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ABSTRACT OF THE DISSERTATION

Towards Analysis on Fractals: Piecewise C'-Fractal Curves, Spectral Triples, and the
Gromov-Hausdorff Propinquity

by
Therese-Marie Basa Landry

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, March 2022
Dr. Michel Lapidus, Chairperson

Many important physical processes can be described by differential equations. The
solutions of such equations are often formulated in terms of operators on smooth manifolds.
A natural question is to determine whether differential structures defined on fractals can
be realized as a metric limit of differential structures on their approximating finite graphs.
One of the fundamental tools of noncommutative geometry is Alain Connes’ spectral triple.
Because spectral triples generalize differential structure, they open up promising avenues
for extending analytic methods from mathematical physics to fractal spaces. The Gromov-
Hausdorff distance is an important tool of Riemannian geometry and building on the earlier
work of Marc Rieffel, Frederic Latremoliere introduced a generalization of the Gromov-
Hausdorff distance that was recently extended to spectral triples. The class of piecewise
C'-fractal curves was first characterized by Michel Lapidus and Jonathan Sarhad as a
generalized setting for the spectral triple construction developed by Christensen, Ivan, and
Lapidus in the context of the Sierpinski gasket. We provide an analytic framework for the

metric approximation of the Lapidus-Sarhad spectral triple on a piecewise C'-fractal curve
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by spectral triples defined on an approximating sequence of finite graphs which exhibit

properties motivated by the setting of the Sierpinski gasket.
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Chapter 1

Introduction

Classical geometry relies on curves and surfaces that appear locally Euclidean. In
contrast, fractals are infinite objects often characterized by self-similarity— the repetition
of a base pattern across a boundless set of scales. Mandelbrot coined the term ”fractal”
to describe rough or fragmented geometric shapes or processes. More than a century ago,
curves now classified as fractals were generated by mathematicians as examples of objects
that exhibit pathological geometric behavior. Such examples include the Weierstrass func-
tion, the Sierpinski gasket, and the Koch curve. Scientists have successfully modified fractal
patterns to model many diverse natural phenomena such as the bronchial tubes of a lung,
the canopy of a tree, the network of blood vessels in the human body, the pathway of a
lightning bolt, and the distribution of noise in data transmission over a communications
channel [26, 27]. Because fractal structure in nature has self-similarity over an extended
but finite scale range, advancement in the theory of finite approximations of fractals can

lead to a better understanding of how fractal structures arise and evolve in nature.



Many important physical processes can be described by differential equations. The
solutions of such equations are often formulated in terms of operators on smooth manifolds.
One motivation for the development of analysis on fractals is the extension of these methods
from mathematical physics to fractal spaces. Many fractal curves can be approximated by
simpler structures like finite graphs. A natural question, and the goal of this doctoral thesis
project, as well as the subject of a collaboration with my PhD advisor, Michel Lapidus, and
Frédéric Latrémoliere, is to determine whether differential structures defined on fractals can
be realized as a metric limit of differential structures on their approximating finite graphs
[41]. Such an advancement would set the stage for the definition of operators on fractals that
suitably generalize their classical counterparts and grant access to analysis via differentiable
methods.

The emergence of architectures in information theory and signal processing at the
quantum scale necessitates theoretical advances in both fractal geometry and noncommu-
tative geometry [40] [16]. At every level of detection, the length of gaps between noise in a
signal transmission is fractal [27]. At the quantum mechanical level, the order of measure-
ment affects the outcome, and as a consequence, coordinates, which completely determine
a system in classical geometry, do not commute. In particular, development of a non-
commutative fractal geometry would enhance the capability of mathematicians to describe
important physical spaces. Many important advancements in the definition and study of
noncommutative fractal geometry are due to the efforts of Michel Lapidus, some of which

are in collaboration [11, 17, 18, 41, 19]. This doctoral thesis project, which owes its concep-



tion, evolution, and fruitful resolution to his direction, increases the range of tools from
noncommutative geometry which can be used to describe and understand fractals.

At the quantum scale, the wave function of a particle, but not its path in space,
can be studied. Riemannian methods often rely on smooth paths to encode the geometry
of a space. Noncommutative geometry generalizes analysis on manifolds by replacing this
requirement with operator algebraic data. From this perspective, the topology of a space X
determines, and is determined by, the C*-algebra C'(X). When X is a compact Hausdorff
space, C'(X) is a C*-algebra. The space of bounded linear operators on a Hilbert space is
another fundamental example of a C*-algebra. Gelfand, Naimark, and Segal discovered that
the category of unital commutative C—algebras is dual to that of compact Hausdorff spaces.
Classical spaces correspond to commutative C*-algebras, and noncommutative spaces to
noncommutative C*-algebras.

Much of the foundation of noncommutative geometry comes from Alain Connes’
efforts to adapt classical tools from topology and Riemannian geometry to the operator alge-
braic setting. Connes formalized the operator algebraic elements essential to his approach
in the definition of a spectral triple (see Definition 9). Because spectral triples general-
ize differential structure, they open up promising avenues for extending analytic methods
from mathematical physics to fractal spaces [17, 18]. Since spaces that do not have paths
or smooth structure often still admit many kinds of functions, fractals and Riemannian
manifolds can be studied on the same rigorous footing when viewed as noncommutative

spaces.



Noncommutative geometry can be used to give a rigorous functional analytic
framework for models in high energy physics [4, 7, 21, 35, 36]. These same “point-free”
techniques have also been used to study the geometry of classically pathological spaces like
fractals. Michel Lapidus established a research program to stimulate advancement in non-
commutative fractal geometry, where methods from noncommutative geometry are used to
study fractals as generalized manifolds [17, 18]. Since the geodesic distance encodes the
geometry of a manifold, recovery of this intrinsic metric is crucial to the development of
analysis on fractals. Lapidus and his collaborators have built spectral triples that all re-
cover the geodesic distance and in some instances also the Minkowski and complex fractal
dimensions of the space [11, 19].

The Sierpinski gasket belongs to a class of fractal curves that can be suitably
approximated by finite graphs. The Sierpinski gasket is also an important test case for
much work in analysis on fractals. Michel Lapidus, together with Erik Christensen and
Cristina Ivan, developed a spectral triple for the Sierpinski gasket that recovers the Haus-
dorff dimension, the geodesic metric, and the log, 3-dimensional Hausdorff measure [11].
The aforementioned class of fractals— that is, piecewise C'-fractal curves— was first char-
acterized by Michel Lapidus and Jonathan Sarhad as a generalized setting for the spectral
triple construction developed by Christensen, Ivan, and Lapidus in the context of the Sier-
pinski gasket [19]. My collaboration in [41] with Lapidus and Latrémoliére provides an

analytic framework for the metric approximation of the Lapidus-Sarhad spectral triple on



a piecewise C'-fractal curve by spectral triples defined on an approximating sequence of
finite graphs which exhibit properties motivated by the setting of the Sierpinski gasket.

The class of piecewise C'-fractal curves also includes the harmonic gasket, which
is a self-affine set that is homeomorphic to the Sierpinski gasket and path-connected via C!
curves. Via the efforts of Jun Kigami and Shigeo Kusuoka, there exists a fractal version of
Riemannian geometry in the setting of the harmonic gasket — more precisely, formulas for
energy and geodesic distance involving measurable analogs to Riemannian metric, Rieman-
nian gradient, and Riemannian volume [15]. In contrast, paths on the Sierpinski gasket are
only piecewise C. Intrinsic metrics like the geodesic distance on a space play an important
role in Riemannian geometry. The Lapidus-Sarhad spectral triple recovers the geodesic
distance on a piecewise C'!-fractal curve [19]. Because the Sierpinski gasket cannot even be
viewed as a classical manifold in the topological sense, the ability of the Lapidus-Sarhad
spectral triple to recover the geodesic metric in this and broader settings is an important
advancement in the development of generalized notions of manifolds that include fractal
spaces.

A piecewise C'-fractal curve can be written as the closure of a countable union of
parameterized curves. Hence different subsequences of a parameterization define different
sequences of finite graph approximations. The Lapidus-Sarhad spectral triple on a piece-
wise C'-fractal curve is a countable direct sum of spectral triples where each summand
corresponds to a curve in the fractal. The Gromov-Hausdorff distance is an important tool
of Riemannian geometry, and building on the earlier work of Marc Rieffel, Frédéric La-

tremoliere introduced a generalization of the Gromov-Hausdorff distance that was recently



extended to spectral triples in a form called the spectral propinquity [20, 23]. Our work
determines conditions under which finite subsets of these summands yield spectral triples
that approximate a spectral triple on the piecewise Cl-fractal curve, thereby facilitating
metric approximation of these spectral triples and their underlying noncommutative geo-
metric structures by the spectral propinquity. My thesis describes these conditions in the
definition of an approximation sequence for a piecewise C'-fractal curve (see Definition 5).
My thesis also shows that these finite direct sums of spectral triples recover the geodesic
distance for the corresponding finite graph in an approximation sequence for a piecewise
Cl-fractal curve (see Theorem 27).

The Lapidus-Sarhad spectral triple and the approximating spectral triples de-
scribed above are all distinguished in that they each recover the geodesic distances on their
respective spaces. Intrinsic metrics like the geodesic distance on a space play an important
role in Riemannian geometry. The application of the spectral propinquity in this setting
not only respects the convergence of the coinciding classical structures but also adds new
information by metrizing a notion of closeness for spectral triples also supported on the
same spaces. The spectral propinquity can be viewed as an extension of Hausdorff distance
up to the level of spectral triples. Chapter 2 begins with an exposition of Hausdorff distance
as a tool for describing fractality. Lapidus and Sarhad’s formulation of piecewise C''-fractal
curves is introduced. This framework is enhanced with the notion of an approximation se-
quence. The Gromov-Hausdorff distance is given as both a classical analogue for the basis
of the spectral propinquity metric and a means to describe geodesic metric structure for

piecewise C'-fractal curves. Chapter 3 is a development of some themes in noncommuta-



tive fractal geometry and falls within the much wider scope of Michel Lapidus’ research
program where that subject is established. With the aim of understanding fractality, this
account details the metric perspective in the sense of Rieffel, as well as the Riemannian
angle advanced by Connes. As a metric on spectral triples of a certain class, Latremoliere’s
spectral propinquity is introduced as a tool for studying spectral triples on fractals. Chap-
ter 4 applies the elements of noncommutative fractal geometry given in Chapter 3 to the
metric approximation of Lapidus-Sarhad spectral triples on piecewise C'-fractal curves. In
service of this goal, metric approximation of each of several underlying noncommutative
structures is obtained. The properties encoded in the notion of an approximation sequence
play a major role in multiple estimates. Chapter 5 concludes with the description of several

directions in noncommutative fractal geometry for current and future investigations.



Chapter 2

Hausdorff Distance, Iterated

Function Systems, and Fractals

A crumpled sheet of paper looks like a plane when viewed close enough. A tangled
piece of string likewise seems like a straight line at a precise enough level of detail. Classical
geometry relies on curves and surfaces that appear locally flat at large enough levels of
magnification. Fractals often appear pathological in this setting.

A fractal can sometimes be precisely described as the limit of the infinite iteration
of a simple rule applied to a space. Mathematicians have identified special properties
with which to define such iterated functions and the settings in which they give rise to
fractals. Many fractal curves which can be characterized in this way also satisfy the criteria
codified by Lapidus and Sarhad in the definition of a piecewise C'-fractal curve. Important
examples of such fractals include the Sierpinski gasket and the harmonic gasket. The class

of piecewise C'-fractal curve is broader than the usual framework through which these



fractals are viewed, thereby making possible the description of more complicated examples

of fractality.

2.1 Hausdorff Distance

Fractal curves like the Sierpinski gasket can be viewed as subsets of R?. When
equipped with the Euclidean distance d, (R?,d) is a metric space. Sets in a metric space
can be compared using the Hausdorff distance. To define the Hausdorff distance for sets in
(R2,d), let A be a subset of R? and r be some real number greater than 0. Then the open

r-neighborhood around A is

N,y (A) ={y:d(z,y) <r,Vxe A}.

Definition 1. Let A, B be subsets of a metric space. The Hausdorff distance between A
and B is

Hausq(A, B) =inf{r >0,B < N,(A),A< N,(B)}.

Many fractals can be viewed as an increasing union of sets with a simpler structure.
In the case of piecewise C'-fractal curves, these sets will be supplied by finite graphs. These
fractal curves have finite approximations in the Hausdorff distance by such graphs. Both
kinds of sets are also compact metric spaces when equipped with their respective geodesic
distances. An extension of the Hausdorff distance can be applied to the consideration of
convergence for such spaces.

The Hausdorff distance can be used to define a metric on the subsets of a metric

space. Trivial Hausdorff distance between two subsets of a metric space implies one set is



dense in the other. This metric is an extended pseudo-metric if no qualifications are put on
these subsets. For instance, the Hausdorff distance between a point and a line as subsets of
(R2,d) is infinite. In contrast, the Hausdorff distance between any two non-empty, compact
subsets of (R?,d) is finite. More precisely, let (X, d) be a metric space. Denote the set of
non-empty compact subsets of X by H(X). When equipped with the Euclidean distance d,
(R2,d) is a complete metric space. Consequently, (H(IR?), Haus,) is also a complete metric

space [12].

2.2 Iterated Function Systems

Some fractals can be represented as limits of Cauchy sequences in (H(R?),dg).

To construct such sequences in a more general setting, let (X, d) denote a metric space.

Definition 2. A map T : X — X is called a contraction mapping if there exists k € (0,1)

such that for all x and y in X,
d(T'(z), T(y)) < kd(z,y).

An iterated function system (IFS) is a finite collection of contraction mappings {T}T

from the space X to itself.

In fact, iterated functions systems exhibit an important property when they are

defined on a complete metric space.

Theorem 1. [12] Suppose (X,d) is a complete metric space. Let {F3}7" | be an iterated

function system in (X,d). Set F': H(X) — H(X) equal to
F(4) := | Fs(A).
s=1

10



Figure 2.1: Finite Graph Approximations of the Sierpinski Gasket

Then F admits a unique fized point. In other words, there erists a unique non-empty

compact subset of X that is invariant for {Fs}7" .

Many important fractals can be realized as the unique fixed point of an iterated
function system on a complete metric space. In particular, { F"(A)},en is a Cauchy sequence
when A and F are defined as in the above theorem. Fractal curves like the Sierpinski gasket
can be represented as the unique fixed point of such a Cauchy sequence. For the case of the
Sierpinski gasket, the unit equilateral triangle is a finite subgraph. In fact, this fractal can
be approximated in the Hausdorff distance by the finite iterates of an affine transformation
applied to a unit equilateral triangle. The properties exhibited by this approximating
sequence of finite graphs will later be generalized to the setting of piecewise C!-fractal
curves in the notion of an approximation sequence for such fractals.

The Sierpinski gasket is both a classical example of a nowhere differentiable planar
curve and an important test case for the theory of analysis on fractals. Let p1, p2, and p3

each represent a vertex in a unit equilateral triangle and

Fiw) = 3 (@~ ps) + s

11



for s € {1,2,3}. Analytically, the Sierpinski gasket, SG, can be defined as the unique

nonempty compact subset of R? such that
3
SG = | J Fy(5G).
s=1

The system of contraction mappings defined above can also be used to obtain finite graph
approximations of SG. Let SGy signify the initial unit equilateral triangle, n any positive
integer, t = (t1,--- ,tx) a word of length |t| = k letters in {1,2,3} for 1 < i < k, Fi(x) =

Ft (oI OFt1($)7 and

k

SG,, = U F,(SGo).

[t|<n

Then {SG,},=0 is an increasing sequence of graphs and SG can also be viewed as the
closure of the limit of this sequence. Moreover, SG can be decomposed into n-cells — that
is,
SG = | J F(sG)
lt|=n

with

ﬂ Fy(SGo) = U Fy({p1,p2,p3}) = Var,

[t|=n [t|=n

where V,, denotes the vertices in the level n approximation to SG, which will be denoted
by SG,. In analogy with Euclidean neighborhoods on a classical manifold, n-cells in SG
can be seen as graph neighborhoods on the fractal. Because the lengths of the edges in an
n-cell in SG are bounded by 27", arbitrarily small regions of the fractal can be considered.

Similarly,

Vii=J Va

n=0

is dense in SG and coincides with the vertices of SG. Fractals like SG carry an intrinsic

metric and are examples of compact length spaces [19]. More precisely,

12



Figure 2.2: The Stretched Sierpinski Gasket

Definition 3. Let (M,d) be a compact metric space. The induced intrinsic metric
dr = dj(z,y) is defined as the infimum of the d-induced lengths of (continuous) paths from
x to y. When there is no path from x to y, then dr(xz,y) is defined to be infinite. If
d(z,y) = di(z,y) for all z and y in M, then (M,d) is called a compact length space and

the metric d s said to be intrinsic.

Although SG is not differentiable at its vertices, each point in Vj can be connected
to each point in SG by a minimizing geodesic that is a countable concatenation of edges
in SG, hence piecewise rectifiable and C' [19]. Because SG cannot even be viewed as a
classical manifold in the topological sense, the ability of the Lapidus-Sarhad spectral triple
to recover the geodesic metric in this and the wider setting of piecewise C''-fractal curves is
an important advancement in the development of analysis on fractals via noncommutative
geometry.

The Sierpinski gasket and the stretched Sierpinski gasket are both examples of

fractals that can each be viewed as the unique fixed point of some iterated function system.

13



To obtain the stretched Sierpinski gasket of parameter o, 0 < a < %, set pg = %(p2 + p3),
ps = 2(p1 + p3), and pg = 3(p1 + p2). If Ga,i : R? — R? is given by

1 _
Ga,i(z) == 5 a(x —p;i) +p; for i =1,2,3,

Ga,i(x) = 111('%' _p2> + pi for i = 475767

where

1 =3 10 1 /3
-3 3 00 V3 3

T =

= =

1
4

then SG, can be written as the unique nonempty compact subset of (R?, d) such that

6
SGo = | ] Gai(SGa).
i=1
One way to obtain SG, from SG is by replacing each vertex, or branching point in
Vi, n = 1, with an interval of length oz(l_Ta)"*l. The set of such intervals is dense in SG,,
[30]. Recall that SGy is a unit equilateral triangle with vertices at Vy = {p1, p2,ps}. For

n = 1, these intervals coincide with the images of SGg under the contractive affine maps in

the iterated function system — that is, G ; for i = 4,5,6. Let
€; = Ga7i+1(SG0) for i = 1, 2,3.

Then

Il = {617 €2, 63}

is the set of intervals in SG,, of length .. Each interval in I; can be associated to a vertex in

V1 via this correspondence. To describe the remaining intervals, as well as other components

14



of SG,, only the contractive similarities in the iterated function system-— that is, G, ; for
i = 1,2,3 are needed. As in the case of SG, given t in {1,2,3}*, G,(7) is taken to be
Gaty, 0+ 0Gay, (z). Thus for n > 2, each interval of length a(152)" ! can now be described

by Ga.t(e;) for some ¢ in {1,2, 3} ! and e; in Iy. If
I, :={Gqaz(e) : [t| =n—1,ee I}

for n > 2 and

L= | I,

n=1

then

Patricia Alonso Ruiz and Uta Freiburg showed that SG,, converges to SG for the
Hausdorff distance when « goes to zero [39]. Part of their argument relies on bounds for the
Hausdorff distance between the vertices of SG, and the set of vertices of SG. In contrast

to SG, the vertices of SG,, are not dense in SG,. To describe the vertices of SG,, set Wy

equal to Vj,
Wi :={Gau(p) : [t| = n,p € Wo},
and
Wi = W
n=0

For n = 1, each vertex in W, can be viewed as the endpoint of an interval in I,,. In the case
of n =1, Gy (3)(p2) and G, (2)(p3) are the endpoints of e1, G, (3)(p1) and G, (1)(p3) are the

endpoints of ez, and G, (2)(p1) and G, (1)(p2) are the endpoints of e3. As a consequence, ¢

15



al0

[ A

Figure 2.3: Hausdorff Convergence of the Stretched Sierpinski Gasket of Parameter a to
the Sierpinski Gasket for o« — 0

and r in W), are the endpoints of the same interval e in I,, if there exists p; and p; in Wy,

ex in Iy, and t in {1,2,3}"~! such that

Ga,t © Ga,(j) (pz) =4q,

GayoGap)(pj) =1,

and

Gatler) = e.
When « goes to zero, the length of e goes to zero. In particular,

al0

lg — Fy o Fiyy(0i)l = |Ga,(jtr o tn1)Pi) = Fjt o ) (03)] 0,

as does the difference between 7 and Fi; 4, .. ¢,y (p;)- Since Fjp, ..y y(pi) and Fiiy v (95)
describe the same vertex in V,,, the edge in I,, described by Ga7(t1,"',tn—1)(€k) can be as-
sociated to this vertex when comparing SG, and SG using the Hausdorff distance. The
Hausdorff distance is therefore not only an important geometric tool for describing set-
tings in which fractality can arise and finite approximations for fractals, but also for metric

comparison between fractals.
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Sierpinski Gaskel homeomorphism harmonic gasket,

Figure 2.4: The Sierpinski Gasket and the Harmonic Sierpinski Gasket, [19]

2.3 Analysis on Fractals and Piecewise C'-Fractal Curves

The harmonic gasket, HG, is a self-affine fractal that is homeomorphic to SG. In
contrast, SG is self-similar. While paths in SG are piecewise C!, paths in HG are C'. Jun
Kigami combined a formulation of the geodesic metric on HG with Kusuoka’s measurable
generalization of Riemannian structure on SG [15]. Via these efforts, there exist formulas
for energy and geodesic distance on HG involving measurable analogues to Riemannian
metric, Riemannian gradient, and Riemannian volume. Since HG is obtained from SG
using the space of harmonic functions, HG can be viewed as SG in harmonic coordinates.
Like SG, HG is also an important fractal in the theory of analysis on fractals.

The theory of harmonic functions on SG is an important development in the
theory of analysis on fractals. As in the classical case, harmonic functions on SG are energy
minimizers. To define harmonic functions on SG, recall that SG can be viewed as the
closure of an increasing union of finite graphs. Each nth level approximation of SG from
this vantage point is composed of 3" equilateral triangles with sides of length 27", If f and

g are real-valued functions on SG,,, then the energy on SG,, is given by

E.(f,9) =%  (f(@) = fw)(g(=) —g(y)),

T~nyY

17



where z ~,, y signifies that z and y are connected by a single edge in SG,,. An extension of
f to the vertices of SG),+1 that minimizes E,1(f) := E,+1(f, f) is defined as the harmonic
extension of f to those vertices. A real-valued function f defined on the vertices of SG),
which, given its values on the vertices of SG(, minimizes Fj(f) for each k = 1,2,...,n is
called a harmonic function.

Harmonic functions on SG play a critical role in the characterization of the Lapla-
cian on SG. A real-valued function defined on Vj can be uniquely extended to a real-valued
harmonic function on SG,, for any n and hence to V,. Since V, is dense in SG, the function
can also be extended to SG via continuity. If Vj is viewed as the boundary of SG, then,
in continued analogy with classical harmonic theory on a manifold, harmonic functions on
SG can be said to be uniquely determined by their boundary values. Working in this set-
ting, Kigami used the renormalized energy on SG, to define a Laplacian on SG and its

relationship with harmonic functions on SG [15]. More precisely, let

£(f,9):= Jim (3) Bl 0),

i be a probability measure on SG, f € dom(£), and u € C(SG). Note that g € dom(E)
if £(g,9) < . Consider A, the Laplacian on SG with respect to the measure y, i.e.
Auf=uif

E(f,g9)=— LG ug dp

for all g € dom(&). If f is harmonic, then f € dom(A,) and A,f = 0. Conversely, if
fedom(A,) and A, f = 0, then f is harmonic. In particular, Kigami’s Laplacian on SG
is a well-developed example of a differential operator on a fractal that suitably generalizes

key properties from the Riemannian manifold setting.
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To construct a homeomorphism between SG and HG, let R;, denote, for each

j =1, continuous injective functions to edges in SG,, such that

R; : [0,1] — the edges in the graph SGq for j = 1,2, 3,
R;: [0,27!] — the edges in the graph SGy for j = 4,5,--- ,12

R; : [0, 272] — the edges in the graph SGy for j = 13,14, --- , 39

R; :[0,27"] — the edges in the graph SG,, for j =1+ Z 31,2+ 2 3. 3n 4 Z 3t
i=1 i=1 i=1

Suppose each R; is parametrized by arclength. Each curve will be mapped to HG as follows.
Let {p1,p2, p3} denote the set of vertices of SGy and V, that of SG. Note that Vi is dense
in SG. For each j = 1,2,3, let the function h;j : Vo — R3 be given by h;(px) = 6;(k) for

k =1,2,3. Extend h; harmonically to V, and by continuity to SG. Then ® : SG — R3 is

defined by
hl(l‘) 1
i} = L 1
(@) =5 | | ha(z) | =3 | 1]
hg(x) 1
and
HG := ®(5G).

Set lj = L(®(R;)). After a reparametrization,

O(R;): [0,1;] > HG
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for every j € N. Moreover,

HG = | ] ®(Ry).

i1

The fact that ® is a homeomorphism between SG and HG when both of these spaces is
equipped with the topology induced by the restriction of the Euclidean metric was also

shown by Kigami [15]. In particular,
3
HG = U doF,0d (HG).
s=1

A set of contractive affine maps {H,}2_; exists for which HG is the unique fixed point and
®oFy=Hgo® [15].

To build spectral triples on fractals, Lapidus and Sarhad identified a class of fractal
curves that includes both HG and SG. The verification that each fractal belongs to this

class is supplied by Proposition 2 and Proposition 3 of [19].

Definition 4 ([19]). A piecewise C'-fractal curve is a compact length space X < R™ that
satisfies the axioms below. Let L(y) denote the length of the continuous curve vy parametrized

by its arclength.

Axiom 1. X = R where R = U R; and R; for each j € N is a rectifiable Ct curve with

j=1

L(Rj) — 0 as j — .
Axiom 2. There exists a dense subset B < X such that for each p e B and g € X, one of the

minimizing geodesics from p to q can be given as a countable (or finite) concatenation of the R;s.

The countable concatenation of R;’s mentioned in Axiom 2 is understood to begin

with p € B as the initial endpoint of some R;. As a consequence, Axiom 2 implies that B
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is a subset of the collection of the endpoints of the R; curves [19]. In particular, the set of
endpoints of the R; curves in a parameterization of a piecewise C'-fractal curve is, as in
the case of V, in SG, also dense. When this collection of endpoints satisfies the additional
conditions detailed below, the Lapidus-Sarhad spectral triple on the piecewise C'-fractal

curve can be metrically approximated by spectral triples on finite graphs (see Theorem 32).

Definition 5. Let X be a piecewise C'-fractal curve with parameterization (Rj)jen. An
approximation sequence of X compatible with (R;);ecn is a strictly increasing function
B : N — N such that, for every e > 0, there exists n € N such that if n = N, and letting

B(n
o Xy = Uj=(1) R;

e V1, denote the set of the endpoints of the curves Ry, - - - s RB(n);

o V. signify Un;O Vi,
e d, be the geodesic distance on Xy,

the following properties hold:
(1) Hausg,(Vy, Xp) <€,

(2) the restriction of do to Vi, x V, is d,.

The sequence of nth level approximations of SG given by {SG,, },en is an increasing
sequence of finite subgraphs of SG. The geometric properties exhibited by this sequence
and the notation used in their description supplied the prototype for the notion of an

approximation sequence for a piecewise C'-fractal curve.

n

Lemma 1. Let B : N — N be given by B(n) = Y, 3/TL. Then B defines an approzimation

Jj=0

sequence of SG compatible with the parameterization (Rj)jen.
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Proof. Fix a choice of positive e. Then there exists N € N such that 27" < €

n .
for all n > N. Choose some such n. If B(n) = > 3/*1 then SG, = Uf:(?)

j=0

R; coincides
with the nth level approximation of SG described earlier by U|t| <n Fi(SGo). In particular,
each F3(SGy) is an equilateral triangle in SG with sides of length 27|, When |t| < n, the
vertices of such triangles belong to V,,. Since paths in SG,, are composed of edges belonging
to such triangles, Hausg, (Vy, SGy) < €.

To determine the restriction of do, to V,, x V,,, recall that SG,, can be decomposed

into n-cells — that is,

SG, = | J Fi(SGo).

[t|=n

Each n-cell is an equilateral triangle with sides of length 27™. The set of vertices of all
such triangles in SG,, coincides with V,,. If two n-cells intersect, they intersect only at a
vertex. Consequently, any path connecting points in distinct n-cells must pass through a
vertex of each of these n-cells. Let p and ¢ be distinct points in V,,. If p and ¢ belong to the
same n-cell, then they are also vertices of an edge belonging to an equilateral triangle with
sides of length 27™. Hence dy(p,q) = dn(p,q) = 27™. Next suppose that p and ¢ belong to
distinct n-cells and that v is a path in SG4 not contained in SG,. Then v contains some
point ¢ in SG,\SG,,. Because

SG = | J F(5G),

[t|=n

¢ belongs to Fy(SG) for some ' € {1,2,3,}". Since Fy(SG) lies in the convex hull of
Fy(SGy), v must pass through two vertices of the triangle described by Fy(SGp). As

v N Fy(SG) is longer than the straight edge connecting these two vertices, v cannot be a
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geodesic in SG. Therefore any geodesic in SG connecting points in V,, must also be a
geodesic in SG,. A

The identification of an approximation sequence for a piecewise C'-fractal curve
given a particular parameterization requires some characterization of the geodesics in that
space. Since each Rj-curve is a straight line segment in (R2, d), it is the minimizing geodesic
in SG between its endpoints. For HG, each ® o Rj-curve corresponds to a harmonic edge.
As harmonic edges in HG are not straight line segments in (R?, d), additional argument is
needed to show each ®oR;-curve is the minimizing geodesic in HG between its endpoints. In
the proof of [19, Proposition 3], Lapidus and Sarhad provide such verification. Furthermore,
paths in SG when viewed with the parameterization {R;} ey can only enter or exit an n-cell
via the endpoints of such curves. As a consequence of the homeomorphism with SG, paths
in HG when viewed with the parameterization {® o R;}gr exhibit the same property. For
both SG and HG, it then suffices to consider geodesics within n-cells. These replacements
are made explicit in the demonstration that B is also an approximation sequence for HG

but compatible with the parameterization {® o R;}jen.

n .
Lemma 2. Let B : N — N be given by B(n) = Y. 3/TL. Then B defines an approzimation
§=0

sequence of HG compatible with the parameterization (P o R;)jen.
Proof. Fix a choice of positive e. Since HG is a piecewise C'-fractal curve, there
exists N’ € N such that L(® o R;) < € for all j > N’. Choose some n > N = N’ + 1. If

n .
B(n) = > 3/*1 then

=0
B(n) B(n)
HG, = | J®oR;j=®(SG,) = | | 2o F(SGo) = |J @oR,
Jj=1 [t|=n j=B(n—1)+1
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where

B(n—1)+1>B(n—1)> B(N') > N’

implies L(® o R;) < € for all j > B(n — 1) + 1. Furthermore, every point in HG), lies on
some ® o R; for B(n — 1) + 1 < j < B(n). Hence Hausy, (V,,, HGy,) < e.

Now consider the restriction of dy to Vi, x V,,. As a consequence of the homeo-
morphism with SG, HG,, can be decomposed into n-cells each described by ® o F;(SGy)
for some t € {1,2,3}". Each n-cell is determined by three ® o Rj-curves, each of which
intersects each other only at their endpoints. The homeomorphism with SG implies that if
two n-cells in HG,, intersect, they intersect only at the endpoints of these ® o R;-curves.
Every point in V;, is also an endpoint of one of these defining ® o R; harmonic edges for
some n-cell. In particular, each n-cell in HG), contains three points in V,,. Consequently,
any path connecting points in distinct n-cells must pass through at least one of these points
in V,, for each of these n-cells. Let p and ¢ be distinct points in V,,. If p and ¢ belong to
the same n-cell, then they are also endpoints of one of the defining ® o R; harmonic edges
for that cell. As shown in the proof of [19, Proposition 3|, that ® o R; harmonic edge is the
minimizing geodesic in HG between p and g. Next suppose that p and g belong to distinct
n-cells and that ~ is a path in HGy not contained in HG,,. Then ~ contains some point ¢
in HG»\HG),,. Because

HG = 3(SG) = | | @0 F(SG),

[t|=n

¢ belongs to ® o Fy(SG) for some t' € {1,2,3,}". Since ® o Fy(SG)\®Fy(SGy) lies in the
interior of ® o Fy(SGy), v must pass through two of the points of V,, belonging to the n-cell

described by ® o Fy(SGy). In particular, v n Fy(SG) cannot coincide with the harmonic
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edge ® o R; connecting these two points. As this ® o R;-curve is the minimizing geodesic
in HG between these two points, v is longer than any path connecting p and ¢ which also
passes through ® o F/(SGp) but instead along one of its defining ® o R; curves. Therefore
any geodesic in HG connecting points in V,, must also be a geodesic in HG,,. R

Since HG is self-affine rather than self-similar, the lengths of ® o Rj-curves which
coincide with harmonic edges in HG,, may differ. This self-affine property leads to different
bounds on n than in the case of SG,, to guarantee that Hausg,, (V,,, HG,,) is bounded by some
choice of positive e. More importantly, neither self-similarlity nor self-affinity is required for
classification as a piecewise C''-fractal curve. Thus the framework afforded by this class of
parameterized curves makes possible the description of more general fractal behavior and
structures.

Both SG and HG are fundamental examples in the theory of analysis on fractals.
They are also each fractals that can be realized by an iterated function system. However,
not all such fractals qualify as piecewise C'-fractal curves. For instance, the stretched
Sierpinski gasket can be realized by an iterated function system but does not satisfy Axiom
2 in the criteria for a piecewise C'-fractal curve. Unlike SG and HG, the set of vertices of
SG,, is not dense in SG,,. As a potential model for heat and wave propagation in branching
media, the stretched Sierpinski gasket is a subject of active research for mathematicians
working in the theory of analysis on fractals [30]. Since SG, converges for the Hausdorff
distance to SG when « goes to zero, SG,, would be a natural prototype for the definition of

a class of almost piecewise C'-fractal curves. Such an extension of the piecewise C''-fractal
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curve framework would be useful in the development of generalized manifolds that can be

a basis for analysis on many kinds of fractals.

2.4 Fractals, Geodesic Distance, and Gromov-Hausdorff Dis-

tance

The space of compact metric spaces can be equipped with a metric. Fractals that
are compact for a given metric belong to this space. As compact length spaces, piecewise
Cl-fractal curves are compact metric spaces when equipped with the geodesic distance.
In particular, questions of approximation can be considered for their respective metric
structures. These metric structures can be shown to be induced by Lapidus-Sarhad spectral
triples. Metric approximations of these spectral triples will be obtained via an extension of

a noncommutative generalization of the following metric.

Definition 6. The Gromov-Hausdorff distance between two compact metric spaces

(X,dx) and (Y,dy) is

GH((X,dy),(Y,dy)) = inf Hausq, (Tx (X), Ty (Y)).

Tx:X—>Z,Ty:Y —>Z are isometries

The Gromov-Hausdorff distance between two compact metric spaces is always well-
defined. To see that a third metric space always exists which admits isometric embeddings

of two compact metric spaces, let (X,dx) and (Y,dy) both signify non-empty compact
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metric spaces. Then X [ [Y becomes a metric space if equipped with
dX(pvq) ifp7q6X7
dx11y (P:9) = 3 dy (p,q) ifpgey,

max{ diam(X), diam(Y")} otherwise.

By construction, the canonical inclusions for X and Y into X [[Y are isometries. Since
the isometric images of these maps are non-empty compact subsets of (X]]Y, dXHy),

GH((X,dx),(Y,dy)) is also always finite. Furthermore,

Theorem 2. [9, Theorem 7.5.30] The Gromov-Hausdor(f distance defines a complete metric

on the space of isometry classes of compact metric spaces.

The geometry of a Riemannian manifold can be recovered from its geodesic dis-
tance [14, p.388]. A development of fractals in the context of generalized manifolds should
therefore be built with the metric structure determined by the geodesic distance. A natural
approach to such a goal would be to construct such generalizations on simpler spaces like
finite graphs and show that they approximate those on a fractal. Since Lapidus-Sarhad
spectral triples are defined on piecewise C'-fractal curves, this class of fractals can be
viewed as a type of fractal “manifold.” Finite subgraphs of piecewise C''-fractal curves are
also compact metric spaces when equipped with their respective geodesic distances. The
geodesic distance between two points in such a subgraph may differ from the geodesic dis-
tance when viewed as points in the piecewise C'-fractal curve. Therefore, a finite subgraph
of a piecewise C'-fractal endowed with the geodesic distance may not be a subset of the
piecewise C'-fractal curve endowed with the geodesic distance. In contrast, this finite sub-

graph equipped with the restriction of the Euclidean distance can be viewed as a subset

27



of the piecewise C'-fractal curve equipped with the restriction of the Euclidean distance.
Recall the notation used in the definition of an approximation sequence for a piecewise
C'-fractal curve. The Hausdorff distance requirements outlined in that definition will be
used to show (X, dy) can be approximated in the Gromov-Hausdorff distance by (X, d,,).
Classical compact metric spaces also have well-developed noncommutative analogues. This
same suite of geometric properties for the Hausdorff distance will additionally be a basis for
demonstrating the Lapidus-Sarhad spectral triple on X can likewise be approximated in a

quantum metric by spectral triples on finite graphs.
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Chapter 3

Tools from Noncommutative

Geometry

To build a framework for fractals that supports a suitable generalization of analysis
on manifolds, tools from noncommutative geometry will be used to capture the geometry of
a fractal. Fundamentally, a fractal cannot locally resemble Euclidean space. Through the
lens of noncommutative geometry, a fractal can be viewed via an algebra of functions on
that space. Since Riemannian manifolds and fractals both admit continuous functions, the
functional analytic perspective afforded by noncommutative geometry places both objects
on the same footing. Topological, metric, and differential structures will be defined and
studied for certain fractals using noncommutative notions first formulated by Connes, Ri-
effel, and Latremoliere. In particular, the selection of techniques detailed here can also be
viewed as building blocks for Lapidus’ program for the development of a noncommutative

fractal geometry.
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3.1 (*-Algebras

Since many fractals are compact Hausdorff spaces, topological properties of such
fractals can be recovered from algebraic properties of their spaces of continuous, complex-
valued functions. Classical Riemannian methods often rely on smooth paths to encode the
geometry of a space and noncommutative geometry generalizes analysis on manifolds by
replacing this requirement with operator theoretic data. Coordinates are given by functions
on the underlying space. Whether X is a fractal or a Riemannian manifold, C'(X), when

equipped appropriately, is a fundamental example of the following function space.

Definition 7. A C*-algebra A is a Banach algebra equipped with a map * : A — A that

for all A e C and a,b € A satisfies
e (Ma+0b)* = Xa* +b*),
e (a¥)" =a,
o (ab)* = b*a*.
This map is called the adjoint of A. Furthermore, all a € A satisfy the C*-identity, that
18,
laa*(|a = [lal 4.

A subalgebra B < A that is closed with respect to the norm and the adjoint of A is called
a C*-subalgebra of A. When A is unital, B € A is said to be a unital C*-subalgebra

when B contains the multiplicative identity of A.

If equipped with the supremum norm and given pointwise conjugation as the

adjoint operation, then every function in C'(X) exhibits the C* identity when X is a compact
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Hausdorff space. Moreover, the constant 1 function plays the role of the multiplicative
identity for C'(X) in this setting and pointwise operations for functions are commutative.
Since functions in C'(X) may be unbounded when X is a locally compact Hausdorff space,
restriction to functions in C(X) which vanish at infinity, or Cy(X), yields C*-algebraic
structure that is commutative but not necessarily unital. In fact, C(X) and Cy(X) coincide
if X is a compact Hausdorff space.

The complex numbers with complex conjugation as the adjoint and modulus as the
norm is another example of a unital commutative C*-algebra. In particular, any multiplica-
tive linear functional, or character, on C'(X), respects the adjoint operation. Morphisms
between unital C*-algebras are given by unital *-homomorphisms— that is, algebra ho-
momorphisms that are unit- and *-preserving. The study of C*-algebras begins with the
following result for unital commutative C*-algebras.

Theorem 3 (Gelfand-Naimark Theorem). Any unital commutative C*-algebra A is *-

isomorphic to the C*-algebra C(X) for some compact Hausdorff space X .

When equipped with the weak*-topology, the space of characters on A, or A,
supplies the compact Hausdorff space provided by the Gelfand-Naimark Theorem. The
topology of A is a consequence of the Banach algebra structure of A [10, Theorem 1.2.5,
Corollary 1.2.6]. If 4, denotes evaluation at a, then J, is a weak*-continuous complex-valued

function on A. The Gelfand transform of A,or 'y : A — C’(A), which is given by

Ta(a) = 04,

*

will be shown to be a *-isomorphism when A is a unital commutative C*-algebra. The

commutativity condition also guarantees that A is non-empty.
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Theorem-Definition 1. Let A be a unital C*-algebra. For a € A, the spectrum of a is
given by

o(a) :=sup{ A e C:a— Ay is not invertible },

and the spectral radius by

r(a) := sup |A|.
Aeo(a)

Ifae A and a*a = aa®, then a is called normal and r(a) coincides with ||al|.

Proof. Since a C*-algebra is also a Banach algebra,

. 1
r(a) = lim ||a”[[»

holds for any a € A [10, Proposition 1.2.3]. Suppose first that a is self-adjoint. Then the

C*-identity yields

a?]| = l|aa*|| = l[al ?
hence induction gives
0[] = al >
for every n > 1. As a consequence,
1
r(a) = Tim [la®']|7" = Tim (([al*") ™ = [lall

For the weaker assumption that a commutes with a*, note that

implies



for every n = 2, hence

1

r(aa*) = lim (Jlaa*[[")" = Tim (]|(aa*)"]])

n

3=
3=

— lim (||a"(a")*)

n—

1

1 2
= Tim (J[a")2)" = (Him [la"|l7)" = r(a).

n—o0

Since aa* is always self-adjoint,

lall2 = llaa*]| = r(aa*) = r(a)2
where the first equality is again a consequence of the C*-identity. H
Corollary 1. If A is a unital commutative C*-algebra, then A is non-empty.

Proof. In a unital commutative C*-algebra, every element commutes with its
adjoint. Thus r(a) = [|a|| for every a € A. Since multiplicative linear functionals are

nonzero, fix some nonzero choice of a € A. Then
{Ae C:a— Ay is not invertible } = {¢(a) : ¢ € A}

as a consequence of the unital commutative Banach algebra structure of A [10, Corollary
1.2.8]. In particular, there exists ¢ € A such that |¢(a)| = 7(a) = ||a|| # 0. W

The algebra of n x n complex matrices, or M, (C), when given the operator norm
and the conjugate transpose as the adjoint, is a unital noncommutative C*-algebra. More

precisely, the multiplicative identity of M, (C) is the n-dimensional identity matrix I,,. To

—

see that M, (C) is empty, let e;; denote the matrix with 1 for the ij-entry and 0 otherwise.

—_

If i # j, then (e;;)® = 0 for i # j, hence p(e;;)i;) = ¢((ei;)?) = 0 for all p € M, (C). Since

—_—

eii = ejje;i for such matrices, ¢(e;) = 0 for all p € M,(C) and ¢ = 1,2,--- ,n. However,
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—_—

o(a) = p(aly) = p(a)p(ly,) for all ¢ € M, (C) and a € M, (C) implies

1=o(Il) =p(e1r) + -+ plenn) =0,

which is a contradiction. Thus a noncommutative C*-algebra may have no characters.
Whether a C*-algebra is commutative or noncommutative, the C*-identity encodes
the norm in the adjoint. Algebraic properties of *-~homomorphisms can therefore induce

analytical properties for such maps.

Theorem 4. Let A and B be unital C*-algebras. If m : A — B is a unital *-homomorphism,
then w is contractive, hence continuous. Moreover, w is an isometry when 7 is an injective

*_homomorphism.

Proof. For a€ A and A € C, m(a — Ala) = m(a) — Alp is invertible if m — A1 4 is

invertible. Therefore
Im(a)||% = llm(a)w(a)*||p = r(w(a)w(a)*) < r(aa®) = |laa*||a = [la|[4,

where the first and last equalities follow from the C*-identity, the second and penultimate
equalities from the previous theorem, and the inequality from the definition of the spectral

1

radius of an element. If 7 is also injective, then 7= : m(A) — A is also a *-homomorphism,

hence contractive. More precisely,

llalla = (|7~ (x(a))lla < lIm(a)]]5.

Therefore 7 injective implies 7 is an isometry between A and 7w(A). B
The Gelfand transform of a commutative C*-algebra is a *-homomorphism of A

into C(A) [10, Theorem 1.3.1]. The surjectivity aspect of the fact that this map is also a
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*_isomorphism between these two spaces in the unital setting follows from the consequent
continuity of I'4, whereas the injectivity will be shown to rely on the condition that A is
commutative.

Proof. (of the Gelfand-Naimark Theorem) To apply the Stone-Weierstrass Theorem [8,
Chapter IV, Theorem 8.1], note that arguments analgalous to those applied earlier in the
setting of M, (C) may be used to show ¢(14) evaluates to 1 for all ¢ € A. Thus I'4 takes
14 to the constant 1 function on A. The Banach algebra structure of A guarantees that
it is complete with respect to its norm. Since I'4 is a unital *-homomorphism from A
into C'(A) and hence a continuous map, I'4(A) < C(A) is closed. More precisely, T 4(A)
is a unital C*-subalgebra of C(fl) If ¢1 and @9 are distinct characters on A, then ¢y
and @2 do not coincide on some a € A. Therefore I 4(A) separates the points of A Asa
result, ['4(A) = C’(A) Next consider whether I'4 is injective. Suppose that a; and ao are
distinct elements of A. If T'y(a1) = [a(ag), then 84, (@) = 64,(p) for all o € A. Since A
is commutative, the previous Theorem-Definition and a result about unital commutative

Banach algebras used in the proof of its corollary give

llar — azl|a = r(a1 — az) = sup{|\| : A € C, (a1 — a2) — Al 4 is not invertible }

A~

= sup{|p(a1 —az)| : p € A}

I a(ar — a2)lloc = [[T'a(a1) — Ta(az)llo =0,

or a; —as = 0, as desired.
In the setting of a compact Hausdorff space X, the Gelfand transform of X is a
homeomorphism of X to C/'(-)?) [28, Theorem 2.1.15]. Furthermore, a homeomorphism be-

tween two compact Hausdorff spaces extends to a *-isomorphism between their associated
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C*-algebras and vice versa [7, page 87]. Thus to identify a compact Hausdorff X such that
C(X) and a given unital commutative C*-algebra A differ up to *-isomorphism, it suffices
to determine A. In the case of C, p(A) = p(A-1) = Ap(1) = A for all A € C and ¢ € C.
In particular, C is homeomorphic to the compact Hausdorff space X = {x}, hence C’(@)
is *-isomorphic to C({z}). Because C is *-isomorphic to C' (@) by the Gelfand-Naimark
Theorem, C is *-isomorphic to C({x}). More generally, the category of unital commutative
C*-algebras with unital *-homomorphisms is dual to the category of compact Hausdorff
spaces with continuous maps and this correspondence is called Gelfand duality. Any home-
omorphism invariant of the compact Hausdorff X can therefore be reframed as an algebraic
invariant of the C*-algebra C'(X). For example, X is a totally disconnected compact metric
space if and only if C'(X) is a unital commutative approximately finite dimensional algebra
(see section 3 of this chapter for a definition). Since any totally disconnected compact met-
ric space is homeomorphic to a subset of the Cantor set, this fractal and its topology can
be canonically associated with such algebras. Furthermore, C*-algebras within the frame-
work of Gelfand duality remain to be identified for other fractals like the Sierpinski gasket.
Such an investigation could therefore begin to form the basis for a classification program of
C*-algebras on fractal spaces.

Given a Hilbert space H, the set of bounded linear operators from H to H, B(H),
with pointwise defined addition and composition as multiplication, is an important example
of a noncommutative C*-algebra. For any T in B(H), the adjoint 7™ is given by the unique
T* in B(H) such that for all z and y in H, (Tz,y)g = {x,T*yy)y. When equipped

with the operator norm, B(H) exhibits the C*-identity as a consequence of the Cauchy-
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Schwartz Inequality and the submultiplicativity property of a Banach space norm. Another
example of noncommutative C*-algebraic structure emerges in M,,(C) when provided with
the operator norm and the conjugate transpose as the adjoint. If H is finite-dimensional,

then B(H) is *-isomorphic to M, (C). Correspondingly,
Definition 8. A representation of a C*-algebra A on a Hilbert space H is a *-homorphism,
m:A— B(H).

If w is also injective, then 7 is called faithful.

With this distinction in hand, the theory of noncommutative geometry builds upon the

following theorem.

Theorem 5 (Gelfand-Naimark-Segal Theorem). Every C*-algebra A has a faithful repre-

sentation on a Hilbert space H as an operator norm-closed *-algebra of B(H).

Noncommutative C*-algebras can be formally viewed as duals to noncommutative
topologies or geometries. Commutative topologies or geometries correspond to commutative
C*-algebras and many spaces that are considered well-behaved from the perspective of

Riemannian geometry fall into this category.

3.2 Spectral Triples

Alain Connes initiated a program to adapt classical tools from topology and Rie-

mannian geometry to the operator algebraic setting. For example, Connes showed that the
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geodesic distance on a compact spin Riemannian manifold M can be recovered from the
C*-algebra C(M), the Hilbert space H of L?-spinor fields, and a differential operator D

called the Dirac operator, via

dg(z,y) = sup{|f(z) — f(y)| : fe CM)[D, flllp) <1}

Since none of the arguments required for this result rely on the commutativity of C'(M), this
formula remains valid for noncommutative C*-algebras. As a consequence, this noncom-
mutative formulation of intrinsic distance on M allows for consideration of other, possibly
noncommutative, C*-algebras on M in the role of C'(M). Connes also discovered that the
pairing of the C*-algebra with the Hilbert space yields only information about the dimen-
sion of M, as does knowledge of the Hilbert space in combination with that of the Dirac
operator. All three sources of operator theoretic data are therefore necessary to recover
the geometry of M. Connes formalized the essential operator algebraic elements needed
to build a noncommutative metric geometry beyond the prototypical setting of M in the

definition of a spectral triple. Following the convention in [11],

Definition 9. Let A be a unital C*-algebra. An unbounded Fredholm module (H, D)
over A consists of a Hilbert space H together with a unital representation m of A into B(H)

and an unbounded, self-adjoint operator D on H such that

(a) the set

{a € A for which [D,n(a)] is densely defined

and extends to a bounded operator on H}
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is dense in A,

(b) the operator (I + D?)~! is compact.

If the underlying representation 7 is faithful, then (A, H,D) is called a spectral triple,

and D a Dirac operator.

While the choice of C*-algebra A categorizes the space as commutative or noncom-
mutative and the Gelfand-Naimark-Segal Theorem guarantees the existence of a suitable
representation 7 on some Hilbert space H, the choice of Dirac operator D determines the
differential structure. If, given a in A, differentiation of a is viewed as formation of the op-
erator [ D, 7(a)], then the dense set in A described in condition (a) is analogous to the dense
set of C'! functions in C(X). The compact resolvent condition ensures that the eigenvalues
of D exhibit properties that allow for the extraction of geometric information like measure
and dimension from spectral data. More precisely, an operator T' € B(H) is compact if the
image of the unit ball of H under T has compact closure in the norm topology of H [5]. In
fact, the set of compact operators C(H) is a norm closed ideal in B(H) [31, p.107]. Many

uses of compact operators in noncommutative geometry rely on the following property.

Theorem 6 ([28, Theorem 1.4.11]). If T € B(H) is compact, then o(T) is countable and

each non-zero point of o(T) is an isolated point.

39



For instance, the presence of a nonzero accumulation point in the spectrum of a Dirac
operator would be a necessary but not sufficient requirement for the following quantity to

be finite. As in [19],

Definition 10. Let (A, H, D) be a spectral triple. If Tr((I + D2))2 is finite for some
positive real number p, then the spectral triple is called p-summable or just finitely

summable. The number 0sq, given by
dsp = inf{p > 0: tr(D*+ 1) 7, 0},
is called the spectral dimension of the spectral triple.

Since Hausdorff dimension is an important tool for detecting fractality, noncom-
mutative fractal geometers are especially interested in finding Dirac operators which encode
the Hausdorff dimensions of fractals in their asymptotics.

Because spectral triples generalize differential structure, they open up promising
avenues for extending analytic methods from mathematical physics to fractal spaces. The
Laplacian operator plays a critical role in the formulation of many important differential
equations such as those that model heat dissipation or wave propagation. The definition
of a Laplacian on a space requires the choice of a measure and a spectral triple induces a
measure via the operator algebraic tool called the Dixmier Trace and denoted by T'r,, (see
Chapter 4 in [7] for a precise definition). For the setting of a compact spin Riemannian
manifold M detailed at the beginning of this section, let v be the Riemannian volume
measure of M, d the dimension of M, and ¢(d) = 24-[4/2] 7d/2 F(% + 1). Connes showed

that for any f e C(M),

f f dv = c(d) Tro(m(£)| D).
M
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More generally, a desired measure p can be recovered via a spectral triple (4, H, D) with
representation m when (A, H, D) can be chosen so that the map T'r,(w(f)|D|™*), where
s is the spectral dimension, is a nontrivial positive linear functional on A that induces a
measure that differs from p by a multiplicative constant. An example of a spectral triple
developed by Christensen, Ivan, and Lapidus which yields the log, 3-dimensional Hausdorft
measure on the Sierpinski gasket will be discussed in the next chapter.

Progress in noncommutative fractal geometry can lead to new insights about frac-
tality. In the originating setting of M, the Riemannian metric determines the Dirac opera-
tor and the removal of the spin structure eliminates this uniqueness. Since the metric of a
Riemannian manifold can be recovered from the geodesic distance, Connes’ reformulation
implies that a Dirac operator can under suitable conditions dictate a Riemannian metric.
As a consequence, Connes’ operator algebraic reframing of geodesic distance generated the
discovery that the Dirac operator defines the geometry of a Riemannian manifold. Devel-
opment of a noncommutative fractal geometry is therefore motivated by the exploration of
new ways to describe, understand, and even define fractals. The development of noncom-
mutative geometry due to Connes and outlined in this section can also be more precisely
described as noncommutative Riemannian geometry. Since compact Riemannian manifolds
can also be viewed as compact metric spaces, they can be examined using tools from metric
geometry. A theory that may be termed noncommutative metric geometry was developed
by Rieffel and is the subject of the next section. In analogy with the classical case and with

the aim of laying the foundation for new insights about fractality, methods from noncom-
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mutative metric geometry will also be applied in concert with those from noncommutative

Riemannian geometry to study piecewise C'-fractal curves.

3.3 Quantum Compact Metric Spaces

—_—

When a compact Hausdorff space X is also a compact metric space, C(X) can
be equipped with a metric that encodes the metric on X. Piecewise C'-fractal curves are
compact metric spaces with respect to the geodesic distance. Via the work of Lapidus with
Christensen, Ivan, and Sarhad, the geodesic metric on such a fractal can also be captured
using the noncommutative differential structure of a spectral triple [11, 19]. Extending this
toolkit to include techniques from noncommutative metric geometry will allow for mean-
ingful metric approximation of piecewise C'-fractal curves as noncommutative Riemannian
manifolds.

To recover the metric structure of a compact metric space (X, d) from C(X), set

L4 equal to the Lipschitz seminorm on C'(X) associated to d- that is, for every f in C(X),

[f(z) = f(y)]

La(f) = Sup{ (z.y)

:a;,yeX,x;éy}.

—_

For any ¢1, 2 € C(X), let mky,, be defined by

mkr, (¢1,92) = sup{|p1(f) — @2(f)| : f € dom(Lyg), La(f) < 1}.

—_

When C(X) is endowed with mky,,, the Gelfand transform of X becomes an isometry from

(X, d) onto (C(X),mkyz,).

—

Theorem 7. If (X,d) is a compact metric space, then (C(X), mkr,) is also a compact

metric space. In particular, (X,d) and (C/’(_)?), mkr,,) are isometric.
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Proof. Fix a choice of p € X. For any ¢ € X\{p} and f € C(X) such that

hence

kad (5])7 5(1) < d(p, Q)

To see that mky,,(dp,d4) achieves this upper bound, observe that f,(w) := d(p,w) € C(X).

Given any distinct ¢, w € X, the triangle inequality yields

d(p, w) — d(p,q)| < d(q,w).

In particular, Ly(f,) <1 and

10p(fp) — 0q(fp)] = |d(p.p) — d(p. )| = d(p,q),

as desired. W

Recall that without the condition of commutativity, A may be empty. The following ele-

ments of a C*-algebra are used to identify linear functionals suitable for the role of C'(X)

in the more general setting of unital C*-algebras.

Definition 11. An element a of a C*-algebra A is called positive if a is self-adjoint and

o(a) is contained in the non-negative real line [0, c0).

Every self-adjoint element in a C*-algebra can be written as the difference of two
positive elements [10, Corollary 1.4.2]. The self-adjoint elements of the C*-algebras C are

the real numbers and the positive elements are the non-negative real numbers. Linear func-
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tionals that take positive elements to positive elements therefore preserve the self-adjoint

property.

Definition 12. A linear functional y» on a C-algebra A is called positive if ¢ (a) is positive
in C whenever a is positive in A. A positive linear functional on a C*-algebra that is also

of norm 1 is called a state.
States on a unital C*-algebra can always be identified in the following way.

Theorem 8 ([28, Theorem 3.3.1, Corollary 3.3.4]). Let ¢ be a linear functional on a unital

C*-algebra A. Then 1 is a state if and only if ¥ is bounded and ¥(14) = ||¥]| = 1.

If v is a unital representation of a unital C*-algebra A on a Hilbert H and x is a
unit vector in H, then 9 (a) := {(m(a)z,x)y is a bounded linear functional on A as a conse-
quence of the Cauchy Schwartz Inequality, the contractive property of *-homomorphisms,

and the linearity of the inner product in the first component. In particular,

¥(a) < |lm(a)ellg < [Im(a)l[p) < llalla,

hence ||¢]| < 1. Since ¥(14) = 1, 9 is a state on A. For the unital commutative case, the
Riesz Representation Theorem gives a bijection between Borel probability measures on a
compact Hausdorff space X and states on C'(X) [8, Theorem 5.7]. In fact, the Hahn-Banach
Theorem can be used to show that for every self-adjoint element a in a unital C*-algebra
A, there exists a state ¢ such that |[¢)(a)| = ||al|a [5, Theorem 1.7.2]. Since bb* is always

self-adjoint given any b € A, states, unlike characters, on a C*-algebra always exist. Because
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of the identification with probability measures when A is commutative, states can be viewed

as the noncommutative analogues of probability measures.

Definition 13. The state space of a C*-algebra A, or S(A), is the set of positive linear

functionals on A of norm 1.

As a consequence of the previous theorem, the state space of a unital C*-algebra
is a subset of the dual space. When equipped with the weak*-topology, the state space

exhibits the following properties.
Theorem 9. If A is a unital C*-algebra, then S(A) is weak®-compact and convex.

Proof. By the previous theorem and the definition of S(A),

S(A) = {pe A [[p|| < 1,9(1a) =1}
= {pe A ||Y]] <1} n {01, (¥) = (1) = 1}

= e d: |l <1} nd}({1))

To see that S(A) is weak*-compact, note that the definition of the weak*-topology guar-
antees that d;, is continuous. Hence 61;1({1}) is weak*-closed. Since the Banach Alaoglu
Theorem gives that the unit ball in A is weak*-compact [8, Chapter 3, Theorem 3.1], S(A)
is weak*-compact. To verify that S(A) is weak™-convex, the previous theorem will again
be applied. For any 11,19 € S(A) and « € [0, 1], observe that aiyy + (1 — a1y is likewise

a bounded linear functional that evaluates to 1 at 14. The previous theorem implies
1 =otp1(1a) + (1 — a)pa(la) = (Oﬂﬁl +(1- 04)¢2>(1A) < [lagn + (1 — )y

< e[| + 1[(1 = a)ibe|| = |all[ya]] + [1 = alf[ya]| = 1.
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Since ||at); + (1 — a)o]| is also 1, the previous theorem also gives that aw; + (1 — a)is is
in S(4). &

A state is called pure if is an extreme point of S(A). The set of pure states on A
is denoted by P(A). When A is also commutative and so *-isomorphic to C(X) for some
compact Hausdorff space X, P(A) coincides with the set of Dirac measures for each point

in X. Unlike A sometimes in the general case, P(A) is never empty.

Theorem 10 (Krein-Milman). If S is a non-empty compact convexr subset of a locally
converx space B, then the set of extreme points of S is non-empty and S is the closed convex

hull of the set of extreme points of S.

The two previous theorems together imply that S(A) is the weak*-closure of convex
combinations of states in P(A). A metric that metrizes the weak*-topology on S(A) would
therefore allow for metric approximations of S(A) by finite sums in P(A). The existence
of such a metric is one of Rieffel’s requirements for the quantum counterpart of a compact

metric space.

Definition 14 ([22]). Let A be a unital C*-algebra. If L is a seminorm defined on a dense
subspace dom(L) of sa(A) such that

(a) {a € dom(L) : L(a) =0} = Rly,

(b) L is lower semi-continuous with respect to || - ||a,

(c) the Monge-Kantarovich distance associated to L, that is, the metric defined for

all p, v in S(A) by

mkz (0, ¢) = sup{|p(a) —¢P(a)| : a € dom(L), L(a) < 1},
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metrizes the weak™-topology on S(A),

(d) for all a,b e dom(L),

max {£(“52), L( 22 ) < L@l + llllan),

then (A, L) is called a quantum compact space and L a Lip-norm.

In the classical case where (C'(X), Lgq) comes from the compact metric space (X, d),
L, vanishes precisely on scalar multiples of the identity and mky;, induces the weak™-
topology on the set of regular Borel probability measures. Because d can be recovered
in this setting from the restriction of mky, to P(A), the Krein-Milman theorem gives a
means for extending d to the whole state space. Furthermore, Ly coincides with Lkad :

sa(C(X)) — Rxq given by

[o(f) = o(f)]

e S(C(X)), ¢ # 3.

Without the additional lower semi-contininuity condition of L on sa(A), Lk, < L. In [33],
Rieffel determines that L coincides with Ly, when this semi-continuity property is also
present. While the Leibniz inequality connects the Lipschitz seminorm in the setting of
(C(X), Lg) with the underlying multiplication of functions in that algebra, the analogue of
this inequality detailed in the last condition bounds the seminorm component of a quantum
compact metric space with the multiplicative structure of the C*-algebra. For the general
setting beyond that of (C'(X), Lg), Rieffel also identified alternate characterizations of Lip-

norms.

Theorem 11 ([29, 36, 33]). Let A be a unital C*-algebra and L a seminorm on sa(A) such

that L is lower semi-continuous with respect to ||-||a, the set dom(L) = {a € sa(A) : L(a) <
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oo} is dense in sa(A), and {a € dom(L) : L(a) = 0} = R14. The following are equivalent:
1. (A, L) is a quantum compact metric space;
2. the metric mky, is bounded and there exists r € R such that r is positive and
the set

{a € sa(A): L(a) < 1,||alla <7}

is totally bounded in A for || - ||a;

3. the set

{a+R1g€ sa(A)/Rly:ac€ sa(A),L(a) < 1}

is totally bounded in sa(A)/R for || - ||sa(a)m;

4. there exists a state 1p € S(A) such that the set

{a € sa(A): L(a) < 1,¢(a) = 0}

is totally bounded in A for || -||a;

5. for all v € S(A) the set

{a € sa(A): L(a) < 1,¢(a) =0}
is totally bounded in A for || -||a.

For (C(X), Lg), the self-adjoint elements are the real-valued functions. Recall the
definition of f, and the demonstration that L4(f,) < 1 from the first proof of this section.

Since f, € C(X,R) and fy(q) is nonzero for any ¢ € X that is distinct from p, dom(Lg)
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separates the points of X. The denseness of dom(Ly) in C(X, R) then follows from the
Stone-Weierstrass Theorem [8, Chapter IV, Theorem 8.1]. In both this example and the

general setting, any element a belonging to a C*-algebra yields the self-adjoint elements

a+a* *

2

a—a
24

and . Continuous linear functionals which agree on a dense subspace of the set of
self-adjoint elements therefore agree on the whole C*-algebra. Since dom(Ly) separates the
points of S(C(X)) and f € dom(Lg) implies Ld(m) < 1, distance zero for mky,,
implies two states coincide. To see that mky,, is bounded when d is bounded, let p denote

some fixed point in X and f a function in C'(X) such that L4(f) < 1. Then for any distinct

¢ and ¥ in S(C(X)),

[o(f) = (Ol = le(f) = fP)e(lex) + F(P)Y (o)) — ()]
= le(f = f(P)lex) = (f = f(P) o)l
< lle = ¢llIf = f() Lol
< (el + 111 sup{[f(p) = f(@)] : g € X}

< 2 Ly(f) diam(X)

which is bounded when X is a compact metric space. Furthermore, the Arzela-Ascoli

Theorem guarantees that for any fixed choice of positive 7, the set

{f €sa(C(X)): La(a) < L[| fllecx) <7}

is totally bounded in C'(X) for || - [|¢(x) [8, Chapter VI, Theorem 3.8]. Hence the previous
theorem not only establishes that all algebras of Lipschitz functions over classical compact
metric spaces are quantum compact metric spaces, but also extends several of their key

properties to the noncommutative setting. Because of the role of the Arzela-Ascoli Theorem
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in the application of this theorem to the classical case, this set of equivalences can be viewed
as a noncommutative Arzela-Ascoli Theorem.

The space of quantum compact metric spaces contains finite-dimensional examples.
Recall that seminorms exhibit both homogeneity and subadditivity. Since a Lip-norm also
vanishes on scalar multiples of the identity for the C*-algebra, the only seminorm that equips
C with quantum compact metric space structure is the zero seminorm. In fact, the following
seminorms always induce quantum compact metric space structure for finite-dimensional

C*-algebras.

Theorem 12. If A is a unital finite-dimensional C*-algebra and L is a lower semi-continuous
seminorm on sa(A) with domain that is a dense, unital subspace of sa(A) that vanishes only
on Rly, then (A, L) is a quantum compact metric space. In particular, C®C equipped with

1

the seminorm Qc(w, z) = ¢|z — w| is a quantum compact metric space for every € > 0.

Proof. Given a C*-algebra A and a seminorm L with these properties, (A, L) is

a quantum compact metric space if and only if the set
{a+R14€sa(A)/R1ls:a€e (L), L(a) <1}

is totally bounded in sa(A)/R14 for ||-||sqa)/r1,- Let L denote the quotient seminorm of L
on sa(A)/R1 and Bj the unit ball with respect to L. Because L vanishes only on R14, L
is a norm on sa(A)/R1,4. Moreover, A finite-dimensional and dom(L) a unital subspace of
sa(A) implies sa(A)/R14 equipped with || - [|sq(4)/r1, 18 a finite-dimensional normed vector
space. Equivalently, the unit ball in sa(A)/R14 is compact with respect to || - ||sq(a)/R1,-
Since all norms on a finite-dimensional vector space are equivalent, B; is compact, hence

totally bounded in sa(A)/R14 for || - ||sqa)/r1,-
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Now consider (C®C, Q) for some fixed choice of positive e. The C*-algebra C@®C
is unital and finite-dimensional. The seminorm ), vanishes on (w, z) if and only if z = w,
that is, if and only if (w, z) is a scalar multiple of 1cgc. Since sa(C @ C) coincides with
R @® R, the only self-adjoint elements of C ® C on which (). vanishes are precisely Rlcgc.
Because the choice of positive € was arbitrary, (C@® C, Q) is a quantum compact metric

space for every € > 0. W

The theorem above is well-known in the folklore of the noncommutative metric geometry
community and Konrad Aguilar is gratefully acknowledged for the communication of this
result and its proof. The first part of the theorem can also be used to identify Lip-norms
for matrix algebras. Fix a choice of positive natural number n. The self-adjoint elements
of the full matriz algebra M, (C) are the n x n matrices that are normal and have only real

eigenvalues. Let T'r,, denote the trace of a matrix in M, (C), w1, : C — M, (C) the map

given by
c 0 0 0
0 c 0 0
T1,n (C) = s
0 0 e 0 c

and L the seminorm on M, (R) defined by

o= Grrnt)]

Ma(C)

In particular, 7T17n<%T7“n(CL)> € RI, for any a € sa(M,(C)). Moreover, ||al|x, (c) coincides

with 7(a) for such matrices, hence dom(L) is sa(M,(C)). Since || - ||, (c) vanishes only on
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the zero matrix, L vanishes only on RI,,. Let a and b signify matrices in dom(L). As shown

for the more general context considered in [2],

max {£(252). (P57 } < 2@l + ol @20

Therefore (M, (C), L) is a said to be a (2, 0)-quasi-Leibniz quantum compact metric space.

Based on earlier work with Latremoliere in [2], Aguilar and Brooker demonstrated
in [1] that a seminorm like L is a (2, 0)-quasi-Leibniz Lip-norm for a full matrix algebra
because it is an instance of a particular kind of map from a C*-algebra to one of its C*-

subalgebras.

Definition 15. A conditional expectation E(-|B) : A — B onto B, where A is a C*-
algebra and B is a C*-subalgebra of A, is a linear positive map of norm 1 such that for all
b,ce B and a€ A,

E(bac|B) = bE(a|B)c.

By the Tomiyama Theorem [6, Theorem 1.5.10], a projection from a C*-algebra
to a C*-subalgebra that is contractive is also a conditional expectation. To see that
w17n<%Trn(a)) is a conditional expectation, recall that *-homomorphisms are contractive
and T'r, is linear. Note that the range of 7r17n(%Trn(a)) is CI,,. Because 7717n(%Trn(a)>
preserves the conjugate transpose operation and fixes matrices in CI,,, this map is likewise a
conditional expectation. By construction, 771,”(%Trn(a)) is, in addition, trace-preserving,
hence L is a (2, 0)-quasi-Leibniz Lip-norm also as a consequence of [1, Theorem 2.3, Lemma
2.7]. For the broader framework studied by Aguilar and Latremoliere in [2], (2, 0)-quasi-
Leibniz Lip-norms are constructed using conditional expectations on a class of C*-algebras

that can be built from a sequence of finite-dimensional C*-algebras.
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Definition 16. A C*-algebra is called approximately finite dimensional or AF if it can
be written as the norm closure of an increasing union of finite-dimensional C*-subalgebras

A,. When A is unital, Ay must coincide with complex scalar multiples of 14.

The conditional expectations defined on AF-algebras by Aguilar and Latremoliere
rely on the existence of a faithful tracial state. More precisely, a state 1) on a C*-algebra A
is said to be tracial if for all @ and b in A, ¥ (ab) = ¥ (ba) and faithful if ¥ (a*a) = 0 implies
a = 0. An example of a faithful tracial state on M, (C) is 1Tr,. In contrast, K(H) does
not admit a tracial state when H is infinite-dimensional [28, Remark 6.2.2]. If A is a unital
AF-algebra, then A has a faithful tracial state if its only norm-closed ideals are 0 and itself

[28, Theorem 6.1.3,Remark 6.2.3,Remark 6.2.4].

Theorem 13 ([2]). Let A be a unital AF-algebra for which there exists a faithful tracial
state \, Ag the set of complex scalar multiples of 14, and UnenAn an increasing union of
finite-dimensional C*-algebras such that A = mM'A. Also, let E,, : A — A, be the
unique conditional expectation with X o B, = X. Set (Bp)nen in (0,00)N, with limit 0 at

infinity. If, for all a € sa(A),

la—En(@)ll

L(a) := Sup{ 3,

ne N},
then (A, L) is a (2,0)-quasi-Leibniz quantum compact metric space.

Recall that through the lens of Gelfand duality, C'(X) is *-isomorphic to a unital
commutative AF-algebra if and only if X is a totally disconnected compact metric space.
Unital AF-algebras like C'(X) when X is the Cantor set have natural candidates for ap-

proximating finite-dimensional C*-algebras. Distance zero for a metric on noncommutative
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structures associated to C*-algebras that respects Gelfand duality should imply the two
underlying C*-algebras are *-isomorphic. Such a metric exists for quantum compact metric

spaces.

3.4 The Dual Gromov-Hausdorff Propinquity Metric

When (X,d) is a piecewise C'-fractal curve equipped with its geodesic distance,
(X, d) can be written as a Gromov-Hausdorff distance limit of an increasing sequence of
finite graphs each equipped with their respective geodesic distances. As a consequence of
Theorem 11, each of these compact metric spaces can be associated to a quantum compact
metric space. As with classical compact metric spaces, the space of quantum compact
metric spaces can be equipped with a metric. Since this space contains finite-dimensional
examples and this metric is complete, the existence and identification of finite-dimensional
metric approximations for a given quantum compact metric space can be considered. The
definition of this metric requires a noncommutative analogue of isometry that takes into

account the additional structure given to the C*-algebra by the Lip-norm.

Definition 17 ([20]). Let (A;,L;) be a quantum compact metric space for j € {1,2}. If
(A, L) is a quantum compact metric space such that for each j € {1,2}, there exists a

*-epimorphism m; 1 A — A; such that for every a € dom(L;),
Lj(a) = inf{L(8) : 7;(b) = a},

then (A, L,m1,m2) is called a tunnel from (A, L1) to (Az, La).
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The conditions formalized in the definition of a tunnel are sufficient to ensure that compo-
sition of every state in S(A;) with 7; gives an isometry from (S(A;), mkz,) onto its image
in (S(A),mkyr) [34]. A number can be assigned to each tunnel so that a metric comparison
of two quantum compact metric spaces can be obtained via the lenses of their respective

state spaces.

Definition 18 ([22]). Let 7 = (A, L,m,m2) be a tunnel from (A1, L1) to (A2, La). The

extent of T, x(7), is given by

X(7) = max Hauspy, {S(A),{pomj, e S(Aj)}}.
Je{1,2}

Definition 19 ([20, 22]). The dual Gromov-Hausdorff propinquity, or dual propin-

quity, between two quantum compact metric spaces (A1, L1) and (Ag, Lo) is given by
A*((A1, L), (Ag, Lo)) = inf{ x(7) : 7 is a tunnel from (A1, L1) to (Az, La) }.

Recall that the *-operation encodes the norm of a C*-algebra and the Lip-norm
determines a metric on the state space that metrizes the weak*-topology. An appropriate
notion of equivalence between quantum compact metric spaces should therefore respect

both the *- and the Lip-norm structures.

Definition 20 ([21, 41]). Let (A1, L1) and (A2, La) be quantum compact metric spaces. If
w: Al — Ay is a *-isomorphism such that Lo om = Ly, then  is called a full quantum

tsometry.

Theorem 14 ([20]). The dual propinquity is a complete metric, up to full quantum isometry,

on the class of quantum compact metric spaces.
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Moreover, the Gromov-Hausdorff topology on compact metric spaces can be re-

covered from the dual propinquity topology.

Theorem 15 ([20]). If (X1,d1) and (X2,d2) are compact metric spaces, then

A*( (C(X1)> Ld1)a (C(XQ)a Ld2) ) < GH( (Xla dl)a (X27 d2) )

Complete metric space structure makes measurement and approximation possible
on a set. Such ideas are essential for understanding how mathematical models can simulate
a physical system. Rieffel developed quantum compact metric spaces to give a mathemati-
cally formal framework for models found in quantum physics [35]. Examples of such models
include full matrix algebras and C(S?), which is the commutative C*-algebra of continuous,
complex-valued functions on the sphere. When enriched with the appropriate Lip-norms,
C(S?) has finite-dimensional approximations in the dual propinquity by full matrix alge-
bras [37]. Any unital AF-algebra for which there exists a faithful tracial state also can
be approximated in the dual propinquity by finite-dimensional C*-algebras. The required
quantum compact metric space structures are constructed using the class of Lip-norms built
by Aguilar and Latrémoliére for such an AF-algebra and described in the previous section
[2]. More importantly, Aguilar and Latremoliere’s results on finite-dimensional approxima-
tions of AF-algebras in the dual propinquity apply to C(X) when X is the Cantor set C
[2, 1]. Since C becomes a compact metric space if given the restriction of the Euclidean
distance, any approximation results for this space in the Gromov-Hausdorff distance can

also be used to build approximation results in the dual propinquity. Similarly,
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Theorem 16. Let X be a piecewise C'-fractal curve, with parameterization {R;}jen and
B(n) an approxzimation sequence of X compatible with {R;}en. Denote the geodesic distance

on X by dyy and the geodesic distance on X, = Uf:(? R; by dy,. Then

lim A*( (C(X)v Ldoo)v (C(Xn)v Ldn) ) =0.

n—ao0

Proof. Given any fixed choice of € > 0, the definition of approximation sequence
for a piecewise C'-fractal curve guarantees there exists Ny € N such that for n > Ny,
Hausg, (Vp, Xpn) < €. Furthermore, GH ((Vy,,dw ), (Vi,dy) ) = 0 because by assumption, the
restriction of d to V;, x V}, is d,,. Since Vi is dense in (X,dy) and Vi = (J,>q V2, there
also exists N2 € N such that when n > Ny, Hausy (X,V,,) < e. Hence n > max{Ny, N2},

together with the previous theorem, yields

A*((C(X), La,), (C(Xn), La,) ) < GH((X, do), (X, dn))
< GH((X,dy), Vo, doo) ) + GH( (Vo dos), (Vs ) )
+ GH((Vy,dy), (X, dn))
< Hausg, (X, Vi) + GH((Vi, do), (Vi dy) )

+ Hausg, (Vi,, X)) < 2e,

as desired. W

Application of the dual propinquity and its extensions to the study of fractals
makes possible an enlarged understanding of these objects as noncommutative spaces. The
same C*-algebra can support non-equivalent Lip-norms. As a consequence, quantum com-
pact metric space structures that are not fully quantum isometric can be defined on the

same C*-algebra. In the case of C, C'(C) can be equipped with the Lip-norm associated to
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a classical metric on this fractal. Aguilar and Lopez show in [3] that this Lip-norm differs
from the Lip-norm constructed as a consequence of Aguilar and Latremoliere’s work on
AF-algebras. They demonstrate that the corresponding Monge-Kantarovich metrics agree
on P(C(C)) but not on all of S(C(C)). In particular, the enriched perspective of a fractal
through the lens of a state space exhibits promise in capturing key aspects of fractality
absent in purely point-based representations. For example, recall that the roughness, or
complexity, of a fractal can be encoded its Hausdorff dimension and this quantity is often
a non-integer quantity when associated to a fractal. Common approximations of fractals
have integer dimension and are based on a view of this fractal as a set of points. Hence
algebras of functions defined on finite approximations of fractals can lead to new insights
about how to capture fractality through approximations on simpler structures.

In the noncommutative setting of the Gromov-Hausdorff propinquity, not all Haus-
dorff distance equivalent sets for a fractal support unital C*-algebraic structure. For in-
stance, Vi and (J,,5, SG, are both dense in SG. When each equipped with dy, both spaces
are isometric with (SG, dy). Unlike C, Vi is not compact. Consequently, C'(V;) is not a uni-
tal C*-algebra. Furthermore, C'(V;) cannot be a component for a quantum compact metric
space for any Lip-norm. Thus the hypotheses of Theorem 15 do not apply as in the case
of Theorem 16. Recall that X is a totally disconnected compact metric space if and only if
C(X) is a unital commutative AF' algebra. If C(V,) and C(SG) were *-isomorphic as C*-
algebras, then C'(SG) could be represented as an AF-algebra. In particular, C(SG) could
be equipped with a Lip-norm L so that it is finitely approximable in the dual propinquity

via the work of Aguilar and Latremoliere [2]. Thus the topology of a fractal is encoded in its
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admissable quantum compact metric space structures. Investigations into these quantum
compact metric spaces could be the basis for new insights about the fractal. As a complete
metric on quantum compact metric spaces, the dual propinquity would be a useful tool in

such a study.

3.5 Spectral Propinquity

As the setting for the construction of Lapidus-Sarhad spectral triples, piecewise C'-
fractal curves can be viewed as a class of fractal-type “manifold.” Many important examples
of piecewise C'-fractal curves, such as the Sierpinski gasket, are Hausdorff distance limits
of increasing unions of finite graphs. An analytic framework for spectral triples will be
given that enables consideration of whether spectral triples on such fractals can also be
metrically approximated by spectral triples on approximating sets with simpler structures.
An understanding of such questions would set the stage in noncommutative geometry for
the definition of operators on fractals that suitably generalize their counterparts on classical
manifolds.

Spectral triples grant access to analysis on fractals via tools from noncommutative
Riemannian geometry. Methods from noncommutative metric geometry can also be applied
to the development of spectral triples on fractals when quantum compact metric space

structure is present.

Definition 21 ([23]). A metric spectral triple (A, H, D) is a spectral triple such that the

Monge-Kantarovich metric associated to Lp metrizes the weak*-topology on S(A).
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For a metric spectral triple, all components are at work in the definition of a metric on
the state space of the underlying C*-algebra. Geometric information like measure and
dimension can be also extracted from a spectral triple using the data given by the spectrum
of the Dirac operator component. In particular, a metric on metric spectral triples should
encode equivalence that requires the induced quantum compact metric spaces to be fully
quantum isometric. Since unitarily equivalent operators share the same spectrum, such
equivalence should also include this condition for the Dirac operator components. To see
why the spectrum of an operator is invariant under conjugation with a unitary, suppose
(A1, H1,Dq) and (Ag, He, D9) are spectral triples and there exists a unitary U : Hy — Ho
such that

UD,U* = D,.

Then for any A € C,

Dy — N =UDU* — N[ =UDU* = \IUU* =U(Dy — AXI)U*,

hence Dy — A is invertible if and only if D; — AI is invertible. In fact, Latrémoliere’s
analytic framework for metric spectral triples detects both properties [23]. His metric on
metric spectral triples is therefore a natural choice for the study of metric approximations

of spectral triples on fractals.
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A metric spectral triple supports a wealth of noncommutative geometric structures.

When a spectral triple induces a quantum compact metric space, it also carries a

e a Hilbert space with an extra norm defined on some dense
subspace, given by the the graph norm of the Dirac operator

e a *-representation of the quantum compact metric space on
the Hilbert space,

e a group action of R on the Hilbert space obtained by

exponentiating ¢ times the Dirac operator.

A notion for convergence of metric spectral triples requires a form of convergence for each
of these elements. Convergence of quantum compact metric spaces will be given by the
dual propinquity. For Hilbert spaces with the graph norms of the Dirac operators of spec-
tral triples, convergence will be defined by the modular propinquity [24]. The metrical
propinquity will determine convergence of the *-representations in spectral triples [23]. By
including covariant quantities with those obtained from each of these propinquity metrics,
the spectral propinquity will quantify convergence of all of the corresponding noncommuta-
tive structures in addition to that of the actions of R on the Hilbert spaces obtained from

the Dirac operators [23].

3.5.1 Convergence of Modules

Module structures in noncommutative geometry give rise to quantum analogues of
vector bundles [41]. For a smooth manifold, a tangent space can be associated to each point.

The corresponding set of vectors belonging to all such tangent spaces defines the tangent
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bundle of a smooth manifold. In differential geometry, vector bundles generalize tangent
bundles. One module structure from noncommutative geometry that can be obtained from

a spectral triple comes from that of the Hilbert space.

Definition 22 ([6, 24]). A Hilbert module (M,{-,-)»r) over a C*-algebra B, or Hilbert

B-module, is a a right B-module with a map
Coom M x M — B

such that
(1) (-, Sar is linear in the second variable,
(2) for every &, e M and be B, (bE,n) = (&b,
(3) for every &, ne M, (& n) = (n,&",
(4) for every £ € M, (£, &) >0,
(5) for every € € M, (£,€) = 0 if and only if € = 0,

(6) M is complete with respect to the norm given for every & € M by

1Ellar = VI Omllz-

Every Hilbert space is an example of a Hilbert module over C. This Hilbert C-
module can be endowed with the graph norm of the Dirac operator. When the spectral
triple is also a metric spectral triple, another module structure comes from the action of

*

the induced quantum compact metric space made possible by its *-representation on the

Hilbert space.

Definition 23 ([24, 25]). A metrical quantum vector bundle (M,DN,B,Lp, A, Ly,)

is given by two quantum compact metric spaces (A, L4) and (B,Lg), a Hilbert B-module
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(M, (-, ->ar) which also carries a left A-module structure, and a norm DN defined on a dense

A-submodule, dom(DN), of M such that
o for every & € dom(DN), [[¢][n < DN(),
e {{€ M : DN() < 1} is compact with respect to || - ||ar,

e for every w,n € M, the inner Leibniz inequality,

max{LB(<“””>M ; <w,n>7w>,LB<<w,n>M2—i<w,n>ﬁ4)} < 2DN(w) DN(y),

holds,
e for every a € dom(L4) and £ € dom(DN), the modular Leibniz inequality,
DN(a€) < (||al|a + La(a)) DN(E),

holds.

The norm DN is called a D-norm. When (M, DN, C,0, A, L4) is a metrical quantum vector

bundle, (M, DN, C,0) is called a metrized quantum vector bundle.

As shown in [23], every metric spectral triple gives rise to a metrical quantum
vector bundle. To build a D-norm from the elements of a metric spectral triple (A, H, D),

begin with the domain of the Dirac operator. For every ¢ € dom(D), let

DN(&) = €]l + [|1DE]|ar-

Recall that (C,0) is the only quantum compact metric space with the complex numbers as

the underlying C*-algebra. Since H is a Hilbert space, one of the two required quantum
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compact metric spaces is supplied by (C,0). The Lip-norm of the second quantum compact

metric space is obtained from all three elements of the metric spectral triple. Set
dom(Lp) = {a € sa(A),adom(D) < dom(D), [D, a] is bounded },

and for every a € dom(Lp), let

Lp(a) = |[[D,a]|lpm)-

Then

qvb(A4, H, D) = (H, DN, C,0, A, Lp)

denotes the metrical quantum vector bundle given by this construction. Furthermore,
(H,DN,C,0) is a metrized quantum vector bundle.

Each quantum compact metric space component in a metrical quantum vector
bundle is a source of module structure. A notion of equivalence between metrical quantum

vector bundles will be built on a notion of morphism between Hilbert modules.

Definition 24 ([25]). Let Ay and As be unital C*-algebras. A left module morphism
(IT, 7) from a left Aj-module My to a left As-module My is a unital *-morphism 7 : A} — Ay

and a linear map 11 : My — My such that for every a € A and w e My,
M(aw) = 7(a)I(w).

The module morphism (IL,7) is said to be surjective when both 11 and w are surjective
maps, and it is said to be an isomorphism when both 11 and 7 are bijections.

A right module morphism is defined similarly.
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A Hilbert module morphism (I1, ) from a Hilbert Ai-module My to a Hilbert As-module

M> is a module morphism where for every w,n € My,

<H(w)7 H(n)>M2 = <w7 77>M1 :

Convergence for metrical quantum vector bundles in this framework will require
convergence for the underlying metrized quantum vector bundles. Every metrized quan-
tum vector bundle has quantum compact metric space and Hilbert module components.
For metrized quantum vector bundles associated to metric spectral triples, the D-norm de-
pends on both the Hilbert space norm and the action of the Dirac operator on the Hilbert
space. In particular, the inner Leibniz inequality ties the Lip-norm to both structures. The
definition of a metric between metrized quantum vector bundles will extend that of the dual

propinquity metric between quantum compact metric spaces.

Definition 25 ([25]). Let (Mj, DNj, B;, Lp;) be a metrized quantum vector bundle for
j€{1,2}. A modular tunnel (M, (I1}, m1), (Ila, m2)) from (My, DNy, By, Lp,) to (Ma, DNa,

By, Lp,) is given by
e a metrized quantum vector bundle M = (M, DN, B, Lg),
e a tunnel (B, Lp,m,m2) from (Bi,Lp,) to (B2, Lp,),

e surjective Hilbert module morphisms (I, w;) from M over (B, Lg) to M; over (Bj, Lp;)

such that for every w e Mj,
DN j(w) = inf{DN(¢) : I1;({) = w}

for each j € {1,2}.
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The D-norms for two metrized quantum vector bundles are encoded in the quotient
properties of the D-norm for the metrized quantum vector bundle component of a modular
tunnel between them. Verification of the inner Leibniz inequality for this quantum vector
bundle component would require consideration of both these D-norms. The elements of
permissable modular tunnels between two metrized quantum vector bundles, together with
the Hilbert module structures, are sufficient for full quantum isometry between the base

quantum compact metric spaces to imply agreement between the D-norms.

Definition 26 ([25]). Let p = (M, (I1, m1), (Ilz, m2)) be a modular tunnel from (My, DNy,
Bi, Lp,) to (Mg, DN, By, Lp,) with Ml = (M, DN, B, L). The extent of u, x(u), is the

extent of the tunnel (B, Lp, 71, 72).

Definition 27 ([25]). The dual modular propinquity between two metrized quantum

vector bundles My = (My, DNy, By, Lp,) and My = (Ma, DNa, By, L,) is given by
AF™d (M, M) = inf{x (i) : p is a modular tunnel from My to My}.

Theorem 17 ([24, 25]). If (M1, DNy, A1, La,) and (Ma, DNy, Aa, La,) are two metrized

quantum vector bundles, then
A*™°4((My, DNy, By, Lp, ), (Ma, DNo, By, Lp,)) = 0
if and only if there exists a Hilbert module morphism (I1, 1) such that
« Lyjom=La,
e DNyolIl = DNj.

Moreover, the dual modular propinquity is a complete metric on the class of metrized quan-

tum vector bundles.
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Spectral triples can have additional modular structures with respect to their C*-
algebra components. A representation for the C*-algebra that sends elements of the C*-
algebra to bounded left multiplication operators on the Hilbert space is one example of
how the Hilbert space can be viewed as a left module with respect to the C*-algebra. For
metrical quantum vector bundles of the form qub(A, H, D), the modular Leibniz inequality
relates the action of the C*-algebra on the Hilbert space to the norm and the Lip-norm of
the induced quantum compact metric space, as well as to the Hilbert space norm and the

action of the Dirac operator on the Hilbert space.

Definition 28 ([25]). Let (M;, DNj, Bj, Lp;, Aj, La;) be a metrical quantum vector bundle
for j e {1,2}. A metrical tunnel (p,7) from (My, DNy, By, Lp,,Aj,La,) to (M, DNy, Bo,

LBQ7 A27 LAQ) is given by

e a modular tunnel pn = (M, (I11, m1 ), (Ilg, m2)) from (M1, DN1, B1, Lp,) to (Ma, DNy, Ba,

Lp,) with M = (M, DN, B, Lg),
e o tunnel T = (A, La,01,02) from (A1, La,) to (A2, La,),

e a left A-module structure for M such that for every a € dom(L4) and w € dom(DN),

the modular Leibniz inequality, that is,

DN(aw) < ([lal[a + La(a)) DN(w),

holds,

o left module morphisms (0;,11;) from the left A-module M to the left Aj-module M;

for each j € {1,2}.
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More generally, a metrical quantum vector bundle carries the action of a quantum
compact space on a metrized quantum vector bundle. This quantum compact metric space
will often differ from the base quantum compact metric space for the metrized quantum
vector bundle. Every metrical tunnel between metrical quantum vector bundles is built on
a modular tunnel between the underlying metrized quantum vector bundles. Verification of
the inner Leibniz and modular Leibniz inequalities for the construction of a metrical tunnel
requires working with the Lip-norms for each quantum compact metric space. Equivalence
for metrical quantum vector bundles will rely on dual propinquity convergence for both sets
of quantum compact metric spaces. In particular, quantum compact metric space structure

grants access to an analytic framework for metrical quantum vector bundles.

Definition 29 ([25]). Let (u,7) be a metrical tunnel from (My, DN1,B1,Lp,,A;,La,) to

(Ms, DN, By, Lp,, Aa, La,). The extent of (u,7), x(u, 7), is max{x(u), x(7)}.

Definition 30 ([25]). Given two metrical quantum vector bundles QVB; = (M;, DN;, Bj,

Lp;,Aj,La;), j€{1,2}, the metrical propinquity between QVB1 and QVBs is
AN QVB1, QVBy) = inf{x(11,7) : (1, T) is a metrical tunnel from QVBy to QVBa}.

Theorem 18 ([25]) If QVBl = (MlaDNlaBlaLBlijaLAl) and QVBQ = (MQ,DNQ,BQ,

Lp,, As, La,) are metrical quantum vector bundles, then
AN (QVB, QVBy) = 0,
if and only if there exists

o a Hilbert module isomorphism (m,I1) : (M1, (, By 15,)) = (M2,{, )(By,L5,)) such

that Lp, om = Lp, and DNy oll = DNy,
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e a *-isomorphism 6 : A; — Ay such that La, o0 = Ly, and (0,1I) is a module

morphism.

Moreover, the metrical propinquity is a complete metric on the class of metrical quantum

vector bundles.

The C*-algebra in a metric spectral triple (A, H, D) can always be equipped with

a Lip-norm via the construction described for qub(A, H, D). In this context,

Theorem 19 ([23]). If (A1, H1,D1) and (A2, Ha, D2) are metric spectral triples, then
A*™eY (A, Hy, D1), (Ao, Ha, Do) = 0 if and only if there exists a unitary U : Hy — Ho

and a *-isomorphism 0 : A1 — Ay such that

UD?U* = D3,

and for every a € A1 and w € Ho,

0(a)w = (UaU*)w.

Moreover, 0 is also a full quantum isometry- that is, Lp, 00 = Lp,.

To define a metric on metric spectral triples that detects the stronger condition
of unitary equivalence of the Dirac operators, the metrical propinquity will be extended to

include covariant quantities.
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3.5.2 Convergence of Spectral Triples

Since the Dirac operator in a spectral triple (A, H, D) is a self-adjoint operator on
the Hilbert space, D can be used to construct a strongly continuous action of R on H by

unitary operators [31, Proposition 5.3.13]. More precisely, for every t € R,
U(t) = exp(itD)

is a unitary operator on H. For this family of operators, U(s + t) = U(s)U(t). Such
families of operators are often used in quantum mechanics to represent the time evolution
of a physical system. The final extension of the dual propinquity to metric spectral triples
quantifies “closeness” for such induced actions of R. This metric is a special case of a
covariant version of the propinquity called the covariant modular propinquity. In the broader
context addressed by that metric, maps on a certain class of monoids are used to define a
distance on that class [23, 41]. For metric spectral triples, this class of monoids reduces to
the single monoid R. The kinds of maps on R required for application of this metric are
each characterized by first setting a choice of € > 0. A pair of maps (1,¢2) from R to R is

called an e-iso-iso whenever for every j, k € {1,2} and every z,y,z € [ — %, é],

(@) + () — 2| = (& +y) — ()] ] <e

and ¢1(0) = ¢(0) = 0. Such maps will be used to compare the dynamics of the Dirac
operators belonging to metric spectral triples.

As in the case of the metrical propinquity, a metric on metric spectral triples
will be built on tunnels between the underlying quantum compact metric spaces. Let

(A1, H1,Dy) and (Ag, Ha, D3) be metric spectral triples. Suppose there exists a tunnel 7 =
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(A,Lp,61,02) from (A1, Lp,) to (Aa, Lp,) and a modular tunnel p = (M, (IIy, m1 ), (I, m2))
from (H;,DN,C,0) to (H2, DNy, C,0) with M = (M, DN, B, Lg) such that (u,7) is a met-
rical tunnel from qub(A;, Hi, D1) to qub(As, Hy, D2). If (¢1,<2) is an e-iso-iso from R to
R for some € > 0, then an e-covariant metrical tunnel is given by (u,7,¢1,52). Moreover,

(1,61, $2) is an e-covariant tunnel with an e-covariant modular reach defined by

pm((f1,61,62)) = max sup inf sup
" Uktell2t ceH; DNj()<1 &EHRDNE(E)ST <l

sup KU ()€ IL(w)ym, — Ukl ()8, i (@) m, |
weM,DN(w)<1

The e-metrical magnitude of (i, 7,1, s2) combines consideration of pp, (1, <1, s2)) with that

of x(u, 7) and is determined by

o((1, 751, 2) 1) = max {x () x (1), o (1 51,2)) .

An additional condition will ensure that these quantities yield a metric rather than an ex-

tended metric on metric spectral triples.
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Definition 31 ([23]). The spectral propinquity between two metric spectral triples
(A1, H1,Dy) and (Aa, Ha, Do) is given by
APC((Ay, H1, Dy), (Aa, Ha, D2))
= max {\f, inf{e > 0: (u,7) is a metrical tunnel from qub(Ay, Hi, D1) to

qub(Ag, Hy, Do),
(1, 7,61, 2) is an e-covariant metrical tunnel,
(.m0, 2)le) <}

Theorem 20 ([23]). The spectral propinquity A*P°¢ is a metric on the class of metric spectral

triples, up to the following coincidence property: for any metric spectral triples (Ay, Hy, D)

and (AQ, HQ, Dg),

A°PC((Ay, Hy, Dy), (A2, Ha, D3)) =0

if and only if there exists a unitary map U : Hy — Ho and a *-isomorphism 6 : Ay — Ay
such that

UD\U* = Da,

and for every a € A1 and w € Ho,
0(a)w = (UaU*)w.

In particular, 0 is a full quantum isometry from (Ay, || [D1,71(-) [l|B(a,)) to

(A2, [| [D2, w2 () 1 B())-
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The Lapidus-Sarhad spectral triple recovers the geodesic distance on a piecewise
Cl-fractal curve [19]. Since the fractal equipped with this metric is a compact metric
space, the Lapidus-Sarhad spectral triple can be shown to be a metric spectral triple. Their
construction of this spectral triple relies on their piecewise Cl-fractal curve framework.
The enrichment of this framework with the notion of an approximation sequence arose from
identification of conditions that make direct application of the spectral propinquity possible.
The application of the spectral propinquity to Lapidus-Sarhad spectral triples is a both a
test case for this metric and a stepping stone towards new definitions of differential operators
in noncommutative fractal geometry. Recall that the definition of a Laplacian on a space
requires the choice of a measure and a spectral triple induces a measure via the Dixmier
trace. An extension of the spectral propinquity to a setting that includes such operators
would lay the foundation for the construction new Laplacians on fractals, as well as new
ways to approximate more established Laplacians from the analysis on fractals literature
with Laplacians on finite graphs. Such understandings would contribute to progress in
the definition and study of a suitable notion of “fractal manifold.” In the process of such
development, new insights about Laplacians, differential structures, and fractality may be

discovered.
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Chapter 4

Metric Approximation of Spectral
Triples on Piecewise C'! Fractal

Curves

Piecewise C'-fractal curves naturally admit approximations in the Hausdorff dis-
tance by finite graphs. By definition, every piecewise C'-fractal curve contains a countable
set of parameterized curves that is dense in the fractal. Since this set of parameterized
curves can be ordered by decreasing arclength, there exists at least one enumeration of
these curves that respects this order. This enumeration can be used to define a sequence
of finite graphs. Via the Lapidus-Sarhad construction, a metric spectral triple will be built
for each finite graph. When such an enumeration exhibits the properties described in the
definition of an approximation sequence compatible with that parameterization of the frac-

tal curve, the corresponding sequence of metric spectral triples will be shown to converge in
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the spectral propinquity to a metric spectral triple on the piecewise C'-fractal curve. Such
convergence is an important step in the demonstration of the possibility of metric approx-
imation of spectral triples on fractal spaces by spectral triples on simpler approximating
spaces. Further study of the analytic framework used for such developments will advance

understanding in the definition and study of generalized manifolds that include fractals.

4.1 Lapidus-Sarhad Spectral Triples

A parameterization for a piecewise C'-fractal curve X is based on a sequence of
rectifiable C'' curves (Rj)jen- A Lapidus-Sarhad spectral triple is a direct sum of spectral
triples for each Rj-curve. Each of these spectral triples is built from spectral triples for
circles. To define a spectral triple for a circle in the complex plane centered at 0 and with

radius r > 0, let

AC,. denote the algebra of complex continuous 27r-periodic functions on the real line,

o H, := L*([~nr,7r],(2mr)~'m), where (2r)~!'m is the normalized Lebesgue measure

on [—7r,7r|,

= _i%|span(¢2)kez with d)}; = eXp(ika)) ke Z,

D¢

mc, the representation that sends elements of AC, to multiplication operators on H,.

The sequence (¢} )rez is an orthonormal basis for H,. These functions are also the eigen-

functions of D¢,. In particular, D¢, is self-adjoint with
k
o(De,) = {; ke Z}.
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By the Spectral Mapping Theorem [8, Chapter VIII, Theorem 2.7] and [31, Theorem 3.3.8],
D¢, has compact resolvent. If f € dom(D¢,), then f is differentiable almost everywhere
and || || ac, is finite. In contrast, the period of the Weierstrass function can be adapted to
produce a function that is in AC,. but not in dom(D¢,.). For any f € AC, and g € H, with

continuous derivatives,

[Dey e, (F)]g = 7o~ i) g = 7e,(De, ),

hence [Dc,,mc, (f)] is a densely defined operator and extends to the bounded operator
e, (De, f) on Hy. The set of f € AC, with continuous derivatives can also be shown to be

ikx

dense in AC,.. Specifically, the set of functions in AC, of the form X}__ cpe = is dense in

—-n
AC, by the Stone-Weierstrass Theorem [8, Chapter IV, Theorem 8.1]. As a consequence,

the set
{f e AC, : [D¢,,mc,(f)] is densely defined and extends to a bounded operator on H,}

is dense in AC,. Together with H, and D¢, the circle algebra AC, with the representation
mc, forms a spectral triple. In [11], the spectral triple given by ST'(C;,) = (AC,, H;, D¢,)

is called the natural spectral triple for the circle algebra C,.

Theorem 21. The natural spectral triple for the circle algebra AC, is a metric spectral

triple.

Proof. Verification that (AC,, Lac, ) is a quantum compact metric spaces requires

first confirmation of certain properties for L 4¢,. Since

Lac, () = I[De,, 7o, (D s,y = llme, (Do, Ol iy = 1 (-mrm)
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for all f € AC,, f € dom(Lac,) if and only if f is Lipschitz. Recall that the self-adjoint
elements of AC, are the real-valued functions. To see that Lipschitz functions are dense in
the set of real-valued continuous 2zr-periodic functions on the real line, note that this set
contains the constant functions. Let f denote the sawtooth function defined by distance to
the nearest odd integer multiple of mr. Given any two distinct real values, the period of f
can be adapted so that its values differ at these two points. The desired denseness condition
then follows as a consequence of the Stone-Weierstrass Theorem [8, Chapter IV, Theorem
8.1]. Moreover, the set of real-valued functions with trivial Lipchitz constant coincides with
the set of real-valued constant functions. Because the Arzela-Ascoli Theorem [8, Chapter

VI, Theorem 3.8] implies
{a € sa(AC,) : Lac,(a) < 1,||al|lac, <1}

is totally bounded in AC, for ||-||ac,, (AC,, Lac,) is a quantum compact metric space. l

Furthermore,

Theorem 22 ([11, Theorem 2.4]). The metric induced by ST(C,) coincides with the

geodesic distance on Cy. More precisely, let dc, denote the geodesic distance on C,. Then

de, (x,y) = sup{|f(z) = f(y)| : [ € AC,, |[[De,,mc, (s, <1}

A parameterization for a piecewise C'-fractal curve is composed of countably many
rectifiable C''-curves. The Dirac operator belonging to a natural spectral triple for a circle

always has the number zero in its spectrum. If a direct sum of such spectral triples for each
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curve in this parameterization is taken, then the operator obtained from the direct sum

construction will not have compact resolvent. For each parameterized curve of length r, set

1
DT - Dcr/ﬂ_ + 2771]—
Then
w(2k +1
o) = {TEEED. ),

the domains of definition for D¢, . and D, coincide, and for any f € AC,,

(D, TCyn (Nl = [DCT/W 1 TCr ) (Nl

For each j € N, R; : [0,1;] — X is a continuous injective map with an image that is a curve
of length [;. Composition of this map with continuous functions on the interval [0, ;] yields
a homomorphism of C(X) onto C([0,[;]). The corresponding continuous functions on the
interval [0, ;] can then be taken to continuous functions on the double interval [—1;,[;] via

an injective homomorphism. More precisely, for every f € C(X) and h e Hy;, let

m; (f)h(x) = f(R;([t])h(z).

This representation of C'(X) as bounded operators on H;, can be used to build a faithful

representation of C'(X) as bounded operators on @ ey Hi;-

jeN
Theorem 23 ([11, 19]). Let X be a piecewise Ct-fractal curve. Then X = Ujs1 R, where

Rj is a rectifiable C1 curve of length l; for each j € N. Set

o Hy := @jeNle
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o Dy = @jeN Dlj)
o Ty = @jeNﬂ'lj.
Then ST (X) := (C(X), Hy, Do) with representation my is a spectral triple for X .

A spectral triple defined on a piecewise C''-fractal curve X by this construction is

called a Lapidus-Sarhad spectral triple on X. Note that Dy is self-adjoint with

7(Dy) = U{M:kez}.

jeN 2lj
In [19], Lapidus and Sarhad showed this spectral triple can be used to recover the geodesic
distance on X. The lemma on which this result relies can also be used to show ST(X)

induces quantum compact metric space structure.

Theorem 24. A Lapidus-Sarhad spectral triple on a piecewise C-fractal curve is a metric

spectral triple.

Proof. Since a piecewise C''-fractal curve is also a compact length space, (X, dy) is
a compact metric space. As shown in the previous chapter, algebras of Lipschitz functions
over classical compact metric spaces are quantum compact metric spaces. In particular,
(C(X), Lg,,) is a quantum compact metric space. Quantum compact metric space structure
for (C(X), Lp, ) will be shown to be a consequence of that of (C(X), Ly, ). In [19, Lemma
3.5], Lapidus and Sarhad show that for all f in dom(Dy), || 7eo(Doof) ||B(H,) = L., (f)-
Since (C(X), Lg,,) is a quantum compact metric space, Lp_ is a seminorm on sa(A) such
that Lp,, is lower semi-continuous with respect to ||-[|c(x) and {f € dom(Lp,,) : Lp, (f) =

0} = Rlg(x). Because the derivative of every Lipschitz continuous function is essentially
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bounded, dom(Lg4,,) < dom(Lp,, ). The set dom(Lp,) = {f € sa(C(X)) : Lp, (f) < 0} is

therefore likewise dense in sa(C(X)). Furthermore,

{f €sa(C(X)): Lp,(f) <1,0(f) = 0} € {f € 5a(C(X)) : La,. (f) < L, o(f) = 0}

is totally bounded in C'(X) for |- ||¢(x). Hence (C(X), Lp,,) is a quantum compact metric

space. As a consequence, ST(X) is a metric spectral triple. B

In fact, Lapidus and Sarhad used [19, Lemma 3.5] to recover the geodesic distance on X

from ST(X).

Theorem 25 ([19, Theorem 2]). The metric induced by ST(X) coincides with the geodesic

distance on X. More precisely,

doo (2, y) = sup{|f(z) = f(y)| : f € C(SG), |[[Deo, oo ()]l B(r10) < 1}-

When X is the Sierpinski gasket, ST(X) is the spectral triple developed by Lapidus, Chris-
tensen, and Ivan. In fact, ST(SG) also recovers the Hausdorff dimension and the log, 3-

dimensional Hausdorff measure [11].

4.2 Metric Approximation of Quantum Compact Metric Spaces

Induced by Lapidus-Sarhad Spectral Triples

To build metric approximations in the spectral propinquity for a Lapidus-Sarhad

spectral triple on X, suppose there exists an approximation sequence B(n) of X compatible
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with the parameterization (R;)jen. The elements of a spectral triple on X,, can be given

by the corresponding finite subsets of summands in a Lapidus-Sarhad spectral triple on X:
B(n)
L4 Hn = @j:l Hlj7

e Dy = C_DJB:(T) Dlja

o . — @,B(”)ﬂ-
n ]=1 lj'

For every n € N, H, will be viewed as a subspace of Hy by identifying every n =

(7717"' 777j7"' 77771) eH’n Wlth

(nj)jeN =

0 otherwise.
Let ST(X,,) denote the spectral triple on X,, defined by (C(X), Hy,, D,,) with representation
mn. A spectral triple of this construction on X, will be called a Lapidus-Sarhad spectral

triple on X,,.

Theorem 26. Let X be a piecewise Ct-fractal curve with parameterization (R;)jen. If
there exists an approximation sequence B(n) of X compatible with this parameterization,

then the Lapidus-Sarhad spectral triple on X, is a metric spectral triple.

Proof. The following arguments are adapted from the Lapidus and Sarhad’s
proof of [19, Lemma 3.5]. Fix a choice of n € N. Note that since the geodesic distances
differ on X and X, the Lipchitz constant with respect to dy of a function in C(X) may
differ from the Lipchitz constant with respect to d,, of the restriction of that function
to Xy. In particular, |[7w(Dwog)l|B(r,) = Ld,(g9) for g in dom(Dy) does not imply
| Tn(Dnglx,) || B, = La, (9]x,)-
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As in the case of (C(X), Lq,,), (Xy,dy) is a compact metric space implies (C(X,,),
Lg4,) is a quantum compact metric space. If Lp, can be shown to coincide with Ly, on
dom(Lp, ), then the same reasoning from the previous theorem can be applied to conclude

that ST'(X,,) is a metric spectral triple. Suppose f is in dom(D,,). Then

|| Tn(Dnf) [|B(r,) =  sup {HW](D syt = sup {f o)}

1<j<B(n) 1<j<B(n)
|f(p) — f(q)]

< sup sup { —Fr—F——"—7-— < Lg, (f).

1<j<B(n) { p.aER; { dn(p, q) }} 4. (f)

To bound Lg, (f), choose any distinct p and ¢ in X,,. Any geodesic in X,, between p and ¢
passes through a sequence of vertices in X,,. Consecutive pairs of vertices in this sequence
are also pairs of endpoints for the same R; curve. Pick a geodesic connecting p and ¢. Let
{pk, P41}, be the sequence of pairs of endpoints between p and ¢ in this geodesic and
{R;, }}*, the corresponding sequence of Rj-curves. Let Rj, denote the Rj-curve containing

p and R;, ., the R; curve containing g. Then

) = F@1 < 1F@) = Fo0l + (X 1F@ren) = F o)1) + 1£(2) = Foms)]
k=1
< do(p. )1 o yg) + (D5 dnPrss OIS o)) + s s )1 o, )
k=1
= du(p.p1) 1, (D, Dl s, ) (2 (P, p0) 71, (D, Pl s, )

+dp, (q Pm+1)|’ lJmH(Dlijf)HB(Hl,m )

Jm+1

< H?Tn(an)HB(Hn)< (p, p1) (i n(Dk+1, Pk ) + dn(Q>pm+1)>

k=1

= ”ﬂ-n(an)HB(Hn) Cl(p, Q)v



hence
La, (f) < |lmn(Dnf)l|B(#,.),

as desired. W

In the proof of the above theorem, ||[Dy, 7, (Dn f)]l|5(#,) Was shown to coincide with Ly,
on dom(Dy,). As in Lapidus and Sarhad’s proof of [19, Theorem 2] for the case of ST(X),

this result can be used to recover the geodesic distance on X, from ST'(X,,).

Theorem 27 ([19, Theorem 2]). The metric induced by ST(X,,) coincides with the geodesic

distance on X,. More precisely,

dn(,y) = sup{[f(x) = f(y)| = f € C(SGn), [|[Dn, mn(F)l B,y < 1}-

Proof. In the proof of the previous theorem, ||[Dy, 7, (f)]l|p(#,) Was shown to

coincide with Lg, on dom(D,,). Thus for any f € C(SGy,) such that |[[ Dy, 7o (f)]l| B(r,) < 1,

|f(x) = f(W)

iy < L) = P m (s <1,

hence |f(z) — f(y)| < dn(x,y), hence
sup{[f(z) = f(y)| : [ € CSGn), [I[Dn, mn(N]l|Ba,) < 1} < dnlz;y).

To obtain the opposite inequality, note that f,(x) := dy(z,y) is in dom(D,) given any

choice of y € X;,. Then ||[ Dy, 7 (fy)]l| B(#,) = La, (fy) = 1 implies

dn(z,y) = |dn(z,y) — dn(y, y)| = | fy(x) — fy ()]

<sup{|f(z) = f(W)| : | € COSGn), [[Dn, (NIl Ba) < 1}-
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Recall that

lim A*( (C(X)a Ldoo)v (C(Xn)v Ldn) ) = 0.

n—00
The quantum compact metric space induced by the Lapidus-Sarhad spectral triple on
X coincides with (C(X), Lq,,). Similarly, (C(X,),Lp,) is fully quantum isometric to
(C(Xn), La,). Although construction of explicit tunnels is not needed to show dual propin-
quity convergence of {(C(X), LDn)}neN to (C(X), Lp), such tunnels are needed to show
spectral propinquity convergence of Lapidus-Sarhad spectral triples on X,, to the Lapidus-
Sarhad spectral triple on X. Calculation of the spectral propinquity requires calculation of
the metrical propinquity for the canonically associated metrical quantum vector bundles.
Metrical tunnels build on tunnels between underlying quantum compact metric spaces. Ver-
ification of the modular Leibniz inequality when building metrical tunnels requires checking
bounds involving Lip-norms belonging to tunnels between the underlying quantum com-
pact metric spaces. Since a Lip-norm must exhibit certain properties with respect to the
self-adjoint elements of the C*-algebra component of a quantum compact metric space, the

McShane Extension Theorem will be used to obtain these needed conditions for C*-algebras

of the same form as C(X) and C(X,).

Theorem 28 (McShane Extension Theorem, [?, Theorem 1.33]). . Let X be a metric
space, let Xo be a monempty subset of X, and let fy be a Lipschitz function from Xy into

R. Then there is an extension f : X — R which has the same Lipschitz constant. If fo is

bounded, then ||f||c(x) = Il follo(xo)-
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One requirement for the Lip-norm belonging to a tunnel is that this seminorm have partic-
ular quotient properties for the *-epimorphism components of that tunnel. The McShane

Extension Theorem will play a role in that demonstration.

Theorem 29. Let X be a piecewise C'-fractal curve with parameterization (R;)jen. If
there exists an approximation sequence B(n) of X compatible with this parameterization,
then

A:—mo( (C(X)v LDoo)’ (C(Xn)a LDn) ) = 0.

Proof. Bounds on the dual propinquity between two quantum compact metric
spaces can be obtained via with the construction of tunnels between these two spaces. To
build tunnels between (C(X),Lp,) and (C(X,),Lp, ), choose an ¢ > 0. If f € C(X)
for some M € Nu oo and n < M, let f|, denote the restriction of f to V,,. Since X is a

piecewise C'-fractal curve, there exists N; € N such that if n > Ny, then

Hausy, (X,, Vi) < e.

The existence of an approximation sequence B(n) for X guarantees there exists Ny € N
such that if n = Ns, then

Hausg, (X, V,) <e.

One of the elements needed for the construction of a tunnel is a quantum compact metric
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space. Let N denote max{Ny, Na}. Fix some choice of n = N and let A,, signify the unital

C*-algebra C(X,) @ C(X). Set L, 3 equal to the seminorm on A, given by

1
Ln,ﬁ(fa g) = max {LDn (f)> LDoo(g)a B||g|n - f|n ||C(Vn)}

This seminorm will be shown to be a Lip-norm for A,.
By construction, the seminorm L, g is defined on a dense subspace of sa(4,).

Furthermore, L, 3 vanishes on (f, g) € A, if and only if

Lp,(f) = Lp,(9) =l 9ln = flnllcv,) = 0.

Since the desired behavior of L, 3 on A, in the definition of a quantum compact metric
space is specified only on a dense subspace of sa(A4,), it suffices to check these conditions
on C(X,,R)® C(X,R). Since (C(X,),Lp,) is a quantum compact metric space, the
only elements of sa(C(X,)) on which L,, vanishes coincides with the set of real-valued
constant functions on X,. Similarly, Lp,, evaluates to zero precisely on Rlg(x). Moreover,
Il gln— fln llc(v,) is zero only when f and g agree on V;,. In particular, L, g vanishes exactly

when f and g are constant functions on X,, and X that take on the same value in R. Thus

{(f7g) € dom(Ln,B) : Lnﬂ(fzg) = 0}

is composed only of real-valued constant functions on A,,.

Next consider the semi-continuity condition for L, 3. Note that Lp, is lower
semi-continuous with respect to || - [|c(x,), as is Ly with respect to || - [|¢(x), via the
quantum compact metric space structures of (C(Xy), Lp,) and (C(X),Lp_ ). Therefore,
Lp, and Lp,, are both lower semi-continuous with respect to || - [|4,. Because || f|n||lc(v;)

is bounded by |[f|[c(x,) for all f e C(Xy) and |[g|n [[c(v,) by [lgllox) for all g € C(X),
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I[[le(v;,) is also lower semi-continuous with respect to [|-[|4,. Hence Ly g, as the point-wise
maximum of three functions all lower semi-continuous with respect to || - ||4,, is likewise
lower semi-continuous with respect to || - || 4,,-

Given the verification of the previous two properties for L,, g, the condition that
mky,, , metrizes the weak*-topology on S(A;) is now equivalent to the existence of a state

1 € S(Ay) such that the set

Fyo:={(f,9) edom(Lyp) : Lna(f,g) <1,%(f,g) =0}

is totally bounded in A,, for || - ||4,. Let xo be some point in V,,, 14, the linear functional
defined by evaluation at xg, and 6,, : A, — C(X,,) the projection given by 0,(f,g9) = f.
Then 1, o 6, is a state on A,. Fix this choice of zo. To show that meooﬁn,O is totally

bounded in A, for || - |[4,, a set containing Fy, op, 0 Will be shown to be totally bounded

n?

in A, for || -||a,. To build such a set, first consider

Fjo0 = 1{f€dom(Lp,) : Lp, (f) < 1,4z,(f) = 0}.

Since 1, is also in S(C(X,,)) and (C(Xy,), Lp, ) is a quantum compact metric space, ngo,O
is totally bounded in C(X,) for || -||c(x,)- Next let 6, : A, — C(X) be the projection

given by 0 (f,g) = g and consider whether

Giop =19 €dom(Lp,) : Lp,(9) < L, [¢a(9)| < B}-

is also totally bounded in C(Xy,) for ||-[|¢(x,)- Let Gfpozmo be defined similarly. Since v, is
likewise in S(C(X)) and (C(X), Lp,,) is a quantum compact metric space, G?powo,o is totally
bounded in C(X) for || |[¢(x). Moreover, the lower semi-continuity of Lp,, with respect to

I||lc:(x) implies that Gi‘f:co’o is also closed in ||-||¢(x), hence compact. This compactness will
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be used to show compactness for Gfﬁxo, g in the same norm. Suppose {gn }nen is a sequence in
Gi‘fmo’ - Then {g,,(x0) }nen is a bounded sequence in R. Such a sequence admits a convergent
subsequence. Let {gy, (n)(70)}nen denote this convergent subsequence and b the limit of this
subsequence. Then b < B, {g4,(n) — 9¢,(n)(70) }nen is a sequence of functions in Gi‘fwo, and
G;‘fmo,o compact in || - ||¢(x) implies {g;, (n) — Gt (n)(T0) }nen has a convergent subsequence
for that norm. If {gy, (s, (n)) = Gta(t1(n)) (T0) }nen denotes this convergent subsequence and h
the limit of this subsequence, then h vanishes at xg. In particular, h(x) + b is in Gio, 5 and
h(z) + b is the limit of {g4,(, (n))}nen. As the choice of sequence in G?Ezoﬁ was arbitrary,
G;fwoﬁ is compact for || - [|c(x). In consequence, FQZZ-WO X G;fwoﬁ is totally bounded in A,
for || ]|, To see that Fy. 0 18 a subset of Flo0X G’Z?aco,ﬁ’ note that L, g(f,g) < 1 implies

Lp,(f) < 1, Lp,(g9) < Land [ fln = glullos) < B I f(20) = 1o (f) = 0, then

¥ (9)] = lg(z0)| = [f(x0) — g(@o)| < [[ fln = gln llcw,) < B-

Thus mky, , metrizes the weak*-topology on S(Ay).

n,B

The final requirement for L,, 3 to qualify as a Lip-norm on A,, is that this seminorm
satisfy the Leibniz inequality with respect to || - ||a,. For all fi, fo € C(X,,) and g1,g2 €

C(X),

1
Lng(f1f2,9192) = max {LDn(flfz), Lp, (9192), BH fifeln — 9192/n HC(Vn)}
< max {||illeex,) Lo, (f2) + Lo, ()l fallocx):
1
lorlle) L. (92) + Lo ()lloellcco), 511 fifeln = 10l o §
< max {[|(f1, 9014, Lns(f2: 92) + Ln (o g0 1(f2, 92) ..
5l fifeln = frgzln llews) + 5l figaln — 91920n Ho(vn)}
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< max {1(/1, 90)l| 4, Lns(f2: 92) + L g (15 901 (f2, 92)l L,
filleox 1l F2ln = g2ln llovy + 51| filn = g1l ||C(Vn)||g2||C’(X)}
< |[(f1, 9|4, Lng(f2; 92) + L g(f1, 90)[|(f2, 92)]] 4,-

In particular,

Lnﬁ((fl’gl)(f?’g?) - (f2»92)(f1,g1))

5; < '%’(Ln,ﬂ(flf%gl.%) +Ln,6(f2f179291)>

< (||(f17gl)||AnLn7,B(f2792) + Lng(f1,91)|(f2, 92)| 4,

N |

+[(f2, 92)l| 4, L (f1, 91) + Ln,ﬁ(f%g2)H(f1,gl)HAn)

<||(f1, 9|4, Ln,g(f2,92) + Ln g(f1,91)||(f2, 92)|| 4 -

((f1,91)(f2,92)-5(f2»92)(f1791)), hence

Similarly, the same bound holds for L, g

maX{Lnﬂ<(f1,91)(f2,g2) ;r (f2,92)(f1791)>’Lﬂﬁ((fl,gl)(fmgQ) 2—Z (f2,92)(f1,gl)>}

< [|(f1, 9014, Lng(f2, 92) + L g(f1, 90)[(f2, 92) ] A,

thereby completing the verification that (A,, L, 3) is a quantum compact metric space.
The quotient properties of L, g for 6, and 6, will next be examined. As in the
definition of a Lip-norm, the desired quotient properties of 6,, and 6, in the definition of a
tunnel are specified only on a dense subspace of sa(A4,). Consequently, it suffices to check
these properties on C(X,,R) @ C(X,R). To see that the quotient of L,, g for 6,, is Lp,,
let f be some function in C'(X,,R) in the domain of Lp, . Recall that for each n € N U o,
Lg, gives the same values as Lp, on dom(Lp, ). Since B(n) is an approximation sequence
of X, the restriction of dy, to V,, x V,, is d,,. As a consequence, Lp, (f) = Lg, (f|n). By the

McShane Extension Theorem, there exists g € C'(X,R) such that g and f|n agree on V,, and
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L, (9) = La,(fln)- In particular, Lp,,(9) = La,(9) = Lp,(f) and [[gln = flnllcem) = 0,

hence
Lp,(f) = int{ Ly s(h, k) : 0a(h, k) = .

In the case of the quotient of L, g for 6, similar arguments can be applied to any g €
C(X,R) except with the application of the McShane Extension Theorem to g|, to yield
a function f € C(X,,R) such that Lp, (f) = Lp,(g9) and f agrees with g on V,. As

projections are *-epimorphisms,
Tn,p = (Ana Ln,B: 977,7 900)

is a tunnel from (C(X,),Lp,) to (C(X),Lp,,).
Various bounds from the dual propinquity literature can be applied to the extent
of tunnels of the same form as 7, g. For quantum compact metric spaces like (A, L, g)

built from a direct sum construction,
X(7np) < Hauspp,,  (S(C(Xn) ® C(X)),e0(S(C(Xn)) v S(C(X)))

+Hauskanﬂ (605(S(C(Xn)), 0% (S(C(X))),

where €o(F) denotes the closure of the convex envelope of a set E < S(C(X,) ® C(X))
[22]. Moreover, [20] gives that when the *-epimorphisms in tunnels with quantum compact

metric spaces like (A, L, ) are projections to each of the summands,
HauskanYB (S(C(X,) @®C(X)),e0(S(C(X,)) uS(C(X))) =0.

To determine

Hauskan’ﬁ (07 (S(C(Xn)), 0% (S(C(X)))),
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begin by fixing some choice of ¢ in S(C(X)). By the Krein-Milman Theorem, there exists
¢ in S(C(X)) such that mkr,, (p,¢') < Band ¢’ = XL_,t;0,, for some | € Nand z; € X for
1 <7 <. Because Hausy, (X, V) < ¢, there exists vy, -+ ,v; € V;, such that do(x;,v;) < €
for 1 < i < I. In particular, ¢” = X!_,t;4,, is in both S(C(X,)) and S(C(X)), hence for
all (f,g) in A, with Ly, 5(f,g) <1,
000 (f.9) — ¢" 0 On(f.9)| = l(9) — " (f)]

< lp(g) = ¢ (@] +1¢'(9) = &"(9)] + " (9) — ¢"(f)]

< B+ S ti6s,(9) — Si_ 1160, ()] + [Si_iti6u, (9) — Zi_1tibu, ()]

< B+ Siogtilg(vi) — g(xi)| + Siogtilg(vi) — f(vs)]

< B+ S tidoo (2, 0) + Si_itill gl — fln lloa)

<208 + ¢,
where the second inequality follows from the conditions that mkyz,, (p,¢") < B, the penulti-
mate inequality as consequences of Lp(g9) < Ly s(f,9) < 1and Ly, (9) = Lp,(9), and the
last inequality because dy, (2, v;) < € for 1 <i <[ and %||g|n —fln HC(Vn) < Lnp(f,9) <1
Similarly, the same bound can be achieved for an arbitrary  in S(C(X,)) with an approx-
imating 1" composed of Dirac measures on X,, and for which mkz, (¢,v¢') < 8. In that
context, the bound Hausg, (X5, V,,) < € implies the existence of vy, -, vy, € V,, such that

dp(x;,v;) < € for 1 < i < m. This set of vertices can also be used to build a state 1" from

Dirac measures on Vj,. Since Lp, (g) < L, g(f,9) < 1and Ly, (f) = Lp, (f), this bound on
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dn(z;,v;) can likewise be applied to |¢'(f) — ¥"(f)|. Thus x(7,,8) < 28 + €. As the choice

of 8 > 0 was arbitrary,

A*((C(X),Lp,),(C(Xn),Lp,)) < X(Tnp) <€

4.3 Metric Approximation of Metrical Quantum Vector Bun-

dles Associated to Lapidus-Sarhad Spectral Triples

Metrical tunnels are built from tunnels between their underlying quantum compact
metric spaces. For metrical tunnels between qub(C(X), Hy, Do) and qub(C(X,,), Hp, Dy),
tunnels between (C(X),Lp,) and (C(X,),Lp,) of the same construction as 7, g will be
used. Another component of these metrical tunnels will be given by tunnels of the following

form.

Lemma 3. Let 7, : COC — C denote projection to the first coordinate and wo, : COC — C
projection to the second coordinate. Then for any fized choice of € >0, (C®C, Q¢, mpn, Top)

is a tunnel between (C,0) and (C,0). Moreover, x((C®C, Qe, T, 7)) < €.

Proof. Fix a choice of ¢ > 0. As shown in the previous chapter, (C® C, Q,)
is a quantum compact metric space. To see that the quotient of Q. for m, is 0, take any

('LUU, wo) eC &) C. Then

0 = (0)(wp) = inf{ Qc(w, 2) : mp(w, z) = wo }.
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Similar arguments can be applied to show that the quotient of Q. for my is also 0. As
projections are *-epimorphisms, (C® C, Q., 7, T ) is a tunnel between (C,0) and (C,0).
To calculate the extent of (C® C, Q, 7, Ts), the state spaces of (C,0) and (C @
C, Q.) will each be characterized. Recall that positive linear functionals are bounded and
their norm coincides with their value at the identity. In the case of C, linear functionals are
also uniquely determined by their value at the identity. As a consequence, S(C) is composed
only of the identity function. For C@C, linear functionals are uniquely determined by their

values at (1,0) and (0, 1), hence for every ¢ in S(C&® C),

1=p(1,1) = ¢(1,0) + ©(0,1).

For every t in [0,1], let ¢; denote the state in S(C @ C) that takes (1,0) to ¢. Then
©1(0,1) = 1 —t¢. In particular, S(C @ C) coincides with complex-valued functions on C® C
in the set

{or(w,2) =tw+ (1 —t)z : te[0,1]}.

Let idc signify the identity function on C. The Hausdorff distance with respect to mkg,

between idc o, and S(C@C) can now be calculated. If (w, z) is in CAC with Q¢(w, z) < 1,
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then for every ¢ in [0, 1],
[ pr(w, 2) —idec omn(w, 2) | = | r(w, 2) — ¢1(w, 2) |
=|(tw+(1—-t)z2)— (Hw+ (1-1)2)]

=[(1=t)z-(1-tw]

=(1-1t)|z —w
<(1—t)e
<€,

hence
Hauspy,, ({9 om 19 € S(C)}, S(COC)) < e

Similarly, the same conditions yield

| or(w, 2) —idec o o (w, 2) | = | or(w, 2) — wo(w, z) | < te < e.

A metrical quantum vector bundle carries Hilbert module structure via its metrized
quantum vector bundle component. For metrical quantum vector bundles associated to
metric spectral triples, that Hilbert module is always the Hilbert space from the metric
spectral triple. Hilbert spaces are Hilbert modules over the quantum compact metric space
(C,0). For the case of quantum vector bundles that arise from Lapidus-Sarhad spectral

triples, set for every n € N U oo and & € H,,,

DN (&) = €]l + [[Dnél[m, -

The metrized quantum vector bundle belonging to qub(C(X), Hy, Dy) is (Hs, DNo, C, 0).

Metric approximation in the metrical propinquity for qub(C(X), Hy, Do) requires metric
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approximation in the dual modular propinquity for (Hey, DNy, C,0). Modular tunnels
between (Hy, DNy, C,0) and (H,, DN,,C,0) will be built using the quantum compact
metric space (CAC, Q¢). The extent of these modular tunnels will therefore be determined

by the extent of tunnels of the same form as (C® C, Q., 7, Ts0)-

Lemma 4. Let X be a piecewise C1-fractal curve with parameterization (Rj)jen. If there

exists an approximation sequence B(n) of X compatible with this parameterization, then

A*TﬂOd( (HOOa DN(X),C7O)’ (anDNTL?C?O) ) = O

n—00

Proof. As in the calculation of the dual propinquity between two quantum com-
pact metric spaces, bounds on the dual modular propinquity between two metrized quantum
vector bundles can be obtained via the construction of modular tunnels between these two
spaces. To build modular tunnels between (Hy,, DNy, C,0) and (H,,, DN, C,0), choose an

€ > 0. Since X is a piecewise C!-fractal curve, there exists N € N such that if j > B(N),

One of the elements needed for the construction of a modular tunnel is a metrized quantum
vector bundle. Recall that H, can be viewed as a subspace of H via the identification
described in the previous section. Fix some choice of n = N. The Hilbert space H,, ® Hy,
will be viewed as a Hilbert module over the C*-algebra C@® C with action defined for every

(w, z) in C® C and for every (n,€) in H,, ® Hy, by
(U), Z) : (ﬁaf) = (U”% 25)
and inner product for every (n,&) and (v, ¢') in H,, @ Hy, by

<(777£)7 (n/7§/)>Hn@HOO = (<na 77/>Hn7<§7£/>H00)‘
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For the quantum compact metric space component of a metrized quantum vector bundle,

take (C® C, Q). Let DN, ¢ : H, ® Hy, — R be given by

DN (0, €) = max { DNo(), DNoo(6), ~ € ~ . |

This norm will be shown to be a D-norm for the Hilbert C®C-module (H,®Hw, (-, Y H,@H., )-
By construction, DN,  is defined on a dense subspace of H,, ® Hy. Equipping

H,, ® H,, with Hilbert module structure over C @ C yields for every (n,&) € dom(DN, ),

100 Ol @m, = 11<(,€); (1) m,0., llcac
= [ n,mm,, <& ) llcac
= max {||nll7,, [1€lI%,, }
< max { (DNn(n))?, (DN (€))* }

< (DN e(n, €))%

Now consider the unit ball with respect to DN,, ¢, that is,
Bpn,. :={(n,¢§) € H,® Hy : DNy, ((1,§) < 1}

c {’176 H, : DNn(’I?) < 1} X {f € Hy : DNoo(f) < 1} := Bpn,, X BDNoo

The unit balls Bpy,, and Bpy,, are each compact with respect to the Hilbert space norms for
their respective domains [23]. Moreover, seminorms are lower semi-continuous, as are graph
norms of Dirac operators. As the maximum of three lower semi-continuous functions, DN,
is also lower semi-continuous. As a consequence, Bpy,, . is a closed subset of a compact set,

hence compact.
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The inner Leibniz inequality will next be checked. For every (n,&) and (7/,¢’) in
H, © He,
1
Qe (<(77> 5)7 (77,’ 5/)>Hn@HOC) = Qe((<777 77/>Hn7 <§a £/>Hoo)) = ; |<£’ £,>Hoc - <777 77,>Hn|
1 / / 1 / / *k / *

= 6 &, — & ma + € = el = K6~ + (€~ m

<

(K& & =0 Dm | + 1K€ =m0 D h, )

A= o=

1
< Ml 1€ = 7'l + Z11€ = nllas 1711

< ||€lHe DNpe(n',€') + DNy e (1, ) |71,
< DNy, e(n,€) DNy (', &) + DNy e(n,€) DN, (1, €)

= 2DN,(1,€) DNy, (7, ).

In particular,

(n,€), (', &V r@m, +<(n,€), (0, §’)>}‘{n@Hw)

Q( >

<

~

(Qelm &), (Do) + Qelln, ), (€ Vi o,

<

(2D N0, €) DN, ) + Qe ), (0., 001.))

DO | —
_ N \

< 9 <2DNn,6(77a 5) DNn,e(??', 5/) + 2DNn,6(7l/> 5/) DNn,E(n, 5))

= QDNn,e(na f) DNn,e(nla 5/)

<(T]7£)7(77/7§/)>Hn@HOO _<(777§)’(77/’§/)>7{n@[{0€
21

<(777 5)7 (77', §/)>Hn@HOC + <<777 ‘5)7 (77/7 fl)>?—1n@HDo )
2 )

0. (<(n, §), (&) m.@H, 2_z €)'\ &V @m, ) }

Similarly, the same bound holds for QE< ) Therefore,

max { Q.
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< QDNme (77, f) DNn,e (77/7 5/)7

thereby completing the verification that (H,®Hy, DNy, CAC, Q) is a metrized quantum
vector bundle.

A modular tunnel also includes surjective module morphisms between Hilbert mod-
ule structures. To define such morphisms, take the projections Il : H, ® Hy, — H, given
by IL,(n,&) = nand Iy, : H,®Hy — Hy, specified by I, (1, §) = £. Let m, : COC — C de-
note the projection m,(w, z) = w, and 7y, : C@ C — C signify the projection 7y (w, 2) = 2.
By construction, (II,,,II,) and (Il,, 7y ) are surjective Hilbert module morphisms. More
precisely, 7, and my are *-morphisms and II,, and I, are C-linear maps such that for every

(w,z) in C® C and for every (n,&) and (n,¢’) in H, ® Ho,

Hn((w>z)(77,§)) = Hn(wnvz£) =wn = Wn(wvz)nn(nvg)a

HOO((wﬂz)(n7§>) = Hoo(wU72§> = Zg = 7T00<w7z)HOO(777€)7

and

Mo (0,8), (0,61, = 0,0 ppr, = 7 (0,1 011, € €D p) = T ({0, €), (0, € ) amts ),

<HOO (777 5)7 Heo (77/7 £I)>Hoc = <€7 €/>Hoo = 7TOO(<777 77/>Hn ) <€7 £/>Hoo) = Two (<(777 5)7 (77,’ 5,)>Hn®HOO)

Thus (Hp, ® He, (-, )H,®H,, ), When viewed as a Hilbert module over C @ C, encodes the
Hilbert module structures of (H,,{-, )m,) and (He, (-, )m, ) when each viewed as Hilbert
modules over C.

The quotient properties of DNy, . for II,, and II,, will next be examined. Consider
some choice of { = (&;)jen in Hy with £ in the domain of DNy. With respect to the

orthonormal basis (¢§j/ﬂ)kez, each &; can be written as § = >, ¢ ¢ij/ﬂ with (t;k)kez in
keZ
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¢%(Z) for all j € N, hence

2/{:—|—1 )T 2
1Dtlly, = X 10L& 11, = 20 3 [Jeaa 2o gt "

jeN jeNkeZ

—77222 B ’t]k‘ (k—i— ) .

jeNkeZ I

Recall that for j > B(N), l; < %f. This lower bound on j yields

Dol = Y 2l (h+3)

j>B(N) keZ J

'8 Bl () =5 B Xl (k+3)"

j>B(N) keZ _]>B ) keZ

Therefore,

S NGl = D Sl =4 Y Y P

j>B(N) j>B(N) keZ j>B(N) keZ

<4 3 Sl (k+g) < (Dol )

j>B(N) keZ

To see that the quotient of DN,, . for Il is DNy, take 1 as the orthogonal projection of £

to Hy,. This choice of 1 gives

1€ =l = D) 1&1IE, < (ellDeotllmg)® < (e(llél] e + 1 Dockllrr..))* = (€DNuo(€))?.

j>B(N)

Since DN,,(1) < DN (),

DN (§) = inf{DNy, ¢((C1, G2)) : Too (€1, G2)) = &}

In the case of the quotient of DN,, . for IL,, let n be an arbitrary vector in H,, viewed as
a subspace of Hy, and set £ equal to n. Then || — n||m,, is zero, DNy () coincides with

DN,,(n), and as a consequence, DN,, (n,§)
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is DN,,(n). Thus the quotient of DN, . for II,, is DN,,. Thus

Hn,e = ((Hn ® Hop, DNn,ea CeC, Qe)7 (Hna 7"'n)a (HOOa 7Too))
is a modular tunnel from (H,,, DN,,,C,0) to (Hy, DNy, C,0). Consequently,

A*mOd((HOO,DNOOa(C;O)v (HTHDNTH(C’O) < X(Mn,e) = X(((C@(Cv Qeaﬂ'naﬂ'oo)) < €.

For € > ¢, note that (H, ® Hy, DN, ,C @ C,Q.) is also a modular tunnel between
(Hy, DNy, C,0) and (H,, DN,,C,0). If € < ¢, then the penultimate inequality in the
verification of the inner Leibniz inequality is no longer valid. Since (H,, ® Ho, DN, ,C®
C, Q) cannot be a modular tunnel between (Hy,, DNy, C,0) and (H,, DN,,,C,0) for ¢ < e,
the smallest possible extent for a modular tunnel of the same construction as i, is e.
Modular tunnels like p, . can be extended to metrical tunnels between qub(C(X), Hy, Do)

and qub(C(Xy,), Hp, Dy).

Theorem 30. Let X be a piecewise C-fractal curve with parameterization (Rj)jen. If
there exists an approximation sequence B(n) of X compatible with this parameterization,
then

AF™ (qub(C(X), Hyp, Do), qub(C(X,,), Hp, Dy) ) = 0.

n—a0

Proof. As in the calculation of the dual propinquity between two quantum com-

pact metric spaces and the dual modular propinquity between two metrized quantum vector
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bundles, bounds on the metrical propinquity between two metrical quantum vector bun-
dles can be obtained via the construction of metrical tunnels between these two spaces.
To build metrical tunnels between qub(C(X), Hy, Do) and qub(C(X,,), Hy, Dy,), choose an
€ > 0. Since X is a piecewise C'-fractal curve, there exists N1 € N such that if n > Ny, then
Hausg, (Xy, Vi) < §. The existence of an approximation sequence B(n) for X guarantees
there exists Ny € N such that if n = No, then Hausy, (X,V,) < €. Since (Hep, {:, )r,,,C,0)
is the underlying metrized quantum vector bundle for qub(C(X), Hy, Do) and (Hy, (-, ) H,,,
C, 0) is that for qub(C(X), Hy, Dy ), metrical tunnels will be built using modular tunnels of
the form g, . The previous lemma demonstrates there exists N3 € N such that if n > N3,
then X (fin,e) < § < €. Fix some choice of n > N := N1 + N2 + N3. The pairing (tn.e; Tn,e/4)
will be shown to be a metrical tunnel between qub(C(X), Hy, Do) and qub(C(Xy,), Hy, Dy).

To check the modular Leibniz inequality, recall that the Lip-norm properties of

Ly, ¢/4 are specified on a dense subspace of sa(Ay). Let (f,9) € C(X,,R) ® C(X,R). Set

arbitrary choices of 5 € dom(DN,,) and ¢ € dom(DN,,). Then
DN ((£,9)01,) = DNoe(f1,96) = max { DN (1), DNos (96), - € — frl, |
< max {(IIflle(x,) + Lo, (F)DNa(n),
(llgllex) + Lpy, (9)) DN (§),
Yot — fula, }
< max { (10,94, + Lncja(. ) DNac(n,€),

1
g\lgﬁ—fnl\mo}-
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Since H,, can be viewed as a subspace of Hy, 7o (g)n is well-defined. Let g|x, denote the

restriction of g to X,,. In particular,

7o (9)n = g1 = glx,n = mn(glx, )0

Consequently,

1 1
“l19€ = fnllir, < = (119€ = gnll.. +llgn = fll..)

1 1
< llgllowo (1€ = mlee. ) + Il gbe.n— fn s,
1
< 1(f, 94, DNue(n: €) + =l glx, = Fllec |l

1
< |[(f, 9)l|4, DNy e(n, &) + gll 9lx, — [ llex,) PDNne(n,€).

To show that %||g\Xn — flle(x,) is bounded by Ly, ./4(f, g), let x be some point in X,,. Then

n = N implies there exists v € V,, such that d,,(z,v) < 7 and doo(z,v) < 7- Together with

the definition of L, .4, these inequalities yield

glx, (2) = 1 (@)] < |glx, (@) = 91x, )] + | glx, (0) = £(0)| + [ F@0) = 1 (@)
< dn(0, ) La, (91x,) + 19l = Fln o, + dn(0:2)La, (F)

< dn(v,7)La, (9) + 1gln — fln HC(Xn) + dn(v,z)Lp, (f)

€
4
€
4

€ €
< —Lp,(g) + ZLn,e/Zl(fa g) + ZLDn(f)

€ €
Ln,e/4(f7 g) + ZLn,e/ll(f? g) + ZLn,e/4(f7 g)
< 6Ln,e/4(fv g)

The Lip-norm belonging to 7 and the D-norm component coming from p therefore together

obey the modular Leibniz inequality.
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A metrical tunnel also includes left module morphisms. Because the representation
of A, is as left multiplication operators on H, ® Hy, (0,,11,,) and (0o, 1) are left module
morphisms. More precisely, 7, and my are unital *-morphisms and II,, and I, are linear

maps such that for every (f,g) in A, and every (n,€) in H,, ® Hy,

O ((£,9)(§5m) = Moo ((f1,98) = f1 = 0 (f, 9) U (€, 7).

Thus (H,,® Hy,, when viewed as a left A,-module, encodes the left-C(X,,) module structure
of Hy and the left-C'(X) module structure of Hy,. Furthermore, (i e, T c/4) is a metrical
tunnel between qub(C(X), Hy, Dy) and qub(C(Xy,), Hy, Dy). Recall from the calculation
of the dual propinquity between (C(X), Lp, ) and (C(Xy), Lp,) that x(7, /1) < 3¢, Con-

sequently,

AFmet (qvb(C<X)7 Hy, DOO); qvb(C(Xn)y H,, Dn)) < X(Mn,m Tn,e/4) = maX{X(Nn,e)y X(Tn,e/4)}

<)
< max{e, — ¢ = €.
4

4.4 Metric Approximation of Lapidus-Sarhad Spectral Triples

For a metric spectral triple like the Lapidus-Sarhad spectral triple on a piecewise
C'-fractal curve, the action of the Dirac operator on the Hilbert space can be captured by
approximations in the spectral propinquity. These approximating spectral triples will be
metric spectral triples defined on finite sub-graphs of the piecewise C'-fractal curve. This

sequence of finite sub-graphs also converges to the piecewise C'-fractal curve in the Haus-
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dorff distance. The corresponding Lapidus-Sarhad spectral triples will be shown to also
converge in the spectral propinquity to the Lapidus-Sarhad spectral triple on the piece-
wise C'l-fractal curve when that sequence of finite graphs exhibits the geometric properties

encoded in the definition of an approximation sequence for that fractal curve.

Theorem 31. Let X be a piecewise C'-fractal curve with parameterization (Rj)jen. If
there exists an approximation sequence B(n) of X compatible with this parameterization,
then

ASPee ((C(X), Hop, Dos), (C(Xn), Hp, D)) = 0.

n—00

Proof. Bounds on the spectral propinquity between two metric spectral triples
can be obtained via the construction of e-covariant metrical tunnels. To build an e-
covariant metrical tunnel between (C(X), Hy, Do, and (C(X,,), Hn, Dy,), choose an € > 0.
As shown in the calcuation of the metrical propinquity between qub(C(X), Hy, D) and
qub(C(Xy), Hp, Dy,), there exists N € N such that if n > N, then x(pn,e, Tne/a) < €. An e
covariant metrical tunnel between (C(X), Hy, Dy ) and (C(Xy,), Hy, Dy,) can be built from
a metrical tunnel between qub(C(X), Hyx, Dy and qub(C(Xy,), Hy, Dy,) if there exists an
€ —iso — iso from R to R. Consider (idg,idr) as a candidate for such a map. For every
nyze L],

|lids () + idg(y) = 2 = (0 + ) — idr(2)] | <

Moreover, idg(0) = idg(0) = 0. Thus (fin.e, Ty e/4, idR, idr) is an e-covariant metrical tunnel
between (C(X), Hy, D) and (C(Xy,), Hyp, Dy,). Moreover, (jiy e, idg, idr) is an e-covariant

tunnel. For every n € Nu o and each t € R, let

Un(t) = exp(itDy,).
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Then the e-covariant modular reach of (pun e, idg, idr) is given by

Pm((pne, idg, idr)) =  max sup inf sup
{j,k‘}G{n,DO} wEH]',DNj(w)él wleraDNk(wl)<1 |t|$l

sup Um0 (w, W), — Ue()€ i (w, ) pr, |-
(777£)EHTL®HOO’ DNn,e(n,£)<1

To bound pr, ((fin,e, idr, idr)), recall that H,, can be viewed as a subspace of Hy. Then for
every n € Hy, Dy,n = Dyn. In particular, U, (t)n = Uy (t)n. Furthermore, DN, (w) < 1

implies DNy (w) < 1. Thus for every (n,€) € H, @ Hy, with DN, ((n,€) < 1,

Un(E)1, a0, )11, = U ()6, Moo (0,011 |

= [, (w0, )11, = Ve ()6, oo (0, 0D,

= KUaOm )i, = Vo0 )it |

= [t = U

<11 Un(t)n = Usc ()€ 12, 1,

<11 Un(thy = U (0)¢ |,

<11 Un(n = Use (O |1, + 1 Voot = Ueo ()€ .,

<1 Uss(®) = Uss® 11, + 1| Uo(O) = Vo (0 11t < O+ Il 0 = € 1,

< GDNn,e(nvg) < €,

where the first inequality follows from the Cauchy Schwartz Inequality and the second

inequality from the choice of the graph norm of the Dirac operator as the D-norm. Conse-
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quently,

Q( (,un,ev Tn,e/4s idR, 'LdR) ) = Inax {X(Tn,e/4)a X(,U'n,e)a Pm((ﬂa idR, ZdIR)) }

= {X(Tn,e/4,/An,e),,Om((Mn,e,idR,idR)) } < max{e,e} =e.

Hence

AspeC( (C(X)7 H007 DOO)’ (C(Xn)v Hm Dn) ) <6

as desired. W

Recall that the Dirac operator defines the geometry of a Riemannian manifold.
Since the spectral propinquity between two metric spectral triples with unitarily equivalent
Dirac operators is trivial, this metric gives a notion of closeness for the actions of these
operators on their respective Hilbert spaces. Therefore, if two metric spectral triples on a
fractal curve are “close” for the spectral propinquity, then the two geometries determined

on the fractal curve by these two metric spectral triples can also be viewed as “close.”
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Chapter 5

Conclusions

As the context for the construction of spectral triples, Lapidus and Sarhad’s piece-
wise C''-fractal curve framework is a crucial step towards the development of differential
structures on fractals beyond the prototypical settings of the Sierpinski gasket and the
harmonic gasket. As detailed in [41] and in this thesis, the application of the spectral
propinquity to the metric approximation of Lapidus-Sarhad spectral triples is an important
test case for demonstrating the possibility of combining elements from both noncommuta-
tive metric geometry and noncommutative Riemanninan geometry to the study of fractals.
With a metric on spectral triples in hand, a natural direction for future work would be
identification and study of a class of almost piecewise C'-fractal curves for which the same
construction yields a spectral triple. Although the stretched Sierpinski gasket is not a piece-
wise C'!-fractal curve, Andrea Arauza Rivera demonstrated in [38] that the Lapidus-Sarhad
construction gives a spectral triple that recovers the geodesic distance. In [39], Patricia

Alonso Ruiz and Uta Freiburg show that the stretched Sierpinski gasket converges to the
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Sierpinski gasket for the Hausdorff distance when its defining parameter goes to zero. Com-
parison via the spectral propinquity of Lapidus-Sarhad spectral triples on both SG and
SG,, for various value of « could yield insights about how to extend this spectral triple
construction or build other spectral triples on other types of fractals. Such work could
also inform the definition and study of generalized notions of manifolds that include fractal
spaces.

Perceiving fractals through the lens of noncommutative geometry can lead to new
expressions of the geometry of a fractal. Because of Gelfand duality, any homeomorphism
invariant of the compact Hausdorff X can be reframed as an algebraic invariant of the C*-
algebra C'(X). For example, X is a totally disconnected compact metric space if and only
if C(X) is a unital commutative approximately finite dimensional algebra. Furthermore,
C*-algebras within the framework of this duality remain to be identified for other fractals
like the Sierpinski gasket. Such an investigation could therefore begin to form the basis for
a classification program of C*-algebras on fractal spaces. Another avenue for exploration
would be to study fractals through C*-algebras that arise in dynamical settings. Since
symbolic dynamics is an important tool for studying fractal sets, C*-symbolic dynamical
systems could be useful in the definition and study of noncommutative fractals. Since
some fractals can be viewed as infinite graphs with self-similarity conditions and higher-
rank graphs are a generalization of directed graphs, C*-algebras associated to higher-rank
graphs could be another promising source of noncommutative fractality.

Progress in noncommutative fractal geometry can lead to new insights about frac-

tality. Expanding the formalism of fractal geometry to include the mathematical language
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of quantum theory would also give both mathematicians and physicists the tools to gain
insights about quantum behaviors in solids and any new materials made possible by these
phenomena. The 2016 Nobel Prize in Physics was awarded for work on Hofstadter’s but-
terfly [13], which is a fractal that describes for theoretical condensed matter physicists the
allowed energy levels for electrons confined to a crystalline atomic lattice as a function of
the magnetic field applied to the system. Since many questions in noncommutative geom-
etry are motivated by problems in quantum mechanics, the emergence of fractal patterns
at the quantum level necessitates theoretical advances in both fractal geometry and non-
commutative geometry. Development of a noncommutative fractal geometry is motivated
by the exploration of new ways to describe, understand, and even define fractals. Since
the dual Gromov-Hausdorff propinquity metric and its extensions are defined on various
classes of noncommutative C*-algebras, a closed class of quantum compact metric spaces
or a complete class of metric spectral triples could be equipped with a finite collection of
maps that are contractions for the corresponding propinquity metric. An advancement in
this direction would then allow us to detect and examine examples of fractality that can
only arise in a quantum setting. Given the wealth of natural phenomena where fractality
has been observed, research in noncommutative fractal geometry enhances our ability to

continue to meet new scientific and industrial challenges.
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