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Abstract
Our understanding of the chronology of human evolution relies on the “molecular clock”

provided by the steady accumulation of substitutions on an evolutionary lineage. Recent

analyses of human pedigrees have called this understanding into question by revealing

unexpectedly low germline mutation rates, which imply that substitutions accrue more

slowly than previously believed. Translating mutation rates estimated from pedigrees into

substitution rates is not as straightforward as it may seem, however. We dissect the steps

involved, emphasizing that dating evolutionary events requires not “a mutation rate” but a

precise characterization of how mutations accumulate in development in males and

females—knowledge that remains elusive.

Introduction

One of the most fundamental discoveries in evolutionary biology is the “molecular clock”: the
observation that changes to the genome along an evolutionary lineage accumulate steadily with
time [1–3] and the subsequent development of a theory—theNeutral Theory—that explains
why this behavior is expected for neutral genetic changes (i.e., changes with no fitness effects)
[4,5]. We now understand that neutral mutations fix in the population at the rate at which they
arise, irrespective of demographic history or natural selection at linked sites [4,6]. Thus, the
accumulation of neutral substitutions over generations provides a record of the time elapsed
on a lineage. It is this “evolutionary clock” that allows researchers to date past events.

Conversely, the existence of an evolutionary clock allows the number of substitutions on a
lineage to be translated into a yearly mutation rate, given an independent estimate of when that
lineage branched off [2,7–9]. For example, interpreting the fossil record as reflecting a 30 mil-
lion year (My) split time between humans (apes) and rhesus macaques (OldWorld Monkey
[OWM]) and using the average nucleotide divergence of ~6.2% between the two species [10]
suggests an average yearly mutation rate of 10−9 per base pair (bp). Until 2010, single nucleo-
tide substitutions were the main source of data from which to learn about mutation rates, and
analyses of substitution patterns consistently suggested rates of around 10−9 per bp per year for
primates [9,11–13].
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Recent findings in human genetics therefore threw a spanner in the works when they sug-
gested de novo mutation rates estimated from human pedigrees to be less than half what was
previously believed, or approximately 0.5 x 10−9 per bp per year [14,15]. Because sequencing
pedigrees is a much more direct and, in principle, definitive approach to learn about mutation,
these new rate estimates have been widely adopted. They have led to a reappraisal of the chro-
nology of human evolution, suggesting in particular that populations split longer ago than pre-
viously believed (e.g., [14,16]). Extrapolating farther back in time becomes problematic,
however, as pedigree-basedestimates imply split times with other primates that are older than
is compatible with the fossil record, at least as currently interpreted [17–21]. One possible solu-
tion, suggested by Scally and Durbin (2012) [14] as well as others, is that yearly mutation rates
have decreased towards the present, consistent with the “hominoid rate slowdown” observed
in phylogenetic data [22–24].

As we discuss, changes in the yearly mutation rate over the course of human evolution are
not only plausible but follow from first principles. The expected number of de novo mutations
inherited by a child depends on paternal (and, to a lesser extent, maternal) ages at puberty and
reproduction [25–27], traits that differ markedly among extant primates [18,28,29]. Because
these traits evolve, there is no fixedmutation rate per generation and almost certainly no fixed
mutation rate per year. An important implication is that the use of mutations to date evolution-
ary events requires a precise characterization of how germlinemutations accumulate in devel-
opment in males and females and across species.We argue that this knowledge is still elusive
and that, as a result, it remains unclear how to set the evolutionary clock. For recent time
depths, however, a complementary approach from the study of ancient DNA samples may
offer a solution.

In discussing these points, we focus almost exclusively on humans, in part because, in other
species studied to date, estimates of de novo mutation rates are instead higher than substitution
rates, and the underlying reasons are likely distinct [30–33]. Likewise, we do not discussmuta-
tion rates estimates for mitochondrial DNA; the sources of mutations, complete linkage, and
selection pressures make the evolutionary dynamics of this one locus quite distinct from those
of the nuclear genome, and, indeed, the discrepancy there, too, is opposite [34,35]. Moreover,
we concentrate on the rate of single nucleotide substitutions in autosomes; for other types of
mutations and a discussion of variation in mutation rates along the genome, see [25,36–38].

The Puzzle

Heritable mutations stem from accidental changes to the genome that occur in the develop-
ment of the germline and production of egg and sperm. A natural definition of the germline
mutation rate “per generation” is, therefore, the rate at which differences arise between the
genome of a newly formed zygote and the gametes that it eventually produces.While this quan-
tity cannot be readily measured, it has recently become possible to estimate something highly
related: the number of mutations seen in the genome of an offspring’s soma but absent from
the parents’ [39] (henceforth μG). At least a dozen whole genome studies have applied this
approach, resequencing parents and offspring, usually in trios. They reported estimates of μG

on the order of 10−8 per bp (Table 1).
Although the trio studies were primarily conducted to identify de novo diseasemutations,

they also inform our understanding of the chronology of primate evolution. Assuming that
changes to the genome are neutral, the expected sequence divergence (that is, the expected
number of substitutions per bp) between a pair of species, d, equals 2μt, where μ is the mutation
rate and t is the average time to a common ancestor (i.e., divergence time). Thus, given an esti-
mate of μ and orthologous sequences frommore than one species, an estimate of t can be

PLOS Biology | DOI:10.1371/journal.pbio.2000744 October 19, 2016 2 / 18

Competing Interests: The authors have declared

that no competing interests exist.

Abbreviations: BGC, GC-biased gene conversion;

bp, base pair; CpG, CG dinucleotides; FNR, False

negative rate; Gb, gigabases; LCL, lymphoblast-

derived cell lines; My, million years; Mya, million

years ago; OWM, Old World Monkey.

Provenance: Commissioned; externally peer

reviewed



Table 1. Estimates of mutation rates from pedigree studies.

Study Reported mutation

rate per bp per

generation (x10-8)

Mean paternal

age in study

(in years)

Mutation rate at

paternal age of

30 years (x10-8)†

Paternal age effect

reported as the increase

in number of mutations

for each year of father’s

age

Callable genome in

Gb (reported false

negative rate [FNR]

in %)

Sample size

(number of

trios)

Mean

sequence

coverage

Fraction of

CpG

transitions¶

Chimpanzee pedigree study:

Venn 2014#

[40]

1.20 24.3a 1.51 3.00 2.4 (13.4b) 6 34.4b 0.239 (0.183–

0.296)

Human pedigree studies:

Roach 2010§,c

[39]

1.10 (0.68–1.70) — — — 1.8 (5.0) 2 61.3b 0.178 (0.037–

0.320)

Conrad 2011

(CEU) [41]

1.17 (0.88–1.62) — — — 2.5 (5.0) 1 29.3 0.146 (0.046–

0.246)

Conrad 2011

(YRI) [41]

0.97 (0.67–1.34) — — — 2.5 (3.5) 1 29.2 0.114 (0.009–

0.220)

Campbell 2012

[42]

0.96 (0.82–1.09) 26.3 — — 2.2 (1.7)b 5 13.0 0.165 (0.110–

0.220)

Kong 2012 [15] 1.20 29.7 1.21 2.01 2.6 (2.0) 78 30.0 0.173 (0.163–

0.184)

Michaelson

2012 [43]

1.00 33.6 0.93 1.02 2.8e (9.5) 10 30.0 0.128 (0.099–

0.156)

Jiang 2013 [44] — 34.4e — 1.50 — 32 30.0 0.162 (0.146–

0.177)

Francioli 2015

[38]

— 29.4 — 1.20* 2.1 (31.1) 250 13.0 0.165 (0.158–

0.172)

Besenbacher

2015 [45]

1.27 (1.16–1.38) 28.4 1.3d 2.00 — 10 50.0 0.201 (0.166–

0.236)

Rahbari 2015c

[46]

1.28 (1.13–1.43) 29.8 1.29 2.87 (1.46–3.65)f 2.5 (—) 12 24.7 0.210 (0.180–

0.240)

Yuen 2015§,g,c

[47]

1.18h 34.1 1.08 1.19* 2.5 (8.0i) 140 56.0 0.159 (0.151–

0.167)

Wong 2016§, ‡

[48]

1.05 33.4 0.95 0.92 1.6 (13.0) 693 60.0 0.131 (0.127–

0.135)

Goldmann

2016§, ‡ [49]

— 33.7 — 0.91 — 816 60.0 0.179 (0.175–

0.182)

—Not available.
§ - Denotes studies that used Complete Genomics technology for sequencing, as most were based on Illumina sequencing.

† - Estimated assuming linearity and using the reported paternal age effect, accounting for the length of the callable genome. Specifically, we used:cmg þ

bmð30� PÞ
2N

� �
; wherecmg is the estimated mutation rate per bp per generation reported in the study, bm is the estimated slope for the paternal age effect, P is the

mean paternal age in the study, and N is the length of the callable genome in base pairs.
*—A paternal age effect is not reported in paper but estimated by Poisson regression on counts of autosomal de novo mutations.
¶ - CG dinucleotides (CpG) fraction based on autosomal mutations and binomial 95% CI shown. When possible, we relied on validated mutations. However,

in some studies, only a small fraction of mutations were validated, and, hence, we used all putative de novo mutations.
#—This study includes one multigenerational pedigree.
‡ - These studies found a significant maternal age effect, which might lead to lower estimates of the paternal age effect (if parental ages are correlated).

a—This is the estimated mean age of reproduction of male chimpanzees in the wild, not the age of the actual individuals studied (18.9 for males and 15.0 for

females).

b—Refers to average, the estimate varies across individuals or families in the study.

c—Includes siblings.

d—Based on visual inspection of slope reported in the study.

e—Not reported in the article, based on personal communication.

f—Based on validated de novo mutation counts and extrapolated to a surveyed genome size of 3 gigabases (Gb).

g—All estimates are based on the subset of the 140 non- lymphoblast-derived cell lines (LCL) samples.

h—Not reported in the article; based on the number of de novo mutations reported in the study and an estimated denominator (2.5 Gb, personal

communication).

i—Average of the estimates based on two cohorts.

doi:10.1371/journal.pbio.2000744.t001
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obtained from d/2μ. In practice, researchers are interested in an estimate of t in years, not gen-
erations, and therefore require an estimate of the yearly mutation rate, bmy. To obtain it, com-
mon practice has been to divide the bmG obtained from sequencing of parents and children by a
typical age of reproduction (i.e., an estimate of the generation time) [14]. Doing so yields bmy �

0.5 x 10−9 per bp [14,50].
Taken at face value, this mutation rate suggests that African and non-African populations

split over 100,000 years [14,16] and a human-chimpanzee divergence time of 12 million years
ago (Mya) (for a human–chimpanzee average nucleotide divergence of 1.2% at putatively neu-
tral sites) [10,14,17]. These estimates are older than previously believed, but not necessarily at
odds with the existing—and very limited—paleontological evidence for Homininae [16,26,51].
More clearly problematic are the divergence times that are obtained for humans and orangu-
tans or humans and OWMs. As an illustration, using whole genome divergence estimates for
putatively neutral sites [10] suggests a human–orangutan divergence time of 31 Mya and
human–OWM divergence time of 62 Mya. These estimates are implausibly old, implying a
human–orangutan divergence well into the Oligocene and OWM–hominoid divergence well
into or beyond the Eocene. Thus, the yearly mutation rates obtained from pedigrees seem to
suggest dates that are too ancient to be readily reconciled with the current understanding of the
fossil record [51,52].

Another way of viewing the same problem is to compare values of bmy obtained from resequen-
cing pedigrees to those obtained from divergence levels among primates, given estimates of diver-
gence times t based on the fossil record. Such estimates of t are highly indirect, in part because
the fossil record is sparse and in part because relying on fossils with derived traits provides only a
lower bound for when the species split [19,20]. A further complication is that, for closely related
species, t reflects the time since the species split as well as the average time to the common ances-
tor in the ancestral population, which can be substantial [17,53]. Notably, for humans and chim-
panzees, the divergence time t is thought to be at least 2 million years older than the split time,
and possibly much more [17,21,54]. Thus, this approach is mired in uncertainty. Nonetheless,
until recently, the consensus in the field has been to usebt values of 6–7.5Mya for humans and
chimpanzees [9,55], 15–20Mya for humans and orangutans [56], and 25–35Mya for humans
and OWMs [23,56,57]. Assuming these values and solving bmy ¼ d=2bt suggests a mutation rate of
10−9 per year, more than 2-fold higher than what is obtained from pedigree-basedestimates
(Table 1). In other words, accepted divergence times suggest that substitutions accumulate faster
than they should based on mutation estimates from human pedigrees.

Could This Puzzle Be Resolved by Purifying Selection or Biased

Gene Conversion?

The equation of mutation and substitution rates is valid only under neutrality. The substitution
rate of a population can be factored into two components: the rate at which mutations arise in
the population and the probability that a mutation is eventually fixed in the population.When
changes are neutral, larger populations experience a greater input of mutations, but exactly
counterbalancing this effect is a smaller probability of fixation for eachmutation. When natural
selection is operating, however, the probability of fixation deviates from the neutral expecta-
tion, so the substitution rates at sites under selection are not expected to equal the mutation
rate.

To minimize this problem, researchers have focused on putatively neutral regions of the
genome when estimating divergence levels (e.g., pseudogenes or genomes with genic and con-
served regions excluded) [9,10]. This filtering process is imperfect, however, as putatively
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neutral regions likely include sites under some degree of natural selection. The net effect should
be to decrease the substitution rate relative to the mutation rate, because deleteriousmutations
that contribute to the count of de novo mutations in pedigreeswill not reach fixation (and ben-
eficial alleles are exceedingly rare). In other words, selection should lead to lower substitution
rates than mutation rates [34] and likely provides at least a partial explanation for the patterns
observed in many taxa (including Drosophila, Arabidopsis, and Caenorhabditis), as well as for
the human mitochondrial DNA [31,34]. In contrast, selection only exacerbates the puzzle of
why estimated substitution rates are higher than estimated mutation rates in the human
nuclear genome.

In addition to selection, the fixation probability can also be affected by GC-biased gene con-
version (BGC). This process preferentially resolves mismatches in heteroduplex DNA arising
frommeiotic recombination in favor of strong alleles (C or G) over weak alleles (A or T), lead-
ing to an increased fixation probability of mutations from A/T to C/G and a decreased proba-
bility of C/G to A/T mutations relative to neutrality. Although clear evidence for BGC has been
observedboth in mammalian substitution patterns and in human pedigree data [58,59], the
net impact on genome-wide substitution rates remains unclear. Moreover, a similar discrep-
ancy between pedigree and phylogenetic estimates of mutation remains when focusing only on
the subset of sites not subject to BGC [10,15]. Thus, this process is unlikely to help reconcile
the estimates either.

With no obvious explanation at hand, the surprisingly low mutation rates estimated from
pedigrees have led to considerable discussion about whether our understanding of primate evo-
lution is simply incorrect, and divergence times are much older than believed.We contend that
in some ways this reevaluation is premature. Indeed, although our current understanding of
the primate fossil record could be inaccurate, there is underappreciated complexity in the con-
version of mutation rates from pedigrees into mutation rates per year and its translation into
substitution rates, which remains to be resolved.We try to unpack this complexity by discuss-
ing each step in turn: (1) what it is we are truly estimating from resequencing pedigrees; (2)
what we have learned to date and what we have yet to understand; and (3) how to translate the
mutation rates into evolutionary dates (Fig 1).

Step 1: What Exactly Is Being Estimated from Human Pedigrees?

Human pedigree studies have relied primarily on blood samples from trios by identifying
mutations present in ~50% of reads in the child but absent in both parents. A mutation rate is
obtained by dividing the count of mutations by the number of base pairs for which there was
complete power to identify de novo mutations or, equivalently, dividing it by the genome
length, adjusting for power at a typical position in the genome (assuming mutation rates in
inaccessible regions of the genome are similar to those in surveyed regions).

Because the mutation rate is so low (~10−8 per bp per generation), it is challenging to reli-
ably identify de novo mutations using current sequencing technologies, given the presence of
cryptic copy number variation, alignment uncertainty, and other confounders [60,61]. Detec-
tion pipelines, therefore, have high false discovery rates, and a stringent set of filters on
sequence complexity, read depth, and allelic balance of the reads has to be applied to weed out
spurious mutations [62]. This aggressive filtering process substantially increases specificity but
decreases the number of sites at which mutations can be detected, so the false negative rate has
to be carefully assessed for any given set of filters.

An additional complication is “mosaicism,” that is, the presence of two or more genotypes
in a given population of cells. When calculating the mutation rate per generation, any mutation
accumulated in a germline cycle from zygote to zygote should be included regardless of the
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stage at which it occurred (Fig 2, solid stars). The difficulty is that neither the parents nor the
offspring are sampled as zygotes; instead, blood samples are used. In these somatic samples,
some of the mutations detectedwill have arisen during the development process of the child
and should not be counted towards germlinemutations in the parents (Fig 2 hollow stars;

Fig 1. The many steps involved in the conversion of mutation rate estimates from pedigree studies into

yearly substitution rates.

doi:10.1371/journal.pbio.2000744.g001
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Fig 2. Schematic illustration of mutations occurring during embryonic development and gametogenesis. For simplicity, we show only mutations

that arose in the father and one offspring (child 1). Stars represent mutations that originate in different stages of embryogenesis and gametogenesis of

the father and the offspring; solid stars are mutations that arise in the father, and hollow stars are those that occur in the offspring. Shown below each

individual are the expected frequencies of the labeled mutations in his or her blood sample. Red, brown, and green stars are heritable and should be

included in an estimate of germline mutation rates, whereas blue stars are somatic mutations present only in blood samples, which should be excluded.

The detection of mutations that are mosaic in both soma and germline strongly suggests that, in the cell lineage tree of human development, soma and

germline are not reciprocally monophyletic [46,64]. The standard pipelines require allelic balance in the child and no (or very low) read depths in the

parents, leading to inclusion of some postzygotic mutations in the child and exclusion of a fraction of germline mutations in the parents. The two effects

partially balance, so the overall mutation rate is unlikely to be greatly biased. However, there is a tendency to detect child-specific mutations and to miss

ones shared among siblings. As a consequence, the mutation rates during early development are likely underestimated, with potentially important

practical implications for predictions of recurrence risk of diseases caused by de novo mutations.

doi:10.1371/journal.pbio.2000744.g002
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[63]). Moreover, whenmultiple reads support the alternative allele in the blood of the parent,
it is unclear whether the mutation is mosaic and present at high frequency or truly constitu-
tional (i.e., heterozygous in all cells). Standard filtering process requires there to be a balanced
number of reads carrying both alleles in the child and no (or very few) reads with the alterna-
tive allele in both parents. These criteria will lead to the inclusion of some postzygoticmuta-
tions that arose in the child (in germline and/or soma) and the exclusion of a fraction of true
germlinemutations in the parents (especially those that arose in early development stages)
(Fig 2).

Given the current de novo mutation detection pipelines, the presence of mosaicism there-
fore leads to two complications: (1) it may lead to a systematic bias in the estimate of the germ-
line mutation rate per generation, and (2) it may distort estimates of per cell divisionmutation
rates in different stages of germline development due to misassignment of the detectedmuta-
tions to different stages. Current evidence suggests that the first concern is a minor one, both
because false negatives and positives are expected to balance each other out to some extent, and
because, in practice, similar estimates are obtained when considering transmissions in trio
studies and when analyzing autozygous segments that descend from a common ancestor multi-
ple generations back (i.e., in which mutations that arose in two or more complete germline
cycles are captured) (Table 1) [42,65]. Nonetheless, the current filtering criteria will lead to an
underestimate of mosaicism levels and could cloud our understanding of the germlinemuta-
tional process, impacting the accuracy of predictions about the recurrence risk of diseases
caused by de novo mutations (see Fig 2) [46,66,67].

In addition to these technical considerations, there are conceptual subtleties in interpreting
the mutation rate estimates from pedigree studies. As expected a priori and from earlier studies
of disease incidences in children [27,68], all large pedigree studies published to date have
reported an effect of the age of the father on the total number of de novo mutations inherited
by a child (Table 1). Moreover, the increase in the total number of mutations is well approxi-
mated by a line [15] (a phenomenon distinct from the few well-studiedmutations, such as
fibroblast growth factor receptor 2, which occur during spermatogonial stem cell divisions and
lead to clonal expansions, and for which the increase in frequencywith paternal age is closer to
exponential [69–71]). Because spermatogenesis occurs continuously after the onset of puberty,
the number of replication-drivenmutations inherited by a child is expected to depend on
paternal age—more precisely, on the age at which the father enters puberty, his rate of sper-
matogonial stem cell divisions, and age at reproduction [25,72]. Therefore, the observation that
the number of mutations increases linearly with paternal age is consistent with a fixed rate of
cell division after puberty and a constant rate of mutation per cell division during spermato-
genesis. In contrast, oocytogenesis is completed by the birth of the future mother, so the num-
ber of replication-drivenmutations inherited by an offspring should be independent of
maternal age [73]. For the subset of mutations that do not stem frommistakes during replica-
tion—mutations that arise from DNA damage and are poorly repaired, for example—there
may be a dependence on maternal age as well, if damage accumulates in oocytes [74]. Interest-
ingly, recent studies report that a maternal age effect is also present, potentially supporting the
existence of a nonreplicative source of germlinemutations [48,49,75]. In any case, what is
clear is that the number of de novo mutations in a child is a function of the age of the father
at conception and, to a lesser extent, that of the mother, so values obtained from pedigree stud-
ies are estimates of mutation rate at given mean paternal (and maternal) ages of the sampled
families.

Another complication is that distinct types of mutations may differ in their accrual rates
with age, depending on their sources and repair rates over ontogenesis [74,76]. For instance,
transitions at methylated CG dinucleotides (CpG) sites are thought to occur primarily by
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spontaneous deamination; beyond this example, the DNA molecule is known to be subject to a
large number of chemical assaults from normal cellular metabolism and additional environ-
mental agents [77,78]. Although the relative contribution of germlinemutations from different
sources is unclear, their accrual rates with parental age are unlikely to be identical [49]. There-
fore, the mutation rate estimated from pedigree studies is the composite of distinct mutational
processes that have distinct dependencies on age and sex [49], making the time-dependencyof
the overall mutation rate harder to interpret (Fig 1).

With these considerations in mind, what have we learned to date? All large-scale pedigree
studies report similar mutation rates per generation, a strong male bias in mutation, and a
paternal age effect. On closer inspection, however, their parameter estimates are not consistent.
To illustrate this point, we report the estimated mutation rate at paternal age of 30 years, which
differs by as much as 40% across studies (Table 1). Given the relatively small sample sizes,
some uncertainty is expected from sampling error alone. However, differences in sequencing
technology, coverage depth, and choice of filters are also likely to be playing a role. As one illus-
tration, the fraction of mutations that involve transitions from CpG sites differs significantly
among studies, from 11% to>20% (chi-square test, p< 10−8, considering studies with a sam-
ple size of at least 5). Although biological differences cannot be ruled out, at least some of this
variation appears to be due to whether the studies excluded mutations present in dbSNP [79]
(because the authors reasoned that a sequencing error is a more likely explanation than a recur-
rent mutation). As databases become larger, this step increasingly leads to the exclusion of true
mutations [80], with a disproportionate effect on CpG transitions, which are more mutable
[45].

Among studies, there is also 3-fold variation in the estimated strength of the paternal age
effect (Table 1), which remains significant after accounting for the fraction of the genome sur-
veyed for mutation (Fig 3). In principle, differences in the paternal age effect among studies
could reflect true biological differences. For instance, a recent study of three larger pedigree
families reported that the fathers differedmarkedly in their paternal age effects (Fig 3) [46]. If,
indeed, fathers differ in the strength of their paternal age effect, then when a single line is fit to
data from their offspring, the resulting slope could differ, possibly substantially, from the aver-
age slope [25,74]. As the sample size increases, however, the estimated strength of paternal age
effect should approach the population mean value, so the observeddifferences across large
studies remain unexplained.

In summary, although pedigree-basedapproaches are more direct and, in principle,
straightforward, they have not yet provided a definitive answer about the mutation rate at any
given paternal and maternal age, let alone a precise characterization of how mutations of differ-
ent sources accumulate over ontogeny in males and females.

Step 2: How to Obtain a Yearly De Novo Mutation Rate?

Even if the germlinemutation rate per generation, μG, were known exactly, strong assumptions
would be required to translate the per generation mutation rates of the sampled families into a
yearly rate. Common practice has been to obtain a yearly mutation rate by dividing the muta-
tion rate estimated from all the children by the typical age at reproduction (i.e., setting
bmy ¼ bmG=

�G, where �G is an estimate of the generation time in the population or the average age
of the parents in the study). This practice implicitly ignores differences in reproduction ages
across studies or between the individuals studied and the general population [81]. When such
differences exist (Table 1), the values of bmy are only comparable if the same �G is used and the
numerator is replaced by bmyð

�GÞ, the expected (per generation) mutation rate at a particular age
�G. Moreover, if μy is not independent of G, as suggested by modeling and (limited) available
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data in humans [25], then it is also important to ask whether the mean parental age for the
(predominantly European) samples is representative of the human species, when it is known
that ages at reproduction differ substantially across populations [81].

Also complicating matters are possible differences among fathers in the onset of puberty or
the strength of their paternal age effect.We know that there is heritable variation among
humans (from the same population) in the onset of puberty [82], and there are hints of differ-
ences in rate of spermatogonial stem cell divisions or per cell divisionmutation rates across
males [46]. If substantial differences in these factors also exist across human populations, the

Fig 3. Variation in the estimated paternal age effect for autosomes. We plot the de novo mutation rate as a function of the paternal age at

conception of the child. The rate was obtained from the reported counts of de novo mutations divided by the fraction of the genome assayed in each

study (shown in the title of each subplot, along with the mean sequence coverage per individual). The solid line denotes the fitted slope (i.e., the increase

in the mutation rate for each additional year of father’s age). Following the approach of Rahbari et al. 2015 [46], for their study, we used the corrected

counts of de novo mutations, which are extrapolated to a genome length of 3 Gb (thereby assuming the mutation rate in the inaccessible regions of the

genome is the same as that in surveyed regions). The three colors used in this plot denote the three different families that were studied: blue, family 244;

green, family 603; and red, family 569.

doi:10.1371/journal.pbio.2000744.g003
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relationship between μG and G will vary among them. Therefore, even when the sample size is
large and variation in G taken into account, the estimated yearly mutation rate from bmy ¼ bmG=

�G
may only be representative of the population(s) under study.

Step 3: How to Relate μ to the Substitution Rate Expected over

Evolutionary Time?

Changes in Life History and Reproductive Traits

Mammalian species vary over 3-fold in yearly substitution rates, indicating that the yearly muta-
tion rates change over time [83–85]. In primates, in particular, 35%–65% variation is seen in sub-
stitution rates across apes and monkeys [10,11]. The cause of variation in substitution rates was
long hypothesized to be a “generation time effect,” whereby younger mean ages of reproduction
—i.e., shorter generation times—lead to more cell divisions per unit time and, hence, higher rates
of replication-drivenmutations [23,86–88]. Support for this claim comes from phylogenetic anal-
yses of mammals, in which reproductive span is the strongest predictor of mutation rates per
year among various correlated traits considered, including onset of puberty, body size, metabolic
rate, longevity (notably for mitochondrial DNA), and sperm competition [85,89,90].

As we have discussed, a dependence of yearly mutation rates on generation times is expected
from what is known about mammalian sperm and egg production. Thus, to accurately convert
mutation rates per generation into expected substitution rates per year, changes in the genera-
tion time over evolution need to be taken into account. Doing so requires knowledge of numer-
ous parameters that are currently uncertain or simply unknown. A solvable problem is that the
conversion depends on the precise dependence of μG on parental ages [25], about which there
remains considerable uncertainty (Fig 3). A thornier issue is that the yearly substitution rate
depends not only on the sex-averaged generation time, but also on the mean ages at reproduc-
tion for males and females separately. The reason being that, in males, the germlinemutation
rate dependsmore strongly on reproductive age than it does in females; thus, for the same aver-
age parental age, de novo mutation rates are much lower in a child born to a young father and
an old mother than in a child born to an old father and a young mother. As a result, changing
the ratio of male-to-female generation times can have substantial effects on the yearly mutation
rate, even when the average remains fixed: for example, a range of ratios from 0.92 to 1.26, as
observed in extant hominines, could lead to up to 10% difference in μy and thus introduce
uncertainty in phylogenetic dating [26].

Beyond the effect of generation times, the yearly mutation rate will vary with any change in
life history traits (e.g., the age at puberty) and germ line developmental process (e.g., the num-
ber of cell divisions in each development stage). We know that, among extant primates, the
onset of puberty differs substantially, from ~1 year in marmosets to 6–13 years in apes [28], as
does the length of spermatogonial stem cell divisions [91]. Thus, life history traits can and have
evolved across primates. This evolution introduces additional uncertainty in the yearly muta-
tion rate expected at any point in the past [26]. Moreover, these factors influence μy in inter-
twined ways, so it is important to consider their joint effects [10,26].

Changes in the Mutation Process

Thus far, we have only discussed sources of changes in the yearly mutation rate due to develop-
ment and life history, but another layer of evolution occurs at cellular level, in terms of muta-
tional processes of DNA [92–94]. Could the rates of replication error, DNA damage, or DNA
repair have evolved over millions or even thousands of years? Two recent studies have com-
pared the spectra of rare segregating variants among human populations and found
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enrichment of specificmutational signatures in certain populations [94,95]. For instance, Euro-
peans show an increased rate of a TCC! TTCmutation relative to African or Asian popula-
tion samples [94]. Additionally, a recent study of autozygous segments in a Pakistani
population found some germlinemutations to occur at significantly different frequencies than
in samples of European ancestry [65]. This observation raises the possibility of recent evolu-
tionary changes in the mutation process itself.

Although a change in mutation rates of a specificmutation type is parsimoniously explained
by a change in the damage or repair rates, modeling suggests that, even in the absence of such
changes, life history traits alone could shift the relative contributions of mutations of different
sources [74]. As one example, CpG transitions appear to bemore clocklike across species than do
other types of mutations (possibly due to a weaker dependence on life history traits) [10,84], and,
accordingly, the proportion of substitutions due to CpG transitions varies across species [10]. As
another example, an increase in paternal age leads not only to an increase in the total germline
mutation rate but also to a slight increase in the proportion of mutations in genic regions [38],
which should lead to shifts in the mutation spectrum[49]. More generally, it remains highly
unclear to what extent differences in mutation rates across populations or species can be attrib-
uted to changes in life history and behavior, in the development and renewal of germ cells, in
geneticmodifiers of mutation (such as enzymes involved in DNA replication and repair) [92,96],
or in the environment (such as temperature or the concentration of external mutagens) [97,98].

Next Steps

To predict the rate at which substitutions will accumulate from pedigree data is not as straight-
forward as it may seem. The main difficulty is that, although in some contexts, it is a useful
concept, there is in fact no such thing as a mutation rate “per generation”—all that exists is a
mean mutation rate for a given set of paternal and maternal life history traits, including ages at
puberty and reproduction. These traits are variable among closely related primates [28,29], and
heritable variation is seen even among humans [81,82]. Therefore, primate species are expected
to differ substantially in both the per generation mutation rate and the yearly mutation rate
(e.g., see Table S9 in [26]).

Indeed, phylogenetic analyses show that, over millions of years, substitution rates vary
>60% among distantly related primates [10]. The variation in substitution rates across pri-
mates and mammals appears to be smaller than that predicted from life history traits in extant
species, however [10,26,30]. A likely reason is that, throughout much of their evolutionary
past, the lineages had similar life histories. Direct surveys of de novo mutation rates in nonhu-
man primates are therefore needed to test whether the present-day mutation rates are more or
less similar to those predicted based on life history traits alone.

So far, the only direct estimate of mutation rate in a nonhuman primate is based on one
three-generation pedigree of chimpanzees [40]. The point estimate of the mutation rate at age
30 is higher in chimpanzees than in humans (Table 1), qualitatively consistent with an earlier
onset of puberty and faster rate of spermatogenesis [28,91]. Given the differences in detection
pipelines, random sampling error, and potential intra-species variation, however, these results
are still tentative. Both inter- and intraspecies variation in mutation rates need to be further
characterized in primates.

If mutation rates turn out to vary substantially across species, it will be interesting to exam-
ine whether they are well predicted by typical ages at puberty and reproduction. A positive cor-
relation of mutation rate per generation and generation time across species would imply that,
over evolutionary timescales, the yearly mutation rate is less variable than the mutation rate
per generation, contrary to what is usually assumed (e.g., [87,99]).
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If, on the other hand, despite clear differences in life history traits, the per generation muta-
tion rate across mammals turns out to be relatively constant, strong stabilizing selection or
developmental constraint must have shaped the evolution of mutation rates. A hint in that
direction is provided by recent estimates of mutation rates in mice, whose generation times are
on the order of months rather than decades as in apes, and yet whosemutation rate per genera-
tion is only about half that of humans [30,100]. It would follow that species with longer genera-
tion times will have lower yearly mutation rates, providing more direct support for the
“generation time effect” than can be obtained from phylogenetic evidence [23,83,87].

That yearly mutation rates are expected to be unsteady poses difficulties for the use of substitu-
tions to date evolutionary events. One solution is to explicitly model the changes in life history
traits over the course of primate evolution and to study their impact on substitution rates. To this
end, Amster and Sella (2016) [26] proposed a model that estimates divergence and split times
across species, accounting for differences in sex-specific life history and reproductive traits. A next
step will be to extend their model to consider replicative and nonreplicative mutations separately.
In addition, as more reliable estimates of mutational parameters become available from pedigree
studies of humans and nonhuman primates, models will need to be revised to account for differ-
ences in cell division rates and possible differences in repair rates. Unfortunately, however, some
uncertainty will remain due to lack of knowledge about life history traits in ancestral lineages.

An alternative might be to use only CpG transitions for dating. This solution is based on the
observation that CpG transitions accumulate in a quasi-clocklikemanner across primates
[10,84], as well as across human populations [94]. Puzzlingly, however, in human pedigree
data, there is no detectable difference between the effects of paternal age on CpG transitions
and on other types of mutations [15,46], suggesting that CpG transitions are no more clocklike.
In that regard, it will be highly relevant to compare accrual rates of CpG transitions in large
pedigree studies frommultiple primate species.

In addition to the use of pedigree studies, two other types of approaches have been introduced
recently to learn about mutation rates. The first is a set of ingeniousmethods that use population
geneticmodeling to estimate mutation rates based on segments of the genome inherited from a
distant common ancestor [101,102]. Unfortunately, thesemethods rely on a number of other
parameter estimates, including a demographicmodel (on which the times to the most common
ancestor are based), fine-scalemeiotic recombination rates, and, to obtain yearly rates, generation
times. A related idea is to estimate mutation rates from autozygous segments that descend from a
recent common ancestor that can bemore reliably inferred. This approach presents a number of
advantages, notably in minimizing the possible contribution of somatic mutations, but only pro-
vides a mutation rate averaged over both sexes and several generations [42,65].

It has also become possible recently to use reliably dated ancient DNA samples to estimate
average yearly mutation rates over different evolutionary periods.Here, the divergence from an
extant sample (e.g., human) to an outgroup (e.g., chimpanzee) is compared to what is seen
between an ancient genome and the outgroup. The “missing sequence divergence” then pro-
vides an estimate of the average mutation rate per year over that timescale. Applied to archaic
human samples from the past 50,000 years, this approach suggests yearly rates around 0.5 x
10−9 per bp [103]. As in the “tip calibration” approach for estimating the evolutionary rates
using sequentially sampled virus genomes or ancient mitochondrial genomes [104], the study
of many ancient human nuclear samples distributed across ancestral populations could, in
principle, serve as “spike ins” for the evolutionary clock, allowing one to adjust for changes in
rates over different time periods along a lineage.

Together, this combination of approaches will both inform us about how to reliably set the
evolutionary clock and provide a first direct look at the evolution of mutation rates.
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