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ABSTRACT OF THE THESIS

An Examination of the Relationship Between the Temporal and Spatial Organization of a
Student’s Handwritten Statics Solution and Its Correctness

by

Timothy Scott Van Arsdale

Master of Science, Graduate Program in Mechanical Engineering
University of California, Riverside, September 2012

Dr. Thomas Stahovich, Chairperson

The purpose of this project is to understand how the organization of a student’s solution

to a problem relates to the correctness of that work. Understanding this relationship will

enable software to provide early warnings and targeted feedback to students who are strug-

gling in a course. In this study, students in an undergraduate statics course completed their

work, including homework, quizzes, and exams, using LivescribeTM Smartpens. These

devices record the handwritten solutions as time-stamped pen strokes, enabling the exam-

ination of not only the final ink on the page, but also the order in which it was written.

This unique database of student work was used to examine how the history of the solution

construction process correlates with the correctness of the work. Solution histories were

characterized by a number of quantitative features describing the temporal and spatial or-

ganization of the work. For example, some features describe the order in which various

problem-solving activities, such as the construction of free body diagrams and equilibrium

equations, are performed and others describe the amount of time spent on each activity. The
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spatial organization of the work is characterized by the extent to which a student revisits

earlier parts of a solution to revise his/her work. Cross-validated regression models were

constructed using the relaxed lasso method to determine the correlation between these fea-

tures and student performance. On average, the models explained 43% of the variance in

performance. This is a surprising result in that the features do not actually consider the se-

mantic content of the writing. The relaxed lasso method also identified which features were

most predictive of problem correctness, thus giving insights into which student behaviors

are indicative of high or low performance. For example, revising work long after it was

written indicates low performance. While our work has focused on engineering statics, we

expect that these techniques will generalize to other domains for which problem solutions

include both diagrams and equations.
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Chapter 1. Introduction 

1.1 Motivation 

The high enrollment in many undergraduate engineering courses often makes 

manually grading every homework assignment prohibitively time consuming for 

instructors.  However, when instructors do not grade homework assignments, students 

may not have sufficient incentive to complete their homework assignments diligently.  As 

a compromise, instructors use tactics such as grading only a subset of problems on each 

homework assignment, providing grades for homework assignments solely based on 

completion, or selecting one question from each assignment for use as a quiz problem.  

These strategies reduce the work load for the instructor, but they severely limit the 

feedback that students receive.   

As a remedy, we envision a digital work cycle in which student coursework is 

recorded electronically, uploaded to a server, and automatically analyzed to estimate 

student performance.  This analysis would both provide the instructor with an assessment 

of the students’ performance and would provide feedback to the students, all without the 

time-consuming task of manually inspecting the work.  In this thesis, we explore the 

development of techniques for automatically estimating a student’s performance on a 

problem from a digital record of the work. 

1.2 Overview 

In this project, we seek to understand how the organization of a student’s solution 

to a problem relates to the correctness of the work.  More precisely, we seek to 

understand how the history of the solution construction process correlates with the 
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correctness of the work.  Understanding this relationship will enable us to create software 

to provide early warnings to students who may be struggling in a course.   

We have conducted a study in which students in an undergraduate statics course 

completed all of their work, including homework, quizzes, and exams, using 

LivescribeTM Smartpens.  These devices record the solutions as time-stamped pen 

strokes, enabling us to see not only the final ink on the page, but also the order in which it 

was written.  While previous studies have used video cameras to record problem-solving 

activities, the analysis of such data is a difficult and time-consuming task that requires 

human judgment1.  Capturing the work as time-stamped pen strokes enables a much more 

precise and efficient analysis of the work.   

We seek to understand the relationship between how students construct their 

solutions and their performance on those problems.  We refer to the sequence of problem-

solving steps as a solution history.  We characterize solution histories with a number of 

quantitative features describing the temporal and spatial distribution of the work.  For 

example, there are features that describe the order in which various problem-solving 

activities (such as the construction of free body diagrams and equilibrium equations) are 

performed, and the amount of time spent on each activity.  Because Smartpens use ink, 

students cannot erase their errors and must cross them out.  We characterize cross-outs by 

the delay between when ink was written and when it was crossed out.  The spatial 

organization of the work is characterized by the extent to which a student revisits earlier 

parts of a solution to revise the work.  We then construct cross-validated regression 

models to determine the extent to which these features correlate with the correctness of 
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the solution.  In the examples we considered, on average, about 43% of the variance in 

performance could be explained by these features.  This is a surprising result in that the 

features do not consider the semantic content of the writing.   

1.3 Related Work 

Our work is a form of educational data mining: a research discipline that uses 

machine learning techniques, data mining techniques, and other similar techniques to 

examine education research issues.  Romero and Ventura2 provide a recent overview of 

work in this area.  Much of this work relies on data collected in online environments such 

as web applications and intelligent tutoring systems.  Our work is unique in that we use 

digital records of students’ handwritten solutions, enabling us to study work habits in a 

more natural environment.  The work of Oviatt et al.3 suggests that natural work 

environments are critical to student performance.  In their examinations of computer 

interfaces for completing geometry problems, they found that “as the interfaces departed 

more from familiar work practice..., students would experience greater cognitive load 

such that performance would deteriorate in speed, attentional focus, meta-cognitive 

control, correctness of problem solutions, and memory.” 

There have been several studies examining student work habits and performance 

in statics.  For example, Steif and Dollár4 examined usage patterns of a web-based statics 

tutoring system to determine the effects on learning.  They found that learning gains 

increased with the number of tutorial elements completed.  This study relied on an online 

learning environment, while we consider ordinary handwritten work.  In another study, 

Steif et al.5 examined whether students can be induced to talk and think about the bodies 
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in a statics problem, and if doing so can increase a student’s performance.  They used 

tablet PCs to record the students’ spoken explanations and capture their handwritten 

solutions as time-stamped pen strokes.  The study focused on the spoken explanations, 

with the record of written work left mostly unanalyzed.   

Researchers have used video recordings to examine student problem solving.  For 

example, Blanc6 examined video recordings of student work in mathematics and analyzed 

the path that students used to solve an example problem.  Although Blanc recorded more 

than 75 problem solutions, only two were analyzed in his paper.  This speaks to the labor-

intensive nature of analyzing video records.  Our pen stroke data is more amenable to 

automated analysis. 

Other researchers have used journaling to examine student work habits.  For 

example, Orr et al.7 examined students’ journal responses about their study habits, 

including factors such as when and how they completed their homework, and if they took 

advantage of assistance programs.  While the results proved interesting, journals capture 

students’ perceptions of their work habits rather than an objective characterization of 

them.  Our work provides a nice complement to this work as we capture a detailed time-

stamped record of a student’s work over the duration of the course. 

The ultimate goal of our work is to rapidly and inexpensively identify students 

who may be struggling in a course so that extra assistance can be provided.  Other 

researchers have explored various mechanisms for providing rapid feedback.  For 

example, Rasila et al.8 explored the benefits of an online assessment tool for engineering 

mathematics.  They found that automatic assessment was highly useful and improved the 
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feedback provided to students.  Chen et al.9 used electronic conceptual quizzes during 

lectures within a statics course to help guide the lecture content.  They found that the 

rapid feedback produced a significant increase in student performance. 
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Chapter 2. Data Set 

We conducted a large-scale study in which over 120 students from an 

undergraduate mechanical engineering course in statics were given LivescribeTM 

Smartpens.  In addition to serving the same function as a traditional ink pen, these 

devices digitize the pen strokes and store them as sequences of time-stamped coordinates.  

Figure 1 provides an example of pen-stroke data from a Smartpen.  Starting in the third 

week of the quarter, students were asked to complete all coursework using Smartpens.  

This included seven homework assignments with 44 problems in total, six quizzes each 

with a single problem, and three exams with a total of 13 problems.  The resulting 

database contains over four million digitized pen strokes.   

 
Figure 1: A typical example of digitized pen stroke data.  Left – a free body diagram 
rendered from pen stroke data.  Center – a selection of the diagram showing data points.  
Right – a smaller selection of data points including their time stamps (in seconds elapsed 
from the start of the problem). 

We restrict our present analysis to problems from the two midterm exams and the 

final exam, because detailed grading information was available for these problems.  Also, 

the data collected for exam problems comprises the students’ entire solution effort.  By 

contrast, grading information was available for only a subset of the homework; only one 
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problem was graded for each assignment.  Also, some students began their homework on 

scratch paper, and then constructed a neat final solution with the digital pen, so that only 

a portion of the effort was recorded.  (Despite these issues, homework data is still useful 

for understanding students’ performance in the course, but that work is beyond the scope 

of this project.)  While we do have detailed grading information and a complete record of 

the solution effort for quizzes, we do not consider them here because the quiz problems 

required only brief solutions.   

The midterm and final exams comprise a total of 13 problems (Table 1), each 

with between 97 and 122 student solutions.  The variation in the number of students 

completing each problem is due to a variety of causes; some students forgot to bring their 

pens to the exam, some students did not complete all exam questions, and some students 

dropped the course.  The problems were graded by teaching assistants based on rubrics 

developed by the course instructor.  These rubrics assigned credit for the correctness of 

individual problem-solving steps as well as the overall correctness of the solution.   

Our analysis of problem-solving activities requires knowledge of the kind of 

solution element each pen stroke comprises.  Specifically, each pen stroke is categorized 

as an element of a free body diagram, an element of an equation, or a cross-out (i.e., a 

stroke used to cross-out work).  We use an automatic stroke-labeling system developed 

by Lin10 to determine the category of each pen stroke.  In his experiments, Lin’s system 

achieved 93% accuracy at this task. 
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Exam and Problem 
Number 

Problem Type Number of 
Unknowns 

Number of 
FBDs  

Number of 
Equilibrium 
Equations  

Midterm 1 Problem 1 2-D Single Body 2 1 3 
Midterm 1 Problem 2 2-D Single Body 3 1 3 
Midterm 1 Problem 3 3-D Single Body 3 1 6 
Midterm 2 Problem 1 2-D Machine 4 3 6 
Midterm 2 Problem 2 2-D Machine 4 4 10 
Midterm 2 Problem 3 2-D Truss 3 3 5 
Final Exam Problem 1 2-D Single Body 3 1 3 
Final Exam Problem 2 3-D Single Body 3 1 6 
Final Exam Problem 3 2-D Machine 1 2 3 
Final Exam Problem 4 2-D Truss 4 3 6 
Final Exam Problem 5 2-D Machine 4 4 10 

Final Exam Problem 6 2-D Machine 
with Belt Slip 1 2 2 

Final Exam Problem 7 2-D Centroid 2 N/A N/A 
Table 1: Summary of exam problems analyzed.  Column two contains the problem type; 
all except the last are equilibrium problems.  Column three contains the number of 
unknown values (typically forces) that the student was asked to determine.  Columns four 
and five are the numbers of free body diagrams (FBDs) and equilibrium equations in the 
instructor’s solution to the problem. 
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Chapter 3. Manual Investigation of Solutions 

We manually inspected student solutions to a single final exam problem to 

identify which aspects of solution histories were potentially correlated with performance.  

Initially, we printed the solutions on paper and grouped them based on their assigned 

score.  Any differences between the solutions in different score groups were identified for 

possible use as features.  For example, many solutions in the highest scoring group were 

concise.  This analysis considered only the final ink on the page.  

To examine the temporal properties of the work, we initially considered viewing 

the solutions by replaying them like a movie.  However, this was very time consuming 

and thus impractical.  Instead, we used color-coding to represent the dynamic properties 

of the solution.  The pen strokes in each solution were color-coded according to the time 

at which they were written.  A sequence of 64 colors was used to represent time, with the 

first stroke rendered with the first color in the sequence and the last stroke rendered with 

the last color.  Figure 2 shows an example of a color-coded solution.  We printed the 

color-coded solutions, allowing us to directly compare multiple solutions to each other.   

We also represented the work abstractly as a sequence of color-coded activities 

rendered on a timeline similar to the representation in Figure 3.  We constructed two 

versions of the timeline, one using absolute time and one using normalized time.  For the 

latter, time was scaled so that the entire solution process took one unit of time.  The 

former representation facilitates examination of the amount of effort spent on a problem.  

The latter facilitates comparison of the sequencing of the activities between different 

problems.  For example, some students constructed all their free body diagrams before 
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writing any equilibrium equations, while others switched between these activities 

throughout their solution. 

 The insights we gained from this manual inspection of solutions inspired the 

features described in Chapter 4. For example, the “Out-of-Order” features described in 

Section 4.2 were directly inspired by our examination of color-coded renderings like that 

in Figure 2. 

 

Figure 2: An example problem solution with the pen strokes color-coded to indicate the 
time at which they were written.  Color progresses from blue (first stroke) to orange (last 
stroke). 
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Chapter 4. Characterization of Solution Histories 

To examine the correlation between the properties of the solution histories and the 

correctness of the work, we first represent those properties quantitatively.  We 

characterize a solution history in terms of the temporal and spatial distribution of the 

work.  More specifically, we consider five types of features: properties of the temporal 

organization of the work, properties of the spatial organization of the work, properties of 

the spatial clustering of the work, properties of the cross-outs, and basic pen stroke 

properties.  These features are described in detail in the following sections. 

4.1 Temporal Organization Features  

In characterizing the temporal distribution of the work in a solution history, we 

distinguish between four solution activities: drawing free body diagrams (FBDs), 

constructing and solving equilibrium equations, crossing out work, and working on other 

problems.  The first three activities are inferred from the stroke labels described in 

Chapter 2.   

To represent the sequence of solution activities, we divide the problem solution 

into 𝑛 equal-time intervals.  Each interval is labeled according to the solution activity that 

occurs most frequently during that interval, which is computed using the pen stroke 

labels.  For example, if 70% of the drawing time in an interval was spent drawing free 

body diagram pen strokes, and the remaining time was spent drawing equation pen 

strokes, the interval as a whole would be characterized by the free body diagram activity.  

If no writing occurs during an interval, it is labeled as a break.  In practice, we have 

found that using a value of 400 for 𝑛 provides adequate detail to enable meaningful 
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analysis of the solution.  One advantage of this representation is that it abstracts away the 

total elapsed time, making it possible to directly compare the work of all students 

regardless of their total solution time.   

If the student interrupts his or her work on a problem to work on other problems, 

we modify this representation slightly.  If there are 𝑚 such interruptions, we divide the 

work on the problem in question into 𝑛 −𝑚 equal intervals and compute their labels as 

before.  Each of the 𝑚 interruptions is then represented by an additional interval labeled 

as “other problem.”  Figure 3 shows a portion of a typical activity sequence. 

 
Figure 3: A portion of a typical discretized activity sequence. 

The distribution of activities in the discretized solution history gives important 

insights into the student’s thought process.  We have designed a set of eight features to 

capture these insights.  These features are summarized in Table 2.  The first four features 

describe the amount of time spent on various activities.  FBD Effort is the total number of 

activity intervals spent on free body diagrams, while EQN Effort is the number spent on 

equations.  The Break feature is the number of intervals in which no work was done, 

while the Other-Problem feature is the number of times the student interrupted his/her 

work on the problem to work on other problems (this is the value “m” described above).  

Free Body Diagram Equation Cross-out Other Problem No Activity
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Taking breaks and working on other problems may indicate that the student was 

struggling on the current problem.   

   Temporal 
Organization 
Features 

FBD Effort  Number of activity intervals spent on FBD 
activity. 

EQN Effort  Number of activity intervals spent on equation 
activity. 

 Break  Number of activity intervals in which a student 
had no activity. 

 Other-Problem  Number of times the student interrupted their 
work on a problem to work on other problems. 

 Entropy  Entropy of the discretized activity sequence. 
 Complexity  Complexity of the discretized activity sequence. 
 FBD to Equation 

Activity Change  
Number of activity changes from FBDs to 
equations. 

 Equation to FBD 
Activity Change 

Number of activity changes from equations to 
FBDs. 

 Num Small Breaks Number of breaks between 2 and 40 seconds in 
duration. 

 Num Medium 
Breaks 

Number of breaks between 40 and 160 seconds 
in duration. 

 Num Large Breaks Number of breaks at least 160 seconds in 
duration. 

Table 2: Summary of the Temporal Organization features. 

These first four features describe only the amount of effort spent on each type of 

activity.  Four additional features describe the sequencing of the activities.  An expert 

might solve a problem by first constructing all of the free body diagrams, and then 

constructing all of the equations.  This would result in a very simple activity distribution.  

A novice student who is struggling on a problem might repeatedly move from one 

activity to another in a much more complex pattern.  We use information theory notions 

of complexity and entropy to capture these distinctions.   

The Kolmogorov complexity11 of a sequence is a measure of the minimum length 

required to describe it.  To estimate this value, we first represent the sequence as a 
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character string, assigning a unique letter to each of the four types of activities.  We then 

use a standard data compression algorithm (the ZLIB12 implementation of DEFLATE13) 

to compress the string.  We define the Complexity of the sequence as the length of the 

compressed string.  A random sequence of activities will result in a large value for this 

feature, while a sequence comprised of a few large blocks of activities will result in a 

small value.   

We use the Entropy of the sequence to measure the balance of effort between the 

activities.  If the sequence contains, for example, only one type of activity, the entropy is 

relatively small.  If, on the other hand, an equal amount of time is spent on each of the 

two types of activities, the entropy is maximal.  We compute the Entropy using the usual 

approach:  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = �−(𝑛𝑖/𝑛) 𝑙𝑛(𝑛𝑖/𝑛)
𝑖

 

where 𝑛𝑖 is the number of occurrences of a particular type of activity, 𝑛 is the total 

number of activities, and the sum is taken over the two main types of activities.  (In this 

computation, we assume 𝑙𝑛(0) = 0.)   

Two additional features consider transitions between free body diagram activity 

and equation activity.  The number of transitions from the former to the latter is 

represented by the FBD to Equation Activity Change feature, while the converse is 

represented by the Equation to FBD Activity Change feature.  These features are 

calculated from the discretized activity sequence with the cross-out, break, and “other 

problem” intervals removed.  Free body diagrams are a tool for constructing equilibrium 
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equations and thus the former often precede the latter.  These two activity change features 

are useful for detecting if students perform these tasks sequentially or if they iterate 

between them, for example.   

The Break feature provides a measure of the total fraction of the activity sequence 

during which the student was not working on any solution activity.  Three additional 

features characterize the size distribution of the individual periods of non-activity.  More 

specifically, these features count the Num Small Breaks (breaks between 2 and 40 

seconds in duration), the Num Medium Breaks (breaks between 40 and 160 seconds in 

duration), and the Num Large Breaks (breaks at least 160 seconds in duration).  These 

features are computed directly from the original timeline of the solution history, not from 

the normalized discrete activity sequence.   

4.2 Spatial Organization Features 

  The spatial organization of a solution on the page gives additional insights about 

the student’s problem-solving process.  For example, a student who starts at the top of a 

page and progresses downward may understand the problem better than a student who 

frequently revisits earlier work and revises it.  We describe the spatial organization with 

two types of features (Table 3) that consider the progression of the work on the page and 

the local temporal history in the neighborhood of each stroke.   
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Spatial 
Organization 
Features 

Out-of-Order-10-20 Fraction of strokes that differ from their 
reference time by 10% to 20% of the total 
problem time. 

Out-of-Order-20-30 Fraction that differ by 20%-30%. 
 Out-of-Order-30-40 Fraction that differ by 30%-40%. 
 Out-of-Order-40-50 Fraction that differ by 40%-50%. 
 Out-of-Order-50-60 Fraction that differ by 50%-60%. 
 Out-of-Order-60+ Fraction that differ by over 60%. 
 Earlier-Neighbor-10-20 Fraction of strokes that have a delay from 

neighboring strokes of 10% to 20% of the 
total problem time. 

 Earlier-Neighbor-20-30 Fraction that have a delay of 20%-30%. 
 Earlier-Neighbor-30-40 Fraction that have a delay of 30%-40%. 
 Earlier-Neighbor-40-50 Fraction that have a delay of 40%-50%. 
 Earlier-Neighbor-50-60 Fraction that have a delay of 50%-60%. 
 Earlier-Neighbor-60+ Fraction that have a delay over 60%. 

Table 3: Summary of the Spatial Organization features. 

We describe progression down the page in terms of deviation from a reference 

progression in which each stroke is drawn later than the ones above it.  We use a two-

inch-tall sliding window to construct this reference timeline as illustrated in Figure 4.  

The height of the window was chosen based on the inspection of the resulting timelines.  

The window is initially placed at the top of the work.  The reference time assigned to the 

location of the top of the window is computed as the time of the earliest stroke in the 

window.  The center point of a stroke’s bounding box is used to determine if the stroke is 

in the window.  In the example in Figure 4, the pen stroke for the letter “P” in “problem” 

determines the first location of the window and the reference time assigned is that of the 

earliest stroke in the window.  The window is then slid down the page a small distance.  

The reference time assigned to the new location of the top of the window is again that of 



 

17 
 

the earliest stroke in the window, unless that is earlier than the time assigned to the 

previous window.  In that case, the reference time is taken to be that of the previous 

window.  The process is repeated every inch until the bottom of the solution is reached, 

resulting in a sequence of monotonically increasing reference time values, equally spaced 

down the solution page.  The distance between the window positions was chosen based 

on the inspection of the resulting timelines.  If a solution spans multiple pages, the pages 

are ordered by the average stroke time on each page and are stacked vertically, with a 0.5 

in. gap between each.  This results in a single progression of work for each problem 

solution. 

 

Figure 4: A sliding window (red box) is used to compute a reference timeline.  The time 
stamp of the earliest stroke in the window is assigned to the location of the top of the 
window.  Strokes inside the window are shown in green.  Sample locations are indicated 
by S1 through S7 on the left-hand side of the figure.   
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Once the reference timeline has been constructed, it is used to identify strokes that 

are inconsistent with a top-down spatial progression, which are called “out-of-order” 

strokes.  To do this, we compute the reference time for each stroke’s location (its 

midpoint) by linear interpolation of the reference timeline.  If the time at which a pen 

stroke was drawn differs from this reference by at least 10% of the total solution time, the 

stroke is considered to be out-of-order.  Figure 5 shows the out-of-order strokes from 

Figure 4.  Six features are used to further characterize the out-of-order strokes by the 

extent to which they differ from their reference time as described in Table 3.  For 

example, Out-of-Order-10-20 is the fraction of strokes that differ from the reference time 

by between 10% and 20% of the total solution time, while Out-of-Order-60+ is the 

fraction of strokes that differ by 60% or more.   

 
Figure 5: Hypothetical example of out-of-order work.  Out-of-order strokes are shown in 
green.  In this example, the student revised the free body diagram by adding an additional 
force after beginning the equilibrium equations. 

The reference timeline provides a global view of the progression of work.  A 

second type of feature provides a more local view of the progression by comparing the 

time stamp of a stroke to those of the nearby strokes that were drawn earlier.  Two 
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strokes are considered to be near each other if their expanded bounding boxes intersect 

(the strokes may actually intersect each other).  For this calculation, the coordinate-

aligned bounding boxes of the strokes are expanded in all directions by 0.8 in.; this value 

was obtained with the optimization procedure described in Section 4.6.  Each stroke is 

then characterized by the time delay between it and its earliest nearby stroke.  Analogous 

to the Out-of-Order features, six features are used to characterize this time delay as 

described in Table 3.  For example, Earlier-Neighbor-10-20 is the fraction of strokes 

with a delay between 10% and 20% of the total solution time.  Strokes with a large delay 

may correspond to the student revising his or her work after an error is detected much 

later in the solution.  This could occur, for example, if the student detects an 

inconsistency in the equilibrium equations and must revisit the free body diagram to fix 

the error.  Students who frequently revisit earlier portions of their solution may be 

struggling with the concepts. 

4.3 Spatial Cluster Features 

Typical statics solutions are often organized into spatially distinct clusters of 

work.  Each individual cluster typically represents a single substantial solution element, 

such as a free body diagram or a set of equilibrium equations.  Figure 7 shows an 

example with seven clusters: four containing free body diagrams and three containing 

equations.   

We compute several features that describe the spatial clustering of the work and 

the extent to which the work in the clusters is revised during the solution process.  In 

computing these features, we define a cluster as a region on the page containing strokes 
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that represent a single solution activity (either free body diagram or equation activity), are 

near each other, and are distant from other strokes of the same activity.   

To compute the locations of clusters, we use a Gaussian function to represent the 

“spatial influence” of each stroke.  More specifically, at each point on the page, we define 

an influence function that sums the signed influences of the strokes.  Strokes from free 

body diagrams exert a positive influence, while those from equations exert a negative 

influence.  This influence function, which is illustrated in Figure 6, is computed as:  

𝐻(𝑥,𝑦) = �𝐴 ∗ 𝑆𝑒−
𝑑𝑖2
2𝑐2

𝑖

 

 

𝐴 = � 1 for FBD strokes
-1 for equations strokes  

𝑆 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚{1.5 𝑖𝑛. , 0.75 𝑖𝑛. +
𝑙𝑖
3

} 
 
Here, di is the minimum distance from stroke i to the point (x,y), c is a constant equal to 

1.4 in., and li is the length of the stroke (i.e., its arc length).  The parameter S controls the 

maximum amplitude of the influence of a stroke, which increases with the stroke’s 

length.  However, the constant in the denominator (i.e., the “3”) ensures that very long 

strokes do not dominate the calculation.  Conversely, S has a minimum value (1.5 in) to 

ensure that even very short strokes have an appreciable maximum amplitude. 

 Because of the exponential nature of H(x,y), strokes far from the point (x,y) exert 

little influence on that point.  Thus, to achieve efficiency, the sum is taken over only 

those strokes that are near the point (x,y).  A stroke is considered to be near if its 

coordinate-aligned bounding box is within 1.1 in. of the point.   
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We then compute the cluster boundaries as level curves of the function H(x,y).  

The boundaries of the free body diagram clusters are defined as level curves at  

H(x,y) = 0.2, while the boundaries of the equation clusters are defined as level curves at 

H(x,y) = -0.2.  (When computing the level curves, H(x,y) is sampled on a uniform grid 

with a spacing of 0.3 in.)  Using values of +/- 0.2 for the level curves tends to place the 

cluster boundaries near the periphery of the ink they enclose.  By contrast, if the level 

curves were taken at H(x,y) = 0, all regions of the page, even empty regions, would 

belong to some cluster.  The parameters used for computing clusters were manually tuned 

so that the clusters closely matched the major solution elements for a set of sample 

sketches. 

 Figure 7 shows the set of clusters computed from the influence function in Figure 

6.  There are four clusters each representing a single, isolated free body diagram.  There 

are three equation clusters.  The top two each represent tight groupings of equations.  The 

bottom cluster has a “C” shape.  This cluster appears to contain two groupings of 

equations that are linked by a few pen strokes to the left of the lowest free body diagram 

cluster.  Using a larger threshold for the level curves might split this cluster appropriately.  

However, this might also split portions off of the other clusters, such as the top of the 

uppermost equation cluster.   
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Figure 6: A typical influence function for computing clusters.  Portions of the surface 
above the plane are most strongly influenced by free body diagram strokes, while regions 
below the plane are most strongly influenced by equation strokes.  The black lines on the 
plane are individual pen strokes which are shown for reference. 

 
Figure 7: Clusters computed from the influence function in Figure 6.  Red regions 
represent free body diagram clusters; blue regions represent equation clusters. 
 

From these clusters we compute seven features, which are summarized in Table 4.  

Three characterize the number and size of the clusters.  This includes the number of free 

body diagram clusters (Num FBD Clusters), the number of equation clusters (Num 
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Equation Clusters), and the ratio of the net area of the equation clusters to the total area 

of all clusters (Equation Area Fraction).   

The remaining four cluster features describe the student’s temporal progression 

through the clusters.  FBD Revisits is the number of times the student interrupted his or 

her work to add additional pen strokes to an existing free body diagram cluster.  FBD 

Revisit Strokes is the fraction of all pen strokes that were added to free body diagram 

clusters in this way.  Equation Revisits and Equation Revisit Strokes are defined 

analogously.   

   Spatial 
Cluster 
Features 

Num FBD Clusters  Number of FBD pen stroke clusters. 
FBD Revisits Number of times a student returned to a 

previous FBD cluster. 
FBD Revisit 
Strokes  

Fraction of strokes in a solution that were added 
during FBD revisits. 

 Num Equation 
Clusters 

Number of equation pen stroke clusters. 

 Equation Area 
Fraction 

Ratio of the net area of the equation clusters to 
the total area of all clusters. 

 Equation Revisits Number of times a student returned to a 
previous equation cluster. 

 Equation Revisit 
Strokes 

Fraction of strokes in a solution that were added 
during equation revisits. 

Table 4: Summary of the Spatial Cluster features. 

4.4 Cross-out Features 

Cross-outs are a direct indication of revised work.  We characterize cross-outs in 

terms of the strokes that are deleted or “crossed out.”  The stroke labeler described in 

Chapter 2 identifies individual cross-out strokes, but not complete cross-out gestures.  For 

example, an “X” drawn with two pen strokes is often used to cross-out erroneous work.  

We define a cross-out gesture as a set of consecutively drawn cross-out strokes that are 
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all near each other.  Cross-out strokes are near each other if the minimum distance 

between them is less than 1 in. or 15% of the stroke’s arc length, whichever is smaller.  

These values were manually selected to achieve a balance between grouping the 

components of an intended gesture without erroneously grouping strokes from unrelated 

gestures. 

To determine which strokes have been deleted by a cross-out gesture, we compute 

the convex hull of the strokes comprising that gesture.  Any other pen strokes which have 

a convex hull that intersect the convex hull of a gesture are considered to have been 

deleted.  Figure 8 shows the convex hulls of a zigzag-shaped cross-out gesture and a “X” 

cross-out gesture as well as the strokes that they delete.   

 
Figure 8: Strokes deleted by cross-out gestures.  The cross-out gestures are shown in red, 
the convex hulls in dashed blue, and the deleted strokes in green. 

We distinguish between two kinds of cross-out gestures, which we call “typo 

cross-outs” and “problem-solving cross-outs”.  The former are cases in which the student 

writes something and quickly crosses it out, as if correcting a typographical error.  The 
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latter are cases in which there is a substantial delay between the time the ink was written 

and when it was crossed out: these cases are more likely to be corrections of problem-

solving errors.  We use a threshold of 16 seconds as the boundary between the two types 

of cross-outs.  This threshold was based on the optimization procedure described in 

Section 4.6. 

We characterize cross-out gestures with five features which are summarized in 

Table 5.  The Typo-Cross-Outs and PS-Cross-Outs features are the numbers of typo and 

problem-solving cross-out gestures, respectively.  The Big-Cross-Outs feature is the 

number of cross-out gestures that delete (cover) 10 or more pen strokes and thus 

represents a revision of a substantial amount of work.  (This threshold was also set based 

on the optimization procedure described in Section 4.6.)  Additionally, we count the total 

number of free body diagram and equation strokes that were deleted by cross-out gestures 

producing the features FBD Strokes Crossed-Out and Equation Strokes Crossed-Out, 

respectively.   

   Cross-out 
Features 

FBD Strokes 
Crossed-Out  

Number of FBD strokes that were crossed-out. 

Equation Strokes 
Crossed-Out  

Number of equation strokes that were crossed-
out. 

 Big-Cross-Outs  Number of cross-out gestures which removed 10 
or more strokes. 

 Typo-Cross-Outs  Number of cross-out gestures which occurred 
within 16 seconds of underlying ink. 

 PS-Cross-Outs Number of cross-out gestures which occurred 
after 16 seconds of underlying ink. 

Table 5: Summary of the Cross-out features. 
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4.5 Basic Pen Stroke Features 

We include six Basic Pen Stroke features in order to provide a measure of the 

amount of work in a solution and the student’s writing style.  These are summarized in 

Table 6.  These features include the number of strokes written for each activity category 

(Num FBD Strokes, Num of Equation Strokes, and Num Cross-Out Strokes), as well as 

the median stroke length for each category (Median FBD Stroke Length, Median 

Equation Stroke Length, and Median Cross-Out Stroke Length). 

   Basic Pen 
Stroke 
Features 

Median FBD Stroke 
Length 

Median length of FBD strokes in the problem 
solution. 

Median Equation 
Stroke Length 

Median length of equation strokes in the 
problem solution. 

 Median Cross-Out 
Stroke Length 

Median length of cross-out strokes in the 
problem solution. 

 Num FBD Strokes The total number of FBD strokes in the problem 
solution. 

 Num Equation 
Strokes 

The total number of equation strokes in the 
problem solution. 

 Num Cross-Out 
Strokes 

The total number of cross-out strokes in the 
problem solution. 

Table 6: Summary of the Basic Pen Stroke features. 

4.6 Selection of Feature Parameter Values 

We used a simple optimization process to select parameter values for seven of the 

features.  The parameters for related features were optimized simultaneously. Table 7 

lists the sets of related features.  The optimization process used search to select parameter 

values that maximized the predictive ability of ordinary least squares regression models.  

To begin the search, we enumerated a small set of parameter values to explore.  

We used our experience with the features to select a reasonable default parameter value.  

We then enumerated smaller values by successively dividing the default value by two, 
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and larger values by successively multiplying by two.  This resulted in six values for each 

parameter.  For example, the default value of the parameter “small break lower bound” 

was 8 seconds.  From this, we generated values of 1, 2, 4, 8, 16, and 32 seconds.  The 

optimization of a set of related features exhaustively explored all combinations of the 

enumerated parameter values.  For example, the optimization of the break features would 

nominally explore 63 = 216 combinations.  If the optimum occurred at the boundary of 

the set of enumerated values, the set was expanded using the above method, and the 

search repeated.   

Sets of Features Parameters (Selected Value) Search 
Space Size 

Num Small Breaks 
Num Medium Breaks 
Num Large Breaks 

Small break lower bound (2 seconds) 
Boundary between small and medium breaks 
(40 seconds) 
Boundary between medium and large breaks 
(160 seconds) 

n3 

Earlier-Neighbor features Bounding box expansion (0.8 in.) n 
Typo-Cross-Outs 
PS-Cross-Outs 

Boundary between typo and PS cross-outs  
(16 seconds) 

n 

Big-Cross-Outs Minimum number of strokes crossed-out (10) n 
Table 7: Sets of features, the parameters that were chosen to maximize the features’ 
combined predictive ability, and the size of the resulting search spaces (n ~ 6). 
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Chapter 5. Modeling Performance using Solution Histories 

We used linear regression to evaluate the ability of our set of 41 features to 

predict student performance on an exam problem.  We also used regression to determine 

which of the five subsets of features (Temporal Organization, Spatial Organization, 

Spatial Cluster, Cross-out, and Basic Pen Stroke) and which individual features are most 

predictive.  To prevent over-fitting, we use the relaxed lasso14,15  regression technique as 

it performs feature selection.  Relaxed lasso is an extension of the lasso16 method, a 

regularized version of linear least-squares regression in which the weighted sum of the 

absolute value of the coefficients is added as a penalty.  (We also considered the elastic 

net17 method, but the models were not as predictive as those from relaxed lasso.)  More 

specifically, the penalty has the form λ∑ |𝛽𝑗|𝑝
𝑗=1  where λ is a tuning parameter and 𝛽𝑗 are 

the coefficients in the regression model.  This penalty term helps to eliminate 

unimportant features from the model.  The relaxed lasso method is a two-step version of 

lasso.  An initial set of lasso models are constructed, any features not selected in the 

initial models are removed, and the models are retrained with the penalty terms relaxed.  

We implemented the relaxed lasso technique using the lasso function in the Matlab® 

Statistics ToolboxTM.  When constructing lasso models, we use 10-fold cross-validation 

and repeat the cross-validation 10 times using random seeds for the splits.  

Additionally, we use stepwise linear regression to identify which features have 

statistically significant predictive ability.  For this analysis, we use the stepwise linear 

regression function in IBM® SPSS® Statistics version 20.  The threshold for including a 
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feature in the model was a p-value less than 0.05 (based on the F value), while the 

threshold for removal was a p-value greater than 0.10.   

To provide a basis for interpreting the regression results, descriptive statistics of 

the features, averaged over the problems for each exam, are reported in Table 8.  

Descriptive statistics for each individual exam problem are contained in Appendix A.  
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Features Midterm 1 Midterm 2 Final Exam 
Mean Stdev Mean Stdev Mean Stdev 

FBD Effort 50.42 18.51 60.36 20.41 48.67 20.91 
Equation Effort 95.87 37.50 104.46 39.33 99.62 39.77 
Break 245.33 41.93 226.53 43.71 244.15 48.12 
Other-Problem  0.96 1.29 0.85 0.92 0.84 1.00 
Entropy 0.61 0.08 0.61 0.10 0.59 0.11 
Complexity 99.71 11.69 104.72 13.19 98.31 14.99 
FBD to Equation Activity Change 7.59 4.78 10.18 5.64 8.64 5.49 
Equation to FBD Activity Change 7.10 4.88 9.83 5.62 8.21 5.54 
Num Small Breaks 84.76 32.43 98.20 39.73 79.65 38.23 
Num Medium Breaks 5.46 3.10 4.66 2.98 4.45 3.24 
Num Large Breaks 0.52 0.87 0.35 0.62 0.59 0.94 
Out-of-Order-10-20 0.19 0.09 0.21 0.11 0.19 0.10 
Out-of-Order-20-30 0.10 0.08 0.11 0.09 0.09 0.08 
Out-of-Order-30-40 0.07 0.07 0.06 0.07 0.05 0.06 
Out-of-Order-40-50 0.04 0.06 0.04 0.05 0.03 0.06 
Out-of-Order-50-60 0.03 0.06 0.02 0.05 0.02 0.04 
Out-of-Order-60+ 0.05 0.09 0.04 0.09 0.04 0.09 
Earlier-Neighbor-10-20 0.24 0.11 0.26 0.11 0.25 0.12 
Earlier-Neighbor-20-30 0.18 0.10 0.18 0.09 0.19 0.12 
Earlier-Neighbor-30-40 0.12 0.09 0.11 0.08 0.11 0.09 
Earlier-Neighbor-40-50 0.08 0.07 0.06 0.06 0.07 0.07 
Earlier-Neighbor-50-60 0.06 0.06 0.04 0.05 0.04 0.05 
Earlier-Neighbor-60+ 0.09 0.10 0.05 0.07 0.06 0.09 
Num FBD Clusters  2.87 1.91 4.05 2.29 3.69 2.28 
FBD Revisits 8.44 5.90 9.26 6.33 7.54 5.82 
FBD Revisit Strokes  0.16 0.12 0.15 0.13 0.12 0.10 
Num Equation Clusters 2.75 1.55 3.33 1.79 3.08 1.79 
Equation Area Fraction 0.66 0.14 0.62 0.16 0.66 0.15 
Equation Revisits 3.89 4.36 5.81 5.50 5.32 5.45 
Equation Revisit Strokes 0.32 0.27 0.33 0.24 0.34 0.25 
FBD Strokes Crossed-Out  23.91 27.49 25.89 26.67 19.87 24.75 
Equation Strokes Crossed-Out  56.34 68.33 57.04 58.41 53.57 70.10 
Big-Cross-Outs  1.82 2.03 2.19 2.41 1.78 2.08 
Typo-Cross-Outs  29.24 26.33 39.81 37.78 30.80 31.66 
PS-Cross-Outs 62.41 84.84 54.95 64.75 54.80 94.14 
Median FBD Stroke Length 127.13 48.00 131.09 45.36 138.47 49.29 
Median Equation Stroke Length 115.67 28.41 109.82 29.71 118.30 33.73 
Median Cross-Out Stroke Length 720.70 501.7

 
760.89 447.9

 
842.26 665.7

 Num FBD Strokes 165.40 87.04 205.41 106.3
 

157.71 90.50 
Num Equation Strokes 432.58 228.6

 
528.45 281.7

 
457.81 277.4

 Num Cross-Out Strokes 13.98 10.71 14.79 11.56 12.57 12.51 
Score 0.64 0.28 0.61 0.31 0.74 0.25 

Table 8: The mean and standard deviation of features for each assignment. 
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5.1 Predictive Ability of Solution History Features 

We identified the aspects of solution histories that are the most predictive of 

student performance by analyzing the five feature subsets (Temporal Organization, 

Spatial Organization, Spatial Cluster, Cross-out, and Basic Pen Stroke).  We trained 

regression models on each subset of features, using the relaxed lasso method, to predict 

the score on individual problems.  The R2 values, estimated through cross-validation and 

averaged for all 13 exam problems, are reported in Table 9.   

The Temporal Organization features have the most predictive ability, and explain 

an average of 36% of the variance in performance.  The next-best subsets, Spatial Cluster 

features and Basic Pen Stroke features, are significantly less predictive.  They explain 

only 25% and 27% of the variance, respectively.  The Spatial Organization features have 

the lowest useful predictive ability, explaining only 19% of the variance.  The Cross-out 

features have no useful predictive ability. 
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Temporal Organization 0.36 0.39 0.37 0.37 0.37 
Spatial Organization  0.19 0.32 0.20 0.33 

Spatial Cluster   0.25 0.26 0.33 
Cross-out    0.02 0.28 

Basic Pen Stroke     0.27 
Table 9: The average R2 values of relaxed lasso models trained on feature subsets.  The 
values in light grey cells (diagonal) are from models trained on individual subsets, while 
the values in white cells are from models trained on pairwise combinations of subsets. 
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To evaluate the unique information in each feature subset, we constructed 

regression models with pairs of the subsets.  The resulting R2 values are again reported in 

Table 9.  The combination of the Temporal Organization features and the Spatial 

Organization features has the highest predictive ability, with an average R2 of 0.39.  The 

combination of the Spatial Organization features with the Spatial Cluster features 

provides the largest increase (0.07) in R2 over the individual subsets.   

Table 10 shows the results of relaxed lasso models trained on the complete set of 

41 features.  These models have an average R2 of 0.43, an improvement of 0.04 over the 

best pairwise combination of subsets.  The lowest-performing model on an individual 

problem explained only 18% of the variance in performance on that problem, while the 

highest-performing model explained 65%.  To provide another perspective on the 

predictive ability of our features, we also performed stepwise linear regression which 

produced models with an average R2 value of 0.48, a minimum of 0.25, and a maximum 

of 0.64. 
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Relaxed 
Lasso 0.34 0.50 0.57 0.36 0.65 0.18 0.43 0.49 0.24 0.31 0.52 0.62 0.38 0.43 

Stepwise 
Regression 0.40 0.54 0.64 0.41 0.64 0.25 0.52 0.55 0.31 0.46 0.48 0.64 0.43 0.48 

Absolute 
Difference 0.06 0.04 0.07 0.05 0.01 0.07 0.09 0.06 0.07 0.15 0.04 0.02 0.05 0.05 

Mean of 
Scores 0.71 0.68 0.53 0.66 0.43 0.72 0.75 0.71 0.81 0.84 0.72 0.62 0.70 0.68 

Stdev (σ) of 
Scores 0.31 0.27 0.22 0.28 0.29 0.28 0.23 0.21 0.17 0.20 0.24 0.32 0.27 0.25 

Table 10: The R2 values of regression models trained on the complete set of 41 features 
as well as the mean and standard deviation of the scores for each problem 

5.2 Important Features 

One measure of the usefulness of a feature is the frequency with which it is 

selected by the relaxed lasso method for the set of 13 exam problems.  By contrast, 

features that are infrequently selected either have no predictive ability or are correlated 

with a more predictive feature. Figure 9 through Figure 13 show the features selected for 

each of the five feature subsets.  Green is used to indicate features that are positively 

correlated with performance, while red is used to indicate negative correlation.  The 

actual magnitudes of the coefficients are not displayed in the tables because the use of a 

tuning parameter (λ) in the relaxed lasso method makes it difficult to compare the 

magnitudes of the coefficients across models.15 
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Figure 9 shows the features selected from the Temporal Organization features.  

The two most important features are Equation Effort and Other-Problem.  Both were 

selected for over half of the problems.  The former was always positively correlated with 

performance, while the latter was always negatively correlated.  Num Small Breaks was 

also selected for over half of the problems, but the sign of the coefficient varied: the 

correlation was positive for six problems and negative for one.  

Exam Midterm 1 Midterm 2 Final Exam 
Problem 1 2 3 1 2 3 1 2 3 4 5 6 7 
Code A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C5 C6 C7 

Table 11: Codes used to represent problem names.  These are used in Figure 9 through 
Figure 14 and Table 12 through Table 16. 

  Temporal Organization Features A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C4 C6 C7 
  FBD Effort               
  Equation Effort               
  Break               
  Other-Problem               
  Entropy               
  Complexity               
  FBD to Equation Activity Change               
  Equation to FBD Activity Change              
  Num Small Breaks              
  Num Medium Breaks              
  Num Large Breaks              

Figure 9: The sign of coefficients selected by the relaxed lasso method trained on the 
Temporal Organization features.  Blank cells indicate unselected features, red cells 
indicate negative coefficients, and green cells indicate positive coefficients.  Columns 
represent exam problems in order (as shown in Table 11). 
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  Spatial Organization Features A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C4 C6 C7 
  Out-of-Order-10-20              
  Out-of-Order-20-30              
  Out-of-Order-30-40              
  Out-of-Order-40-50              
  Out-of-Order-50-60              
  Out-of-Order-60+              
  Earlier-Neighbor-10-20              
  Earlier-Neighbor-20-30              
  Earlier-Neighbor-30-40              
  Earlier-Neighbor-40-50              
  Earlier-Neighbor-50-60              
  Earlier-Neighbor-60+              

Figure 10: The sign of coefficients selected by the relaxed lasso method trained on 
Spatial Organization features.  Blank cells indicate unselected features, red cells indicate 
negative coefficients, and green cells indicate positive coefficients.  Columns represent 
exam problems in order (as shown in Table 11). 
 

The most important Spatial Organization feature (Figure 10) is the Earlier-

Neighbor-10-20 feature, which was selected for over half of the problems and is 

positively correlated with performance.  Although selected fewer times, the Earlier-

Neighbor-20-30 feature also has a positive correlation with performance.  By contrast, the 

features representing a greater degree of delay, i.e., Earlier-Neighbor-40-50, Earlier-

Neighbor-50-60, and Earlier-Neighbor-60+, are negatively correlated with performance.  

Furthermore, while no individual Out-of-order feature was selected with high frequency, 

when such features were selected, they were almost always negatively correlated with 

performance. 
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  Spatial Cluster Features A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C4 C6 C7 
  Num FBD Clusters               
  FBD Revisits              
  FBD Revisit Strokes               
  Num Equation Clusters              
  Equation Area Fraction              
  Equation Revisits              
  Equation Revisit Strokes              

Figure 11: The sign of coefficients selected by the relaxed lasso method trained on the 
Spatial Cluster features.  Blank cells indicate unselected features, red cells indicate 
negative coefficients, and green cells indicate positive coefficients.  Columns represent 
exam problems in order (as shown in Table 11). 
 

The most important Spatial Cluster features (Figure 11) are Num FBD Clusters, 

FBD Revisits, and Equation Area Fraction.  Each was selected for at least half of the 

problems, and all are positively correlated with performance.   

  Cross-Out Features A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C4 C6 C7 
  FBD Strokes Crossed-Out               
  Equation Strokes Crossed-Out               
  Big-Cross-Outs               
  Typo-Cross-Outs               
  PS-Cross-Outs              

Figure 12: The sign of coefficients selected by the relaxed lasso method trained on the 
Cross-out features.  Blank cells indicate unselected features, red cells indicate negative 
coefficients, and green cells indicate positive coefficients.  Columns represent exam 
problems in order (as shown in Table 11). 
 

No single Cross-out feature was consistently selected (Figure 12).  Equation 

Strokes Crossed-Out was selected for five the problems and was always positively 

correlated with performance.  However, as the Cross-out features as a whole have no 

predictive ability (Table 9), this feature is unimportant.  
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  Basic Pen Stroke Features A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C4 C6 C7 
  Median FBD Stroke Length              
  Median Equation Stroke Length              
  Median Cross-Out Stroke Length              
  Num FBD Strokes              
  Num Equation Strokes              
  Num Cross-Out Strokes              

Figure 13: The sign of coefficients selected by the relaxed lasso method trained on the 
Basic Pen Stroke features.  Blank cells indicate unselected features, red cells indicate 
negative coefficients, and green cells indicate positive coefficients.  Columns represent 
exam problems in order (as shown in Table 11). 
 

The most important of the Basic Pen Stroke features (Figure 13) is the Num 

Equation Strokes feature which was selected for all problems and is always positively 

correlated with performance.  None of the other Basic Pen Stroke features are selected 

frequently, although when they are selected, they are typically negatively correlated with 

performance. 

Figure 9 through Figure 13 show the importance of the features within a subset. 

Figure 14 reveals the important features when they are examined as a complete set of 41.  

The rectangular cells in the figure are color-coded to indicate which features relaxed 

lasso selected from the complete set.  The small circles are color-coded to indicate which 

features relaxed lasso selected from the subsets examined individually.  Here again, green 

is used to indicate features that are positively correlated with performance, while red is 

used to indicate negative correlation. 

For the complete set of features, only one is consistently selected: Equation Area 

Fraction.  As would be expected, many of the features that were selected for individual 

subsets are not selected for the complete feature set.  When a feature is selected for both, 

the sign of the coefficient is typically consistent across the two analyses.  There are only 
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three exceptions: this occurred twice for the Equation Effort feature and once for the 

Equation Strokes Crossed-Out feature.  The former is likely due to an interaction between 

features, while the latter is consistent with lack of predictive ability of Cross-out features. 
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Features A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C4 C6 C7 
FBD Effort 0         0  0 0 
Equation Effort              
Break 0   0          
Other-Problem               
Entropy              
Complexity 0   0     0  0  0 
FBD to Equation Activity Change 0 0  0       0   
Equation to FBD Activity Change              
Num Small Breaks              
Num Medium Breaks              
Num Large Breaks              
Out-of-Order-10-20              
Out-of-Order-20-30              
Out-of-Order-30-40              
Out-of-Order-40-50              
Out-of-Order-50-60              
Out-of-Order-60+              
Earlier-Neighbor-10-20              
Earlier-Neighbor-20-30              
Earlier-Neighbor-30-40              
Earlier-Neighbor-40-50              
Earlier-Neighbor-50-60              
Earlier-Neighbor-60+              
Num FBD Clusters               
FBD Revisits              
FBD Revisit Strokes               
Num Equation Clusters              
Equation Area Fraction              
Equation Revisits              
Equation Revisit Strokes              
FBD Strokes Crossed-Out               
Equation Strokes Crossed-Out               
Big-Cross-Outs               
Typo-Cross-Outs               
PS-Cross-Outs              
Median FBD Stroke Length              
Median Equation Stroke Length              
Median Cross-Out Stroke Length              
Num FBD Strokes              
Num Equation Strokes              
Num Cross-Out Strokes              

Figure 14: Comparison of relaxed lasso models trained on complete set of features to 
models trained on feature subsets.  The rectangular cells indicate the features selected 
from the complete set.  Circles indicate the features selected from the subsets when 
examined individually.  Green is used to indicate features that are positively correlated 
with performance, while red is used to indicate negative correlation.  Columns represent 
exam problems in order (as shown in Table 11).
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5.3 Most Significant Features 

We used stepwise linear regression to determine the statistical significance of the 

features.  We constructed stepwise regression models for each of the five subsets of 

features.  The standardized coefficients, β, and p-values for the models are shown in 

Table 12 through Table 16.  Stepwise regression tends to select fewer features than the 

relaxed lasso method.  Additionally, the signs of the coefficients tend to be consistent 

across the two methods.  

 Out of all five feature subsets, a total of three features were selected with high 

frequency and high confidence (i.e., small p-value).  From the Temporal Organization 

features (Table 12), Equation Effort was selected for all but two problems with a p-value 

less than 0.005.  From the Spatial Cluster features (Table 14), Equation Area Fraction 

was selected for all problems with a p-value less than 0.005.  Finally, from the Basic Pen 

Stroke features (Table 16), Num Equation Strokes was selected for all problems with a p-

value less than 0.005.  In all three cases, the features are positively correlated with 

performance.  Furthermore, all three features provide some measure of the amount of 

equation work in the solution.  We provide additional analysis of these three features in 

the next section. 
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Temporal 
Organization Features A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C4 C6 C7 

FBD Effort  
             

Equation Effort 0.46 
(0.00) 

0.60 
(0.00) 

0.51 
(0.00) 

0.54 
(0.00) 

0.74 
(0.00) 

0.42 
(0.00) 

0.64 
(0.00) 

0.40 
(0.00) 

0.39 
(0.00) 

0.48 
(0.00) 

0.67 
(0.00)   

Break  
           

-0.46 
(0.00) 

-0.50 
(0.00) 

Other-Problem   
-0.20 
(0.01) 

-0.18 
(0.01)           

Entropy       
0.42 

(0.00)   
0.18 

(0.03)    

Complexity        
 

      

FBD to Equation 
Activity Change       

-0.18 
(0.04)       

Equation to FBD 
Activity Change              

Num Small Breaks -0.18 
(0.04)  

0.26 
(0.01)     

0.29 
(0.01)    

0.28 
(0.02)  

Num Medium Breaks    
-0.18 
(0.02)          

Num Large Breaks -0.29 
(0.00)  

0.15 
(0.03)           

Table 12: The standardized coefficients, β, and p-values (in parentheses) of selected features from stepwise linear regression 
models trained on the Temporal Organization features.  Red cells indicate negative coefficients and green cells indicate 
positive coefficients.  Columns represent exam problems in order (as shown in Table 11). 
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Spatial Organization 
Features A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C4 C6 C7 

Out-of-Order-10-20     
-0.21 
(0.01)         

Out-of-Order-20-30       
 
 

-0.31 
(0.00)      

Out-of-Order-30-40  
 
 

-0.23 
(0.01)           

Out-of-Order-40-50  
          

-0.28 
(0.00)   

Out-of-Order-50-60    -0.24 
(0.01) 

-0.31 
(0.00)     

-0.35 
(0.00)    

Out-of-Order-60+       
-0.43 
(0.00) 

-0.34 
(0.00)  

-0.22 
(0.02) 

-0.37 
(0.00) 

-0.42 
(0.00) 

-0.42 
(0.00) 

Earlier-Neighbor-10-20 0.25 
(0.01)    0.29 

(0.00)       
0.36 

(0.00) 
0.20 

(0.03) 

Earlier-Neighbor-20-30  
 

0.22 
(0.02)          

0.19 
(0.02)  

Earlier-Neighbor-30-40       
        

Earlier-Neighbor-40-50  
-0.17 
(0.05) 

-0.22 
(0.01)  -0.30 

(0.00)      
-0.31 
(0.00)  

-0.42 
(0.00) 

Earlier-Neighbor-50-60     
 
         

Earlier-Neighbor-60+  
-0.30 
(0.00) 

-0.32 
(0.00)   

-0.31 
(0.00)   

-0.39 
(0.00)     

Table 13: The standardized coefficients, β, and p-values (in parentheses) of selected features from stepwise linear regression 
models trained on the Spatial Organization features.  Red cells indicate negative coefficients and green cells indicate positive 
coefficients.  Columns represent exam problems in order (as shown in Table 11). 
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Spatial Cluster 
Features A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C4 C6 C7 

Num FBD Clusters    
0.17 

(0.03)     
0.30 

(0.00)  
0.19 

(0.04) 
0.23 

(0.01) 
0.36 

(0.00) 
0.33 

(0.00) 

FBD Revisits  
0.21 

(0.01) 
0.21 

(0.01)  
0.16 

(0.03) 
0.21 

(0.03)  
0.21 

(0.02)      

FBD Revisit Strokes   
-0.38 
(0.00)         

0.44 
(0.01)  

0.41 
(0.00) 

Num Equation Clusters    
0.19 

(0.03)          

Equation Area Fraction 0.31 
(0.00) 

0.36 
(0.00) 

0.61 
(0.00) 

0.52 
(0.00) 

0.51 
(0.00) 

0.32 
(0.00) 

0.48 
(0.00) 

0.54 
(0.00) 

0.44 
(0.00) 

0.37 
(0.00) 

0.89 
(0.00) 

0.44 
(0.00) 

0.51 
(0.00) 

Equation Revisits  
    

0.24 
(0.00)   

0.23  
(0.01)      

Equation Revisit 
Strokes              

Table 14: The standardized coefficients, β, and p-values (in parentheses) of selected features from stepwise linear regression 
models trained on the Spatial Cluster features.  Red cells indicate negative coefficients and green cells indicate positive 
coefficients.  Columns represent exam problems in order (as shown in Table 11). 
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Cross-Out Features A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C4 C6 C7 
FBD Strokes Crossed-
Out  

             Equation Strokes 
Crossed-Out  

           

0.20 
(0.05) 

 
Big-Cross-Outs 

      
 
                 

Typo-Cross-Outs  
    

0.35 
(0.00)  

0.32 
(0.00)                 

PS-Cross-Outs 
 

                    
  Table 15: The standardized coefficients, β, and p-values (in parentheses) of selected features from stepwise linear regression 

models trained on the Cross-out features.  Red cells indicate negative coefficients and green cells indicate positive coefficients.  
Columns represent exam problems in order (as shown in Table 11). 
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Basic Pen Stroke 
Features A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 C4 C6 C7 

Median FBD Stroke 
Length       

-0.31 
(0.00)     

-0.24 
(0.00)  

Median Equation Stroke 
Length              

Median Cross-Out 
Stroke Length       

-0.23 
(0.01)       

Num FBD Strokes         
-0.22 
(0.03)    

0.27 
(0.00) 

Num Equation Strokes 0.26 
(0.00) 

0.65 
(0.00) 

0.70 
(0.00) 

0.52 
(0.00) 

0.90 
(0.00) 

0.36 
(0.00) 

0.26 
(0.00) 

0.71 
(0.00) 

0.43 
(0.00) 

0.34 
(0.00) 

0.50 
(0.00) 

0.55 
(0.00) 

0.36 
(0.00) 

Num Cross-Out Strokes  
-0.25 
(0.01)   

-0.27 
(0.00)   

-0.23 
(0.00)      

Table 16: The standardized coefficients, β, and p-values (in parentheses) of selected features from stepwise linear regression 
models trained on the Basic Pen Stroke features.  Red cells indicate negative coefficients and green cells indicate positive 
coefficients.  Columns represent exam problems in order (as shown in Table 11). 
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5.4 Predictive Ability of the Most Significant Features  

 Section 5.3 suggests that features measuring the amount of work on equations are 

consistently significant and positively correlated with performance.  Here we compare the 

importance of such features to that of the other features.  Specifically, we used relaxed 

lasso to constructed regression models for two set of features.  The first set contains all 

features that measure the amount of work on equations:  Equation Effort, Equation Area 

Fraction, Num Equation Strokes, and Num Equation Clusters.  (Only the first three of 

these were consistently selected by stepwise regression.)  The second set contains the 

other 37 features.  The R2 values for these models are listed in Table 17.  The four 

equation features resulted in an R2 value of 0.34, while the other features resulted in a 

value of 0.40.  Thus, although the four equation features are useful for prediction, the set 

comprising the other features is more predictive. 
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Amount of 
Equation  
Work 
Features 

0.27 0.46 0.51 0.30 0.56 0.16 0.25 0.39 0.18 0.19 0.43 0.43 0.22 0.34 

All Other 
Features 0.31 0.48 0.53 0.33 0.59 0.17 0.41 0.45 0.18 0.25 0.48 0.63 0.39 0.40 

Absolute 
Difference 0.04 0.02 0.02 0.03 0.03 0.01 0.16 0.07 0.00 0.06 0.05 0.20 0.17 0.06 

Table 17: The R2 values of regression models trained using the relaxed lasso method on 
the 4 features that measure the amount of equation work and on the 37 other features. 
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Chapter 6. Discussion  

 The analysis summarized in in Table 9 indicates that the Temporal Organization 

features are the most predictive of student performance.  When pairs of feature subsets 

were analyzed, combining the Spatial Organization features with the Temporal 

Organization features provided the greatest predictive ability, reaffirming our intuition 

that both the spatial and temporal organization of the work are indicative of performance.  

For example, it is not surprising that out-of-order work is negatively correlated with 

performance. 

 Interestingly, the Cross-out features did not have any useful ability to predict 

performance.  For example, for 10 of the 13 problems, stepwise linear regression found 

that no Cross-out feature had a statistically significant predictive ability (Table 15).  We 

believe that cross-outs may still provide important information about a student’s 

performance, but our features are ineffective.  For example, our current features measure 

the absolute number of cross-out gestures and crossed-out strokes.  It may be more useful 

to normalize these features by the total number of strokes in the solution to provide a 

measure of the fraction of the work that was corrected.  Similarly, it is likely that other 

properties of cross-outs may make useful features such as the area of a page that is 

crossed out or the time in the sequence of activities at which the cross-outs occur. 

The regression models from the relaxed lasso method explained between 18% and 

65% of the variance in student performance on individual exam problems (Table 10).  

This large variation in the coefficient of determination suggests that differences in 

problem type and difficulty may affect the predictive ability of our approach.  
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Interestingly, the regression models had the best predictive ability on the problems with 

low average scores (Figure 15).  One might expect that this was the result of a high 

degree of variation in student performance on such problems.  However, as illustrated in 

Figure 16, there is little correlation between the variance in the scores and the accuracy of 

our models.  More specifically, there is little correlation between the standard deviation 

of the scores and the coefficients of determination of our regression models.  These 

results suggest that it may be possible to design problems for which our techniques are 

better able to predict performance and thus are better able to provide assessment results to 

the both the students and the instructor.  However, developing principles for designing 

such problems will take additional research. 

 
Figure 15: The R2 values of regression models trained using the relaxed lasso method 
plotted verses the mean of scores on a problem (values are from Table 10).  A linear 
least-squares regression line is shown with its corresponding R2 value. 
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Figure 16: The R2 values of regression models trained using the relaxed lasso method 
plotted verses the standard deviation of scores on a problem (values are from Table 10).  
A linear least-squares regression line is shown with its corresponding R2 value. 

 Our current techniques examine student performance on individual exam 

problems considered in isolation.  We may be able to provide better assessment results by 

tracking individual students throughout a course.  For example, building models that 

simultaneously consider multiple exams and assignments may allow us to determine if a 

student’s understanding is improving with time.  In fact, it may be possible to explicitly 

model a student’s development during a course.   

The analysis in Section 5.3 revealed that the most important features for 

predicting performance all capture aspects of the amount of equation work in a solution.  

Furthermore, the analysis in Section 5.4 indicated that, taken together, the four features 

that directly measure the amount of work on equations can explain 34% of the variance in 

performance.  To gain insights into the power of these features, we informally examined 

a few examples of student work.  We found that it was not uncommon for a student to 
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achieve a low score on a problem because he or she oversimplified the problem setup, 

enabling an incorrect solution to be obtained with little equation work.  Similarly, other 

students scored low because they failed to construct many equations, likely due to a lack 

of time, understanding, or both.  It appears that a student who produces the necessary 

amount of equation work is more likely to produce the correct answer.  This simple fact 

enables a very inexpensive means for providing a rough assessment of student 

performance.  

Our analysis of the most important and most significant features in Chapter 5 

presents a profile of a high-performing statics student.  Such students tend to spend large 

portions of their effort working on equations rather than free body diagrams (Figure 9 and 

Figure 13).  Similarly, they tend to cover more of the page with equation work than with 

free body diagram work (Figure 11).  They also tend to complete each problem without 

switching to other problems mid solution (Figure 9).  Although no single Spatial 

Organization feature was consistently selected by the regression techniques, it appears 

that high performing students tend to work from the top of the page to the bottom without 

returning to add additional work to earlier sections of the page (Figure 10).  When they 

do revise their work, they tend to do so soon after the original work was written (Figure 

10).  Students who do not match this profile may need extra guidance in the course.  

The variation in the features selected for various problems is due in part to the 

relaxed lasso’s attempt to select the best features out of a set of correlated features.15  

Newer regression methods such as the random lasso18 method or the forward-lasso 

adaptive shrinkage (FLASH)19 method may provide more stable selection of features 
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without sacrificing predictive ability.  We may also be able to improve the stability of the 

feature selection by simplifying the feature set.  For example, the Out-of-Order features 

were all negatively correlated with performance (Figure 10), and thus could be combined 

into a single feature.  Likewise, the Earlier-Neighbor features could be combined into two 

distinct features based on the positive and negative coefficients demonstrated. 
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Chapter 7. Conclusion 

We have examined how the organization of a student’s solution to a problem 

relates to the correctness of the work.  In this study, students in an undergraduate statics 

course completed all of their work (homework, quizzes, and exams) using digital pens 

that recorded the work as time-stamped pen strokes.  We characterized the solution 

history of each problem with a number of quantitative features describing the 

organization of the work.  Regression models revealed that, on average, about 43% of the 

variance in student performance could be explained by these features.  Additionally, the 

Temporal Organization features were the most predictive of performance. 

Our examination of the predictive ability of our features presents a profile of a 

high-performing statics student.  For example, such students tend to spend more effort on 

equations than on free body diagrams, they tend to complete each problem without 

switching to other problems mid solution, and they tend to work from the top of the page 

to the bottom without returning to revise earlier work.  Students who do not match this 

profile may need extra guidance in the course.   

This work is a first step at building techniques that can provide automated 

assessment of performance from handwritten student work.  Our results demonstrate that 

the temporal and spatial organization of a student’s work is indeed indicative of 

performance.  The features that we have developed have produced promising results.  

However, we believe that it may be possible to provide even better assessment by 

developing new features that capture other properties of the solutions histories.   While 

our work has focused on engineering statics, we expect that these techniques will 
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generalize to other domains for which problem solutions include both diagrams and 

equations.  
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Appendix A. Descriptive Statistics of the Features 

 This appendix contains descriptive statistics of each feature, as well as the score, 

for each exam problem.  More specifically, the mean and standard deviation for each are 

contained in the following tables. 
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Features Midterm 1 Midterm 2 Final Exam 
Mean Stdev Mean Stdev Mean Stdev 

FBD Effort 50.42 18.51 60.36 20.41 48.67 20.91 
Equation Effort 95.87 37.50 104.46 39.33 99.62 39.77 
Break 245.33 41.93 226.53 43.71 244.15 48.12 
Other-Problem  0.96 1.29 0.85 0.92 0.84 1.00 
Entropy 0.61 0.08 0.61 0.10 0.59 0.11 
Complexity 99.71 11.69 104.72 13.19 98.31 14.99 
FBD to Equation Activity Change 7.59 4.78 10.18 5.64 8.64 5.49 
Equation to FBD Activity Change 7.10 4.88 9.83 5.62 8.21 5.54 
Num Small Breaks 84.76 32.43 98.20 39.73 79.65 38.23 
Num Medium Breaks 5.46 3.10 4.66 2.98 4.45 3.24 
Num Large Breaks 0.52 0.87 0.35 0.62 0.59 0.94 
Out-of-Order-10-20 0.19 0.09 0.21 0.11 0.19 0.10 
Out-of-Order-20-30 0.10 0.08 0.11 0.09 0.09 0.08 
Out-of-Order-30-40 0.07 0.07 0.06 0.07 0.05 0.06 
Out-of-Order-40-50 0.04 0.06 0.04 0.05 0.03 0.06 
Out-of-Order-50-60 0.03 0.06 0.02 0.05 0.02 0.04 
Out-of-Order-60+ 0.05 0.09 0.04 0.09 0.04 0.09 
Earlier-Neighbor-10-20 0.24 0.11 0.26 0.11 0.25 0.12 
Earlier-Neighbor-20-30 0.18 0.10 0.18 0.09 0.19 0.12 
Earlier-Neighbor-30-40 0.12 0.09 0.11 0.08 0.11 0.09 
Earlier-Neighbor-40-50 0.08 0.07 0.06 0.06 0.07 0.07 
Earlier-Neighbor-50-60 0.06 0.06 0.04 0.05 0.04 0.05 
Earlier-Neighbor-60+ 0.09 0.10 0.05 0.07 0.06 0.09 
Num FBD Clusters  2.87 1.91 4.05 2.29 3.69 2.28 
FBD Revisits 8.44 5.90 9.26 6.33 7.54 5.82 
FBD Revisit Strokes  0.16 0.12 0.15 0.13 0.12 0.10 
Num Equation Clusters 2.75 1.55 3.33 1.79 3.08 1.79 
Equation Area Fraction 0.66 0.14 0.62 0.16 0.66 0.15 
Equation Revisits 3.89 4.36 5.81 5.50 5.32 5.45 
Equation Revisit Strokes 0.32 0.27 0.33 0.24 0.34 0.25 
FBD Strokes Crossed-Out  23.91 27.49 25.89 26.67 19.87 24.75 
Equation Strokes Crossed-Out  56.34 68.33 57.04 58.41 53.57 70.10 
Big-Cross-Outs  1.82 2.03 2.19 2.41 1.78 2.08 
Typo-Cross-Outs  29.24 26.33 39.81 37.78 30.80 31.66 
PS-Cross-Outs 62.41 84.84 54.95 64.75 54.80 94.14 
Median FBD Stroke Length 127.13 48.00 131.09 45.36 138.47 49.29 
Median Equation Stroke Length 115.67 28.41 109.82 29.71 118.30 33.73 
Median Cross-Out Stroke Length 720.70 501.7

 
760.89 447.9

 
842.26 665.7

 Num FBD Strokes 165.40 87.04 205.41 106.3
 

157.71 90.50 
Num Equation Strokes 432.58 228.6

 
528.45 281.7

 
457.81 277.4

 Num Cross-Out Strokes 13.98 10.71 14.79 11.56 12.57 12.51 
Score 0.64 0.28 0.61 0.31 0.74 0.25 
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Features Midterm 1 
Problem 1 

Midterm 1 
Problem 2 

Midterm 1 
Problem 3 

Mean Stdev Mean Stdev Mean Stdev 
FBD Effort 49.46 19.46 49.89 18.30 51.91 17.79 
Equation Effort 102.43 33.06 79.46 32.18 105.58 41.27 
Break 239.81 37.65 262.26 39.79 234.05 43.09 
Other-Problem  0.89 1.19 1.20 1.28 0.80 1.38 
Entropy 0.60 0.08 0.63 0.09 0.60 0.08 
Complexity 99.46 10.52 97.13 12.71 102.52 11.20 
FBD to Equation Activity Change 7.00 4.22 7.28 4.20 8.49 5.67 
Equation to FBD Activity Change 6.46 4.35 6.87 4.30 7.98 5.77 
Num Small Breaks 86.59 25.61 69.67 29.82 97.91 34.95 
Num Medium Breaks 5.20 3.28 5.54 2.90 5.66 3.11 
Num Large Breaks 0.60 1.03 0.47 0.68 0.49 0.86 
Out-of-Order-10-20 0.19 0.08 0.19 0.09 0.19 0.09 
Out-of-Order-20-30 0.11 0.07 0.11 0.08 0.09 0.08 
Out-of-Order-30-40 0.07 0.06 0.08 0.07 0.05 0.07 
Out-of-Order-40-50 0.04 0.06 0.04 0.06 0.04 0.06 
Out-of-Order-50-60 0.04 0.07 0.03 0.05 0.03 0.05 
Out-of-Order-60+ 0.06 0.10 0.06 0.10 0.04 0.07 
Earlier-Neighbor-10-20 0.25 0.12 0.20 0.10 0.26 0.11 
Earlier-Neighbor-20-30 0.18 0.09 0.17 0.11 0.19 0.10 
Earlier-Neighbor-30-40 0.13 0.09 0.13 0.09 0.10 0.08 
Earlier-Neighbor-40-50 0.08 0.06 0.09 0.08 0.07 0.06 
Earlier-Neighbor-50-60 0.05 0.06 0.07 0.06 0.04 0.05 
Earlier-Neighbor-60+ 0.07 0.08 0.11 0.12 0.08 0.09 
Num FBD Clusters  2.62 1.62 2.63 1.84 3.36 2.16 
FBD Revisits 7.57 5.55 8.59 5.89 9.16 6.17 
FBD Revisit Strokes  0.14 0.10 0.19 0.14 0.16 0.12 
Num Equation Clusters 2.25 1.28 2.91 1.68 3.07 1.55 
Equation Area Fraction 0.70 0.12 0.61 0.14 0.68 0.14 
Equation Revisits 3.58 4.22 3.51 3.92 4.57 4.83 
Equation Revisit Strokes 0.34 0.29 0.28 0.26 0.33 0.25 
FBD Strokes Crossed-Out  23.97 30.74 26.35 29.75 21.44 20.92 
Equation Strokes Crossed-Out  63.41 79.89 44.51 58.34 60.99 63.83 
Big-Cross-Outs  1.97 2.19 1.52 1.68 1.98 2.16 
Typo-Cross-Outs  26.93 24.53 26.31 28.24 34.46 25.51 
PS-Cross-Outs 72.51 103.68 55.58 75.03 59.08 71.83 
Median FBD Stroke Length 119.76 48.16 132.88 53.45 128.80 41.09 
Median Equation Stroke Length 111.20 26.14 124.14 30.43 111.82 26.84 
Median Cross-Out Stroke Length 751.34 457.96 762.72 619.62 648.64 398.34 
Num FBD Strokes 154.01 82.56 157.87 85.70 184.27 90.23 
Num Equation Strokes 432.32 176.97 339.07 179.52 525.57 276.61 
Num Cross-Out Strokes 13.73 11.73 12.74 10.31 15.47 9.89 
Score 0.71 0.31 0.68 0.27 0.53 0.22 
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Features Midterm 2 
Problem 1 

Midterm 2 
Problem 2 

Midterm 2 
Problem 3 

Mean Stdev Mean Stdev Mean Stdev 
FBD Effort 63.97 21.12 58.38 20.56 58.70 19.20 
Equation Effort 112.98 38.26 93.50 46.40 106.80 29.29 
Break 213.63 42.71 240.11 47.87 225.96 36.08 
Other-Problem  0.92 1.01 1.13 0.88 0.52 0.73 
Entropy 0.62 0.09 0.59 0.13 0.62 0.08 
Complexity 108.31 14.01 100.76 13.36 105.05 11.02 
FBD to Equation Activity Change 12.68 5.55 8.73 5.71 9.10 4.79 
Equation to FBD Activity Change 12.35 5.52 8.37 5.63 8.75 4.83 
Num Small Breaks 127.33 36.89 81.00 34.97 86.12 29.65 
Num Medium Breaks 6.37 3.08 4.30 2.49 3.29 2.47 
Num Large Breaks 0.61 0.80 0.28 0.49 0.17 0.40 
Out-of-Order-10-20 0.22 0.10 0.19 0.11 0.23 0.11 
Out-of-Order-20-30 0.10 0.08 0.10 0.08 0.14 0.09 
Out-of-Order-30-40 0.05 0.06 0.07 0.08 0.06 0.06 
Out-of-Order-40-50 0.03 0.05 0.04 0.06 0.04 0.05 
Out-of-Order-50-60 0.02 0.05 0.03 0.05 0.02 0.03 
Out-of-Order-60+ 0.04 0.09 0.04 0.08 0.03 0.06 
Earlier-Neighbor-10-20 0.26 0.09 0.25 0.12 0.28 0.12 
Earlier-Neighbor-20-30 0.18 0.09 0.17 0.10 0.20 0.09 
Earlier-Neighbor-30-40 0.10 0.07 0.11 0.07 0.13 0.09 
Earlier-Neighbor-40-50 0.06 0.05 0.07 0.06 0.06 0.06 
Earlier-Neighbor-50-60 0.04 0.04 0.04 0.05 0.04 0.04 
Earlier-Neighbor-60+ 0.05 0.06 0.06 0.09 0.04 0.06 
Num FBD Clusters  4.80 2.33 3.67 2.29 3.67 2.05 
FBD Revisits 11.60 6.83 7.86 6.11 8.31 5.35 
FBD Revisit Strokes  0.14 0.10 0.19 0.17 0.13 0.10 
Num Equation Clusters 4.15 1.76 3.09 1.84 2.75 1.43 
Equation Area Fraction 0.62 0.13 0.59 0.21 0.66 0.12 
Equation Revisits 7.23 6.14 5.21 5.24 5.00 4.82 
Equation Revisit Strokes 0.36 0.22 0.34 0.26 0.30 0.24 
FBD Strokes Crossed-Out  31.35 28.74 25.11 26.43 21.21 23.85 
Equation Strokes Crossed-Out  71.55 66.03 51.46 52.54 48.07 53.35 
Big-Cross-Outs  2.47 2.47 2.09 2.52 2.02 2.21 
Typo-Cross-Outs  46.25 42.87 38.11 37.55 35.06 31.49 
PS-Cross-Outs 72.22 74.81 46.43 51.93 46.12 62.40 
Median FBD Stroke Length 124.56 38.43 141.44 50.80 127.37 44.65 
Median Equation Stroke Length 102.98 25.47 117.72 35.46 108.96 25.66 
Median Cross-Out Stroke Length 704.21 338.13 760.74 459.29 818.25 524.11 
Num FBD Strokes 257.62 103.78 184.06 110.93 174.35 82.87 
Num Equation Strokes 671.60 291.35 460.32 307.65 452.81 170.83 
Num Cross-Out Strokes 18.59 12.37 13.17 10.27 12.59 11.08 
Score 0.66 0.28 0.43 0.29 0.72 0.28 
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Features Final    
Problem 1 

Final    
Problem 2 

Final    
Problem 3 

Mean Stdev Mean Stdev Mean Stdev 
FBD Effort 44.57 17.22 43.41 16.64 46.96 17.38 
Equation Effort 87.79 33.61 123.39 36.04 71.86 22.96 
Break 260.53 37.14 222.80 38.90 274.91 30.62 
Other-Problem  1.08 1.16 1.11 1.12 0.91 1.03 
Entropy 0.60 0.10 0.55 0.09 0.64 0.08 
Complexity 95.09 13.17 105.49 11.21 90.67 12.04 
FBD to Equation Activity Change 6.57 3.80 9.88 6.44 5.83 3.41 
Equation to FBD Activity Change 6.14 3.85 9.38 6.49 5.35 3.54 
Num Small Breaks 73.55 27.61 117.92 36.93 55.28 22.25 
Num Medium Breaks 5.39 3.34 7.50 4.26 4.15 2.70 
Num Large Breaks 0.86 1.07 0.84 1.28 0.71 0.91 
Out-of-Order-10-20 0.18 0.10 0.18 0.09 0.18 0.10 
Out-of-Order-20-30 0.10 0.09 0.07 0.05 0.12 0.09 
Out-of-Order-30-40 0.05 0.06 0.03 0.05 0.07 0.07 
Out-of-Order-40-50 0.04 0.06 0.02 0.04 0.06 0.07 
Out-of-Order-50-60 0.02 0.04 0.01 0.04 0.03 0.06 
Out-of-Order-60+ 0.03 0.08 0.03 0.07 0.04 0.08 
Earlier-Neighbor-10-20 0.23 0.12 0.26 0.11 0.22 0.11 
Earlier-Neighbor-20-30 0.18 0.12 0.17 0.10 0.18 0.12 
Earlier-Neighbor-30-40 0.13 0.10 0.10 0.08 0.14 0.10 
Earlier-Neighbor-40-50 0.08 0.07 0.05 0.05 0.09 0.08 
Earlier-Neighbor-50-60 0.04 0.06 0.02 0.03 0.05 0.05 
Earlier-Neighbor-60+ 0.06 0.09 0.03 0.06 0.07 0.10 
Num FBD Clusters  2.91 1.79 4.27 2.71 2.35 1.24 
FBD Revisits 7.82 5.77 10.50 6.74 5.82 4.91 
FBD Revisit Strokes  0.13 0.10 0.10 0.07 0.15 0.10 
Num Equation Clusters 2.73 1.54 3.42 1.81 2.55 1.41 
Equation Area Fraction 0.64 0.16 0.75 0.11 0.58 0.13 
Equation Revisits 2.64 2.94 5.60 5.41 2.79 3.72 
Equation Revisit Strokes 0.28 0.27 0.40 0.25 0.20 0.22 
FBD Strokes Crossed-Out  18.30 23.12 28.34 29.65 17.45 23.86 
Equation Strokes Crossed-Out  47.33 53.59 97.89 104.03 34.17 56.01 
Big-Cross-Outs  1.75 1.59 3.05 2.76 1.13 1.66 
Typo-Cross-Outs  26.20 23.09 45.30 33.95 19.09 21.37 
PS-Cross-Outs 52.18 78.18 104.52 155.06 42.89 86.40 
Median FBD Stroke Length 136.83 55.25 125.32 40.32 151.90 46.46 
Median Equation Stroke Length 121.88 38.18 112.37 25.99 120.33 32.12 
Median Cross-Out Stroke Length 845.78 688.23 747.39 378.39 858.77 836.14 
Num FBD Strokes 143.11 76.56 194.89 99.42 121.36 57.73 
Num Equation Strokes 401.34 193.85 716.87 268.64 274.62 120.33 
Num Cross-Out Strokes 11.15 8.37 21.22 15.44 8.96 11.62 
Score 0.75 0.23 0.71 0.21 0.81 0.17 
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Features Final    
Problem 4 

Final    
Problem 5 

Final    
Problem 6 

Mean Stdev Mean Stdev Mean Stdev 
FBD Effort 63.36 21.74 56.24 16.79 34.88 17.37 
Equation Effort 107.10 31.26 128.18 36.14 77.18 36.42 
Break 221.58 38.51 207.10 40.64 282.43 43.47 
Other-Problem  0.65 0.97 0.74 0.94 0.81 0.87 
Entropy 0.63 0.08 0.59 0.07 0.56 0.15 
Complexity 104.35 10.00 107.50 11.17 85.34 16.55 
FBD to Equation Activity Change 9.60 4.55 11.50 5.61 5.45 3.27 
Equation to FBD Activity Change 9.11 4.59 11.16 5.67 5.07 3.34 
Num Small Breaks 90.41 31.18 108.84 32.71 47.98 23.05 
Num Medium Breaks 3.48 2.62 4.33 2.37 3.55 2.11 
Num Large Breaks 0.39 0.84 0.38 0.70 0.52 0.79 
Out-of-Order-10-20 0.24 0.11 0.19 0.09 0.19 0.11 
Out-of-Order-20-30 0.08 0.08 0.07 0.06 0.10 0.09 
Out-of-Order-30-40 0.04 0.06 0.03 0.05 0.06 0.06 
Out-of-Order-40-50 0.02 0.04 0.02 0.04 0.03 0.06 
Out-of-Order-50-60 0.01 0.04 0.01 0.02 0.02 0.04 
Out-of-Order-60+ 0.02 0.06 0.02 0.04 0.08 0.16 
Earlier-Neighbor-10-20 0.32 0.13 0.29 0.10 0.22 0.14 
Earlier-Neighbor-20-30 0.23 0.13 0.19 0.11 0.20 0.12 
Earlier-Neighbor-30-40 0.11 0.08 0.10 0.06 0.12 0.09 
Earlier-Neighbor-40-50 0.05 0.06 0.05 0.04 0.08 0.07 
Earlier-Neighbor-50-60 0.03 0.04 0.03 0.04 0.04 0.05 
Earlier-Neighbor-60+ 0.03 0.06 0.05 0.07 0.08 0.12 
Num FBD Clusters  4.04 1.86 5.02 2.52 2.73 1.60 
FBD Revisits 7.72 4.96 8.17 6.17 4.09 3.63 
FBD Revisit Strokes  0.12 0.09 0.11 0.12 0.11 0.10 
Num Equation Clusters 2.99 1.64 3.59 1.91 2.58 1.54 
Equation Area Fraction 0.64 0.12 0.70 0.13 0.66 0.17 
Equation Revisits 6.37 4.99 7.94 5.60 3.82 4.13 
Equation Revisit Strokes 0.36 0.23 0.42 0.22 0.32 0.28 
FBD Strokes Crossed-Out  20.90 23.94 25.09 26.32 12.05 17.22 
Equation Strokes Crossed-Out  54.97 53.54 67.83 77.00 30.41 43.36 
Big-Cross-Outs  2.18 2.11 2.49 2.33 0.84 1.17 
Typo-Cross-Outs  37.31 32.09 51.06 43.20 16.57 22.20 
PS-Cross-Outs 49.79 63.75 54.65 86.78 31.94 54.33 
Median FBD Stroke Length 147.23 47.36 124.97 42.25 161.58 59.16 
Median Equation Stroke Length 123.11 33.62 108.68 30.31 132.67 36.66 
Median Cross-Out Stroke Length 971.11 807.43 831.31 540.69 924.20 731.09 
Num FBD Strokes 183.61 85.52 220.70 91.01 84.53 53.17 
Num Equation Strokes 461.05 199.38 736.16 304.97 266.85 157.61 
Num Cross-Out Strokes 12.68 11.25 15.66 14.74 7.46 8.54 
Score 0.84 0.20 0.72 0.24 0.62 0.32 
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Features Final    
Problem 7 

Mean Stdev 
FBD Effort 50.37 25.34 
Equation Effort 100.86 41.79 
Break 241.64 49.92 
Other-Problem  0.55 0.77 
Entropy 0.58 0.12 
Complexity 99.06 15.59 
FBD to Equation Activity Change 11.50 6.36 
Equation to FBD Activity Change 11.14 6.36 
Num Small Breaks 61.75 26.52 
Num Medium Breaks 2.67 2.24 
Num Large Breaks 0.42 0.70 
Out-of-Order-10-20 0.20 0.10 
Out-of-Order-20-30 0.10 0.09 
Out-of-Order-30-40 0.06 0.07 
Out-of-Order-40-50 0.04 0.06 
Out-of-Order-50-60 0.03 0.05 
Out-of-Order-60+ 0.05 0.09 
Earlier-Neighbor-10-20 0.24 0.12 
Earlier-Neighbor-20-30 0.17 0.11 
Earlier-Neighbor-30-40 0.11 0.08 
Earlier-Neighbor-40-50 0.07 0.08 
Earlier-Neighbor-50-60 0.05 0.06 
Earlier-Neighbor-60+ 0.07 0.09 
Num FBD Clusters  4.51 2.44 
FBD Revisits 8.45 5.91 
FBD Revisit Strokes  0.13 0.13 
Num Equation Clusters 3.70 2.21 
Equation Area Fraction 0.66 0.17 
Equation Revisits 8.06 7.26 
Equation Revisit Strokes 0.38 0.23 
FBD Strokes Crossed-Out  16.52 24.11 
Equation Strokes Crossed-Out  41.17 61.38 
Big-Cross-Outs  1.00 1.38 
Typo-Cross-Outs  19.22 18.94 
PS-Cross-Outs 46.40 82.90 
Median FBD Stroke Length 122.89 38.65 
Median Equation Stroke Length 109.88 32.37 
Median Cross-Out Stroke Length 719.19 541.26 
Num FBD Strokes 151.72 85.32 
Num Equation Strokes 337.79 163.77 
Num Cross-Out Strokes 10.61 10.50 
Score 0.70 0.27 
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