ 300 steps 

M1 R=2 c1=5000 c2=20 10.75 427 7.27 

M2 R=4 c1=500 c2=50 18.13 450 10.5 

M3 R=4 c1=5000 c2=20 18.58 360 10.43 

M4 R=2 c1=500 c2=20 18.82 470 10.65 

M5 R=2 c1=5000 c2=50 14.32 410 10.86 

 

Figure 6–47 shows the overall behavior of the analytical models and the test specimen. 

From the graphs, if c1 is reduced the strength at the peak displacement increases by 3% for the 

second cycle and 7% for the third cycle. By increasing c2, the strength increases at the peak 
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displacement by 1% for the second cycle and less than 1% for the third cycle. Increasing R to the 

double also gave a higher strength at the peak displacements, in 4% and 6% for the second and 

third cycles.   

 

Figure 6–47: Comparison of curve load versus lateral displacement, for different M-P Parameters. 

Figure 6–48 presents the normalized moment-curvature for the plastic hinge region. The 

initial positive stiffness of the models is higher than the specimen; this also holds for the second 

displacement ductility in the second quadrant. However, for µΔ=3 (CDR=6.64%), in the same 

quadrant, the prediction from the models’ suites well for all the models except Model 2, which 

gives a higher flexural capacity and a lower ductility. For the fourth quadrant, it is noticeable that 
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all the models from µΔ=2 (CDR=4.01%) on over-estimate the ductility capacity of the test 

specimen.  

 

Figure 6–48: Comparison of normalized moment-curvature at the PH region, for M-P parameters values. 

Figure 6–49 shows the first two cycles of the normalized moment curvature, with the 

yielding curvature given by Priestley’s formulation. All the models agree well with the 

prediction given by Priestley’s prediction, but this does not fit with the specimen behavior for the 

positive cycles. 
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Figure 6–49: First cycles of normalized moment-curvature, for different M-P parameters. 

Figure 6–50 presents the normalized moment-rotation at the shaft-column interface. From 

the figure, it is clear that the reinforcement in this region plays a significant role in the prediction 

of the behavior. In Chapter 3.2 the author compared the stress-strain curve for a bar with the 

parameters presented here. The one that gave a wider loop (R=4 c1=500 c2=50) is the one that 

offers the more full loop for the response.  
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Figure 6–50: Normalized moment-rotation at the shaft-column interface, for different M-P parameters. 

Figure 6–51 gives the lateral displacement contribution of each region of the test 

specimen as well as the predicted by the models. Table 6-26 presents the values in percentages 

shown in the figure. It is clear that all the models under-estimate the rotation at the interface 

between the shaft and the column. The model that gives a better agreement on the distribution of 

the displacement is Model 1. 
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Figure 6–51: Lateral displacements contribution calculated for test specimen and thorough analysis for 

different M-P parameters. 

Table 6-25: Displacement contributions in %, for different M-P parameters. 

  R=4 c1=500 c2=50 M/Test R=4 c1=5000 c2=20 M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 3 1 2 3 1 2 3 1 2 3 

Shaft 11.6 6.25 3.86 1.58 1.39 1.3 11.5 6.55 3.732 1.57 1.46 1.25 

FER 9.88 8.36 9.73 0.42 0.28 0.34 9.97 8.16 9.959 0.42 0.28 0.34 

Col1 21.5 39.6 46.9 0.89 1.03 1.07 21.6 40.4 45.91 0.9 1.05 1.05 

Col2 25.2 17.4 13.4 1.07 1.12 1.21 24.9 17 14.35 1.06 1.10 1.30 
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Table 6-26: Displacement contributions in %, for different M-P parameters. 

  R=2 c1=500 c2=20 M/Test R=2 c1=5000 c2=50 M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 3 1 2 3 1 2 3 1 2 3 

Shaft 11.2 6.26 3.48 1.53 1.39 1.17 11.5 6.7 3.3519 1.58 1.49 1.13 

FER 10.3 8.43 8.53 0.43 0.29 0.29 9.53 10.6 10.091 0.4 0.36 0.35 

Col1 21.6 39.8 49.4 0.9 1.04 1.13 21.9 39.2 48.959 0.91 1.02 1.12 

Col2 24.9 17 13.6 1.06 1.1 1.23 24.5 16.5 12.021 1.04 1.07 1.09 

 

6.2.2 Activation of reinforcement in compression 

ATENA provides a manual activation of the rebar in compression. Assessment of the 

activation is presented. Table 6-27 shows the time that the models took to process. The program 

was able to run into further steps by activating the compression.   

From Figure 6–52, it is clear that there is no considerable change in the overall behavior 

considering or not the compression, for this displacement ductility range.   

Table 6-27: Activation of compression models and run time. 

Model Modifications 
Run Time 

[hrs.] 
Last Step 

Run Time [hrs.] 

@ 300 steps 

M1 Compression activated 10.75 427 7.27 

M2 Compression not activate 14.42 410 10.63 
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Figure 6–52: Comparison of curve load versus lateral displacement, for active/inactive rebar compression. 

Figure 6–53 shows the normalized moment-curvature graph. By not activating the 

compression, there is a slight reduction in energy dissipation (2%) at the third displacement 

ductility cycle. Figure 6–54 shows the first two cycles of the normalized moment-curvature with 

the yield curvature given by Priestley’s formulation. There is no change in the predictions of the 

models at this stage. Also, both models agree well with the yielding curvature provided by 

Priestley and fail to predict the flexibility at the positive first cycles of the test specimen. 
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Figure 6–53: Comparison of normalized moment-curvature at PH region, for active/inactive rebar 

compression. 

 

Figure 6–54: First cycles of normalized moment-curvature at PH region, for active/inactive rebar 

compression. 
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Figure 6–55: Normalized moment-rotation at shaft-column interface, for active/inactive rebar compression. 

Figure 6–55 presents the normalized moment-rotation at the shaft-column interface. The 

activation of the parameter does not change the behavior of this region at this level of 

displacement regarding the peak values of strength and rotation capacity. At µΔ=3 (CDR=6.64%) 

the loop given by the model without the activation of the compression provides a fuller loop. 

From Figure 6–56 and Table 6-28, it is clear that there is no significant change in the 

results by activating or deactivating the compression on the rebar. However, since it gives a 

slight improvement in the contribution of the displacement at the fixed end rotations, it is 

advisable to consider it. 
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Figure 6–56: Lateral displacements contribution calculated for test specimen and thorough analysis for 

active/inactive rebar compression. 

Table 6-28: Displacement contributions in %, for active/inactive rebar compression. 

  
Compression 

inactive 
M/Test Compression active M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 3 1 2 3 1 2 3 1 2 3 

Shaft 11.7 6.12 3.31 1.60 1.36 1.11 11.7 5.87 3.1295 1.59 1.31 1.05 

FER 10.1 9.23 8.6 0.42 0.31 0.30 9.66 8.82 8.437 0.41 0.3 0.29 

Col1 21.7 41.2 51.4 0.90 1.07 1.18 21.9 41.3 52.14 0.91 1.07 1.19 

Col2 24.9 16.8 12.7 1.05 1.09 1.15 24.8 17.1 12.603 1.05 1.11 1.14 
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6.2.3 Bond-Slip Law 

Reviews of three bond-slip laws are presented, i.e., user-defined, CEB-FIP code and 

Bigaj(1999) (see Chapter 3.2). For the user-defined law change in the maximum bond strength 

and friction unloading parameter was made, as established in Table 6-29. 

Table 6-29: User Defined Laws used.  

 
Max Bond Strength Friction Unloading 

 
[psi] [psi] 

Memory bond user-defined law 1a 1000 50 

Memory bond user-defined law 1b 2200 50 

Memory bond user-defined law 1c 1000 200 

 

Table 6-30 presents the models and the time that the analysis took. The fastest process 

was the one with Bigaj (1999) bond-slip law. 

Table 6-30: Bond-Slip models and run times. 

Model Modifications 
Run Time 

[hrs.] 

Last 

Step 

Run Time [hrs.] 

@ 300 steps 

M1 
Memory bond user-defined law 1a 

(BS1a) 
10.75 427 7.27 

M2 
Memory bond user-defined law 1b 

(BS1b) 
14.37 361 11.06 

M3 
Memory bond user-defined law 1c 

(BS1c) 
14.42 407 11.06 

M4 Memory bond CEB-FIP law 15.13 383 11.17 

M5 Memory bond Bigaj (1999). 9.88 415 7.16 

M6 Fixed bar 15.88 420 9.33 

 

Figure 6–57 shows the overall behavior predicted by the models with different bond-slip 

laws and the results from the test specimen. The prediction fits well the response; however, it is 
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not capable of capturing the opening and closure of the flexural cracks. The curve is not affected 

by the change in the parameters of the bond slip at this displacement level. 

 

Figure 6–57: Comparison of curve load versus lateral displacement, for different bond-slip laws. 

Figure 6–58 displays the comparison of the normalized moment-curvature for the plastic 

hinge region. For the first two ductility cycles, the models predict the same behavior. For the 

third displacement cycle, the base model (BS 1) is the one that predicts the higher ductility at the 

negative peak displacement (38% of error), the models that predict the lower ductility are BS1c, 

Bigaj and fixed bar with 26% of error. 
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Figure 6–58: Comparison of normalized moment-curvature at PH region, for different bond-slip laws. 

Figure 6–59 shows the first two cycles of the normalized moment-curvature at the plastic 

hinge region, with the yield curvature predicted by Priestley (2003). The models give a good 

correlation with the prediction of Priestley, but for the positive cycle, the structure is more 

flexible, which leads to higher yield ductility.   
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Figure 6–59: First cycles of normalized moment-curvature at PH region, for different bond-slip laws. 

Figure 6–60 presents the normalized moment-rotation at the shaft-column interface. The 

model that gives the higher energy dissipation is BS1b. Increasing the friction parameter in the 

user-defined bond-slip law provides a higher rotation capacity at the end of µΔ=3 (CDR=6.64%). 

From these curve the one that fits better is BS1c. 
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Figure 6–60: Normalized moment-rotation at the shaft-column interface, for different bond-slip laws. 

Figure 6–61 displays the displacement distribution over the height of the specimen. 

Moreover, in Table 6-31 through Table 6-33, the percentage of the contribution of the total 

displacement by the regions of the test specimen is provided. From the figure, the bond-slip 

model that offers the best prediction for the displacement contribution of the shaft-column 

interface is BS1c. 

After a review of the results, the author recommends the use of the model BS1c. 
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Figure 6–61: Lateral displacements contribution calculated for test specimen and thorough analysis for 

different bond-slip laws. 
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Table 6-31: Displacement contributions in %, for different bond-slip laws. 

  BS 1b M/Test BS 1c M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 3 1 2 3 1 2 3 1 2 3 

Shaft 11.3 6.0 3.4 1.55 1.34 1.16 11.3 6.0 2.9 1.54 1.34 0.99 

FER 8.2 8.8 9.8 0.35 0.30 0.34 10.1 8.1 10.6 0.42 0.27 0.37 

Col1 21.7 41.5 45.8 0.90 1.08 1.05 21.5 41.8 49.9 0.90 1.09 1.14 

Col2 25.7 17.0 14.9 1.09 1.10 1.34 25.1 16.9 13.1 1.06 1.09 1.19 

 

Table 6-32: Displacement contributions in %, for different bond-slip laws. 

  CEB-FIP M/Test Bigaj M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 3 1 2 3 1 2 3 1 2 3 

Shaft 11.8 5.8 3.4 1.62 1.29 1.13 11.9 6.1 3.3 1.63 1.36 1.12 

FER 7.5 9.5 10.7 0.32 0.32 0.37 7.1 8.6 9.6 0.30 0.29 0.33 

Col1 21.2 39.7 44.8 0.88 1.03 1.02 21.5 39.7 49.0 0.90 1.03 1.12 

Col2 26.0 17.2 16.0 1.10 1.11 1.45 25.8 17.3 13.8 1.09 1.12 1.25 

 

Table 6-33: Displacement contributions in %, for different bond-slip laws. 

  Fixed Bar M/Test 

CDR (%) 1.98 4.01 6.64 1.98 4.01 6.64 

 µΔ 1 2 3 1 2 3 

Shaft 11.3 5.76 3.23 1.54 1.28 1.08 

FER 8.12 9.27 9.36 0.34 0.32 0.32 

Col1 21.5 40.5 50 0.90 1.05 1.14 

Col2 25.6 16.6 13.8 1.08 1.08 1.24 
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6.3 SUMMARY 

Activating the tension stiffening (cts) parameter allows the program to run further into the 

displacement cycles. A value of 0.6 gave a better fit with the overall as well as the components. 

The activation of aggregate interlock, the shear factor and the reinforcement active in 

compression did not add a better fitting to the response, and it made it, in some cases, harder to 

converge. This is also the case of modifying the fracture energy. 

The unloading factor set to zero capture some opening and closure effect; however, it is 

minor in comparison to the cts parameter. Considering that the concrete can contract (β) also 

provided some necking into the hysteresis.     

For cyclic analysis, the author advises using a rotated crack model instead of a fixed-

crack model, since the latest has convergence issues at an early stage. 

Accounting for a reduction in the compressive strength due to cracking (Fc) as 0.6 

provided a better fit of the strength at the peak displacements of the second and third cycles. 

Using a critical compression value of -0.0295 in. rather than -0.197 in. provides a better 

agreement on the overall curve for the first two cycles, but it shortens the steps that the program 

can run before experiencing convergence problems. 

For the Menegotto-Pinto (M-P) settings, the values used in the base model gives a 

reasonable match. The M-P has an impact on the response of the fixed end rotation region. For 

the bond-slip law considering a user-defined law with a maximum bond strength of 1 ksi and 

unloading friction of 200 psi gave a well fit. However, the maximum bond strength provided is 

lesser than the value found by Lotfizadeh (2019) on his research.   
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The model that gave a better fit in the overall behavior and the local behavior was the 

base model with the tension stiffening active set as 0.6. The strains at the peak displacements of 

the most north and most south bar of the column were obtained from the model, and are 

presented in Figure 6–62 and Figure 6–63. B1 corresponds to the bar at the north that is shown 

with a continuous line, and B3 is the bar at the south shown with a segmented line. In black, line 

the experimental data measured with electrical foil strain gauges for these bars is displayed. 

Also, in red are the base model strains and in blue the model that fits best.   

 

Figure 6–62: Strain distribution over height at peak displacements. 

For the first cycle, in the positive loading direction, the tensile strains in bar 3 in the test 

specimen are higher than the predicted. For the bar that is under compression (bar 1), the models 
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predict higher strains. For the second cycle, in the positive loading direction, the models predict 

localization of the plasticity for both bars, which in the test was more noticeable for the bar in 

tension. In the negative direction, the localization in compression strain predicted by the models 

is higher than the seen in the tests. For the third cycle in the positive loading direction, the 

models gave a relatively good fit. However, for the negative direction, the test results show 

negative strains for the bar under tension which the models predicts not in magnitude but the 

change of sign. 

 

Figure 6–63: Strain distribution over height at peak displacements. 
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 CONCLUSIONS 

This thesis describes the calibration and validation of a detailed nonlinear finite element 

model of a reinforced concrete Type II shaft built at full scale and tested by Lotfizadeh (2019) in 

the Charles Lee Powell Structural Research Laboratories. ATENA was the computer software of 

choice used throughout in this work with the concrete modeled with a fracture-plasticity 

constitutive model available in the library of constitutive material relationships in this software. 

An extensive parametric work was carried out to calibrate the model. Computed overall 

lateral displacement-lateral deflection responses and local normalized moment-normalized 

curvature and normalized moment and column fixed-end were compared with experimental 

measurements reported by Lotfizadeh (2019).  

One of the greatest difficulties observed in the computational work is convergency. Many 

models ran partially and then stopped converging. Convergence problems were acute when using 

a fixed-crack model. 

This research successfully predicted the overall response of the test specimen, and 

predicted well some local responses but felt somewhat short in reproducing accurately the fixed-

end rotation at the column to shaft interface due to bar bond slip (strain penetration) of the 

column longitudinal bars which where lap-spliced with the pile longitudinal reinforcement via a 

non-contact lap-splice. 
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