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Downlink Non-Orthogonal Multiple Access

with Limited Feedback

Xiaoyi (Leo) Liu, Student Member, IEEEHamid Jafarkhanifellow, IEEE

Abstract

In this paper, we analyze downlink non-orthogonal multipteess (NOMA) networks with lim-
ited feedback. Our goal is to derive appropriate transmissates for rate adaptation and minimize
outage probability of minimum rate for the constant-ratéadservice, based on distributed channel
feedback information from receivers. We propose an efftciprantizer with variable-length encoding
that approaches the best performance of the case wheretpehfnel state information is available
everywhere. We prove that in the typical application witlo tieceivers, the losses in the minimum rate
and outage probability decay at least exponentially with thinimum feedback rate. We analyze the
diversity gain and provide a sufficient condition for the gtizer to achieve the maximum diversity
order. For NOMA withK receivers wher& > 2, we solve the minimum rate maximization problem

within an accuracy of in time complexity ofO(Klog%), then, we apply the previously proposed

arxXiv:1701.05247v2 [cs.IT] 24 Jan 2017

guantizers fork = 2 to the case oK > 2. Numerical simulations are presented to demonstrate the

efficiency of our proposed quantizers and the accuracy obitadytical results.
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X. Liu, H. Jafarkhani are with Center for Pervasive Commatians & Computing, University of California, Irvine, Ime,
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I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has received sigaift attention recently for its
superior spectral efficiencyl[1]. It is a promising candelfdr mobile communication networks,
and has been included in LTE Release 13 for the scenario clusgo downlink transmission
under the name of multi-user superposition transmissign TBe key idea of NOMA is to
multiplex multiple users with superposition coding at ei#nt power levels, and utilize successive
interference cancellation (SIC) at receivers with bettbarmel conditions. Specifically, for
NOMA with two receivers, the messages to be sent are supetpuash different power allocation
coefficients at the BS side. At the receivers’ side, the weakeeiver decodes its intended
message by treating the other’s as noise, while the straegeiver first decodes the message of
the weaker receiver, and then decodes its own by removingttter message from the received
signal. In this way, the weaker receiver benefits from lafgarer, and the stronger receiver is
able to decode its own message with no interference. Heheeverall performance of NOMA
is enhanced, compared with traditional orthogonal mudtiptcess schemes. It is shown|ih [3]
that the rate region of NOMA is the same as the capacity regiddaussian broadcast channels
with two receivers, but with an additional constraint thia¢ stronger receiver is assigned less

power than the weaker one.

There has been a lot of work on NOMA. Ini[1] arid [3], the authevaluated the benefits of
downlink NOMA from the system and information theoretic §y@ctives, respectively. NOMA
with multiple antennas was studied [n [4]. A lot of effort Hasen put into the power allocation
design in NOMA. For example, the authors in [5] and [6] anatyzhe necessary conditions
for NOMA with two users to beat the performance of time-dimsmultiple-access (TDMA),
and derived closed-form expressions for the expected ddé&s rand outage probabilities. In
[7], power allocation based on proportional fairness salied was investigated for downlink
NOMA. Transmit power minimization subject to rate congitaiwas discussed inl[8].

However, all the mentioned work on NOMA has assumed a pekrotvledge of the dis-

tributed channel state information (CSI) at the BS and &lgbographically-distributed receivers,
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which is difficult to realize in practice. Therefore, we cmles the limited feedback scenario
wherein each receiver only has access to its own local C®h filee BS to itself, and then
broadcasts its feedback information to the BS and otherivese[9], [10]. Under such set-
tings, interesting problems arise, for example: How to glesimple but efficient quantizers for
NOMA? What are the performance losses compared with theCill case? A user-selection
scheme based on limited feedback was studied in [11]. Ih, tt?] authors proposed a one-bit
feedback scheme for ordering users in downlink Massive-RMOMA systems, and derived
the achieved outage probability. In_[13], the authors datithe outage probability of NOMA
based on one-bit feedback of channel quality from eachvecend performed power allocation
to minimize the outage probability. Additionally, the ptelms of transmit power minimization
and user fairness maximization based on statistical C§ésuto outage constraints were studied
in [14]. In [15], the authors derived the outage probabilityd sum rate with fixed power

allocation by assuming imperfect and statistical CSI.

In this paper, we focus on the limited feedback design fortyipécal scenario of downlink
NOMA, where a BS communicates with two receivers simultaisgo[2]. Based on distributed
feedback and in the interest of user fairness, we wish to tteveninimum rate of the receivers
be as large as possible. To dynamically adjust the trangimisates for better channel utilization,
we propose a uniform quantizer which assigns each valus tefttboundary point and employs
variable-length encoding (VLE). Then, power allocationcalculated based on the channel
feedback. We calculate the transmission rates that candpoded by the current channel states,
and analyze the rate loss compared with the full-CSI scen&tie derived upper bound on rate
loss shows that it decreases at least exponentially witmimémum of the feedback rates. For
the constant-rate service where outage probability is tam moncern, we conversely propose a
uniform quantizer which quantizes each value to its rightrimary point. Through the developed
upper bound, we show the outage probability loss also deahysast exponentially with the
minimum of feedback rate. Additionally, we analyze the agbd diversity gain and provide a

sufficient condition on the proposed quantizer in order thi@ae the full-CSI diversity order.
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For the general scenario witk receivers, we solve the minimum rate maximization problem
within an accuracy of in time complexity ofO(KIog%), and apply the previously proposed
guantizers for the two-user case here by treating the quexhtthannels as the perfect ones. We
perform Monte Carlo numerical simulations to verify the sugprity of our proposed quantizers

and the accuracy of the theoretical analysis.

The primary goal of this paper is to study the impacts of gaatibn on the performance of
NOMA, and provide meaningful insights for practical lindtéeedback design. To summarize,

the main contributions of this paper are three-fold:

(1) We propose efficient quantizers to maximize the minimate in NOMA. The ideas of
our proposed quantizers and VLE as well as the designs feradaptation and outage
probability based on distributed feedback can be genexhlia many other scenarios, e.g.,
NOMA with other performance measures, the more generatf@rence channels, and so
on.

(2) Our theoretical analysis serves as a general framewaakalyze the performances of such
guantizers in NOMA and other scenarios. For instance, itlmarasily applied to study
the performances of other power allocation schemes in NOlgigetl on limited feedback,
i.e., [8], [6].

(3) We solve the minimum rate maximization problem for anyniver of receivers with linear

time complexity.

The remainder of this paper is organized as follows: In $acli, we provide a brief
description of the system model and formulate the probleninadfed feedback. In Sections Il
and IV, we propose efficient quantizers for rate adaptatiwth @utage probability, and analyze
the performance loss. We extend our proposed quantizeteetgdaneral case with any number
of receivers in Section V. Numerical simulations are preddn Section VI. We draw the main
conclusions and summarize future work in Section VII. Tecainproofs are presented in the

appendices.

Notations: The sets of real and natural numbers are representeg bpd 9/, respectively.
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Y Receiver 1
. Y
Receiver 2

Fig. 1. Downlink NOMA networks. The solid and dashed linggresent the signal and feedback
links, respectively.

For anyx € ®, |X| is the largest integer that is less than or equal to x, aqds the smallest
integer that is larger than or equal*oPr{-} andE|-| represent the probability and expectation,
respectively. For a random variable (r.X) fx(-) is its probability density function (p.d.f.).
CN(u,A) represents a circularly symmetric complex Gaussian r.th wieanu and variance
A. For a logical statemersiT, we let sy = 1 whenST is true, andli; = O otherwise. Finally,

the expressiolX ~y Z means < Iimyﬁmé < 0,

[I. PROBLEM FORMULATION
A. System Model

Consider the downlink transmission in Fig. 1, where a BS isransmit a superposition of
two symbols to two receivers over the same resource blocth B8 and receivers are equipped
with only a single antenna. According to the multiuser sppsition transmission scheme [2],

the transmitted signal is formed as

X=/Pis1 + VP,

wheres is the information bearing symbol for Receiviewith E[s] = 0 andE [|s|2} =1 for
each channel state (the expectation is over all transm#tyeabols);R, is the average transmit
power associated with. Let P =P, + P, be the total transmit power, ard = % be the power

allocation coefficient, therfy = aP andP, = (1—a)P with 0 < a < 1.
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Denote byh; ~ CN(O, A;) the channel coefficient from the BS to ReceiveWithout loss of

generality, assum#; > A,. The received signals at Receivers 1 and 2 are respectinan gy

yi=MvVPisi+hvPs+n, Yo =hoy/Pisi+ hov/Pos; + 1y,

wheren; ~ CN(0,1) represents the background noise. Egt= |hi|2, then, the p.d.f. oH; is
A
fu, (X) = e;f for x > 0OlJ We assume a quasi-static channel model, in which the chavaey

independently from one block to another, while remainingstant within each block. Either
receiver is assumed to perfectly estimate its local CSI, i@, and send the associated quantized
local CSI to the other receiver and the BS in a broadcast mmanaeerror-free and delay-free
feedback links[[16],[[17].

With SIC, the stronger receiver with better channel coodit{i.e., largerH;) first decodes
the message for the weaker receiver, and then decodes itsaftemremoving the message
of the weaker one from its received signal; the weaker recanith poorer channel condition
directly decodes its own message by treating the messageeodttonger one as noise [18],
[19]. Specifically, wherH; > Ho, the rate for Receiver 2 (i.e., the weaker one) to decdey

treatings; as noise is

PHx(1—a)
aH,P+1 /)’

r2(a) =log, (1+

which is not larger than the rate for Receiver 1 to decgdgiven as'1-,» =109, <1+ P;*,},ﬁ,;‘?)

If s is transmitted at the rate of(a), Receiver 1 can decodg successfully with an arbitrarily
small probability of error[[20]. Afterwards, Receiver 1 a@moveh;/P>s, from y;, and achieve

a data rate fos; as
ri(a) =log, (1+aPH;i).

On the other hand, whed; < Hy, Receiver 2 first decodes, removesh,/Pis; from y,, and

IThe results in this paper can be trivially generalized taepitiistributions ofH; and H.
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then decodes,, while Receiver 1 decodes directly by treatings, as noise.

B. Maximum Minimum Rate

Our goal is to maximize the minimum of(a) andr,(a) to ensure fairness between receivers
[10], [21]. When perfect CSl is available at the BS and reeesythe optimal power allocation
coefficienta* can be found by solving the optimization problemyy= 0r<na<xlmin{r1(a), ra(a)},

<as<

the solution of which is given in the following theorem.

Theorem 1. When H > H,, the solution of0r<na<xlmin{r1(a),r2(a)} is given by
<a<

a* = 22 (1)

V/(H1+Ho)2 4 4HIHZP + (Hy + Hy)

Proof: Notice that witha increasing from 0 to 1r1(a) increases from O to lggd1+ PHj)
andry(a) decreases from lggl+ PHy) to 0. Since log(1+PH;) > log, (1+PH,), the max-
imum minimum rate is reached when(a*) =ry(a*), from whicha* in (D) is derived. =

The expression ofr* whenH; < H, can be obtained straightforwardly. It is found from (1)
that: (i) Both messages attain the same rate at optimabtyri (0*) =r(0*) = rmax. Moreover,
it can be verified that the rate pairy (a*),r2(a*)) is on the rate region boundaries of both
NOMA and Gaussian broadcast channels with two receivergilBWhenP — 0, a* — %
in which case the power assigned to the stronger receivarpsoportion to the channel quality
of the weaker one; wheR — o, a* — 0, then, BS should allocate almost all the power to the
weaker one. (ii)a* > % Generally, NOMA steers more power towards the weaker veceo
balance their transmissions.

It is also worth pointing out thatr* in () satisfies the requirement for power allocation
considered in[[6] and [5]: the achieved individual rate dtlaxceed that in the TDMA scheme,
ie.,ri(a*) > %Iogz(1+ PH;) for i = 1,2. Therefore, the maximum minimum rate we consider

in this paper achieves higher rates in addition to bettendsis between receivers.

With perfect CSI, the decoding order is determined based betlverH; > H, holds. The
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maximum minimum rate is

|092 1+ 21 AP ) Hl > H27
V/(H1+H2) 2 +-4H HZP+ (Hy+Hy)

(2)

Mmax =

log, [ 1+ 2H; HoP ., Hi<Hy,
V/ (HitH2) 2H4H2HoP -+ (Hy +Hp)

and the outage probability of minimum rate is

oUtmin = Pr{rmax < rn}, (3)

wherery, is the data rate at which the BS will transrsitands, for every channel state.

C. Limited Feedback

In the limited-feedback scenario, for an arbitrary quatg: ® — ®, Receiveri mapsH; to
g(Hi), and feeds the index @f(H;) back to the BS and the other receiver, as shown in Fig.1. The
index ofq(H;) is decoded and the value qfH;) is recovered. The decoding order will be con-
tingent on whetheq(H1) > q(H>). For instance, wheq(H1) > q(H2), Receiver 1 is considered
“stronger”, while Receiver 2 is “weaker”. In this case, thenygr allocation coefficient is com-
puted based ori{(1) by treatingH;) asH;, i.e., aq = 24(Hy)

V/(a(H1)+a(Hz))*+4a(H1) P (H2)P+a(H)+a(Hz)
For rate adaptation, we shall design appropriate natgsandr, 4 for the messages, ands,

based on limited feedback from the two receivers, suchrthataindr, 4 can be supported and

NOMA can be performed. The corresponding rate loss will be

MNoss = max— Min {rl,q, r2,q} ’

wherermax is given in [2).
For a constant-rate service, we care more about whether ufrent channels are strong
enough to support target data rate with the power allocatmefficient computed based on

limited feedback. The achieved outage probabilitpisq = Pr{rq < ru}, where

fq=min{ry (dq).r2(dq)



qr(x1) X1 qar(x2) X2

A A N

0 A 2A 3A TA

Fig. 2: A uniform quantizer for minimum rate.

_ PHy(1-
min< log, (14 P x ag x Hi) ,10g, (1-|— #ﬁ) , d(H1) = q(Hz),

o . PHy(1—
min< log, <1+ %qfi)) Jogy (1+PxagxHa) ¢, d(H1) <q(Hy),

The outage probability loss is given as
0ut|ossq — Outmin - Outq (4)

In the subsequent sections, we will propose efficient gaargiand investigate the performance

losses brought by limited feedback.

[1l. LiMITED FEEDBACK FORMINIMUM RATE

In this section, we first describe the proposed quantizenvihhe minimum rate is the concern,

then, we show the relationship between the rate loss andettabéck rates.

A. Proposed Quantizer

We consider a uniform quantizef : ® — R, given bH

L%J x A, X<TA,
TA, x> TA,

0 (X) =

where the bin sizé\ and the maximum number of bink € A_ are adjustable parameters. As
shown in Fig. 2,q,(X) quantizesx to the left boundary of the interval whereis. For any
x € [nA, (n+1)A) when 0< n<T -1, we haveq(x) =nA andx—A < g (x) < x; for any

X e [TA,»), g (X) =TA and g (X) < X.

2In qr, “q" stands for quantizer, and the subscript fepresents rate.
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B. Rate Adaptation and Loss

Whenq; (-) is employed, Receiver 2 is viewed as the “weak” receivey, ifH1) > g, (H2).

Then, according td_{1), the power allocation coefficiemt is calculated as

2 (Hy) H1) > 0,qr (H2) > 0
Qg = { V10 (H)0k (Ho) 40, (H) P (Ha) P+ [ar (o) (Ha)]  (Fa) = 0. (Fz) = 0.
07 ql’ (H].) = O or ql’ (H2> = 07

Qr(HZ)X(l—aqr)
aqr XQr(Hz)‘i‘%
the channels as much as possible, we let the BS send messaaess, at rates of

Px g (H2) (1—ag,)
P o (He)lg, + 1 ) ®)

which satisfies log(1+ P x ag, x or (H1)) =log, (1+ ) whenag, # 0. To exploit

rig =100, (1+ Pxag x o (Hl)) M2 =100, <1-|—
Lemma 1. When ¢(H1) > or (H2), the rates {4 and g in (8) can be achieved.

Proof: Based on the channel coding theorem! [20], if we can show tlaarei capacities
for s; ands, under the settings of NOMA are no smaller thar, andr, g, the rates; o, and

r>q can be achieved with a probability of error that can be madérarily small.

When g (H1) =0 orgr (H2) =0, it is trivial to verify thatriq andrpq can be supported.

When gr (H1) > or (H2) > 0, the channel capacity for Receiver 2 by treat®gas noise is

r, = log, (1+ M}) > log, <1+ M) =raq, Since log <1+ ’ié—f'_f)) is an
P

agr XxHa+5 Ogr X0 (H2)+,3
increasing function ofx and g,(H2) < Hz. At the side of Receiver 1, the channel capacity

i i i i — Hi(1—-aq) 0 (H1)x (1-agq)
of s, with treatings; as noise isr1_,» = log, (1-|— aq,><H1+é> > log, <1+—aq,xqr(H1)+é ) >

log, ( 1+ Mﬂ_a“&) =Tr2q, becaused; > qr(Hy1) > or(Hz). Hence,s, can be decoded at
age X0 (H2)+5 o

Receiver 1 with an arbitrarily small error and removed frgmAfter that, the channel capacity

of s is ry =log, (1+P x ag x H1) >10g, (1+P X ag x g (H1)) =r1q4. Therefore, the rates

rig andrpq can be achieved for both ands;. [ |
To sum up, it is the key fact of(x) > x that ensures the ratesq androq in @) can be
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supported. Wher(H1) > gr(H2), the rate loss is defined as

MNoss= max— MiN{r1q.,r2q }-

Lemma 2. The average rate loss of the quantize(-¢jis upper-bounded by:

_Ta
Elrosd < log, <1+Co x P x max{e M ,A}) , (6)
where @ is a positive constant that is independent of Rand A.

Proof: See Appendix A. [ ]
We mainly focus on showing how the average rate loss changestie bin sizeA. It is
beyond the scope of this paper to find the tightest bounds,the smallest value fo€y. A
value forCq which is derived from the proof in Appendix A Sy = max{4-|— %,)\2}.
It is observed from[(6) that whem_% > A, the maximum number of bing,, can degrade the
rate. To eliminate this effect, we choo$esuch thalef% = A, which yieldsT = % Iog% With
an appropriate value fof, we can make the rate loss decrease at least linearly wiplece$o

A.

Corollary 1. When T= %Iog%, the average rate loss of the quantize(- is upper-bounded

by:
Elrosd <100, (1+Cox P xA) <Cp x PxA, (7)
where @ and G are positive constants that are independent of P And

C. Feedback Rate

Rather than the naive fixed-length encoding (FLE) for feelhaformation which requires

[10g,(T +1)] bits per receiver per channel state, we consider the mogeeffivariable-length

3Approaching the performance in the full-CSI case generafyuires a small value fak. We mainly consider the case where
A <1 in this paper.

11



encoding (VLE) [17], [[ZQH An example of VLE that can be applied herebis= {0}, by = {1},
b, = {00}, b3 = {01} and so on, sequentially for all codewords in the{€etl,00,01,10,11,...},
whereby, is the binary string to be fed back whepn(x) = nA. The length ofb, is |log,(n+2) .
The following theorem derives an upper bound on the ratewassrespect to the feedback rate

of Receiveri (denoted byR: vLE ).

Theorem 2. When variable-length encoding is applied to the quantizér) gthe rate loss decays

at least exponentially with the number of feedback bits:
E [rloss] < |ng <1—|—C2 « P x 2—min{Rr.VLE.l7Rr,VLE,2}> <CaxPx 2—min{Rr,VLE,17Rr,VLE,2}, (8)
where G and G are positive constants independent of P ang/(R ;.
Proof: The feedback rate of Receiveis derived as
T-1 (n+1)A o
= 3 loga(n+2)] [ fu (HdHi+ Llog(T+2)] [ (H)c
RrVLE,i n;)t 9(n+2)] " Hi (Hi)dH;i + [log, (T +2) | _ H; (Hi) dHi

) (n+1)A
< 3 llogs(n+2) L fHk

Hi

% (M1 o &
<3 logy(n+2) / dH;

=0 ———~——"JnA i

<log,(n+1)+1

S e (1-e 7 ) xI N+Y 1 (mme_;idH
<SYelr|l-et|xlog,(n+1)+ x/ :

n;) ( ) 92( ) nZO nA )\i JI

=1

A\ &2 m AZ m
=1+ (1—e Ai) %e A ><Iogz(n+1)§1+}\—i %e A xlogy(n+1).

n= n=

_ ) _A
With the help of [17, Eq.(22)]3 >, e P"log(n) < % [Z—I—Iog (1—1—%)] by lettingB =e 4,

4For example, whelh=0.01 andA; =1, T = A Iog% ~ 4605. When FLE is adopted, the feedback rate per receiver will be

[log,(T +1)] = 9 bits per channel state. As shown by the theoretical aisaysd numerical simulations later, VLE will cost
far fewer bits.
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we have

[ee]

nA © nA
Z)eﬁﬂ_i xlogy(n+1) = % e % xlogy(n+1)
=1

n—=

A

i 2 _m 1
= Ao | < —
Iogzn;e x log(n) < ,\Ai

i+Io 1+1
log2 0% N

2 1
Roviei < @+1+|092 <1+ Z) , 9)
Aj

Then, R vLg,i is upper-bounded Hy

or equivalently (wherRy_g ; is sufficiently large),

Ai Ai

A< ; < — =Cyx 2 Rvei, (10)
oRviEi~1-fg2 _ 1 ZR.VLE.i—Z—m
Substituting [(ID) into[{7) proves the theorem. [

Therefore, we can see that appropriate valuesTf@and the use of VLE enable the rate loss

to decrease at least exponentially with the feedback rate.

IV. LIMITED FEEDBACK FOROUTAGE PROBABILITY

Outage probability is an important performance metric tbadluates the chance that the
channels are not strong enough to support the constantiatdeservice [23]. An ideal quantizer
for outage probability should have at least the followinggmrties: (i) The outage probability
loss should decrease toward zero when the feedback ratases toward infinity. (i) The outage
probability loss should approach zero wheneRer> O or P — 0. The intuition of (ii) comes
from the fact that wher® is adequately small, the outage probabilities of both thieG&I case
and the quantizer should be close to one; wRas significantly large, both outage probabilities

should be almost zero. Then, the outage probability logsé®ih scenarios go to zero.

5Although it is intractable to derive a closed-form expressfor RrvLE i, the upper bound if]9) provides a good estimate
on how many feedback bits will be consumed.
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X1 go(x1) x %1}62) X3 4o(x3) qo(xa) x4
| \( | \ _________ \/\/ L >

0 A 2A  3A TA (T+DA

Fig. 3: A uniform quantizer for outage probability.

A. Proposed Quantizer

As portrayed in Figl13, the uniform quantizer proposed fotage probability is given by

[X] x4, x<TA,
(T+1A, x>TA

do(X) = (11)

The only difference betweegy(-) andq,(-) lies in whether the left or right boundary of the
interval is used as the reconstruction point. The quanpizeposed for rate adaptation cannot be
directly inherited because when the channel is very weak Hl; < A), it will be quantized as
zero (i.e.,gr(Hj) = 0), which will result in a zero-value power allocation coeifint, i.e.qq =0,
and a minimum rate of zero, i.ety (ag) =0 or ro(ag,). In this case, the transmission will
surely encounter an outage. However, even a weak chaneevesshe possibility of non-outage,
so long as the transmit powexis large enough. Therefore, an appropriate quantizer ftagsu

probability should not quantize any value to zero. The gaanin (11) fulfills this requirement.

B. Outage Probability Loss

Lemma 3. The outage probability loss of the quantizey(q is upper-bounded by:

6 1++P
P

Out|ossqo S C5 xe P X

1 3 _TA
X max{A?,Ai,e M }, 12)
where g and G are positive constants that are independent of P And

Proof: See Appendix B. [ ]
Different from the rate loss which increases linearly inmsrof P, because of the term
C
e P x 1+—Pﬁ, the upper bound olut|essq, in (L) converges to zero either whéh— 0 or

P — .

14



To have good performance, we mainly focus on the quantizéhssmall granularities. When

A<1, we haveA3 < Az and the upper bound in_(112) is restricted by n{@( A Az}. For

TA
fixed A, the optimal choice foll should satisfye *1 = Az given by T = M IogA
Corollary 2. When0O<A<land T= %Iog%, the average rate loss of the quantizey-q is

upper-bounded by:
¢ 1++P

outjossg, < Csx € P X b X A%, (13)

where @ and G are positive constants independent of P and

C. Feedback Rate

The same VLQ for rate adaptation can be appliegyto) for a better utilization of the feedback

resource. From {9) an@ (110), we obt&gv £ i < |ogz+1+|092 (1+ A) andA < Cy x 2~ Rovies,

m'n{Ro VLE, 1 RoVLE 2} .
Thus, AZ < 4/Cy x 2 Roviei = Cy x <C . The following theorem

states the relationship between the outage probability dds|(-) and the feedback rates.

Theorem 3. When variable-length encoding is applied to the quantizér)gthe rate loss decays

at least exponentially as:

e 1++P o min{RoA,VLE,zl:Ro,VLEA,Z}

Outiosgg, < Cg X € P X P , (14)
where G and G are positive constants independent of P ang/R ;.
D. Diversity Order
With an outage probabilitput, the achieved diversity order is given ds=limp_,« '?gg‘;f

[23]. The following lemma shows the achievable diversitgarofqgy(-) and a sufficient condition

to achieve the maximum diversity order in the full-CSI saena

Lemma 4. (1) With () and fixedA, the diversity orders of% and 1 are achievable for

Receivers 1 and 2, respectively.
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(2) A sufficient condition for both receivers to achieve the maxn diversity order of 1 is

A ~p P73,

Proof: See Appendix C. [ |
In the full-CSI case, both receivers can achieve the sanergsity order of 1 as in the case
when no interference exists. In the limited feedback casean be found from the proofs in
Appendices B and C that the cause of this insufficient dityeesider for Receiver 1 comes from
the marginal region when @ H1,H, < A. Therefore, an adequately smAllthat scales at least
in proportion toP~3 in the highP region is desired to diminish the probability thdt falls into

that region so as to obtain the maximum diversity gain.

V. EXTENSION TO MORE THAN TWO RECEIVERS

A. Full-CSI Performance

In this section, we consider NOMA with more than two downliglceivers. Assuming perfect
CSI universally available and; > H, > - -- > Hk, the maximum minimum rate can be obtained
by solving the optimization problem:

K
max=  Max min rg(a), subject to O0< oy < 1, Z ag =1, (15)
a=[ay,...,ax] k=1,...K &

whereK is the number of receivers, amg(a) = log, <1+ Eklg’%) is the achieved rate for
i=1 9T pH,

Receiverk under superposition coding and SIC. To the best of our kndgdeno closed-form

solution forrmay is available in the literature. We present the following teenthat helps solving

the above optimization problem numerically.

Lemma 5. There existex* = [a7,03,...,ak], such that all receivers achieve the same rate at

optimality, i.e., max=r1(@*) =ro(@*) =--- =rg (a*).

The proof of Lemma 5 is given in Appendix D. SinGgax= rk (a*) = log, (1+ —%)

T
21 07+ PR
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for k=1,...,K, we haveay = (2'm>—1) x (z{‘;ll ai + Pin> which leads to

o = (2™ 1) (16)

—— 4 (2'max_ 1] _— .
PH +( )i; PH;
To find ap, we need to solve formax first. Summing both sides frork=1,...,K and after

trivial calculations, we obtain

K 2(K—i)rmax

K
Y of =1=(2m=-1) (17)
k=1

(.

-----

of x as well asw(0) < 1 andw(ryp) > 1, we could use the bisection method to find the root of
@(X) =1 in the interval(0,ryp). The calculation ofw(x) costsO(K), thus, the time complexity

of finding rmax Within an accuracy o€ is O (Klog1).

B. Limited Feedback

Under limited feedback, the previously proposed quargige(-) andqgoe(-) in Figs. 2 and 3
can still be applied here for rate adaptation and outageaibty, respectively. The maximum
minimum rate can be calculated using the bisection methodrdating g, (Hk) or go(Hk) as
Hy, and the corresponding power allocation coefficients caldmputed. Although it is non-
trivial to derive upper bounds on the losses in rate or ougagbability for K > 2 theoretically,
numerical simulations in Section VI show that the relatlops between the performance loss

and the feedback rate are similar to the cas& ef 2.

VI. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section, we perform numerical simulations to vatiédidne effectiveness of our proposed

guantizers for rate adaptation and outage probability.llirsEbsequent simulations fdf = 2

5Note that[[24] has solved a different optimization problém, maximizing the sum rate subject to a minimum rate cairsty
which satisfiesy|_; a = 1 but results in differentys.
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. ] o Fig. 5: Simulated rate losses versus {aand
Fig. 4. Simulated minimum rates of NOMAy,) min{R.vie.1,Rvie2} for P=10 dB.

receivers, we assume the channel variances\atel andA, = 0.5. Results for other values of
A1 and A, will exhibit similar observations. For outage probabilispfficiently large number of
channel realizations are generated to observe at leasDlf@@ge events.

In Fig.[4, we simulated the minimum rates of the full-CSI ¢ag¢-) and the TDMA scheme
(where each receiver occupies half of the time to transmii@. observe that the proposed
guantizer with NOMA outperforms the TDMA scheme wh&nr= 0.01 and 005. The rate loss
between the full-CSI case argl(-) with A = 0.01 is almost negligible. The corresponding values
for T = %Iog% and the feedback rates for both receivers (bits/per chastagd) are listed in

Table I. TABLE |: Feedback rate for either receiver.

A | T |[logy(T+1)] | Receiver 1| Receiver 2
0.01| 461 9 5.3 4.6
0.05| 60 6 3.6 2.7

Compared with FLE which costdog,(T +1)] bits per receiver per channel state, VLE can save
almost half of the feedback bits.

In Fig. 3, we plot the rate losses ¢f(-) for different values ofA and the feedback rates
R.vLe1 andR v g 2. It shows that the rate loss of () decreases at least linearly with respect

to A and exponentially with milﬁRnVLE?l, Rr,VLE,z}. which validates the accuracy of our derived
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Fig. 6: Simulated outage probabilities o

NOMA. 'izlg. 7: Simulated feedback rates verss

upper bounds il (7) andl(8). In addition, Hig. 5(a) shows thateds to be less thanl® such
thatg(-) can obtain a higher rate compared with the TDMA scheme.

In Fig.[8, we compare the outage probabilities of the fulll€&se,qo(-) under various values
of A and the TDMA scheme. It can be seen that: (i) The curvegfgr) with A =0.01 almost
coincides with that of the full-CSI case. (ii) Whéhis large,qo(-) with A = 0.2 suffers from an
insufficient diversity gain in the higR-region. According to our analysis in Lemma&= 0.2
is large enough not to scale wiFPr%H (i) Although the maximum diversity order is achieved
whenA = P*%, much less array gain is obtained in the lower and medituragions (where\
is large). AlternativelyA = min{0.2, P_%} will reserve both benefits of the maximum diversity
order brought by:’*% and the higher array gain &= 0.2[9 The comparison of feedback rates
for VLE and FLE (which require$log,(T +2)] = [Iogz <A—zilog% +2ﬂ bits per channel state)
under different values oA andP is shown in Fig[l7, which verifies the superiority of VLE. It
can be seen that the feedback rates/fet min{O.Z, P*%} stay flat in the low and mediur-

regions (since @ < P*:%). When P~3 < 0.2 whereP > 20.9 dB, the feedback rates start to

"The value (01 for A will also exhibit an insufficient diversity order as long Bss large enough, although we might not be
able to observe this in the region Bf< 30 dB in Fig.[.

8We also observe a similar effect Afon the achieved minimum rates, but we mainly elaborate it utage probability.
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increase a4\ gets smaller.
In Fig.[8(a), the outage probability loss decays at leaghlity with respect td; in Fig.[8(b),
the outage probability loss approaches zero whenBver0 or P — ; in Fig. [d, the outage

probability loss decays at least exponentially WE?W{RO’VLEZ’LRO’VLEQ}. All these observations

validate our theoretical analysis.

In Figs.[10 and_11, we simulated the rate and outage probalkses for more than two

20



receivers. For Receivdl, the channel variance is set to g = % the maximum number of
bins T for gr(-) and go(+) is T = %Iog%, and the accuracy used by the bisection method is
€ =104 We simply treat the result of bisection method based orepe@SlI as the “full-CSI”
performance. Compared with Fidd.[3, 8 ddd 9 Koe 2, Figs.[T0 and 11 exhibit very similar

relationships between the losses andr the feedback rates.

VII. CONCLUSIONS ANDFUTURE WORK

We have introduced efficient quantizers for rate adaptatimhoutage probability of minimum
rate in NOMA with two receivers. We have proved that the Iggserate and outage probability
both decrease at least exponentially with the minimum of feeddback rates. Furthermore,
we generalized the proposed quantizers to NOMA with any rermab receivers. The limited

feedback design for the MIMO-NOMA networks will be an intstiag future research direction.

APPENDIX A: PROOF OFLEMMA 2

To clarify, the notatiorD; for i € IN represents a positive constant independer®, dfandA.

The average rate loss gf(-) can be expressed as

2 2
E[llosd :/ rIossl_! fu, (Hi)dH; ‘|‘/ rIossl_l f, (Hi)dH,
fhz i= J ¥5‘[07< i= B

=E>[losg =E<[os

where #Hy > = {(H1,H2) : qr(H1) > ar(H2)} and #o - = {(H1,H2) : ar(H1) < or(Hz2)}. We will
TA
only ShowE: [rjosd < l0g, (1+ Do x P x max{e_M,A}) , and skip the proof foE. [riosd due

to similarity. Note thaig, (H1) > gr(H2) does not necessarily me&h > Hy, since it is possible
that q;(H1) = gr(H2) andH1 < Ho. Wheng,(H1) > gr(H2), define
a*Hy = g>(Hy,Hz), if Hy > Hy,
SNfmax =

a*Hy = g-(Hy,Hz), if Hy <Ho,
2= 0<(H1,H2) 1<Hz (18)

snrq, = Oq, X 0r(H1) = 0> (o (H1),ar(H2)),

sn r|oss =sn rmaX— sn rqr .
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2xy 2xy
and g« (x,y) =
V (xHY)2H4xy2P+xty 9<(xy) V (XHY)2+4x2yPxt+y

log, (1+ P X snrmax) —10g, (14 P x snrq, ) =l0g, (1+ P&> <log, (1+ P x snrjess). Grounded

where g> (X,y) = . Then, we have|gss=

1+Pxsnrq,

on this, the main steps of the proof are listed as follows:

(1) Partition#g > into the following mutually disjoint sub-regionsy, ..., #a:

1 = {(H1,H2) : ar(H1) > ar(H2),H1 < TAHy < TA/Hy <A or Hy < A},
9o = {(H1,H2) 1 or(H1) > qr(Hz2),H1 > Hz, A< H; < TA A< Hz < TA}
3 = {(H1,H2) 1 or (H1) = qr(Hz2),H1 < Hz, A <H; < TA A< Hz < TA}
Hy = {(H1,H2) : or(H1) > ar(H2),H1 > TA or Hy > TA}.

Here, 74 and 7 are edge regions wheig < A or Hj > TA; 75 and 73 are the dominant
regions wheré < H; < TA. It can be verified thatf N #j = 0 fori # j, and#p > = Ui4:17'4

(2) Leté& = [, snrioss[121 fr (Hi)dHi. Then Ex [snriosd = 31t 1 &. Proved; < Dj x max{e}f,A}
fori=1,...,4.

(3) After Steps (1) and (2), we obtaf} [snrjosd < Do X max{e%,A}. Based on Jensen’s

inequality, we have
_TA

Now, we only need to show the upper bound&rin Step (2).

For &1, since#y C {(H1,Hy) : Hy <A} andsnrigss < snrmax < Hi, we obtain
H

Aa A A A
© dezz)\l(l—e Az) <Aux 2 =Dixd,

& <
1= 0 A2 2

where the last inequality follows since-1e * < x for x> 0.

For &>, sinceH; > Hy andq, (Hi) < H; < g (Hj) +A for Hi < TA, we upper-boundnrisss by

2H;H,
SNfloss = >
V/ (H14 Ha)? + 4HiHZP+ (Hy + Hy)

~~

=Y
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20 (H1) or (H2)
\/[qr (H1) + ar (H2)]” + 40y (H1) 62 (H2) P+ [ar (H1) + o (Ho)]

(. J/

SY—F?‘EH-HZ
< oMo —ar (M) G (Ha) _ jHhiHo—(Hi—A)(Ho—4) o \FhitHo—A )\ g
Y+Hi+Hp Y+Hi+H; Y+H1+Hz

Then, an upper bound afp can beé < 2Af%é |‘|i2:1 fu, (Hi)dH; < 2A =Dy x A.

For &3, we haveg, (H1) =g, (H2) <Hj < Hz andg, (Hi) < H;i < g (Hi)+A hold for (H1,H>) €

Hs. Similar to [19), we can also obtainrgss < 2A and &3 < D3 x A.

For &4, since #Hy C {(H1,H2) : Hy > TA} and snripss < snrmax < Ha, the upper-bound o}

can be
_h _H
o 0 ©a Ay © a i _Ta _1a
@@43/ le(Hl)dHl/ HszZ(Hz)dHZ:/ dHl/ HyS " dHy — Aoe 7 —Dyxe .
TA 0 ™™ A1 0 A2
We have accomplished Step (2) and the proof_df (6) is complete [ |

APPENDIX B: PROOF OFLEMMA 3

When the uniform quantizey,(-) is applied, the outage probability loss [d (4) is rewritten a

2 2
outjossg, = /Io.> 1min{r1(aqo)7r2(aqo)}<rth il:l fh, (Hi)dH; +/Io.< 1min{r1(aqo)7r2(aqo)}<rth il:! fr, (Hi)dH;.

-~ -~

=out> lossqo =out . ossqo

where
Io> = {(H1,H2) 1 ar(H1) > 0r (H2), rmax= 100, (1 + P X snfmax) > 't}
= {(Hl,Hz) 0 (H1) > G (H), snrmax> & = Zrﬂfo_l},
Io.< = { (M1, H2) 0 (Hy) < 6 (Ha), snrmax < B }.

- . . D% 1P —2 1 a3
andsnrmay is defined in[(IB). We showut> jossg, < D5 x € P x =5~ xmaxq e *1,Az A2

and skip the proof fobut . ossq, due to similarity. The main steps of the proof are:
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(1) PartitionIp > into the following mutually disjoint sub-regions:

n= {(HLHZ) 2O
= {(H.Hz)
3= {(Hl,Hz) yoh
Iy = {(Hl,Hz) o"
Is = {(Hl,Hz) ot

1

1

T

1

1

H2),snrmax > g7H1 <AH; <A}7

_QQ

r(
r(H2),snfmax= g>(H1,H2)

(
o (H2 H1<Hz,g<<H1,Hz>z%,A<HlsTA,A<H2sTA ,
1) > G (Ha), snrmax > &, Hy > TA or Hp > TA}.

)= )

) > cr(Hy) > BA<HISTAH <A},

) > qr(Ha),H1 > Ha, 05 (H1,Hp) > B A < H < TAA<H, <TA
)= ),

) = )

W—’W—’

Here, 11, L and Is are the marginal regions whetd < A or H; > TA; I3 and I are

the main regions wheré < H; < TA. It can be verified that; N 7; = 0 for i # j, and

Io> = Uy b
(2) Let .% = fli 1min{rl(aqo)7r2(aqo>}<|'th |_|i2:l fu, (Hi)dH;. Then, out> jossg, = lezl‘% Prove
D2i —Ta :
Fi <Dgiysx € F° x ”Tﬁ X max{e N ,A%,A%} fori=1,...,5.
Now, we need to show the upper bound & in Step (2).
For .71, we haveqge(Hi) = do(H2) = A > Hy, and thusag, = VPA1+1+1 < \/PH21+1+1' For any

(H1,Hz) € 1, sinceg=(x,y) < min{x,y} andg-(x,y) < min{x,y}, it must haveg < shrmax <

min{H1,H,}. Moreover, we obtairl,;ym{rl(aqo)7r2(aqo)}<rth < 1r1(orqo)<rm +1rz(aqo)<rm’ and
1rl<a%)<rth - H1><qu<g - 1H;|_<[3’7‘PA;]'H'7
1 =1 (14 <1 =1 2.5
|'2<quo)<|’th E"(Zlmbq*ol) <g 2<17 \/PH21+1+1> <E H2<%
PHZX\/TTMH P
Thus, an upper bound of; is
2 2
91_/ L, gz r!fH JaHi [ 1, e Df i (Hi ) dH
pUPES o il g iy T; N rz L
</ HydH;
: w
¢ ¢
e M VPAFI+1 B] 1 B] 1 Bl e’ [B?>+28 B
< —Tix=x|[A-E|l+=x|A-% —=
—Alx{ﬁ P P}X/\zx{ =] Vel =] Ry Vol - =
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<VPBh+1

-£ VPA+T 1 1 + B2+
1 e A~
< Al x A4 — x A
e VAL R el WAL WAL ol Pl
pg  PA+1 D A
§D17xe_%8XT+XA+D19XE_%XE. (20)

For %, let 7, = flefi(aqo)<fth|_|i2:1 fu, (Hi)dH; for i = 1,2. Then, %, < %1 + F2,. For

F21, sinceH; > Hy for (H1,Hy) € 1, andg=(x,y) is increasing orx andy, we have

1 (0go) <rin — L 241 0(Hy) <8

V/[ao(Hy)-+ao(H2)]*+4d0(H1 ) (Hz) P+ [do(Hy ) +do(Hy)]

< 1 2(qo(H1)—A) xqo(Hp) <g - 192 (QO(Hl),CIo(HZ))<g>< — 1A (21)
V/[a0(Hy)-+ao(H2)]*+4q0(H1 ) (Hz) P+ [do(Hy ) +do(Hy)] Go(Hy)

<1 <1 22

= 70> (o(Ha) do(H2)) < B (1+ qof‘ﬁ.l)) = 702 (Go(H1).Go(Ha)) < § x (HWzﬁz)) (22)

< <

- 192(Qo(H1)7Qo(H2))<g>< <1+H%) - 192(H17H2)<g X (H%) ’ (23)

where [21) follows fronge(H1) < Hi+ A, (22) follows from (1— ﬁ) (1+ NCH )> > 1 be-

causedo(H1) > 2A > go(H2) = A, and [238) follows fromge(Hz) > Hz andg: (do(H1), Go(Hz)) >

2 T

0> (H1,Hz). Then, we obtain, 1 < fz—lzﬂ{(H17H2):92(H1,Hz)<§x(1+H—2§>} Mi=1 fr (Hi)dH;.
We change the integration variables fraidy, Hz) to (@,H2) where ¢ = g=(H1,H2). Then,
Hy = q|)_|2P+§0 Hy| _ 2gPHpiHp—@PP |y - 20PHp+Hp Hy <
2—@ -

dq) (HZ*(P) 2= (Hzf(p)2
%H_Z x Hy = (Spi(p)l% x H3. For any(H1,Hy) € I, we have: ()2 < @ =g- (H1,Hp) < Hz and
2~ 2—

x Hp, and the Jacobian matrix i

o< Bx (1+ %) (i) since Hy > Hp, Hy = ﬁf_*g X Ho > H,, then,Hy < ¢?P+ 2¢. Therefore,

2 P
F2, 15 derived as¥z 1 < f ! { Hy,Ha): B <Hp<g2P+-2¢), €<(p<mm{H2,B (1+ )}} Mi=a T (Hi)dH. The

P
integration reglonl2 is demonstrated in Fig. 12 as the shaded area surroundedebyothts

A E,D andC. It can be strictly proven thazé is within the region surrounded the poimsB, D

andC. Recall thatH; = ‘pZP“” x Hy and )dHl (S”pr)l) X H2 Then, we have
2
BrvBi8B . ?p 129 2 i X G2 xHy
e e 2-¢ 2(pP+1
Fa1 < / / 2 % < 2PTD | 2dgan,
2 9 A2 A1 (H2— o)
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P

ﬁ+\/[32+

/¢2P+<p _z @A(eP+1)
0

+Dy1x € Azpﬁ e 2e M7 x(@P+1)¢?xz *dpdz

P

B+V gp7+8AB

P

_B © _z
<Dy xe Azpﬁ (cpP-l-l)d(p/ e %20z
0

@?(@P+1)

_B © _z _
+2xDoyxe Azpﬁg ((pP+l)(p/ e 2e M7 xz ldzdg (24)
g 0
P A - -
2 AA
Qe
B+\/B2+80B

S [ i Py
+Daxe %P | (P +1) ¢? e e N xz dz dp  (25)

P (. "

~~

1

2 -2 2
_of 97(eP+1)Ay @2(pP+1) A
- ( M ) < <2\/ AAo ) ¢%(gP+1)
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B/EvE p PrVEES
((pP—l—l)d(p—l—DggerPﬁ JOP T 1dg

P

§D22><e"2_"><ﬁ

P
[3+\/2F2>+8AB
+Dysxe AP 5 do, (26)

P

where [2%) and(25) are derived based on;f{i)x"~ Lo %oy — 2< ) (2\/ y) [25, Eg.
(3.471.9)] with.%;(z) being the modified bessel function of the second kind; ff)(x) < £ 2 and
H_1(X) =1 (X) < )—1( for x>0 [26, Eq. (27)]. After basic calculations, we obtain

D A-++A

__~26
F21<Dosxe P x 5

(27)

For %55, becauseH; > Hp andqgo(H1) > go(H2) = A >> H,, we have

200(H2)
/6io(Hy) + Go(H2) 2+ 4o(H1)GB(H2)P -+ Go(Hy) + io(Ho)
200(H2)

B Jqo +qo (H2) 2 + 40io(H2)G3(H2) P+ Go(H2) + Go(H)

S (28)
q(H)P-|—1+1 VPA+1+1

aq:

(o]

Sincer; (ag,) is decreasing orug,, we obtainr, (ag,) > r2 (ﬁ) and I, )r,, <
(0]

1r (;)G ~*a (, 1 ) =1 v,vmm1 VPAIL  _p <1 y, e _B :1H <B(m+1).8|mllar
2\ /Pot1r1) STt 2\" VPATI1) _B PHy+11vPA+1 ~ P PA+1+/PAFT P 22—
P

Pt
to (20), we will have

D vPA+1

x A. (29)
For #3, sinceqo(H1) > go(H2) andgo(Hi) —A < H; < go(Hi) for i = 1,2, we obtain

r1 (0tgy) =10g, (14 PH1 x a1gy) > 109, (14 P x (do(H1) —4) x ag,)

=log, (1+P x go(H1) X g, — P x A X 0g,) (30)

= log, <1+ P x g>(do(H1),0o(H2)) — P x 9> (0o(H1),do(H2)) x qO(AHl)) (31)
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b | 1+ P x0g>(ao(H1),00(H2)) x

1P 0= (Qo(Hh). to(Ho)) (1 e )) 32)
A

1+Pxg>(Hg,Ho) x (1— qo(H2)>) , (33)

Ha (1 ag,) (0o(H2) —A) x (1—0arg,)
ra(ag,) =10og | 1+ ——== | =log, | 1+ (34)
(6) ? ( Haag, + ? (Go(H2) —2) x g, + 5
> |Og 1+ (qO(H2> _A) X (1_ GQO) _ IOg 1+ qO(HZ) X (1_ aQo) - Ax (1_0%)
- Go(H2) X O, + & 7" Go(H2) xag+3  Go(H2) x g+ &
(35)
=log, (1+P><g>(qo(H1) Qo(H2)) < 2>)> (36)
A
>log, ( 1+P x g=(Hy, H 1— , 37
o (1+P g (Hu ) = ( qo(H2)>) 37
Therefore, we have
Lrnin{rs (tg0) r2( o) }<rin = 1Iogz<1+ngz(H17H2)x(1—m)><rth - 1gZ(H1,H2)<#
( 7qo(H2)>
<1 (38)

9> (HiHa)< g(” (H2)> Slgz(H17H2)<g<l+H—2’;)’

2
: A 28\ _ A -

where [38) is becausél— qo(Hz)) X <1+ qO(H2)> 1+ qo(Hz) -2 <qo(H2)) > 1 sinceqo(H2) >

2A for (H1,Hp) € 13, andgo(H2) > Hy. Similar to [23) and[(26), we can obtain an upper bound

on 73 (the detailed derivation is omitted due to similarity). E&1, its upper bound can be

developed in the same way as the upper boundgn

ar. > > H > 2H1H> Ho
For 75, whenHy = H = 4, sinceg (M, He) 2 o ms o = e o We
obtain from [38) that

. < < =
Lnin{rs (s o) p<rin = B )< (122) = ooy <B1e2)=% ST e =y, 0
(39)
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whereDog= (38 + 1)2 — 1. Similarly, whenH; < H,, we havel]mn{rl(aqo)

7r2(aqo)}<rth < 1H1<@

Therefore, an upper bound o#is is

2
1 fu, (Hi)dH; + 1 x [ fu (Hi)dH;
/140{ (H1,Hz):H1>Ha} H2<D29 rl a I 13N{(H1,H2):H1<Hz} Hy <28 il:l r (Hi)dH

© ] _t S . . 1o
< —e MdH; — e % dH, + —e 2dH2 — e M dH, (40)
JTa A B TA A2 oM
1 <e Pla<e P11 N <e Pi1
—e M - - —e <e i1
_TA 1 _ B Dyog— _Ta 1 _ B Dyg—
<e M x—xe PAleB-l—e M X —xe PAleB
2 A1
_ D31 _Ta
<Djzyxe P XEXG M (41)

where [40) is based on the assumption that A,. Summarizing the upper bounds éA,, ..., 75

in (20), (Z27) and[{41) results in

_Ta 3
0 |VA+Ate M A
Out|ossqo S D32 xXxe P X

P VP
< D3zg x e‘# X \/5;1 X max{A%,A,A%,e_}f}
:D34><e‘% X \/5;1 xmax{A%,A%,e_}f}, (42)
which completes the proof of the upper boundaartgssg, in (@2). |

APPENDIX C: PROOF OFLEMMA 4

Similar to [39), the full-CSI outage probability ial(3) cae kerived as

2
outmin = /1min{r1(a*),r2(a*)}<rth r! fr (Hi)dH;
i=

2 2
— 1 fi, (Hi) dH / 1 fiy, (Hi) dH
/{(HLHZ):HlZHZ} gz(Hl,H2)<g il:! H|( I) i+ {(HoHa) Hi<Ho ) g<(H1,H2)<g il:! H|( I) i

2 2
< 1 f.H-dH--l-/ 1 fiy, (Hi ) dH;
_/{(Hl’HZ):H1>H2} HK%ig Hl( Tk {(H1,H2):H1<Hz} HK%L! H'( 1) dH
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1,1
_Dss _Dss Dss(,\—l+,\—2)

: (43)

/TS

whereDss = (B +1)°— 1. Thus, the diversity order igmax= limp_.c "’%g% > 1. It is straight-

forward to show thatlhax < 1, which meangdmax = 1. Sinceoutpmin = Pr{ry (a*) <rp} =
Pr{rz(a*) <rp}, the maximum achievable diversity order for both receivsrs.

Whenqo(-) is employed, the outage probability of Receiveroutq, i = flri(aqo)<rm 2.4 fr (Hi)dH;
for i = 1,2. Similar to the derivations of#; for i = 1 ...,5in 20), [2T7) and[(41), we will

TA

D37 M
Obtall’loutqo 1 <outmin+D3gx€ P X \FJ“e

Ay D39
+4 f and outq, 2 < outmin+Dsagx € P X

baotbie "1 4 Therefore, for fixedy, the diversity orders of 22 and 1 are achievable for Receivers

1 and 2, respectively.
3
For Receiver 1,@—% in the upper bound onutq, 1 is the bottleneck for diversity gains. If we
scaleA asA% ~p %, i.e.,A~p P*%, the diversity order of 1 is also achievable for Receiver 1.

APPENDIX D: PROOF OFLEMMA 5
GivenK and 3 > 0, define the following two optimization problems:
(P1) rmax(K,B)= _max  min re(a), subject to O< ax < B and K L ax=B.

02[01, C{K]k—
(P2) rrTnaX(K,B) max manrk( ), subject tori(a)=---=rg(a), 0< ax <3, and
Siq 0k =B,

02[01,...,UK} k=1,...,
where P1) is the original optimization problem in_(I15) wheg®= 1. We will show that the

maximum minimum rates ofRl) and P2) are the same, i.er;(K,B) = rInaX(K,B), which
proves the lemma.
Denote the optimal power allocations fd?1) and P2) by ak (B) = [a7k(B),---. 0k k(B)

andaL(B) = [aIK(B),...,a}I’K(B) , respectively. Since® (K, B) > rhax(K, B), it is sufficient

9Note that when we derive the diversity order &% », we will not use the upper bound ifi {29). We can further obtain
from (28) thatag, < vl < TP then,]1=2<o,%)<rth < 1r2< pH21+1+1)<““ = 1H2<ﬁ2;[4, and it is trivial to obtain that

T2 < Dy x &5
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to prove thatr (K, B) < rﬂ;ax(K,B).
The proof forK = 2 is provided in the proof of Theorem 2. By induction, assufpg(K, ) =
rrTnaX(K,B) holds forK = K;. WhenK =K; + 1, there are two possibilities:

() 1 rieo1 (@a(B)) = i (@ 11(B)), sinceria (@) = log, (1 #) -
ZI la|+PHK +1

ﬁ*aKlJrler
T K t
O, 1k,01(B)s then, B =32 oy 1(B) = B—0g 1k, +1(B) < B— 0 i 1x,41(B) =

Zk_ a, K1+1(B) = . Next, we obtain

log, <1+ RS RE. ) for anya satisfyingy ' a; = B, it must havex 1 .1(B) >

< min{f?nax(Kl,Bl) T+ (0K, 41(B)) } (44)
= min { thax(Ks, Br) i1 (A, 2(B) | (45)
< min{ (K3, B2) T 11 (@ -1(B)) | (46)
= min{rha(Ki+1.8). k1 (k,.1(8)) } (47)

= min {fK1+1 (G&ﬁl(ﬁ)) TKy+1 (a*K1+1(B))}

= tiy41 (@f51(B)) = hau(Ka+1.B)

Thus, ri (K1 +1,8) < r%aX(KlJrl,B). The inequality [(44) is due to the optimality of
rax(K1,B1); @8) arises from the assumption thet,(K,B1) = rrTnaX(K,Bl) when K =
Ky; @9) is becausemaX(K,B) is non-decreasing op; (47) holds sincer;rnax(Kl,Bz) =
Fax(Ki+1,B).

(i) 1 i1 (@a(B)) < i (@, 42(B)), we havera (K +1,B) < s (@ a(B) ) <

Ky+1 <aKl+1 ) rmax (K1+1,B), which completes the proof of Lemma 5. [ |
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