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Università della Svizzera italiana, Lugano, Switzerland
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The use of high-dimensional data for targeted therapeutic interventions re-
quires new ways to characterize the heterogeneity observed across subgroups
of a specific population. In particular, models for partially exchangeable
data are needed for inference on nested datasets, where the observations are
assumed to be organized in different units and some sharing of information
is required to learn distinctive features of the units. In this manuscript, we
propose a nested Common Atoms Model (CAM) that is particularly suited
for the analysis of nested datasets where the distributions of the units are
expected to differ only over a small fraction of the observations sampled
from each unit. The proposed CAM allows a two-layered clustering at the
distributional and observational level and is amenable to scalable posterior
inference through the use of a computationally efficient nested slice-sampler
algorithm. We further discuss how to extend the proposed modeling frame-
work to handle discrete measurements, and we conduct posterior inference
on a real microbiome dataset from a diet swap study to investigate how the
alterations in intestinal microbiota composition are associated with different
eating habits. We further investigate the performance of our model in captur-
ing true distributional structures in the population by means of a simulation
study.

Keywords: Common Atoms Model, Microbiome Abundance Analysis, Nested Dataset,
Nested Dirichlet Process, Partially Exchangeable Data
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1. Introduction

The use of high-dimensional data for targeted therapeutic interventions requires new

ways to characterize the heterogeneity observed across subgroups of a specific popula-

tion. In particular, models for partially exchangeable data are needed for inference on

nested datasets, where the observations are assumed to be organized in different, though

related, units. The borrowing of strength across units induced by these probabilistic

structures is tailored to several applied problems. Here we deal with a microbiome

dataset made up of count measurements for 38 subjects (units) from both the U.S.A.

and rural Africa, and the interest is to describe the different patterns of microbial diver-

sity observed across the individuals since those patterns could inform future nutritional

interventions. The description of microbial diversity requires investigating the structure,

concentration, and richness of microbiota in each subject and how the distributions of

microbiota abundances vary across subgroups of subjects. As the groups are typically

unknown, they need to be estimated from the data.

A few approaches have been proposed in the literature for clustering distributional

features directly. For example, Irpino and Verde (2015) have recently proposed clustering

methods in symbolic statistics, by employing the Wasserstein distance on histograms

treated as units. Similarly, Batagelj et al. (2015) have proposed generalized leaders

and Wards hierarchical methods to cluster modal valued symbolic data. These are

exploratory tools, which extend usual multivariate clustering methods to the analysis of

(empirical) probability distributions, but they do not allow for a probabilistic assessment

of cluster uncertainty.

The Nested Dirichlet process (nDP, Rodŕıguez et al., 2008) and its extensions have

been widely employed to identify distributional groups in Bayesian nonparametric model-

based approaches. For example, Rodriguez and Dunson (2014) have proposed a general-

ization of the nDP for functional data analysis; Graziani et al. (2015) have investigated

how the distribution of the changes of a targeted biomarker varies due to treatment

and whether it is associated with a clinical outcome; Zuanetti et al. (2018) have dis-

cussed a marginal nDP for clustering genes related to DNA mismatch repair via the
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distribution of gene-gene interactions with other genes. The nDP leads to a two-layered

clustering: first, it allows grouping together similar units (distributional clustering), and

then, within each distributional cluster, it clusters similar observations (observational

clustering). However, Camerlenghi et al. (2019a) have recently proved that the inference

obtained using the nDP may be affected by a degeneracy property: if two distributions

share even only one atom in their support, the two distributions are automatically as-

signed to the same cluster. To overcome this drawback, Camerlenghi et al. (2019a)

propose a class of latent nested processes, which relies on estimating a latent mixture of

shared and idiosyncratic processes across the subgroups. However, the computational

burden of the resulting sampling scheme becomes demanding when the number of units

increases.

The degeneracy of the nDP is particularly problematic when analyzing high-dimensional

data in genomics and microbiome studies. Here, the distribution profiles of sequencing

data are expected to be quite similar across individuals and to vary only for a small

fraction of differentially abundant sequences, which directly intervene to regulate the

biological processes and their dysfunctions. Figure 1 reports a snapshot of the observed

microbial distributions for two representative individuals from the dataset we analyze in

Section 4. In addition to the typical skewness and zero-inflation of microbial distribu-

tions, we note that the two distributions considerably overlap, and they are quite similar

except for the presence of a small set of sequences which appear with high frequency. In

those applications, the nDP may provide unreliable inferences when comparing distri-

butional patterns across individuals.

In this paper, we propose a nested Common Atoms Model (CAM) that is particularly

suited for the analysis of nested data sets, where the distributions of the units are ex-

pected to differ only over a small fraction of the observations. Although our proposal

could be described as a constrained modification of the nDP, where atoms are allowed to

be shared across all subgroups, the CAM i) does not suffer from the degeneracy issue of

the nDP, and ii) allows scalable inference with high-dimensional data. Furthermore, in

the nDP, unit-level measurements can be clustered together only within units that are
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assigned to the same group. Thus, while the within-group clustering still contributes to

a compact representation of the data, unit-level inference across subgroups is precluded.

Instead, the proposed CAM framework naturally allows unit-level inference and clus-

tering of observations across groups, since the structure of the common atoms allows

mapping group-specific distributional patterns to a shared support. Compared to the

proposal of Camerlenghi et al. (2019a), the proposed CAM is computationally more effi-

cient, as it allows to conduct inference on a larger number of observations and population

subgroups. To this purpose, we develop a novel nested slice sampler algorithm (Kalli

et al., 2011), which allows to target the true posterior distribution, without employ-

ing the standard truncation-based approximation, which is typically used for posterior

inference with nDP models.

In the microbiome literature, ad-hoc solutions are sometimes adopted to address the

challenges put forward by the analysis of microbiome data. For example, when dealing

with the excess of zero counts, some authors simply add a small number (e.g. 1) to each

count, thus generating “pseudo counts”. Here, we embed the proposed CAM framework

within a rounded mixture of Gaussian (RGM) model (Canale and Dunson, 2011). In

this way, we effortlessly obtain a BNP nested model for count data that can naturally

handle the sparsity and the zero-inflation typical of microbiome abundance tables. The

resulting discrete CAM allows to cluster rows of an abundance table according to their

distributional characteristics, providing a partition of patients with similar microbiome

distribution. For example, the proposed CAM assigns the two subjects of Figure 1 to

two different population subgroups with high probability.

The remainder of the article is as follows. In Section 2 we introduce our model for

continuous measurements, and we discuss its properties. In Section 2.3 we discuss how to

adapt the model to count data. In Section 3, we face posterior inference and outline the

nested version of the slice sampler. Section 4 applies our model to a publicly available

microbiome dataset in a diet swap study. Section 5 presents a simulation study to

assess the clustering behavior of the model as the number of observations and groups

grow in different scenarios. Section 6 summarizes our contributions and discusses some
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Figure 1: Histograms of the microbiome populations of two subjects in the study of

O’Keefe et al. (2015). The distributions of the two units appear very similar

and extremely skewed.

future directions. We defer proofs, additional algorithms, and simulation studies to the

Supplementary Material.

2. Common Atoms Model for Continuous Measurements

We consider a nested dataset, where we are provided with continuous measurements

yj = (y1,j , . . . , ynj ,j) observed over J experimental units. We assume that each obser-

vation yi,j , i = 1, . . . , nj and j = 1, . . . , J , takes values in a suitable Polish space X

endowed with the respective Borel σ-field X . Similarly as in the nDP (Rodŕıguez et al.,

2008), our goal is to achieve a partition of the vectors y1, . . . ,yJ into a few, say K ≤ J ,

distributional clusters. However, Camerlenghi et al. (2019a) have shown that the par-

tially exchangeable partition probability function of the nDP implies that distributions

collapse into a common cluster when they share even only one atom. This unappealing

behavior can be avoided if the prior explicitly models the commonality of atoms between

groups. Here, we propose a Common Atoms Model (CAM) such that distributions be-

longing to different clusters are characterized by specific weights assigned to a common
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set of atoms. In this section, we define the model and investigate its properties for

analyzing high-dimensional data. More specifically, let Gj , as j = 1, . . . , J , denote the

distribution of the j-th experimental unit, so that

(yi1,1, . . . , yiJ ,J)|G1, . . . , GJ
ind.∼ G1 × · · · ×GJ , (i1, . . . , iJ) ∈ NJ . (1)

Then, similarly as in the nDP formulation, we assume that the Gj ’s are a sample from

an almost surely discrete distribution Q over the space of probability distributions on

X , namely

G1, . . . , GJ |Q
i.i.d.∼ Q, Q =

∑
k≥1

πk δG∗k . (2)

where G∗k =
∑

l≥1, ωl,k δθl , k ≥ 1, and the common atoms θ1, θ2, . . . are drawn from a non-

atomic base measure H on (X,X ). We further assume the Griffiths-Engen-McCloskey

(GEM) distribution for the weights, which characterizes the stick-breaking (or Sethu-

raman’s) construction of the Dirichlet process (Sethuraman, 1994), i.e. we consider

Vk ∼ Beta(1, α), k ≥ 1, and then set π1 = V1, and πk = Vk
∏k−1
r=1(1 − Vr), k > 1,

indicated as π = {πk}k≥1 ∼ GEM(α). Similarly, ωk = {ωl,k}l≥1 ∼ GEM(β) for all

k ≥ 1.

The distribution defining G∗k can be seen as a single-atom dependent DP as defined

in Barrientos et al. (2012, Definition 3), indexed by a categorical covariate with sup-

port on N. Hatjispyros et al. (2016) have previously investigated the use of a common

atoms structure to model pairwise-dependent Dirichlet processes across m known sub-

populations. Our CAM similarly employs common atoms to induce dependence across

the G∗k’s, but further allows clustering of distributional units, leading to a new model of

nested random probability measures. Due to the commonality of the atoms at the unit

level, our construction is also reminiscent of the Hierarchical Dirichlet process (HDP) by

Teh et al. (2006). However, there are crucial differences between the two constructions.

More specifically, the HDP does allow a flexible representation of each unit-level distri-

bution Gj , j = 1, . . . , J , but does not induce distributional clusters among the units.

Our formulation preserves a two-layered clustering structure, across units (distributional

clustering) and between observations (observational clustering). Thus, the proposed
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CAM is closer in spirit to recently developed hierarchical topic models, where an HDP

is adopted as a base measure of an (outer) DP, in symbols Q ∼ DP (α,HDP (β,H))

(Paisley et al., 2015; Tekumalla et al., 2015). However, those nested HDP formulations

aim at describing topic distributions which can be obtained as mixtures of separate

topics (i.e. a document may contain words typical of both medicine and sports news),

whereas our objective is to cluster individual distributions and the observations wherein

(a patient-specific distribution is not obtained as a mixture of other patients’ distribu-

tions). Hence, our proposal closely mimics the intended purpose of the original nDP

model. Finally, we mention an alternative semi–parametric model recently developed by

Beraha et al. (2020) that also avoids the degeneracy issue of the nDP and allows for dis-

tributional clustering by extending the hierarchical Dirichlet process of Teh et al. (2006).

With respect to the work by Beraha et al. (2020), our proposal is fully nonparametric,

yet computationally efficient, and it easily accommodates extensions to the clustering of

count data.

2.1. Partition structure and correlation

In the following, we investigate some important properties of the proposed CAM in

terms of partition structure and correlation across groups. In particular, we show how

the model does not suffer from the theoretical degeneracy of the nDP. We also discuss

the implied dependence between pairs of observations and distributions.

The discreteness of the random probability measures in our model (1)–(2) induces ties

at the observational level, whose corresponding partition can be described via the so-

called partially Exchangeable Partition Probability Function (pEPPF) (see, e.g., Camer-

lenghi et al. (2019b) and references therein). For notational simplicity, we illustrate the

main results by focusing on J = 2, but our strategy easily extends to the general case.

We further assume that there are s > 0 distinct values out of a sample y1, . . . ,yJ , which

will be denoted by y∗1, . . . , y
∗
s , with corresponding frequencies nj = (n1,j , · · · , ns,j), where

ni,j indicates the number of times that the i-th distinct value y∗i has been observed out

of the initial sample in unit j. We denote by PX the space of all random probability
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measures on X. Our first result characterizes the mixed moments of the random proba-

bility measures G1 and G2 as a convex combination of the fully exchangeable case and a

situation of independence across samples (see also Proposition 2 in Camerlenghi et al.,

2019a).

Proposition 1. Let f1 and f2 be two measurable functions defined on PX and taking

values in R+, then

E

[∫
P2
X

f1(g1)f2(g2)Q(dg1)Q(dg2)

]
= q1E[f1(G∗1)f2(G∗1)] + (1− q1)E[f1(G∗1)f2(G∗2)] (3)

where we have set q1 := P(G1 = G2).

Following Camerlenghi et al. (2019b), we formally define the pEPPF as the probability

of the observed allocation {n1, . . . ,nJ} of s > 0 distinct observations out of the available

sample, i.e.

Π
(s)
N (n1, . . . ,nJ) := E

∫
Xs

J∏
j=1

s∏
i=1

G
ni,j
j (dy∗i ), (4)

with N =
∑J

j=1 nj . We point out that the i-th distinct value is shared by any two units

j and κ if and only if ni,j ni,κ ≥ 1. If J = 1 one obtains the usual exchangeable partition

probability function (EPPF) for an individual sample, defined by (Pitman, 1995), and

denoted here as Φ
(s)
nj (nj). In the case of the Dirichlet process, this coincides with the

well–known Ewens sampling formula, Φ
(s)
nj (nj) = αsΓ(α)

Γ(α+nj)

∏s
i=1(ni,j − 1)! (Ewens, 1972).

The pEPPF for the CAM is described by the following theorem, for the case J = 2.

Theorem 1. Let y1 and y2 be samples from J = 2 experimental units under the CAM

(1)–(2). Then, the induced random partition of s > 0 distinct observations may be

expressed as

Π
(s)
N (n1,n2) = q1Φ

(s)
n1+n2

(n1 + n2) + (1− q1)

∫
Xs

E
2∏
j=1

s∏
i=1

(G∗j )
ni,j (dy∗i ). (5)

Although a closed form expression is not available, due to the presence of the integral

over Xs on the right hand side, the result is fundamental to show that the proposed CAM

does not reduce to the fully exchangeable case in the presence of common observations

across the two samples. Indeed, we can prove the following:
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Proposition 2. Assume that two samples y1 and y2 share s0 > 0 distinct observations,

then ∫
Xs

E
2∏
j=1

s∏
i=1

(G∗j )
ni,j (dy∗i ) > 0.

Theorem 1 and Proposition 2 clarify that the pEPPF (5) of our proposal does not

reduce to the EPPF of the full exchangeable model. The proofs of the previous results

are deferred to the Supplementary Material, where we also provide an explicit expression

for the integral in (5) (see Equation (24)).

Of course, ties among distributions at the outer level are still possible in view of the

discreteness of Q in (2). Indeed, if j 6= j′ we have

P
(
Gj = Gj′ |Q

)
=
∑
k≥1

π2
k > 0, and P

(
Gj = Gj′

)
=

1

1 + α
. (6)

Moreover, the probability of a tie between two data points in two separate units j and

j′, with j 6= j′, can be computed as

P
[
yi,j = yi′,j′

]
=

1

1 + α

[
1

1 + β
+ α

1

2β + 1

]
. (7)

This shows that CAM induces a two-fold clustering structure: it clusters together exper-

imental units characterized by similar distribution profiles, and it also clusters together

observations, allowing for borrowing information across the two layers. The determina-

tion of (6)–(7) is also deferred to the Supplementary Material.

We conclude this section providing an explicit expression of the correlation between Gj

and Gj′ on different Borel sets, as j 6= j′; the covariance and correlation are useful

quantities to investigate the dependence across random probability measures and their

suitability for practical applications. For any two Borel sets A,B ∈ X one has

Cov
(
Gj(A), Gj′(B)

)
= H(A ∩B)

(
q1

1 + β
+

1− q1

1 + 2β

)
−H(A)H(B)

(
q1

1 + β
+

1− q1

1 + 2β

)
,

(8)

where q1 = (1 + α)−1. In particular the correlation on the same set A equals

ρj,j′ := Corr(Gj(A), Gj′(A)) = 1− β

2β + 1

α

1 + α
. (9)
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See Section A of the Supplementary Material for the derivation of (8) and (9). It

is interesting to note that ρj,j′ ∈ (1/2, 1), due to the commonality of the atoms. In

many applications, especially in genomics, distribution profiles are expected to be quite

similar across experimental units (e.g., subjects), and to vary only for a small fraction

of the observations (e.g., genes). For the nDP, we have that Corr
(
Gj(A), Gj′(B)

)
=

(1 + α)−1 > 0, where the expression does not depend on β: this is because the nDP

assumes independence between atoms in separate distributions.

2.2. Common Atoms Mixture Model

The model defined through Equations (1)–(2) assumes a.s. discrete distributions. For

modeling continuous distributions, one could follow established literature (Ferguson,

1983; Lo, 1984) and consider a nonparametric mixture model where (1) is substituted

by

(yi1,1, . . . , yiJ ,J)| f1, . . . , fJ
ind.∼ f1 × · · · × fJ ij = 1, . . . , nj , j = 1, . . . , J

fj (·) =

∫
Θ
p(·|θ)Gj(dθ), j = 1, . . . , J,

(10)

where p(·|θ) denotes an appropriate parametric continuous kernel density, and Gj |Q
i.i.d.∼

Q as in (2). In the rest of the paper, we will adopt Gaussian kernels, i.e. we assume

p (·|θ) to be Normal and θ =
(
µ, σ2

)
is a vector of location and scale parameters.

To simplify the computational algorithm, we can introduce an alternative represen-

tation using two sequences of latent variables, S = {Sj}j≥1 and M = {Mi,j}i≥1,j≥1,

describing – respectively – the clustering process at the distributional level and the ob-

servational level i.e. Sj = k and Mi,j = l if the observation i in unit j is assigned to

the l-th observational cluster and the k-th distributional cluster. Thus we deal with the

following model:

yi,j |M,θ ∼ N
(
·|θMi,j

)
, Mi,j |S,ω ∼

∞∑
l=1

ωl,Sjδl(·),

ωk|S = ωk ∼ GEM(α), Sj |π ∼
∞∑
k=1

πkδk(·),

π ∼ GEM(β), θl ∼ π(θl), l ≥ 1,

(11)
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where we denoted with θ = {θl}l≥1. In the following, we consider a Normal-Inverse

Gamma distribution for θl =
(
µl, σ

2
l

)
∼ NIG(m0, κ0, α0, β0), i.e. µl|σ2

l ∼ N
(
m0, σ

2
l /κ0

)
and σ2

l ∼ IG (α0, β0) .

2.3. Common Atoms Model for Count Data

In Section 4, we consider an application to microbiome data, which can be represented by

abundance tables containing the observed frequency of a particular microbial sequence

in a sample - or subject (unit). Here, we describe how the CAM can be adapted to

count data, characterized by skewness and zero-inflation typically observed in micro-

biome studies. Let zi,j ∈ N be the observed count of microbial sequence i = 1, . . . , nj

in subject j = 1, . . . , J . Consequently, the vector zj =
(
z1,j , . . . , znj ,j

)
will denote the

observed microbiome abundance vector of individual j. We embed model (1)–(2) in

the rounded mixture of Gaussian framework of Canale and Dunson (2011). See also

Bandyopadhyay and Canale (2016) and Canale and Prünster (2017), where the rounded

mixture framework is compared to less flexible nonparametric mixtures of Poisson den-

sities for count data. In order to define a probability mass function for the discrete

measurements z, Canale and Dunson (2011) consider a data augmentation framework

by latent continuous variables y, such that

f (Z = j) =

∫ aj+1

aj

g (y) dy, j ∈ N

for a fixed sequence of thresholds a0 < a1 < a2 < . . . < a∞ and for some density

function g(·), such that
∫ a+∞
a0

g (y) dy = 1. Typically, the sequence of thresholds is

set as a = {aj}+∞j=0 = {−∞, 0, 1, 2, . . . ,+∞} and g(·) is a Dirichlet Process mixture

density, to ensure a flexible representation of the table of counts. We propose a novel

nested formulation, where g(·) is modeled as a CAM mixture (11). More specifically, we

consider

zi,j |yi,j ∼
+∞∑
g=0

δg(·)1[ag ,ag+1) (yi,j) , (12)

where yi,j is distributed as in (11). We will refer to this new setting as the Discrete

Common Atoms Model (DCAM).
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3. Posterior Inference

Typically, posterior samples for the nDP process have been obtained using a truncated

version of the Blocked-Gibbs Sampler (Ishwaran and James, 2001), i.e. by choosing

proper upper bounds for the infinite sums that appear in (11). Specifically, the model

representation in (11) is useful to obtain such an algorithm, which we detail in Section

B of the Supplementary Material, where we also provide useful upper bounds to control

the resulting truncation error. Here we present a novel nested version of the independent

slice-efficient algorithm (Walker, 2007; Kalli et al., 2011). Compared to truncation-based

algorithms, the proposed slice sampler has two main advantages: it allows to target

the true posterior distribution and it considerably decreases the computational time by

stochastically truncating the model at the needed number of mixture components. The

proposed slice sampling scheme can be easily extended to the nDP, and is related to the

sampling scheme in Banerjee et al. (2013), although their model is essentially different

from ours. In the following, we focus on the Common Atoms Mixture model (11), as

variations to accommodate for count data are straightforward.

Let p (yi,j |θl) denote a generic density function for the observation yi,j , conditionally

given θl, let π = {πk}k≥1 and ω = {ωl,k}l,k≥1 be the two sets of weights, one referred

to the distributional clusters, the other one referred to the observational clusters. Then,

we can write:

f (yi,j |θ,ω,π) =
∑
k≥1

πk
∑
l≥1

ωl,k p (yi,j |θl) .

As in the classic slice sampler, we augment the model introducing two sets of latent

variables controlling which components of the mixture are “active” and which can be

ignored. More specifically, we introduce uD = {uDj }Jj=1– where the D in the superscript

indicates the distributional level – and, within every unit j = 1, . . . , J , we define an

inner sets of latent variables, uOj = {uOi,j}
nj
i=1, at the level of the observations. Moreover,

we also consider the following deterministic sequences: ξD = {ξDk }k≥1 and, for every k,

ξOk = {ξOl,k}l≥1. Then the model can be rewritten as

fξD,ξO
(
yi,j , u

D
j , u

O
i,j |θ,ω,π

)
=
∑
k≥1

1{uDj <ξDk }
πk
ξDk

∑
l≥1

1{uOi,j<ξOl,k}
ωl,k

ξOl,k
p (yi,j |θl) . (13)
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Notice that if we assume ξDk = πk and ξOl,k = ωl,k, we recover the nested version of the

efficient-dependent slice sampler. By introducing two sets of latent labels that identify

the distributional (S) and observational (M) cluster in which the observation is allo-

cated, we get rid of the infinite sums in the previous equations. The complete likelihood

for the entire dataset becomes

fξD,ξO
(
y,uD,uO,M ,S|θ,ω,π

)
=

J∏
j=1

1{uDj <ξDSj }
πSj
ξDSj

nj∏
i=1

1{uOi,j<ξOMi,j ,Sj }
ωMi,j ,Sj

ξOMi,j ,Sj

p
(
yi,j |θMi,j

)
.

(14)

Let φ(·|θ) and Φ(·|θ) denote the p.d.f. and the c.d.f. of a normal random variable with

location-scale parameter θ, respectively. Then, if we assume p(yi,j |θMi,j ) = φ(yi,j |θMi,j )

we recover the CAM model listed in (10). Alternatively, to recover the DCAM model

for discrete data z as in (12), it is sufficient to adopt the mixing kernel p
(
zi,j |θMi,j

)
=

∆Φ(azi,j ; θMi,j ) = Φ
(
az+1; θMi,j

)
− Φ

(
az; θMi,j

)
, obtained by integrating out the latent

continuous variable. In a general framework, the nested slice sampler is obtained by loop-

ing over the full conditionals for T iterations, according to the pseudo-code reported in

Algorithm 1. For the DCAM, an additional step is added to update the latent continuous

variable (see Step 1 of the algorithm in the Supplementary Material). The computation

of Steps 5, 6, and 7 is feasible, as we stochastically truncate the number of mixture

components to a sufficiently high integer to ensure that the two steps can be carried

out exactly. Additional details for this procedure are reported in the Supplementary

Material.

4. Analysis of microbial distributions of African Americans and

rural Africans

We apply the proposed modeling framework to the analysis of a microbiome dataset.

Here, a primary goal is to study microbial diversity, i.e. how the distribution of microbial

units varies across subgroups of a population. Typically, summary statistics are used to
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Algorithm 1: Nested Slice-Efficient Sampler for the Common Atoms Model

for i = 1, . . . , T do

1. Sample each uDj from a uniform distribution U
(

0, ξDSj

)
.

2. Sample each uOi,j from a uniform distribution U
(

0, ξOMi,j ,Sj

)
.

3. Sample the proportions v for the SB weights independently from

vk ∼ Beta (ak, bk), where ak = 1 +
∑J

j=1 1{Sj=k} and bk = α+
∑J

j=1 1{Sj>k}.

This full conditional is obtained marginalizing uD out.

4. For each k, sample the proportions uk independently from

ul,k ∼ Beta
(
akl , b

k
l

)
, where akl = 1 +

∑N
i=1 1{Mi,j=l,Sj=k} and

bkl = β +
∑N

i=1 1{Mi,j>l, Sj=k}. This full conditional is obtained collapsing

both uD and uO.

5. Following Banerjee et al. (2013); Porteous et al. (2006), we obtain more

efficient updates trough partial collapsing, integrating over the inner level

slice variables uO. Then, we sample from

P (Sj = k| · · · ) ∝ 1{uDj <ξDk }
πk
ξDk

nj∏
i=1

ωMi,j ,k.

6. Sample the observational labels from the following full conditional

distribution:

P (Mi,j = l| · · · ) ∝ 1{uOi,j<ξOl,Sj }
ωl,Sj
ξOl,Sj

p (yi,j |θl) .

7. Sample θl from a conjugate NIG.

end
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capture characteristics of species’ distributions, e.g. α-diversity and β-diversity metrics

such as Shannon’s entropy and Bray-Curtis dissimilarity indexes, respectively (Whit-

taker, 2006). However, those metrics do not fully capture the complexity of microbiome

data, which poses distinctive statistical challenges (Mao et al., 2020). In particular, the

data are recorded as counts of the observed microbial genome sequences. The resulting

histograms are highly skewed and sparse, due to the many low- or zero- frequency counts

and to the presence of a few dominant sequences (see Figure 1). Indeed, when compared

across subjects, microbiota abundance data show a characteristic zero-inflation.

The taxonomical classification of microbial species is typically conducted based on

sequence alignments, e.g. through the use of 16S rRNA sequences: “practically identical”

sequenced tags (≥ 95% of degree of similarity) are clustered together into the same

phylotype, and referred to as an operational taxonomic unit (OTU). Thus, for each

specimen (e.g. fecal sample) obtained from a particular ecosystem (e.g. the gut), the

number of recurrences of each OTU is recorded (Jovel et al., 2016; Kaul et al., 2017).

Collecting samples from distinct individuals leads to the construction of an abundance

table, a matrix formed by the OTU counts (taxa) observed in each sample. Let Z

indicate a n × J abundance table where each entry zi,j ∈ N is the frequency of the

i-th OTU observed in the j-th subject, i = 1, . . . , n, j = 1, . . . , J , where n represents

the total number of OTUs. Thus, the vector zj = (z1,j , . . . , zn,j)
′ denotes the observed

microbiome sample of individual j.

To understand the varying composition of the microbiome in the population, we ap-

ply the DCAM model proposed in Section 2.3 to the dataset from the study of O’Keefe

et al. (2015), publicly available in the R package microbiome. The dataset contains the

OTU counts of both healthy middle-aged African Americans (AA) and rural Africans

(AF). The participants to the experiments were asked to follow their characteristic diet

– “rural” (low-fat and high-fiber) for AF and “western” (high fat and low-fiber) for AA

– for two weeks and then swap their diet regimes for other two weeks. During these two

weeks, fecal samples were regularly collected to investigate the role of fat and fiber in the

association between a specific diet and colon cancer risk. For our application, we focus

16



on the abundance table obtained at the beginning of the experiment. Once we restrict

our attention to the first time point, we find that 11 OTUs are absent across all the

individuals. Therefore, they are removed from the dataset. However, since our model

is designed to handle sparsity, we do not discard any underrepresented taxa, to avoid

potential statistical power loss (McMurdie and Holmes, 2014). Our abundance table

consists of 119 taxa measured for 38 patients. The heatmap of the data in log-scale,

stratified by nationality, is shown in Figure 7 in the Supplementary Material.

The varying sequencing depths also affect the so-called library size, i.e. the total fre-

quencies of the observed species (OTUs) in each subject sample. Let Xj =
∑n

i=1 zi,j

indicate the library size for subject j and let γj = X̄j denote the corresponding average

of the OTU frequencies. We incorporate the library sizes as a scaling factor in the latent

level of the DCAM, i.e.,

yi,j |M,µ,σ2 ∼ N
(
γj · µMi,j , γ

2
j · σ2

Mi,j

)
⇐⇒ yi,j

γj
|M,µ,σ2 ∼ N

(
µMi,j , σ

2
Mi,j

)
. (15)

Both the mean and the variance of the latent continuous random variable are decomposed

multiplicatively into the deterministic term γj that describes the depth of the sequencing,

and two stochastic terms that capture the intensity µMi,j and the uncertainty σ2
Mi,j

behind the OTU counts, respectively.

We adopt standard prior settings for all the hyperparameters (m,κ, α0, β0, aα, bα, aβ, bβ).

Following an empirical Bayes rationale, we set m and κ to be equal to the grand mean

and the inverse of the overall sample variance. According to Rodŕıguez et al. (2008),

we then set β0 = 1 and α0 = aα = bα = aβ = bβ = 3. A MCMC sample of 100,000

iterations was collected after a burn in period of the same length. Convergence of the

MCMC was assessed based on visual inspection and standard convergence diagnostics

(Plummer et al., 2006).

Distributional cluster analysis. To obtain an estimate for the distributional clus-

tering, we first compute the posterior pairwise co-clustering matrix. From this matrix,

we estimate the optimal partition by considering a decision-theoretic approach and min-

imizing the expected posterior loss under a specific loss function. We follow Wade and

Ghahramani (2018), who propose to rely on the minimization of the Variation of Infor-

17



Cluster DC-1 DC-2 DC-4

Cardinality 19 18 1

Africans 2 14 1

Americans 17 4 0

Female 11 6 0

Male 8 12 1

Figure 2: Left: pairwise posterior probability matrix of coclustering among the 38 sub-

jects. A partition of the subjects’ distributions into three clusters is obtained

after minimization of the posterior expected Variation of Information loss func-

tion. Right: Table reporting the clusters’ characteristics.

mation loss function developed by Meilúa (2007). The results are reported in Figure

2, where we also summarize the main characteristics of these distributional clusters

(DCs) in terms of cardinality, nationality, and gender. It is remarkable how the different

subpopulations of microbiome populations are captured by our model: in fact, Cluster

DC-1 contains almost all the AA subjects, while Cluster DC-2 is composed mostly of

AF. Cluster DC-3 contains only one subject, whose microbiome distribution is substan-

tially unique. The resulting DCs capture relevant distributional characteristics and the

diversity of the microbiomes. In particular, the Shannon index (Shannon, 1948) or the

Simpson index are often used to measure the α-diversity of a microbiome community,

i.e. the richness (number) and evenness (frequencies’ similarity) of the different OTUs

observed in a sample. Conditionally on the optimal configuration, we compute 9 sum-

mary statistics for each subject. The DCs capture the different levels of α-diversity

of the microbiome subpopulations. Indeed, the Shannon index and the Simpson Index

vary substantially across the groups. In detail, the distributional cluster DC-1 is char-

acterized by microbiome distributions with shorter range, lower standard deviations,

skewness, and kurtosis than DC-2. However, DC-2 also show less richness/diversity
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Figure 3: Cumulative Relative Frequency of the OTU abundances, sorted by decreasing

order. Each color represents a DC. The lower the line, the richer and more

diverse is the microbiome.

than DC-1. See Figure 11 in the Supplementary Material. Therefore, we expect that

the microbiomes clustered in DC-2 are more likely to contain a small fraction of highly

prominent OTUs. To confirm this intuition, let z(i),j represent the i-th most frequently

observed OTU in subject j. We define the cumulative relative frequency (CRF) for sub-

ject j as CRFj(i) =
∑i

l=1 z(l),j/
∑n

i=1 zi,j . Figure 3 shows the CRFs for all the subjects

colored by the DCs. The CRF curves in DC-2 tend to get very close to 1 within the first

25 most abundant OTUs, showing that the relative frequencies are dominated by few,

but highly expressed taxa. At the same time, the CRF curves in DC-1 increase with a

slower pace, meaning more heterogeneity in the microbiome subpopulations. The CRF

curve of the single subject in DC-3 increases much more slowly, indicating a peculiar mi-

crobiome, richer and more diverse than any other. We compute the median abundance

of each OTU stratified by DC. In both cluster DC-2 and cluster DC-3, the leading OTU

is the Prevotella melaninogenica. On average, it represents 60% of the observed counts

in each individual in DC-2 and the 18% in DC-3. Cluster DC-1 is more diverse: the two
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most expressed OTUs are the Bacteriodes vulgatus and the Oscillospira guillermondii

that on average represent the 15% and the 12% of the subjects’ library size, respectively.

Cluster DC-3 is also characterized by a high proportion of Faecalibacterium prausnitzii

(7%).

Observational cluster analysis. We further investigate the observational clusters

(OC) induced by DCAM. Minimizing the Variation of Information we find 8 OCs, rep-

resenting different intensities of the latent process underlying the counts. For a visual

comparison, we report in Figure 4 the boxplots of the taxa counts grouped by OC,

with the value of the median superimposed. For simplicity, we group the 8 OCs in three

macro clusters representing the abundance classes (Low, Medium, and High). Heatmaps

showing the prevalence of each OTU in every abundance class are reported in the Sup-

plementary Material.
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Figure 4: Boxplots of microbiome abundance counts stratified by observational clusters.

We can recover three macro-clusters, with Low, Medium and High level of

expression. The count median of each category is superimposed.

Finally, the distributional and observational results can be combined to discover more

informative patterns, relating OTUs and subjects. Here, we investigate the co-expression

structure among the most expressed OTUs in DC-1 and DC-2. To do so, we first
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stratify the subjects by distributional clusters (DC-1 and DC-2) and remove the OTUs

that, across all individuals, are always assigned to the Low abundance class. With

the remaining 12 OTU, we compute two pairwise co-occurrence matrices (PCMk) as

PCMk(l, g) =
∑nk

h=1 1{AC(g)=AC(l)}/nk, i.e. the percentage of times that OTU l and

OTU g have been assigned to the same abundance class (AC) across the nk individuals

assigned to DC k = 1, 2. We plot two co-occurrence networks among the selected OTUs

in Figure 5. Taxa l and g are linked if PCMk(l, g) = PCMk(g, l) > 0.5. The nodes are

colored according to the modal abundance class. Again, the Prevotella malaninogenica

and the Prevotella oralis are both highly expressed and co-occurent in DC-2, while in

DC-1 they fall in the Low abundance class and are not linked. In DC-1, highly and co-

occurent taxa are the Bacteriodes vulgatus. These results are in line with well-established

results in the literature, since subjects with a preponderance of Prevotella spp. are more

likely to consume fibers, while diets richer protein and fat diet - typical of western diets

- lead to a predominance of Bacteroides spp. (Graf et al., 2015; Preda et al., 2019).

5. Simulation study

We test the performances of the proposed methodology for continuous (CAM) and dis-

crete measurements (DCAM) within a simulation study comprised of three scenarios.

For every scenario, we generate the units containing the observations from highly over-

lapping mixture densities. We want to assess our model’s ability to recover the ground

truth by recognizing the units sampled from the same mixture density (i.e. identify

the distributional clusters – DC) and the observations generated from the same mixture

component (i.e. identify the observational clusters – OC), for increasing number of ob-

servations in each unit, nj , or for increasing number of units, J . We adopt the same

prior specification as in the case study and estimate the best partitions by minimizing

the Variation of Information given the MCMC output. We now describe the three sce-

narios:
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Figure 5: Co-expression networks among OTUs reporting a subset of most expressed

microbes for DC-1 (left panel) and DC-2 (right panel).

Scenario 1 - CAM. We define 6 different distributions of the simulated data Yh, as

Yh ∼
h∑
g=1

1

g
N(mg, 0.6), where mg ∈ {0, 5, 10, 13, 16, 20} and h = 1, . . . , 6.

From each of these distributions, we sample two units, therefore J = 12. The true

number of DCs and OCs is 6 in both cases. To assess how the model behaves with

asymmetries in the units’ sample sizes, we follow two different approaches. Case A: all

the units have the same cardinality nj = nA, where nA ∈ {25, 50, 75}. Case B: each

unit has cardinality nj proportional to the number of mixture components it contains.

Specifically, nj = nB · j for j = 1, . . . , 6 and nB ∈ {5, 10, 20}.
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Scenario 2 - CAM. Four highly overlapping mixtures are considered:

Y1 ∼ 0.75N(0, 0.6) + 0.25N(3, 0.6), Y2 ∼ 0.25N(0, 0.6) + 0.75N(3, 0.6),

Y3 ∼ 0.33N(0, 0.6) + 0.34N(−2, 0.6) + 0.33N(2, 0.6),

Y4 ∼ 0.25N(0, 0.6) + 0.25N(−2, 0.6) + 0.25N(2, 0.6) + 0.25N(10, 1).

The true number of DCs is 4 and there are 5 OCs, corresponding to the 5 different

normal distributions that constitute the mixtures. We keep the number of observation

per unit constant, equal to nj = 40 for any j. Instead, we vary the number of units

sampled from each distribution, indicated as r = 1, . . . , 6. Therefore, Jr = 4 · r, i.e. the

total number of considered units ranges from J1 = 4 to J6 = 24. In this way, we can

investigate the estimated DC structures as the total number of units increases.

Scenario 3 - DCAM. First, let δx denote a point mass placed on point x and let

Ud (q,Q) represent a Uniformly Discrete distribution over the set of integers {q, . . . , Q} ⊂

Z. We consider three different discrete mixtures, from which we sample J = 10 units:

Yg ∼
2∑
b=1

ωbδb−1 + ω3 Ud (0, Qg) with g = 1, 2, 3 and Qg ∈ {10, 50, 100},

with ωg = ng/
∑3

l=1 nl , g = 1, . . . , 3 denoting the mixture weights. We set ω1 = ω2 by

generating the n1 = 50 observations equal to zero and n2 = 50 equal to one to simulate

a case of low value inflation. We investigate the performance of the model in 6 cases,

distinguished by the number of observations assigned to the third mixture component,

i.e. n3 ∈ {10, 15, 25, 50, 75, 100}. We design this simulation study to test how DCAM

perform on distributions that are similar to typical microbiome samples, raising the

same type of challenges. The number of true DCs is fixed equal to 3. However, there

is no clear number of true OCs in this case. To assess the grouping at the level of the

observations, we assume the following sets as ground truth, mimicking the segmentation

in abundance levels of Section 4. We postulate 4 OCs, where the first set contains “low-

expressed” observations (i.e. constituted of zeros and ones). The remaining 3 groups are

obtained partitioning the support into abundance classes corresponding to the intervals

[2, 10],(11, 50] and (51, 100].
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We report an illustrtion of the mixtures distributions of each scenario in the Supplemen-

tary Material.

For each scenario, we also run a nDP mixture model for the case with the highest number

of observations. In Table 1 we assess the goodness of the estimated optimal partition by

comparing the number of detected clusters, computing the Adjusted Rand Index (ARI -

Hubert and Arabie, 1985) between the estimated optimal partition and the ground truth.

Moreover, we report the normalized Frobenius distance (Horn et al., 2013) between the

estimated posterior pairwise coclustering matrices and the true coclustering structures,

defined as follows. Given two p × p matrices A = {aij}pi,j=1 and B = {bij}pi,j=1, we

define NFD(A,B) =
∑p

i,j=1(aij − bij)2/p2. From Table 1, we can appreciate how the

model can recover the ground truth, even for small sample sizes. In particular, the NFD

between the distributional clustering structures approaches zero as the sample size in-

crease. The same holds for the ARI index, that shows how the truth is recovered by

the estimated best partition. We see how CAM misassigned a few observations in the

wrong OCs in Scenario 2. This is due to the fact that the different mixture components

are highly overlapping. Nevertheless, CAM and DCAM perform really well in Scenarios

1 and 3, respectively, where the true OC are well separated. Lastly, it is evident how

the overlap of the data impacts the estimated partitions of the nDP, both at the distri-

butional and at the observational level. In particular, when highly overlapping discrete

data are considered (Scenario 3), it collapses all the units in a single DC.

6. Discussion

We have introduced a nested nonparametric model that allows investigating distribu-

tional heterogeneity in nested data. The proposed Common Atoms Model allows a

two-layered clustering at the distributional and observational level, similarly to the nDP

of Rodŕıguez et al. (2008). By construction, our model formulation allows the sharing of

atoms with different weights across distributions, and it does not suffer from the degener-

acy properties that occurs in the nDP, as noted by Camerlenghi et al. (2019a) whenever

there is a tie between atoms. The Common Atoms Model specification is appealing and
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Scenario 1 nA = 25 nA = 50 nA = 75 nB = 5 nB = 10 nB = 20 nDP

DC-D/T 4/6 6/6 6/6 4/6 5/6 6/6 5/6

DC-ARI 0.421 1.000 1.000 0.542 0.718 1.000 0.718

DC-NFD 0.123 0.007 0.004 0.094 0.058 0.002 0.056

OC-D/T 4/6 6/6 6/6 5/6 6/6 6/6 6/6

OC-ARI 0.925 0.988 0.973 0.964 0.970 0.964 0.353

OC-NFD 0.082 0.102 0.115 0.041 0.064 0.098 0.134

Scenario 2 J1 = 4 J3 = 8 J3 = 12 J4 = 16 J5 = 20 J6 = 24 nDP

DC-D/T 3/4 4/4 5/4 5/4 4/4 4/4 4/4

DC-ARI 0.000 1.000 0.891 0.918 1.000 1.000 1.000

DC-NFD 0.081 0.003 0.022 0.019 0.003 0.008 0.001

OC-D/T 5/5 5/5 5/5 4/5 5/5 5/5 2/5

OC-ARI 0.665 0.756 0.714 0.629 0.758 0.768 0.092

OC-NFD 0.113 0.124 0.143 0.152 0.129 0.143 0.149

Scenario 3 n3 = 10 n3 = 15 n3 = 20 n3 = 50 n3 = 75 n3 = 100 nDP

DC-D/T 7/3 2/3 3/3 5/3 4/3 3/3 1/3

DC-ARI 0.115 0.366 1.000 0.695 0.826 1.000 0.000

DC-NFD 0.259 0.251 0.035 0.076 0.057 0.000 0.640

OC-D/T 4/4 4/4 5/4 3/4 4/4 6/4 10/4

OC-ARI 0.999 0.945 0.966 0.973 0.953 0.937 0.534

OC-NFD 0.722 0.238 0.414 0.454 0.338 0.151 0.740

Table 1: Distributional (DC-) and observational (OC-) clustering performance for CAM,

DCAM and nDP evaluated according the number of detected clusters over the

truth (D/T), the Adjusted Rand Index (ARI) and the normalized Frobenius

distance (NFD) between posterior pairwise coclustering matrices.
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convenient for a variety of reasons: it is simple, allows a more refined description of

distributional clusters, and it is computationally efficient thanks to the implementation

of a nested version of the independent slice-efficient sampler. We have extended the

methodology to take into account the modeling and clustering of discrete distributions,

by considering a rounded mixture of Gaussian kernels as in Canale and Dunson (2011).

We applied our methodology to a real microbiome dataset, aiming to cluster individ-

uals characterized by similar taxa distributions. Controlling for each subject’s library

size, we grouped the data minimizing the Variation of Information loss function, and

showed how the model detects clusters catching main differences among the distribu-

tions. In our application, the distributional clustering we recover distinguishes among

dietary patterns, discriminating African high fiber from Western high fats diets. The

observational clustering provides insights about the abundance levels among taxa and

helps the identification of co-expression networks. We also assess the performance of

our modeling approach through a simulation study where the data are simulated from

highly overlapping distributions.

The application of the proposed model to the real data set is limited by the type

and number of clinical and demographic covariates that are available. If additional

covariates were available, they could be used to define more complex dependencies, e.g.

by constructing dependent random measures with covariate-dependent weights as in

MacEachern (2000) (see, also Barrientos et al., 2012) or to build risk-prediction models.

Another interesting extension considers the incorporation of a time dimension and the

study of how distributional clusters vary across time. We leave these directions to

future investigation. The code employed for this paper is openly available at https:

//github.com/Fradenti/CommonAtomModel
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Supplementary Material

A. Proofs

A.1. Proof of Equation (6)

Let Gj and Gj′ , with j 6= j′, be two random probability measures as defined in (1)-(2).

Then,

P
(
Gj = Gj′ |Q

)
=
∑
k≥1

P
(
Gj = Gj′ = G∗k|Q

)
=
∑
k≥1

P
(
Gj = G∗k, Gj′ = G∗k|Q

)
=
∑
k≥1

P (Gj = G∗k|Q)P
(
Gj′ = G∗k|Q

)
=
∑
k≥1

π2
k > 0.

As a consequence we get

P
(
Gj = Gj′

)
= E

[
P
(
Gj = Gj′ |Q

)]
= E

∑
k≥1

π2
k

 =
∑
k≥1

E
[
π2
k

]
,

exploiting the stick–breaking representation of the πk’s we have

P
(
Gj = Gj′

)
=
∑
k≥1

E

[
V 2
k

k−1∏
i=1

(1− Vi)2

]
=
∑
k≥1

B(3, α)

B(1, α)

[
B(1, α+ 2)

B(1, α)

]k−1

where we denoted by B(x, y) = Γ(x)Γ(y)/Γ(x + y) the beta function. Some simple

calculations show that

P
(
Gj = Gj′

)
=

2

(1 + α)(2 + α)

∑
k≥0

[
α

α+ 2

]k
=

1

α+ 1
,

and then (6) follows.
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A.2. Proof of Equation (7)

Let yi,j |Gj ∼ Gj and yi′,j′ |Gj′ ∼ Gj′ be two observations coming from two probability

measures both sampled from Q for j 6= j′. Then,

P
[
yi,j = yi′,j′

]
= E

[
P
[
yi,j = yi′,j′ |Gj , Gj′

]]
= E

[
1

1 + α
P
[
yi,j = yi′,j′ |Gj = Gj′

]
+

α

1 + α
P
[
yi,j = yi′,j′ |Gj 6= Gj′

]]

=
1

1 + α
E

∑
r≥1

ω2
r,j

+
α

1 + α
E

∑
r≥1

ωr,jωr,j′

 . (16)

To conclude the proof we evaluate the two expected values in the last equation. As for

the first one, it is easy to observe that

E

∑
r≥1

ω2
r,j

 =
1

1 + β

using the stick-breaking representation of the weights as in Section A.1. As for the

second expected value we exploit the independence across the ωr,j ’s, for different values

of j, and we get

E

∑
r≥1

ωr,jωr,j′

 =
∑
r≥1

E [ωr,j ]E
[
ωr,j′

]
=
∑
r≥1

E [ωr,j ]
2

=
∑
r≥1

[
E [Vr]

r−1∏
i=1

E [1− Vi]

]2

=
∑
r≥1

[
1

1 + β

(
β

1 + β

)r−1
]2

=
1

2β + 1

where the last equality follows by straightforward calculations. Substituting the previous

expressions in (16) we finally obtain

P
[
yi,j = yi′,j′

]
=

1

1 + α

1

1 + β
+

α

1 + α

1

2β + 1

and Equation (7) follows.

A.3. Proof of Equations (8)–(9)

Suppose that the Gj ’s are defined on a Polish space (X,X ) and consider A,B ∈ X .

Recall that Gj , Gj′ |Q
i.i.d.∼ Q, where Q =

∑
k≥1 πkδG∗k . In the following, for the sake of
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notational simplicity and without loss of generality, we suppose that j = 1 and j′ = 2.

We now focus on the proof of (8), for this reason we first evaluate

E [G1(A)G2(B)] = E [E [G1(A) ·G2(B)|Q]]

= E

∑
k≥1

π2
kG
∗
k(A)G∗k(B) +

∑
k1 6=k2

πk1πk2G
∗
k1(A)G∗k2(B)


Since the G∗k’s are independent and identically distributed and thanks to the fact that

P [G1 = G2] = E

∑
k≥1

π2
k

 ,
we can equivalently write

E [G1(A)G2(B)] = P [G1 = G2]E [G∗1(A)G∗1(B)] + P [G1 6= G2]E [G∗1(A)G∗2(B)] .

In view of Equation (6), the previous expression boils down to the following one

E [G1(A)G2(B)] =
1

α+ 1
E [G∗1(A)G∗1(B)] +

α

α+ 1
E [G∗1(A)G∗2(B)] . (17)

We now focus on the evaluation of the two expected values in (17). The first one can be

expressed as

E [G∗1(A)G∗1(B)] =E

∑
l≥1

ωl,1δθl(A) ·
∑
l≥1

ωl,1δθl(B)


=E

∑
l≥1

ω2
l,1δθl(A ∩B)

+ E

∑
l≥1

∑
r 6=l

ωl,1ωr,1δθl(A)δθr(B)


=E

∑
l≥1

ω2
l,1

H(A ∩B) +

1−
∑
l≥1

E
[
ω2
l,1

]H(A)H(B)

=
1

β + 1
H(A ∩B) +

β

β + 1
H(A)H(B),

where we used the fact that H is the distribution of the atoms and

E

∑
l≥1

ω2
l,1

 =
1

1 + β
.
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The second expectation in (17) can be evaluated as follows:

E [G∗1(A)G∗2(B)] =E

∑
r≥1

ωr,1δθr(A) ·
∑
l≥1

ωl,2δθl(B)


=E

∑
r≥1

ωr,1ωr,2δθr(A ∩B)

+ E

∑
r 6=l

ωr,1ωl,2δθr(A)δθl(B)


=E

∑
r≥1

ωr,1ωr,2

H(A ∩B) + E

∑
r 6=l

ωr,1ωl,2

H(A)H(B).

We note that the previous equality holds true in particular when A = B = X. In that

case

1 = E [G∗1(X) ·G∗2(X)] =
∑
r≥1

E [ωr,1]E [ωr,2]H(X) +
∑
r 6=l

E [ωr,1]E [ωl,2]H(X)H(X)

which is tantamount to saying that

1−
∑
r≥1

E [ωr,1ωr,2] =
∑
r 6=l

E [ωr,1]E [ωl,2] . (18)

Coming back to the evaluation of E [G∗1(A) ·G∗2(B)], we have:

E [G∗1(A) ·G∗2(B)] =
∑
r≥1

E [ωr,1]E [ωr,2]H(A ∩B) +
∑
r 6=l

E [ωr,1]E [ωl,2]H(A)H(B)

=
∑
r≥1

{E [ωr,1]}2H(A ∩B) +

1−
∑
r≥1

{E [ωr,1]}2
H(A)H(B),

(19)

where we used (18) and the fact that ωr,1 and ωr,2 are independent and identically

distributed. It remains to evaluate the infinite series over r ≥ 1 in (19), and this issue

may be easily addressed, indeed:

∑
r≥1

{E [ωr,1]}2 =
∑
r≥1

E

Vr r−1∏
q=1

(1− Vq)


2

=
∑
r≥1

[
1

(1 + β)2

(
β

1 + β

)2(r−1)
]

=
1

2β + 1
.

Substituting the previous expression in (19), we get:

E [G∗1(A)G∗2(B)] =
1

1 + 2β
H(A ∩B) +

2β

1 + 2β
H(A)H(B).
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Putting the expressions of E [G∗1(A)G∗2(B)] and E [G∗1(A)G∗1(B)] in (17), we obtain

E [G1(A)G2(B)]

= H(A ∩B)

(
q1

1 + β
+

1− q1

1 + 2β

)
+H(A)H(B)

(
q1

β

1 + β
+ (1− q1)

2β

1 + 2β

)
,

(20)

where we recall that q1 = 1
α+1 . We can use (20) to evaluate the covariance between

Gj(A) and Gj′(A) for j 6= j′:

Cov
(
Gj(A), Gj′(B)

)
= H(A ∩B)

(
q1

1 + β
+

1− q1

1 + 2β

)
+H(A)H(B)

(
q1

β

1 + β
+ (1− q1)

2β

1 + 2β
− 1

)
= H(A ∩B)

(
q1

1 + β
+

1− q1

1 + 2β

)
+H(A)H(B)

(
− q1

1 + β
− 1− q1

1 + 2β

)
,

hence (8) is now proved.

As for the determination of the correlation (9), we first specialize (8) when A = B ∈ X ,

to get:

Cov
(
Gj(A), Gj′(A)

)
=

(
q1

1 + β
+

1− q1

1 + 2β

)
H(A)(1−H(A)), (21)

and then we divide Cov
(
Gj(A), Gj′(A)

)
by the squared roots of the variances V ar(Gj(A)

and V ar(Gj′(A). More precisely we have:

Corr
(
Gj(A), Gj′(A)

)
=

Cov
(
Gj(A), Gj′(A)

)√
V ar(Gj(A)) · V ar(Gj′(A))

(21)
=

H(A)(1−H(A))√
V ar(Gj(A)) · V ar(Gj′(A))

(
q1

1 + β
+

1− q1

1 + 2β

)
.

(22)

where the variances in the denominator may be easily evaluated as follows

V ar(Gj(A)) =E
[
Gj(A)2

]
− E [Gj(A)]2

=E
[
E
[
Gj(A)2|Q

]]
− E [Gj(A)]2 = E

[
G∗1(A)2

]
− E [G∗1(A)]2

=
1

β + 1
H(A) +

β

1 + β
H(A)2 −H(A)2

=
1

β + 1
H(A) (1−H(A)) ,
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for any j = 1, . . . , J . Putting the previous expression in (22) we get:

ρj,j′ = Corr(Gj(A), Gj′(A)) =

(
q1

β + 1
+

1− q1

2β + 1

)/
1

β + 1

= q1 +
β + 1

2β + 1
(1− q1) = 1− β

2β + 1
(1− q1)

= 1− β

2β + 1
· α

1 + α
,

and (21) is now proved. From the last expression, we finally observe that ρj,j′ is always

in between 1/2 and 1.

A.4. Proof of Proposition 1

Recalling the CAM model (1)-(2), we get

E

[∫
P2
X

f1(g1)f2(g2)Q(dg1)Q(dg2)

]

= E

∫
P2
X

f1(g1)f2(g2)
∑
k1≥1

πk1δG∗k1
(dg1)

∑
k2≥1

πk2δG∗k2
(dg2)


= E

∫
P2
X

f1(g1)f2(g2)
∑
k≥1

π2
kδG∗k(dg1)δG∗k(dg2)


+ E

∫
P2
X

f1(g1)f2(g2)
∑
k1 6=k2

πk1πk2δG∗k1
(dg1)δG∗k2

(dg2)

 .
Observe that the G∗k’s are all Dirichlet processes having the same law on the space PX,

which will be denoted by P, depending on the total mass α and the base measure H. We

also point out that the G∗k’s are not independent random elements for different values

of k, indeed they share the same random atoms (θl)l≥1, nevertheless if k1 6= k2, the

distribution of (G∗k1 , G
∗
k2

) equals the distribution of (G∗1, G
∗
2), which will be denoted by
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P[2]. Therefore, by applying the Tonelli–Fubini Theorem, we obtain

E

[∫
P2
X

f1(g1)f2(g2)Q(dg1)Q(dg2)

]

=
∑
k≥1

Eπ2
kE
∫
P2
X

f1(g1)f2(g2)δG∗k(dg1)δG∗k(dg2)

+
∑
k1 6=k2

Eπk1πk2E
∫
P2
X

f1(g1)f2(g2)δG∗k1
(dg1)δG∗k2

(dg2)

= q1

∫
P2
X

f1(g)f2(g)P(dg) + (1− q1)

∫
P2
X

f1(g1)f2(g2)P[2](dg1, dg2),

and then the thesis follows.

A.5. Proof of Theorem 1

We first evaluate the expected value in the definition of pEPPF (4), for J = 2,

E
2∏
j=1

s∏
i=1

G
ni,j
j (dy∗i ) = E

E
 2∏
j=1

s∏
i=1

G
ni,j
j (dy∗i )

∣∣∣Q


= E

∫
P2
X

2∏
j=1

s∏
i=1

g
ni,j
j (dy∗i )Q(dg1)Q(dg2)

 .
Now we apply Equation (3) to the previous integral where the functions fj , as j = 1, 2,

are defined by

fj(gj) :=

s∏
i=1

g
ni,j
j (dy∗i ),

and then we get

E
2∏
j=1

s∏
i=1

G
ni,j
j (dy∗i ) = q1E

2∏
j=1

s∏
i=1

(G∗1)ni,j (dy∗i ) + (1− q1)E
2∏
j=1

s∏
i=1

(G∗j )
ni,j (dy∗i ). (23)

We finally integrate over the space Xs to get the result, i.e. (5).

A.6. Proof of Proposition 2

Assume that the two samples y1 and y2 share s0 > 0 distinct values denoted here as

y∗1,0, . . . y
∗
s0,0

with frequencies (q1,j , . . . , qs0,j) in the j-th sample, as j = 1, 2. We further
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suppose that the j-th sample contains exactly sj distinct observations not shared with

the other one, and denoted here by y∗1,j , . . . , y
∗
sj ,j

, for j = 1, 2; besides the vector of

corresponding frequencies will be denoted as (r1,j , . . . , rsj ,j). We obviously have that

s = s0 + s1 + s2.

Using the representation of the G∗k’s in the CAM model (1)–(2), we get

E
2∏
j=1

s∏
i=1

(G∗j )
ni,j (dy∗i ) = E

2∏
j=1

s∏
i=1

∑
l≥1

ωl,jδθl(dy
∗
i )

ni,j

.

Exploiting the partition of the data described at the beginning of the proof, we obtain

E
2∏
j=1

s∏
i=1

(G∗j )
ni,j (dy∗i )

= E
2∏
j=1

sj∏
i=1

∑
l≥1

ω
ri,j
l,j δθl(dy

∗
i,j)

 s0∏
i=1

∑
l≥1

ω
qi,1
l,1 ω

qi,2
l,2 δθl(dy

∗
i,0)

+ o

 2∏
j=0

sj∏
i=1

H(dy∗i,j)


=
∑
6=

E

 2∏
j=1

sj∏
i=1

ω
ri,j
li,j ,j

s0∏
i=1

ω
qi,1
li,0,1

ω
qi,2
li,0,2

 2∏
j=0

sj∏
i=1

H(dy∗i,j) + o

 2∏
j=0

sj∏
i=1

H(dy∗i,j)

 .

where the sum
∑
6= is extended over all possible values of the distinct natural numbers

{li,j : i = 1, . . . , sj , j = 0, 1, 2}. Integrating over Xs we get that

∫
Xs

E
2∏
j=1

s∏
i=1

(G∗j )
ni,j (dy∗i ) =

∑
6=

E

 2∏
j=1

sj∏
i=1

ω
ri,j
li,j ,j

s0∏
i=1

ω
qi,1
li,0,1

ω
qi,2
li,0,2

 (24)

which is positive whenever s0 > 0.

B. Truncated Blocked Gibbs Sampler for CAM

The posterior distribution is analytically intractable, which forces us to develop sampling

algorithms to simulate from it. A Pólya Urn representation would be too expensive in

computational cost. Instead, we provide two different algorithms: a Blocked Gibbs

sampler (Ishwaran and James, 2001), mimicking the one proposed in (Rodŕıguez et al.,

2008) and a nested slice sampler (Damien et al., 1999; Walker, 2007; Kalli et al., 2011).
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Here we discuss the former one. The Truncated CAM model has the following form:

yi,j |M,θ ∼ N
(
·|θMi,j

)
, Mi,j |S,ω ∼

L∑
l=1

ωl,Sjδl(·),

ωk|S = ωk ∼ GEM(α), Sj |π ∼
K∑
k=1

πkδk(·),

π ∼ GEM(β), θl ∼ π(θl).

(25)

The Truncated version of CAM (TCAM) (25) can be extended to a Truncated version of

DCAM (TDCAM) once the likelihood is modified according to (12), In the following we

report the Gibbs Sampler for the TDCAM, the extension of the sampler to accomodate

the presence of a covariate linearly introduced. Notice that some of the conditioning

variables are collapsed (Liu, 1994), to enhance the speed of convergence and the mixing

of the chains.

B.1. TDCAM: Gibbs Sampler

Denote with V the vector containing all the variables of model (25), and let V −s be the

same vector V with the variable s removed.

The steps of the MCMC are the following:

1. The full conditional for each yi,j is Truncated Normal, with support
[
azi,j , azi,j+1

)
:

p (yi,j |V ) ∼ TN(µMi,j , σ
2
Mi,j

; azi,j , azi,j+1).

This can be easily done with the help of the R package TruncatedNormal, which

relies on a recently improved algorithm exploiting minmax tilting (Botev, 2017).

2. The full conditional for the observational cluster labels Mi,j , once the latent vari-

able y is integrated out, is a discrete distribution, given by

p
(
Mi,j = l|V −y

)
∝ ωl,Sj∆Φ

(
azi,j ;µMi,j , σ

2
Mi,j

)
,

for any i = 1, . . . , nj , j = 1, . . . , J .

35



3. The full conditional for the distributional cluster labels Sj is given by:

p
(
Sj = k|V −(y,M)

)
∝ πk

nj∏
i=1

(
L∑

m=1

ωm,k∆Φ
(
ayi,j ;µm, σ

2
m

))
,

for any j = 1, . . . , J .

4. To sample the full conditional of the weights π at the distributional level, we first

need to define m∗k as the number of groups assigned to the same distributional

cluster k, where
∑K

k=1m
∗
k = J the total number of observed groups. Then,

p (π|V ) ∝ p (S|π) p (π) ∝ p (π)π
m∗1
1 · · ·πm

∗
K

K .

Referring to the Stick Breaking representation, the full conditional of the different

sticks vk, as k = 1, . . . ,K, equals:

vk ∼ Beta

(
1 +m∗k, β +

K∑
s=k+1

m∗k

)
.

5. The derivation of the full conditional for ω is similar, even it requires more care.

We have

p (ω|V ) ∝ p (M |S,ω, ξ0) p (ω) ∝
K∏
k=1

p (ωk)

J∏
j=1

nj∏
i=1

(
L∑
l=1

ωl,Sjδl(·)

)
.

The previous formula can be decomposed into the product of K elements and we

can focus only on the case Sj = k. Let us define nl,k as the total number of

observations assigned to the distributional cluster k in the observational group l.

The full conditional has this Stick-Breaking representation for ul,k, ∀k:

ul,k ∼ Beta

(
1 + nl,k, α+

L∑
r=l+1

nr,k

)
, l = 1, . . . , L.

6. Let us define nl,· =
∑K

k=1 nl,k and

ȳl,· :=
1

nl,·

∑
i,j:Mi,j=l

yi,j .
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Exploiting the conjugacy property, we obtain the full conditional for θl =
(
µl, σ

2
l

)
:(

µl, σ
2
l

)
|V ∼ NIG (m∗0, κ

∗
0, α
∗
0, β
∗
0) .

where

m∗0 =
κ0m0 + nl,·ȳl,·
κ0 + nl,·

κ∗0 = κ0 + nl,· α∗0 = α0 + nl,·/2

and

β∗0 = β + 0.5

 ∑
ij:Mi,j=l

(yi,j − ȳl,·)2 +

(
κ0nl,·
κ0 + nl,·

)
(yl,k −m0)2

 .

7. In case the precision parameters α and β of the two DPs are assumed stochas-

tic, distributed as Gamma (aα, bα) and Gamma (aβ, bβ), we can still exploiting

conjugacy. The full conditionals distributions are:

α|V ∼Gamma

(
aα + (K − 1), bα −

K−1∑
k=1

log(1− vk)

)
,

β|V ∼Gamma

(
aβ +K · (L− 1), bβ −

L−1∑
l=1

K∑
k=1

log(1− ul,k)

)
.

Notice that we naturally set ayi,j = yi,j . As suggested in (Rodŕıguez et al., 2008), each

step of this algorithm can be parallelized, in order to gain computational speed.

B.2. Linearly incorporating a covariate in the Likelihood

If we want to linearly add regressor to the mean, we update model (25) simply assuming:

zi,j |yi,j ∼
+∞∑
g=0

δg(·)1[ag ,ag+1) (yi,j) yi,j |M,µ,σ2 ∼ N
(
µMi,j + βXj , σ

2
Mi,j

)
. (26)

We espouse such representation because of its interpretability: the latent continuous ran-

dom variable yi,j can be decomposed as yi,j = µMi,j +βXj+εi,j , where ε ∼ N
(

0, σ2
Mi,j

)
.

In other words, we model the every single latent value as the sum of an effect specific for

each observational cluster, an effect due to the regressor value of each individual multi-

plied by a overall coefficient and a completely random effect, whose entity still depends

37



on the observational cluster. This choice does not complicate the algorithm presented

in the previous section: the full conditionals 1-3 are preserved if the mean is modified

accordingly, switching from µMi,j to µMi,j + βXj . Step 6 remains the same once we

substitute yi,j with di,j = yi,j − βXj . Steps 4, 5 and 7 are not affected by this change.

Finally, if we assume β ∼ N
(
mβ,

1
κβ

)
, we can perform inference on the introduced

coefficient. Define R1 =
∑

i,j

X2
j

σ2
Mi,j

and R2 =
∑

i,j
di,j ·Xj
σ2
Mi,j

. The full conditional for β is:

β|V ∼ N
(
mβκβ +R2

κβ +R1
,

1

κβ +R1

)
.

This framework can be easily extended to accommodate for the presence of multiple

covariates.

C. Error bounds in total variation distance

In Section B we have depicted a truncated blocked Gibbs sampler, we now evaluate the

truncation error arising from these algorithms for the CAM model (Section C.1) and the

CAMM (Section C.2). The errors between the random distribution and its truncated

version will be evaluated using the total variation distance. For the reader’s convenience

we recall that if P,Q ∈ PX are probability measures defined on (X,X ), the distance in

total variation between P and Q is defined as

dTV (P,Q) = sup
A∈X
|P (A)−Q(A)|.

If P,Q are absolutely continuous w.r.t. a measure µ then it can be expressed as

dTV (P,Q) =
1

2

∫
X

∣∣∣∣dPdµ − dQ

dµ

∣∣∣∣dµ.
Moreover, if X is a discrete space or if P and Q are concentrated on a countable set

Ω ⊂ X then

dTV (P,Q) =
1

2

∑
x∈Ω

∣∣∣∣P (x)−Q(x)

∣∣∣∣.
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C.1. Truncation error in CAM

In this section we quantify the error committed when we replace the random probability

measuresGj with the corresponding truncated versions. We recall thatG1, . . . , GJ |Q
i.i.d.∼

Q, where Q has been defined in (2):

Q =
∑
k≥1

πk δG∗k , G∗k =
∑
l≥1

ωl,kδθl .

In order to formally define the truncated versions of G1, . . . , GJ , we exploit the latent

random variable ξj |Q
iid∼
∑+∞

k=1 πkδk, as j = 1, . . . , J , which identifies the mixture com-

ponent from which Gj is generated, conditionally on Q. Thus, conditionally on the value

ξj = k, the truncated random probability measures associated to each Gj are formally

defined as follows

G
(K,L)
j =


∑L

l=1 ω
(K,L)
l,k δθl if ξj ≤ K∑L

l=1 ω
(K,L)
l,K δθl if ξj > K

(27)

and

ω
(K,L)
l,k = ωl,k if l ≤ L− 1, and ω

(K,L)
L,k = 1− ω1,k − . . .− ωL−1,k

π
(K,L)
k = πk if k ≤ K − 1, and π

(K,L)
K = 1− π1 − . . .− πK−1

where K,L > 0 define the truncation levels for the different random probability mea-

sures.

Proposition 3. Let Gj |Q ∼ Q and G
(K,L)
j the truncation of Gj defined in (27), then

the expected value of the distance in total variation between them can be estimated as

follows:

E
[
dTV

(
Gj , G

(K,L)
j

)]
≤

(
1−

(
α

1 + α

)K)( β

1 + β

)L
+

(
α

1 + α

)K
, (28)

for any j = 1, . . . , J .

Proof. First of all observe that, conditioning on ξj = k, we recognize two distinct situ-

ations to upper bound the total variation distance between Gj and its truncated coun-

terpart as described below.
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1. If ξj = k ≤ K, then we have

dTV (Gj , G
(K,L)
j ) =

1

2

 L∑
l=1

|ω̃lk − ω̃
(K,L)
lk |+ |ω̃lk − ω̃

(K,L)
lk |+

∑
l≥L+1

|ω̃lk − 0|


=

1

2

|ω̃Lk − 1 + ω̃1k + . . .+ ω̃L−1k|+
∑
l≥L+1

ω̃lk


=

1

2

1−
L∑
l=1

ω̃lk +
∑
l≥L+1

ω̃lk

 =

(
1−

L∑
l=1

ω̃lk

)
.

2. If ξj > K, we use the following trivial upper bound dTV (Gj , G
(K,L)
j ) ≤ 1.

In light of the previous considerations, we are now ready to compute

E
[
dTV

(
Gj , G

(K,L)
j

)]
= E

[
E
[
dTV

(
Gj , G

(K,L)
j

)
|ξj , Q

]]
= E

[
K∑
k=1

πkE
[
dTV

(
Gj , G

(K,L)
j

)
|ξj = k,Q

]]

+ E

[
+∞∑

k=K+1

πkE
[
dTV

(
Gj , G

(K,L)
j

)
|ξj = k,Q

]]

≤ E

[
K∑
k=1

πk

(
1−

L∑
l=1

ω̃lk

)
+

+∞∑
k=K+1

πk

]

= E

[
K∑
k=1

πk

]
· E

[(
1−

L∑
l=1

ω̃lk

)]
+ E

[
+∞∑

k=K+1

πk

]

≤ E

[(
1−

L∑
l=1

ω̃lk

)]
+ E

[
1−

K∑
k=1

πl

]

=

(
1−

(
α

1 + α

)K)( β

1 + β

)L
+

(
α

1 + α

)K
where the last equality follows by straightforward calculations based on the stick–breaking

representation of the weights.

C.2. Approximation Error in Mixture Models (CAMM)

Consider J groups, each of them containing nj observations, j = 1, . . . , J . Denote by

yj =
(
y1,j , . . . , ynj ,j

)
for j = 1, . . . , J the observations from the j-th component of the
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mixture model yi,j |θi,j ∼ f(·|θi,j) with θi,j |G1, . . . , GJ ∼ Gj where the Gj ’s are generated

according to a CAM. We suppose that θi,j ∈ Θ, where Θ is a Polish space equipped with

its corresponding Borel σ–field T . We further denote by y = (y1, . . . ,yJ) the vector

containing all the observations. We would like to upper bound the distance in total

variation between the law of the data y

π (y) = E

 J∏
j=1

nj∏
i=1

∫
Θ
f (yi,j |θi,j)Gj(dθi,j)

 ,
and the law of the data π(K,L) when the random probability measures Gj ’s are replaced

with the corresponding truncated version G
(K,L)
j defined in (27), i.e.

π(K,L) (y) = E

 J∏
j=1

nj∏
i=1

∫
Θ
f (yi,j |θi,j)G(K,L)

j (dθi,j)

 .
Proposition 4. The distance in total variation between π and π(K,L) satisfies

dTV

(
π, π(K,L)

)
≤ N

[(
β

1 + β

)L
+

(
α

1 + α

)K]
, (29)

where N = n1 + · · ·+ nJ .

Proof. The distance dTV
(
π, π(K,L)

)
can be evaluated as follows:

dTV

(
π, π(K,L)

)
=

1

2

∫
XN

∣∣∣∣dπdy − dπK,L

dy

∣∣∣∣dy
=

1

2

∫
XN

∣∣∣∣E
 J∏
j=1

nj∏
i=1

∫
Θ
f (yi,j |θi,j)Gj(dθi,j)−

J∏
j=1

nj∏
i=1

∫
Θ
f (yi,j |θi,j)G(K,L)

j (dθi,j)

 ∣∣∣∣dy
=

1

2

∫
XN

∣∣∣∣E[ ∫
ΘN

J∏
j=1

nj∏
i=1

f (yi,j |θi,j)
J∏
j=1

nj∏
i=1

Gj(dθi,j)

−
∫

ΘN

J∏
j=1

nj∏
i=1

f (yi,j |θi,j)
J∏
j=1

nj∏
i=1

G
(K,L)
j (dθi,j)

]∣∣∣∣dy.
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By an application of the Tonelli-Fubini theorem and the Jensen inequality, we obtain

dTV

(
π, π(K,L)

)
=

1

2

∫
XN

∣∣∣∣ ∫
ΘN

J∏
j=1

nj∏
i=1

f (yi,j |θi,j)E

 J∏
j=1

nj∏
i=1

Gj(dθi,j)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (dθi,j)

 ∣∣∣∣dy
≤ 1

2

∫
XN

∫
ΘN

J∏
j=1

nj∏
i=1

f (yi,j |θi,j) dy
∣∣∣∣E
 J∏
j=1

nj∏
i=1

Gj(dθi,j)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (dθi,j)

 ∣∣∣∣
=

1

2

∫
ΘN

∫
XN

J∏
j=1

nj∏
i=1

f (yi,j |θi,j) dy︸ ︷︷ ︸
=1

∣∣∣∣E
 J∏
j=1

nj∏
i=1

Gj(dθi,j)


︸ ︷︷ ︸

=:m

−E

 J∏
j=1

nj∏
i=1

G
(K,L)
j (dθi,j)


︸ ︷︷ ︸

=:m(K,L)

∣∣∣∣

=
1

2

∫
ΘN

∣∣∣∣E
 J∏
j=1

nj∏
i=1

Gj(dθi,j)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (dθi,j)

 ∣∣∣∣ = dTV

(
m,m(K,L)

)

= sup
Ai,j∈T

∣∣∣∣E
 J∏
j=1

nj∏
i=1

Gj(Ai,j)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (Ai,j)

 ∣∣∣∣.
We can exchange the expected value with the supremum to get:

dTV

(
π, π(K,L)

)
≤ sup

Ai,j∈T
E

∣∣∣∣ J∏
j=1

nj∏
i=1

Gj(Ai,j)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (Ai,j)

∣∣∣∣


≤ E

 sup
Ai,j∈T

∣∣∣∣ J∏
j=1

nj∏
i=1

Gj(Ai,j)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (Ai,j)

∣∣∣∣
 .

We now apply (Billingsley, 1995, Lemma 1, pg. 358) to obtain

dTV

(
π, π(K,L)

)
≤ E

 sup
Ai,j∈T

J∑
j=1

nj∑
i=1

∣∣∣∣Gj(Ai,j)−G(K,L)
j (Ai,j)

∣∣∣∣


≤ E

 J∑
j=1

nj∑
i=1

sup
Ai,j∈T

∣∣∣∣Gj(Ai,j)−G(K,L)
j (Ai,j)

∣∣∣∣


where we recognize that supAi,j∈T

∣∣∣∣Gj(Ai,j) − G(K,L)
j (Ai,j)

∣∣∣∣ = dTV

(
Gj , G

(K,L)
j

)
. As a
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consequence, by an application of Proposition 3, we get

dTV

(
π, π(K,L)

)
≤ E

 J∑
j=1

nj∑
i=1

dTV

(
Gj , G

(K,L)
j

) =
J∑
j=1

nj∑
i=1

E
[
dTV

(
Gj , G

(K,L)
j

)]

≤ N

[(
β

1 + β

)L
+

(
α

1 + α

)K]

and the result follows.

D. Additional Details about the Nested Slice Sampler

As we mentioned, at each iteration we sample among K∗ possible distributional cluster

labels and L∗∗ = max{L∗1, . . . , L∗K∗} possible observational labels. If ξDk = πk and

ξOl,k = ωl,k, the values are the lowest integers that ensure, respectively, that

K∗∑
k=1

πk ≥ 1− min
j∈{1,...,J}

uDj and

L∗k∑
l=1

ωl,k ≥ 1− min
i∈{1,...,nj}

uOi,j ∀k = 1, . . . ,K∗. (30)

Instead of relying on the efficient-dependent version, according to Kalli et al. (2011);

Hong and Martin (2017), we adopt the following geometric deterministic sequences:

ξDk = (1− κD)κk−1
D , and ξOl,k = ξOl = (1− κO)κl−1

O . In this case, it is sufficient to focus

only on one observational deterministic sequence, being ξOk the same for every k. Thus,

putting uDmin = minj u
D
j and uOmin = mini,j u

O
i,j , we can compute the two thresholds at

each MCMC sweep:

K∗ =

⌊
log
(
uDmin

)
− log (1− κD)

log (κD)

⌋
, L∗ =

⌊
log
(
uOmin

)
− log (1− κO)

log (κO)

⌋
.

If the precision parameters α and β of the two DPs are assumed stochastic and conjugate

Gamma distributions are adopted, the full conditionals can be sampled following the

procedure proposed in Walker (2007); Escobar and West (1995): denote with c∗ the

number of unique values sampled and with n the number of observations (n = J when

the Outer DP is considered, otherwise n =
∑J

j=1 nj ). Then the precision parameter of

the DP γ (γ = α when Outer DP, γ = β otherwise), for both the DPs, can be sampled
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in two stage, introducing another latent variable η: (a) sample η|γ, c∗ ∼ Beta (γ + 1, n)

and (b) sample a new γ from the mixture

γ ∼ πηG(a+ k, b− log(η)) + (1− πη)G (a+ k − 1, b− log(η))

where πη = πη/ (1− πη) = (a+ k − 1)/{n(b− log(η)}.

The exploration of the space of cluster membership labels is a delicate task. Differently

from the marginal specification, where simulation methods are devised in a way that the

resulting Markov Chain explores the space of the partitions as equivalence classes over

cluster values, a conditional/stick-breaking specification operates on the space of the

explicit cluster labels (Porteous et al., 2006). In this second scenario, it could happen

that the chain exploring the cluster membership shows poor mixing, being stuck in one

of the local maxima of the posterior. To overcome this issue, the label switching moves

described in (Papaspiliopoulos and Roberts, 2008; Hastie et al., 2015) can be added to

our setup to improve the mixing.

E. Additional Plots

E.1. Densities of the three scenarios considered in the simulation study
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Figure 6: The densities distributions of each unit in three scenarios considered.

E.2. Additional plots for the microbiome application

Visual description of the dataset Percentage of abundance classes per OTU
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Figure 7: Heatmap of the considered abundance table. The OTUs (at the Genus level)

are reported by row, while the columns indicate the subjects, divided by na-

tionality. The count data are transformed as log(Z + 1).
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Figure 8: Distribution of the three estimated abundance classes - Part I
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Figure 9: Distribution of the three estimated abundance classes - Part II
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Figure 10: Distribution of the three estimated abundance classes - Part III
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Boxplots of the distributional characteristics across DCs
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Figure 11: Boxplots representing how mean, median, range, standard deviation, skew-

ness, kurtosis, % of zeros, Shannon index, and Simpson index of each micro-

biome are distributed across the DCs. The plots highlight different distribu-

tional differences among the three DCs.

48



References

Dipankar Bandyopadhyay and Antonio Canale. Non-parametric spatial models for clus-

tered ordered periodontal data. Journal of the Royal Statistical Society. Series C:

Applied Statistics, 65(4):619–640, 2016. ISSN 14679876. doi: 10.1111/rssc.12150.

Anjishnu Banerjee, Jared Murray, and David B Dunson. Bayesian Learning of Joint

Distributions of Objects. Proceedings of the Sixteenth International Conference on

Artificial Intelligence and Statistics, 31(Mdm):1–9, 2013. ISSN 15337928. doi: 10.

1121/1.4785361.

Andrés F Barrientos, Alejandro Jara, and Fernando A Quintana. On the Support of

MacEachern’s Dependent Dirichlet Processes and Extensions. Bayesian Analysis, 7

(2):277–310, 2012. doi: 10.1214/12-BA709.
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