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Analysis of kinematic waves arising in diverging traffic

flow models

Wen-Long Jin*

October 23, 2018

Abstract

Diverging junctions are important network bottlenecks arbetter understanding of di-
verging traffic dynamics has both theoretical and practioglications. In this paper, we first
introduce a continuous multi-commaodity kinematic wave elaaf diverging traffic and then
present a new framework for constructing kinematic wavetgmis to its Riemann problem
with jump initial conditions. In supply-demand space, thkigons on a link consist of an inte-
rior state and a stationary state, subject to admissibldittons such that there are no positive

and negative kinematic waves on the upstream and downsiieksnrespectively. In addi-

arXiv:1009.4950v1 [math.DS] 24 Sep 2010

tion, the solutions have to satisfy entropy conditions &iaat with various discrete diverge
models. In the proposed analytical framework, kinematigasaon each link can be uniquely
determined by the stationary and initial conditions, andowave that the stationary states and
boundary fluxes exist and are unique for the Riemann probfesiverge models when all or

partial of vehicles have predefined routes. We show thattbedtverge models by Lebacque
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and Daganzo are asymptotically equivalent. We also proaettte supply-proportional and
priority-based diverge models are locally optimal evaicumestrategies. With numerical exam-
ples, we demonstrate the validity of the analytical sohgiof interior states, stationary states,
and corresponding kinematic waves. This study presentsfi@zdiframework for analyzing
traffic dynamics arising in diverging traffic and could begfal for developing emergency

evacuation strategies.

Key words: Kinematic wave models, diverging traffic, Riemann probleopply-demand space,
stationary states, interior states, boundary fluxes, ngrproportions, First-In-First-Out, evacua-

tion strategies

1 Introduction

Essential to effective and efficient transportation cdntnmanagement, and planning is a better
understanding of the evolution of traffic dynamics on a roativork, i.e., the formation, propa-
gation, and dissipation of traffic congestion. The semiradkby (Lighthill and Whitham), 1955;
Richards| 1956) (LWR) describes traffic dynamics with kiagimwaves, including shock and rar-
efaction waves, in densityp], speed V), and flux ¢). Based on a continuous version of traffic
conservation%—’t’ + % = 0, and an assumption of a speed-density relationshipy (p), the LWR
model can be written as

7 7
atP + &PV(P) =0, 1)

which is for a homogeneous road link with time and locatioteipendent traffic characteristics,
such as free flow speed, jam density, capacity, and so on. nergkV (p) is a non-increasing
function, andvs =V (0) is the free flow speed. In additiog,= Q(p) = pV(p) is unimodal with
capacityC = Q(pc), wherep, is the critical density. Traffic states with density highlean p. are
congested or over-critical, and those with lower densig/fege flowing or under-critical. Here we

denote the jam density ky;, andp < [0, pj].



In a road network, however, more important and interestiedla formation, propagation, and
dissipation of traffic queues caused by network bottlengokfuding merges, diverges, and other
network junctions (Daganzo et/al., 1999). But compared nitmerous studies on the LWR model
and higher-order models of traffic flow on a road link (Fedeéfighway Administration, 2004),
studies on traffic dynamics at merging, diverging, and ojinections are scarce. In (Fazio et al.,
1990), behavioral models were proposed to capture indafidehicles’ diverging maneuvers. In
(Papageorgiou, 1990), diverging flows of vehicles on a peghilatermined by pre-defined splitting
rates. Inl(Daganzo, 1995), the First-In-First-Out (FIF@hgiple was explicitly introduced so that
diverging flows are proportional to turning proportions,igfhcan be time-dependent. But it was
noted that the FIFO principle could be violated when one dsiveam branch is heavily congested.
In (Liu et all,[1996] Ngoduy et al., 2006), diverging traffi@asvconsidered in a so-called friction
term of a higher-order model, where diverging flow to an affap is determined by expected
diverging flow and the congestion level of the off-ramp. [Inuidz and Daganzo, 2002), it was
shown that First-In-First-Out (FIFO) blockage caused bg ocongested downstream branch could
significantly reduce the discharging flow-rate of the whaledye, and vehicles may not follow the
FIFO principle strictly. Diverging traffic with two or moreshicles have been studied in (Daganzo,
1997; Daganzo et al., 1997; Newell, 1999).In (Cassidy, 20@8tering strategies were discussed
for diverging junctions. As pointed out in (Daganzo, 199ifferent network bottlenecks can
induce different traffic behavior; at diverging junctionghich are different from merging and
other junctions, not only capacities of all branches but #ie combinations of diverging vehicles
on the upstream branch could determine the formation arsipdigon of queues. In addition, a
better understanding of diverging traffic flow could alsaléamore efficient evacuation strategies
(Sheffi et al., 1982). In this study, we are interested infitrafynamics arising from diverging
junctions for one type of vehicles within the framework of th"V/R model.

Considering the analytical power and simplicity of the LWRael, many researchers have

attempted to study traffic dynamics arising in general partsition networks in the framework of



kinematic wave models. In one line, Daganzo (1995) and Lalea1996) extended the Godunov
discrete form of the LWR model for computing traffic flows thgh diverging, diverging, and
general junctions. Hereafter we call such models as Ceftisirassion Models (CTM). In CTM,
so-called traffic demand and supply functions are introdueed boundary fluxes through vari-
ous types of junctions can be written as functions of upetrdamands and downstream supplies.
In CTM, various physically meaningful rules can be used tmpote boundary fluxes, such as
the First-In-First-Out diverging principle (Papageorgi@990; Daganzo, 1995) and the fair merg-
ing principle (Jin.and Zhang, 2003b). CTM are discrete irur@tind only suitable for numerical
simulations. Thus they do not provide any analytical inggin traffic dynamics at a network
intersection as the LWR model. In another line, Holden arggRio (1995) and Coclite et al.
(2005) attempted to solve a Riemann problem of an intexm@atith m upstream links anah
downstream links. In both of the analytical studies, ak$imre homogeneous and have the same
speed-density relations, and traffic dynamics on each liakdascribed by the LWR model. In
(Holden and Risebro, 1995), the Riemann problem with junigiainconditions is solved by in-
troducing an entropy condition that maximizes an objechiwection of all boundary fluxes. In
(Caclite et al.| 2005), the Riemann problem is solved to maze total flux with turning propor-
tions. Both studies were able to describe basic waves grisam a network intersection but
also subject to significant shortcomings: (i) All links argsamed to have the same fundamen-
tal diagram in both studies; (ii) In_(Holden and Risebro, 39%ehicles can travel to an arbitrary
downstream link, and the entropy conditions used are pragraad lack of physical interpreta-
tions; and (iii) In (Caoclite et all, 2005), results are ongfid for restricted turning proportions and
junctions with no fewer downstream links; i.a.> m. In addition, neither of these studies present
a unified continuous model of network vehicular traffic.

As in (Holden and Risebro, 1995; Coclite et al., 2005), iis $tudy we attempt to analytically
obtain kinematic wave solutions of traffic dynamics arisat@ diverging junction. However, our

study does not bear the same limitations as in these stualldsiks can be mainline freeways or



off-ramps with the same or different characteristics, andsmlutions are physically meaningful
and consistent with the discrete supply-demand modelsvefging traffic, e.g. those proposed
in (Daganzo| 1995; Lebacque, 1996). We first present a agous kinematic wave model of
multi-commodity diverging traffic flow based on the conséinraof commodity traffic. Following
the new framework used to solve Riemann problems for inh@megus LWR model at a linear
junction (Jin et al., 2009) and for merging traffic flow (Jif@1®), we present a new framework
for solving the Riemann problem for diverge models. In therRann solutions, there can be a
stationary state and an interior state for each branch. blat®nary states are the self-similar
states at the boundary. That is, in the Riemann solutioatipeairy states prevail all links after
a long time. In contrast, interior states do not take any spat¢he continuous solution and only
show up in one cell in the numerical solutions as observesgtan [eer) 1984). We introduce a
so-called supply-demand diagram and discuss the problesugply-demand space, rather than
in p —q space as in (Holden and Risebro, 1995; Coclite et al.,|2088pr deriving admissible
solutions for upstream and downstream stationary andiamtstates, we introduce an entropy
condition based on various diverge models. We then provestitionary states and boundary
fluxes are unique for given upstream demand and downstreppiissi (but interior states may
not). Then, kinematic waves on a link are determined by tmeesponding LWR model with the
stationary state and the initial state. In a sense, kinematves of the Riemann problem can be
considered as continuous solutions of the discrete CetiSfnéssion Model with various diverging
rules in (Daganzo, 1995; Lebacque, 1996).

Different from (Holden and Risebro, 1995; Coclite etal.02) where the Riemann solutions
only comprise of initial and stationary states, here we lzaditional interior states. Interior states
were observed when the inhomogeneous LWR model was usechtdase traffic dynamics on a
ring road (Jin and Zhang, 2003a; Jin et al., 2009). Althoungérior states are not directly related
to kinematic waves on all links, they are used in the entrapydd@ion and therefore essential to

picking out unique physical solutions. As we can see latégrior states are essential to construct



kinematic wave solutions for different diverge models.

The rest of the paper is organized as follows. In Section 2iniveduce a continuous multi-
commodity kinematic wave model of diverging traffic. In Sent3, we introduce a new framework
for solving the kinematic waves of the Riemann problem witimp initial conditions in supply-
demand space. In particular, we derive traffic conservat@rditions, admissible conditions of
stationary and interior states, and additional entropydit@mms based on various discrete diverge
models. In Section 4, we solve stationary states and bowrflletes for diverge models when
vehicles have predefined routes. In Section 5, we discussggivmodels in various evacuation
strategies. In Section 6, we demonstrate the validity ofpitugposed analytical framework with

numerical examples. In Section 7, we summarize our findingsgaesent some discussions.

2 A multi-commodity continuous kinematic wave model of di-

verging traffic flow and its Riemann problem

n

—00 z, =0 oo

Figure 1: An illustration of a diverge network

We consider a diverge network with > 2 downstream links and one upstream link, as shown
in Figure[1. In this network, there are+ 1 links andm paths. We differentiate all vehicles into
P = mcommaodities according to their paths. We denote the linkhoodity incidence variable by

dp.a, Which equals 1 if commoditp (p=1,---,m) uses linka (a=1,---,m-+ 1) and O otherwise.
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ThusP; = 25:1 Op.a is the number of commodities on lirk P, =1 fora=1,---,m, andP; =m
fora=0. On alinka, the location is denoted by link coordinatge [Xa, Xa + La], whereL, is the
length of linka, andxy = X5 andX; + L, are the upstream and downstream boundaries respectively.
On the path of a commodity, the location is denoted by commodity coordinages [Xp, Xp+Lp],
wherelLp = 5 ,0p.ala and we assume that there is no loop on a path. is the lengtttioppand
Xp = Xp andX,+ L are at the origin and destination respectivelyddf = 1, we denoté. 5 as the
distance from the origin of pathto the upstream boundary of lirgk andx, andx, follows a one-
to-one relation: ifp € [Xp+Lpa, Xp+Lpa+La], thenxpis on linka andxa = Xp — Xp —Lpa+ Xa.
Thatis,0pa(Xa—Xa—Xp+Lpa+Xp) =0foralla=1,---, m+landp=1,---,m

For commodityp, we denote density, speed, and flux iy(Xp,t), Vp(Xp,t), andqgp(Xp,t) =
Pp(Xp, t)Vp(Xp, 1), respectively. From traffic conservation of commoditywe can have the follow-
ing continuous conservation equation

opp  d0p
t %

= 0, (2)

whose derivation is the same as that for single commodity fdaberman, 1977; Newell, 1993).

For link a, we denote density, speed, and fluxdayXa, t), Va(Xa, t), andda(Xa,t) = pPa(Xa,t)Va(Xa,t),
respectively. Then we have tha(Xa,t) = 3 , Op.aPp(Xa,t) andga(Xa,t) = 3, Op.adp(Xa,t). Note

that, pp(Xa,t) exists only when linka is on pathp and pp(Xa,t) = pp(Xp,t) with Xg = Xp —

Lpa— Xp+ Xa. It is the same fowvp(Xa,t) and gp(Xa,t). We assume that traffic streams of
different commodities on linla are homogeneous and share the same speed at the same loca-

tion and time. That is, we have the following speed-denstationships/ (Greenshields, 1935;

Del Castillo and Benitez, 1995)

Vp(Xa, 1) = Va(Xa, t) =V (Xa, Pa(Xa, t))- (3)

GenerallyVa(Xa, pa) iS non-increasing ima, andQ(Xa, Pa) = PaV (Xa, Pa) IS unimodal inp; with

its maximum as capacity a. We can see that conservation laws of multi-commodity floaw@)



lead to the following LWR model

0 0
Epa(xa,t)+Wapa(xa7t)v(xa7pa(xayt)) = 0, (4)

which can work for inhomogeneous roads. Correspondingé/can have the following traffic

conservation equation for commodipyandxp € [Xp+Lpa, Xp+ Lpa+La]

0 0
—pp(xmt)+—pp(xaat)v(pa(xa7t>) = 07 p:]-v"'vm (5)
ot O0Xp

wherexa = Xp — Xp — Lpa+ Xa. For commodityp, the traffic stream evolves on the corresponding
path, and we obtain a one-dimensional hyperbolic conservéaw. However, all traffic streams
interact with each other on the network, and we have a systemtaork hyperbolic conservation
laws. We hereafter call{5) as a multi-commodity kinemata/es (MCKW) model of diverging
traffic.

We can see that traffic flow on a road network cannot be modslegither one-dimensional
or two-dimensional conservation laws, since vehicles tiédint commodities interact with each
other on their shared links. In particular, for a divergenak with m downstream links, traffic
streams ofn commaodities interact with each other on the upstream limffit dynamics inside
each link can be studied by the LWR modelslih (1)or (4), ande¢heained task is to study traffic
dynamics at the diverging junction. Here we consider therfaien problem for the MCKW model
of diverging traffic in [5) with jump initial conditions. Witout loss of generality, we assume
that all links are homogeneous and infinitely long. For lak 1,--- m+ 1, we assume that its
flow-density relation isjy = Qa(pa), critical densitypc a, and its capacitf,. For the network in
Figurel1l, we seKp = —o, Xy + Lp = o, andx, = 0 is at the diverging junction fop=1,---,m;
Xa=0andXs+La=ofora=1,---,m andXy = —c0 andXpy;1+Lms1 =0. Thereforel o =0,
Lp,p =, anddpa(Xa—Xp) =0foralla=0andp=1,---,m.

For commodityp = 1,---,m, we have the following jump initial conditions:

PpL, Xp€ <_°°70]
Pp(Xp70) = P P . (6)
PpR, Xp € (0,+»)

8



Then upstream link 0 and downstream link 1, - - m have constant initial conditions:

Po(X0,0) = Po=) PpL, X € (—,0), (7)
p

pi(%,0) = Pp=piRr X € (0,40), i=1---m (8)

3 An analytical framework

For linka=0,---,m, we define the following demand and supply functions withsalbscripta

suppressed (Engquist and Osher, 1980; Daganzo| 1995; dignal996)

) f -~ MC
D(p) = Q(min{p,pc}){ Qp) TP =pe
C, if p>pc
= ["x(6Q(9ds= [ max(Q(s),0)ds ©)
0 0 ’
9 f -~ MC
Sip) = Q<max{p,pc}>{ Qp). Tp=pe
C, if p<pc
= ¢+ [(a-x(9)Q(s)ds=C+ [ min{Q(5),0}ds (10)
0 0

wherex (p) equals 1 iffQ’(p) > 0 and equals 0 otherwise.

Here we represent a traffic state in supply-demand spade-a¢D, S). This is different from
many existing studies, in which traffic states are consaiéneo-q space. For the demand and
supply functions in[(9) and (10), we can see thas non-decreasing with andSnon-increasing.
ThusD < C, S<C, max{D, S} =C, and flow-rateg(U ) = min{D, S}. In addition,D = S= C iff
traffic is critical;D < S= C iff traffic is strictly under-critical (SUC)S< D = Ciff traffic is strictly
over-critical (SOC). Therefore, state= (D,S) is under-critical (UC), iffS= C, or equivalently
D < S StateU = (D, S) is over-critical (OC), iffD = C, or equivalentlyS< D.

In Figurel2(b), we draw a supply-demand diagram for the twal&mental diagrams in Figure
[2(a). On the dashed branch of the supply-demand diagraffi¢ isUC andU = (D,C) with



D < C; on the solid branch, traffic is OC atdl = (C,S) with S< C. Compared with the fun-
damental diagram of a road section, the supply-demandatiagmly considers its capacity
and criticality, but not other detailed characteristicstsas critical density, jam density, or the
shape of the fundamental diagram. That is, different furetgal diagrams can have the same
demand-supply diagram, as long as they have the same gapadiare unimodal, and their criti-
cal densities, jam densities, or shapes are not relevantetdr, given a demand-supply diagram

and its corresponding fundamental diagram, the points@eet@-one mapped.

q S

Cf-------- - c

() (b)

Figure 2: Fundamental diagrams and their correspondinglgemand diagrams

In supply-demand space, initial conditions[ih (7) and (&) eguivalent to (Here=1,---, mif

not otherwise mentioned)

Uo(X%0,0) = (Do, S), Xo€ (—,0), (11)
Ui(x,0) = (D;,S), X € (0,+0). (12)
(13)

In the solutions of the Riemann problem fbf (5) with initiamindlitions [(11-1PR), a shock wave or a
rarefaction wave could initiate on a link from the divergjngction atx = 0, and traffic states on
all links become stationary after a long time. We hereaftézrrto these states as stationary states.

At the boundary, there can also exist interior states (vaat, 984 Bultelle et al., 1998), which
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take infinitesimal space and only exist in one cell in nunasolutions. We denote the stationary
states on upstream link 0 and downstream liry U, andU;", respectively. We denote the
interior states on links 0 anidby Ug(0~,t) andU;(0",t), respectively. The structure of Riemann
solutions on upstream and downstream links are shown inr&iuwhere arrows illustrate the
directions of possible kinematic waves. Then the kinemadige on upstream link O is the solution
of the corresponding LWR model with initial left and rightraditions ofUg andU;, respectively.
Similarly, the kinematic wave on downstream links the solution of the corresponding LWR
model with initial left and right conditions d§;* andU;, respectively.

Since vehicles’ proportions travel forward along vehiqlesbacque, 1996), traffic dynamics
on the upstream link follow the First-In-First-Out (FIFOjinciple (Papageorgiou, 1990). If the
commodity proportions; are predefined and constant, as a result of the global FIF@iple, in

the Riemann solutions we have

g = &i0o, (14)

which serves as the First-In-First-Out principle (Papagiea, 1990). Also we have that, in the
stationary staté),, vehicles’ proportions are the same as predefined ones. \owee could
have different proportions in the interior stélg(0~,t) and denote the corresponding proportion
of commodityi by & (07 ,t).

Uy Uy Up(0—,1) U;(0F,¢) Ut
| : } } | |

— =

(a) (b)
Figure 3: The structure of Riemann solutions: (a) UpstraaknQ; (b) Downstream link

We denoteyg_.; as the flux from link O to link for t > 0. The fluxes are determined by the

stationary states: the out-flux of link 0 g = q(U; ), and the in-flux of linki is g = q(U;").
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Furthermore, from traffic conservation at a diverging jimttwe have at stationary states
m

Josi =a =qU;"), do=0q(Uy) = _ZQ(Ui+)~ (15)

e
3.1 Admissible stationary and interior states

As observed in.(Holden and Risebro, 1995; Caoclite et al.520be speed of a kinematic wave on
an upstream link cannot be positive, and that on a downsthe&ngannot be negative. We have

the following admissible conditions on stationary states.

Theorem 3.1 (Admissible stationary states)-or initial conditions in [11) and[(12), stationary

states are admissible if and only if

Up = (Do,Co)or (Co, %), (16)
where § < Do , and

Ut = (G,S)or(Df,G), (17)
where O < §.

The proofis quite straightforward and omitted here. Theéomgof admissible upstream stationary
states in both supply-demand and fundamental diagramsharensin Figure_4, and the regions
of admissible downstream stationary states are shown uré&fi§. From the figures, we can also
determine the types and traveling directions of waves wiNkrgstationary and initial states on
all links. In particular, the types of kinematic waves and 8igns of the wave speeds can be
determined in the supply-demand diagram, but the absoaltees of the wave speeds have to be
determined in the fundamental diagram.

Remark 1. i =Up andU;" = U; are always admissible. In this case, the stationary states a

the same as the corresponding initial states, and thereoaxaves.
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Uy = Uy
Cy ® 7 Co
| .

I //
//‘/j 77777777777 (Co, Do) &

Uy Uy

(@) (b)

Figure 4. Admissible stationary states for upstream linkn@rked by black dots

S S

, i i , i i, Ci
C; fesecce Ereeooetessssssessssee C; feeccee Seoooee

I

I

[
e ®U; = U

(a) (b)
Figure 5: Admissible stationary states for downstreamilinkarked by black dots

Remark 20ut-fluxgo = min{D,, S, } < Dg and in-fluxg; = min{D;*,§"} < §. Thatis,Dg is
the maximum sending flow arf§l is the maximum receiving flow in the senseof (Daganzo, 1994,
1995).

Remark 3In (Lebacque and Khoshyaran, 2005), a so-called “invaggminciple” is proposed
as follows: ifD; = Cp, thenq(U, ) < Dg; if §™ =G, thenq(U;") < S. We can see that Theorem

[3.1 is consistent with the “invariance principle”.

Corollary 3.2 For the upstream link, go < Do; go < Do if and only if Uy = (Cp, o), and @y = Do

13



ifand only if U, = (Dg,Cp). For the downstream link i,ic< §; gi < S if and only if q* = (q;,G),
and q =S ifand only ifU" = (G;,S). Thatis, given out-fluxes and in-fluxes, the stationaryestat

can be uniquely determined.

For interior states, the waves of the Riemann problem on Ginkith left and right initial
conditions ofU, andUp(0~,t) cannot have negative speeds. Similarly, the waves of the#tia
problem on linki with left and right initial conditions otJ;(0™,t) andU;" cannot have positive
speeds. Therefore, interior statég(0,t) andU;(0*,t) should satisfy the following admissible

conditions.

Theorem 3.3 (Admissible interior states)For asymptotic stationary statesUand U™, interior

states 4(0~,t) and U(0™,t) in (20) are admissible if and only if

0 { (Co.S) = Ug, when 1 SOCi e, §<Dg =Co o
(Do(07,1),S(07,t)), whenl isUC;ie, 0y <§ =Co
where §(0~,t) > D, , and
+ Yy Ut i . e
B 1) = (Di",C) =u;*, wheny" isSUC;ie., 0 <§ =G (19)
(Di(0%,t),S(0",t)), whenU"isOC;i.e.,$ <D;" =C

where Q(0*,t) > §" .

The proof is quite straightforward and omitted here. Thearg of admissible upstream interior
states in both supply-demand and fundamental diagramsavensin (6), and the regions of ad-
missible downstream interior states are showrin (7). Froenfigures, we can also determine
the types and traveling directions of waves with given etery and interior states on all links,
but these waves are suppressed and cannot be observed, anel ovdy able to observe possible
interior states in numerical solutions.

Remark 1.Note thatUp(0~,t) = Uy andU;(0*,t) = U;* are always admissible. In this case,

the interior states are the same as the stationary states.

14



Co foeesoose

Uo(0~, £)

I //
//‘/ ”””””” (Co, Dy)

Co D

(@)

Co

Co

(b)

Uy = Up(0, 1)

Figure 6: Admissible interior states for upstream link O:rkea by black dots

S

C;

Ul = Ui(0%, 1)
®

(@)

D

S

Ci

eeceeedessecs

I //
e Ut

(b)

Figure 7: Admissible interior states for downstream linknarked by black dots

Corollary 3.4 For upstream link0, g < Do; do < Do if and only if Ly(0~,t) = Uy = (Co,qp), and
do = Do if and only if U, = (Do,Cp), and Lh(0~,t) = (Do(0~,t),S(07,t)) with $(0~,t) > Do.
For the downstream link i,ic< S; i < S if and only if U(0*,t) =U;" = (q;,Ci), and q = S if
and only if " = (C;, ), and U(0*,t) = (D;j(0*,t), S(0%,t)) with D;(0*,t) > S.

15



3.2 Entropy conditions consistent with discrete diverge mdels

In order to uniquely determine the solutions of stationaayes, we introduce a so-called entropy

condition in interior states as follows:
qi == Fi(UO(O_at)7Ul(O+7t)7"'7Um(o+7t)761(0_7t>7"'7Em(0_7t)>' (20)

That is, the entropy condition uses “local” information hretsense that it determines boundary
fluxes from interior states. In the discrete versiorLof (8¢ @ntropy condition is used to determine

boundary fluxes from cells contingent to the diverging jiorct Thus,
Fi(UO(O_vt)7Ul(O+7t>7 e 7Um(0+7t>7 El(o_vt)7 Ty Em(0_7t>)

in (20) can be considered as local, discrete flux functions.

In (Daganzo, 1995),
F(UO(O_7t>7U1(O+7t)7 o '7Um(0+7t)761(0_7t>7 Tty Em(0_7t>)

was proposed to solve the following local optimization peoi

. max {a0} (21)
Uy Uit Uo(0 1)U (0% 1), Um(0% £),E1(0 )+, Em(0~ 1)
subject to
o < Do(07,1),
di < S(O+7t)7

&i(07,t) = the proportion of vehicles choosing path

Thus, we obtain the total flux as

S(07,t)
"&(0,1)

In the literature, a number of other diverge models have Ipeeposed. In.(Lebacque, 1996),

F(UO(O_7t>7U1(O+7t>7 T 7Um(0+7t>7 E]_(O_,t), o ':Em(0_7t>) = Ei(0_7t> ﬁP{DO(O_vt) }

the upstream demand is splitinto commodity demands acuptdipredefined turning proportions,
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and the in-flux of each downstream link is the minimum of itp@y and commodity demand.
In (Jinand Zhang, 2003b), turning proportions were progdsebe determined by downstream
supplies when vehicles have no predefined routes. In (Sheifi,d 982), turning proportions were
proposed to be determined by downstream speeds in a mya@uaaion scheme. All these local,
discrete diverge models can be considered as entropy camgliso that we have corresponding

continuous diverge models| (5).

3.3 Summary of the solution framework

To solve the Riemann problem fdrl (5) with the initial conalits in [11){(12), we will first find
stationary and interior states that satisfy the aforemaeti entropy condition, admissible condi-
tions, and traffic conservation equations. Then the kinematve on each link will be determined
by the Riemann problem of the corresponding LWR model wiitiahand stationary states as
initial conditions. Here we will only focus on solving theaibnary states on all links, since the
kinematic waves of the LWR model have been well studied inliteeature. From all the condi-
tions, we can see that the feasible domains of stationaryr@dor states are independent of the
upstream supph&, and the downstream demaridi,,, 1. That is, the same upstream demand and
downstream supply will yield the same solutions of statigrend interior states. However, the
upstream and downstream wave types and speeds on each edatée t0S as shown in Figure

[4(d) andDp,, 1 as shown in Figurgl5(d).

4 Diverge models with predefined turning proportions

In this paper, we solve the Riemann problem for a divergimgiions with two downstream links;
i.e.,m= 2. In this section, we consider two entropy conditions, two diverge model. Here ve-
hicles have predefined routes; i.§.are predefined constants, determined by vehicle route €hoic

behaviors. We attempt to find the relationships between th@deary fluxes and the initial condi-
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tions.

A

g = Fi(Uo,U1,U>). (22)

In contrast to local, discrete flux functioRgUp(0~,t),U1(0~,t),U,(07,t)), K (Ug,Uy,Uy) can be
considered as global, continuous. With the global, cowtirsufluxes, we can find stationary states
from Corollary[3.2. With the solution framework in the prdagg section, we can then find the

kinematic waves of the Riemann problem[df (5) with initiahditions(Ug,U1,U>).

4.1 Daganzo’s diverge model

In (Daganzo, 1995), a FIFO diverge model was proposed bas il

$(07,t) $(07,1)
§1(0-,1)" &(0-,1)

Jo = min{D0(0_7t>7 }7 (23)

and a local FIFO principle
a = &(0 ,t)qo. (24)

Comparing[(2¥4) and(14), we obviously ha§€0,t) = &;. That is, the commodity proportions in
the stationary state are the same as predefined. Thus in Riegolutions, stationary and interior

states have to satisfy (23), traffic conservation, and tihesponding admissible conditions.

Theorem 4.1 For the Riemann problem of the MCKW model of merging traffi@nwith ini-
tial conditions in [11) and[(12), boundary fluxes satisfythg entropy condition in(23), traffic

conservation equations, and the corresponding admissinelitions are:

S
& &

and q = &qo. The corresponding stationary and interior states are ia fibllowing:

0o = min{Do,

2 (25)

1. If Do > qo, the stationary state of the upstream link is SOC, ap@U,t) =U; = (Co,qo); if
Do = Qo, the stationary state of the upstream link is UG, & (Dg,Cp), and Lh(0~,t) =Uy
or Up(07,t) = (Do(07,t),S(07,t)) with Dp(0~,t) > Do and $(0~,t) > Do.
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2. If % > g, the stationary state of downstream link iil,2) is SUC, and W(0",t) =U;" =
(gi,C); if % = (o, the stationary state of downstream link i is Oqfl;!: (G,S), and
Ui(0™,t) =U;" or Uij(0*,t) = (D;(0T,t),S(0",t)) with Dj(0™,t) > § and $(0",t) > S.

The proof of the theorem is given in Appendix A. The solutiohfluxes are illustrated in Figure
[8, in which the starting point of an arrow represents thaahdondition(S;,Sy), and the ending
point represents the solutidgs, gz). That is, in region IDg < min; % and we havej = &Do; in
region I, % < min{Do, %}, and we havey, = S andgp = Sl%; in region Il C—g < min{Do, %},
and we havep = S andg; = SZ%; on the boundary line between regions | and Il, or the boundar
line between regions | and It = &jDg; on the boundary line between regions Il and dfl= S.
We can see that, in region Dg < S + S, andgp = min{Dy, S + $}. In regions Il and llI,

go < min{Do, S+ S}. Thatis, due to vehicles’ route choice behaviors, the dapaftthe diverge,

min{Do, S; + S}, is generally under-utilized.
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Figure 8: The solutions of fluxes for a FIFO diverging junatio
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Comparing[(2B) and (25), we can see that the global, contimfioxes have the same func-
tional form as the local, discrete fluxes. In this sense, tR®©Fiverge model(23) is “invariant”.
Hereafter, we consider a model invariant if and only if thebgll, continuous fluxes have the same

functional form as the local, discrete fluxes.

4.2 Lebacque’s diverge model

In (Lebacque, 1996), the following diverge model was pregos
G = min{Ei<O_7t)D0<o_7t)7S(O+7t)}7 (26)

andqo = q; + g2. Compared with Daganzo’s model {23), this model is locatin4IFO, and its

solutions are the following.

Theorem 4.2 For the Riemann problem of the MCKW model of merging traffi@nwith ini-
tial conditions in [11) and[(12), boundary fluxes satisfythg entropy condition in(26), traffic

conservation equations, and the corresponding admissielitions are the same as [n_(25); i.e.,

S 2
§1' &

and q = &jqo. The corresponding stationary and interior states are ia fbllowing:

}7

0o = min{Do,

1. If Do > qo, the stationary state of the upstream link is SOC, ap@U,t) =U; = (Co,qo); if
Do = o, the stationary state of the upstream link is UG, & (Do,Cp), and Lh(0~,t) = Uy
or Up(0™,t) = (Do(07,t),S(07,t)) with Dp(0~,t) > Do and $(0~,t) > Do.

2. If % > do, the stationary state of downstream link iil,2) is SUC, and Y0*,t) = U;" =
(gi,C); if % = (o, the stationary state of downstream link i is oq,*u: (G,S), and
Ui(0,t) =U;" or Uij(0*,t) = (D;j(0",t),S(0",t)) with Dj(0*,t) > § and $(0",t) > S.

3. The interior turning proportion&;(0~,t) can be determined by interior states and stationary

states.
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The proof of the theorem is in Appendix B. The solutions of haary fluxes can also be illustrated
by Figure 8.

Compared with Daganzo’s local FIFO modell(23), Lebacqua/srde model[(26) does not
satisfy the local optimization condition i (21) or the 1b&FO principle [24) and has interior
commodity proportions different from the predefined onese b the different functional forms
of (26) and [(2b), Lebacque’s diverge model is not “invariariowever, Lebacque’s model has
exact the same fluxes, stationary states, and thereformtiewaves as Daganzo’s. That [s,|(26)
converges td (23) asymptotically and continuously andigiglobally optimal and FIFO solutions.

In this sense, both models are “equivalent” globally andicomously.

5 Diverge models for emergency evacuation

5.1 A supply-proportional evacuation strategy

We consider the a diverging rule proposed.in (Jin and Zhad@3R), in which

Do(07,t)
S1(0+,t) + S(0,1)

In this diverging rule, vehicles do not have predefined reated belong to the same commodity.

g = min{1, 1§(0t,t), i=12 (27)

This diverge model was applied for emergency evacuatiaasins in a road network (Qiu and Jin,

2008). In this model, we have
do = min{D0(077t)7Sﬂ.(o+7t) +SZ(O+7t)}7

and the turning proportions are time-dependent

S(0",t)
S1(0F,t) + S(0+,1)’

& = =1,2. (28)

Thus in the Riemann solutions, stationary and interioesthave to satisfy (27), traffic conser-

vation, and the corresponding admissible conditions.
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Theorem 5.1 For the Riemann problem of the MCKW model of diverging traffi)) with initial
conditions in[(T11) and(12), stationary and interior stagagisfying the entropy condition in (27),

traffic conservation equations, and the corresponding adihble conditions are the following:
1. When $+$ < Do, Ui" = U;(0%,t) = (C;,S) (i=1,2) and Uy =Up(0",t) = (Co, S1 +S);

2. When $+S = Do, U;™ = U;(0*,t) = (C;,S) (i = 1,2), Uy = (Do, Co), Ug(0~,t) = (Do,Co)
or (Do(07,t),S(07,t)) with Do(0~,t) > Dg and $(0~,t) > Do when @y < Cy;

3. When 5> ﬁDo (i=1,2),Uy; =Uo(0,t) = (Do,Cp),and Y~ =U;(0",t) = (%DO,Q).

4. When $+S > Do and $ < z2=Do (i, j = L or 2 and i# j), Uy = Ug(0,t) = (Do, Co),
U" =(Ci.S), Ui(0".1) = (G, 5,5 S), and U =U;(0%, 1) = (Do - §.,C;).

The proof of the theorem is given in Appendix C.

Corollary 5.2 For the Riemann problem of the MCKW model of diverging traffiS) with ini-
tial conditions in [11) and[{12), boundary fluxes satisfythg entropy condition in (27), traffic

conservation equations, and the corresponding admissielitions are the following:
1. When$+$ <Do,g=S (=12 andp=S+S;

2. When §> 55D (i = 1,2), G = 55;Do and ¢ = Do;

3. When $+ S, > Do and $< 2. Do (i, j = 1or 2 and i j), gi =S, ¢j = Do — §, and

0o = Do.

Thatis, forij =1o0r 2 andi# j, go = min{Do, S + S}.

. D
g = mm{s’max{Do_Sj’ClTOCzCi}}' (29)
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The solutions of fluxes in four different regions are showFigure[9, in which the starting points
of arrows represent the initial conditions(iD1,D>), and the ending points represent the solutions
of fluxes (q1,02). In the figure, we can see four regimes: In regime I, both dowam links
have OC stationary states; In regime Il and 1V, one downsiriak has SUC and the other OC
stationary states; In regime lll, both downstream linkseh&®WC stationary states. Comparing
(29) and[(2F), we can see that the evacuation diverge modet i$nvariant”. Compared with the
diverge model in the preceding section, this model is ogdtisiaceqy = min{Dg, S + S}.

S2,q2 A
Co N
Co

Dq

Ca
arc; Do

—1
C1+C>

Figure 9: Solutions of fluxes for a supply-proportional egegrcy evacuation diverge model

Corollary 5.3 IfU; (i = 1,2) and U, satisfy

Do

min{D;,S} = min{§, max{Dg— Sj,mCi}},

min{Do, S} = min{S; +S,Do},

then the unique stationary states are the same as the isitédes, and traffic dynamics at the

diverging junction are stationary.
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5.2 A priority-based evacuation strategy
Inspired by [(29), we propose a priority-based evacuatiiegy (, j = 1,2 andi # j)

g = min{S(0",t),max{Do(0,t) —Sj(0",t),aiDo(0,t)}}, (30)
whereaq; € [0,1] andai + a2 = 1.

Theorem 5.4 For the Riemann problem of the MCKW maodel of diverging traffig) with ini-
tial conditions in [(11) and(12), boundary fluxes satisfythg entropy condition in_(30), traffic

conservation equations, and the corresponding admissiielitions are given by
g = min{S§,maxDo—Sj,aiDo}}, (31)
and ¢ =min{Dg, S+ S}.

The proof of the theorem is given in Appendix D. The solutiohBuxes(qs, g2) from (S, S, Do)

are illustrated in Figure_10. Clearly we can see that fluxe®) can be considered as a special
case wherg; = C;/(C1 +C,), and the priority-based evacuation diverge model is iaveri An
extreme case is to give one downstream link an absoluteityrfor evacuation, e.g.q; = 1 and

a2 = 0. This can happen when link 1 is shorter or less congestiomeprin this case the fluxes in

(31) become

Q1 = min{$,Do},
Q2 = min{S,max{Do—S}}.

5.3 A partial evacuation strategy

By a partial evacuation scenario, we mean that some veliialespredefined routes and others do

not. For exampleé; € [0,1] andé; € [0, 1] are the predefined portions of vehicles choosing link 1
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Figure 10: Solutions of fluxes for a priority-based evaaativerge model

and 2, respectively, bty + £, may be smaller than 1. That is, the remaining portion& — &>

can take either route. For this scenario, we propose thewolh evacuation strategy,{ = 1,2
andi # j)
g = min{S(O*,t),%S,—(O*,t) —Sj(0",t),max{Do(0,t) — Sj(0",t),aiDo(07,1)}}, (32)
j

whereq; € [§,1—¢&j] andai +az = 1.

Theorem 5.5 For the Riemann problem of the MCKW model of diverging traffidg) with ini-
tial conditions in [11) and[(12), boundary fluxes satisfythg entropy condition in(32), traffic

conservation equations, and the corresponding admissiielitions are given by
) 1
g = mln{S,?Sj —§j,max{Do—Sj, aiDo}}, (33)
j
and ¢ = g1 + Q2.

The proof of the theorem is omitted here. The solution&gfqy) are illustrated in Figure 11, in

which there are six regimes. Furthermore, we can show thaj (& &qo; (2) Whenéy + &, = 1;
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i.e., when all vehicles have predefined routes| (33) is edgmt to [25); (3) Wherd, = &, = 0;
i.e., when all vehicles have no predefined roufes, (33) is/atpnt to (31). Therefore[ (32) can be
considered as a generalized diverge model, which encapsilath normal and evacuation diverge

model. In addition, the generalized diverge model is irasari
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Figure 11: Solutions of fluxes for a generalized diverge rhode

6 Numerical examples

In this section, we numerically solve various diverge maated demonstrate the validity of our
analytical results. Here, both links 0 and 1 are two-lanenfire freeways with a corresponding

normalized maximum sensitivity fundamental diagram (Das$tilo and Benitez, 1995) io(e

0,2)
Qp) = p{i-exp|i-en(3E-1)|}
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Link 2 is a one-lane off-ramp with a fundamental diagramas (0, 1))

Qlp) = %p {1—exp[1—exp<%(% - 1))] } :

Note that here the free flow speed on the off-ramp is half dfdhahe mainline freeway, which is
1. Thus we have the capaciti€s = C; = 4C, = 0.3365 and the corresponding critical densities
Pco = Pc1 = 2Pc2 = 0.4876. The length of all three links is the samd.as 10, and the simulation
time duration isT = 360. Note that here all quantities in this section are naaedland therefore
have no units.

In the numerical examples, we discretize each link Mtoells and divide the simulation time
durationT into N steps. The time stefit = T /N and the cell sizé&x = L/M, with At = 0.9Ax,
satisfy the CFL condition (Courant et al., 1928)

A At

—=—=09<1
Vfo AX 0.9<

Then we use the following finite difference equation for link 0,1, 2:

n+1

At
Pi.m Pim+ B((qp,mfl/Z - qp,m+l/2)7

Wherep{‘m is the average density in cefi of link i at time step, and the boundary quer,if;‘Wl/2
are determined by supply-demand methods. For exampleofenstream links =1 and 2, the
out-fluxes are

qnm+1/2 = min{Dnmvsjm—i-l}v m=1,.-- M,
whereD}'is the demand of cethon linki, ', ; is the supply of celm, andS, , ; is the supply
of commodityi. For link O, the in-fluxes are

qumfl/z = min{ngm,l,S;?m}, m=1,---,M,

whereDy , is the demand at the origin. Then the in-fluxes of the dowastriinks and the out-flux

of the downstream link are determined by diverge modelschvhre discrete versions of (20):

qin,l/z = F(Dom S11,S21);
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Qomitz = U127t/

We also track the commodity proportions in aalbf link O, éif‘m, as follows (Jin and Zhang, 2004)

n n n . n
n+1 _ povm En + At qO,m—l/ZELm—l qO,m+1/25.7m
im T nrlSimT Ay ] .

pO,m AX p07m

Note thaté; is the predefined proportion of commodity
In our numerical studies, we only consider Lebacque’s diwanodel [(26) and its invariant

counterpart((23). For Lebacque’s diverge model, we have
qin,1/2 = min{Dgm&'m: 1}
qg,M+1/2 = q2,1/2+q2,1/2'

In the invariant Daganzo’s diverge model, we have £ 1,2 andi # |)

. Si S,
qB,M+1/2 = mln{DB,M?%?g;M}?
qin,l/z = fi?ng,MH/z-

6.1 Kinematic waves, stationary states, and interior state in Lebacque’s

diverge model

In this subsection, we study numerical solutions of Lebatxjdiverge model in((26). Initially,
links 0 and 1 carry OC flows witp; = p3 = 1, and 30% of the vehicles on link O diverge to link 2
startingat =0; i.e.,é1 = 0.7, andé, = 0.3. The initial density on link 2 ip, = 0.1. Thatis, the ini-
tial conditions in supply-demand spacejig=U; = (0.33650.2473 andU, = (0.05000.0841).
Here we use the Neumann boundary condition in supply and wie@olella and Puckett, 2004):
D8o=D01 SImi1 =S m andSy,,; = S . Therefore, we have a Riemann problem here.

In this case,i2 < Dg < % Thus according to Theorem 4.2, we should have the follow-

ing stationary and interior statés = Up(0™,t) = (Co,%), U =Uy(07,t) = (%SZ,Cl), and
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Uy = U(07,t) = (C2,S) = (C2,Cp). From the LWR model, there should be a back-traveling
rarefaction wave on link 0 connectitufy toU,,, sinceS < %; a forward-traveling shock wave on
link 1 connectinng to Uq, sinceg—isz < §; and a forward-traveling rarefaction wave on link 2

connectindgJ," to U,. Furthermore, froni(35), we should have t§at0—,t) = 0.5833.
¢,

(b) Contour plot of P,

(a) Contour plot of Py

2 4 6 8

1

(c) Contour plot of P,

Figure 12: Solutions of Lebacque’s diverge model (28):= 160,N = 6400.

In Figure[12, the solutions qdp, p1, andp, are demonstrated withl = 160 andN = 6400.
From the figures, we can clearly see the predicted kinemadies: In addition, we can ob-
serve at = T the approximate asymptotic valuds; = Ug(0~,t) = (0.33650.2804), andp, =
po(0~,t) = 0.8555;U;” = U3 (07, t) = (0.19630.3365), andp;” = p1(0*,t) = 0.1963; andJ,” =
Up(0™,t) = (0.08390.0841), andp; = po(0",t) = 0.2436~ pyc. These numbers are all very
close to the theoretical values and get closer if we redwoar increasel. That is, the results are
consistent with theoretical results asymptotically.

In Figure[138, we demonstrate the evolution of the in-flux okl and the proportion of com-
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Figure 13: Evolution of the out-flux and the density in the detveam cell of link 2 for Lebacque’s
diverge model(26)

modity 1 vehicles in the last cell of link O for three diffetetell sizes. From Figure_13(a) we

can see that, initially, the out-flux of link 2 is mi&; Do, S } = 0.2355, which is not the same but
approaches the asymptotic in-flégez = 0.1963. Correspondingly the proportion of commodity 1
vehicles in the last cell of link 0 approaches the interianowodity proportion, as shown in Figure
[13(b). Similarly, as we decrease the cell size, the numl@gsalts are closer to the theoretical ones
at the same time. This figure shows that Lebacque’s divergkehi®not invariant, but approaches

its invariant counterpart asymptotically. Note that thegmrtion of commodity 1 vehicles in any

other cells of link 0 remain constant at 0.7.

6.2 Comparison of diverge models by Daganzo and Lebacque

In this subsection, we compare the numerical solutions diatque’s diverge moddl (26) with

its invariant counterpart, Daganzo’s diverge model (23jtidlly, links 0 and 1 carry OC flows
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with pg = p1 = 1, and 30% of the vehicles on link O diverge to link 2 startinng & O; i.e.,
&1 =0.7, andé, = 0.3. The initial density on link 2 ip, = 0.1. Different from the example in the
preceding subsection, here we use the following boundanglitions:Dg g = Dg 5, S 1 = Sy,

and%,\,I+1 = 0.05+ 0.03sinnmAt/60). Thus we have a periodic supply on link 2.

14F !
Ax=1

- — —Ax=1/4
A x=1/16

12

0.8

g(nAt)

0.6

0.4

0.2

Figure 14: Difference in the solutions between Lebacqui&/srde model[(Z6) and its invariant

counterpart((23)

We usep(};, for the discrete density from Lebacque’s diverge mofdel @) o, from its

invariant counterpari (23). Then we denote the differeratesben the two solutions by

2 M
e(nAt) = Z)Z |pir,]m_5ir,]m|AX- (34)
i=0m=1

In Figure[14, we can see that the difference decreases if areakes the cell size. This clearly

demonstrates that Lebacque’s diverge mddél (26) convéngesinvariant counterparf (23).
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7 Conclusion

In this paper, we first introduced a continuous multi-comityokinematic wave model for a di-
verge network and defined its Riemann problem. Then, wedntred the supply-demand diagram
of traffic flow and proposed a solution framework for the Riamaroblem. In the Riemann solu-
tions, each link has two new states: an interior state anati@sary state; and the kinematic waves
on a link are determined by the initial state and the statipstate. We then derived admissible
conditions for interior and stationary states and intradbentropy conditions consistent with var-
ious discrete diverge models. In the analytical framewoekpnoved that the stationary states and
boundary fluxes exist and are unique for the Riemann probtemdrmal diverge, in which ve-
hicles have predefined routes, and evacuation models, ichwighicles may not have predefined
routes. With numerical examples, we demonstrated theityabd the solution framework devel-
oped here and that Lebacque’s diverge model converges tovagant counterpart, Daganzo’s
diverge model, when we decrease the cell size.

An important observation is that, for both (26) ahd|(27), élsixomputed by discrete supply-
demand methods are different from the continuous fluxes. ekample, the local fluxes from

Lebacque’s diverge model, (26), are
g = min{gi DO?S}? I = 17 2.

WhenéiDg > S; i.e., when the upstream demand is very heavy, we gaveS. In this caseg;

is not proportional to the turning proportion. Thus Lebagqudiverge model violates the FIFO
principle. However, from the analysis in Section|4.2 andrthmerical example in Sectign 6.2, we
find that Lebacque’s diverge model has the same continuoxisdlutions as Daganzo’s model,
which observes the FIFO principle. Therefore, we conclindé¢ tebacque’s diverge model is not

strictly non-FIFO. As another example, for the supply-mnaional evacuation model, &= 0 the
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local fluxes from[(27) are

g = min{l, 1S, i=1,2,

Do
S+S
which are different from[{29) when only one downstream is SUE, whenS, + S, > Dg and
S< %Do. However, the analytical results here suggest that theetesfluxes converge to the
continuous ones after a sufficient amount of time or at a divea but with decreasing period of
a time interval.

Comparing kinematic wave solutions of Daganzo’s and Lebasgdiverge models, we find
that, given the same initial conditions, they have the satagosary states and kinematic wave
solutions, but different interior states. In this senséenor states are essential to distinguish
different diverge models. Numerical simulations in Setf@2 also demonstrate the existence
of interior states. Therefore, interior states are esakmtiunderstanding diverging traffic flow.
This is different from the LWR model for a homogeneous link,which interior states could
exist (Jin and Zhang, 2003a; Jin et al., 2009) but are noné&aséo constructing kinematic wave
solutions.

Here we showed that both supply-proportional and pridoéiged diverge models can be con-
sidered locally optimal evacuation strategies. But howralyze kinematic waves arising in a
speed-dependent evacuation model (Sheffilet al.,| 1982pjeduo further investigations. In ad-
dition to theoretical implications, this study, by improgiour understanding of the formation and
propagation of traffic congestion caused by diverging bottks, could be helpful for developing,
calibrating, and validating diverge models and associatadrgency evacuation strategies in the
future. For example, with differerd; and ay, (30) is a priority-based invariant diverge model,
which can be used to evacuate vehicles to shorter or lesestag prone links without wasting
the capacity of a diverging junction. In the future, we wi@be interested in studying kinematic

wave solutions of general junctions with multiple upstresamd downstream junctions.

33



Acknowledgements

The author would like to thank two anonymous reviewers feirthelpful comments. The views

and results contained herein are the author’s alone.

References

Bultelle, M., Grassin, M., and Serre, D. (1998). Unstabled@wv discrete profiles for steady
shock wavesSIAM Journal on Numerical Analysi85(6):2272—-2297.

Cassidy, M. (2003). Freeway On-Ramp Metering, Delay Sayiagd Diverge BottlenecKrans-

portation Research Record: Journal of the Transportati@s&arch Board1856:1-5.

Coclite, G., Garavello, M., and Piccoli, B. (2005). Traffiol on a road networkSIAM Journal
on Mathematical Analysj$86:1862.

Colella, P. and Puckett, E. G. (200#lodern Numerical Methods for Fluid Flawn draft.

Courant, R., Friedrichs, K., and Lewy, H. (1928).
"Uber die partiellen Differenzengleichungen der mathescaen Physik.Mathematische An-

nalen 100:32-74.

Daganzo, C. (1999). Remarks on Traffic Flow Modeling and IpiA Traffic and mobility:

simulation, economics, environmgpage 105.

Daganzo, C. F. (1994). The cell transmission model: a dyoaegresentation of highway traffic

consistent with hydrodynamic theorfransportation Research Part B8(4):269-287.

Daganzo, C. F. (1995). The cell transmission model II: Nekwmaffic. Transportation Research

Part B, 29(2):79-93.

34



Daganzo, C. F. (1997). A continuum theory of traffic dynaniarsfreeways with special lanes.

Transportation Research Part B1(2):83-102.

Daganzo, C. F., Cassidy, M. J., and Bertini, R. L. (1999) sitids explanations of phase transitions
in highway traffic. Transportation Research, 83:365-379.

Daganzo, C. F,, Lin, W.-H., and Del Castillo, J. M. (1997). ifple physical principle for the
simulation of freeways with special lanes and priority \ods. Transportation Research Part

B, 31(2):103-125.

Del Castillo, J. M. and Benitez, F. G. (1995). On the functidiorm of the speed-density relation-

ship - Il: Empirical investigationTransportation Research Part, 29(5):391-406.

Engquist, B. and Osher, S. (1980). Stable and entropy giatisdpproximations for transonic flow
calculations Mathematics of Computatio84(149):45-75.

Fazio, J., Michaels, R., Reilly, W., Schoen, J., and PoAli§1990). Behavioral model of freeway
exiting. Transportation Research Recort281:16-27.

Federal Highway Administration (2004 )raffic Flow Theory: A State of the Art Repoffrans-

portation Research Board.

Greenshields, B. D. (1935). A study in highway capaditighway Research Board Proceedings
14:448-477.

Haberman, R. (1977Mathematical modelsPrentice Hall, Englewood Cliffs, NJ.

Holden, H. and Risebro, N. H. (1995). A mathematical modedraffic flow on a network of
unidirectional roadsSIAM Journal on Mathematical Analysiz6(4):999-1017.

Jin, W.-L. (2010). Continuous kinematic wave models of nreggraffic flow. Transportation

Research Part Bin Press.

35



Jin, W.-L., Chen, L., and Puckett, E. G. (2009). Supply-dethdiagrams and a new framework
for analyzing the inhomogeneous Lighthill-Whitham-Riofemodel.Proceedings of the 18th

International Symposium on Transportation and Traffic Tlgepages 603—635.

Jin, W.-L. and Zhang, H. M. (2003a). The inhomogeneous katenwave traffic flow model as a

resonant nonlinear systemransportation Scien¢&7(3):294-311.

Jin, W.-L. and Zhang, H. M. (2003b). On the distribution soles for determining flows through
a merge.Transportation Research Part, B7(6):521-540.

Jin, W.-L. and Zhang, H. M. (2004). A multicommodity kinentatvave simulation model of
network traffic flow. Transportation Research Record: Journal of the Transg@mitaResearch

Board 1883:59-67.

Lebacque, J. and Khoshyaran, M. (2005). First order maopstraffic flow models: Intersection
modeling, Network modeling?roceedings of the 16th International Symposium on Trarapo

tion and Traffic Theorypages 365-386.

Lebacque, J. P. (1996). The Godunov scheme and what it meafnst order traffic flow models.
Proceedings of the 13th International Symposium on Trartapon and Traffic Theorypages

647—-678.

Lighthill, M. J. and Whitham, G. B. (1955). On kinematic wavel. A theory of traffic flow on
long crowded roadsProceedings of the Royal Society of Londqr229(1178):317—-345.

Liu, G., Lyrintzis, A. S., and Michalopoulos, P. G. (1996).obklling of freeway merging and
diverging flow dynamicsApplied Mathematical Modelling0.

Mufoz, J. C. and Daganzo, C. F. (2002). The bottleneck nresimeof a freeway divergelrans-
portation Research Part /A86(6):483-505.

36



Newell, G. F. (1993). A simplified theory of kinematic waveshighway traffic I: General theory.
II: Queuing at freeway bottlenecks. Ill: Multi-destinatilows. Transportation Research Part

B, 27(4):281-313.

Newell, G. F. (1999). Delays caused by a queue at a freewayaswp. Transportation Research

Part B, 33:337-350.

Ngoduy, D., Hoogendoorn, S., and Van Zuylen, H. (2006). ®@oim traffic model for free-
way with on-and off-ramp to explain different traffic-corsged statesTransportation research

record (1965):91-102.

Papageorgiou, M. (1990). Dynamic modelling, assignmedtrante guidance in traffic networks.

Transportation Research Part B4(6):471-495.

Qiu, K.-F. and Jin, W.-L. (2008). Studies of Emergency Esimn Strategies based on Kinematic
Wave Models of Network Vehicular Traffic. limtelligent Transportation Systems, 2008. ITSC
2008. 11th International IEEE Conference,qages 222—-227.

Richards, P. I. (1956). Shock waves on the highwagerations Researchd(1):42-51.

Sheffi, Y., Mahmassani, H., and Powell, W. (1982). A transgan network evacuation model.

Transportation Research Part A6(3):209-218.

van Leer, B. (1984). On the relation between the upwinded#ificing schemes of Godunov,

Engquist-Osher and Ro&IAM Journal on Scientific and Statistical ComputiB{l):1-20.

Appendix A: Proof of Theorem

Proof. From traffic conservation equations in{15), admissibladitions of stationary states,
and the global FIFO principlé_(14), we hage= &qgo < § andgp < Dg. Thus, we havey <

min{Do, 3, #}.
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Note that[(2B) is equivalent to

$i(07,t) S(0%,1)
&L &

We first prove[(2b). Otherwisgp < mln{Do, A } (i) Sinceqp < Do, from (16) and[(IB), link O

is SOC, andJg(0~,t) =U, = (Co, o). (ii) Sinceq; = &igo < S, from (I7) and[(1B), link is SUC,

andu; (0" t) = U-+ = (&qo,Ci). Hence from[(2B) we havg = mln{Co Cl CZ} < Dg < Cp. Thus

0o = m|n{Cl CZ} From the FIFO principle{14) we hawg = &qo = E,(O 1) m|n{Cl CZ} > G,

Qo = min{Dp(0,t),

}.

andgo=q/& > E’ which contradictsjy < min{Dg, R 52}

We consider the following cases.

(1) When only one of the three terms on the right hand-sid@%¥ équalgyy, we have (i)Dg =
Qo < min{%, %}, (ii) = Qo < min{Do, ?2} or (jii) 2 £=0< mln{Do, 3 }. Here we only
show the solutions of statlonary and interior states foap solutions for (ii) and (iii) can be
obtained in a similar fashion. When m% > Dg = qo, from (28) we have)p = Do, andq; =
&go < S. From [16) and (18), we haus,” = (Do, Cp), andUp(0~, t) = (Do(07,1),S(0,1))

with $(07,t) > Dg. From [17) and[{119), we hawg (0",t) = U = (&iqo,Ci). Then from
(23) we have
do = min{Do(01) 7}

Since mlm? > mm,? > Dg = ¢o, we haveDg(0~,t) = go = Do, andUp(0~,t) = Uy =
Do,Co). That is, the upstream and downstream interior states aredime as the corre-
p

sponding stationary states.

(2) When two of the three terms on the right hand-sidé df (Zbaésqy, we have (i)Dg = % =
0o < % (i) Do = % =< % or (iii) % = % = go < Do. Here we only show the solutions
for (i), and solutions for (ii) and (iii) can be obtained iniandar fashion. WherDgy = % <
%, from Corollary(3.4, we havel, = (Dg,Cp), andUg(0~,t) = (Do(07,t),S(07,t)) with
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S)(O_,t) > DO: U]_+ = (C]_,S]_), andUl(o+7t) = <D1<0+,t),81<0+,t)) with D1(0+7t) > SCI_;
andU(0*,t) =U," = (q2,Cy). Then from [ZB) we have

Si1(07,t) C
&

which leads td(0~,t) =Dgor S (07,t) = £&1Dp = ;. In this case, we can have the follow-

do = min{Do(07,t),

ing interior states for links 1 and 2: (&p(0~,t) =U, , andU1(0",t) = (D1(0",t), S (07, 1))
with D1(07,t) > § andS;(07,t) > S; (b)U1(0",t) =U;", andUp(0~,t) = (Do(0~,t), S(07,t))
with Dg(0~,t) > Do andS(0~,t) > Do.

(3) When all the three terms on the right hand-sidé of (25aéqe, we haveDg = 5 = % = Qo.
From Corollary 3.4, we havel;” = (Dg,Cp), andUp(0™,t) = (Dg(0™,t),S(07,t)) with
S(07,t) > Dg; U;” = (Cq,S1), andU1(0T,t) = (D1(0",t),S1(0%,t)) with D1(07,t) >
andU;” = (C3,S), andU,(07,t) = (D2(0%,t),S$(07,t)) with D»(0,t) > S. In this case,
atleast one oflp(0,t) =Ug, U1(0*,t) =U;", andU,(0*,t) = U, should be satisfied, and
the other can b&y(0~,t) = (Do(07,t),S(07,t)) with Dg(0,t) > Do andS(0~,t) > Do,
U1(07,t) = (D1(07,1),S$(07,t)) with D;1(07,t) > S and S (0*,t) > S, or Ux(07,t) =
(D2(07,t),$(07,1)) with D2(07,t) > S and$(07,t) > S,.

Appendix B: Proof of Theorem(4.2

Proof. From traffic conservation equations in {15), admissibladitions of stationary states,
and the global FIFO principlé_(14), we hage= &qo < § andgp < Dg. Thus, we haveyy <
min{Do, 3 = ?;}

We first prove thaty is given by [25). Otherwisey < mln{Do, } which leads tajg < Do
andg = &qo < S§. From Corollary 3.4, we havdg(0~,t) =U, = (Co,qo) andU;(0",t) = Uﬁ =
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(0i,Gi). Then from [[26) we have; = min{¢;(0~,1)Co,Ci} < § < §. Thusq = &(0,1)Co, and
0o = 01 + g2 = Cp, which contradictg)y < Dg < Cp.

We consider the following cases.

(1) When only one of the three terms on the right hand-sidé?Bj équalsqo, we have (i)
Do=0qo < min{%, %}, (ii) % = go < min{ D, %}, or (ii) % = go < min{Do, %}. Here we
only show the solutions of stationary and interior stategijand (ii), and solutions for (jii)

can be obtained in a similar fashion.

(i) When min% > Dg = (o, from (28) we havejg = Do, andg; = &qo < S. From Corol-
lary[3.4, we havé); = (Do, Cp), Uo(0~,t) = (Do(07,t),So(07, 1)) with S(0~,t) > Do,
andU;(0*,t) =U;" = (&qo,Gi). Then from [26) we have

g = min{&(0™,t)Do(07,t),Ci} = &(07,t)Do(07,t) < Gi.

Then we haveyy = Do(0~,t) = Do, andUg(0~,t) = U, = (Dg,Cp). Further we have
& (07,t) = ¢. In this case, the upstream and downstream interior steegh@same as

the corresponding stationary states.

(i) When 2 < min{Do, }, from (28) we haveyp = 2 < Do, (o = S, th = £ < Su.
From Corollary(3#, we havldy(0~,t) = U, = (Co,%), U) = (C, %), Ux(0T,t) =
(D2(07,t),S(0",t)) with D2(0%,t) > S, andU1 (07, t) =U " = (%sz,cl). Then from
(28) we have

g2 = min{62(0_7t>C0752(0+7t)}7
gr = min{é1(07,1)Co,C1} = &1(07,1)Co < Cy.

Thus we have

LS

El(o_,t) 62—00’

(35)
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(@)

3)

and
do = min{Co,S(0",t) +&(0,t)Co} = S(07,t) + £1(0™,t)Co < Co.

Thus,gz = $(0%,t) = S, andUz(07,t) =U, = (C2, ).

When two of the three terms on the right hand-sidé of (2bpésqgg, we have (i)Dg = Sl =
Oo < % (i) Do = E =Qo < Sl , or (|||) Sl = 5 = (o < Dg. Here we only show the solutlons
for (i), and solutions for (i) and (iif) can be obtained iniandar fashion. WherDgy = % <
%, from Corollary(3.4, we havel, = (Dg,Cp), andUg(0~,t) = (Do(07,t),S(07,t)) with
S(07,t) > Dg; Uy = (C1,S1), andU;(07,t) = (D1(0™,t),S1(07,t)) with D1(0T,t) > S;;

andUy(0%,t) =U," = (02,Cy). Then from [25) we have

. = min{&1 (0 ,t)Dp(0,t),S (07 1)},

d2 = min{&2(07,t)Do(07,1),Ca} = &2(07,t)Do(0,t) < Co.

Thus Do(0,t) = Dg or §(07,t) = &1Dp = S;. In this case, we can have the follow-
ing interior states for links 1 and 2: (&)o(0~,t) =U,, &(07,t) = &, andUy(0",t) =
(D1(07%,1),S1(0%,t)) with D1 (0%,t) > S andS (07, t) > Sp; (D) U1 (0, 1) =U;", &(07,t) =
&2D0/Do(07,t), andUp(0~,t) = (Do(0~,t), S(0,t)) with Do(0~,t) > Do andS(0~,t) >
Do.

When all the three terms on the right hand-sidé of (25asm4, we haveDg = E =qo.
From Corollary 3.4, we havel; = (Do,Cp), andUp(0~,t) = (Do(0~,t),S(0~ )) with
$(07,t) > Do; Uj" = (C1,S1), andU(0*,t) = (D1(0%,1), $i(0%,t)) with D1(0%,t) >

andU,” = (C2,%), andU,(07,t) = (D2(0%,t), S(07,t)) with D»(0*,t) > S. In this case,
atleast one oflp(0,t) =Ug, U1(0",t) = U, , andU,(0*,t) = U, should be satisfied, and
the other can b&y(0~,t) = (Do(0~,t),S(07,t)) with Do(0~,t) > Do andSy(0~,t) > Do,
U1(0",t) = (D1(0",t),S1(0",t)) with D1(0",t) > S and $(01,t) > S, or Up(0F,t) =
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(D2(07,1),S(07,t)) with D2(01,t) > S, andS(07,t) > S,. Here&i(0,t) can be deter-

mined once the interior states are determined.

Appendix C: Proof of Theorem[5.1

Proof. From traffic conservation equations in {15) and admisgibladitions of stationary states,

we can see that

go < Min{S; + S, Do}-

We first demonstrate that it is not possible that min{S; + S, Do} < min{C; +C,Co}. Other-
wise, from [17) and{19) we hat& (0~ ,t) =Ug = (Co, qo) With go < Do; Sinceq(U;") +q(U, ) =
0o < S1+ S, then we have(U;") < § for at least one downstream link, e.gi,< S;. From [16)

and [I8) we have);(07,t) =U;" = (q1,C1). Then from the entropy condition i (27) we have

do = min{C;+$(0",t),Co},

Co

Sinceqp < Cy, from the first equation we hawg = C; + $(0",t) < Cy, and from the second

g = min{1,

equation we haveg; = Cy, which contradictg); < S;. Therefore,

01+ G2 = Go = MIN{S; + S, Do}.
That is, the diverge mod€l (27) yields the optimal fluxes foy mitial conditions.

(1) WhenS; + S < Do, we havegp = S; + S < Do. We havelg(0-,t) = Uy = (S +$,Co).
Sinceqi + 02 = S +S andg; < S, we haveg, = S, andU;" = (G;,S). From [19) we have
Ui(0*,t) = (D;j(0",t),S(0",t)) with D;j(0*,t) > §" = S. From [2T) we have

Qo = min{$(07,1) +S(0",1),Co} =S+ S < Do < Cy,

Co
oD 50 20 D=S

i = min{1,
q mln{Sl
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Thus,S(07,t) = § < §(0™,t). ThenU;(0™,t) =U;" = (C;,S). In this case, there are no

interior states on all links.

(2) WhenS; + S, = Do, we haverp = Do, andg; = §. We haveJ; = (Do,Co) andUp(0~,t) =
(Do(07,t),Do(0™,t)) with S5(0~,t) > Dy = Do, andU;" = (C;, §) andU; (0*,t) = (S(0*,t),S(0",1))
with Dj(0*,t) > §" = §. From [2T) we have

Qo = min{S;(07,t) +S(0%,t),Dp(0,t)} =S +S = Do,

Do(o_,t) B
5,070+ (070 15O D =S

We can have the following two scenarios.

g = min{l,

(2-)) If S(0F,t) +S(07,t) > Dg(07,t) =S+ S = Do < S(07,t), thenUg(0~,t) =Ugy =
(Do,Cp) and there is no interior state on link 0. Moreover, we have

S+
S1(07,1) +S(0,1)

which leads t&(0",t) < §. From the assumption th& (0" ,t) +$(0",t) > § + S,
we haveS(07,t) = S. Further we havéJ;(0",t) = U;" = (C;,S), and there are no

S(0",t) =8,

interior states on links 1 or 2.

(2-i) If Do(0~,t) > S(0*,1) + S$(0",t) = S +S = Do, S(0*,t) = §. ThusU;(0+,t) =
U = (G;,S), and there are no interior states on links 1 or 2. Moreovg(Q™,t)
satisfies3(0~,t) > Do andDg(0~,t) > Dg. Thus there can be multiple interior states

on link 0 whenDg < C.

(3,4) WhenS; +$ > Do, thengg = g1 + g2 = Dg. We haveU; = (Dg,Cp), andUp(0™,t) =
(Do(07,1),Do(07,t)) with S(07,t) > Dy = Do. For downstream links, at least one of the
stationary states is SUC. Otherwise, frém (17) we hdVe= (C,S), andgi+ o =S+ S >
Do, which is impossible. Froni_(27) we have

o = mln{sl(o+7t) +SZ(O+7t)7 D0(077t)} =Do<S+ %,

43



Do(o_,t)
S1(0+,1) + S(01)

If S1(07,t) + S$(07,t) < Do(0,t), thenS(0F,t) + $(07,t) =Dp < S+ S and g =
S(0*,t). Thisis not possible for the SUC stationary stdte=U;(0*,t) = (g, G;) with ¢ <
S < Ci. ThusDp(07,t) < S(0",t) +S(07,t), Do(0~,t) = Do < S1 + S, andUp(0,t) =

g = min{1, 1§(07,1).

U, = (Do,Co). Hence for both downstream links

A Do +
T 5005000 Y

(3) When§ > %Do (i = 1,2), stationary states on both links 1 and 2 are SUC with

U" =U;(0,t) = (q,,Ci) with g < S. Otherwise, we assume that link 1 is SUC with
U1(07,t) = Uf_ = (01,Cy) and link 2 is OC Wiﬂ'Uz+ =($,Cy). Then

Do Do
= —  — S0 t)<
2 = grson 2 Vgg

which is impossible. Fron (27), we have

C<S,

Do

- Cl-i-CZCi7

Qi
andU;(0*,t) =U;* = (g;,C)).

(4) When§ +S >SS and§ < ﬁDo (i,j =1 or 2 andi # j), we can show that
stationary states on linksandi are SUC and OC respectively wiu]+ =U;j(0",t) =
(q;,Cj) with q; < Sj, U;" = (Ci,S), andS(0",t) > S. Otherwisel;(0",t) =U;* =
(0,Ci) with g < S, and

Do G
= > Do >
R N IR NN

which is impossible. Since at least one of the downstreaks liras SUC stationary
state, the stationary states on linksd j are OC and SUC respectively. From{(27), we
have a unique interior state on linkdJ; (0" t) = (Ci,DOS—_SCj), andqg; = Do —S.

For the four cases, it is straightforward to show that (2@jpak holds. [ |
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Appendix D: Proof of Theorem[5.4

Proof.

First (30) implies that
do = mln{sl(o+7t) + SZ(O+7t)7 D0(077t)}7

which can be shown for three casesSij0™,t) +S(0",t) < Do(0,t), (i) S(0T,t) > oS (0, 1),
and (iii) S;(07,t) +$(0%,t) > Do(0,t) andS(07,t) < 0iS (07, 1).

(1) WhenS +S <Dg, qo=01+ 92 < S+ S < Dg < Cp. Thus the downstream stationary
state is SOC withJ; = Ug(0™,t) = (Co,qo). In the following, we prove thagj = S, which
is consistent with[(31).

(i) Assuming thatg; < § < G;, then the stationary state on linkis SUC withU;" =
Ui(07,t) = (q;,Ci). From [30), we have

G = min{G,max{Co—S;(0%,t),aiCo}} = max{Co—S;(0"1), aiCo} < G,
q = min{Sj(0",t),max{Co—Ci,a;Co}}

We show that the two equations have no solutions for eitf@g < S; (0", t) or a;Co >

Sj(0*,t). Thusq = S.

(@) WhenaCp < Sj(07,t), we havea;Co > Co — Sj(0",t). From the first equation
we haveq; = aiCy. From the second equation we haye= S;(0",t) > a;Co
or g; = max{Cp —C;i,ajCo} > ajCo. Thusq; +qj > Co > Do, which contradicts
Jo < Do.

(b) Whena;Co > Sj(07,t), we haveniCy < Co— Sj(0",t). From the first equation we
haveq, = Co — Sj(0",t). From the second equation we haye= Sj(0*,t). Thus

gi +q;j = Co, which contradicts)y < Do.
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(2) WhenS > aiDg, Dg —Sj < aiDg. In the following we show thatjy = Dg andg; = a;Do,
which is consistent witH (31).

(i) If go < Do, then the stationary state on link 0 is SOC Witi = Ug(0~,t) = (Co, o).
Also at least one of the downstream stationary states is Sld€g, otherwisey; + g =

S+ S > Do. Here we assumid," = U;(07,t) = (q,Ci). From [30) we have

g = min{CG,max{Co—Sj(0",t),aiCo}} = max{Co—Sj(0",t),aiCo},
g; = min{S;(0",t),maxCo—Ci,a;Co}}.

We show that the two equations have no solutions for eifer S;(0",t) > oCo or

Co— Sj(0",t) < aiCp. Thusqg = Do.

(@) If Co—S;(0",t) > aiCo, Sj(0",t) < ajCo. From the first equation we hagg =
Co— Sj(0*,t). From the second equation we haye= S;(0",t). Thusqg +q; =
Co, which contradictglg < Do < Cp.

(b) If Co—Sj(07,t) < aiCo, Sj(07,t) > ajCo. From the first equation we haeg =
aiCop. From the second equation we haye= S;(0",t) > ajCp or q; = max{Co —
Ci,ajCo} > ajCo. Thusq;i +qj > Co, which contradictsjg < Do < Co.

(i) If g < aiDp < S <G for anyi = 1,2, thenU;* = U;(0*,t) = (¢,Ci). From [30) we

have

g = max{Do(0",t) —S;j(0",t),aiDo(0,1)} <C;,

qj = min{Sj(0",t),max{Do(0,t) —Ci,ajDo(0",1)}}.
The first equation implies that;Do(0~,t) < a;Do; i.e., Do(0~,t) < Do. In addition,
Do(0,t) — S;(0*,t) < aiDg. Thus,Do(0~,t) —Ci < Do —Ci < Do — aiDg = a;Do,
and maxDo(0~,t) —Cj,ajDo(07,t)} < ajDg. From the second equation we have

gj < ajDg. Thusq; +qj < Do, which contradicts) + qj = Dg. Thusg; > ajDq for
i =1,2. Sinceq + qj = Do, gi = aiDo.
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(3) When§ +Sj > Dg andS < aiDg for i, j =1 or 2 and # j. In the following we show that
go = Dg andqg; = S, which is consistent with_(31).

(i) If go < Do, then the stationary state on link 0 is SOC Witi = Ug(0~,t) = (Co, o).
We first prove that at least one downstream stationary &8&C and then that none

of the downstream stationary states can be SUC. Therajfpre Do.

(&) If none of the downstream stationary states are SUC,ghermp, =S+ S > Dy,

which contradictg)p < Dg. Thus, at least one of the downstream stationary states
is SUC.

(b) Assuming that; < S, thenU;” =U;(0%,t) = (q;,Ci). From [30) we have
g = min{G,max{Co—Sj(0",t),aiCo}} = max{Co— Sj(0",t),aiCo} < S,

which is not possible, sincg < aiDg. Thusqg = S.

(c) Assumingthat]j < Sj, thenUJ-+ =U;(0%,t)=(q;,Cj). Sincego=min{S(0",t)+
Cj,Co} < Do, we haveqp = S§(0",t) +Cj < Dg. From [30) we hav&§ = g <
S(0*,t). ThusS +S; < S(0*,t) +Cj < Do, which contradicts + Sj > Do.

(i) If g < S, thenU;" =U;(0*,t) = (¢;,Ci). From [30), we have

g = max{Do(0,t)—Sj(0",t),aiDo(07,t)} < S < aiDo,
qj = min{Sj(0",t),max{Do(0~,t) —Ci,ajDo(0",t)}}.
From the first equation we have thay(0~,t) < Dg. We show that the two equa-
tions have no solutions for eith&g(0~,t) — Sj(0",t) > aiDg(0~,t) or Dg(0~,t) —
Sj(0",t) < aiDo(0~,t). Thereforeq = §.
(@) WhenDo(0—,t) —S;(0*,t) > aiDo(0™,t), we haveSj(0*,t) < a;jDo(0,t). Thus
q = Do(0,t) — S;(07,t) andqgj = Sj(0*,t). Theng; +qj = Do(0~,t) < Do,

which contradicts) + qj = Do.
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(b) WhenDg(0~,t)—S;j(0",t) < aiDo(0~,t), we havey; = aiDo(0~,t) andDo(0~,t) —
Ci <Do(07,t)—qg = ajDo(07,t). Thusgj < ajDo(07,t), andg +q; < Dgo(07,t) <

Do, which contradictg)y = Do.
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