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Abstract 

Species community distributions: the role of scale-dependent processes and imperfect detection 

by 

Marisa Morse 

Community ecology seeks to understand the assembly processes that structure the abundance, 

richness, and prevalence of species in the community. However, some major difficulties are that 

the effect of an assembly process can change between scales and that natural scales can be 

difficult to identify. The first two chapters of this dissertation aimed to understand the role of 

assembly processes across biologically defined scales. All empirical data used in this dissertation 

were previously collected on Palmyra Atoll (McLaughlin et al., 2023; McLaughlin, 2018), a 

national wildlife refuge located within the Remote Pacific Islands Marine National Monument. 

Chapter 1 examined the scale-dependent factors that influenced free-living arthropod species 

abundances across terrestrial spatial scales. We found evidence that of the island- or forest- 

specific covariates included in the model, only soil cation exchange capacity had population-

level effects on arthropod abundances. However, we found species-specific and higher-taxon 

level (“order”) responses to island size, nutrient input, and canopy type. We also explored how 

species residual associations changed with scale as a possible indicator of biotic interactions with 

narrowing scale. Chapter 2 focused on the effect of host traits on parasite component and 

infracommunities in marine sandflat fish species. Parasite species occurrence probabilities varied 

between and within host species, with parasite occurrences responding to host species generality, 

density, and host individual weight. Another major difficulty in ecological studies is sampling 

error when observing species communities. Few species distribution studies account for 

imperfect detection, but assuming that observations perfectly capture a community can lead to 

biased results and inferences. In the final chapter, we assessed a method to predict true 

communities based on estimated false-negative probabilities in 1000 simulated datasets. Based 

on this analysis, predicted communities were more accurate and shared more mutual information 

with the true community than the observed community. We then tested these methods in a case 

study using empirical data from Palmyra Atoll’s Hymenoptera community. 
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Chapter 1: Scale-dependent effects on terrestrial arthropod 

distributions on Palmyra Atoll 

1.1 Introduction 

1.1.1 Spatial scales on Palmyra Atoll 

Community ecology seeks to understand how assembly processes, such as environmental factors, 

biotic interactions, or neutral forces, impact species distributions. However, the effect of 

assembly processes will change between global, regional, or local scales (Garzon-Lopez et al., 

2014; Viana & Chase, 2019). For example, climatic variables, like mean temperature and 

precipitation, impact species distributions and abundances at global scales by imposing 

physiological limitations (Thomas, 2010; Araújo et al., 2005; Diamond et al., 2012; Kearney & 

Porter, 2009; Helaouët & Beaugrand, 2009; Harsch & HilleRisLambers, 2016). But the 

importance of temperature or precipitation may decrease at smaller scales. Instead, local 

community assembly will be driven by local factors such as the effect of windspeed on seed 

dispersal (Bullock & Clarke 2000; Heydel et al., 2014), soil fertility on plant diversity (Janssens 

et al., 1998; Tilman et al., 1996; Dybzinski et al., 2008; Holl, 1999), or habitat type (i.e. 

intertidal versus subtidal, mudflats versus grasslands). The nested structure of these processes 

means that communities observed at smaller scales have already been narrowed by processes 

impacting larger scales. Thus, the accumulation of assembly processes will lead to variation in 

species identities and abundances occurring at each scale (Levin, 1992). Studying the effect of 

scale can be a challenge because biologically relevant and distinct scales are difficult to identify 

(Stuber & Gruber, 2020; Pelosi et al., 2010; Bishop et al., 2002; Dormann et al., 2018). In 

addition, a species community dataset with replications across several scales can be laborious 
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and often infeasible to collect (Gauch, 1982; Marschall & Roche, 1998). As a result, most studies 

focus on a single scale (McGarigal et al., 2016). To discern the role of assembly processes 

between natural scales, we will examined terrestrial arthropod communities at three biologically 

defined spatial scales on Palmyra Atoll: a tree within a forest, a forest within an island, and an 

island within the atoll (Figure 1). 

Palmyra Atoll provides several advantages for understanding how assembly processes impact 

species distributions. First, terrestrial communities can be assessed at naturally defined spatial 

scales. At the largest scale, we have Palmyra Atoll itself, which houses all arthropods in the 

community. Palmyra is a 4km long atoll composed of around 30 islands (depending on tidal 

height) that vary in size and shape and surround a central deep-water lagoon. Unusually for an 

atoll, the islands are heavily forested. The bounds of forests within islands are well-defined by 

natural, but sharp shifts in dominant canopy type (Young et al., 2010). And nested within a forest 

are individual trees. Thus, our three hierarchical scales of interest are islands, forests, and trees. 

At each of these scales, we expect variation in arthropod distributions that can be explained by 

assembly processes at that scale. And because each of these scales are biologically defined, as 

opposed to quadrats or transects, the observed communities will be a direct reflection of natural 

processes, allowing more insight into community assembly. Another advantage of Palmyra Atoll 

is that it holds constant many factors known to influence species distributions. While the islands 

vary in size over several orders of magnitude, they are all collocated within 4km of each other, 

and none has an elevation higher than 2 meters. Thus, all sites experience similar disturbance 

regimes and exposure to large-scale precipitation and climate fluctuations. Palmyra also 

minimizes recent anthropogenic impacts. Urbanization and human disturbance are known to 

influence arthropod distributions in other systems, but aside from a few sporadic researchers, 
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Palmyra hasn’t maintained human habitation for several decades (Bang & Faeth, 2011; Fenoglio 

et al., 2020). Historically, Palmyra did not likely support permanent indigenous populations, but 

there is evidence of occasional Micronesian and Polynesian visits (Dawson, 1959; Wester, 1985). 

The US military occupied Palmyra during WWII, making several structural changes and likely 

introducing the many non-native arthropods (and rats) to the terrestrial community (Handler, 

2007). But since their departure in the 1960s, Palmyra’s species have been left to assemble under 

limited human activity. Palmyra Atoll was protected as a National Wildlife Refuge in 2001. And 

researchers that visit now must follow strict protocols to minimize the introduction and dispersal 

of non-native species (Hathaway & Fisher, 2010). As a result, Palmyra’s arthropod communities 

are not currently influenced by contemporary human disturbance. Another advantage of studying 

terrestrial species on Palmyra is that the community structure is relatively simple. Following the 

black rat eradication in 2011, no mammals exist in this system (Wegmann et al., 2012). Besides a 

few geckos, mollusks, and sea bird species, Palmyra Atoll’s terrestrial fauna is dominated by 

arthropods in qualitative abundance and overall richness (Handler et al., 2007). In some systems, 

arthropod distributions are influenced by other taxa through competition or predation 

(Gunnarsson, 1996; vanKlink et al., 2015; Moran & Hurd, 1997; Gunnarsson et al., 2009). 

However, interactions with other animal phyla likely have a small influence on arthropod 

distributions on Palmyra Atoll. Further simplifying the system, immigration of new species by 

natural processes is low because Palmyra Atoll is isolated by over 1000 miles from the nearest 

inhabited land mass. In sum, due to the distinct spatial scales, restriction of explanatory 

variables, system simplicity, and geographic isolation, Palmyra Atoll appears to be a suitable 

system to evaluate how the effect of assembly processes influence arthropod communities with 

changing scale. 
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Figure 1. Palmyra Atoll’s nested spatial scales and the predicted assembly processes that filter arthropod 

communities between each.  

 

1.1.2 Atoll Scale Species Pool 

At the largest scale, we have Palmyra Atoll which encompasses the entire species pool. The 

species present have already been filtered by large-scale processes like a tropical climate (low 

annual temperature variation and high annual precipitation), Palmyra’s remoteness, and small 

footprint. The native species have evolved in conjunction with one another and are adapted to the 

other native flora and fauna. However, native species on islands are particularly vulnerable to 

biological invasions because they evolved in geographic isolation, avoiding many forms of 



5 
 

predation and competition (Whittaker & Fernández-Palacios, 2007; de’Antonio & Dudley, 

1995). The native status for about 1/3 of Palmyra’s species is unclear and difficult to determine. 

Many arthropods present on Palmyra are widely distributed throughout the Pacific, and some are 

globally invasive tramp species, like Pheidole megacephala (the big-headed ant) (Passera, 2021). 

Previous surveys have estimated that ~86% of Palmyra’s arthropod species were accidental 

introductions and that ~89% of the species overlapped with Hawai’i (Handler et al., 2007; 

Nishida, 2002). These surveys documented 115 arthropod taxa present on Palmyra (Handler et 

al., 2007), and although extensive, were not comprehensive. Previous surveys have omitted 

entire Orders (e.g. Collembola, Thysanoptera) and misidentified members of taxonomically 

difficult groups (Blattodea). McLaughlin’s intensive sampling protocol more than doubled the 

most recent species count on Palmyra. Additionally, collaboration with taxonomists around the 

world has revised the native status of many species, with the result that the most abundant 

members of many Orders (Blattodea, Isopoda, Orthoptera) are not only native, but undescribed 

endemics (McLaughlin et al., 2023).   

Not all terrestrial consumers present on Palmyra are included in this analysis. Currently, 

Palmyra’s entire terrestrial community includes native birds, lizards, crabs, insects, and 

arachnids, but the data used here only include canopy-dwelling organisms. For example, 

terrestrial crabs are high biomass arthropods in this system (Howald et al., 2004), but they are 

not included here. Additionally, the collection methods may disproportionately sample some 

species over others (weak fliers vs. strong fliers). Despite these biases, this study analyzes 

relative species abundance so we can still gather insight as to factors that assemble communities 

at each of these spatial scales. 

1.1.3 Environmental Factors of the Island Scale 
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Many environmental factors are expected to structure species communities at the island scale. 

The classic theory of island biogeography focuses on island size and island distance from the 

mainland to predict patterns of species richness (MacArthur & Wilson, 2001). And the unified 

theory with relative species abundance expects that local abundance of a species is dependent on 

the number of species in the local community, and that relative abundance reaches an 

equilibrium depending on the source area (Hubbell, 1997). Because of this equilibrium, we do 

not expect that island size or distance from the mainland will universally impact relative 

population abundances on the island. However, the variance in species abundances depends on 

the rate of immigration, so as an island becomes progressively more isolated, rare species are 

expected to become rarer, while common species become more common (Hubbell, 1997). 

Therefore, we do expect species-specific responses with some species increasing in abundance in 

response to island size or distance, while others decrease in abundance. In this system, Palmyra 

Atoll is isolated with no nearby mainland to acquire new species from. However, Cooper Island 

contains the only functioning airstrip, deep-water dock, and living quarters, making it the most 

likely point of entry for non-native species. Cooper Island is also the largest island and contains 

all habitat types and (almost all) plant species that occur on other islands. Similar to a mainland, 

Cooper Island may function as a point-of-dispersal for new species to surrounding islands. For 

our study, island size and distance from Cooper were highly correlated, so we only include island 

size as a representative of both. 

 

Another environmental covariate expected to influence arthropod communities are nutrient 

subsidies on islands. On Palmyra Atoll, most sea birds prefer to roost on native plants resulting in 

higher guano deposits and nutrient inputs on certain islands (McCauley et al., 2012; Young et al., 
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2010). In other studies, arthropod communities have responded to high nitrogen densities with 

changes in structure and relative abundance (Wimp et al., 2019; Haddad et al., 2000; Ritchie, 

2000), and species-specific responses were partially explained by feeding groups. In the current 

study, we also expect that nutrient subsidies will alter arthropod communities with species-

specific effects. Some species will respond positively to increased nutrient subsidies, while 

others will respond negatively.  However, because of sea bird roosting preferences, nutrient 

subsidies are highly correlated to the proportion of canopy types on an island. Nitrogen density is 

positively correlated with the proportion of broadleaf native trees (Pisonia and Scaveola) on an 

island, and negatively correlated with the introduced coconut palm (Cocos nucifera). Therefore, 

the effects of nitrogen density may indirectly explain arthropod variation due to habitat 

proportions on the island. But, whether due to direct or indirect effects, we expect arthropod 

abundances to be influenced by increasing nutrient subsidies.  

1.1.4 Environmental Factors of the Forest Scale 

On Palmyra Atoll, individual forests (delineated by canopy type) are discretely defined creating 

homogeneity at local scales and heterogeneity at larger scales. As a result, forests on islands are 

an intermediate scale at which we expect assembly processes to operate. In other systems, 

vegetation type can be a predictor of arthropod communities with species demonstrating plant 

preferences (Antunes et al., 2008, Schaffers et al., 2008), and Palmyra’s arthropods should have 

habitat preferences as well. On Palmyra, Cocos nucifera is the most common forest type (~43%), 

followed by Scaevola sericea (~29.5%), Pisonia grandis (~12%), Terminalia catappa (~6.2%), 

and Pandanus fischerianus (Hathaway et al., 2011; Wegmann, 2005) (Figure 2). Three of these 

forest types were introduced to Palmyra, and we predict that plant origin will affect arthropod 

distributions. Some arthropod species currently on Palmyra are non-native (Handler, 2007), and 
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for these, we expect positive, negative, and neutral species-specific responses to plant origin. We 

expect native arthropods will have a positive response to native plants due to a shared 

evolutionary history. Additionally, as mentioned in the island scale, sea birds preferentially roost 

and nest in native broad-leaf canopies, which in-turn receive more guano. Therefore, canopy 

origin may also capture the variation in arthropod abundances as a result of nutrient input at the 

forest scale. Whether based on habitat preferences or nutrient input, we expect that plant origin 

will be a defining characteristic that structures abundances and identities of the arthropod 

communities found at the forest scale. 

Independent of nutrient subsidies, there are many soil characteristics expected to correlate with 

arthropod distributions on Palmyra Atoll. Energy enters an ecosystem through net primary 

production, and when net primary production is high, more individuals within a taxon are 

expected to be supported (Kaspari et al., 2000; Wright, 1983). Assuming that net primary 

production will be higher as a result of increased soil fertility (Malhi et al., 2004; Aragão et al., 

2009), Palmyra’s arthropod abundances are expected to increase in forests with more fertile soil. 

Soil fertility is an accumulation of many soil traits such as sediment size, pH, organic matter 

percentage, and cation exchange capacity.  Cation exchange capacity (CEC) is the soil’s ability to 

retain positively charged ions and is estimated based on many soil characteristics. When 

combined with other soil fertility measurements, it is a good indicator of soil quality and 

productivity (Ross & Ketterings, 1995). And in this system, CEC is correlated with soil pH, 

organic matter, and sediment size. Therefore, here we represent soil fertility using cation 

exchange capacity (CEC) which also serves as a proxy for other correlated soil traits. We expect 

arthropod abundances to increase with CEC at the forest scale due to higher soil fertility and net 

primary production. 
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Figure 2. A map of prominent forest types on Palmyra Atoll (Wegmann, 2005) 

1.1.5 Biotic Interactions of the Tree Scale 

Individual trees were the smallest spatial scale on which we measured community structure. 

Some analyses have found evidence of a reduced role of environmental forces and an increased 

role of biotic interactions at smaller scales (Warren et al., 2010; Bell et al., 2010; Nachman & 

Borregaard, 2010; Gotelli et al., 2010), and we expect this pattern as well. After environmental 

predictors outline the fundamental niche of a species, biotic interactions are expected to further 

structure the realized niche. Different types of biotic interactions may be detectable at different 

scales. Simulations suggest that negative interactions will be more detectable at small scales and 

positive interactions apparent across scales (Araújo & Rozenfeld, 2014). This is because if 

species positively interact, we expect co-occurrence patterns at all scales (Araújo & Luoto, 

2007). But negatively interacting species may cause local extinctions at small scales that may 

appear as coexistence at larger scales (Godsoe et al., 2015). But empirical studies have found 
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mixed results with no clear patterns of scale dependence (Bullock et al., 2000; Mod et al., 2020; 

Whittaker et al.,2001; McGill, 2010; Veech, 2006; Russell et al., 2006; Belmaker et al., 2015).  

To explore how biotic interactions may influence arthropod communities in this study, we 

compared species residual associations between and within scales. Residual associations are 

based on non-random patterns between the unexplained variance of a species pair after 

controlling for factors in the statistical model. Species residuals that are positively or negatively 

associated suggest that there is something other than environmental covariates or random effects 

included in the model that are driving the association patterns between species (Ovaskainen & 

Abrego, 2020; Ovaskainen et al., 2010). Because measured and scale-dependent unmeasured 

abiotic factors are accounted for, we suspected that some of these residual associations could be 

explained by biotic interactions between species that either enhance or inhibit one another’s 

abundances (Ovaskainen & Abrego, 2020; Mod et al., 2020). However, unmeasured assembly 

processes or spurious patterns, like stochastic events or sampling error, could lead to associated 

residuals as well (Wisz et al., 2013). To distinguish association patterns from randomness, we 

could compared observed species matrices against several null models (Gotelli, 2000; Gotelli & 

McCabe, 2002). Even so, it remains difficult to determine if residual associations are due to 

biotic interactions, environmental filtering (independent of the model’s random effects), or 

dispersal limitations. But we assume that some proportion of the detected residual associations 

within scales are a result of biotic interactions. Additionally, we acknowledge that these species 

comparisons are based on correlations and can only suggest interactions. In this study, to explore 

the role of biotic interactions with narrowing scale, we examined residual associations between 

and within each scale. Similar to the predicted patterns for biotic interactions, we expected 
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positive associations to be present across all scales, while negative associations would be most 

prominent at the tree scale. 

As an example, the most abundant arthropod taxa on Palmyra Atoll are ants, all of which are 

non-native. The 13 ant species found on Palmyra Atoll represented ~30% of the individual 

arthropods counted in this study. Among ant communities, competition is ubiquitous (Davidson, 

1998) and is an important process forming dominance hierarchies (LeBrun, 2005) and ant 

mosaics (Ribas & Schoereder, 2002; Sanders et al., 2007). Many ant species use aggressive 

behaviors that seem to hinder or facilitate the abundance, behavior, and spatial distribution of 

other ants (Hölldobler & Wilson 1990; Andersen et al. 1991; Andersen & Patel 1994). Based on 

the theory of island biogeography, we might expect more abundant ant populations to be found 

on Palmyra’s large and close islands, leading to positive co-occurrence between species on 

islands. We could also expect that, within those islands, the energy limitation hypothesis drives 

several ant species to positively co-occur in response to forest soil fertility. However, if two ant 

species negatively interact, we would expect a negative residual association at the tree scale. This 

means that, with all else constant, the two ant species would be less abundant when occurring 

together than when on trees without the other. Because ants (the most abundant arthropod taxon 

on the atoll), are likely to be affected by biotic interactions, we expect biotic interactions to be a 

process that influences many species of Palmyra’s arthropod community. Biotic interactions 

could be based on associations between predators and prey, competitors with a shared resource, 

or mutualists (ants with aphids or scale insects) (Wisz et al., 2013; Tilman, 1994; Stradler & 

Dixon, 2005; Kulikowski et al., 2020). Some species may demonstrate many positive or negative 

associations, suggesting a strong impact of biotic interactions, while other species will have 

mostly neutral associations, providing no evidence for interactions (Benkman, 2013; Ovaskainen 
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et al., 2010; Araújo & Rozenfeld, 2014). Additionally, we expect residual association patterns to 

shift in magnitude and sign between spatial scales depending on the effect of environmental 

covariates, random effects, unmeasured environmental traits, and biotic interactions. 

1.1.6 Arthropod Taxonomy 

Because species traits are acquired from a common ancestor, closely related species are expected 

to share more morphological and physiological traits. An overlap in inherited traits may lead to 

similar responses to environmental factors. However, these similar responses cannot simply be 

attributed to covariates because unmeasured species traits aren’t independent of one another. 

They are instead linked by phylogenetic distance. Thus, to avoid misinterpreting model outputs, 

we incorporated taxonomic groups to account for unmeasured and phylogenetically associated 

species traits when examining community organization. We expect that species within the same 

taxonomic group will have more similar traits, resulting in higher-taxon-level responses to 

environmental covariates.  

1.1.7 Approach 

In this study, we examined the interaction between assembly processes and arthropod community 

structure at three different spatial scales. To test our predictions, we analyzed arthropod 

abundance data on Palmyra Atoll at the island, forest, and tree scales. This study aimed to answer 

three questions. First, how do community environmental processes influence species 

distributions at increasingly narrow spatial scales? To answer this question, we built a 

hierarchical mixed model with trees nested within forests nested within islands. At the island 

scale, we expected arthropod abundances to have species-specific responses to island size and 

increase with nutrient subsidies. At the forest scale, we expected arthropod abundances to 
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increase with CEC and have species-specific effects in response to canopy origin. We also 

included random intercepts of all three spatial scales to account for unmeasured environmental 

traits. Second, how did taxonomic relatedness affect arthropod abundances? To answer this 

question, we nested “order”-specific and species-specific responses within the population effect 

of each covariate. We then analyzed their mean estimates and 95% credible intervals. Third, how 

might biotic interactions structure arthropod communities? To answer this, we estimated the 

number of positive and negative species residual associations at each spatial scale. Species 

residual association matrices examine unexplained variance after controlling for environmental 

covariates and random effects in the statistical model. We suspected that some of these residual 

associations were driven by biotic interactions between species pairs. We then compared residual 

association matrices across the island, forest, and tree to explore the influence of biotic 

interactions with narrowing scale, both in frequency and magnitude.  

1.2 Methods 

1.2.1 Field Sites and Data Collection 

This data for this study were collected from the terrestrial habitats of Palmyra Atoll. Located 

1680km south of Hawai’i, Palmyra Atoll is a US National Wildlife Refuge within the Pacific 

Remote Islands Marine National Monument. As part of an NSF DEB (1457371) sponsored 

project awarded to Hillary Young and Kevin Lafferty, McLaughlin et al., (2023) built a food web 

describing the terrestrial communities on Palmyra. The methods from this study included many 

species sampling techniques such as black light surveys, branch clippings, and point sampling. 

Another one of these sampling techniques was canopy fogging, in which researchers dispersed a 

pyrethrum-based insecticide (ExciteR 6% Pyrethrin) with a bio-diesel fuel carrier on tree 

canopies. Falling insects were collected in plastic funnels that sampled the column of air directly 
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above them. The contents of these funnels were pooled for each tree for a tree-level estimate of 

species relative abundance, and the species in the samples were counted and sorted to lowest 

possible taxonomic level. This study included 87 individual trees that were fogged across 15 

islets (McLaughlin et al., 2023). For the current study, we took advantage of this comprehensive 

fogging data to analyze the factors that influence arthropod distributions across spatial scales. 

McLaughlin shared this dataset and agreed to collaborate on this analysis. For a more detailed 

description of field methods and lab sorting, see McLaughlin et al. (2023). Measurements of 

island size/distance and forest soil traits are also described in McLaughlin et al., (2023). Nutrient 

subsidy measurements were based on data from Young et al., (2010). For forest origin, we 

classified 5 plant species as native (Pisonia grandis, Pandanus fischerianus, Tournefortia 

argentea, Barringtonia asiatica, and Scaevola sericea) and 3 as non-native (Cocos nucifera, 

Terminalia catappa, and Hibiscus tiliaceus). 

The observed dataset counted 102,870 individuals belonging to 246 species. Almost all were 

identified to the family level and 148 were identified to species. The most abundant species was 

the big-headed ant, Pheidole megacephala, which composed 21.6% of observed individuals. 23 

species observations were singletons. All species were nested within 22 taxonomic groups which 

consisted of mostly taxonomic orders. As an exception, ants and scale insects were particularly 

rich and abundant, and they were expected to respond to covariates unlike the other species in 

their taxonomic order. For this reason, we categorized Formicidae and Coccoidae separately 

from the rest of the Hymenoptera and Hemiptera and refer to this higher taxonomic group as 

“order”. The most abundant taxonomic group was Formicidae with 31,098 individuals, followed 

by Coccoidea with 21, 293 individuals. Dipterans were the most diverse taxonomic group with 

48 morphospecies represented by 3,068 individuals. The dataset sampled 87 trees in 49 forests 
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on 15 islands. The number of trees fogged in a single forest ranged from 1 to 7 with an average 

of 1.8. The number of forests sampled within an island ranged from 1 to 8 with an average of 3.2.  

1.2.2 Statistical Analysis and Model Specifications 

To understand how species distributions were affected with narrowing spatial scale, we built a 

hierarchical mixed model to analyze arthropod community data on Palmyra Atoll. We used a 

zero-inflated Poisson distribution with a log link and logit link function to describe arthropod 

abundances. The model took the form: 

yi ~ ZIPoisson (λi, πi) 

logit(πi) = 𝛼𝜋  

log(λi) = αi + β1i * Size + β2i * Nitrogen + β3i * CEC + β4i * Non-Native  

𝛼𝑖 = 𝛼𝑖 + 𝛼orderⅈ+ 𝛼speciesⅈ + 𝛼islandⅈ + 𝛼forestⅈ + 𝛼treeⅈ 
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Rspecies ~ LKJcorr (4) 

Rorder ~ LKJcorr (4) 

(𝜎𝛼species, 𝜎𝛽1species , 𝜎𝛽2species , 𝜎𝛽3species , 𝜎𝛽4species) ~ HalfCauchy (0, 2) 

(𝜎𝛼order, 𝜎𝛽1order , 𝜎𝛽2order , 𝜎𝛽3order , 𝜎𝛽4order) ~ HalfCauchy (0, 2) 

 

 

 

(σisland, σforest , σtree) ~ HalfCauchy (0, 2) 

α ~ Normal (0 , 3) 

β1 ~ Normal (0 , 1) 

β2 ~ Normal (0 , 1) 

β3 ~ Normal (0 , 1) 

β4 ~ Normal (0 , 1) 

where the response variable yi represented the observed abundance of an invertebrate species on 

a tree. πi estimated the probability of extra zeros and was modelled with a logit link function. λi 

was the expected count of a species on a tree and was modelled with a log link function. In the 

linear part of the model, the predictors included island size, island nitrogen input per day, forest 

soil cation exchange capacity, and forest plant origin. The estimated covariate effect on the 

population was described by regression coefficient βx. These covariates also had random slopes 

which estimated species-specific effects (β
𝑥,speciesⅈ

) nested within “order”-specific effects 
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(β
𝑥,orderⅈ

). Species-specific slopes and intercepts were modelled with a multivariate normal 

distribution with expected mean effects of zero. “Order”-specific estimates were also modelled 

with a multivariate normal distribution with expected values of zero. S described the covariance 

between levels within a random effect and R was the corresponding correlation matrix. To 

capture the nested spatial structure, we used additive random intercepts for each island, forest, 

and tree. The expected mean of the tree level intercept (αtree), forest level intercept (αforest), and 

the island level intercept (αisland) was zero. 

The prior distributions of all environmental covariates were assumed to follow a normal 

distribution with a mean of 0 and a standard deviation of 1. The prior distributions of intercepts 

were described by a normal distribution with a mean of 0 and standard deviation of 3 to allow for 

increased variance. Variance term priors had a half-cauchy distribution bounded at 0 with a scale 

parameter of 2. 

All numeric predictors were standardized to a mean of 0 and standard deviation of 1 before the 

analysis to improve chain convergence and model interpretation. This model was fit using the 

brm() function in the brms package in R (Bürkner, 2017) which uses ‘Stan’ for full Bayesian 

inference.  

To fit this model, we ran 4 MCMC chains with a warmup up period of 500 and total of 3000 

samples per chain, resulting in 10,000 post-warm up draws. We assessed chain convergence with 

potential scale reduction factor and effective sample size statistics. To evaluate and compare the 

predictive abilities of this model fit, we conducted a leave-one-out cross validation.  

To understand how environmental covariates impacted species distributions, we extracted the 

posterior samples of the population-level regression coefficients and calculated their estimated 
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means and 95% credible intervals. We examined the estimated standard deviations for each 

random effect (intercepts and slopes) to understand how much variation could be described by 

“order”, species, island, forest, and tree identities. We then extracted the posterior distributions 

for “order”-specific and species-specific intercepts and regression coefficients. We also extracted 

the island-specific, forest-specific, and tree-specific random intercepts. For each of these 

parameters, we calculated their estimated mean and 95% credible interval.  

To estimate the residual associations between species pairs, we used the residuals() functions 

from the brms package to extract 1000 residual estimates for each observation. We then used the 

CorrelationBF() function in the BayesFactor package in R to draw a posterior distribution of 

3000 correlation coefficients between the residual estimates of each species-species combination. 

Posterior distributions with 95% credible intervals that excluded zero suggested non-random 

correlations between species pairs. However, these correlations were based on thousands of 

estimates per species (1000 draws * # of sites), and the 95% credible intervals around the mean 

correlation coefficients were very narrow, spanning an average distance of 0.01. For this reason, 

we further required the 95% credible intervals to exclude -0.2 to 0.2 (instead of just 0). We chose 

this threshold because coefficients within this range provide weak, negligible, or non-existent 

evidence of a correlation (Dancey & Reidy, 2007; Chan., 2003; Akoglu, 2018). We repeated this 

process for all three spatial scales to estimate species residual associations on the island, forest, 

and tree. 

We then examined the species residual association matrix for each spatial scale to explore the 

role of biotic interactions. A residual association matrix illustrated species pairs whose 

abundances were correlated after controlling for predictors included in the statistical model. 

Other factors are likely driving these residual associations, and we suspected some biotic 
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interactions. However, residual associations can also arise due to unmeasured environmental 

traits that are independent of our scale-based random effects. By comparing these matrices, we 

hoped to reveal some species pairs that directly interact, influencing one another’s abundances.  

We counted the number of positive, negative, and neutral species pairs in each of the species 

residual association matrices to suggest possible biotic interactions. Then, to explore the role of 

biotic interactions with narrowing scale, we compared the frequency and magnitude of 

associations between islands, forests, and trees. For species-specific counts of positive and 

negative associations, we summed the mean correlation coefficients for an entire species row.  

All forest plots were created using the ggplot() function in the ggplot2 package in R. All 

heatmaps were created using the heatmap.2() function in the gplots package in R. And all 

histograms were created with the hist() function in base R. 

1.3 Results 

1.3.1 Computational Results 

Before inspecting the outputs of our statistical model, we assessed convergence and efficiency of 

the MCMC chains. All Gelman diagnostics (r-hats) were below 1.02 confirming chain 

convergence, and all bulk effective sample sizes (ESS) were at least 200. The smallest ESS was 

334, indicating reliable efficiency. We also evaluated pairs plots and correlation coefficients to 

confirm that no parameters had interacting estimates. Finally, we performed a leave-one-out 

cross-validation to assess model performance. 

1.3.2 Population, Order, and Species-Specific Effects 

We evaluated the community dataset using a mixed model to understand the effect of assembly 

processes on arthropod abundances. The overall population intercept had a mean estimate of -
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1.26 (95% CI [-2.16, -0.35]) (Table 2). We found no evidence that island size, island nutrient 

subsidies, or forest plant origin affected abundances at the population level with mean estimates 

0.29 (95% CI [ -0.28, 0.87]), -0.01 (95% CI [ -0.53, 0.49]), and -0.21 (95% CI [ -0.88, 0.49]), 

respectively. However, we did find evidence that forest CEC had a population-level effect with 

estimated mean 0.51 (95% CI [0.11, 0.89]).  

We further examined taxonomic standard deviations around the population-level effects which 

could indicate “order”-specific (Figure 3) or species-specific responses. The large estimated 

standard deviations around the population mean implied that “order” identity (1.51 (95% CI 

[0.97, 2.24])) and species identity (2.02 (95% CI [1.82, 2.24])) likely explained variation in the 

population-level intercept. Forest plant origin was the only covariate whose standard deviation 

(0.77 (95% CI [ 0.33, 1.32])) suggested “order”-specific responses. Standard deviations of island 

size (0.19 (95% CI [0.01, 0.50])), island nutrient subsidies (0.37 (95% CI [0.07, 0.73])), and 

forest CEC (0.27 (95% CI [ 0.04, 0.54])) did not indicate “order”-specific effects. However, 

species-based standard deviations suggested that species identity described variation around 

population means of all covariates. The species-based standard deviations around island size 

(0.85 (95% CI [0.74, 0.97])), island nutrient subsidies (1.07 (95% CI [0.94, 1.21])), forest CEC 

(0.90 (95% CI [0.79, 1.02])), and forest plant origin (1.51 (95% CI [1.32, 1.73])) were all high, 

suggesting species-specific responses.  

To further explore the large estimated standard deviations around the population means, we 

extracted the “order”-specific and species-specific responses for the intercept and corresponding 

covariates. The “order”-specific intercept estimates indicated that Psocodea, Formicidae, and 

Coccoidea were more abundant than the average taxonomic group, while Poduromorpha, 

Isopoda, and Diptera were less abundant than the average taxonomic group. The “order”-specific 
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effect of forest-plant origin implied that Thysanoptera were less abundant on non-native forests 

than expected by chance, while Isopoda were more abundant in non-native forests than expected 

by chance. The 95% credible interval ranges of the other 14 “order”-specific responses 

overlapped zero, meaning that there was not enough evidence to suggest that taxonomic 

groupings explained the observed variation. We then extracted the species-level posterior draws 

and found support for many species-specific responses. After summing the population-specific, 

taxonomic-group-specific, and 246 species-specific effects, island size had a positive effect on 

the abundance of 83 species and a negative effect on 16 (147 species did not respond to island 

size). 43 species responded positively to nitrogen deposits, while 37 responded negatively (167 

species did not respond to nitrogen deposits). Cation exchange capacity had a positive effect on 

74 species, but a negative effect on 13 (159 species did not respond to island size). Finally, we 

found evidence that 28 species were more abundant in non-native canopies while 46 were less 

abundant (172 species did not respond to canopy origin).  

Table 1. The hierarchical model parameter estimates 

  
Mean 

Estimate 

Est. 

Error 

Lower 

95% 

Upper 

95% 
Rhat 

Bulk 

ESS 

Population-Level Effects           

Intercept -1.26 0.46 -2.16 -0.35 1.00 1874 

Island Size 0.29 0.29 -0.28 0.87 1.00 3127 

Island Nutrient Subsidy -0.01 0.26 -0.53 0.49 1.00 2758 

Forest CEC 0.51 0.2 0.11 0.89 1.00 2563 

Forest Origin -0.21 0.35 -0.88 0.49 1.00 2499 

“Order” Identity Standard Deviations          

Intercept 1.51 0.33 0.97 2.24 1.00 1893 

Island Size 0.19 0.13 0.01 0.5 1.01 334 

Island Nutrient Subsidy 0.37 0.16 0.07 0.73 1.01 714 

Forest CEC 0.27 0.12 0.04 0.54 1.01 581 

Forest Origin 0.77 0.25 0.33 1.32 1.00 1405 

Species Identity Standard Deviations          

Intercept 2.02 0.11 1.82 2.24 1.00 1365 

Island Size 0.85 0.06 0.74 0.97 1.01 1115 
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Island Nutrient Subsidy 1.07 0.07 0.94 1.21 1.00 1474 

Forest CEC 0.9 0.06 0.79 1.02 1.00 1761 

Forest Origin 1.51 0.11 1.32 1.73 1.00 1732 

Island Identity Standard Deviation          

Intercept 0.55 0.25 0.08 1.1 1.00 1335 

Forest Identity Standard Deviation          

Intercept 0.23 0.16 0.01 0.59 1.00 873 

Tree Identity Standard Deviation           

Intercept 1.06 0.1 0.87 1.27 1.00 2074 

Family Specific Parameter           

zi 0.49 0.01 0.48 0.51 1.00 12813 

 

 

Figure 3. The “order”-specific mean estimates of the intercept and response to covariates. Blue estimates 

suggest that “order”-specific responses are more positive than the average population, while red estimates 

suggest that “order”-specific responses are more negative than the average population. Cells with an 

asterisk denote mean estimates whose 95% credible interval does not include zero.  

1.3.3 Scale Random Effects 
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To account for the hierarchical structure of the spatial scales and unmeasured environmental 

traits, we included nested random effects for trees within forests within islands. The estimated 

island-level standard deviation around the population-level intercept suggested some small 

variation in invertebrate abundances between islands with a 95% credible interval ranging from 

0.08 to 1.10. The forest-level standard deviation around the island-specific mean estimated little 

variation explained by forest identity. Further exploring the island-specific and forest-specific 

mean random intercepts revealed that all 95% credible intervals overlapped zero, providing no 

evidence for an effect (Figure 4). In contrast, the tree-level standard deviation around the forest-

specific mean effect suggested tree-specific variation with a standard deviation 95% credible 

interval between 0.87 and 1.27. We examined the tree-specific random effects and found that 12 

trees had higher community abundances than expected while 9 trees had less (and 66 trees were 

not different from the mean).  

 

Figure 4. Density plot of the (A) island-specific random effects and (B) forest-specific random effects. 

The 95% credible intervals of all island-specific and forest-specific random effects overlapped zero.  

 

1.3.4 Species Residual Associations 

To explore the influence of biotic interactions, we examined species residual associations both 

between and within islands, forests, and trees (Figure 5). Our residual association matrices 
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estimated 2403, 2283, and 2181 positively correlated species pairs and 30, 23, and 716 

negatively correlated species pairs at the island, forest, and tree scales respectively. As a result, at 

these same scales, we found no evidence for residual associations between 27702, 27829, and 

27238 species pairs (Table 3). Across scales, the number of positively associated species pairs 

represented between 8.0 to 7.2% of the cells in the association matrix. The number of negatively 

associated pairs represented 0.0% at the island and forest scale to 2.4% of cells in the tree scale 

association matrix. Although associations were rare, these results matched the predictions that 

positively associated pairs would be detectable across scales, while more negative associations 

would be detected at the smallest scale. In terms of magnitude, the species association estimates 

centered near zero ranging from -0.30 to 0.95 at the island scale, -0.30 to 0.95 at the forest scale, 

and -0.66 to 0.95 at the tree scale. And within the tree scale, 198 negative associations were of 

greater magnitude (less than -.3) than the most negative association in either the island or forest. 

When comparing the species pair estimates across scales, there was little difference between the 

island and forest association matrices, which was also supported by the small estimated standard 

deviation at the forest scale. Their average difference was 0.00 but species pair differences 

ranged in value from -.61 to .41 (Figure 6). The forest-level association matrix had fewer 

similarities compared to the tree-level matrix, with an average difference of 0.02 ranging from 

0.99 to -.97. From the forest to tree matrix, 0 associations changed from negative to positive and 

0 from positive to negative. 20 pairs remained negative and 1721 remained positive. 563 pairs 

changed from positive to no association, while 3 changed from negative to no association. 462 

pairs changed from a neutral to a positive association, while 696 changed from a neutral to a 

negative association. 26,671 associations remained neutral across scales. 
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Table 2. The count of species pairs that are estimated as positive, neutral, or negative in the residual 

association matrix for each spatial scale.   

 Species Residual Associations 

  Positive Neutral Negative 

Island 2403 27702 30 

Forest 2283 27829 23 

Tree 2181 27238 716 
 

 

Figure 5. Estimated residual-association matrices for species pairs at the (A) island, (B) forest, and (C) 

tree spatial scales.  
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Figure 6. The distribution of species pair differences between the (A) island and forest association 

matrices and (B) forest and tree association matrices.  

In the tree-association matrix, species had an average of 13.2 positive associations, 7.3 negative 

associations, and 224.5 neutral associations. The species with the highest number of negative 

associations was the big-headed ant, Pheidole megacephala, which had negative associations 

with 23.4 (9.6%) species (Figure 7). The scale insect, Aleurodicus disperses, had the second 

highest number of negative associations with 23.2 (9.5%), followed by an orb weaver, Neoscona 

theisi, with 19.9 (8.1%) negative associations. A ladybird beetle, Sticholotis ruficeps, had the 

highest number of positive associations with 27.1 (11.1%) pairs. This was followed by the 

cricket, Ornebius sp., with 25.0 (10.2%) positive associations, the ladybird, Rhyzobius 

lophanthae, with 24.4 (10.0%), and the goblin spider, Opopaea deserticola, with 24.0 (9.8%). 

The species pair with the highest estimated positive association was Collembola Morph C and 

Scymus sp. 1 (another ladybird), with an association coefficient of 0.95. This pair was followed 

by the association between Trigonotylus brevipes (a plant bug) and dark tip hemiptera morph 

with a positive estimate of 0.92. The species pair with the highest estimated negative association 

was Coccophagus ceroplastae (an aphelinid parasitic wasp) and Neoscona theisi (an orb weaver 

spider) that had an association coefficient of -0.66. This was followed by Coccophagus 

ceroplastae and Karnyothrips melaleucus (a thrip) which had a negative association of -0.63.  
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Figure 7. The 20 species with the greatest number of positive and negative associations at the tree level. 

The dotted lines illustrate the average number of positive/negative associations in the species community.  

 

1.4 Discussion 

1.4.1 Population, “order”, and species-specific effects 

Somewhat unexpectedly, arthropod populations only responded uniformly to one of the four 

large-scale abiotic community assembly processes we evaluated. Only CEC, an estimate of soil 

quality, solicited a positive correlation from arthropod populations. This effect occurred 

regardless of island size, forest type or nutrient deposition rate. This suggests that increasing soil 

quality has a bottom-up effect on arthropod populations at Palmyra. It also suggests that soil 

quality and availability may be the factor limiting total arthropod biomass in the system, a 

situation that makes sense on an atoll.  

Native status of the canopy was the only indicator that higher-level (order or similar) taxonomic 

groups responded to. Native status of groups like scale insects, may also indicate preferences for 
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introduced host plants. Though, this is not the only explanation. For example, Thysanoptera were 

less abundant in non-native forests, while the opposite was true for Isopoda, and it is not clear 

why. Another explanation is that our sampling methods may explain the relative abundance of 

some higher-level groups. 

With respect to variation in abundance among groups, it is important to consider that fogging is 

most effective at sampling canopy species but not all groups are found primarily in the canopy. 

The three groups that were over-represented in our samples are all strongly associated with trees. 

At Palmyra, bark lice (Psocodea) and scale insects (Coccoidea) are only found on trees, and due 

to the shallow soil horizon, most ant nests at Palmyra are in trees or in the rhizome mats of ferns. 

The three groups that are under-represented in our samples may not be well-sampled by fogging. 

Springtails (Podumorpha) and isopods (Isopoda) are strongly associated with soil habitats and 

more abundant in the litter layer on the ground than in the canopy. Diptera are likely abundant in 

the canopy, but as strong fliers more of them may have been able to escape our sampling prior to 

succumbing to the fog. Thus, variation among orders in this study is, in part, based on variation 

in the extent to which fogging captures different groups, more than on their relative abundances 

on Palmyra per se.  

There were strong, species-level responses to all the abiotic assembly processes we evaluated. 

40.2%, 32.5%, 35.4%, and 30.1% of the 246 species demonstrated species-specific responses to 

island size, island nitrogen deposits, forest CEC, and forest canopy type, respectively. Five times 

as many species responded to island size positively than negatively. Similarly, six times as many 

species preferred high quality soils (high CEC). Both trends are in line with predictions that 

larger islands, with higher quality soils should support larger populations of more insects. 

However, species responses to nitrogen deposition rates were more evenly split. This suggests 
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that about one-third of consumers are partitioning habitats based on nutrient availability and 

competitive ability. Lastly, as suggested at the “order”-level there appear to be strong preferences 

within certain groups for native and non-native canopies. For example, while present in all 

canopies, the native tree crickets strongly prefer native Pisonia and Tournefortia canopies. On 

the other hand, non-native cockroaches strongly prefer introduced Cocos canopies.    

1.4.2 Biotic Interactions 

Most observed species correlations were neutral. This suggests that many species in this study do 

not interact with one another directly or indirectly. Here we will focus on direct interactions (we 

discuss indirect interactions in a food web context below). To interact directly, two species must 

encounter each other and be compatible for interaction. Many species at Palmyra likely do not 

encounter each other because they do not overlap in microhabitat. At Palmyra, while they may be 

on the same tree, bark lice are generally found on the trunk and scale insects on the underside of 

leaves. Both were over-represented in our samples but both are unlikely to encounter each other 

outside of their microhabitat. If they did encounter each other, they would be unlikely to interact 

directly as neither is a compatible food source or competitor for the other (same tree different 

parts). The number of neutral correlations was similar across scales, but positive and negative 

correlations changed with scale. The number of positive correlations was consistently higher than 

negative correlations across all scales. But the number of positive correlations slightly decreased 

with narrowing scale, while the number of negative correlations increased as scale decreased. 

Negative correlations were stronger and 20-30 times more abundant than positive correlations at 

the smallest scale. 

The big-headed ant, Pheidole megacephala, was the consumer with the largest number of 

negative associations. This species also had the largest diet-breadth (generality) in the system, 
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which likely explains the high number of negative correlations if ants reduce prey of competitor 

density. The three species that had the strongest negative correlations with P. megacephala were 

all detritivores/scavengers that shared complete diet overlap. Additionally, P. megacephala, is a 

predator on each of their larval and juvenile stages. A < 1cm herbivorous snail had the next 

largest negative correlation, and P. megacephala is its main predator. P. megacephala’s strongest 

competitor, the stinging ant, Tetramorium bicarnatum, had the fifth largest negative correlation. 

These examples offer mechanisms to support how some negative associations with aggressive 

ants could be based on biotic interactions. 

The spiraling white-fly (Aluerodicus dispersus) also had a large number of negatively correlated 

species, and further exploration suggest that these were a result of interference competition and 

predator deterrence. Spiraling white-flies are widespread pests in the Pacific (Mani & 

Krishnamoorthy, 2002; Balikai & Pushpalatha, 2018), and are among the most abundant 

consumer species at Palmyra. They aggregate in large numbers on the underside of leaves, often 

covering plants in excessive amounts of white, flocculant, waxy secretions. This has a strong 

deterrent effect on both competitors and predators. 11 of the 12 strongest negative correlations 

with A. dispersus were generalist predatory arthropods. And six of the top 12 correlations were 

hunting spiders. This suggests that generalist predators might be deterred by the waxy secretions 

and that other prey are not found nearby. The major predators of white-fly at Palmyra are 

dragonflies which can avoid the waxy leaves by hawking them out of the air.  

While a few species had many negative correlations, many species had a few strong ones. The 

two strongest observed negative correlations were both associated with the parasitoid wasp 

Coccophagus ceroplastae. This wasp is a specialist parasitoid on Pulvinaria urbanicola, a scale 

insect found on native Pisonia trees. The orb-weaver spider is a direct predator of C. ceroplaste 
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and had the strongest negative correlation with it. Surprisingly, the thrip, Karnyothrips 

melaleucus also had a very similar negative correlation with C. ceroplaste. This thrip is a 

specialist predator on armored scale insects like Pulvinaria urbanicola. Karnyothrips melaleucus 

is a direct competitor with C. ceroplaste and an intraguild predator. K. melaleucus likely also 

attacks scales infected with C. ceroplaste larva – thus incidentally predating them. Negative 

correlations offer a mix of direct and indirect explanations, while positive correlations appear to 

be primarily indirect. 

The ladybird beetle, Sticholotis ruficeps, had the highest number of positive correlations of any 

species on Palmyra and is most abundant in introduced Cocos and native Tournefortia. S. 

ruficeps was positively correlated with both predators and herbivores. The two species it was 

most strongly correlated with were, like itself, predators on scale insects. The next two most 

positively correlated species were herbivores on the plants where it is most common. Next, was a 

small hunting spider similar in trophic position to S. ruficeps, and then another herbivore 

common to the same host plants. This points to the potential for competitors to be positively 

associated at some scales due to aggregation to a shared resource. 

1.4.3 Assumptions 

There were several assumptions that this analysis made about the community and the system. 

First, because the residual values were based on the effect of environmental predictors and nested 

scales, the resulting residual associations were dependent on the selected covariates and random 

effects. Although we evaluated several likely explanatory factors, and believe others (ex. 

temperature, rainfall, humidity, sunlight, tree height) to vary little, smaller scale effects, and 

particularly microhabitats, could be sources of unmeasured variation. Including other 

environmental variables would result in different residuals for each species, which could lead to 
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different association patterns and predicted biotic interactions. In our analysis, the environmental 

predictors and spatial scales that we chose are ecologically justified, however we acknowledge 

that other factors might better explain variation in species distributions. Another assumption is 

based on the additive structure of the random effects. The nested nature means that predicted 

species-specific effects were expected to have similar effects as their taxonomic “order”, and 

“orders” were expected to follow the population responses. Rare species experienced the largest 

amount of shrinkage because they provide the model with the least amount of information. As a 

result, species-specific effects, especially of rare species that matched the “order”-specific or 

population-specific response, should be interpreted with caution.  

1.5 Conclusion 

In conclusion, our hierarchical model of empirical observations demonstrated the effect of scale-

specific assembly processes on species communities at three naturally-defined spatial scales. 

Arthropod populations tended to be more abundant on islands with more nutrient subsidies, 

while arthropod species varied in their response to island nutrient deposits, forest soil fertility, 

and canopy origin. Residual associations also suggested that biotic interactions impacted the 

distributions of some species, but not others. Although most negative associations were 

potentially due to negative interactions between predators and prey, or between competitors, 

there were also positive associations between predator and prey and between competitors. Such 

interactions might be discernable by considering even smaller spatial scales where species 

interact. For future directions, we could explore the effect of functional traits on species 

responses to assembly processes. For example, functional feeding groups (Wimp, 2019; Lima et 

al., 2022), origin (native or non-native) (Buckley & Catford, 2016; Sorte et al., 2013), or 

dispersal abilities (winged or non-winged) (Carlquist, 1974; As, 1984) may help explain species-
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specific responses. We could also examine the impact of assembly processes at the atoll scale. 

The factors included in this study may not universally impact distributions on other atolls as 

there will be variation in community diversity and functionally. Therefore, comparing our results 

to similar analyses from other atolls could be an insightful next step.  
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Chapter 2: The influence of host traits on parasite communities in 

Palmyra Atoll’s sand flat fish  

Introduction 2.1 

2.1.1 Biological Scales and Parasite Communities 

A fundamental aim of parasite ecology is to understand the factors that structure parasite 

communities. However, these factors (like host density, trophic level, or body mass) will have 

scale-dependent effects with some influencing parasites found in a host species and others 

determining parasites in a host individual. This nested structure means that parasite communities 

observed at smaller scales have also been narrowed by processes impacting larger scales (Poulin 

& Valtonen, 2001; Valtonen et al., 2001).  Few studies focus on factors that structure parasite 

distributions at more than one scale, and the ones that do target a selection of parasites or hosts in 

an ecosystem (Benavides et al., 2012; Mwita & Nkwengulila, 2008; Vignon & Sasal, 2010; 

Pence, 1990; Fuentes et al., 2004; Linardi & Krasnov, 2013). Additionally, many studies seeking 

factors that impact parasite distributions use datasets compiled from many different sources 

across large geographic or temporal ranges (Takemoto et al., 2005) which could add biases and 

variability to the analyses. These studies do not truly reflect the distribution of the parasite 

species pool available to infect a sympatric host community in a given location. In this study, we 

examined how parasites of a single compound community were distributed throughout a fish 

host community at both the host species and host-individual scales. We used a multi-level model 

to assess the effect of host traits on parasite occurrences across and within (almost) all fish hosts 

of a sand flat habitat.  
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Unlike free-living species, parasite communities are biologically defined units of replication that 

are intimately housed within hosts (Hechinger, 2013). They can be defined by three hierarchical 

scales of community organization (Bush et al., 1997): the compound community, the component 

community, and the infracommunity. The compound community refers to the ensemble of all 

parasite species infecting a sympatric community of host species. The component community 

encompasses all parasite species infecting a host population from a single species. And the 

infracommunity includes all parasite species infecting a single host individual. These biological 

scales are nested such that a host’s infracommunity can exclusively contain a subset of parasites 

occurring in that host’s component community, and a parasites’ occurrence probability can differ 

between these scales. Some studies that examine factors structuring parasite community 

distributions have been performed on the infracommunity (Guégan & Hugueny, 1994; Poulin, 

1996; Fernandez & Esch, 1991, Rohde, 1998), whereas other studies have focused on the 

component community (Poulin, 1995; Fernandez & Esch, 1991; Abu-Madi et al., 2000; Guegan 

& Kennedy, 1996; Poulin, 1997; Locke et al., 2014). And a few have considered structure at both 

scales (e.g. Lafferty et al., 1994; Goater et al., 1987). In this study, a comprehensive dataset 

allowed us to examine how parasites in a compound community were distributed throughout the 

component and infracommunities of Palmyra Atoll’s sandflat fishes. We explored the host traits 

that influenced parasite communities across and within these two biological scales. 

2.1.2 Host Ecological Characteristics and Taxonomy 

Parasite organization at each scale should depend on the encounter and compatibility rates 

between hosts and parasites (Euzet & Combes, 1980; Lagrue et al., 2011). And these rates are 

determined by ecological traits and evolutionary history of both parasite and host. Variation in 
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these characteristics should result in variation of parasite occurrences at each scale. In this study, 

the assembly processes of interest were host species and host individual traits.  

Similar to how free-living species are affected by abiotic factors in their surrounding habitat, 

parasite occurrences should correlate with variation in several host-species characteristics. Host 

characteristics that represent differences in host behavior, like trophic level, will alter the 

encounter rates and identities of acquired parasites (Ranta, 1992; Poulin & Fitzgerald, 1989; 

Timi et al., 2011). Some traits, like vulnerability to predation, diet generality, and habitat density, 

describe how a host species might be connected with other potential fish host species in the 

system, alluding to the likelihood of being included in a parasite life cycle (Lafferty et al., 2006; 

Guegan & Kennedy, 1993; Hudson et al., 1992; Benesh et al., 2021). And individual host body 

metrics, like length or mass, serve as a proxy for exposure rates and host age, both of which will 

correspond to parasite accumulation (George-Nacimento et al., 2004; Poulin & George-

Nacimento, 2007; Guegan et al., 1992; Poulin & Valtonen, 2001). Several of the above host 

characteristics will have scale-dependent effects on parasite occurrences. As an example, host 

species living at high population densities are expected to have higher component community 

richness (at least for directly transmitted parasites) than low density host species (Morand & 

Poulin, 1998). This is because high density populations provide more pathways for parasites to 

invade hosts (Anderson & May, 1978) and can more readily sustain adult parasite populations 

(Bell & Burt, 1991). However, because individuals of a specific host species will experience the 

same density, host density cannot explain differences in infracommunity composition. Instead, 

parasites occurring in the infracommunity may be more influenced by host traits like individual 

body mass. Therefore, the effect of some host characteristics may be important at one biological 

scale, but not another. Here, we expected that host species traits (like host density, mean size, or 
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trophic level) should affect parasites within the component community, whereas host individual 

traits (like individual body size) should affect parasites within an infracommunity. 

Host taxonomy could play a dual role in organizing parasite communities. Because hosts that are 

closely related have more behavioral traits in common (Poulin & Rohde, 1997; Lagrue et al., 

2011), closely related hosts were expected to acquire more similar parasite communities simply 

based on encounter rates. And, since parasites tend to co-evolve with their hosts (Anderson & 

May, 1982), overlap in parasite compatibility should also elicit parasite community similarity in 

closely related hosts. Because of host trait overlap and host-parasite co-evolution, not accounting 

for host taxonomy in a parasite community model could lead to biased inference and predictions 

(Poulin, 1995). As a result, we accounted for host family in our analysis to capture variation 

explained by similarities between fish phyla. In our statistical model, we grouped hosts by 

taxonomic family and allowed variation of a random intercept for each. 

2.1.3 Parasite Species-Specific Responses 

Host characteristics were not expected to affect all parasite species uniformly. Instead, the effect 

may be parasite species-specific. As an example, host generality (diet-breadth) was expected to 

positively correlate with richness of parasites that are acquired through diet because ingesting a 

wider variety of diet items increases a host’s likelihood of encountering a novel parasite species 

(Guegan & Kennedy, 1993). However, because host generality is a metric of diet, it should not 

affect directly acquired parasites. Thus, parasite transmission strategy may influence a parasite’s 

response to host diet generality. In this study, we examined species-specific responses to host 

traits. We also completed a post-hoc analysis to explore if parasite life stages may influence their 

species response to host traits.  
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2.1.4 Approach 

In this study, we examined the interaction between host traits and parasite occurrences at two 

biological scales: the component community within a host species and the infracommunity 

within a host individual. This study analyzed parasite occurrence data from 33 fish host species 

living in Palmyra Atoll’s intertidal sand flats. We aimed to address 4 questions: 1) how do 

parasite occurrences change across biological scales, 2) how do scale-specific host traits affect 

parasite occurrences in the component and infracommunities, 3) how does host taxonomic family 

influence parasite species occupancy, and 4) can parasite species-specific responses to host traits 

be explained by parasite life stages? For the first three questions, we used a hierarchical 

occupancy model to estimate occurrence probabilities and the effect of host traits and host family 

on parasite occupancy. We predicted that component community occurrence probability would 

increase with host generality (Rasmussen & Randhawa, 2018; Locke et al., 2014), species body 

mass (Guégan et al., 1992; George-Nacimento et al., 2004; Poulin & George-Nacimento, 2007), 

habitat density (individuals per hectare) (Morand & Poulin 1998), and trophic level (Lafferty et 

al., 2006; Chen et al., 2008). We expected that infracommunity occurrence probability would 

increase with individual weight (g) (Guégan & Hugueny, 1994). We also predicted that host 

species within the same family would share more parasites such that host family would explain 

variation between component communities (Poulin & Rohde, 1997; Lagrue et al., 2011; 

Anderson & May, 1982). For the last question, we conducted a random effects post-hoc analysis 

to explore if parasite life stages could explain the estimated species-specific responses to host 

traits.  

2.2 Methods 

2.2.1 Study system and study design 
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This study was conducted in the intertidal sand flats of Palmyra Atoll. Located 1680 km south of 

Hawai’i, Palmyra Atoll became a US National Wildlife Refuge in 2001 and is part of the Pacific 

Remote Islands Marine National Monument established in 2014. It is a remote and relatively 

pristine coral atoll that has never supported permanent human habitation or a commercial or 

subsistence fishery. As a result, Palmyra contains a trophically intact marine community with a 

high apex-predator biomass (Stevenson et al., 2007). Studies have found that fishes, and most 

notably sharks, from Palmyra have higher parasite richness, prevalence, and abundance than 

fishes from a nearby, heavily fished island (Lafferty et al., 2008).  

Palmyra Atoll contains 3.14 hectares of intertidal sandflats that provide various ecosystem 

services and habitat for a rich species assemblage. McLaughlin (2018) examined Palmyra Atoll’s 

intertidal sand flat food web. The resulting data were of unprecedented scope and quality, 

surveying parasites in 35 fish species, dissecting 642 fish individuals, and quantifying 70 parasite 

species. This comprehensive dataset provided us with the opportunity to analyze factors that 

affected parasite occupancy across multiple biological scales. McLaughlin agreed to share these 

data and collaborate on this analysis. Sites were distributed throughout the atoll’s lagoonal 

system and fishes were sampled by seine and spear. Site selection and study design details are 

described in McLaughlin (2018). 

2.2.2 Dataset and Data Collection 

Fish were dissected using a parasitological examination designed to detect most eukaryotic 

parasites. Details are outlined in McLaughlin (2018). The number of individuals sampled from 

each fish species ranged from 5 (Carangoides ferdau) to 63 (Valamugil engeli), with an average 

of 19. Because parasite life stages are expected to infect different host species, parasite species 

were further separated by life stage (adult, larva, metacercaria, cystacanth, or plerocercoid). This 
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resulted in 84 unique parasite species-stage identifications. Of the 2,772 possible fish species-

parasite stage links (33 x 84), 353 links were observed in dissections (Figure 1). Further, of the 

possible 53,928 fish individual-parasite stage links (642 x 84), 1,809 were observed in 

dissections. In total, this dataset counted 81,201 parasite individuals. 

 

Figure 1. A heatmap of the parasites and host links found in the raw observations 
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Fish trait measurements (average species weight and individual weight) and estimates (species 

generality, species vulnerability, species density) were outlined in McLaughlin (2018). In the 

original dataset, fish identifications and their traits were differentiated by life stage (i.e. adult and 

juveniles). However, life stages were not evenly sampled across fish species. Therefore, in this 

analysis, we merged adults and juveniles to represent the same species. This applied to 21 fish 

species. For fish species traits, we used adult values.  

2.2.3 Statistical Analysis and Model Specifications 

We used a Bayesian multi-level occupancy model to assess parasite presence/absence data in 

Palmyra Atoll’s sandflat fish species. We used a statistical model (Doser et al., 2022; Dorazio 

and Royle, 2005) that was originally designed to assess free-living species occurrence based on 

environmental factors within sites. In the original model framework, sites can be surveyed more 

than once for replicate samples, which is then used to estimate the detection probability of 

species at each site. However, the framework of this occupancy model can also be applied to 

parasites infecting host species. In our analysis, we modeled host-parasite links, with parasite 

species analogous to free-living species, host species serving as “sites”, and an infection 

representing a site-level occurrence/occupancy. Host individuals within a host species are 

replicates of the same “site” and correspond to a “visit” in traditional occupancy modelling. Host 

traits (both at the host species and host individual scale) are analogous to the environmental 

factors expected to affect occurrence probabilities at the site and visit scales. And finally, 

analogous to spatial distances among sites, host species that are close relatives are expected to 

share a more similar parasite community than distantly related hosts. From this model, we 

examined the differences between occurrence probabilities in the component community and 
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infracommunity. We estimated the effects of host species and host individual traits at both of 

these scales. We also evaluated parasite species-specific responses.  

The nested model was separated into two parts (the component community model and the 

infracommunity model), which takes the form: 

Component Community Model 

zij ~ Bernoulli (ψij) 

logit(ψij) ~ β0i + β1i DietGeneralityj + β2i BodyMassj + β3i HabitatDensityj + β4iTrophicLevelj + 

uif  

𝛽i ~ Normal (µβi, τβi
2) 

µβi ~ Normal (0, 2.72) 

τβi
2 ~ InverseGamma (0.1, 0.1) 

uif ~ Normal (0, σu
2) 

σu
2 ~ InverseGamma (0.1, 0.1) 

Infracommunity Model 

yijk ~Bernoulli (pijk zij) 

logit(pijk) ~ α0i + α1i * IndividualWeightijk  

αi ~ Normal (µαi, ταi
2) 

µαi ~ Normal (0, 2.72) 

ταi
2 ~ InverseGamma (0.1, 0.1) 

Where zij represented the true presence (zij = 1) or absence (zij = 0) of a host-parasite link 

between the ith parasite taxon in the jth fish species, and ψij was the expected probability of zij. 𝛽i 

was a vector of regression coefficients for each host species-specific covariate predictive of ψi. 

Covariates of ψi included fish species generality, species body mass, habitat density (individuals 

per hectare), and adjusted trophic level. Community-level regression coefficients were modeled 

using a normal distribution with mean µβi and variance τβi
2. Parasite species-level regression 

coefficients were treated as random effects with a normal distribution that assumes community-
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level mean and variance parameters. And the effect of host family f on the occurrence of parasite 

i was described by a random intercept uif. 

In the infracommunity formula of the model, response variable yijk represented the 

presence/absence of the ith parasite taxon in the kth fish individual of the jth fish species. pijk was 

the occurrence probability of parasite i in the jth fish species in fish individual k. Covariates at 

the individual host scale included weight (g) and length (cm). Similar to the occurrence model, 

community-level regression coefficients, αi, were modelled with normal mean µαi and variance 

ταi
2. Species-level regression coefficients were treated as random effects with a normal 

distribution assuming community-level mean µαi and variance ταi
2.  

All numeric predictors were standardized to have a mean of 0 and standard deviation of 1 before 

analysis by using the scale() function in base R. We did this to improve model convergence. This 

model was fit using the multi-species occupancy model function msPGOcc() in the spOccupancy 

package (Doser et al., 2022) in R. Occurrence regression coefficients were assigned priors with a 

normal distribution and a mean of 0 and variance of 2.72. The variance parameters (τ2) had priors 

with an inverse gamma distribution with shape parameter 0.1 and scale parameter 0.1. This 

allowed some effects to be much larger or smaller than average. We fit our model using 5 

MCMC chains. Each chain had a burn in period of 3000 samples, 43000 samples per chain, and a 

thinning rate of 5, resulting in 40,000 total posterior samples. 

After fitting the model, we confirmed MCMC chain convergence and chain resolution using 

potential scale reduction factor (PSRF) and effective sample size (ESS) statistics.  

To assess the effect of scale on parasite occurrence, we extracted the posterior distributions for 

the ψij and pijk parameters. For each parameter, we summarized the posterior by calculating the 
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mean, standard deviation, and 95% credible interval. Because ψij was parasite-host specific, and 

pijk was parasite-host-replicate specific, we calculated the mean and standard deviation of pijk 

within each parasite-host combination. To illustrate occurrence probabilities at each scale, we 

used the heatmap() function in base R. To estimate the expected number of hosts that a parasite 

species-stage infected, we summed all occurrence probabilities across all hosts. This suggested 

the broad distribution of the parasite species in the host community. 

To evaluate host trait effects on component community occurrence, we summarized the 

community-level mean, standard deviation, and 95% credible intervals of regression coefficient 

and variance parameters, 𝛽i and τβi
2. Similarly, for the community-level effect of host traits on 

the infracommunity, we summarized αi and ταi
2. After assessing the effect of host traits across the 

parasite community, we wanted to understand if parasite species-stages differed in their response. 

From the above model, we extracted the species-specific posterior distributions and summarized 

their mean and variance parameters. We illustrated these species-level responses with a forest 

plot using the ggplot() function from the ggplot2 package in R.  

To understand if host family was a predictor of parasite occurrences, we examined the species-

specific random intercepts for each host family (uif). The parameter σu
2 describes the variance 

around the mean in parasite occurrences across host species. If the variance was high, there was 

evidence that species-specific occurrence probabilities were influenced by host family.  

Finally, we suspected that the effect of host traits may depend on parasite taxon and life stage 

groups. To explore this suspicion, we conducted a random effects post-hoc analysis for each host 

trait with high variance. Our response variables were the species-specific mean intercept and 

regression coefficients estimated in the above occupancy model. We re-scaled the mean effects 
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for a mean of zero and standard deviation of 1. These post-hoc random effect models took the 

form: 

yi ~ Normal (µi, σ) 

µi = αlifestage[i] 

αj ~ Normal (0, 0.5)    for j = 1...14 

σ ~ Exponential (1) 

where the yi represented the parasite species-specific mean estimate of either intercept or host 

weight. αlifestage[i] was a random effect and the categorical variable was a concatenated parasite 

taxonomic group and life stage (ex. Trematode metacercaria, Cestode adult, etc.). There were 14 

taxonomic group-life stage identifications in the group. This model was estimated using the 

quap() function in the Rethinking package in R. All predictors were assumed to be independent. 

2.3 Results 

2.3.1 Computational Results 

All potential scale reduction factor statistics (Gelman-Rubin diagnostic values or R-hat) were 

below 1.02, indicating chain convergence. Additionally, we visually inspected MCMC trace plots 

for signs of divergence. To assess adequate chain resolution, effective sample sizes (ESS) for 

each parameter were confirmed to be over >200, with the smallest being 795. Finally, we 

examined pair plots between the posterior distributions to ensure that no extreme correlations 

between parameter estimates were present.  
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2.3.2 Parasite occurrence probabilities between scales 

Based on the raw dissection data, the average parasite species infected 4.4 host species in the 

sandflats. 28 of 84 parasite species-stages were only observed in a single host species. The most 

commonly observed parasite in the component community was the trematode metacercaria 

Bucephalus sp. 2, infecting 22 of the 33 host species. At the infracommunity scale, parasite 

species infected an average of 21.5 of 639 host individuals. Of the 84 parasite species-stages, 4 

were observed in a single host individual. Bucephalus sp. 2 metacercaria was again the most 

commonly observed parasite, infecting 245 of 639 dissected host individuals. The parasite-host 

combination with the highest prevalence was the metacercaria Cyathocotylidae sp. 1 which 

infected 20 out of 20 Hemiramphus depauperatus, a tropical half-beak fish. 

We evaluated the parasite-host dataset with an occupancy model to understand how parasite 

occurrence probabilities changed across biological scales based on the predicted host trait 

responses. The mean occurrence probabilities of parasites across all parasite-host species 

combinations, ψij, ranged from 0.002 to 0.96, with an average occurrence probability of 0.16 

(95% CI [0.001, 0.76]). Based on occurrence probabilities, host species were estimated to be 

infected with an average of 13.8 parasite species-stages, ranging from 1.29 parasites species-

stages in the host species Gymnothorax pictus (peppered moray) to 28.10 in Chaetodon lunula 

(raccoon butterflyfish). The parasite most likely to occur in a randomly selected host species was 

Bucephalus sp. 2 metacercaria with an average mean occurrence probability of 0.68 across all 

host species. Bucephalus sp. 2 metacercaria was estimated to infect 22.46 fish hosts within this 

system with the broadest host generality. And the least likely parasite was the monogene adults 

of Pseudopterinotrema albulae, expected to occur in only 1.29 host species. We illustrated the 

parasite species-specific occurrence probabilities in the component community in Figure 2.  
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The estimated occurrence probability of parasites across host individuals, pijk * zij, ranged from 

an estimated mean of 0.00 to 0.83, with an average occurrence probability of 0.04 (95% CI [0.00, 

0.26]) across all hosts. Of expected infracommunities, the highest estimated parasite richness 

was 8.10 species in an average host individual C. lunula, while the lowest was 0.07 parasite 

species in an average G. pictus. At this scale, Bucephalus sp. 2 metacercaria was the most likely 

parasite to occur in a randomly selected host individual with an average probability of 0.33. If 

one individual of each 33 host species was sampled, Bucephalus sp. 2 metacercaria was 

estimated to occur in 11.12 of them.  The parasite Zoogonidae sp. 1 metacercaria was the least 

likely to occur in a randomly selected host individual with a probability of 0.01. We illustrated 

the parasite species-specific occurrence probabilities in the infracommunity in Figure 3. The sum 

occurrences across all host species are illustrated in Figure 4. 
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Figure 2. Component community mean occurrence probability heatmap. Cells can range from 0 (lightest) 

to 1 (darkest) 
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Figure 3. Infracommunity mean occurrence probabilities (prevalence) heatmap. Cells can range from 0 

(lightest) to 1 (darkest) 
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Figure 4. Parasite species-stage occurrence probability sums in the component community (left column) 

and infracommunity (right column). Dark colors represent species that are expected to occur in more host 

species in the component community or have high prevalences across many infracommunities.  

 

2.3.3 Host species traits predict parasite community structure among host species 

The occupancy model assessed the effect of host traits on the occurrence of parasites in the 

component community. This analysis indicated that the component community-level mean 

intercept was -4.51 (95% CI [-5.51, -3.57]) on the logit scale, which translated to an average 
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community occurrence probability of 0.01. This indicated that the average host species had a 

0.01 chance of being infected with the average parasite. Our analysis found evidence that several 

host species traits had population-level effects on component community occurrence 

probabilities (Table 1). Counter to expectations, host generality and habitat density had a 

negative effect on component community occurrence with mean effects -0.46 (95% CI [-0.88, -

0.05]) and -1.34 (95% CI [-2.04, -0.65]) respectively. We did not find evidence that host species 

body mass or adjusted trophic level affected component community occurrences with a mean 

effect of -0.39 (95% CI [-1.02, 0.19]) and -0.02 (95% CI [-0.36, 0.31]). Note that these effects 

were computed after statistically holding individual host weight constant. Due to the potential for 

species traits (particularly body mass and trophic level) to correlate with individual mass, these 

multivariate results do not preclude the possibility that larger species or higher trophic levels 

have more parasites, just that these effects are not significant after accounting for individual body 

size. 

Table 1. Estimated population-level responses to host traits and the estimated variance around the means 

  Mean SD 2.50% 97.50% Rhat ESS 

Occurrence Means (logit scale)           

Intercept -4.51 0.49 -5.56 -3.61 1.00 1261 

Diet Generality -0.46 0.21 -0.89 -0.60 1.00 2340 

Body Mass  -0.39 0.31 -1.07 0.15 1.00 4230 

Habitat Density -1.34 0.36 -2.12 -0.71 1.00 1545 

Trophic Level -0.02 0.17 -0.36 0.31 1.00 4575 

Occurrence Variances (logit scale)           

Intercept 7.03 2.07 3.91 11.87 1.00 1437 

Diet Generality 0.16 0.13 0.03 0.51 1.00 4480 

Body Mass  1.76 1.43 0.24 5.37 1.01 1721 

Habitat Density 0.35 0.34 0.04 1.25 1.00 2328 

Trophic Level 0.23 0.20 0.04 0.75 1.00 3415 

Occurrence Random Effect Variances (logit scale)         

Host Family  10.85 2.91 6.30 17.72 1.00 795 

Detection Means (logit scale)           

Intercept -1.34 0.15 -1.63 -1.04 1.00 34575 

Individual Weight 0.26 0.06 0.15 0.38 1.00 20269 
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Detection Variances (logit scale)           

Intercept 1.50 0.33 1.00 2.28 1.00 18471 

Individual Weight 0.09 0.04 0.04 0.18 1.00 13092 

 

The community-level variance parameters indicated substantial variability in the component 

community intercept with a variance of 7.03 (95% CI [3.44, 11.10]). The effect of species body 

mass on the component community also had a high variance of 1.76 (95% CI [0.04, 4.34]). 

These high variance parameters suggested that the intercept and effect of host species body mass 

(after accounting for individual mass) may not have had a universal response across the 

component community, but instead depended on the individual parasite species-stages. We 

looked directly at the parasite species-specific effects to further explore this assumption (Figure 

5). The parasite species-specific intercept means ranged from -6.94 (95% CI [-10.59, -3.69,]) to 

0.59 (95% CI[-1.65, 2.82]) with the greatest distance from the population-level mean being 5.10 

suggesting that some parasites were more common than average in the component community. 

The species-specific effect of host species body mass ranged from -1.77 (95% CI[-4.44, -0.31]) 

to 1.29 (95% CI[-0.45, 3.14]). There appeared to be less variance in the community level effect 

of generality (0.16 (95% CI[0.02, 0.42])), habitat density (0.35 (95% CI[0.02, 0.98])), and 

trophic level (0.23 (95% CI[0.02, 0.61])).  
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Figure 5. The parasite species-specific mean intercepts with 95% credible intervals excluding the 

community-level intercept in the component community. The dashed line is the community-level mean 

intercept.  

 

2.3.4 Individual host traits predict parasite community structure within host individuals 

Our study found the infracommunity community-level mean intercept was -1.34 (95% CI [-1.63, 

-1.03]) on the logit scale, which converts to a mean probability of .23. This indicates that the 

average parasite had a low probability of occurring in the average infracommunity. We found 

evidence that individual host weight positively affected infracommunity occurrence probability 

with a community-level response of 0.26 (95% CI [0.14, 0.37]). The variance parameters in the 

infracommunity model found high variability for the community-level intercept (1.5 (95% 

CI[0.95, 2.19])), implying that the intercept estimate depends on the parasite species. This was 

further supported by directly examining the parasite species-specific mean intercepts, illustrated 
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in Figure 6. The variance parameter for the effect of individual host body weight provided no 

evidence for parasite species-specific effects with a mean estimate of 0.09 (95% CI [0.03, 0.17]). 

 

Figure 6. The parasite species-specific mean intercepts with 95% credible intervals in the 

infracommunity. The dashed line is the community-level mean intercept. 

 

2.3.5 Host Family 

In the occupancy model, we included host family as a categorical random effect to account for 

unmeasured host traits that may influence parasite occurrences. The random effect of host family 

had an estimated high variance of 10.85 (95% CI [5.92, 16.10]). This suggested that parasite 
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species-specific occurrences varied greatly based on the host family groups, and that some 

parasite species-stages occurred more often in certain host families than in others. We illustrated 

the parasite species-specific effects of each host family below (Figure 7). 

 

Figure 7. Random effect of family on each parasite species. This heatmap is clustered by column to 

illustrate the difference between expected parasites in each host family. Dark colors indicate an increase 

in the occurrence probability of that parasite-host family combination, while light colors suggest a 

decrease in the occurrence probability. 

2.3.6 Post-Hoc Analysis 
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Finally, the variance parameters in the occupancy model suggested that the component 

community intercept and the effect of host weight were parasite-taxon specific. We conducted 

two post-hoc random effect analyses to explore if this variance could be explained by parasite 

taxonomic group and life stage.  

The first post-hoc analysis analyzed if variance in the parasite component community intercept 

could be explained by parasite taxon and life stage groups (Figure 8). This analysis suggested 

that cestode adults, copepod adults, monogene adults, nematode adults, and trematode adults had 

lower estimated intercepts than average, meaning that they were the rarest groups in the 

component community. In contrast, cestode plerocercoids, isopod adults, nematode larvae, and 

trematode metacercaria had higher estimated intercepts than expected, suggesting that these 

groups were the most common across the component community. These post-hoc results 

supported the estimated variance in the occupancy model and demonstrated that parasite groups 

vary in their occurrence probabilities in this dataset. 
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Figure 8. Post-hoc analysis of the effect (and 95% credible interval) of parasite stage on estimated 

species-specific intercepts. The dotted line represents the estimated population mean intercept. 

The second post-hoc analysis explored the high variance found in the effect of host species body 

mass across the component community (Figure 9). We wanted to know if the species-specific 

mean effects were correlated to parasite taxon and life stage. The results from this post-hoc 

analysis suggested that cestode adults and trematode adults had a more positive effect of host 

size than average, and that trematode metacercaria had a more negative effect of host size than 

average. 
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Figure 9. Post-hoc analysis of the effect (and 95% credible interval) of parasite stage on estimated 

species-specific response to host species body mass. The dotted line represents the estimated population 

mean effect of host species body mass. 

 

2.4 Discussion 

2.4.1 Occurrence Probabilities Between Scales 

Our multi-level occupancy model captured the biological scale-dependence of parasite 

communities. Parasite richness necessarily declines with narrowing host scale because a host’s 

infracommunity can exclusively contain a subset of parasites occurring in that host’s component 

community, but a parasites’ occurrence probability can differ between these scales. The 

probability that an individual fish is infected with a random parasite of the population is 

equivalent to the probability that a parasite-host combination truly occurs multiplied by the 

estimated parasite prevalence in the host species. So, unless all parasites in a component 

community has 100% prevalence, infracommunity variation will occur. Differences between 
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component communities may reflect differences in fish behavior, habitat, or physiology. And at a 

narrower scale, differences between infracommunities should reflect differences between host 

individuals. 

The majority of parasites were infrequently observed in the average component community, 

implying many parasite species were specialists. However, larval stages appeared to occur in the 

greatest number of component communities, and they had relatively low host specificity in 

comparison to most adult stages. This was further supported by the post-hoc analysis. Cestode 

plerocercoids, isopod mancae (represented by a single species), nematode larvae, and trematode 

metacercaria were the most commonly occurring parasite groups in the average component 

community, which is likely due to the expected low host specificity of each of these parasite 

stages (Brusca, 1981; Timi & Lanfranchi, 2009). In contrast, cestode adults, copepod adults, 

monogene adults, nematode adults, and trematode adults occurred less often than average, and 

similarly these stages should have higher host specificity. However, larval stages are expected to 

accumulate in hosts over time, while adult parasites may be shorter-lived (Locke et al., 2013). 

This could lead to higher detection rates of larval parasites in host species, leading to their 

observed generality in comparison to observed adults, which could also explain why many larval 

parasites had higher occurrences in the population than expected. 

At the infracommunity scale, the majority of parasites that were host specialists had low 

prevalence within their host species, suggesting they were rare observations. Across 

infracommunities, there were only three parasite species with high prevalence across many host 

species. Poulin (1998) suggested that parasite communities are often composed of many rare and 

a few common species, and this appears to be the case here as well. However, adult trematodes 

and adult cestodes were specialist parasites that maintained high prevalence in their specific host 
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infracommunities. All adult trematodes whose metacercaria were also present in this fish 

community (13 parasite species) exclusively occurred in host species of the family Carangidae. 

Further, all of the adult cestodes exclusively occurred in the elasmobranch Carcharhinus 

melanopterus (the only shark included in this study). Because the larval stages of these adult 

parasite species are host generalists transmitted through consumption, this suggested the 

efficiency and efficacy of trophic transmission as an infection strategy. Further, the high 

infracommunity occurrence probabilities suggested a trade-off between prevalence and 

specificity in this system. This is supported by the well-documented co-evolution of adult 

cestodes and elasmobranchs (Palm & Caira, 2008; Caira et al., 2014; Euzet, 1956) and (to a 

lesser extent) adult trematodes and fish (Salgado-Maldonado et al., 2016; Cameron, 1964). As a 

result, these parasite stages had high occurrence probabilities in specific infracommunities.  

2.4.2 Effect of Host Traits Within Scales 

To understand how scale-dependent host traits interacted with parasite occurrences, we analyzed 

the effect of fish species traits and fish individual traits on occurrence probabilities. Using this 

occupancy model, we demonstrated that host species traits like diet generality, species body 

mass, and habitat density, structured parasite distribution in the component community, while 

host individual traits, like body weight, structured distributions in the infracommunity.  

We predicted that fish species with a wide diet generality would be exposed to a wide range of 

trophically transmitted parasites, leading to higher parasite occurrences in the component 

community. Other studies have supported these expectations (Rasmussen & Randhawa, 2018) 

and Locke et al. (2014) found that host diet generality had a positive effect on adult and larval 

parasite richness. But in contrast to these predictions, our mean response and variance estimates 

suggested that component community occurrences increased with decreasing host generality and 
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that this was a community-level response. In this system, a greater diet breadth may allow hosts 

to actively switch to parasite-free diet items, resulting in reduced parasite exposure (Becker et 

al., 2018). Or, host species with high diet generality may simply not encounter specific 

trophically-transmitted parasite species often enough for competent infective stages to evolve. 

An alternative explanation is that some larval parasites (the most abundant individuals in our 

study) are not encountered through feeding (e.g. trematode metacercaria). Larval stages are 

difficult to identify and often omitted from parasite component community surveys, which may 

explain how our results differ from other studies.  

Because trophic level determines the range of prey a fish consumes, host trophic level should be 

connected to and constrain the parasites that rely on trophic interactions. Some studies have 

found that parasite diversity increases with host trophic level (Lafferty et al., 2006; Chen et al., 

2008), while others argue that the highest parasite richness will be in mid-range trophic level 

hosts (Anderson & Sukhdeo, 2011). However, our study found that, after controlling for fish size, 

host trophic level had no detectable effect on parasite occurrence probabilities in the component 

community. One reason may be that marine fish species tend to have generally broad diets with 

high prey switching and diet overlaps (Marcogliese, 2002). As a result, there may not have been 

enough trophic level variation in this fish community to detect an effect. Further, the majority of 

larval parasites individuals are not acquired through host diet, but larval parasites had the highest 

occurrence probabilities across component communities in this system. Their low specificity in 

intermediate hosts could also reduce the effect of trophic level in fish hosts. In addition, trophic 

level and body size often covary among fish species (Jennings et al., 2001), with fish body size 

demonstrated as the better predictor of larval helminth richness (Poulin and Leung, 2011). The 

raw data for these host traits were slightly correlated, but their parameter posterior distributions 



62 
 

were not. Because this study included host generality and body size as predictors, it is possible 

that host trophic level did not provide new information that improved model fit. 

Host body size is often recognized as an important determinant of parasite occurrences (Guegan 

et al., 1992; Guégan & Hugueny, 1994) because large hosts will be more likely to encounter, eat 

bigger items (especially in gape-limited predators like fish), and provide more space to house 

parasites. Some studies have argued that host species body size should not be a determinant of 

parasite occurrences over evolutionary time, and this has been supported by studies of mammal 

and bird species (Morand & Poulin, 1998; Poulin, 1995). Our analysis did not find evidence that 

host species body size affected component community occurrences. In the collected dataset, 

there was a tendency for the largest host species to have smaller sample sizes, so the parasite 

species in these component communities were likely underrepresented with many missed 

parasites. For this reason, we excluded the largest species from this analysis to minimize this 

effect. Regardless, the large variance parameter indicated that the effect of host species body 

mass varied across parasite species, with high dispersal around the population mean. The post-

hoc random effect analysis suggested that metacercaria trematodes had a more negative effect 

from host species body mass than the average parasite species. And adult trematodes and adult 

cestodes had a more positive effect than average, meaning that their occurrences were either not 

affected or positively affected by host body mass. Although the post-hoc analysis outputs must 

be viewed with caution, these patterns could be explained from an ecological perspective. For 

trematode metacercariae to continue their life cycle, they must infect a prey host. Although 

metacercaria increase in intensity as that prey ages (presumably leading to a positive association 

with individual size), prey species tend to be smaller than predator species, leading to contrasting 

associations with size across levels. Similarly, adult cestodes and adult trematodes develop and 
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reproduce in definitive hosts. These definitive hosts should be larger bodied because they must 

eat small prey items and avoid being eaten themselves. Adult trematodes and cestodes may 

accumulate in a wider range of medium to large body sized fish. And this may explain their 

neutral or positive response to host species body size than the average parasite.  

Based on previous studies, we predicted that parasite occurrences would increase with host 

density because dense hosts should have higher encounter rates and can more easily sustain 

parasite populations (Morand & Poulin, 1998; Anderson & May, 1978; Holmes & Price, 1986). 

But in this system, fish host species with the highest densities had the lowest estimated parasite 

occurrences. Because some parasites can reduce host densities (Hudson et al., 1998; Scott, 1987; 

Anderson & May, 1978), host species with fewer parasites may experience a demographic 

advantage that allows their populations to reach high densities. However, of the 10 most dense 

fish host species in this system, 6 were within the Gobiidae family which were infected with 

consistently few parasites. 2 of these fish species were Parapercis sp. and Albula glossodonta, 

which were the only representatives of their family in the host community and also had few 

parasites. The remaining 2 fish species were within the Mugilidae family which had relatively 

rich parasite communities. And of the 10 least dense host species, 4 were within the host family 

Carangidae which had relatively high parasite occurrences. Since there appears to be a 

connection between host family and species density in this system, this pattern may be a 

reflection of taxonomy-based parasite competency than of host population dynamics. Another 

potential driver of negative association between host density and parasite prevalence relates to an 

encounter dilution effect for parasites with complex life cycles, which can occur when a limited 

number of infective stages encounters abundant host individuals, resulting in each individual 

having lower infection risk (Buck et al., 2017). 



64 
 

Our analysis found evidence that parasite infracommunity occurrence probabilities increased 

with fish weight. In other words, large individuals had a richer parasite community than smaller 

individuals of the same species. Additionally, this effect’s low variance meant that this was a 

broad response from all parasites in the community. Large host individuals within the same 

species are likely older, resulting in higher parasite accumulation due to time and exposure. And 

larger hosts also have more area for parasite species to accumulate (Guégan & Hugueny, 1994). 

Thus, host body size contributed to the nested structure of parasite communities, with parasite 

species present in the component community further structured by host individual size to 

determine occurrence probabilities in the infracommunity.   

Parasites and fish hosts have well-documented phylogenetic patterns (Poulin & Morand, 1999; 

Poulin, 2003; Timi et al., 2010; Poulin, 2010; Locke et al., 2013; Chai et al., 2022). Host-

switching and co-evolution between parasites and hosts should lead to more closely related hosts 

sharing more parasites, and more distantly related hosts sharing fewer (Engelstädter & Fortuna, 

2019). In the occupancy model, we found that the effect of host family on component community 

occurrences had a wide variance, indicating that parasite occurrence probabilities varied greatly 

between host families. As an example, host species in the Carangidae host family had entirely 

different parasite occurrence probabilities than hosts in the Albulidae family. Some parasites 

occurred exclusively in a single family, like Trichodina luba adults, while others infected hosts 

more generally like Bucephalus sp. 3 metacercaria. As a result, host family was a good predictor 

of parasite species-stage occurrence probabilities in this system. 

2.4.3 Assumptions 
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In this study, the occupancy model estimated the occurrence probabilities of parasite species 

across two biological scales. However, this analysis makes several assumptions about the 

structure of the dataset. 

The first assumption from this model framework was based on how the species-level effects 

were parameterized. Species-specific effects were estimated as random effects that follow a 

normal distribution with means equivalent to the community-level occurrence parameters. 

Although there were benefits to this method, this did not necessarily reflect the true species-

specific effects. This structure assumed that all parasite species responded similarly to host traits 

unless further evidence suggested otherwise. Rare parasite species provided the least information 

regarding factors that influenced their occurrences, so were most affected by this shrinkage and 

likely followed the community response. The species-level effects of parasites that matched the 

community response, particularly of rare species, should be interpreted carefully. Species that 

demonstrated an effect outside of the community response are more reliable because their 

occurrences provide enough evidence to withstand community shrinkage. Shared patterns across 

these parasite species are what we attempted to reveal in the post-hoc analysis.  

This occupancy model also assumed that only host traits affected parasite occupancy, but in 

reality parasite traits likely also played a role. As suggested by the variance parameters in the 

occupancy model and post-hoc analysis outputs, parasite species and groups varied in their 

response to host traits. Differences in parasite life-histories and other parasite-specific traits may 

explain these patterns. As an example, trophically acquired parasites are expected to occur more 

often in hosts with high trophic levels, while directly acquired parasites will not be affected by 

this covariate. In this case, host trophic level effects could be obscured by failing to differentiate 

parasites by transmission strategy. There were many parasite traits expected to interact with host 
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traits, and not considering them could muddy results and interpretations. Due to the limitations of 

the occupancy model used, parasite traits were not included in this study. However, accounting 

for parasite traits can be an aim for future analyses. 

Finally, this model assumed that parasite species had no co-occurrence patterns. Species in 

communities can have patterns of coexistence or displacement that can be caused directly by 

biotic interactions or indirectly by correlated responses to environmental factors (Mod et al., 

2020). Co-occurrence estimates, like from joint species distribution models, can provide insight 

into how an entire community will respond with only information on a few species and are 

particularly advantageous for rare species with little data. Previous research has demonstrated the 

relevance of co-occurrence in some parasite communities. For example, trematodes in marine 

snail hosts experienced higher magnitudes of interspecific competition leading to negative 

interactions (Kuris & Lafferty, 1994). And positive co-occurrences were detected between 

arthropod ectoparasites on rodent hosts (Krasnov et al., 2010). But other studies have found a 

lack of evidence to support nonrandom parasite species co-occurrences in specific systems, like 

metazoan ectoparasites of marine fish (Gotelli & Rohde, 2002). Either way, this occupancy 

model does not parameterize co-occurrence patterns, so we were unable to do so in this study. In 

the future, estimating parasite species co-occurrence patterns could lead to further insights.  

2.5 Conclusion 

In this study, parasite distributions were affected by host covariates at each biological scale, with 

host species traits structuring component community, and host individual traits structuring 

infracommunity distribution. Parasite occurrence probabilities decreased with host species 

density, host species diet generality, and host individual weight. We also determined that host 

families varied in their parasite assemblages with closely related host species sharing more 
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parasites. Some parasite species had species-specific effects, and there was some support that 

these differences may be explained by parasite life history. For future work, the role that parasite 

traits and species co-occurrences play in this system is still unknown, so these factors could be 

ideal areas for further exploration. 
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Chapter 3: Estimating and predicting false negatives in simulated 

species communities 

 

3.1 Introduction 

Presence-absence data are collected in biological surveys to understand species occurrences. 

Results from these studies are often used to predict species ranges, assess the effect of 

environmental factors on communities, and guide management and conservation decisions. 

However, assuming that these datasets are collected with perfect detection can lead to biased 

results and conclusions like underestimating alpha diversity and overestimating beta diversity 

(Lin, 2018; Ferguson et al., 2015; Miller et al., 2015; Williams et al., 2002; Bayley & Peterson, 

2001; Nichols & Karanth, 2002; Ostermiller & Hawkins, 2004). One possible source of error is 

false negatives, which occur when researchers do not detect a species at a site where it is truly 

present. False negatives can arise while sampling for several reasons. Factors like local 

conditions at the time of sampling, methodology, or observer experience can bias measurement 

error (Kerans et al., 1992; Bonneau & Labar, 1997; Dunham et al., 2001; Doser et al., 2022). 

And species themselves vary in rarity, cryptic-ness, or habitat preference resulting in a range of 

species-specific detection probabilities (Mao & Colwell, 2005; MacKenzie et al., 2005; Williams 

et al., 2002). Species that are difficult to detect or rare are expected to have higher false-negative 

probabilities, particularly when sampling effort is low (Mao & Colwell, 2005; Preston, 1948; 

Colwell & Coddington, 1994). Even low false-error rates can lead to biased estimates of habitat 

associations and distributions (Tyre et al., 2003; Ferguson et al., 2015) but few species 

distribution studies account for imperfect detection (Kellner & Swihart, 2014). The lack of effort 

towards estimating false negatives is understandable given that modelling imperfect detection is 
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statistically difficult. Thus, new techniques for estimating false negatives would help biologists 

get more accurate biodiversity estimates.  

Some patterns in observed datasets correlate with false negatives. For example, a species that 

was only observed once could have been easily missed, suggesting that this was a lucky 

observation. This also suggests that there were probably less lucky species, similarly rare or 

cryptic, that were not seen at all. Based on this logic, missing species estimators, like the Chao or 

Jackknife estimator, predict the true number of species (richness) present in a community based 

on the ratio of observed singletons to doubletons (Chazdon et al., 1998; Chao, 1987; Chao, 

2016). Another pattern is that false negatives will lead to more 0s than expected. As a result, Tyre 

et al. (2003) estimated the rate of false-negative errors by extending a logistic regression to a 

zero-inflated binomial model. A different approach is to use MCMC algorithms to match 

observations to likely combinations of detection and occurrence probabilities. Such occupancy 

models account for measurement error by modelling the state process and observation process 

separately (MacKenzie et al., 2002; MacKenzie et al., 2003; Dorazio & Royle, 2005; Rota et al., 

2011; Guillera-Arroita et al., 2017; Bled et al., 2011). In these two-level systems, a species has a 

probability of occurring at each site and a conditional probability of detecting that species 

through sampling if it does occur. Hierarchical occupancy models have demonstrated some 

success at estimating true parameter values and illustrating biases (Ferguson et al., 2015). 

Although several papers have estimated true richness, occurrence probability, detection 

probability, and false negative rates (Tyre et al., 2003; Ferguson et al., 2015; Moilanen, 2002), 

few have used false-negative probabilities to estimate community composition among sites. 

Predicting the locations and identities of missed species in an observed community will provide a 
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better understanding of species occurrence dynamics, leading to more accurate community 

inferences and informed management decisions.  

In this study, we validated a method for estimating false-negative occurrences in a 

metacommunity using a hierarchical occupancy model (Doser et al., 2022). For 1000 simulated 

datasets, we demonstrated the occupancy model’s propensity to correctly and incorrectly predict 

false negatives based on observed data. We then tabulated these false-negative estimates and 

observed communities to make predictions about true community composition. We used several 

metrics to evaluate whether estimated communities were better representations of true 

communities than observed communities. First, we assessed community accuracy to determine 

which community (observed or estimated) more closely matched the true community. Then, we 

compared mutual information to determine which community (observed or estimated) shared 

more information with the true community. We also compared true, observed, and estimated 

richness, ignoring species identities and locations. And we then compared our best richness 

estimate to the commonly used Chao richness estimates. We ended this study by illustrating the 

method with a case study: false-negative estimates of Hymenoptera species on Palmyra Atoll 

islets.  

3.2 Methods 

3.2.1 Data Simulation 

To prepare for the analysis, we simulated 1000 datasets representing the true presence/absence 

and observed detection/non-detection of 10 species at 60 sites. To create simulated data, we 

simulated a multi-level process using the following equations: 

Logit(psi) = B0 + B1 * sitetrait.1 + B2 * sitetrait.2 + B3 * sitetrait.3   [1] 
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True z ~ Bernoulli (psi)        [2] 

Logit(p) = a0 + a1 * replicatetrait.1       [3] 

Observed y ~ Bernoulli (p * true z)        [4] 

First, to determine the true presence/absence (true z) of a species at a site, we calculated the 

species’ occurrence probability (psi). A species’ occurrence probability (psi) at a site was 

associated with 3 site-level traits and an intercept. We simulated site-level trait values using a 

uniform distribution with a range from 0 to 100. Each site trait was then rescaled to have a mean 

of 0 and standard deviation of 1. We then generated a species-specific effect (B) in response to 

each site-level trait by drawing from a uniform distribution limited between -2 to 2 on the logit 

scale. The occurrence intercept was generated from the same uniform distribution. 

From these simulated site-level traits and species-specific effects, we computed species 

occurrence probabilities (psi) using a logit link function following equation [1]. We used each psi 

as the probability of success in a Bernoulli distribution, as demonstrated in equation [2]. A single 

draw determined the true presence (1) or true absence (0) of each species at each site. From this, 

we derived the true occurrence matrix (true z) with 2 dimensions matching the number of species 

times the number of sites.  

In addition to variation in occurrence probability at a site, species also vary in detection 

probability leading to imperfect detection in the observation matrix. In an attempt to 

parameterize detection probabilities, biological surveys should have replicate observations at 

each site (Gauch, 1982). To simulate this variation, we modelled replicate-to-replicate variability 

by re-sampling each site for 3 replicates. To generate the detection/non-detection y data, species 

detections were associated with a single replicate-level trait. Replicate-level trait values were 
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drawn from a uniform distribution ranging from 0 to 100 and then rescaled using the scale() 

function in base R. The linear effect of each replicate-level trait on each species at each site was 

randomly assigned from a uniform distribution with a minimum of -2 and maximum of 2; the 

detection intercept was generated from a similar uniform distribution. Then, using the simulated 

traits, intercepts, and effects, we computed detection probabilities with a logit link function 

following equation [3]. This resulted in p, the probability of detecting the species at a site during 

each replicate. We multiplied p by the true presence/absence (true z) of that species-site 

combination so that only truly present species could be detected, and each p * z product was used 

as the probability of success in a Bernoulli distribution. A single draw resulted in either a 1 

(detection) or a 0 (non-detection) representing a detection of the species at a site during a 

replicate. From this, we derived the detection/non-detection matrix (y) with 3 dimensions 

equivalent to the number of species times the number of sites times the number of replicates.  

3.2.2 Statistical Analysis 

To estimate false-negative probabilities from the observed detection/non-detection datasets, we 

used a Bayesian occupancy analysis for multiple species using the msPGOcc() function in the 

spOccupancy package in R (Doser et al., 2022). The model framework (Dorazio and Royle, 

2005) had a hierarchical structure that modeled the state process and observation process 

separately to account for imperfect detection. The model took the form: 

Occurrence Model 

zij ~ Bernoulli (ψij) 

logit (ψi) ~ β0i + β1i * x1 + β2i * x2 + β3i * x3  

𝛽i ~ Normal (µβi, τβi
2) 
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µβi ~ Normal (0, 2.72) 

τβi
2 ~ Inverse-Gamma (0.1, 0.1) 

Detection Model 

yijk ~ Bernoulli (pijkzij) 

logit (pijk) ~ α0i + α1i * v1  

αi ~ Normal (µαi, ταi
2) 

µαi ~ Normal (0, 2.72) 

ταi
2 ~ Inverse-Gamma (0.1, 0.1) 

where the response variable zij represented the true presence (1) or absence (0) of species i at site 

j. ψij was the probability that species i occurrenced at site j. ψij was modelled with a logit link 

function where βix were the regression coefficients (including an intercept) that described the 

species-specific effect of site covariates x. β0i were assumed to have a normal distribution with 

mean µβi and variance τβi
2.  

In the detection portion of the model, the response variable, yijk, indicated the sampling 

observations. Observed detection (1) or non-detection (0) of species during each replicate was 

modelled with a Bernoulli distribution from detection probability, pijk, that was conditional on the 

true state process, zij. The probability, pijk, that species i was detected at site j during replicate k 

was modelled with a logit link function where αi were the regression coefficients (including an 

intercept) that described the effect of replicate covariates v. αi were modelled by a normal 

distribution with mean µαi and variance ταi
2. 
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For all fixed effects in the Bayesian model, β0i and αi, we specified normal prior distributions 

with mean 0 and variance 2.72. We used an inverse-Gamma prior distribution for the variance 

parameters with shape 0.1 and scale 0.1.  

Using the above occupancy model, we fit each iteration of the simulated datasets. The simulated 

observed species detection/non-detection matrix (y) was the response variable in the detection 

model, site traits were the occurrence covariates, and replicate traits were the detection 

covariates. Each model iteration generated 8000 posterior samples for each parameter with 3 

MCMC chains. We used a burn in period of 2000 samples with a thinning rate of 1.  

3.2.3 Model Estimates and Defining False Negatives 

After the model fit each observed dataset, we extracted the posterior distributions of the zij 

samples. A single posterior draw of zij was the estimated presence (1) or absence (0) of a species i 

at site j. The mean of zij’s posterior distribution was a value between 1 and 0, representing the 

probability of a false negative of species i at site j. Mean zij differed from ψij in that ψij was the 

occurrence probability of a species based on site covariates. zij predicted true occurrence based 

both on the site covariates and detection probabilities. This means that if the predicted 

occurrence probability is low, but many replicates had observed detections, then mean zij and ψij 

will differ. In contrast, if few replicates observed detections, then mean zij and ψij will be similar 

if not equivalent. Based on the posterior means of zij, we defined an estimated false negative as 

any undetected species-site combination with a false-negative probability greater than 50 percent 

(mean zij >.5). We chose a probability threshold of 0.5 simply because these species-site 

combinations were expected to be truly present more often than not. 
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By comparing the true presence/absence data to the observed detection/non-detection data and 

the model estimated mean zij, we categorized species at each site by 6 outcomes (Table 1). The 

observed data may indicate that a species was detected (mean y >1) at a particular site. If this 

observed species was truly present (true z = 1), then this illustrated a correct presence. 

However, if this observed species was truly absent (true z = 0), then this would be an incorrect 

presence, also known as a false positive. False positives were not the focus here, and our 

simulation methodology did not allow for false positive observations. If the data indicated that a 

species was unobserved (y = 0), there were four outcomes based on the model’s false negative 

estimates. Studies that do not control for false negatives assume that all undetected species are 

correct absences, meaning the species was not observed (y = 0) and truly absent (true z = 0) 

with a low false-negative probability (mean zij < .5). However, an undetected species could 

simply be truly present (z = 1) but unobserved (y = 0). In this case, the species was considered a 

correctly estimated false negative if the model estimated a high false-negative probability 

(mean zij > 0.5). But if the model estimated a low false-negative probability (mean zij < 0.5), then 

this undetected, yet present species was an incorrect absence that remained a false negative. 

Finally, an unobserved species may be an incorrectly estimated false negative if it was truly 

absent (z = 0) and not observed (y = 0) with a high estimated false-negative probability (mean zij 

> .5). These incorrectly estimated false negatives were the least desirable outcome as this 

signaled that the model was adding error to the community. As long as the number of correctly 

estimated false negatives was greater than the number of incorrectly estimated false negatives in 

a simulated dataset, then the model was decreasing error in the community overall.  
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Table 1. The six possible categorizations of a species at a site after the occupancy model fits the observed 

data. 

 

Each simulated community and model iteration resulted in four species by site community 

matrices: a true z matrix, an observation matrix, a false-negative probability matrix, and an 

estimated z matrix (Figure 1). The true z matrix defined the correct state of each species-site 

combination and contained only true presences and true absences. The true z matrix is usually 

hidden from researchers and is what the occupancy model is attempting to reveal. The 

observation matrix was the result of replicate sampling from the true z-matrix. The observation 

matrix was a truncated version of the detection/non-detection data (y), but it contained a 1 if a 

site-species combination was detected at least once in any replicate and a 0 if it was never 

detected in any replicate. Each site-species combination of the observation matrix was classified 

as either a true presence, a true absence, or an incorrect absence (aka true false negative). The 

false-negative probability matrix combined the observation matrix with the false-negative 

probabilities from the occupancy model. Each cell was either a true presence (x = 1) or an 
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estimated false-negative probability (0 < x < 1). And lastly, the estimated z matrix was similar to 

the false-negative probability matrix but with determined outcomes based on the false-negative 

probabilities (x = 1 when mean zij > 0.5 or x = 0 when mean zij < 0.5). The estimated z matrix 

was composed of correct presences, correct absences, correctly estimated false negatives, 

incorrectly estimated false negatives, and incorrect absences. We compared the true z-matrix to 

the corresponding observation matrix and estimated z matrix to count and identify the number 

and locations of the above species-site classifications. We also compared the true z matrix to the 

false-negative probability matrix to measure the amount of information shared. 

We compared the observation matrix, false-negative probability matrix, and estimated z matrix to 

the corresponding true z matrix to evaluate how well each represented the hidden community. 

Figure 1. Examples of the true z matrix, observation matrix, false-negative probability matrix, and the 

estimated z matrix. The true z matrix is usually unknown, and researchers collect imperfect data about the 

true z matrix during biological surveys resulting in the observation matrix. Using an occupancy model, 

we can estimate parameter values to get the inferred matrix and estimated z matrix. 

 

3.2.4 False Negative Estimates 

To examine how well the model predicted the identities and locations of false negatives, we 

compared the number of true false negatives in the observation matrix to the number of 

estimated false negatives in the estimated z matrix. In the estimated z matrix, we quantified the 

number of correctly estimated false negatives, the number of incorrectly estimated false 
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negatives, and the total number of estimated false negatives (sum of correctly and incorrectly 

estimated false negatives). To assess how the model adjusted error present in the observation 

matrix, we calculated the difference between the number of correctly and incorrectly estimated 

false negatives in each estimated z matrix. We summarized these values with several histograms 

using the hist() function in base R and the ggplot() function in the ggplot2 package of R.  

3.2.5 Overall Community Estimates 

To evaluate how well the occupancy model predicted the true z matrix, we examined community 

accuracy before and after controlling for false negative estimates. To calculate accuracy in the 

observation matrix, we divided the sum of correct presences and correct absences by the total 

number of site-species combinations. To calculate accuracy in the estimated z matrix, we divided 

the sum of correct presences, correct absences, and correctly estimated false negatives by the 

total number of site-species combinations. Note that the number of correct absences decreases 

between the observation matrix and estimated z matrix because of incorrectly estimated false 

negatives. Then we compared community accuracy of the observation matrix to community 

accuracy in the estimated z matrix.   

We also measured the amount of mutual information that the observed matrix and false-negative 

probability matrix shared with the true z matrix. In general, mutual information is the amount of 

information that one random variable reveals about another random variable. It is measured in 

natural units of information (nat) which is a unit of information entropy. In this study, measuring 

mutual information is beneficial because it can be used to directly compare true z to the 

estimated false-negative probabilities in the false-negative probability matrix. Therefore, we did 

not need to define a false negative by a probability threshold (> 0.5), but instead used the 
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estimated probabilities themselves without transformation. By comparing mutual information, 

we quantified the amount of information that the occupancy model revealed about true z.  

Finally, we were interested in how well the occupancy model predicted overall species richness. 

For every model iteration, we calculated species richness in each of the 4 community matrices. 

True species richness was the count of true site-species combinations present in each true z 

matrix, while observed matrix richness was the count of site-species combinations observed in 

the detection/non-detection data. To estimate richness from the false-negative probability matrix, 

we summed the estimated probability of every species-site combination in the community. As an 

example, if a matrix was composed of 2 possible species at 2 sites with respective false-negative 

probabilities 0.45, 0.76, 1, and 0.14, then the estimated richness would be 2.35 site-species 

combinations. For the estimated z matrix, richness was the count of observed and estimated false 

negative site-species combinations. Note that this does not distinguish between correctly and 

incorrectly estimated false negatives; all were included in the richness estimates. To determine 

the best predictor of true species richness, we compared richness estimates from the observed 

matrix, probability matrix, and the estimated z matrix. And to understand how well the best 

predictor performed in comparison to other benchmarks in the literature, we compared our model 

estimates to the improved iChao2 richness estimator (Chiu et al., 2014). To calculate the Chao 

richness estimates, we used the ChaoSpecies() function in the SpadeR package in R.  

All scatterplots were created using the ggplot() function in the ggplot2 package in R. All 

histograms were created using the hist() function in base R. All R code used in this study are 

located at: https://github.com/mmorse8976/Dissertation-Code.git 

3.2.6 Arthropod Dataset Case Study 
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Finally, we demonstrated estimating false-negative probabilities in a species community with a 

case study. We obtained a dataset from a study of arthropod communities on Palmyra Atoll 

National Wildlife Refuge (McLaughlin et al., 2023). Researchers fogged 89 trees on 16 islets of 

Palmyra Atoll and documented the abundance of 240 arthropod species. Field collection and 

laboratory sorting methods were outlined in McLaughlin et al. (2023). This dataset is nested such 

that fogged trees were grouped within an island identification. Trees that were on the same island 

were considered replicates of the same site. Across islands, there was an average of 5.56 trees 

sampled per island. 2 of 16 islands only had one tree fogged, so in these cases there was no 

distinction between island and tree level sampling. Because sampling effort was low on some 

islands, but high on others (maximum of 23), we felt this was a prime dataset to consider false-

negative probabilities. Multilevel models are particularly well suited for uneven and low 

sampling. From the 240 total arthropod species, we narrowed our analysis to members of the 

Order Hymenoptera, representing 44 species total. 

For this case study, we estimated false-negative probabilities and predicted the true community 

of Hymenoptera species on 15 islets of Palmyra Atoll. In the occupancy model, we included six 

island-level predictors of Hymenoptera occurrence: distance to the mainland (Cooper Island), 

island area, native canopy proportion, average cation exchange capacity, average soil pH, and 

average nitrogen release per acre (Figure 2). In the detection model, we included one predictor of 

Hymenoptera detection: area of the fogged canopy. We also incorporated a random effect of 

canopy type. All numeric predictors were standardized to have a mean of 0 and standard 

deviation of 1 before the analysis. 
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Figure 2. The variation in island traits scaled by row. Sample size for each island are displayed in 

parentheses  

To analyze this dataset, we used the msPGOcc() function from the Spoccupancy package in R. 

The MCMC algorithm sampled from the posterior distribution with 3 chains. Each chain ran for 

50,000 samples with a burn-in period of 2,000 samples and a thinning rate of 3. This resulted in 

48,000 total posterior samples. We evaluated MCMC chain convergence and resolution using 

Gelman-Rubin diagnostics and the effective sample size. We then extracted the posterior 

distributions for each species-site Z parameter. We calculated the mean of each distribution, then 

explored the FN probability matrix and estimated Z matrix. 

3.3 Results 

3.3.1 Simulated True Z and Observation Matrices  
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Each simulated true z matrix represented the presence/absence of 600 possible site-species 

combinations. In our 1000 simulated datasets, the average true z matrix was composed of 298.8 

present site-species with a standard deviation of 32.80.  Across all true z matrices, there were 

298,845 total true presences and 301,155 total true absences.  

The average observation matrix detected 80% of species present in the true z matrix, with a 

minimum of 53% (181 out of 341) and a maximum of 97% (254 out of 262). Across all datasets, 

the observation matrices detected 241,754 out of 298,845 total present species-site combinations. 

These observation matrices did not detect 57,091 present species, resulting in an average of 57.1 

true false negatives per observation matrix with a minimum of 8 and maximum of 160.  

3.3.2 False Negative Estimates 

After the model fit each simulated observation matrix, we incorporated the false-negative 

probabilities, and counted the number of estimated false negatives in each estimated z matrix. 

The estimated z matrices averaged a total of 44.3 estimated false negatives per simulated dataset 

with a standard deviation of 25.2. On average, 66.3% were correctly estimated false negatives 

and 33.7% were incorrectly estimated false negatives (Figure 4). Of the 57,091 total true false 

negatives in the observation matrices, the estimated z matrices correctly predicted 28,576 of 

them, leaving 28,515 total incorrect absences (Figure 3). The occupancy model estimated a total 

of 15,672 incorrect false negatives across all simulated datasets. On average, the occupancy 

model predicted 15.7 incorrect false negatives per simulated dataset with a standard deviation of 

11.8 (Figure 5). Additionally, the number of both correctly and incorrectly estimated false 

negatives increased with the number of true false negatives in the observation matrix. 
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Figure 3. The total number of true false negatives on the x a-axis are compared to the number of 

estimated false negatives on the y-axis. The purple points represent the number of correctly estimated 

false negatives in each model. This number must be less than or equal to the true number of false 

negatives in each observation matrix, so these points will always be under the one-to-one line. Blue points 

represent the total number of false negatives estimated in the occupancy model. Above the one-to-one line 

means that there were more estimated false negatives than were true false negatives. Below the line 

means there were fewer estimated false negatives than were true false negatives.  

 

Figure 4. The number of correctly estimated false negatives added to each observation matrix. The 

occupancy model predicted an average of 29.3 correct false negatives in the estimated z matrix. 
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Figure 5. The number of incorrectly estimated false negatives added to each observation matrix. The 

occupancy model predicted an average of 15.7 incorrect false negatives in the estimated z matrix. 

When examining how error was adjusted after controlling for false negative estimates, the 

occupancy model estimated more correct false negatives than incorrect false negatives in 901 out 

of 1000 model fits (Figure 6). In these cases, the model estimates decreased error between the 

observation matrix and estimated z matrix.  15 model fits had an equal number of correctly and 

incorrectly estimated false negatives. And 84 models predicted more incorrectly than correctly 

estimated false negatives, meaning that 8.4% of simulated datasets resulted in an increase in 

error. 

 

Figure 6. The difference between correctly and incorrectly estimated false negatives in each model 

iteration. Positive values indicate that the occupancy model estimated more correct false negatives than 
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incorrect false negatives, decreasing error overall. Negative values indicate that error was increased by the 

occupancy model estimates.  

3.3.3 Overall Community Estimates 

Next, we analyzed how well the true community was predicted by the observation and estimated 

matrices by comparing community accuracy before and after controlling for false negative 

estimates (Figure 7). When compared to the corresponding true z matrices, the observation 

matrices averaged an accuracy of 90.4% with a standard deviation of 3.4%. After the occupancy 

model estimates were incorporated, the estimated z matrices had an average accuracy of 92.6% 

with a standard deviation of 2.7%. Overall, controlling for false negative estimates increased 

community accuracy by 2.2% from the observed matrices to the estimated z matrices.  

 

Figure 7. Community accurracy in comparison to the true z matrix. Blue bars illustrate the distribution of 

community accuracy in the observation matrices, while the purple bars illustrate accuracy of the estimated 

z matrices. 

To understand how much information the occupancy model revealed about the true community, 

we compared the amount of mutual information shared between the true z matrix and the 

corresponding observation and false-negative probability matrix (Figure 8). The observation 

matrix alone shared an average of 0.43 nats of mutual information with the true z matrix with a 
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standard deviation of 0.06. There was a minimum of 0.22 nats and maximum of 0.62 nats. After 

including model estimates, the false-negative probability matrix shared an average of 0.54 nats 

of mutual information with the true z matrix with a standard deviation of 0.05. There was a 

minimum of 0.35 and maximum of 0.68. Our results indicated that both the observation matrix 

and false-negative probability matrix obtained information from the true z matrix. However, the 

mutual information shared between every false-negative probability matrix was higher than the 

information shared with the comparable observation matrix (Figure 9). On average, the false-

negative probability matrix revealed 0.11 more nats of information about the true z matrix than 

the observation matrix alone. The minimum difference was 0.03, while the maximum was 0.20. 

 

Figure 8. The mutual information shared with the true z matrix of 1000 simulated datasets. The blue bars 

are mutual information shared with the observation matrix. Purple bars are the mutual information shared 

with the false-negative probability matrix. 
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Figure 9. The difference in mutual information that the true z matrix shares with the false-negative 

probability matrix and the comparable observation matrix. Positive values indicate that the true z matrix 

shared more mutual information with the false-negative probability matrix than the observation matrix. 

Finally, we investigated if the occupancy model improved species-site richness estimates. 

Although all species identities and locations may not be correct in the false-negative probability 

matrix and estimated z matrix, we totaled the number of estimated site-species combinations 

(Figure 10). When comparing true z richness to observed richness, the observed data averaged 

57.1 fewer species-site combinations than true richness, with a standard deviation of 20.6. 

Richness estimates based on the false-negative probabilities averaged 3.7 more site-species 

combinations than true richness with a standard deviation of 13.0. And richness predicted from 

the estimated z matrix averaged 12.8 fewer present site-species combinations than true richness 

with a standard deviation of 16.9. Our results indicated that both the false-negative probability 

matrix and the estimated z matrix were better predictors of metacommunity richness than the 

observation matrix alone (Figure 11). And the false-negative probability matrix was the best 

predictor of species-site richness, even though species identities were inaccurate. 
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Figure 10. Species richness in the true z matrix and the estimated z matrix. Data points on the one-to-one 

line indicate that the estimated species richness was equivalent to the true species richness in that model 

iteration. Data points below the line mean that species richness was underestimated in that model, while 

points above the line were overestimated.  
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Figure 11. The difference in species-site richness from the true z matrix richness. Blue bars represent the 

richness difference between the true z matrix and the estimated z matrix. Purple bars represent the 

richness difference between the true z matrix and the false-negative probability matrix. Positive values 

mean the true z matrix has higher richness than the estimated matrices, while negative values indicate 

estimated matrices had higher richness than the true z matrices.  

To evaluate the occupancy model’s richness estimates compared to published estimators, we 

calculated richness of each simulated observed dataset using the iChao2 species estimator (Chiu 

et al., 2014). On average, Chao overestimated richness by 7.9 site-species combinations with a 

standard deviation of 18.4. Therefore, the false-negative probability matrix was better at 

predicting true richness than the iChao2 richness estimator (though it required considerably more 

information) (Figure 12).  
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Figure 12. Blue bars are the difference between true and Chao richness. Purple bars are the difference 

between true and FN probability matrix richness. A difference of zero indicates that true richness and 

estimated richness are the same. 

3.3.4 Case Study – Hymenoptera Data 

In the dataset used for the case study, there were 87 trees fogged across 15 islets, and researchers 

documented the presence-absence of 44 Hymenoptera species on each tree. Of the 3828 possible 

detections (44 species x 87 trees), there were 765 observed species-tree combinations (Figure 

13). The ant Pheidole megacephala was the most common species, detected in 77 of 87 fogging 

samples. And the parasitoid wasps, Ceraphron sp. 1, Chelonus blackburni, and Ganaspsi sp. 2 

were the least common, with a single detection each. Of the 660 possible observations at the islet 

scale (44 species x 15 islets), there were 266 Hymenoptera-island combinations observed. 

For the case study, we estimated false-negative probabilities of Hymenoptera species on Palmyra 

Atoll and predicted true occurrences on each sampled islet. After the occupancy model fit the 

data, we first confirmed chain convergence of all parameters. All Gelman-Rubin diagnostics 

were below 1.02 and the lowest ESS was 656. The posterior draws of some regression 

coefficients were correlated, most notably the effect of distance to Cooper Island and island area, 

distance to Cooper Island and native canopy proportion, and average soil pH and average 
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nitrogen release. However, we were not interested in the individual effects of each of these 

covariates, but instead the combined effect of all predictors on species occupancy. As a result, 

correlated regression coefficients did not bias model predictions and false-negative probabilities.  

In this metacommunity, the community-level occurrence intercept was 2.49 with a standard 

deviation of .88 indicating that the average occurrence in the community was high. The 

community-level intercept variance was 8.23 with a standard deviation of 6.00 suggesting that 

average occurrence did depend on the Hymenoptera species. This was further supported by the 

estimated species-level occurrence probabilities, which ranged from 0.99 (N. bourbonica on 

Dudley) to 0.08 (Probaryconus sp. on Pollux). The non-native ant species, Pheidole 

megacephala, had the highest average estimated occurrence probability across islands with a 

mean of 0.92 and a standard deviation of 0.12. The parasitoid wasp species, Blepyrus insularis, 

had the lowest average estimated occurrence probability across islands with a mean of 0.41 and 

standard deviation of 0.23.  

The mean community-level detection intercept was -1.63 with a standard deviation of 0.24 

suggesting low average detection in the community. The variance parameter describing the 

detection intercept had a mean of 2.02 with a standard deviation of 0.55, so detection 

probabilities varied from species to species. This was further supported by the species-level 

detection probabilities, ranging from .04 to .90. The species with the highest average detection 

probability across sampling replicates was P. megacephala with a mean of .86 and standard 

deviation of 0.02. The parasitoid wasp, Ceraphron sp., had the lowest average detection 

probability across sites with a mean of 0.04 and standard deviation of 0.002. This meant that 

even when present, Ceraphron sp. was unlikely to be detected.  
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We extracted the species-islet specific posterior distributions of z and examined the FN 

probability matrix (Figure 14) and resulting estimated Z matrix (Figure 15). In the FN 

probability matrix, estimated false negatives ranged from 0.02 (Aprostocetus hagenowii on Fern) 

to .99 (Hypoponera punctatissima on South Fighter). Including observed species, the mean value 

in the FN matrix was 0.71 with a standard deviation of .32. Of the estimated false negatives in 

the FN probability matrix, the average false-negative probability was .54 with a standard 

deviation of .29. The estimated Z matrix predicted 250 total false negatives in this 

metacommunity. In terms of overall richness, the FN probability matrix estimated the true 

community had 495.35 species-islet combinations, while the estimated Z matrix expected 506 

species-island combinations. The iChao2 estimated richness as 411.60 species-island 

combinations with a standard error of 16.64.  
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Figure 13. The fogging samples resulted in the above observation matrix. Light cells indicate that a 

species was not observed on that islet based on the fogging sample detections. Dark cells mean that a 

species was observed. 
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Figure 14. The occupancy model estimated false-negative probabilities for each species-island 

combination that was not observed. This resulted in the above false-negative probability matrix. Observed 

species are the darkest color and have the highest probability of occurring (1). The color of unobserved 

species cells illustrate the estimated false-negative probability from low (lightest) to high (darkest) 
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Figure 15. Applying a probability threshold of 0.5 to the FN probability matrix resulted in the above 

estimated Z matrix. 

 

3.4 Discussion 

3.4.1 Simulation Discussion 

In our simulation study, we asked whether an occupancy model could predict the location and 

identities of false negative species. Based on our 1000 simulated datasets, we presented evidence 
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to suggest that it partially could. Across the datasets, the occupancy model estimated more 

correct false negatives than incorrect false negatives, reducing error in the majority of 

community estimates. This occupancy model did not predict all true false negatives, leaving 

about 49.94% as incorrect absences, but 66.3% of the estimated false negatives were correct. 

After controlling for false negatives, 8% of estimated z matrices had more error when compared 

to the observation matrix. Increasing error was the least ideal outcome, and more work needs to 

be done to understand the datasets where this occurs and how to make better predictions in these 

scenarios. After taking false-negative estimates into account, community accuracy improved 

overall. The estimated z matrices were closer representations of true z’s community composition 

than the observed matrices alone. And even though many incorrect false negatives were included 

in the estimated z matrix, community accuracy increased because, on average, the occupancy 

model predicted more false negatives correctly. In addition to community accuracy, we 

quantified mutual information in order to directly measure the amount of information that the 

occupancy model obtained. In every model iteration, the true z matrix shared more information 

with the false-negative probability matrix than the observation matrix alone. In real biological 

surveys, the true z matrix is unknown, and researchers must rely on the observed data to make 

inferences about the true state of the system. Although this occupancy model did not predict any 

simulated community with 100% accuracy, it did reveal more information about each “hidden” z 

matrix. These results suggest that occupancy models are a promising tool that could potentially 

improve our estimates of present community compositions. 

In addition to predicting the identities and locations of species, we also examined the occupancy 

model’s ability to predict species richness. True richness was compared to the observed richness, 

false-negative probability richness, and estimated richness. Both richness estimates from the 
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occupancy model performed better than observed richness. And of the three, richness calculated 

from the false-negative probability matrix was the closest predictor of true richness. These false-

negative probability richness estimates even surpassed a commonly used richness estimator, the 

iChao2 (Chiu et al., 2014).  

Our simulated study results found that as the number of false negatives increased in the 

observation matrix, so too did the number of correctly and incorrectly estimated false negatives 

in the estimated z matrix. Because each of our simulated datasets had 10 species and 60 sites, 

there were a maximum of 600 possible false negatives (given all species were present but none 

were observed), and this number decreased with every observation. As the number of true false 

negatives increased in the observation matrix, the occupancy model was provided an 

increasingly less accurate y matrix to estimate parameter values. When true false negatives were 

high, the y matrix did not contain enough information about true species occurrences for the 

model to make accurate predictions, leading to more incorrect false-negative estimates. Although 

estimated false-negative identities were less accurate, species richness was still closely predicted 

in these cases. Thus, estimated richness remained a reliable predictor of true richness even when 

true false-negative counts were high.  

In our estimated z matrices, we categorized an unobserved species at a site as an estimated false 

negative when mean z was greater than 0.5. We chose this threshold simply because these 

species are predicted to be truly present more often than not. However, there are costs associated 

with this probability threshold. When the probability of a false negative is 0.5, the alternative 

event (an absence) is equally probable, resulting in maximum uncertainty of the outcome. We 

cannot confidently make a guess one way or the other. Having a mean probability of 0.51 is not 

statistically different from 0.50, yet our estimated z matrix confidently determined these species 
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were false negatives. With this threshold, we risked including many incorrectly estimated false 

negatives in our estimated z matrix. We could increase the probability threshold for more 

conservative false negative predictions, but we jeopardize defining more species as absent when 

truly present. The decision comes down to if it’s more detrimental to miss present species or 

include absent species. Using conservation ecology as an example, having an incorrect absence 

at a site could result in vulnerable populations that are not being managed. But a species that was 

absent but assumed present could lead to wasted financial resources and efforts. In every 

scenario, the probability threshold to estimate a false negative should be considered with care. 

Regardless of the threshold used, basing false negatives on a threshold has the drawback of 

increasing error in the estimate of the total false-negative rate to the extent that the average false-

negative probability departs from 0.5. Namely if the average probability of a false negative is 

<0.5, the total number of false negatives will be underestimated whereas if the average 

probability of a false negative if >0.5, the total number of false negatives will be overestimated. 

A logical alternative to thresholds is to use false-negative probabilities instead. Our simulation 

study illustrated that the false-negative probability matrix shared more mutual information with 

true z and was better at predicting true richness than the estimated z matrix. Basing management 

decisions on the false-negative probability matrix may be less straightforward but could provide 

more insight into the true community. And if resource managers were interested in conserving 

species richness, as opposed to a specific species, then richness estimates from the false-negative 

probability matrix is likely the better option.  

Although not specifically highlighted in this study, the probability of a false negative is 

dependent on the interaction of two parameters: the probability of occurrence (psi) and the 

probability of detection (p). The value of psi and p imply different types of species and 
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observations. Therefore, combinations of psi and p will result in different false-negative 

probability distributions. As an example, a high psi and low p describes a species that has 

favorable local conditions but is cryptic or rare. This will result in a high false-negative 

probability because the species is likely present, but difficult to find. In contrast, a low psi and 

high p indicates a species that is incompatible with local conditions, yet easy to observe if 

present. Therefore, the probability of a false negative is low because the species is unlikely 

present and detectable if it was. Less intuitively, a species with a high psi and high p is likely 

present and easy to observe, making a non-detection unexpected, and therefore meaningful. 

Because the model predicts an observation where there wasn’t one, the model cannot confidently 

estimate the false-negative probability, resulting in a wide distribution centered around 0.5. 

Particularly in these cases, replicate samples can help distinguish between an estimated true 

absence or false negative. Finally, species with a low psi and low p have a low mean false-

negative probability and a distribution with a long tail. In this occupancy model, correctly 

estimating the psi and p parameters will dictate the success of the occupancy model’s false 

negative predictions. In the future, we could explore which combinations of psi and p interact to 

predict correct or incorrect false negatives.  

3.4.2 Case Study Discussion 

Our case study of Hymenoptera surveys illustrated how an occupancy model can be used to 

predict false-negative probabilities and metacommunity occurrence. In comparison to our 

simulated dataset, the case study estimates resulted in a higher ratio of estimated to observed 

species (from 250 observed species-island combinations to 495 estimated species-island 

combinations). One reason for this could be that in the simulated datasets, occurrence and 

detection probabilities were calculated based on uniform distribution draws ranging from -2 to 2 
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on the logit scale. As a result, the species in the simulated communities represented the range of 

possible occurrence and detection probability combinations, with mean occurrence and detection 

probabilities centered around 0.5. However, in our case study dataset, the community-level 

average occurrence and detection was 2.4935 and -1.634 on the logit scale, or .9237 and .1633 

on the probability scale respectively. This meant that most Hymenoptera species in the case study 

community had a high occurrence probability and low detection probability. These types of 

species are the most likely to be missed in a community survey resulting in high false-negative 

probabilities. And as a result, the occupancy model estimated a much higher number of false 

negative species on islands in the case study community than any simulated community. The 

most common species, Pheidole megacephala, was observed on every island during sampling, so 

false-negative probability estimates were not necessary here. We gained more insight when 

species had fewer observations. For example, Tetramorium bicarinatum was only observed on 6 

islands during sampling. But based on the false-negative probabilities, this species was predicted 

to truly occur on all islands.  

3.4.3 Applications 

There are many applications for models that parameterize the probability and predict the 

identities of false negative species. Estimating false-negative probabilities can be a useful tool 

for sampling design. By estimating false-negative probabilities, researchers can make more 

informed decisions about where to allocate additional sampling efforts. For conservation 

ecology, considering missed species could inform management decisions when preserving 

habitat, especially of rare or cryptic species (Gaston, 1994; MacKenzie et al., 2005; Williams et 

al., 2002). False negative estimates could also help predict the spread of non-native species that 

threaten biodiversity (Kikillus et al., 2009; Pimentel et al., 2002; Sikder, 2006; Bled et al, 2011). 
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In disease ecology, false negatives can arise when distinguishing between infected or uninfected 

individuals or populations. Controlling for imperfect detection could help more accurately assess 

disease risk and evaluate population dynamics when transmitting to humans, agriculture, or 

livestock (McClintock, 2010; Dobson & Foufopoulos, 2001; Webster et al., 2006). And in 

community ecology in general, correct inferences depend on the observed data accurately 

representing the true communities. Previous studies have demonstrated that not accounting for 

imperfect detection can lead to spurious patterns (Jennelle et al., 2007; Conn & Cooch 2009). So, 

assessing detection probabilities and false-negative probabilities should be standard procedure 

before interpreting results of a community analysis. If false negatives are estimated to be high, 

researchers may choose to rely more on density estimates rather than presence-absence 

estimates. 

3.4.4 Assumptions and Future Directions 

In our simulation study, the occupancy model predicted the locations and identities of false 

negative species. However, as with any simulated dataset and statistical model, we made several 

assumptions.  

The first set of assumptions arise based on how we generated our simulated datasets. We limited 

the effect of all site traits and replicate traits to between -2 to 2 on the logit scale which 

transforms to .12 to .89 on the probability scale. Because the logit scale truncates near both ends 

of the probability scale, sampling the logit scale uniformly to encapsulate probabilities from .00 

to .99 would result in a bimodal distribution. To ensure that we sampled a wide range of 

probabilities without overrepresentation on either end, we limited our logit scale to sample 

uniformly between -2 to 2.  This range of effect sizes is also ecologically realistic, allowing 

either positive, negative, or no effects. In reality, covariates could have more extreme effects on 
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species occurrence or detection, however this possibility is excluded here. Another assumption in 

our simulated study is that the included covariates exclusively determined species occurrence 

and detection probabilities. In biological surveys, species observations are likely dependent on 

several covariates, and researchers are often unable to collect data on all of them. Therefore, 

there may be influential covariates not informing the occupancy model’s predictions, which may 

lead to less accurate false negative estimates. A next step to explore this assumption would be to 

simulate traits that influence occurrence and detection probabilities but omit them from the 

occupancy model to see how unexplained variance affects false negative predictions.  

The second set of assumptions is based on the bounds of this occupancy model framework. For 

example, this occupancy model is indexed only for site traits, not species traits or species co-

occurrences. As a result, we did not structure our simulated datasets with either of these factors. 

However, previous empirical work has demonstrated that species traits and co-occurrences can 

often influence species distributions and observations (Bhowmik et al., 2015; Tremlová & 

Münzbergová, 2007; Syphard & Franklin, 2009; Hanspach et al., 2010; Wisz et al., 2013; Araújo 

& Luoto, 2007). So, including species-based effects may improve false negative estimates. 

Additionally, this occupancy model framework cannot account for false positives in the 

observation matrix, so we structured our simulated data such that all observed species were truly 

present. False positives are expected to be less common than false negatives because they arise 

when an observed species is misidentified. However, these misidentifications should be limited 

by observer experience and good protocols (Tyre et al., 2003). Nonetheless, false positives are 

likely prevalent sources of error in biological datasets and previous studies have demonstrated 

their bias (Tyre et al., 2003; Ferguson et al., 2015; Miller et al., 2015; Williams et al., 2002). As 

a result, false positives should not be ignored. To remedy both assumptions, we need to use a 
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different occupancy model framework that can parameterize species trait effects and false 

positive estimates.  

For our last set of assumptions, we assumed that the simulated and case study datasets were 

structured in the same way, but this is unlikely to be the case. There are several differences that 

could influence the accuracy of false negative estimates.  As previously discussed, large effect 

sizes, unmeasured covariates, species traits, species co-occurrences, and false positives are 

potential factors affecting the case study observations and model predictions. Each of these 

factors must be considered. There are additional differences between our simulated and case 

study datasets. For example, the simulated datasets were restricted to 3 replicate observations per 

site in order to generate true false negatives even when detection probabilities were high. But in 

our case study dataset, the number of replicates varies with site (between 1 to 23), so some sites 

had greater representation than others. The more replicate samples from a site without an 

observation, the lower the probability of a false negative at those sites. This may lead to biased 

estimates depending on the site.  

Before we can predict species communities with high accuracy, this study suggests many next 

steps and future directions. Each of the above assumptions must be fleshed out to understand 

their influence on model predictions. 

3.5 Conclusion 

Overall, this occupancy model increased simulated community accuracy by an average of only 

2%. So we ask the question, is estimating false negatives important enough to be worth the 

effort? We argue that it is. Although this occupancy model may not be the solution to predicting 

all false negatives, it did improve our understanding of the true species community. In our 



104 
 

simulation study, true community composition was better matched by the estimated community 

than observations alone. Mutual information also improved after adding the estimated false 

negative probabilities to the observed datasets. And richness estimates from the occupancy 

model resulted in closer approximations of true richness. There are a myriad of future directions 

to explore before we can confidently predict false negative estimates, but this study is a baseline 

for next steps. More research and future advancements will only enhance predictions. Occupancy 

models are promising tools that can help reveal occurrence dynamics and control for imperfect 

detection. These insights can inform conservation decisions, improve disease detections 

(McClintock, 2010), and predict invasive species spread (Kikillus et al., 2009, Bled et al., 2011). 

This study focused on an important problem: false negatives are ubiquitous sources of error in 

biological datasets that can perpetuate misleading inferences if ignored (McClintock, 2010; Tyre 

et al., 2003). Adding model extensions to address estimator assumptions will be an important 

next step. 
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