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ABSTRACT OF THE DISSERTATION

Nonlinear Dendritic Dynamics and their Effect on the Information Processing

Capabilities of Neurons

by

Helen G. Saad Khoury

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2013

Professor Gabriel A. Silva, Chair

A major challenge in neuroscience is to reverse engineer the brain and understand its

information processing and learning capabilities. While the pace of discovery and untangling

of the brain’s staggering dynamics is advancing at unprecedented speed especially with the

recently developed tools and imaging techniques, this advancement is not devoid of risk:

the arsenal of novel techniques carries a huge mass of data that may complicate further the

unraveling of brain function. Is every ion channel, every spine, every dendrite, every neuron

and every synaptic connection necessary to achieve the computational capabilities of the

central nervous system? Answering this question rises the need for a two-way communication

between experiments and mathematical theoretical work. Neural networks composed of

point neurons and endowed with biologically inspired synaptic learning rules have been

successfully applied to a variety of challenging learning-related tasks, namely in problems

of pattern recognition, associative memory, map formation, among others. While these

networks are good at tasks they are built for, there still exists a gap separating us from

xvii
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fully understanding how the brain is good at the large multitude of tasks it can perform.

When we reflect upon most efforts in building and simulating neural networks, we ask

ourselves about the appropriate scale for modeling: Given the complexity of the nervous

system, is it enough to model the neurons as point-like units in which a weighted sum

of synaptic inputs is passed through a single spike-generating mechanism? From a modern

perspective, the point neuron seems likely to be a poor representation of synaptic integration

in neurons with large, profusely branched, active dendrites that populate brain structures

associated with advanced cognitive functions and learning. These dendrites are endowed

with nonlinear active conductances that modulate synaptic integration and somatic activity.

Does the increased nonlinearity at the level of the neuron enhance the computational power

of the neuron, and that of the network? In an effort to find answers to these questions,

we implemented a simplified mathematical model of a pyramidal neuron endowed with

complex dendritic dynamics and quantified its information processing capabilities using

Shannon theory of mutual information. We proved that a neuron that holds multiple sites

of independent thresholding of synaptic inputs and passive and active forward and backward

propagation along with backpropagating action potential activated calcium spike firing and

coincidence detection has a higher capacity for information processing than a point neuron

and a network of two point neurons. The advantage in information processing, coupled with

the simplicity and scalability of the neuron model implemented, constitute a compelling

enough reason to promote the usage of such a spatially extended neuron model in networks

that undergo plasticity and learning.

xviii



Chapter 1

Preface

Everything should be made as simple as possible, but not simpler.

July 1977

Setting the Stage

Physiological evidence and connectionist theory seem to support the notion that

learning, in the brain, involves the modification of connection strengths between neurons,

termed plasticity. In the physiological realm, various forms of plasticity have been identified,

most notably are long-term potentiation (LTP) and long-term depression (LTD) (Mainen,

1999; Luscher et al., 2000). In the theoretical realm, synaptic weights are considered to be the

principal modifiable parameters available for learning (Rosenblatt, 1962; Hebb, 1949). In the

practical realm, neural networks architectures endowed with biologically inspired synaptic

learning rules have been successfully applied to a variety of challenging learning-related tasks,

namely in problems of pattern recognition, associative memory, map formation, and others

(Arbib, 1995; Eliasmith et al., 2013). Taken together, these physiological, theoretical, and

1
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practical considerations are based on the core principle that in networks of neuron-like units,

information and learning are mainly encoded in the fine patterning of synaptic weights.

Upon more careful examination, there exists experimental evidence that weakens

the link between the abstract synaptic weights of connectionist theory and the physical sub-

strate for memory in the brain. First, it is now well established that dendrites of pyramidal

neurons contain a large number and variety of physiologically active voltage-dependent chan-

nels which highly affect dendritic behavior and synaptic integration. These channels include

NMDA channels (Thomson et al., 1998; Schiller et al., 2000) and voltage dependent Na+,

K+, Ca2+ channels among others (Golding et al., 1999; Margulis and Tang, 1998) that are

capable of generating dendritic action potentials both in vitro (Larkum et al., 1999a; Schiller

et al., 1997; Svoboda et al., 1997; Golding et al., 1999; Kim and Connors, 1993; Urban and

Barrionuevo, 1998) and in vivo (Kamondi et al., 1998; Hirsch et al., 1995; Svoboda et al.,

1997). This being stated, the notion of a connection strength existing between two neurons

is challenged by the fact that the efficacy (weight) of a synaptic contact is highly affected

by the ongoing activity of other synapses within the dendritic compartment. The usual con-

cept of a synaptic weight requires thus elaboration to take into account nonlinear dendritic

dynamics and synaptic interactions.

Second, a growing body of evidence shows that besides changes in efficacy of synapses,

structural plasticity at the axo-dendritic interface may contribute to learning-related pro-

cesses. This structural plasticity involves synaptogenesis and dendritic and axonal growth

and remodeling (Segal et al., 2000; Luscher et al., 2000). New spines can emerge within

minutes in vitro (Dailey and Smith, 1996; Engert and Bonhoeer, 2000) or in vivo (Lendvai

et al., 2000; ORourke and Fraser, 1990). Growth and remodeling of axonal and dendritic

arbors and proliferation of new synapses can occur in the adult brain within days (Woolley

et al., 1990; Darian-Smith and Gilbert, 1994). In addition to the rapid dynamics of spine ap-

pearance and disappearance, structural morphogenesis and spine motility occur frequently

(Matus, 1999). Dendrites seem to grow as needed to accommodate increasing numbers of

mature synapses on their arbors. The initially formed synapses between neurons are due
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to random activity and are in a ’silent’ phase as they cannot communicate information to

their targets with their only existing NMDA channels. Silent synapses get co-activated with

mature synapses and eventually develop AMPA receptors that allow them to communicate

with their post-synaptic targets. Those silent synapses that are poorly correlated with their

neighboors may get eliminated (Luscher et al., 2000; Cline et al., 1997; Liao et al., 1995;

Shatz, 1990; Segal et al., 2000).

In trying to keep with the standard connectionist theory, one can argue that these

dynamics are there to regulate the connection strength between two neurons and they can

be represented by a number (weight) in models of connected neuron-like units. However,

this statement is not faithful to neuronal communication dynamics and learning-related

processes as it ignores fundamental elements in neuronal encoding/decoding and information

processing such as nonlinear dendritic physiology, formation of new dendrites and changes

in the mapping of synaptic contacts on the dendritic tree. These various mechanisms can

constitute important forms of neural plasticity and induce forms of information processing

that cannot be expressed in terms of changes in synaptic connection strength.

Brief, evidence for (1) active membrane mechanisms and nonlinearity that affect

synaptic weights and synapse formation and location and (2) learning-activated remodeling

of dendrites and axons and their connections prove that connection strengths between neu-

rons may not be the main nor the exclusive form of flexibility used by the brain to achieve

the learning dynamics and store them. Questioning this central tenet of neuroscience is the

leading cause for this dissertation.



Chapter 2

Scope and rationale

Throwing a lot of neurons together and hoping something interesting emerges

does not seem like a plausible way of understanding something as sophisticated

as the brain.

Chris Eliasmith

A large repertoire of spatio-temporal activity patterns in the brain is the basis for

adaptive behavior. Understanding the mechanisms by which the brain’s 1011 neurons and

1015 synapses (Drachman, 2005) manage to produce such a range of cortical configurations in

a flexible and self-organized manner remains a fundamental problem in neuroscience. While

morphology and function are closely intertwined, plasticity and malleability constantly in-

tervene to establish a concert of controlled dynamics that reshape network morphology and

function.

The pace of discovery and untangling of these staggering dynamics is advancing at

unprecedented speed especially with the recently developed tools and imaging techniques,

such as dendritic patch-clamp recordings, two-photon 2D and 3D imaging techniques, ge-

netically encoded sensors and stimulation, two-photon uncaging of glutamate, and others

4



5

applied both in vitro and in vivo. However, this advancement is not devoid of risk: rather

than illuminating new principles, this arsenal of novel techniques carries a huge mass of data

that may complicate further the unraveling of brain function. Here comes the fundamental

importance of Theory, particularly theoretical work that is tightly linked to experiments.

It is therefore due to the constant dialogue between experiments and theory that unifying

principles underlying brain function, diversity, and plasticity will be revealed. Given the

complexity of the nervous system, is it necessary or even desirable to model every neuron,

dendrite, and synapse? If not, then what is the appropriate scale for modeling?

In fact, complexity was formerly - and even today in network models - merely cred-

ited to the complexity of the neuronal network disregarding that of the single neuron. As a

result the neuron unit most often used in models of brain function is the classical ‘point neu-

ron’, in which a weighted sum of synaptic inputs is passed through a single spike-generating

mechanism (McCullough and Pitts, 1943; Rumelhart et al., 1986). From a modern per-

spective, however, the point neuron seems likely to be a poor representation of synaptic

integration in neurons with large, profusely branched, active dendrites. There are several

structural and functional properties of neural tissue which constitute the major obstacles in

understanding the brain, among those are the active conductances embedded in dendritic

membrane and backpropagation into the dendritic tree and the processing of inputs. Den-

dritic processing of synaptic inputs and the resulting modulation of somatic activity has

raised several questions, among them those questions tying neuronal processing to network

processing: What is the impact of this complex neuronal computation on the level of the

network? Does this increased nonlinearity at the level of the neuron imply increased pro-

cessing capabilities at the level of the neuron? at the level the network? For example, how

do amacrine cells mediate or modulate the information flow from bipolar cells to ganglion

cells? Many of these cells communicate via dendo-dendritic synapses, in which the dendrites

function as almost separate compartments from the soma, making it very difficult to deduce

the function of this network and to model it faithfully without considering dendrites (Balu

et al., 2007).
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In keeping with the idea that a dendritic arbor might support a moderately large

number of independent nonlinear operations (Shepherd and Brayton, 1987; Rall and Segev,

1987; Mel, 1993; Koch et al., 1982) and that this wealth of operations may be the recipe

for increased information processing capabilities in the neuron, the idea of this dissertation

was born. Starting with a bottom-up approach of a theoretical investigation, we model the

individual neurons as spatially extended entities in order to reproduce the rich propagation

dynamics - passive and active forward propagation as well as active backward propagation -

that occur in the dendrites along with their modulation of neuronal firing activity. We proved

that the modeling approach used is comparable to point neuron models, thus is efficient and

scalable and that the spatially extended neuron endowed with nonlinear dendritic dynamics

outperforms a point neuron - a linear integrate-and-fire neuron in this case - as well as a

pair of bidirectionally connected point neurons. We expect that these nonlinear dynamics,

complemented by synaptic plasticity mechanisms may enhance the computational power of

networks of these neurons.



Chapter 3

Dendritic Excitability

Until now, the race was who could get a human-sized brain simulation running,

regardless of what behaviors and functions such simulation exhibits ... From

now on, the race is more about who can get the most biological functions and

animal-like behaviors.

Eugene Izhikevich

Populated with a staggering plethora of voltage-gated ion channels that are dis-

tributed non-uniformly over the dendritic membrane surface, dendrites constitute the siege

for rich dynamic behaviors. Their electrical behaviors range from essentially passive re-

sponses, to the initiation of dendritic spikes, to passive and active forward propagation

towards the soma, to active backpropagation of the action potential from the soma back

into the dendrites (Larkum et al., 1999a; Saraga et al., 2003). Such a large repertoire of

electrical behaviors does not only modulate dendritic dynamics but it also enriches the neu-

ron’s firing behavior and expands the network’s information processing capabilities (Mainen

and Sejnowski, 1996).
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Figure 3.1: Example of dendritic tree morphologies. (a) Cat spinal
motoneuron. (b) Locust mesothoracic ganglion spiking interneuron. (c) Rat
neocortical layer 5 pyramidal neuron. (d) Cat retinal ganglion neuron. (e)

Salamander retinal amacrine neuron. (f) Human cerebellar Purkinje neuron. (g)
Rat thalamic relay neuron. (h) Mouse olfactory granule neuron. (i) Rat striatal

spiny projection neuron. (j) Human nucleus of Burdach neuron. (k) Fish Purkinje
neuron. Adapted from (Mel, 1994).

3.1 Introduction and Background

Dendrites are strikingly exquisite and unique structures whose specific morphology

is used to classify neurons into classes: pyramidal, Pukinje, amacrine, stellate, etc. Most

important is that the majority of the synaptic inputs is conveyed onto the dendritic tree

where information is first processed by the neuron (figure 3.2). Dendrites thus constitute

the elementary computing device of the brain. One of the most striking observable features

of neurons is their extensive dendritic arbor. Not only is the surface area of the dendrites
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one or two orders of magnitude larger than that of the soma, but also the shape of the

dendritic tree is highly specific and is in fact often used to define neuronal types as shown in

figures 3.1 and 3.3. A typical dendritic tree receives approximately ten thousand synaptic

inputs distributed over its surface. When activated, each of these inputs produces a local

conductance change for specific ions at the postsynaptic site, causing a change in membrane

voltage that spreads along the dendritic branches towards the neuron’s soma. This spread

depends on spine and dendritic morphologies and their electrical properties.

Even though these facts have been known since the 20th century, it is still very

natural to wonder “what do dendrites do?”

3.1.1 Dendritic trees: brief anatomy and physiology

Dendrites are thin tubes of nerve membrane. They start with a diameter of a few

µm near the soma and become thinner as they successfully branch with their diameter de-

creasing to below 1µm. Many types of dendrites are populated by small protrusions, termed

spines, which constitute the major postsynaptic target for excitatory inputs and seem to be

important loci for plastic processes in the nervous system (Koch and Zador, 1993). Dendritic

trees range from very short (100 − 200µm) as in the spiny stellate cell of the mammalian

cortex to long (1− 2mm) as in the spinal α-motoneurons. The total dendritic length may

reach 1cm if not more. The majority of the brain volume and area is occupied by dendrites.

The area of a single dendritic tree is in the range of 2, 000 − 750, 000µm2 and its volume

may reach up to 30, 000µm3.

The dendritic membrane can conduct current via specific transmembrane ionic chan-

nels. The resistance to current flow along the dendritic core is smaller than the resistance

to current flow across the membrane. The dendritic membrane can store ionic charges,

thus behaving like a capacitor. The R-C properties of the membrane imply a time constant

τm = RC for charging and discharging the transmembrane voltage. τm typically varies

between 1 and 100 msec. The membrane resistivity implies an input resistance Rin at any
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Figure 3.2: Domains of synaptic input in pyramidal neurons. The apical
tuft (highlighted with a purple background) of pyramidal neurons receives

excitatory synaptic inputs that have different presynaptic origins than those that
form synapses onto more proximal apical dendrites or basal dendrites (highlighted

by a green background).

point in the dendritic tree. Rin values range between 1MΩ for thick and leaky dendrites

and 1GΩ for thin membrane as that of spines.

In classical cable theory, the electrical properties of the membrane are passive and

thus voltage-independent. τm is thus constant and Rin is constant. However, dendrites are

active and endowed with voltage-gated ion channels, which implies that τm and Rin are

voltage-dependent.
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Figure 3.3: Pyramidal-neuron structure. The structures of rat pyramidal
neurons from different cortical areas highlighting considerable differences between

their morphology. The full vertical length of each cell, from left to right, is:
1, 180µm; 580µm; 730µm; 790µm. Courtesy of (Spruston, 2008a)

3.2 Pyramidal neurons and their connections

Dendritic propagation dynamics and their effect on the neuron’s firing activity are

studied extensively in pyramidal neurons. Pyramidal neurons are found mainly in brain

structures that are associated with advanced cognitive functions and learning, including

the cerebral cortex, the hippocampus and the amygdala (y Cajal, 1995). Covered with

thousands of dendritic spines, pyramidal neurons’ apical and basal dendrites constitute the

post-synaptic site for most excitatory glutamatergic synapses. An understanding of these

neurons, complemented with an understanding of their function in neuronal networks is thus

necessary to elucidate the neural bases of some of the brain’s sophisticated functions and

information processing abilities.

These neurons are located in layer V of the neocortex, the latter being organized
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into horizontal layers parallel to the pial surface and numbered from I to VI. These distinct

6 layers are discriminated by types of neurons and connectivity patterns as shown in figure

3.4. The general notion of information flow between these layered neurons states that most

of the extra-cortical input arrives at layer IV, which in turn projects to layer II/III, which

then projects to layers V and VI (Mountcastle, 1998). The large pyramidal neurons of layer

V receive short- and long-range projections from other cortical areas and represent one of the

output levels of the neocortex. With their extensive apical dendritic tree spanning several

cortical layers, they receive inputs from a host of different sources, thus representing one

of the core integration and relay units in cortical information processing (Binzegger et al.,

2004). These neurons project to several sub-cortical regions (thalamic nuclei, pons, superior

colliculus, spinal cord and contralateral cortex) as well as to other cortical regions via axon

collaterals forming before the axon leaves the cortex. Specific parts of layer V neurons can

be differentiated according to their afferents: inhibitory GABA-ergic (γ-aminobutyric acid)

input mainly arrives at the soma and axon, while excitatory input terminates mainly on

basal/proximal dendrites (origin is local feedforward sources) or distal dendrites (origin is

distant thalamic/cortical feedback sources) (Thomson and Lamy, 2007).

In the present work, the non-linear integration mechanisms of layer V pyramidal

neurons were studied in a model of these neurons.

3.3 The interplay between passive and active dendritic con-

ductances

The process of integrating postsynaptic potentials constitutes the core of the func-

tional and computational properties of neurons. Synaptic inputs play their music with the

dendrites that constitute the major site of integration of a neuron (London and Hausser,

2005). Other factors, among them the spatio-temporal distribution of synaptic inputs, the

current and past activity state of the neuron itself, short- and long-term changes in synaptic

plasticity, as well as other modulating cellular functions (such as spine growth and the effect
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Figure 3.4: Layer V pyramidal neurons. The two major subclasses of layer V
pyramidals are represented in blue. Large pyramidal neurons with a pronounced
apical dendritic tuft in layers I and II project to several subcortical regions. To
the left are indicated the major inputs to each cortical layer. Spiny excitatory

postsynaptic targets are shown in red, the paler neurons being those that receive
sparse and weak inputs. Courtesy of (Thomson and Lamy, 2007)
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of various neurotransmitters) influence the integration behavior of the neuron and modulate

its output (Spruston, 2008b).

3.3.1 Passive properties of dendrites

What do passive dendrites do to the transient current inputs that they receive at

their synaptic site? The passive cable properties of dendrites filter high temporal frequency

postsynaptic potentials (PSPs). A small percentage of synaptic current also leaks out via

the dendritic membrane as the intracellular (axial) resistance is substantially smaller than

the membrane resistance. The PSPs thus are attenuated, delayed, and their time course

(shape) changes as they propagate from the dendrite to the soma. The further from the soma

these PSPs are, the slower their rise time and the broader the somatic PSP (Rall, 1967).

However, these PSPs reach the soma and thus even in passive dendrites, distal synapses are

expected to affect the output of the soma.

The passive cable theory (Rall, 1959) predicted that synaptic inputs are greatly

attenuated as they propagate towards the soma with the increase in the distance from the

soma, sometimes reaching 100-fold (Vsoma/Vdend) in neocortical layer V pyramidal neurons

(Stuart and Spruston, 1998). This attenuation is mainly due to the low membrane resistivity

Rm, which causes a current loss along the way to the soma and the low pass filtering

effect of the membrane capacitance Cm. The axial resistance in the dendritic membrane, ri

(relates to the dendrite morphology), also contributes to this attenuation since part of the

synaptic current does not contribute to the change in membrane potential Vm as it flows into

adjacent parts of the dendrite. Dendritic morphology and adjacency also affects the spatio-

temporal summation of excitatory and inhibitory postsynaptic potentials (EPSP/IPSP).

Fro example, currents from co-activated proximal synapses undergo sublinear summation

due to a reduction in driving force (Gulledge et al., 2005). Shunting inhibition is also

a non-linear mechanism of synaptic interactions with the input resistance of the dendrite

altered rather than its membrane potential and where excitatory input is vetoed in a precise

spatio-temporal manner (Koch et al., 1983; Stuart et al., 1999). As for the shape change
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of the local EPSP as it propagates from the dendrite to the soma, its half-width decreases

while its amplitude increases due to the geometric differences between the cable-like dendrite

and the sphere-like soma (Magee, 2000). The distal dendrite thus displays a much shorter

integration time-window if compared to that of the soma (Williams and Stuart, 2002).

3.3.2 Active properties of dendrites

The complex and specific morphology of the dendritic arbor holds a multitude of

voltage-gated channels, thus endowing dendrites with the ability to serve as a siege for an

active and fast bidirectional communication between the spine and the soma. Contrary to

what was initially believed, forward propagation along the dendrites is not only passive;

active voltage-gated conductances play a major role in enabling these compartments to

generate fast forward propagating signals, termed dendritic spikes, as well as fast backward

propagating signals, referred to as backpropagating action potentials (bAP).

As already stated, distal dendritic inputs are greatly attenuated en route to the soma;

however, upon crossing the threshold at the dendritic initiation zone, this passive propaga-

tion gets transformed into a fast, active propagation of calcium action potentials. Passive

below-threshold dendritic signals can however result in a bursting activity at the soma if

they coincide with backpropagating action potentials. The result is a more pronounced ef-

fect on the neuron’s soma and consequently altered firing dynamics. While passive dendritic

propagation speeds lie in the range of 10− 30µm/ms, active propagation is more than 10-

fold larger with speeds of 150−300µm/ms (Fromherz and Muller, 1994). This postsynaptic

heterogeneous processing of synaptic inputs has a tremendous effect on neuronal dynamics

and firing activity as detailed in Larkum et al. 1999a.

In layer V pyramidal neurons, interactions between synaptic events in the dendrite

coupled with non-uniformly distributed active conductances have a decisive impact on the

integration of synaptic inputs and the somatic voltage. Voltage-dependent ion channels,
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found in dendrites of almost every neuron, highly influence and sometimes override the pas-

sive properties. As an example, voltage-dependent Na+ and Ca2+ channels (VDNC/VDCC)

get activated by sufficiently large postsynaptic currents that can amplify EPSPs and some-

times counter the current loss during the signal propagation to the soma (Williams and

Stuart, 2003; Oviedo and Reyes, 2005). The effects of these channels on shaping EPSPs

and their propagation towards the soma increase with the increase in the amplitude and

number of synaptic inputs since further depolarization activates more voltage-gated chan-

nels (Magee, 2000). The interplay of passive and active factors seems to be dynamically

regulated to fit the momentary requirements of the neuron, endowing it with the ability to

adapt to different stimuli.

3.3.3 Regenerative potentials in dendrites

At first it was believed that the regenerative electrical activity produced by neurons

is due to the sodium action potential (AP) at its soma. This AP gets generated near the

neuron’s soma and transmitted via the axon to postsynaptic targets. Technical advances in

imaging and electrophysiological techniques coupled with mathematical models elucidated

another form of regenerative activity in neurons: Na+-Ca2+-mediated action potentials

have been revealed in distal dendrites of major neurons of the CNS, namely in the pyramidal

neurons of the hippocampus and neocortex both in vitro and in vivo (Kim and Connors,

1993; Larkum and Zhu, 2002; Waters et al., 2003). These Na+-Ca2+-APs in conjunction

with other mechanisms are believed to represent a major tool of non-linear information

processing in neurons, considerably expanding the computational capacity of the single unit,

the neuron (London and Hausser, 2005). Dendrites are highly plastic, they can grow and

diversify even after the proliferation of the neuron has stopped. Thus dendrites constitute

the ideal units that increase the complexity of the neuron without increasing the number of

units.
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3.3.3.1 Regenerative potentials in the apical dendrite

Regenerative potentials in apical distal dendrites of pyramidal neurons are mediated

by synaptic co-activation of AMPA ((α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate)

and NMDA (N-methyl-D-aspartate) glutamate receptors which causes a transient Ca2+

influx. These potentials are a composite of two conductances: Na+ conductance and Ca2+

conductance. The Na+ conductance produces a sharp all-or-none potential that can be

blocked by Tetrodoxin (TTX) (Schiller et al., 1997). The second conductance, Ca2+ is

activated by further depolarization and displays a much longer, plateau-like, voltage change

that can be blocked by Cd2+ and Ni2+ (Larkum et al., 2001). In contrast to somatic

action potentials which are stereotypic and vary only between different classes of neurons,

dendritic spikes show a broad spectrum of shapes ranging from short to complex and long

lasting voltage changes (Larkum and Zhu, 2002). These spikes can also be either amplified

or attenuated en route to the soma and represent a mechanism of coincidence detection of

inputs at different locations in the neuron.

3.3.3.2 Regenerative potentials in the basal dendrite

Thin basal dendrites of layer V pyramidal neurons display another form of regener-

ative potential whose main conductance is NMDA-receptor mediated (Schiller et al., 1997).

The activation of NMDA-receptors associated with these action potentials is due to voltage-

dependent relief of a Mg2+ block. Na+-based APs have been found in basal dendrites but

Ca2+-dependence has not been established (Nevian et al., 2007). These basal APs stay

localized in the basal dendrite opposite to apical APs which propagate towards the soma.

3.4 Compartmentalization

Morphological properties complemented with the non-uniform distribution of voltage-

gated channels and varying spine density (Mountcastle, 1998; Spruston, 2008b) as well as



18

the different forms of regenerative activity in distinct parts of a pyramidal neuron imply that

these neurons possess different functional compartments and have the ability to process in-

formation at multiple, independent sites (Hausser and Mel, 2003). For example, dendritic

Ca2+ spikes boost strong or concurrent input while intrinsic dendritic properties lead to

the suppression of weak synaptic inputs, thus providing a mechanism of local non-linear

operations at the level of the dendrite. These Ca2+ spikes also transmit information from

the dendrite to the soma and modulate the latter’s output (Larkum et al., 1999b). How-

ever, Ca2+ spikes do not always reliably propagate to the soma as they get influenced by

regulatory instances such as specific inhibition, modulation of voltage-activated channels,

activity state of the neuron, among others (Magee, 2000; Larkum and Zhu, 2002; Hausser

et al., 2000). This being stated, the integration and computational performance of each

compartment could be determined by the synaptic input itself, its conditions and location

and the previous and current neuronal activity (such as long-term potentiation/depression

(LTP/LTD) or spike history). As a result, the neuron is a highly adaptive and complex

information processing device.

3.4.1 Backpropagating APs and coincidence detection

Electrical compartments in the neuron seem to integrate their respective inputs in-

dependently but it’s the communication between these compartments that influences the

somatic neuron output. The dendritic initiation zone is coupled to the neuron’s soma via

backpropagating action potentials (bAPs) that are initiated at the neuron’s soma and effec-

tively invade the dendritic tree thus bridging activity at the distal dendrites to that at the

soma (Larkum et al., 1999a,b; Stuart and Sakmann, 1994; Buzsaki and Kandel, 1998). Back-

propagating APs are attenuated as they travel more distally due to dendritic geometry and

Na+ channel inactivation with prolonged spiking. This propagation is however rescued by

appropriately timed EPSPs that boost the bAP and secure its invasion of distal dendrites

(Larkum et al., 1999a; Stuart and Hausser, 2001). The combination of Ca2+ spikes and
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Figure 3.5: Precision of timing required for BAC firing. Recordings were
made from the dendrite (red; 600µm from the soma) and the soma (gray).

Current was injected at 700µm from the soma (pink electrode). ∆t is the time
between the start of the somatic current injection and that of the dendritic

injection. Each point in (d) represents the average for 8 neurons and represents
the threshold for injected current (in nA) needed to evoke a dendritic Ca2+ action

potential. Courtesy of Larkum et al. 1999a
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bAPs could represent a powerful mechanism to link the soma and the dendritic compart-

ment. bAPs travel up into the distal tuft carrying information about the neuron’s spiking

activity; at the distal dendritic site, they encounter Ca2+ spikes and coincidence detection

occurs as the spatio-temporal activities of these two compartments coincide. This coupling

can be achieved by backpropagating action potential activated Ca2+-spike (BAC) firing as

proposed by Larkum and colleagues (Larkum et al., 1999a,b) and as depicted in figure 3.5.

Thus, BAC firing occurs when a somatic spike and an EPSP occur within a narrow time

window (3-7 ms). This coincidence lowers the threshold to initiate a Ca2+ spike and can

cause a burst of somatic Na+ APs (Larkum et al., 1999a). This mechanism also seems to

be robust to noise, thus mimicking the conditions that occur in vivo, namely the continuous

synaptic bombardment (Larkum et al., 2004).

3.5 Synaptic integration in dendrites

Integration of postsynaptic potentials forms the core of the functional and com-

putational properties of neurons. Since dendrites constitute the siege for the majority of

synaptic connections into the neuron, they also represent an fundamental site for integra-

tion of incoming inputs (Hausser et al., 2000; London and Hausser, 2005; Spruston, 2008b).

Synaptic integration is associated with membrane conductance change. The time course of

the synaptic conductance change associated with various input types in a neuron may vary

by 1-2 orders of magnitude. The fast excitatory AMPA and inhibitory GABAA inputs op-

erate on a time scale of 1ms. The slow excitatory NMDA and inhibitory GABAB inputs

act on a slower time scale of 10 − 100ms and have a conductance that is about 10 times

smaller. Moreover, the spatio-temporal distribution of synapses along with the current and

past activity of the neuron constitute various conditions for synaptic integration in different

parts of the neuron. Finally short- and long-term changes in synaptic plasticity influence

the integration behavior.
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3.6 Neural plasticity

One of the major challenges in neuroscience is to gain deeper understanding of

learning and memory and how they are represented in the brain. Every day new memories

are formed and others erased in humans and animals. These memories are stored in both

the network properties of brain areas (Xu et al., 2004) and in the intrinsic excitability of

single neurons and their synapses. The quantities associated with these changes are dynamic

and all changes are collectively referred to as ‘plasticity’. Plasticity is generally divided into

synaptic, intrinsic and structural plasticity. Synaptic plasticity occurs when an existing

synapse gets strengthened or weakened. This type of plasticity can be presynaptic (change

in the amount of neurotransmitters at the presynaptic terminal or in the probability of their

release into the synaptic cleft) or postsynaptic (change in the efficacy of neurotransmitter

binding to postsynaptic receptors) (Colicos and Syed, 2006). The conductances of dendrites

and soma are intrinsic properties that may get altered with neuron activity and make part

of intrinsic plasticity. Structural plasticity is pronounced during the development of the

central nervous system and in the repair of injuries (VanOoyen, 2003; Shamy et al., 2007).

Plasticity has been extensively studied in different types of neurons both in vitro and

in vivo. Dendrites are highly involved in plasticity especially when it comes to synaptic as

well as structural plasticity (Segal et al., 2000). Active currents in dendrites play a prominent

role in plasticity and dendritic spikes constitute a mechanism for cooperative long-term

potentiation (LTP) (Stuart et al., 1993). As an example, LTP of synapses on the distal

dendrites of hippocampal CA1 pyramidal neurons does require cooperative synaptic inputs,

but does not require axonal action potential firing and backpropagation. Rather, locally

generated dendritic spikes contribute to the postsynaptic depolarization and calcium entry

necessary to trigger potentiation of distal synapses. This mechanism also exists at proximal

synapses. Thus dendritic spikes participate in a form of synaptic potentiation that does

not require postsynaptic action potential firing in the axon. Backpropagation, on the other

hand, is an important feedback mechanism that starts at the soma and invades the dendritic
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tree, giving rise to coincidence detection at the level of the dendrite and consequently to

plasticity (Markram et al., 1997; Paulsen and Sejnowski, 2000; Xu et al., 2006). Along

with this short introduction to neural plasticity, we will briefly provide some background

information about the most widely recognized and used forms of synaptic plasticity, Hebbian

plasticity and spike-timing-dependent plasticity (STDP).

3.6.1 Hebbian plasticity: the role of firing frequency

Communicated in Donald Hebb’s seminal paper published in 1949, what is referred

to as the Hebbian postulate for cellular learning has remained the most widely quoted

mechanism of synaptic plasticity (Hebb, 1949). Not only it constitutes a prediction that is

experimentally testable, but it also has a simple and appealing phrasing: “When an axon of

cell A is near enough to excite B and repeatedly or persistently takes part in firing it, some

growth process or metabolic change takes place in one or both cells such that As efficiency, as

one of the cells firing B, is increased.”. While Hebb referred only to long-term potentiation

(LTP) of the synaptic connection, Stent suggested the existence of the inverse of LTP,

i.e. the weakening or depression of a synapse, referred to as long-term depression (LTD)

(Stuart et al., 1973). Stent postulated the following: “When the presynaptic axon of cell A

repeatedly and persistently fails to excite the postsynaptic cell B while cell B is ring under

the influence of other presynaptic axons, metabolic change takes place in one or both cells

such that As efciency, as one of the cells ring B, is decreased.” Intuitively, both LTP and LTD

are necessary to optimize information storage in a neural network (Willshaw and Dayan,

1990). However, Hebbian plasticity alone does not determine plasticity; experiments have

also revealed the dependence of synaptic plasticity on the firing frequency with potentiation

favored at high frequencies, while depression dominates low frequencies (Sjostrom et al.,

2001; Froemke et al., 2006).

Inherent to the Hebbian postulate is causality and a need for temporal order, because,

by definition, if synaptic strengthening (LTP) occurs when cell A is helping cause activity
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in cell B (Hebb’s postulate), this is another way of saying that cell A is firing before cell B.

This leads to what is known at Spike-Timing-Dependent Plasticity (STDP).

3.6.2 Spike-timing-dependent plasticity (STDP): the role of timing

In its most basic form, STDP depends on the relative timing of the pre- and post-

synaptic spikes: pre-before-post pairings within a narrow timing window result in LTP,

whereas the opposite temporal order evokes LTD (Markram et al., 1997; Abbott and Nelson,

2000). To intuitively understand the functional importance of STDP, it is useful to think of

the predictive power of the presynaptic spike; if it precedes and predicts the postsynaptic

spike, the synaptic connection is rewarded through strengthening, whereas a “postdiction”

results in the punishment of the synapse by its weakening. In other words, a synapse with

STDP is not only a coincidence detector but also an extractor of temporal order and of

causal connections.

STDP has been found in several neocortical layers, such as Layer II/III (Nevian

et al., 2006), Layer IV (Egger et al., 1999), and Layer V (Markram et al., 1997); it has also

been found in a number of brain regions, including the hippocampus (Debanne et al., 1998),

the visual cortex (Sjostrom et al., 2001) and the sensory cortex (Nevian et al., 2006), among

others.

However, the rules for STDP are not as simple: beyond the basic asymmetric win-

dow, recent studies have revealed several layers of complexity in STDP. Some of the varia-

tions of STDP result in the timing window for LTD dramatically widening with increased

postsynaptic activity (Sjostrom et al., 2003); even more pronounced is the diametrically

opposing plasticity found with distance the gradient from the soma (Sjostrom et al., 2006;

Caporale and Dan, 2008); as for spike triplets and quadruplets, the first spike pairing might

result in the cancellation of subsequent firing (Froemke and Dan, 2002; Froemke et al.,

2006); in the case of an arbitrary firing pattern or bursting dynamics, simply calculating

plasticity based on pre-before-post and post-before-pre pairings cannot be robustly applied
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Figure 3.6: STDP versus BTDP. STDP modifies synaptic strength based on ∆t
and the firing order of pairs of pre- and post-synaptic spikes. BTDP governs

changes based on the timing, but not the order, of pre- and post-synaptic bursts
over a longer time window (1 s). Courtesy of (Gjorgjieva et al., 2009).

(Sjostrom et al., 2001; Gjorgjieva et al., 2009); see figure 3.6 where the window of plasticity

for bursting - also referred to as burst-timing-dependent plasticty (BTDP) - is revealed.

Thus, neuron type and intrinsic properties (including dendritic morphology), coupled with

dependence on the distance between the dendritic site of incoming synaptic input and the

neuron’s soma, play prominent roles in shaping synaptic plasticity.

3.6.3 The spine as a coincidence detector and the influence of postsynap-

tic Ca2+ concentration and backpropagation

Synaptic plasticity requires that some form of coincidence detection exists between

pre- and post-synaptic activity. N-Methyl-D-aspartate (NMDA) receptors positioned on

the postsynaptic spine membrane of pyramidal neurons are widely accepted candidates for

this mechanism (Schiller et al., 1998; Yuste and Denk, 1995), precisely in the induction of

LTP. At resting hyperpolarized membrane potentials, NMDA receptors open only modestly,

mainly due to a Mg2+ block, even in the presence of glutamate (Mayer et al., 1984). How-

ever, in the case of sufciently strong postsynaptic cell membrane depolarization, blocking
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Mg2+ ions are expelled from the channel pore, thus unblocking it and allowing for Ca2+

influx. Strong postsynaptic depolarization commonly happens in the case of an AP that

initiates at the axon hillock and backpropagates to reach the spine and strongly depolarize

it. With action potential initiation and backpropagation in the postsynaptic neuron, post-

synaptically located NMDA receptors can detect the coincidence of presynaptic glutamate

release (due to presynaptic activity) and postsynaptic depolarization (due to postsynaptic

spiking). The result is a supralinear rise in postsynaptic Ca2+ concentration ([Ca2+]) and

the ensuing long-term potentiation. While large postsynaptic depolarization-caused NMDA-

receptor activation results in LTP, it is generally accepted that the activation of voltage-

dependent Ca2+ channels before metabotropic glutamate receptors (mGluRs) result in the

phospholipase C-dependent (PLC-dependent) synthesis of endocannabinoids, which act as

a retrograde messenger to induce LTD (Nevian et al., 2006). Additional work on the impor-

tance of coincident postsynaptic backpropagation with dendritic-spine activity and [Ca2+]

revealed that the volume-averaged peak elevation of [Ca2+] in dendritic spines of pyramidal

neurons (precisely in Layer II/III pyramidals) was necessary determinant of the magnitude

of long-term potentiation; in particular, sublinear volume-averaged [Ca2+] resulted in LTD

whereas supralinear volume-averaged [Ca2+] led to LTP (Nevian et al., 2006).

In this view, the coincidence detector relevant for synaptic plasticity resides in the

synaptic spine and gets activated by backpropagation and the rise in dendritic spine [Ca2+].

It is worth noting that the existence of a spine coincidence detector and its activation by

bAP does not however suggest that it is the only mechanism for postsynaptic depolarization

at the spine or the only trigger of plasticity (Hartell, 1996).

In summary, backpropagating action potentials (bAPs) and coincident presynaptic

activity trigger long-term synaptic plasticity at the level of the spine and the soma in

neurons. The role of dendritic propagation delays is thus extended to include a direct effect

on synaptic plasticity mechanisms.
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3.7 Conclusion

In summary, postsynaptic heterogeneous processing of synaptic inputs at the level

of the dendrites has a major effect on neuronal dynamics, firing activity, and plasticity. The

first step in this project was to capture the nonlinear dendritic dynamics in a model of the

Layer V pyramidal neuron.



Chapter 4

Modeling the neuron: A balance

between detail & abstraction

Towards a fruitful and convenient mixture of simplicity and realism.

Rather than representing neurons as single summing points referred to as ‘point

neuron’ models, we decided to proceed with a spatially extended model that allows us to

capture the rich dendritic dynamics and their modulation of the neuron’s output as depicted

in Larkum et al. 1999a. Often than none in models where dendritic propagation delays

are included, they are modeled as being static and passive, which impedes the faith of the

model in capturing essential neuronal dynamics. While accounting for the dynamic dendritic

propagation delays entails a compartmental model that is naturally more computationally

intensive than a point neuron model, we strove in our implementation to keep the model as

simple as possible, thus satisfying our aim to incorporate this neuron model as a building

block in large neuronal network that can undergo plasticity and learning.

27
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4.1 Experimental findings underlying the neuron model

While there exists and extensive amount of literature detailing experimental finding

in cortical pyramidal neurons, we chose to use the findings of Larkum et al. 1999a in his

seminal Science paper where he investigated experimentally the coupling of inputs arriving at

different cortical layers using electrophysiological measures of a layer V cortical pyramidal

neuron in vitro. These pyramidals extend their dendrites into all cortical layers and are

unusual in having both a dendritic and an axonal zone for the initiating of action potentials,

thus they have multiple thresholding units. In addition, the large size of these neurons

and their extended denritic arbors makes them a good candidate for electrophsiological

measurements. The main figure from the paper by Larkum et al. 1999a that we based our

neuron model on is 4.1. Prior to detailing the neuron model, we will briefly explain the

details of this figure.

a. Triple recordings were made on two sites (depicted in red and blue pipettes) of the apical

dendrites and the soma (gray pipette) of a layer V pyramidal neuron. The red pipette is

positioned at 770µm from the soma and the blue pipette at 400µm from the soma.

b. Current injection of EPSP shape (biexponential) and maximum amplitude of 0.3nA at

the distal pipette produced a subthreshold voltage of 1.4mV at the soma.

c. Step current injection of 1.1nA amplitude and 5ms width at the soma resulted in a

somatic action potential that propagated backwards towards the distal dendritic site.

The backpropagating action potential decreased in amplitude but increased in width in

the dendrite. The afterdepolarization observed at the soma is also pronounced in the

backpropagating signal as depicted in the figure.

d. The combination of somatic and dendritic current injections as in (b) and (c) separated

by a time interval of 5ms resulted in a burst of action potentials and a backpropagation

action potential-activated (BAC) Ca2+ spike. The backpropagating action potential
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Figure 4.1: Layer V pyramidal neuron Active forward propagation and
coupling of a backpropagating action potential with subthreshold current injection

at the apical dendrite. Courtesy of Larkum et al. 1999a. Scale bar 200µm.

caused a reduction in the threshold for dendritic Ca2+-spike initiation which resulted in

the burst at the level of the soma. This mechanism is better detailed in 3.5.

e. Current injection in the form of an excitatory postsynaptic potential (EPSP) and max-

imum amplitude of 1.2nA at the distal dendrite evoked a dendritic Ca2+ spike that

propagated forward and induced a burst of somatic action potentials.

In summary, superthreshold input at the distal dendrite or near-synchronous input

to both the distal dendrite and the soma cause a burst of axonal action potentials. Once
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threshold is reached at the axonal integration site, the subsequent action potential backprop-

agating signal enables threshold at the dendritic initiation site to be reached more easily,

termed BAC firing. Thus BAC firing constitutes a potential mechanism for binding different

cortical regions. This being stated, and owing to its own separate spike-initiation zone, the

distal apical dendritic tree can act as a separate synaptic integration unit that facilitates

communication to the soma (Larkum et al., 1999a). This mechanism is also likely to exist in

other types of pyramidal neurons, such as hippocampal CA1 neurons (Golding et al., 2002).

4.2 Model results and fitting to experimental findings

Modeling the pyramidal neuron involved a compromise between two seemingly mu-

tually exclusive requirements where the model must be (1) computationally simple and

efficient to constitute the building block of large neuronal networks, yet (2) capable of pro-

ducing the rich firing patterns exhibited by real biological neurons that are endowed with

non-linear computational units: the dendrites.

The minimal number of components needed to reproduce the results in 4.1 are: the

soma, the spine and the dendrite that links the two. For the sake of simplicity and to avoid

the need to implement a dendritic tree, we assumed that the pipette located at 700µm

from the soma is recording from a spine. Modeling of the spine and soma was inspired

by the linear integrate-and-fire (LIF) point neuron model whereby these two separate sites

are endowed with thresholding capabilities and give rise to somatic and dendritic spikes.

Modeling the dendrite was inspired by the cable model proposed by Rall 1959. Both the

LIF model and the Rall cable equation were modified in order to account for the additional

properties exhibited by the pyramidal neurons, among these are the active propagation along

the dendrite and BAC firing.

The electrical response of the reconstructed model neuron to dendritic and somatic

current injection was investigated using the same protocols as in Larkum et al. 1999a.

Model results that conform to the rich dynamics of the LayerV pyramidal neuron in 4.1 are
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Figure 4.2: Neuron model: subthreshold current injection at the distal
dendrite. Current injection in the form of EPSP with maximum amplitude of

0.3nA at the distal dendrite evokes a subthreshold somatic membrane voltage of
maximum amplitude 1.4mV . Experimental results to which the model was fit are

displayed in faded colors that match those of their corresponding model signals

Figure 4.3: Neuron model: threshold current injection at the soma. Step
current injection at the soma evokes an action potential that backpropagates into
the distal dendrite. The backpropagating potential is reduced in amplitude but

increased in width in the dendrite. Experimental results to which the model was fit
are displayed in faded colors that match those of their corresponding model signals
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Figure 4.4: Neuron model: BAC firing. Threshold step current injection at
the soma coupled with subthreshold EPSP current injection at the distal dendrite
(0.3nA) give rise to a burst of action potentials at the soma following the onset of
Ca2+-initiated spike at the level of the dendrite. Experimental results to which the
model was fit are displayed in faded colors that match those of their corresponding

model signals

displayed in figures 4.2, 4.3, 4.4 and 4.5. Also in these figures are displayed in faded colors

the experimental results to which the model was fit.

4.2.1 Parameter fitting

Parameter fitting was achieved using a modification of the Least Squares method.

The Least Squares method is a mathematical procedure for finding the best-fitting curve to

a given set of points by minimizing the sum of the squares of the residuals. The residuals

vector R is the difference between the observations vector X and the model vector Y .

‖ r ‖2 =

m∑
1

r2
i (4.1)
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Figure 4.5: Neuron model: threshold current injection at the distal
dendrite. Current injection in the form of EPSP with maximum amplitude of
1.2nA at the distal dendrite evoked a Ca2+ dendritic spike and consequently a

burst of action potentials at the level of the soma. Experimental results to which
the model was fit are displayed in faded colors that match those of their

corresponding model signals

where r refers to elements in the residuals vector and m is the number of observations.

The Least Squares method thus finds coefficients x that solve the problem

minx ‖ F (x, xdata)− ydata ‖2= minx
∑
i

(F (x, xdatai)− ydatai)2 (4.2)

where xdata is the input data, ydata is the observed output data, and F (x, xdata) a vector-

valued function of the same size as ydata. Lower and upper bounds were used for x in order

to limit the search space.

We used a weighted version of the Least Squares method in which we selected impor-

tant points along the data curve that we need to fit to and assigned them different weights.

In other words, we scaled specific observations and model vectors of our choice. As an
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Figure 4.6: Points selected for weighted Least Squares method.
Parameters for the somatic voltage were found using the Least Squares method on

the selected points of the model and observations vectors.

example, we refer to the voltage at the level of the soma in figure 4.9, redisplayed here in

figure 4.6 with specification of the points selected and weighted.

The weighted method reduces the number of residuals that need to be minimized

and thus can result in a much faster and most of the times a more accurate generation of

parameters.

4.3 Threshold-initiation units: the soma and the spine

The spatially extended pyramidal neuron model comprises two threshold initiation

units: the spine and the soma. We modeled both units as variations of the LIF point

neuron model. While the LIF model captures the main nonlinear dynamics of the neuron’s

soma (action potential), it requires modifications in subthreshold voltage integration, action

potential generation and shape as well as afterdepolarization in order to provide the correct

fit to the somatic voltage in the layer V cortical pyramidal neuron studied by Larkum et al.

1999a. Thus the need to alter the simple LIF model in a way that ensures the right fit to

experimental findings. Prior to detailing the dendritic model and equations, we give a brief

overview of the basic integrate-and-fire neuron model.
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Figure 4.7: Schematic diagram of the integrate and fire neuron model. A
current I(t) charges the RC circuit. Once the voltage across the capacitances

reaches a threshold voltage v, an output pulse δ(t− tAP ) is generated. modified
from EPFL Gerstner

4.3.1 The leaky integrate-and-fire neuron

The properties of the leaky integrate-and-fire (LIF) neuron model have been inves-

tigated since 1907. At that time, not much was known about actual spike generation in

neurons (Arbib, 1995; Koch, 1999). The LIF model has become a simplified standard ap-

proximation to the complex behavior exhibited by real action potential generating neurons

(Partridge, 1966). We decided to use a variation of the LIF model because it is a very

simple model that offers a good approximation to the behavior of many neuron types, is

far more realistic than rate neurons as it includes the non-linearity observed in neurons and

it has been shown to be a limiting case of more complex conductance models such as the

Hodgkin-Huxley neuron model.

In its standard form, the LIF neuron has two behavioral regimes: sub-threshold and

super-threshold. Once the membrane voltage reaches a threshold value, an intrinsic property

of the neuron, the super-threshold mode is initiated and the neuron generates an all-or-none

action potential that is about 1− 2ms in width. As is the case in real neurons, an absolute

refractory period forces the LIF model voltage to drop to a reset value a short time after an

action potential is generated. The sub-threshold leaky integration of the model is produced

by a simple passive resistance-capacitance (RC) circuit with elements having physiological

correlates.
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Figure 4.8: Sigmoid function sth(v) where vth is the inflection point.

4.3.2 Avoiding discontinuities

Both the spine and the soma are sites for spike generation. Once the membrane

potential reaches its threshold value (vth for the somatic AP or uth for the dendritic spike),

an all-or-none action potential is initiated. We avoid the discontinuity that accompanies

this threshold-caused peak and reset in order to gain a better control over the shape of

the action potential initiation and reset. This discontinuity may also complicate the use

of some parameter estimation methods that may be needed to estimate and fit parameters

to experimental finding. A prominent method here is the Dynamical State and Parameter

Estimation (DSPE) method by Abarbanel et al. 2009. There lies the main reason behind

the use of the sigmoid function s.

s(a, b) ≡ s =
1

1 + exp−(a−b)
c

;

where c denotes the steepness of the ascent of the sigmoid when a is in the vicinity of b. c

is set to 0.1 in what follows except when otherwise specified.

As an example ssth = s(v, vth) is 0 when the somatic voltage v is much lower than

the threshold voltage vth and s(v, vth) is 1 when v reaches its apex value in the case of an

AP. However ssth takes on values between 0 and 1 in the vicinity of vth as depicted in figure

4.8.
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4.3.3 Soma and spine model equations

The soma and the spine are both implemented as threshold-initiating units and thus

as variations of the LIF neuron model.

In what follows, we denote by A the initial value of a.

At the level of the soma

In order to achieve the right fit to the experimental findings in figure 4.1, we set

the membrane capacitance and resistance to be functions of the membrane voltage. This

alteration can reflect the changes that occur in the somatic membrane as a result of the

change in membrane potential and ion transfer in and out of the membrane through voltage

activated channels. This voltage-dependence entailed the altering of the traditional LIF

neuron model by adding 3 state variables αs, βs, and γs as detailed below.

State variables

The model of the soma is composed of a total of seven state variables (excluding the

sigmoid functions that are added only to ensure continuity); these variables are:

v(t) represents the soma membrane voltage (mV ),

Is represents the current at the level of the soma (nA),

vth(v, t) represents the threshold voltage (mV ),

αs(v, t) refers to the voltage-dependent value of the membrane capacitance (nF−1),

βs(v, t) refers to the voltage-dependent value of the membrane time constant (ms−1),

γs(v, t) represents the voltage-dependent factor that drives the action potential (mV/ms),

τγs is the voltage-dependent time constant of γs(v, t).
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Figure 4.9: Somatic action potential. Action potential generated in response
to threshold current injection at the soma. Data in gray is extracted from

experimental findings in Larkum et al. 1999a and data in black reflect the result of
the model.

Parameters

The model parameters are:

Cs representing the voltage-independent value of the membrane capacitance (nF ),

τs representing the voltage-independent value of the somatic membrane time constant (ms),

V referring to the reset membrane voltage (mV ),

vAP referring to the apex of the action potential (mV ),

τsth representing the time constant of the threshold voltage (ms),

pγs which is a constant factor that helps ensure the correct shape of the action potential,

ταs referring to the time constant of the αs (ms),

τβs referring to the time constant of the βs (ms),

g representing a factor for the action potential increase.

Equations

The somatic voltage, v(t), is updated at each time step according to equation 4.3
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Figure 4.10: Somatic voltage-dependent variables. αs, βs, and γs values
corresponding to the somatic action potential in figure 4.9

dv

dt
= (αs + C−1

s )Is + (βs + τ−1
s )(V − v) + pγs γs; (4.3)

Three voltage-dependent state variables are added to the soma model in order to avoid

discontinuity.

svth(v) = s(v(t), vth); sap(v) = s(v(t), vAP ); s∆v(v) = s(v(t), v(t−1)); (4.4)

The voltage-dependent variables αs, βs and γs are depicted in figure 4.10. These

variables, along with the parameter values listed in table 4.1, ensure an almost exact fit

to the membrane voltage in 4.1(c) where a step current stimulates the pyramidal neuron

soma. The result of the fit is displayed in figure 4.9 with the black curve relating to the

model somatic voltage and the gray curve (almost coinciding with the black) relating to the

experimental somatic voltage.

αs = −svth C−1
s + (1− svth)(αs + dt

−αs
ταs

); (4.5)
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αs is the factor of integration that is added to the inverse of the membrane capaci-

tance to get multiplied by the value of the somatic current Is. αs is constant as long as the

membrane voltage doe not cross its threshold value, the point at which αs drops to annul

the effect of the membrane capacitance and reflect the neuron’s absolute refractory period

where the factor of the current I is zero and consequently any current applied to the neuron

during it’s all-or-none action potential does not affect the neuron’s voltage. αs recovers with

time constant ταs in order to reach its initial pre− vthreshold value.

dβs
dt

= sap βs −
βs
τβs

; (4.6)

βs is the factor of hyperpolarization and behaves similar to αs except that βs in-

creases when the membrane voltage reaches its peak (AP maximum value) and resets ac-

cording to time constant τβs .

dγs
dt

= svth s∆v g −
γs
τγs

; (4.7)

where

τγs = (1− svth) Tγs + svth Tγvth ; (4.8)

γs is the factor for the action potential where γs deviates from its initial value once

the membrane voltage crosses its threshold. γs ensures that afterdepolarization is accounted

for as its decay time constant τγs is also voltage-dependent and decays slowly once the

decreasing membrane voltage (hyperpolarizetion) crosses its threshold value.

The neuron’s intrinsic mechanism, namely its threshold voltage gets updated as a

result of firing an action potential. More precisely, vth is increased by a constant factor

fvth once the membrane voltage crosses its value and then decays back to its original value
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according to time constant τvth. This update in the neuron’s threshold voltage ensures the

control of its firing and bursting.

dvth
dt

= fvth sap +
Vth − vth
τvth

; (4.9)

Table 4.1: Parameter values at the level of the soma

Parameter Value

C−1
s 5.9055
τ−1
s 0.6467
V 0
pγs 3.0374
ταs 3
τβs 2.8141
τγs 4.5
g 339

Tγs 4.5
Tγsth 0.3619
fvth 19
Vth 8.4662
τsth 22

At the level of the spine

Same as with the soma model, we set the spine membrane capacitance and resistance

to be functions of the membrane voltage. This voltage-dependence entailed the altering of

the traditional LIF neuron model by adding 3 state variables αd, τd, and γd and ensured a

good fit to the experimental results represented in part (e) of figure 4.1. The fit achieved is

reflected in figure 4.5 where the red curve (time 0 to 12 ms preceding the soma action poten-

tial as backpropagation of the latter affects the spine membrane voltage) almost coincides

with the experimental one that is represented with fading red.
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State variables

The model of the spine is composed of a total of seven state variables (excluding the

sigmoid functions that are added only to ensure continuity); these variables are:

u(t) represents the soma membrane voltage (mV ),

EPSC represents the excitatory postsynaptic current at the level of the spine (nA),

uth(u) represents the threshold voltage (mV ),

αd(u) refers to the voltage-dependent value of the membrane capacitance (nF−1),

τd(u) refers to the voltage-dependent value of the membrane time constant (ms),

γd(u) represents the voltage-dependent factor that drives the action potential (mV/ms),

τγd is the voltage-dependent time constant of γd(u).

Parameters

The model parameters are:

Cd representing the voltage-independent value of the membrane capacitance (nF ),

U referring to the reset membrane voltage (mV ),

uDP referring to the apex of the dendritic spike (mV ),

τdth representing the time constant of the threshold voltage (ms),

bth representing the threshold value of the backpropagating action potential (mV ),

pγd which is a constant factor that helps ensure the correct shape of the dendritic spike,

ταd referring to the time constant of αd (ms),

T−1
d referring the initial value of τdth (ms−1),

τudecay representing the time constant of τdth (ms),

γ1 and γ2 affecting the rise and decay times of the dendritic spike, respectively,

τγ1 and τγ2 affecting the time constant factor of γd,

ττγd representing the time constant of τγd (ms).
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Equations

The spine voltage, u(t), is updated at each time step according to equation 4.10

du

dt
= (αd + C−1

d )EPSC + τ−1
d (U − u) + pγd γd; (4.10)

Four voltage-dependent state variables are added to the spine model in order to

avoid discontinuity.

suth(u) = s(u(t), uth); sdp(u) = s(u(t), uDP ); (4.11)

s∆u(u) = s(u(t), u(t−1)); sb(b) = s(b(t), bth); (4.12)

αd = −sdth s∆u C
−1
d + (1− suth s∆u) (αd + dt

−αd
ταd

); (4.13)

αd is the factor of integration that is added to the inverse of the membrane capaci-

tance to get multiplied by the value of the postsynaptic current EPSC. αd is constant as

long as the membrane voltage doe not cross its threshold value, the point at which αd drops

to annul the effect of the membrane capacitance and reflect the neuron’s absolute refrac-

tory period where the factor of the current is zero and consequently any current applied to

the neuron during it’s all-or-none action potential does not affect the neuron’s voltage. αd

recovers with time constant ταd in order to reach its initial value.

dτ−1
d (u)

dt
= suth (sdp + s∆u) sb

b

bmax
+

T−1
d − τ

−1
d

τudecay
; (4.14)

τd is the voltage-dependent variable that ensures the leak and hyperpolarization of

the spine voltage.
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dγd
dt

= sdth s∆ (1− sdp) γ1 (1− (sb −
vb

bBAC
))− sdth s∆ sdp γ2 −

γd
τγd

; (4.15)

γd is the factor for the dendritic spike where γd deviates from its initial value once

the membrane voltage crosses its threshold uth. The dendritic spike rise time is different

from its decay time and thus two factors are used to account for this: γ1 and γ2. In addition,

the dendritic spike rise time and value are affected by the backpropagating action potential.

dτγd
dt

= −sth s∆ (1− sdp) τγ1 + sdth s∆ sdp τγ2 +
Tγd − τγd
ττγd

; (4.16)

τγd is the voltage-dependent time constant of γd. By holding different values during

the rise and decay of the dendritic spike, this time constant ensures a dendritic spike shape

that fits the experimental findings.

The spine’s intrinsic mechanism, namely its threshold voltage gets updated upon the

occurrence of a dendritic spike. uth is increased by a constant factor futh once the membrane

voltage crosses its threshold value and then decays back to its original value according to

time constant τuth.

duth
dt

= fth sdp +
Uth − uth
τuth

; (4.17)

4.4 Neurotransmitter release and synaptic transmission: ef-

ficient implementation

While the neuron’s soma and spine are modeled phenomenologically, neurotransmit-

ter release and synaptic transmission are modeled using biophysically realistic equations. We
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Table 4.2: Parameter values at the level of the spine

Parameter Value

C−1
d 29.0197

τ−1
d 0.7292
U 0
pγ 38.8587
ταd 5

T−1
d 0.7292

τudecay 1
τγd 2.5
τγ1 2.1
τγ2 6
Tγd 2.5

Tγdth 10
γ1 3.65
γ2 0.25

bBAC 55
futh 37
Uth 43.46
τuth 14

Figure 4.11: Synaptic Cleft. Neurotransmitter transmission from the axon
terminal to the postsynpatic membrane. Picture adopted from Julien 1997

used the Law of Mass Action and receptor binding kinetics to achieve an efficient implemen-

tation, thus avoiding the use of time-varying conductance waveforms that are cumbersome

in terms of calculation and memory usage.
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Figure 4.12: Neurotransmitter release and receptor binding kinetics.

4.4.1 Modeling receptor binding of neurotransmitters

As illustrated in figure 4.11, the arrival of an action potential at the presynaptic axon

terminal triggers the release of neurotransmitter molecules into the synaptic cleft. Some - or

all - of the molecules released bind to postsynaptic receptors located on the dendritic spine

of the postsynaptic neuron. Receptor-bound neurotransmitters give rise to the postsynaptic

current that has the form of an EPSC. The elements of this mechanism are described below

according to the schema in figure 4.12.

We denote by:

• N neurotransmitters present in the presynaptic site and ready to be released (assumed

to be equal to the recovered neurotransmitters) at any point in time,

• X neurotransmitters present in the synaptic cleft at any point in time and ready to

be bound to postsynaptic receptors,

• XR neurotransmitters that are bound to postsynaptic receptors,

• I inactive neurotransmitters (XR upon unbinding from the postsynaptic receptors and

while awaiting activation in order to recover and become available for transmission -

N - in response to a presynaptic action potential)

The equations of the kinetic model described here are
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dN

dt
=

I

τrecovery
; (4.18)

dX

dt
= − X

τbind
+ Use N δ(t− tAP ); (4.19)

where Use is a parameter that denotes utilization of synaptic efficacy; Using different val-

ues for Use, this model could reflect various possible biophysical mechanisms of synaptic

depression - such as receptor desensitization (Destexhe et al., 1994) or depletion of synaptic

vesicles - or facilitation (Tsodyks and Markram, 1997). In short, accounting for short term

plasticity (STP) or what is referred to as paired-pulse facilitation (PPF) and paired-pulse

depression (PPD).

Use = 1.7 is used for synaptic depression and Use = 0.2 for synaptic facilitation

(Mongillo et al., 2008).

dXR

dt
=

X

τbind
− XR

τunbind
; (4.20)

I = 1− (N +X +XR); (4.21)

A total of four state variables are used to model the release of neurotransmitters and

their binding to postsynaptic receptors.

Table 4.3: Parameter values for the release and binding of neurotransmitters

Parameter Value

τbind 2
τunbind 8
τrecovery 3
Use 1.7
Ase 39
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This implementation allows a biophysical representation of postsynaptic receptors

binding kinetics that is fast to compute and accounts implicitly for short term plasticity

as well as saturation and summation of multiple synaptic events. In addition, the current

solution saves memory usage by eliminating the need to store long waveforms in memory

arrays and summing them up with the occurrence of every action potential.

4.5 Site for propagation dynamics: the dendrite

Rich dendritic propagation dynamics and variable conduction delays modulate the

neuron’s firing activity and support a variety of coincidence-detection mechanisms. These

mechanisms endow the neuron with a potentially rich repertoire of computational capabili-

ties and are likely to be crucial for synaptic integration and plasticity. We describe in this

section the model of the spread of the postsynaptic potential and backpropagation through

the dendritic tree.

4.5.1 The passive cable theory

To begin the journey through dendritic modeling we will start with the theory of

passive dendrites and modeling that is inspired by the pioneering work of Rall 1959; Wilfrid

Rall modeled the dendrites as membrane cylinders connected to each others. The mem-

brane of these cylindrical core conductors was assumed to be passive and current flow in

these cylindrical membranes was described by the linear one-dimensional passive cable equa-

tion. The compartmental modeling approach is mathematically a finite-difference (discrete)

approximation to the cable equation. Compartments are connected to each other via a

longitudinal resistivity according to the topology of the tree. Differences in physical proper-

ties and potentials occur between compartments since these are assumed to be isopotential.

Cable theory complemented by the compartmental modeling approach played an essential

role in estimating dendritic parameters and in providing insights about the computational

properties of dendrites.
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4.5.2 Active forward propagation dynamics modeled using a variation of

the passive cable theory

Rather than modeling dendrites as passive transmission cables, we altered the Rall

equation to account for both passive and active dendritic propagation. The mathematical

challenge was to keep the model of dendritic propagation simple while making a good fit to

the rich dynamics depicted in the layer V pyramidal neuron as described in figure 4.1. With

the goal of modeling the passive and active propagation dynamics efficiently, we decided to

tackle the difference between passive and active forward propagation along the dendrite

from an Electrical Engineering perspective. More precisely, we devised a capacitor added in

parallel to the intracellular resistance as it figures out in the Rall cable schematic. The reason

behind adding this capacitance (labeled Ci) is that in its limit, a capacitor can act as a short

circuit with extremely high frequencies and an open circuit with extremely low frequencies.

This translates to having the capacitor speed up the propagation of high frequency signals

along the dendrite and delay low frequency signals along the same cable. This is indeed the

output we wish to get with fast forward propagation of active frequency signals that are

larger in amplitude and thinner in width when compared to passive frequency signals. We

tested this approach by incorporating the intracellular capacitor into the different dendritic

compartments as shown in figure 4.13 and conducting the mathematics to run the model

and find the parameters that ensure the right fit to the forward propagation dynamics in the

dendrite of the pyramidal neuron being modeled. We describe in what follows the equations

and derivations done to achieve the needed results.

We assume that everywhere along the length of the cable, the potential depends

only on the length variable and not on radial or angular variables, so that the cable can be

viewed as one-dimensional. The cable is divided into a number of short pieces of isopotential

membrane of length dx each. Two types of current exist, the transmembrane current and

the axial current. The axial current has intracellular and extracellular components (denoted

by subscripts i and e, respectively)
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Figure 4.13: Rall cable schematic modified. Schematic diagram of a
discretized cable, with isopotential circuit elements of length dx.

Vm = Vi − Ve; (4.22)

Vm refers to the membrane potential (intracellular minus extracellular electric potential)

Ve(x+ dx)− ve(x) = −Ie(x) re dx; (4.23)

Ie(x) =
Ve(x+ dx)− Ve(x)

−redx
; (4.24)

Ii(x) =
−Ci
dx

d

dt
(Vi+1 − Vi)−

Vi+1 − Vi
ridx

; (4.25)

Kirchhoff’s current law:

It = Ii − Ii+1 = Ie+1 − Ie; (4.26)

Where It is the transmembrane current.
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It = Cm
dVm
dt

+
Vm
rm

; (4.27)

Where Cm and rm denotes the membrane capacitance and resistance, respectively.

It = −∂Ii
∂x

= − ∂

∂x
(−Ci
∂x

d2Vi
dt
− 1

ri

dVi
dx

); (4.28)

Ii =
1

ri

∂2Vi
∂x2

+ Ci
∂3Vi
∂x2∂t

=
∂2Vi
∂x2

(
1

ri
+ Ci

∂Vi
∂t

); (4.29)

Cm
dVm
dt

+
Vm
rm

=
∂2Vi
∂x2

(
1

ri
+ Ci

∂Vi
∂t

); (4.30)

Equation characterized by one temporal derivative and two spatial derivatives. It can be

shown using Taylor’s series that the left hand side of this equation can be expressed in terms

of the differences between the value of Vi and the values in the adjacent compartments Vi−1

and Vi+1.

∂2Vi
∂x2

=
Vi − Vi−1

∆x2
+
Vi + Vi−1

∆x2
; (4.31)

We explicitly discretized, using Euler method, both space and time in order to reduce the

system of equations to a linear algebra form. This discretization is called the finite difference

method.

Cm
∆V

(t)
i

∆t
+
V

(t−1)
i

rm
= (

1

ri
+ Ci

∆V
(t−1)
i

∆t
)(
Vi − Vi−1

∆x2
+
Vi + Vi−1

∆x2
)(t−1); (4.32)
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Here, the subscripts denote the spatial coordinates and the superscripts denote the

time coordinates.

We ensured that the implementation of spatial propagation along the dendrite is

vectorized in order to avoid looping through the different compartments composing the

dendrite, thus increasing the efficiency of the model and reducing the overhead that may

result from the inclusion of the spatially extended dendrite in the neuron model.

∆V
(t)
i

∆t
= −

V
(t)
i

τm
+

1

Cm
(

1

Ri
+

1

Ci

∆V
(t−1)
i

∆t
)
V

(t−1)
i−1 − V (t−1)

i

∆x2
; (4.33)

where

∆V
(t)
i

∆t
=
V

(t)
i − V

(t−1)
i

∆t
; (4.34)

Rewriting equation 4.33 using the nomenclature defined previously,

du(t)

dt
= −

u
(t)
i

τfm
+

1

Cfm
(

1

Rfi
+

1

Cfi

du
(t−1)
i

dt
)
u

(t−1)
i−1 − u

(t−1)
i

dx2
; (4.35)

Table 4.4: Parameter values for the passive and active forward propagation
dynamics

Parameter Value

τ−1
fm 0.0914

C−1
fm 5.2449

R−1
fi 0.6556

Cfi 0.004

In conclusion, the addition of the intracellular capacitance Cfi enabled us to model

active and passive forward propagation dynamics in the dendrite and consequently expose

the significant effect of dendrites on the electrical behavior of the neuron.
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4.5.3 Modeling backward dendritic propagation

Backward denritic propagation was modeled using the same cable equation by Rall.

This time Ci is set to 0 as signal propagation speeds are constant.

db(t)

dt
= −

b
(t)
i

(τ−1
bm + T−1

bm)
+

1

Cbm

1

Rbi

b
(t−1)
i+1 − b

(t−1)
i

dx2
; (4.36)

Figures 4.4 and 4.5 reveal a dependence between the backpropagating action potential and

the dendritic voltage. We account for this by updating the state variable τbm as follows:

dτ−1
bm

dt
= sbpτ

−1
bm +

T−1
bm − τ

−1
bm

ττbm
; (4.37)

where

sbp = (u+ b > bmax) (sth); (4.38)

Table 4.5: Parameter values for the backpropagating action potential along the
dendrite

Parameter Value

C−1
bm 2.1643

R−1
bi 1.3237

T−1
bm 0.001

ττbm 1
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4.5.4 At the interface between the soma and dendrite

At the interface between the soma and dendrite lie two important factors: (1) the

effect of the dendritic membrane potential on the somatic current as in equation 4.39 and

(2) the initiation of the backpropagating action potential modeled using equation 4.40.

Is = r−1
u u; (4.39)

Where ru is the resistance that separates the end of the dendrite from the soma.

db(t)

dt
= −

b
(t)
i

τbms
+

1

Cbms

1

rbis

v(t−1) − b(t−1)
i

dx2
; (4.40)

The parameter values listed in table 4.6 ensure the widening and decrease in amplitude of

the action potential upon reaching the dendrite-soma interface.

Table 4.6: Parameter values for backpropagation at the dendrite-soma interface

Parameter Value

r−1
u 0.08 (Ω−1)

τ−1
bms 0.001 (ms−1)

C−1
bms 2.1831 (nF−1)

R−1
bis 1.1001 (Ω−1)

Tbis 3 (ms)
ττbis 0.5 (ms)

As shown in figure 4.3, the decay of the backpropagating action potential gets attenuated.

We account for this attenuation by increasing the dendritic resistance (decrease in r−1
bis) at

the interface between the soma and the dendrite.

dτbis
dt

= fτbisβ(v) +
Tbis − τbis

ττbis
; (4.41)
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r−1
bis = −fbis β(v) +

R−1
bis − r

−1
bis

τbis
; (4.42)

Two state variables are thus used to account for the decaying shape of the backpropagating

action potential observed in figure 4.3.

4.5.5 At the interface between the spine and dendrite

The backpropagating action potential reaches the spine level and affects the EPSC

according to the following equation:

EPSC = (1− sbmax) Ib; (4.43)

where sbmax is used to calculate the factor of b(t) that affects the EPSC.

sbmax = s(b(t), 40); (4.44)

Moreover, EPSC is also caused by receptor bound neurotransmitters and thus

EPSC = (1− sbmax) Ib +Ase XR; (4.45)

where Ase is a parameter that refers to the absolute synaptic efficiency i.e. the amplitude

of the first EPSC after a long silent period.
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Figure 4.14: BAC firing: precision of timing required. Somatic and
dendritic current injections separated by a time window that is less than 5 ms give

rise to BAC firing which results in bursting at the soma. The somatic
EPSC-shaped stimulus is shown in blue and the dendritic EPSC-shaped stimulus
in red. ∆t = t(Isoma)− t(Idend) is 8 ms for the first pair of stimuli, 0 ms for the

second pair and -9 ms for the third.

4.6 BAC firing

We showed earlier how the combinations of subthreshold dendritic and threshold

somatic current injections can give rise to a burst of action potentials at the level of the

soma, a mechanism referred to as BAC firing. BAC firing is backpropagation activated

Ca2+ spike firing. There exists an optimal time window between the EPSC-shaped dendritic

stimulus and step-shaped somatic stimulus for BAC firing to occur. For the layer V cortical

pyramidal neuron in vitro and with a dendritic stimulus that is at 700µm from the soma, the

window was found to be 3-7 ms (Larkum et al., 1999a). This proves that backpropagating

action potentials alter the Ca2+ action potential threshold as shown in figure 3.5.

We tested BAC firing and timing precision in the pyramidal neuron model and

obtained results that are in agreement with experimental finding whereby there exists a

time difference between the dendritic and somatic stimuli that is critical for the initiation

of BAC firing. The results are shown in figure 4.14.
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Figure 4.15: Network of two dendritic neurons. Neuron 1 is stimulated with
a threshold step current and connects to the dendrite of neuron 2 with a weight

equivalent to 0.3 nA at the synaptic site.

4.7 Sanity checks using small networks of dendritic and LIF

neurons

As a first step towards implementing networks of dendritic and LIF neurons, we

performed a sanity check using simple 2- and 3-neuron networks to ensure that all elements

of our model are functioning correctly.

4.7.1 Dendritic SAAD neurons

We performed sanity checks on networks composed of two dendritic neurons con-

nected in such a way that neuron 2, postsynaptic to neuron 1 which is in turn stimulated

by external inputs, exhibits all different mechanisms depicted in 4.1. Results of these tests

are shown in figures 4.15, 4.16 4.17, 4.18 and 4.20.

4.7.2 LIF neurons

We used the exclusive OR (XOR) neuron circuit in order to test the LIF neurons

implemented. Results are displayed in figure 4.22;
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Figure 4.16: Network of two dendritic neurons. Neuron 1 is stimulated with
a threshold step current and connects to the soma of neuron 2 with a weight

equivalent to 1.1 nA at the synaptic site.

Figure 4.17: Network of two dendritic neurons. Neuron 1 is stimulated with
a threshold step current and connects to both the dendrite and soma of neuron 2
with weights equivalent to 0.3 nA and 1.1 nA, respectively, at the synaptic sites.

4.8 The neuron model: Conclusion

In an effort to facilitate the study of pyramidal neurons in networks that undergo

learning and memory, we devised a phenomenological model for a spatially extended neuron

that comprises a spine, a soma and a site for nonlinear two-way propagation dynamics,

a dendrite. The spine and soma are modeled as separate thresholding units with point-

neuron-like behavior. The modeling of these two compartments is a modification of the LIF
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Figure 4.18: Network of two dendritic neurons. Neuron 1 is stimulated with
a threshold step current and connects to the dendrite of neuron 2 with a weight

equivalent to 1.2 nA at the synaptic site.

Figure 4.19: Schematic for network of two dendritic neurons. Neuron 1 is
stimulated at its dendrite and soma and connects to the soma of neuron 2 with a

weight equivalent to 1.1 nA at the synaptic site.

Figure 4.20: Network of two dendritic neurons. Neuron 1 is stimulated at its
dendrite and soma and connects to the soma of neuron 2 with a weight equivalent

to 1.1 nA at the synaptic site.
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Figure 4.21: Schematic for the XOR circuit. Neurons 1 and 2 are stimulated
with inputs I1 and I2 with the black connection lines signaling positive weights
and the red connection lines signaling their opposites. Both neurons 1 and 2 are

presynaptic to neuron 3 which displays the XOR output.

Figure 4.22: XOR circuit example. Simulation results for the XOR network.

neuron model whereby the resistive and capacitive components are voltage-dependent. Volt-

age threshold to initiate an action potential also varies with the voltage, thus the neuron’s

intrinsic properties are also accounted for in the model. The dendrite is modeled using a

variation of Rall’s compartmental model in order to capture dendritic passive and active for-

ward propagation as well as backpropagating action potentials en route away from the soma

and towards the dendrite. The model captures coincidence detection mechanisms as well as

backpropagation-activated dendritic spikes (BAC firing) and exhibits dynamics that are in

agreement with the pyramidal Layer V neuron described in Larkum et al. 1999a. Synaptic
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transmission is implemented using biophysically realistic equations whereby an action po-

tential reaching the presynaptic axon terminal results in a release of neurotransmitters into

the synaptic cleft and the binding of these neurotransmitters to postsynaptic receptors give

rise to an excitatory postsynaptic current (EPSC) that invades the postsynaptic neuron’s

dendrite. While the neuron we implemented is spatially extended and accounts for the mul-

tiple properties of pyramidal neurons as described, 29 is the total number of state variables

used by the model; we strove to keep this number relatively low for such a detailed neuron

model that captures experimental findings with high fidelity.



Chapter 5

Neural coding and Information

processing

The question that we seek to answer here is: do dendrites constitute an extra biolog-

ical detail or are they instead an inherent property for information processing enhancement

in neurons?

Having implemented the extended dendritic neuron, also referred to as SAAD neu-

ron, we are now in a position of understanding how these neurons process inputs and whether

or not they represent an advantage over point neuron models. Processing inputs involves

encoding and decoding assumed to be represented in neural spikes at the level of the neu-

ron’s soma or axon. We are at the point of studying the effect of dendritic nonlinear and

active processing of synaptic inputs on the coding efficiency and information processing ca-

pability of the neuron. The question that we seek to answer is: Do dendrites constitute a

biological detail that can be disregarded in studies of neuronal networks or are they instead

an inherent and fundamental property for information processing?

We proceed to answer this question quantitatively using measures of information

theory applied to the neural code. Information theory has provided a successful means to

quantify information encoded and decoded by a communication system. We begin with an

62
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outline of the neural code followed by a discussion of the basic measures of information

theory and then we move on to describe the measures used to implement and quantify

information in this thesis work.

5.1 Temporal representation in spiking neurons

Neurons in real nervous systems traffic in neural spikes. Neural spikes are fundamen-

tal properties of real neurobiological systems and they represent an unavoidable challenge

for deciphering neural representation in its ’full-fledged’ form. More precisely, neural spikes

serve to encode and decode time-varying signals in populations of spiking neurons. Our goal

is to describe and compare the representation of time-varying signals by spiking neurons,

namely by leaky integrate-and-fire (LIF) neurons and dendritic Saad (SAAD) neurons.

5.2 Temporal codes in neurons

When addressing temporal representation or temporal coding in neurons, it is diffi-

cult to avoid the vigorous debate those who take the code to be a rate code (Shadlen and

Newsome, 1994; Buracas et al., 1998) and those who take it to be a timing code (Softky and

Koch, 1995; Rieke et al., 1997). Both rate and timing codes are clearly time-dependent codes.

5.2.1 Rate coding

A rate code is the one that takes the information about a stimulus to reside in the

mean firing rate of a spike train over a relatively long time window (about 100 ms). There

are however a wide variety of problems associated with the adoption of rate coding. First,

there is experimental evidence that different input spike trains with the same mean firing

rate, but different temporal structure, produce significantly different results from the same
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neuron (Segundo et al., 1963). Second, most animals are embedded in highly dynamic en-

vironments. If these animals needed to integrate information over an extended period of

100 ms, they would have little chance to survive. In fact there is plenty of evidence that

many behavioral decisions are made on the basis of one or two neural spikes whoch can

be only a few milliseconds apart (Rieke et al., 1997). Third, rate coding cannot support

information transmission rates observed in real neurons (Rieke et al., 1997) while evidence

shows that timing codes can (MacKay and McCulloch, 1952). This being stated, there are

many reasons to think that the neural code is not a mean rate code.

5.2.2 Time coding

Is the neuron code a timing code? The answer is not necessarily as it depends on

what we mean by ’timing code’. There is evidence that the precise timing of spikes is not

mandatory for the successful transmission of neural signals (Bialek et al., 1991). The stan-

dard timing code is one that takes spike train variability to encode information about the

stimulus (MacKay and McCulloch, 1952). Variations in a single signal can be measured

by taking the inverse of interspike intervals (1/ISI). The same stimulus can elicit differ-

ent spike trains, thus the measure 1/ISI is often averaged over a number of trials. The

averaged measure is sometimes called the ’instantaneous’ rate code of the neuron (Buracas

et al., 1998; Rieke et al., 1997). This measure is equivalent to a rate code with the win-

dow size approaching the limit of zero. Other timing codes exist such as the importance

of the placement of spikes relative to the stimulus onset in carrying information about the

stimulus as is the case of the slowing of firing rates given sustained, super-threshold input.

This ubiquity of adaptation in excitatory cortical neurons suggest that this time coding is

important.
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5.2.3 Code used by the brain

The brain is likely to use different codes for different problems (Zador, 1998; Rieke

et al., 1997). Perhaps rapid sensory processing uses a timing code and static sensory pro-

cessing uses a rate code (Buracas et al., 1998). Given the methodology I adopted, I did not

have to ’choose’ a code, the ’appropriate’ code is instead determined by the signals that are

represented and the neuronal properties... The approach is general enough to characterize

the kind of coding appropriate to the problem in hand ... This method thus transcends

concerns about whether neurobiological systems use rate or timing codes. applies to spike

trains with both short and long correlations times, unifying rate and timing codes.

In order to compare the behavior of LIF and SAAD neurons, we decided to use the

information metric.

5.3 Information transmission

Because we are interested in characterizing representation, we need to specify a

method for decoding the results of this type of encoding and for quantifying this decoding.

We use Shannon’s theory of mutual information to achieve this goal. There has been a large

amount of attention given to the information theoretic properties of neural spike trains

(Bialek et al., 1991; Miller et al., 1991; Koch, 1999; Stevens and Zador, 1996; Richmond

and Optican, 1990; Bialek and Rieke, 1992). Chief amongst the measures of information

processing is Shannon’s mutual information theory. Given the success of this measure in

providing insights into neural coding, I implemented this method with modest variations.

5.3.1 Mutual information

Information theory was first introduced by Claude Shannon to describe the trans-

mission of information in a communication system as depicted schematically in figure 5.1
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Figure 5.1: Schematic diagram of a general communication system.
Courtesy of Shannon 1948

(Shannon, 1948). A communication system consists of essentially five parts:

(1) An information source which produces a message to be transmitted to the receiving

terminal.

(2) A transmitter which encodes the message to produce a signal suitable for transmission

over the channel.

(3) The channel which constitutes the medium used to transmit information from the trans-

mitter to the receiver and is noisy and thus error prone.

(4) The receiver that decodes and reconstructs the signal by performing the inverse of the

operation done by the transmitter.

(5) The destination to whom the message is intended.

Shannon’s information theory attaches a number to the amount that can be learned

about the world by observing certain signals. Information-theoretic quantities are formed

by considering the specific messages x produced by the source as random variables X over

p(x), the probability distribution function (PDF) of the set of possible messages. While
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information-theoretic quantities can be continuous or discrete, we introduce them in this

work in their discrete form.

The fundamental quantity is the Shannon entropy, HX , which represents the aver-

age uncertainty associated with any measurement x of a random variable X.

HX = −
∑
x

p(x) log2 p(x) (5.1)

The choice of a logarithmic base corresponds to the choice of a unit for measuring

information. We choose here base 2 for all information-theoretic calculations and thus the

resulting units are called binary digits, or more briefly bits, a word suggested by J. W.

Tukey. HX quantifies the number of bits needed to encode the random variable X, and

can thus be considered the information content of the particular message. This information

metric can be interpreted as the level of diversity in the source (Prokopenko et al., 2009).

The joint entropy of two (or more) random variables X and Y , HX,Y , is a gener-

alization to quantify the uncertainty of the joint distribution of X and Y .

HX,Y = −
∑
x,y

p(x, y) log2 p(x, y) (5.2)

The conditional entropy of X given Y , HX/Y , is the average uncertainty that remains

about x when y is known.

HX/Y = −
∑
x,y

p(x, y) log2 p(x/y) (5.3)

p(x/y) = p(x, y)/p(y) (5.4)
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Thus the conditional entropy can be expressed in terms of the entropy of Y and joint entropy

of (X,Y) as

HX/Y = HX,Y −HY (5.5)

The mutual information between X and Y measures the average reduction in

uncertainty about x that results from learning the value of y, or vice versa.

IX;Y = −
∑
x,y

p(x, y) log2
p(x, y)

p(x) p(y)
(5.6)

HX/Y = HX +HY −HX,Y (5.7)

IX;Y = HX −HX/Y = HY −HY/X (5.8)

The mutual information can be generalized to a set of more than two variables as

the multi-information or integration (Tononi et al., 1994). The multi-information is

a measure of the deviation from independence of the G components in the system X =

X1, X2, ..., XG

IX = IX1;X2;...;XG = (

G∑
g=1

HXg)−HX1,X2,...,XG (5.9)

The channel capacity is the maximum amount of information that Y (received

signal or output) can contain about X (transmitted signal through the communication

channel or input). Thus channel capacity is defined as the maximum mutual information

for the channel over all distributions of the transmitted signal

C(p(y/x)) = maxp(x)IX;Y (5.10)
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This definition renders channel capacity as asymmetric and causal (in contrast to

mutual information). Channel capacity is a property of the channel itself rather than a

property of the dynamics for a specific interaction over the channel. By finding the capac-

ity, we obtain a measure that does characterize the stimulus-response relationship. This

approach would seem to provide a measure of information processing capability.

5.3.2 Multivariate mutual information

Typically, mutual information is defined and studied between two variables. This

is referred to as bivariate mutual information. However, sometimes intricate dependency

exists between more than two variables and their relationship can only be deciphered if they

are all considered at once.

As explained earlier, a single-input single-output channel with a discrete input X

and output Y having entropies H(X) and H(Y ) respectively, has the following amount of

information transmitted between X and Y

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (5.11)

In the case where two sources U and V transmit information to a single output

receiver Y , the mutual information in this two-way channel is written as

I(U, V ;Y ) = H(U, V ) +H(Y )−H(U, V, Y ) (5.12)

One way to reduce the three-dimensional information to two dimensions is to take

a weighted sum of the mutual information between U and Y for each value of V .
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Iv(U ;Y ) = I(U ;Y/V ) =
∑

p(v)I(U ;Y/V = v)

= I(U, V ;Y )− I(V ;Y )

= (H(U, V ) +H(Y )−H(U, V, Y ))− (H(V ) +H(Y )−H(V, Y ))

= H(U, V )−H(U, V, Y )−H(V ) +H(V, Y )

(5.13)

The extension of mutual information to a general case of three or more variables

was formulated by Fano (Fano, 1961). Fano computes the mutual information between an

arbitrary number of events as follows

I(X1;X2) = H(X1)−H(X1/X2)

= I(X1)− I(X1/X2)

(5.14)

Extending to a triple product ensemble

I(X1;X2;X3) = I(X1;X2)− I(X1;X2/X3) (5.15)

Generalizing over N variables

I(X1;X2; ...;XN ) = I(X1;X2; ...;XN−1)− I(X1;X2; ...;XN−1/XN ) (5.16)

Nevertheless, in the case of the dendritic neuron, we decided to use a variation of

the bivariate mutual information in order to calculate the mutual information between the

neuron’s somatic and dendritic inputs and its output. The following chapter details this

approach and exposes its results.



Chapter 6

Mutual information

Knowing the neural code can unlock the “secrets” of how neurons work in concert to process

and represent information.

6.1 Exploring the neural code

The neuron is the communication system that we focus on in this study. The neu-

ron’s output membrane voltage encodes aspects of the input(s) it receives. In this work we

consider the spike train of the neuron as its output for calculating the information that it

conveys about its afferents. As can be seen from its definition (equation 5.8) mutual infor-

mation depends on the input and output probabilities. Mutual information thus measures

how different, in a statistical sense, the input and output (also referred to as stimulus and

response, respectively) are. Mutual information is equal to zero if the response is uncorre-

lated or statistically independent of the stimulus.

If we consider the Layer V pyramidal neuron’s output patterns as described in

Larkum et al. 1999a, we note the existence of separate all-or-none action potentials as well

as output bursts at the level of the neuron’s soma in response to different sets of dendritic
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Figure 6.1: SAAD neuron stimulated by coinciding dendritic and somatic
inputs. The somatic stimulus is represented in black and the dendritic stimulus

in red. Modes of operation depicted are: BAC firing, subthreshold somatic
activation, firing of a single action potential, and burst firing in response to

superthreshold dendritic stimulus

and somatic stimuli. The existence of single spikes and bursts at the level of the neuron’s

output necessitates knowing when to count bursts and when to count single spikes in the

calculation of the output probability distribution. To better clarify this point, we plot in 6.1

the different input/output combinations depicted in 4.1 and observe their correlations. This

example is simple as the stimulus presentations are spaced sufficiently far apart in time

(inter-stimulus interval = 75 ms) to prevent adaptation and sequential stimulus effects on

the neuron’s output. Another example would be to stimulate the dendritic neuron at its

dendrite and soma by two separate sets of biexponential trains that follow a Poisson distri-

bution of frequency equal to 10 Hz (figure 6.2). While the input/output correlations seemed

more obvious in the case of figure 6.1, the same method is used to depict these correlations

and calculate input and output probabilities and consequently quantify mutual information

in this model of the dendritic neuron.

6.2 Finding correlated patterns of inputs and outputs

Discrete inputs and outputs are used to calculate the entropy and mutual information

for the dendritic neuron. As such, the biexponentially shaped input trains are discretized

using time steps of dt = 0.2 ms and such that the biexponential maximum amplitude is
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Figure 6.2: SAAD neuron stimulated by Poisson distributed dendritic
and somatic inputs. Poisson stimuli are of frequency 10 Hz. The somatic

stimulus is represented in black and the dendritic stimulus in red. Multiple modes
of bursting are observed in response to the naturalistic stimuli.

represented by its value at the time of its occurrence while the rest of the curve is set to zero

over the time steps that precede and succeed its peak. This leaves us with an input spike

train with non-zero values representing the amplitude and time of occurrence of the spike’s

corresponding biexponential peak value. The outputs are action potentials as they occur

at the neuron’s axon terminal(s). We consider the axon terminal rather than the neuron’s

soma as the locus of output trains in order to account for the axon delays whenever these

are positive.

In the case of the dendritic neuron, the input in the calculation of mutual information

is the pair of dendritic and somatic stimuli, which leaves us with the case of a multivariate

(three variables) mutual information case. The number of variables increases if we consider

information calculation in a network of neurons undergoing the effect of multiple stimuli

and having multiple output neurons. We devise a method for merging inputs and outputs,

thus reducing the multivariate mutual information case to a bivariate case, thus ensuring

easier computations.

Input-Output patterns

We devised a method whereby the pair of stimuli (dendritic and somatic) and its

corresponding output signal are discretized using a dynamic time resolution that helps
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preserve the input/output correlations in order to derive the corresponding entropy and

mutual information.

Based on the dendritic neuron outputs obtained for varying input stimuli, we define

bursts as sets of consecutive spikes with inter-spike intervals of 10 msec or less. This does not

imply however that two consecutive spikes separated by 10 ms or less make necessarily part

of a burst. Whether or not an output spike belongs to a burst is determined by the inter-

spike interval coupled with its corresponding input. The same reasoning applies to input

bursts. This being stated, the merging of inputs and outputs and their characterization

as single signals or bursts of signals is done dynamically and gets refined to find the best

input/output correlation set. This maximum correlation translates to an increase in the

value of mutual information between these inputs and outputs.

Below is a detailed explanation of the merging and pattering method used in this

thesis.

(a) Each input represented by a biexponential curve is binned with a time resolution dt

such that the maximum value of the biexponential is represented at the time of its

occurrence while the rest of the curve is set to zero. Noise is accounted for by setting

a 5% error range for the input amplitude. This ensures that inputs within this range

are considered equal in the calculation of input probabilities and consequently of the

mutual information.

(b) Separate binned inputs (dendritic stimulus and somatic stimulus) are then merged into

one transmitted signal. This merging is done in a way that preserves the values, time of

occurrence and amplitudes of the stimuli. More precisely a dendritic stimulus of ampli-

tude 0.3 nA that coincides with a somatic stimulus of amplitude 0.9 nA are not confused

with a dendritic stimulus of amplitude 0.9 nA and a somatic stimulus of amplitude 0.3

nA.
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(c) The output is binned with the same time resolution (dt = 0.2 ms) and is envisioned as

a spike train such that the presence of a spike is denoted by a 1 and its absence by a

zero (at each dt).

(d) In the case of more than one output signal, merging is done the same way as it is

computed for the input sets. Similarly, the order and values of the signals are preserved.

(e) Output and input bursts are then calculated such that consecutive signals that occur

within 10 ms may constitute part of the burst. Based on the correlations between inputs

and outputs, a confidence interval (0%-100%) is calculated for each input/output set

to ensure that the highest confidence value is reached prior to calculating entropy and

mutual information.

(f) An error of 5% in the burst inter-spike intervals is accepted as it reflects noise that the

neuron may be subject to as well as variation in the neuron’s intrinsic properties.

(g) Input and output patterns and confidence intervals are calculated by taking into consid-

eration the patterns of repetition of the following values: input amplitude, inter-stimulus

interval, input onset time, output amplitude, inter-spike intervals and number of output

spikes within a burst.

(h) The algorithm is repeated recursively in order to account for the best input/output

correlation with confidence values recalculated and bursts reconsidered.

A simple example that illustrates this merging and patterning method is stated in Appendix

A.

6.3 Mutual information measures in LIF and SAAD neurons

We calculated mutual information in single SAAD and LIF neurons as well as in

networks of these neurons. Results are displayed and explained in what follows.
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Figure 6.3: Single SAAD neuron stimulated at the dendrite and soma. I1
and I2 are dendritic and somatic stimuli, respectively. The pyramidal neuron is

represented using a triangle.

Figure 6.4: Membrane voltage of SAAD neuron in response to somatic
and dendritic stimuli. Mutual information calculated to be 1.9219 bits for

this stimuli-voltage pair.

6.3.1 Mutual information in a single SAAD neuron and a single LIF neu-

ron

Perhaps the simplest example that can highlight the advantage of the dendritic neu-

ron (SAAD) over the point neuron (LIF) is the one in figure 6.4. The dendritic neuron

is stimulated by a somatic and a dendritic stimulus as depicted in the schematic in fig-

ure 6.3. The simulation runtime is 700 ms. The pair of stimuli encloses the following five

combinations: (1) coinciding somatic and dendritic stimuli which give rise to BAC firing

and subsequently a 3-spike burst at the level of the soma. (2) and (3) The time difference

between stimuli (tIdend − tIsoma) highlights the effect of BAC firing shown in the second and
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Figure 6.5: Single LIF neuron stimulated using two external inputs. I1
and I2 are somatic stimuli. The LIF point neuron is represented using a circle.

Figure 6.6: Membrane voltage of LIF neuron in response to two stimuli.
A lower value for mutual information is calculated for the LIF neuron in response

to the same stimuli for the SAAD neuron in figure 6.4. Mutual information is
calculated to be 0.7219 bits.

third set of stimuli. (4) Subthreshold dendritic current injection results in subthreshold (0.3

nA maximum amplitude of the EPSC-shaped stimulus) somatic activation. (5) A series of

four consecutive (0.2 ms time difference) subthreshold dendritic stimuli (0.3 nA maximum

amplitude of the EPSC-shaped stimulus) causes a somatic burst. The same stimulus pair is

used as input to the LIF neuron as in figure 6.5. The output of the LIF neuron in response

to these inputs is depicted in figure 6.6. It is clear that the LIF neuron cannot differen-

tiate between all five inputs as is the case of the dendritic neuron. Mutual information is

calculated to be 1.9219 bits for the SAAD neuron and 0.7219 bits for the LIF neuron.
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Figure 6.7: Network of two bidirectionally connected LIF neurons.
Neurons n1 and n2 are stimulated by currents I1 and I2, respectively

6.3.2 Comparing mutual information in a network of two LIF neurons

and a single dendritic neuron

We proceeded further to calculate mutual information in a network of two LIF neurons

bidirectionally connected in order to compare the results with mutual information in one

SAAD neuron.

The two-neuron LIF network is shown in figure 6.7 and may be considered ‘compa-

rable’ to a dendritic SAAD neuron stimulated at its dendrite and soma. While we are not

comparing similar units, the bidirectional connectivity in the LIF network may be compa-

rable to the forward and backward propagation along the dendrite of the SAAD neuron.

With the spine being considered a thresholding unit as the soma, the spine and soma of the

SAAD neuron can be compared to two point neuron models. As depicted in figure 6.7, each

LIF neuron is stimulated by a separate stimulus: Stimuli 1 and 2 can be considered the

equivalents of the dendritic and somatic stimuli onto the dendritic neuron. In calculating

the mutual information for the network of two LIF neurons, the input is the pair of stimuli

onto neurons 1 and 2 and the output is that of neuron 2. Stimuli in this simulation are

of Poisson type and have a frequency of 100 Hz. Amplitudes of the stimuli vary randomly

between 0.3 nA and 1.2 nA.

Prior to calculating mutual information in the network of bidirectionally connected

LIF neurons, we performed a test on different values of axonal delays (∆1 and ∆2) and

different values of synaptic connection weights (w12 and w21) in order to determine the
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Figure 6.8: Mutual information comparison in one SAAD neuron and
two bidirectionally connected LIF neurons. The blue data depicts mutual

information calculated for the SAAD neuron and the red data refer to the network
of two LIF neurons. Multiple runs of 10 sec each are performed and pairs of

Poisson stimuli of frequency 100 Hz are presented in each run.

combination of these four variables that endows the network with the maximum capacity to

process information given Poisson stimuli of frequency 100 Hz. We test axonal delays that

range from 0 to 4 ms (step of 1 ms) and synaptic connection weights between 0.3 and 1 (step

of 0.1). The bidirectional neural network exhibited the highest value of mutual information

for Delta1 = ∆2 = 4ms and w12 = 0.6, w21 = 1. These same values are used in what

follows except when specified otherwise.

The results are displayed in figure 6.8 and show an advantage of the dendritic neu-

ron’s information processing capability over that of the two bidirectionally connected LIF

neurons.

6.3.2.1 Poisson stimuli frequency test

In the case of one SAAD neuron and two bidirectionally connected LIF neurons,

we performed tests on the value of mutual information upon varying Poisson stimuli fre-

quencies between 5 and 100 Hz. The results, displayed in figure 6.9, show that mutual
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Figure 6.9: Mutual information in response to Poisson stimulus
frequency. Stimuli frequencies between 5 ans 100 Hz were used as inputs to one

SAAD neuron and two LIF neurons as described in this section

information measures increase with the increase in stimuli frequency and reaches a ceiling

with frequencies in the 100 Hz range.

6.4 Mutual information in large networks

While we are aware of the need of plasticity mechanisms to be implemented in networks of

neurons prior to attempting to study information capacity of these networks, we laid the

ground by generating different types of neural networks and attempted to ‘sneak-peek’ at

mutual information in these networks. More precisely, we generated lattice, small-world,

scale-free and random networks with varying connection densities. Networks composed of

LIF neurons were set to have 4 input neurons, 2 output neurons, and 24 middle layer neurons,

thus totaling 30 LIF neurons. Networks of SAAD neurons were composed of a total of 15

neurons among these 2 input neurons (each having a dendritic and a somatic stimulus) and

1 output neuron. Input neurons in these networks were stimulated with Poisson stimuli of

frequency 40 Hz, with the number of stimuli set to be equal to that of input neurons and

each stimulus projecting to all input neurons.
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Figure 6.10: Mutual information in networks of 15 SAAD neurons and
30 LIF neurons. Mutual information calculation shows that networks of SAAD

neurons may be at an advantage in information capacity when compared to
networks of 30 LIF neurons. This result is not of great value as plasticity is not

implemented in these networks

Figure 6.11: Averaging of mutual information results per network type
in networks of 15 SAAD neurons and 30 LIF neurons. Mutual information

is averaged over 50 trials per network type and error bars displayed

Mutual information calculated for each set of networks showed an advantage of

networks composed of SAAD neurons over networks composed of LIF neurons. Results in

figures 6.10 and 6.11. We will not discuss this advantage as discussion must be in light of

plasticity and learning and not based on randomly connected networks.
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6.5 Conclusion

The analysis conducted using information theory as the information metric cor-

rectly predicts that spatially extended neurons endowed with nonlinear subunits encode

substantially more information than simple point neurons such as the linear integrate-and-

fire neuron. We quantified information in one SAAD neuron and one LIF neuron, in one

SAAD neuron and two bidirectionally connected LIF neurons and in network of 15 SAAD

neurond and 30 LIF neurons. Poisson stimuli were used with varying frequencies. While

mutual information may not be the best metric out there to calculate the information pro-

cessing capabilities of neurons, the results of increased mutual information in the dendritic

neuron (SAAD) give us an enough incentive to conclude that quantitative measures proved

that the spatially extended neuron endowed with active and nonlinear dynamics at the level

the dendrite is worthy of being used as the neuron-like unit in neural networks subject to

plasticity and learning and where efforts to reverse engineer the brain constitute a main

goal.



Chapter 7

Performance and scalability

In complex systems ... the whole is more than the sum of the parts ... given the

properties of the parts and the laws of their interaction, it is not a trivial matter

to infer the properties of the whole.

Herbert Simon

Using mathematical analysis, we calculated larger information processing capacities

in a spatially extended dendritic neuron as compared to a single point neuron and a network

of two point neurons bidirectionally connected. Another important consideration is to ensure

that the spatially extended neuron is not too bulky but instead suitable to use as the main

unit in large neural networks. Answering this question entails tests of performance and

scalability, namely of memory usage and CPU time.

7.1 Hardware properties

When we talk about performance and scalability, knowing the hardware specifica-

tions is of major importance. A personal computer with 6 free gigabytes of memory and

83
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Figure 7.1: Elapsed CPU time for a 20 ms simulation time of different
network sizes.

four CPU cores (Intel Core i7-20600k) was used to run simulations of the dendritic neuron

and networks of this neuron reaching 50,000 neurons. These hardware specifications, al-

though not close to a supercomputer’s, did not impede the possibility of running networks

of 50,000 dendritic neurons with 25 million synaptic connections. It is also worth mentioning

that the code used is written in Matlab and is not compiled which leaves plenty of room

for enhancement and holds a promise for the possibility of running much larger networks

of these detailed dendritic neurons. GPU availability is another major advantage when

present. While we did not run the code on a GPU-based computer, it is implemented in a

fully vectorized and parallelizable way in order to take advantage of parallel processing on

a multicore CPU, GPU, or supercomputer.

7.2 Performance

Even with the advent of increased computational power and storage space, speed

and performance are main issues that highly affect the choice of the neuron model unit

used in complex networks. We implemented the dendritic SAAD neuron while keeping in

mind the need for a simple, elegant, and fast unit that can behave similarly to a Layer V

pyramidal neuron endowed with non-linear processing and rich propagation dynamics.

We calculated the time it takes to achieve 1 sec of runtime for a network of 10,000

dendritic neurons and a network of 10,000 LIF neurons. The results were promising keeping

in mind that one dendritic neuron is capable of processing more information than two LIF
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Figure 7.2: Memory used in networks of SAAD and LIF neurons.
Network sizes were varied from 1,000 neurons to 50,000 neurons and memory was

measured over a 20 ms runtime

point neurons:

It took 974 s to run a network of 10,000 dendritic neuron for 1 sec and calculate the

output voltage of all neurons in response to dendritic and somatic stimuli.

It took 741 s to run a network of 10,000 LIF neurons for 1 sec and calculate their

output voltages in response to two stimuli.

The number of connections in networks of 10,000 neurons (of both types) was set to

1,000,000 i.e. an average of 100 connections per neuron. It is worth mentioning that similar

LIF-like equations were used to model the soma and spine of the spatially extended neurons,

which ensures that the comparison of speed and performance between the LIF model and

dendritic model is a fair one.

7.3 Scalability

A system has a finite amount of memory. Thus running neural networks of large sizes

is mainly limited by the amount of available memory. For each neuron type (SAAD and LIF),

we measured memory usage in small-world networks of sizes ranging from 1,000 neuron to

50,000 neurons (with steps of 5,000 neurons) and corresponding synaptic connections ranging

from 10,000 to 25,000,000, respectively. The results are reflected in figure 7.2. Furthermore,

figure 7.3 proves that the memory used to run networks of neurons for 10 ms and 20 ms

is constant per network size. Increasing the simulation time of the network thus does not
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Figure 7.3: Memory usage independent of simulation times. 10 ms (red)
and 20 ms (blue) of simulation time did not result in increased memory usage for

the same number of neurons and synaptic connections

result in memory overload as the latter is kept constant and is only affected by the number

of neurons in the network.

On these two bases of increased information capacity and scalability and performance

measures as well as the portability of the code implemented to be used on a GPU-enabled

supercomputer, it is tempting to conclude that it is worth implementing neural networks

with pyramidal neurons as their building blocks.

7.4 Implementation considerations to enhance speed and scal-

ability

Multiple considerations were taken into account while implementing the dendritic

neuron model and networks of this neuron. The main ones are listed below.

1. We avoided the use of arrays for storage of state variables over time. Instead, state

variables were updated at each time step based on the current factors and its previous

time step value. No longer history of these variables was used in the implementation.

Thus, no arrays were used to hold state variables over time. This is the reason behind

the result displayed in figure 7.3 where the memory is the same for runs of 10 ms and 20

ms of the dendritic neuron.

2. In network implementations, neurons at a certain time step are independent of each

others and thus can be vectorized such that their state variables updated in one vector
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Figure 7.4: Binary bit shift operation. LSB and MSB refer to least significant
bit and most significant bit, respectively.

operation. Vectorization saves a considerable amount of time compared to looping over

the number of neurons in the network.

3. Synaptic transmission is implemented without the need to save previous states of variables

over time despite the existence of a delay between the firing of an action potential and

the binding of neurotransmitters onto the postsynaptic membrane receptors. Synaptic

transmission is described in figure 4.12.

4. Efficient implementation of axon delays whereby one memory address is used to store the

delay and only one write is performed to update the propagation along the axon. This

implementation is explained in more details in the section that follows.

7.4.1 An efficient implementation of axon delays

Whatever the length of the axon, we ensured in our implementation that only one

memory address is used for each axon. In most implementations of axon delay that we are

aware of, multiple memory addresses are used per axon i.e. to each axon an array is saved in

memory with the number of elements equal to the axon delay in time steps (array length =

axon delay (in ms) / dt (in ms). Once a spike gets initiated at the axon hillock, it propagates

down the axon towards its terminal over a time equal to the axon delay. One way to reduce

logic operations while achieving this propagation down the axon is to use a circular array,

thus avoiding shifting values over the array segment. Another way that is more efficient in

terms of memory and computation is to use one memory address to save axonal values. An
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action potential is all-or-none, thus it can be represented by a bit (0 signaling its absence

and 1 signaling its presence). Once a spike occurs at the axon hillock, the value of the most

significant bit in the shift register is set to 1 and a binary shift operation is used at each

time step to ensure the propagation of the spike from the site of its initiation to the axon

terminal. It takes thus only 1 CPU operation to update the location of the signal for any

delay with length 1 to 32 (in units of dt). Since we are using only one memory location to

store the axon delay, shifting the signal one step forward towards the axon terminal and

away from the soma involves merely a binary shift operation which is equivalent to a division

by number 2. It is worth mentioning here that one memory address implies that this space

may get used at the level of the CPU which makes it even faster than having it saved in the

RAM.



Chapter 8

Conclusion and Future work

Never let the future disturb you. You will meet it, if you have to, with the same

weapons of reason which today arm you against the present.

Marcus Aurelius

8.1 Conclusion

We studied the capacity of a spatially extended neuron model endowed with an active

dendrite to encode and decode information and compared this capacity to that of simple

point neurons. We proved that a dendritic neuron that supports independent thresholding

of synaptic inputs and passive and active forward and backpropagation with BAC firing

has a higher capacity for information processing. On this basis alone, it is tempting to

conclude that pyramidal neurons endowed with highly branched dendritic trees equipped

with active channels and voltage-gated conductances that promote thresholding are express

design features that greatly enhance the information processing and storage capabilities of

these neurons. Nevertheless, this work will be completed when the modeled neuron is used
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as the main building block in networks that undergo plasticity and learning. We kept this

end goal in mind during the implementation of the neuron model and ensured that the

model is lightweight, efficient and fast enough to compete with point neuron models and

thus constitute the building block of large networks subject to plasticity mechanisms.

Brief, a renewed interest in the neuron as the basic, but not simple, unit for com-

putation to be used in neural networks that undergo plasticity and constitute the subject

of investigations in the conquest to understand learning and information processing in the

brain is the main message of this thesis work.

8.2 Future work

How information is processed in complex circuits, with hundreds of thousands of re-

currently connected neurons endowed with dendritic nonlinearities, remains a vast mystery.

We devised a neuron model that may facilitate future efforts to understand the computing

functions of cortical tissue. However, in order to come up with a clear theory of spatiotem-

poral integration in pyramidal cells and its effect on the network, additional work needs to

be completed.

Further steps include:

1. The increase in the number of subunits (spines and dendrites) in the modeled neuron

and observing their effect on the neuron’ s capacity to process information.

2. Testing whether dendritic neurons show a steady increase in capacity with the number

of available subunits or instead they reach a limit beyond which adding more subunits

does not increase the information and learning capacity of the neuron. Is there an op-

timal number of dendritic subunits that endow the neuron with a maximal information

processing capacity?
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3. What about a population of these neurons, keeping in mind that extrapolation from the

storage and learning capacity of a single neuron to that of a network of neurons rests on

assumptions as to the structure of the network and the learning rule used to train that

network.

4. The testing of inhibitory inputs onto the dendritic neuron. This may entail the imple-

mentation of basal dendrites and new mechanisms of signal propagation as inhibitory

connections mainly signal to basal dendrites that are closer to the soma.

5. The implementation of plasticity mechanisms in the different neuron components that

can undergo this change, such as the spine, the dendrite and the soma.

6. Enhance the speed of the neuron model by converting it to a low level compiled code

(such as C) and use GPU-enabled computer to allow the implementation of networks of

large sizes.



Appendix A

Mutual Information: Merging and

Patterning

A.1 Merging and patterning for calculation of mutual infor-

mation

Input binning and merging

We described in Chapter 6 section 6.2.1 the input-output merging and patterning

that we implemented in order to calculate input and output probabilities and entropy values

needed for mutual information. In this Appendix, we use a simple example (figure A.1) of

input/output sets used to calculate mutual information and explain the results in each step

of the calculation in an effort to clarify the method used for merging and finding input-output

patterns.

The first step is to bin EPSC-shaped inputs with a time resolution dt such that the

maximum value of the biexponential is represented at the time of its occurrence while the

rest of the curve is set to zero. Upon completing the binning, non-zero values are saved into
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Figure A.1: Input-output patterning example for calculation of mutual
information.

a separate vector for each stimulus along with the time of occurrence of each value (in units

of dt). Each stimulus value is converted to a string with two characters saved for the integer

part and 2 characters for the decimal part. Separate binned inputs are then merged into

one transmitted signal. This merging is done in a way that preserves the time of occurrence

and amplitude of the stimuli. Stimuli that occur at the same time are concatenated. In the

case of two stimuli such as the case of this example, 4 characters are saved for each stimulus

(see table A.1).

Table A.1: MI Step 1: Merged Stimuli

Amplitude (merged stimuli) Time of occurrence

00300095 219
00000180 975
00300095 1719
00000095 2469
01300000 3219
00300095 3969
00000095 4719

Output merging
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The spike trains at the axon terminal are merged as done for the inputs in the case

of multiple outputs. In this example however we are considering one output spike train and

thus values represented as in table A.2.

Table A.2: MI Step 2: Merged Responses

Burst ISI Time of Occurrence Number of Spikes/burst

31 229 3
22 971 2
31 1729 3
0 2481 1
25 3246 2
31 3979 2
0 4731 1

Input/Output patterning

Input and output patterns are calculated by merging the results obtained in the first

two steps and mapping every input to its corresponding output based on the time of occur-

rence (inputs should precede outputs) and such that the mapping is one-to-one. While it

is easy to map inputs to their corresponding outputs in this simple example, the algorithm

achieves this mapping for more complicated scenarios by recursively looping over steps a, 2

and 3 until a mapping is found. In addition, the confidence factors are set to 1 (maximum

confidence) in this example as it is easy to differentiate bursts from single spikes and find

their corresponding inputs due to the low frequency of the stimuli. In more general cases,

lower confidence values may be encountered as explained in chapter 5.

Once the input/output patterning is achieved, mutual information is calculated as the dif-

ference between the entropy of the input and the conditional entropy of the input given the

output (see equation 5.8). The input is composed of the input amplitude and the output is

composed of both the ISI and number of spikes as calculated in table A.3
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Table A.3: MI Step 3: Mapped Input/Output

In: Amplitude In: Time Out: Burst ISI Out: Time Out: Num. Spikes/burst

00300095 219 31 229 3
00000180 975 22 971 2
00300095 1719 31 1729 3
00000095 2469 0 2481 1
01300000 3219 25 3246 2
00300095 3969 31 3979 2
00000095 4719 0 4731 1



Appendix B

Source Code

We present in this Appendix the network layout matrices used to represent a certain

neuronal network along with the Matlab code used to run the simulations.

B.1 Schematic of a neural network

A sample schematic of a neuron network is used to describe the matrices that we

used to denote the network layout and connectivity. As shown in figure B.1, external stimuli

are represented using square boxes, pyramidal neurons are represented using triangles, and

connections are displayed as arrows. When the postsynaptic neuron’s dendrite receives

the input, the connection arrow has a rounded tip. The tip is of arrow shape when the

postsynaptic neuron’s soma receives the input.
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Figure B.1: Network of 4 SAAD neurons stimulated by 4 external
inputs. SAAD neurons are denoted by triangles. The arrow shape denotes a

connection to the neuron’s soma, and a round shape denote a connection to the
neuron’s dendrite.

B.2 Neural network matrix format

Different network layouts are saved in matrix format. As an example, the network

whose schematic is presented in figure B.1 is described using the following matrices.

Connectivity matrix

For a network of N neurons, the connectivity matrix is of size [NxN] with every [row,column]

pair with the value of 1000 (can occur only along the diagonal) denoting an external stimulus

to the neuron [Nx,Nx] and where lower values refer to synaptic connection weights. It is

worth mentioning that these connectivity matrices were only used for small networks. In

large networks of thousands of neurons and connectivity density less than 60%, the matrices

were replaced with arrays corresponding to each neuron whereby the length of the array os

equal to the number of outgoing connection from that neuron. This allows us to save in

terms of memory usage.
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N1 N2 N3 N4

N1 1000 0.7 0 0
N2 0 1000 1 0.3
N3 0 0 1000 0
N4 0 0 0 0

In the case of the dendritic neuron that can accept incoming connections at its soma and

dendrite, a similar connection matrix exists for the dendritic connectivity, assuming that

the one described previously relates to the soma. As such the dendritic connectivity matrix

for the same network is:

N1 N2 N3 N4

N1 1000 0.3 0 0
N2 0 0 0 0
N3 0 0 1000 0.6
N4 0 0 0 0

Axon delays

Axon delays are saved in a [1xN] matrix with values denoting the delay in ms.

N1 N2 N3 N4

1 3 0 4

External stimuli

External stimuli are saved in an [mxN] matrix with m denoting the maximum number

of stimuli per neuron. In reference to the example represented here, two external stimuli

matrices are needed in order to account for somatic and dendritic stimuli.

Somatic stimuli

Dendritic stimuli
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N1 N2 N3 N4

1 2 1 0
0 4 0 0

N1 N2 N3 N4

1 0 0 3

B.3 Source Code

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

%

% 01 July 2013

% Helen G. Saad

% University of California , San Diego

% hsaad@ucsd.edu

%

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

%

% Matlab code for the spatially extended SAAD neuron as decsribed

% in Chapter 4 of this dissertation.

%

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% runtime_max: simulation time in ms

% netMatrixFile: matrices denoting the network layout

% (neuron synaptic connectivity) and external stimuli;

% stimFile: data file (.mat) containing the stimulus

% log_file: save state variables into log file to avoid

% loading arrays into memory

load(netMatrixFile );

dt = 0.20; % time step in ms

tsteps = [1 int32(runtime_max/dt)];

% Network matrices (layout and connectivity)

netMatrixSoma = network{network_layout ,1 ,1};

delayIdx = 3;

netMatrixDendrite = network{network_layout ,2,1};

delayMatrix = network{network_layout ,delayIdx ,1}; % axonal delay in ms

num_neurons = size(delayMatrix ,2);



100

[dend_synapses_row , dend_synapses_col] = ...

find(( netMatrixDendrite >0)&( netMatrixDendrite <1000));

num_dend_synapses = size(dend_synapses_row ,1);

[soma_synapses_row , soma_synapses_col] = ...

find(( netMatrixSoma >0)&( netMatrixSoma <1000));

num_soma_synapses = size(soma_synapses_row ,1);

num_synapses = num_soma_synapses+num_dend_synapses;

% Initialize state variables

% N is the neurons structure

% Extract synaptic connections from the network layout matrices

% Synapses connecting to the neuron ’s somas

S_preNeuron (1: num_soma_synapses) = soma_synapses_row (1: num_soma_synapses );

S_postNeuron (1: num_soma_synapses) = soma_synapses_col (1: num_soma_synapses );

while i <= num_soma_synapses

% find rows (presynaptic neuron #s)

preNeuronNum = S_preNeuron(i,1);

postNeuronNum = S_postNeuron(i,1);

S_postSomaCurrentAmp(i,1) = netMatrixSoma(preNeuronNum ,postNeuronNum );

N(preNeuronNum ). numPostSyns = N(preNeuronNum ). numPostSyns + 1;

N(preNeuronNum ). postSyn(N(preNeuronNum ). numPostSyns) = i;

% find cols (postsynaptic neuron #s)

N(postNeuronNum ). numPreSyns = N(postNeuronNum ). numPreSyns + 1;

N(postNeuronNum ). preSyn(N(postNeuronNum ). numPreSyns) = i;

i=i+1;

end

% Synapses connecting to the neuron ’s dendrites

S_preNeuron(num_soma_synapses +1: num_soma_synapses+num_dend_synapses) = ...

dend_synapses_row (1: num_dend_synapses );

S_postNeuron(num_soma_synapses +1: num_soma_synapses+num_dend_synapses) = ...

dend_synapses_col (1: num_dend_synapses );

i = num_soma_synapses +1;

while i <= num_soma_synapses+num_dend_synapses

% find rows (presynaptic neuron #s)

preNeuronNum = S_preNeuron(i,1);

postNeuronNum = S_postNeuron(i,1);

S_postDendCurrentAmp(i,1) = netMatrixDendrite(preNeuronNum ,postNeuronNum );

N(preNeuronNum ). numPostSyns = N(preNeuronNum ). numPostSyns + 1;
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% synapse linking this neuron to its postsynaptic neuron

N(preNeuronNum ). postSyn(N(preNeuronNum ). numPostSyns) = i;

% find cols (postsynaptic neuron #s)

N(postNeuronNum ). numPreSyns = N(postNeuronNum ). numPreSyns + 1;

% synapse linking this neuron to its presynaptic neuron

N(postNeuronNum ). preSyn(N(postNeuronNum ). numPreSyns) = i;

i = i+1;

end

% Assign stimuli to corresponding neurons ’ somas and dendrites

for i = 1: num_neurons

deltaAxon = ceil(delayMatrix(i)/dt);

% amount to add to axon value in case of a spike (100000000 depends on delay)

N(i). spikeInc = 2^( deltaAxon -1);

if deltaAxon == 0

N(i). spikeInc = 1;

end

if ismember(i,1: numStimuli)

N(i). extSomaStimSpikesIndex = numStimuli;

else

N(i). extSomaStimSpikesIndex = 0;

end

if netMatrixSoma(i,i)==0

N(i). extSomaStimSpikes = zeros(1,tsteps (2)- tsteps (1)+1);

N(i). extSomaStim = zeros(1,tsteps (2)- tsteps (1)+1);

else

for s = 1: numStimuli

N(i). extSomaStimSpikes (1: numStimuli ,1: tsteps (2)- tsteps (1)+1) = ...

stim(s). spikes (1: tsteps (2)- tsteps (1)+1);

N(i). extSomaStim(s,1: tsteps (2)- tsteps (1)+1) = ...

stim(s).biexp (1: tsteps (2)- tsteps (1)+1);

end

end

% Same for dendritic stimuli

end

% -----------------------------------------------------------------------

% MAIN PROGRAM starts here

% -----------------------------------------------------------------------

for t = tsteps (1): tsteps (2)

% Update all synapses at the current time step
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for j = 1: num_synapses

S_X(j,1) = S_X(j,1) + ...

dt * (-(S_X(j,1)*N(S_postNeuron(j,1)).R)/N(S_postNeuron(j ,1)). tauBind ...

+ N(S_postNeuron(j ,1)). Use*S_A(j,1)* S_spike(j,1));

N(S_postNeuron(j ,1)).XR = N(S_postNeuron(j,1)).XR + ...

dt * (S_X(j,1)/N(S_postNeuron(j,1)). tauBind ...

- N(S_postNeuron(j ,1)).XR/N(S_postNeuron(j,1)). tauUnbind );

S_A(j,1) = S_A(j,1) + dt * (S_I(j,1)/N(S_preNeuron(j ,1)). tauRec );

S_I(j,1) = 1 - (S_A(j,1) + S_X(j,1) + N(S_postNeuron(j ,1)).XR);

% Current caused by activated postsynaptic receptors

N(S_postNeuron(j,1)). IpostSoma = N(S_postNeuron(j ,1)). IpostSoma ...

+ (S_postSomaCurrentAmp(j,1) * N(S_postNeuron(j,1)). Ase ...

* N(S_postNeuron(j ,1)).XR);

N(S_postNeuron(j,1)). IpostDend = N(S_postNeuron(j ,1)). IpostDend ...

+ (S_postDendCurrentAmp(j,1) * N(S_postNeuron(j,1)). Ase ...

* N(S_postNeuron(j ,1)).XR);

end

% Update neurons state variables

for i = 1: num_neurons % for each neuron

% shift to the right to account for the axon potential propagation

% along the axon

N(i).axon = bitshift(N(i).axon ,-1);

N(i).time = double(t)*dt;

N(i). soma_Istim = sum(N(i). extSomaStim (:,t));

N(i). soma_I = N(i). soma_Istim;

N(i). soma_I = N(i). soma_I + N(i). IpostSoma;

% Forward dendritic propagation dynamics

for x = 2: maxDelayPassiveDendProp

fdecay = 1/(1+ exp(-(N(i). dend_Vprev (1,x)-N(i). dend_V(1,x))/0.01));

dVdt = - N(i). dend_invTauf * N(i). dend_V(1,x) ...

+ dend_invCmf * ((N(i). dend_invRif + dend_Cif ...

* (N(i). dend_V(1,x)-N(i). dend_Vprev (1,x))/dt) ...

* (N(i). dend_V(1,x-1) - N(i). dend_V(1,x)));

N(i). dend_V (1,:) = N(i). dend_V (1,:) + dt*dVdt;

end

N(i). soma_I = N(i). soma_I + N(i). factorVdend ...

*(N(i). dend_V(1, maxDelayPassiveDendProp ));

% Backward dendritic propagation dynamics
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% fVbAP = 1 if Vdend+VbAP is close to the max value

fVbAP = 1/(1+ exp(-N(i). bAP_V(1,1)-N(i). dend_V (1,1)+ VbAPDendMax )/ p_fVbAP) ...

* 1/(1+ exp(-N(i). soma_V (1 ,1)+N(i). soma_Vth )/0.01);

N(i). taufRi = N(i). taufRi + dt * (ftaufRi * N(i). f_Leak + ...

(N(i). taufRi_init - N(i). taufRi )/0.5);

% Accounting for the slow decrease of bAP (blue & red curves)

% in Larkum 1999a figure 1(c)

N(i). dend_invRibs = N(i). dend_invRibs + dt * (-fRi * (N(i). f_Leak) + ...

(dend_invRibs_init - N(i). dend_invRibs )/(N(i). taufRi ));

dVdt = dend_invCmbs * ( N(i). dend_invRibs * ...

(- N(i).bAP_V(1, maxDelayActiveDendProp) + N(i). soma_V) ) ...

- N(i). dend_invTaubs * N(i). bAP_V(1, maxDelayActiveDendProp );

N(i).bAP_V(1, maxDelayActiveDendProp) = ...

N(i). bAP_V(1, maxDelayActiveDendProp) + dt*dVdt;

for x = 1: maxDelayActiveDendProp -1

dVdt = dend_invCmb * ( N(i). dend_invRib (1,1) ...

* (- N(i).bAP_V(1,x) + N(i). bAP_V(1,x+1)) ) ...

- (N(i). dend_invTaub (1,1)+ dend_invTaub_init) * N(i). bAP_V(1,x);

end

% update spine

N(i).IbAP = N(i). spine_factorVbAP_target * N(i).bAP_V (1,1);

f = 1/(1+( exp(-(N(i).soma_V -N(i). AP_aboveVT )/0.05)));

N(i). dend_Istim (1,1) = (1+0.8*f)*sum(N(i). extDendStim (:,t));

% Ceiling reached when VbAP > 40 => cannot add dend_Istim

f1 = 1/(1+( exp(-(N(i).bAP_V (1 ,1) -40)/0.001)));

% if V>V_DP => refractory period (dendritic spike) => cannot add IbAP

f2 = 1/(1+( exp(-(N(i). dend_V (1,1) ...

-(N(i). spine_Vth_init+N(i). DP_aboveVT ))/0.001)));

N(i).EPSC (1,1) = (1-f1)*N(i). dend_Istim (1,1) ...

+ (1-f2)*N(i).IbAP + N(i). IpostDend;

N(i) = SpineVoltage(N(i),dt);

% update soma

N(i) = SomaticVoltage(N(i),dt);

spike = dec2bin(N(i).axon ,16);

end
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end

Function to update the voltage at the level of the soma

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

%

% Matlab code for the update of the soma neuron voltage

%

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

function neuron = SomaticVoltage(neuron , dt)

f1 = 1/(1+( exp(-(neuron.soma_V -neuron.soma_Vth )/ p_rAP )));

f2 = 1/(1+( exp(-(neuron.soma_V -neuron.AP_aboveVT )/p_rAP )));

f3 = 1/(1+( exp(-(neuron.soma_V -neuron.soma_Vprev )/p_rAP )));

neuron.soma_Vth = neuron.soma_Vth + dt * ((fVth*f2) ...

+ (neuron.soma_Vth_init - neuron.soma_Vth )/ neuron.soma_tauVth );

neuron.tauf_AP = (1-f1)* neuron.tauf_AP_init + f1*ftaufAP;

neuron.f_AP = neuron.f_AP + dt * (f1*f3*AP - neuron.f_AP/neuron.tauf_AP );

neuron.f_Int = -f1*neuron.soma_C_inv + (1-f1) ...

* (neuron.f_Int + dt * (- neuron.f_Int/neuron.tauf_Int ));

neuron.f_Leak = neuron.f_Leak ...

+ dt * (f2*Leak - neuron.f_Leak/neuron.tauf_Leak );

neuron.soma_V (1,1) = neuron.soma_V (1,1) ...

+ dt * ( (neuron.f_Int+neuron.soma_C_inv) * neuron.soma_I ...

+ (neuron.f_Leak+neuron.soma_tau_inv) ...

* (neuron.soma_Vrest - neuron.soma_V (1,1)) ...

+ neuron.f_AP * p_fAP );

end
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Function to update the voltage at the level of the spine

% absolute refractory period ~ 4.5 ms

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

%

% Matlab code for the update of the spine voltage

%

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

function neuron = SpineVoltage(neuron , dt)

f1 = 1/(1+ exp(-(neuron.dend_V (1,1)- neuron.spine_Vth )/ p_rDP ));

f2 = 1/(1+ exp(-(neuron.dend_V (1 ,1)+ neuron.bAP_V (1 ,1)...

-(neuron.spine_Vth_init+neuron.DP_aboveVT ))/0.01));

f3 = 1/(1+ exp(-(neuron.dend_V (1,1)- neuron.dend_Vprev (1 ,1))/0.01));

f4 = 1/(1+ exp(-(neuron.bAP_V (1,1)-5)/ p_rDP ));

neuron.spine_Vth = neuron.spine_Vth + dt * ((fVth*f2) ...

+ (neuron.spine_Vth_init - neuron.soma_Vth )/ neuron.spine_tauVth );

neuron.tauf_DP = neuron.tauf_DP + dt * (-f1*f3*(1-f2)* fdecay *(1+s2*f4) ...

+ f1*f2*f3*fIncrease *(1+f4*s4) + (neuron.tauf_DP_init - neuron.tauf_DP )/ tautau );

neuron.f_DP = neuron.f_DP + dt * (f1*f3*DP - neuron.f_DP/neuron.tauf_DP );

neuron.f_DInt = -f1*f3*neuron.dend_C_inv ...

+ (1-f1*f3)* neuron.f_DInt + dt * (- neuron.f_DInt/neuron.tauf_DInt );

neuron.dend_tau_inv = neuron.dend_tau_inv ...

+ dt* (s3*f1*(f3+f2)*f4*neuron.bAP_V (1,1)/ neuron.bAP_max ...

+ (( neuron.dend_tau_inv_init - neuron.dend_tau_inv )/ tauLeak ));

neuron.dend_V (1,1) = neuron.dend_V (1,1) ...

+ dt * ( (neuron.f_DInt+neuron.dend_C_inv) * neuron.EPSC (1,1) ...

+ neuron.dend_tau_inv * (neuron.dend_Vrest - neuron.dend_V (1,1)) ...

+ neuron.f_DP * p_fDP );

end



Appendix C

Calcium and EDTA induced

folding and unfolding of calmodulin

on functionalized quantum dot

surfaces

C.1 Published Work

In this appendix, I include a copy of work published in the Journal of Nanoneu-

roscience and conducted in the laboratory. This wet lab work has shaped and helped in

defining the dissertation work described in the previous chapters.
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