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Abstract

Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and
Zombie Vortices

by

Pedram Hassanzadeh

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Philip S. Marcus, Chair

Large coherent vortices are abundant in geophysical and astrophysical flows. They play
significant roles in the Earth’s oceans and atmosphere, the atmosphere of gas giants, such as
Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially
three–dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the
rotation and density stratification of their environments. This work focuses on improving
our understanding of the physics of 3D baroclinic vortices in rotating and continuously
stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified
mathematical models. The first chapter discusses the big picture and summarizes the results
of this work.

In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half–thickness
over horizontal length scale) of steady and slowly–evolving baroclinic vortices in rotating
stratified fluids. We show that the aspect ratio is a function of the Brunt-Väisälä frequencies
within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number
of the vortex. This equation is basically the gradient–wind equation integrated over the
vortex, and is significantly different from the previously proposed scaling laws that find the
aspect ratio to be only a function of the properties of the background flow, and indepen-
dent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in
either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids
or ideal gases, and non–uniform background density gradient. The relation for the aspect
ratio has many consequences for quasi–equilibrium vortices in rotating stratified flows. For
example, cyclones must have interiors more stratified than the background flow (i.e., super–
stratified), and weak anticyclones must have interiors less stratified than the background
(i.e., sub–stratified). In addition, this equation is useful to infer the height and internal
stratification of some astrophysical and geophysical vortices because direct measurements of
their vertical structures are difficult. We verify our relation for the aspect ratio with numer-
ical simulations for a wide variety of families of vortices, including: vortices that are initially
in (dissipationless) equilibrium and then evolve due to an imposed weak viscous dissipation
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or density radiation; anticyclones created by the geostrophic adjustment of a patch of lo-
cally mixed density; cyclones created by fluid suction from a small localized region; vortices
created from the remnants of the violent breakups of columnar vortices; and weakly non-
axisymmetric vortices. The values of the aspect ratios of our numerically–computed vortices
validate our theoretically–derived relationship for aspect ratio, and generally they differ sig-
nificantly from the values obtained from the much–cited conjecture that the aspect ratio of
quasi-geostrophic vortices is equal to the ratio of the Coriolis parameter to the Brunt-Väisälä
frequency of the background flow.

In Chapter 3, we show numerically and experimentally that localized suction in rotating
continuously stratified flows produces three–dimensional baroclinic cyclones. As expected
from Chapter 2, the interiors of these cyclones are super–stratified. Suction, modeled as
a small spherical sink in the simulations, creates an anisotropic flow toward the sink with
directional dependence changing with the ratio of the Coriolis parameter to the Brunt-Väisälä
frequency. Around the sink, this flow generates cyclonic vorticity and deflects isopycnals so
that the interior of the cyclone becomes super-stratified. The super–stratified region is
visualized in the companion experiments that we helped to design and analyze using the
synthetic schlieren technique. Once the suction stops, the cyclones decay due to viscous
dissipation in the simulations and experiments. The numerical results show that the vertical
velocity of viscously decaying cyclones flows away from the cyclone’s midplane, while the
radial velocity flows toward the cyclone’s center. This observation is explained based on the
cyclo–geostrophic balance. This vertical velocity mixes the flow inside and outside of cyclone
and reduces the super–stratification. We speculate that the predominance of anticyclones
in geophysical and astrophysical flows is due to the fact that anticyclones require sub–
stratification, which occurs naturally by mixing, while cyclones require super–stratification.

In Chapter 4, we show that a previously unknown instability creates space–filling lattices
of 3D turbulent baroclinic vortices in linearly–stable, rotating, stratified shear flows. The
instability starts from a newly discovered family of easily–excited critical layers. This new
family, named the baroclinic critical layer, has singular vertical velocities; the traditional
family of (barotropic) critical layer has singular stream–wise velocities and is hard to excite.
In our simulations, the baroclinic critical layers in rotating stably–stratified linear shear are
excited by small–volume, small–amplitude vortices or waves. The excited baroclinic critical
layers then intensify by drawing energy from the background shear and roll–up into large
coherent 3D vortices that excite new critical layers and vortices. The vortices self–similarly
replicate to create lattices of turbulent vortices. These vortices persist for all time and are
called zombie vortices because they can occur in the dead zones of protoplanetary disks. The
self–replication of zombie vortices can de-stabilize the otherwise linearly and finite–amplitude
stable Keplerian shear and lead to the formation of stars and planets.
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Everything should be made as simple as possible, but not simpler
A. Einstein
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Chapter 1

Geophysical and Astrophysical
Vortices

Large coherent vortices are abundant in geophysical and astrophysical flows. These persistent
vortices, which are tens to millions of kilometers in diameter, strongly interact with their
environment. For example, vortices of the Agulhas Current (Figure 1.1) and Mediterranean
eddies, called Meddies, (Figure 1.2) carry warm water into the Atlantic ocean and transport
a huge amount of salinity, nutrients, and chemicals for large distances [Armi et al., 1988,
Klein and Lapeyre, 2009]. Tropical cyclones [Rossby, 1949] and polar vortices [McIntyre,
1995] are examples of vortices in the Earth’s atmosphere; the latter play an important role
in the stratospheric dynamics and have contributed to the ozone depletion [McIntyre, 1989,
Waugh and Polvani, 2010]. Studying the physics of geophysical vortices and their impact
on the oceanic and atmospheric circulations, climate, and the ecosystem is an active area of
research. However, the difficulties of in–situ measurements and well–resolved simulations of
large–scale flows pose a big challenge to these studies [Siegel et al., 2001, Khouider et al.,
2013, Ghil et al., 2008].

Atmospheres of the gas giants are also filled with large long–lived vortices. Examples
are Jupiter’s Great Red Spot [Hooke, 1665] and Oval BA [Go et al., 2006] (Figure 1.3),
Saturn’s polar vortices [Godfrey, 1988, Sánchez-Lavega et al., 2006] and Neptune’s Great
Dark Spot [Smith et al., 1989]. These vortices cause significant mixing and transport of heat
across these planets and their disappearance might lead to a global climate change [Marcus,
2004]. Although some of these vortices, such as the Great Red Spot, have been extensively
studied, many questions about their color and color–change [Wong et al., 2011, Marcus et al.,
2013a], longevity [Ingersoll and Cuong, 1981, Vasavada and Showman, 2005, Sommeria et al.,
1988], vertical and horizontal structures [de Pater et al., 2010, Fletcher et al., 2010, Morales-
Jubeŕıas and Dowling, 2013], and interaction with the zonal flows [Salyk et al., 2006, Shetty
et al., 2007, Marcus, 1988] are still not answered.

Vortices exist even beyond our solar system. It has been speculated [Abramowicz et al.,
1992] that coherent vortices play an important role in the formation of stars [McKee and
Ostriker, 2007] and planets [Lissauer, 1993] in the protoplanetary disks. This is because



Figure 1.1: Vortices at the surface of the Agulhas Current off the African coast. See
http://svs.gsfc.nasa.gov/vis/a000000/a003800/a003827/ for details and a movie of
the Earth’s surface currents (Credit: NASA/Goddard Space Flight Center Scientific Visual-
ization Studio).

vortices can efficiently transport angular momentum and possibly de–stabilize the Keple-
rian shear [Barranco and Marcus, 2005, Lyra and Mac Low, 2012] in the regions that the
magneto–rotational instability cannot operate (i.e., the dead zones) [Balbus and Hawley,
1998]. Furthermore, anticyclonic vortices can accumulate dust in their cores and form plan-
etesimals [Barge and Sommeria, 1995, Bracco et al., 1999, Klahr and Bodenheimer, 2006].
However, the formation and stability of baroclinic vortices in compressible Keplerian shear
are not fully understood [Armitage, 2011, Barranco and Marcus, 2005].

Geophysical and astrophysical vortices, a few listed above, have various length and time
scales and exist in very different environments. However, what is common among them is that
their physics are strongly influenced by the background rotation and density stratification.
Therefore, as an alternative to studying specific geophysical and astrophysical vortices, one
might propose a generic study of vortices in rotating stratified flows to answer some of the
common questions about them:

• Creation: what are the mechanisms creating vortices, and how do the vortices gener-
ated with various mechanisms differ?

• Decay: how do the vortices evolve and decay subjected to dissipating processes such
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Figure 1.2: Anticyclonic Meddies, form 1 km deep in the Atlantic Ocean, visualized using
satellite sea–surface height measurements. Surface signature of anticyclones is elevation in
the sea–surface height, which is shown in red (Credit: University of Delaware).

as eddy viscosity and thermal radiation?

• Longevity: what are the mechanisms that can force and maintain a vortex against
dissipating mechanisms?

• Secondary circulation1: what is the role of the usually weak meridional secondary flow?

• Size: what sets the vertical and horizontal length scales of vortices?

• Asymmetry: how do the dynamics of cyclones and anticyclones differ?

• Stability: what are the linear and finite–amplitude stability properties as a function of
the parameters of the vortex and the background flow?

1The secondary circulation discussed here is different from Ekman pumping, see Section 3.6.
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Figure 1.3: The Great Red Spot (right) and Oval BA (left) are two gigantic anticyclones in
the Southern Hemisphere of Jupiter. The picture is taken by the Hubble Space Telescope
(Credit: NASA).

• Interaction: how do vortices interact with each other (e.g., merge), and with the mean
flow and waves? An important subset of this question is the mixing and stirring the
vortices induce in their surrounding.

This list is far from complete and these are just some of the questions encountered in the
course of this work. As discussed briefly below and in detail in the next chapters, the
answers to some of these questions are intertwined. The purpose of this study is to improve
our understanding of baroclinic vortices in rotating stratified flows using high–resolution
three-dimensional numerical simulations of the non–hydrostatic Boussinesq equations and
simplified mathematical models.

In Chapter 2, which appears in Hassanzadeh et al. [2012], a new equation is derived and
numerically validated that relates the aspect ratio (i.e., ratio of the vertical to horizontal
length scales) of vortices in quasi–equilibrium to their Rossby number and internal stratifica-
tion, and the Coriolis parameter and stratification of the background flow. The new equation
is essentially the gradient–wind equation [Vallis, 2006] integrated over the vortex, and can be
used to infer the vertical structure of vortices from observational data, as well as to develop
simplified models for baroclinic vortices (e.g., to model mixing or for parametrization in the
global circulation models). This equation significantly differs from the previously proposed
scaling laws for the aspect ratio, which are shown to be inconsistent with the gradient–wind
equation and our numerical results. These results give a new insight into the dynamics of
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the baroclinic vortices and in particular the role of the secondary circulation. The simula-
tions show that the interior stratifications of a vortex evolves in time and space because of a
meridional secondary circulation induced by weak dissipating processes. The weak secondary
circulation is also found to affect the time evolution of the velocity field of the vortex and
change the Rossby number.

In ongoing work not presented in this dissertation, numerical results show that the decay
of dissipating vortices, in particular in the presence of zonal shear, can be significantly
slowed down by the secondary circulation because of its capability to efficiently convert
the kinetic energy to potential energy and vice versa (preliminary results are presented
in Marcus and Hassanzadeh [2011] and Hassanzadeh and Marcus [2012]). These results
might explain the unexpected longevity2 of some of the oceanic [Armi et al., 1989] and
planetary vortices [Ingersoll, 1990] with no need of a strong forcing mechanism. Note that
most numerical studies in the past have used hydrostatic or two–dimensional models resulting
in the secondary circulation being either absent or not accurately represented.

Chapter 3, which appears in Hassanzadeh et al. [2013], discusses one of the mechanisms
to produce baroclinic vortices in nature and in laboratory: localized suction. Numerical
simulations and laboratory experiments show that a baroclinic cyclone with an interior more
stratified than the background flow (i.e., super–stratified) is produced as a result of suction.
The fact that the cyclones have super–stratified interiors, as opposed to anticyclones which
have less stratified interiors, can be a major contributor to the cyclone–anticyclone asym-
metry in rotating stratified turbulence. The role of the secondary circulation in mixing the
inside and outside of the cyclone and reducing the super–stratification once the suction stops
is also studied.

Chapter 4, which appears in Marcus et al. [2013b], presents a new family of critical
layers for rotating stably–stratified shear that has singularity in vertical velocities3. High–
resolution three–dimensional simulations show that baroclinic critical layers are easily exited
by a single small–volume vortex, form stripes of strong vertical vorticity, and subsequently
roll up and produce new vortices, which in turn excite new layers. The vortices self–replicate
and populate the entire computational domain. This instability is expected to be ubiquitous
in the dead zones of the protoplanetary disks. Such purely hydrodynamic instability in
the dead zones has been long searched for in simulations and experiments without success
[Balbus and Hawley, 1998, Ji et al., 2006, Paoletti et al., 2012]. We believe that the baroclinic
critical layers and their instability have not been observed previously because of one or more
of the following in the past studies: focusing on constant–density fluids in most experiments
and some simulations; small apparatuses and parameter–regime in some experiments; lack
of resolution, using hydrostatic models, unphysical initial conditions, and performing two–
dimensional simulations in many of the computational studies.

2For example, the Great Red Spot has survived for over 300 years despite having a radiative time scale
of ≈ 10 years [Marcus, 1993].

3See Boulanger et al. [2007] for an analytical and experimental analysis of a similar but not quite the
same family of critical layers.
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Apart from improving our answers to some of the questions asked before (e.g., aspect ratio
and vertical structure, creation, secondary circulation, etc.), this work demonstrates that
important aspects of the physics of geophysical and astrophysical flows may be missed in two–
dimensional or hydrostatic simulations, or in studies that ignore the vertical stratification;
hence “everything should be made as simple as possible, but not simpler”.
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Chapter 2

Universal Aspect Ratio of Baroclinic
Vortices

2.1 Introduction

Compact three–dimensional baroclinic vortices are abundant in geo- and astrophysical flows.
Examples in planetary atmospheres include the rows of cyclones and anticyclones near Sat-
urn’s Ribbon [Sayanagi et al., 2010] and near 41◦S on Jupiter [Humphreys and Marcus, 2007],
and Jupiter’s anticyclonic Great Red Spot [Marcus, 1993]. In the Atlantic ocean, meddies
persist for years [Armi et al., 1988, McWilliams, 1985], and numerical simulations of the
disks around protostars produce compact anticyclones [Barranco and Marcus, 2005]. The
physics that create, control, and decay these vortices are highly diverse, and the aspect ra-
tios α ≡ H/L of these vortices range from flat “pancakes” to nearly round (where H is the
vertical half-height and L is the horizontal length scale of the vortex). However, we shall
show that the aspect ratios of the vortices all obey a universal relationship.

Our relation for α differs from previously published ones, including the often-used α =

f/N̄ , where f is the Coriolis parameter, N ≡
√

−g
ρ
∂ρ
∂z

is the Brunt-Väisälä frequency, g is

the acceleration of gravity, z is the vertical coordinate, ρ is the density for Boussinesq flows
and potential density for compressible flows; and a bar over a quantity indicates that it is
the value of the unperturbed (i.e., with no vortices) background flow. We shall show that
α = f/N̄ is not only incorrect by factors of 10 or more in some cases, but also that it is
misleading; it suggests that α depends only on the background flow and not on the properties
of the vortex, so that all vortices embedded in the same flow (e.g., in the Atlantic or in the
Jovian atmosphere) have the same α. We shall show that this is not true. Knowledge of the

With minor modifications, Chapter 1 is reprinted with permission from:
P. Hassanzadeh, P. S. Marcus, and P. Le Gal, The Universal Aspect Ratio of Vortices in Rotating Stratified
Flows: Theory and Simulation, Journal of Fluid Mechanics, (706), 2012.



correct relation for α is important. For example, there has been debate over whether the
color change, from white to red, of Jupiter’s anticyclone Oval BA, was due to a change in
its H [de Pater et al., 2010]. Measurements of the half-heights H of planetary vortices are
difficult, but H could be accurately inferred if the correct relation for α were known. We
validate our relation for α with 3D numerical simulations of the Boussinesq equations. A
companion paper by [Aubert et al., 2012] validates it with laboratory experiments and with
observations of Atlantic ocean meddies and Jovian vortices.

2.2 Aspect Ratio: Derivation

We assume that the rotation axis and gravity are parallel and anti-parallel to the vertical
z axis, respectively. We also assume that the vortices are in approximate cyclo-geostrophic
balance horizontally and hydrostatic balance vertically (referred to hereafter as CG-H bal-
ance). Necessary approximations for CG-H balance are that the vertical vz and radial vr
velocities are negligible compared to the azimuthal one vθ (where the origin of the cylindrical
coordinate system is at the vortex center), that dissipation is negligible, and that the flow
is approximately steady in time. With these approximations, the radial r and azimuthal θ
components of Euler’s equation in a rotating frame are

∂p

∂r
= ρvθ

(
f +

vθ
r

)
(2.1)

∂p

∂z
= −ρg, (2.2)

where p is the pressure. We have assumed that the vortex is axisymmetric, but we show
later numerically in Section 2.7 that this approximation can be relaxed. Following the
convention, we ignored the centrifugal term ρf 2r/4 r̂ in equation (2.1) by assuming that the
centrifugal buoyancy is much smaller than the gravitational buoyancy, i.e. that the rotational
Froude number f 2d/(4g) � 1, where d is the characteristic distance of the vortex from the
rotation axis [see e.g. Barcilon and Pedlosky, 1967]. The θ-component of Euler’s equation,
continuity equation, and the equation governing the dissipationless transport of (potential)
density are all satisfied by a steady, axisymmetric flow with vr = vz = 0. As a consequence,
equations (2.1) and (2.2) are the only equations that need to be satisfied for both Boussinesq
and compressible flows. Thus, our relation for α will also be valid for both of these flows.
Far from the vortex, where v = 0, p = p̄, and ρ = ρ̄, (2.1) and (2.2) reduce to

∂p̄

∂r
= 0 (2.3)

∂p̄

∂z
= −ρ̄g (2.4)

8



showing that p̄ and ρ̄ are only functions of z. Subtracting equations (2.3) and (2.4) from
(2.1) and (2.2):

∂p̃

∂r
= ρvθ

(
f +

vθ
r

)
(2.5)

∂p̃

∂z
= −ρ̃g (2.6)

where p̃ ≡ p − p̄ and ρ̃ ≡ ρ − ρ̄ are respectively the pressure and density anomalies. The
center of a vortex (r = z = 0) is defined as the location on the z-axis where p̃ has its
extremum, so equation (2.6) shows that at the vortex center (denoted by a c subscript)
ρ̃c = 0 or ρc = ρ̄(0) ≡ ρo. At the vortex boundary and outside the vortex, where vθ and ρ̃
are negligible, equations (2.5) and (2.6) show that p̃ � 0.

We define the pressure anomaly’s characteristic horizontal length scale (i.e. radius) as

L ≡
√∣∣∣∣ 4p̃c

(∇2
⊥p̃)c

∣∣∣∣, (2.7)

where the subscript ⊥ means horizontal component. Integrating (2.5) from the vortex center
to its side boundary at (r, z) = (L, 0) approximately yields

− p̃c
L

= ρoVθ

(
f +

Vθ
Rv

)
(2.8)

where in the course of integration, ρ has been replaced with ρo, which is exact for Boussinesq
flows, and an approximation for fully compressible flows. Here Vθ is the characteristic peak
azimuthal velocity, and Rv is the approximate radius where the velocity has that peak. The
analytical and numerically simulated vortices discussed below, meddies, and the laboratory
vortices examined by [Aubert et al., 2012] all have Rv ≈ L, but hollow vortices with quiescent
interiors have Rv �= L. For example, the Great Red Spot has Rv � 3L [Shetty and Marcus,
2010]. Similarly, integrating (2.6) from the vortex center to its top boundary at (r, z) = (0, H)
approximately gives

p̃c
H

= gρ̃(r = 0, z = H), (2.9)

where H is the pressure anomaly’s characteristic vertical length scale (i.e. half-height),

H ≡
√∣∣∣∣ 2p̃c

(∂2p̃/∂z2)c

∣∣∣∣. (2.10)

Equations (2.8) and (2.9) can be combined to eliminate p̃c:

ρoVθ(f + Vθ/Rv)

H
= −gρ̃(r = 0, z = H)

L
. (2.11)
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Notice that this equation is basically the thermal wind equation, with the cyclostrophic term
included (i.e. the gradient-wind equation [Vallis, 2006]), integrated over the vortex. Using
the first term of a Taylor series, we approximate ρ̃(r = 0, z = H) on the right-hand side of
(2.11) with

ρ̃(r = 0, z = H) = ρ̃c +H(∂ρ̃/∂z)c

= H [(∂ρ/∂z)c − (∂ρ̄/∂z)c]

= ρoH(N̄2 −N2
c )/g (2.12)

where ρ̃ ≡ ρ − ρ̄ and ρ̃c = 0 have been used. Note that in general, N̄(z) is a function of
z; however, the only way in which N̄(z) is used in this derivation (or anywhere else in this
paper) is at z = 0 for evaluating (∂ρ̄/∂z)c. Therefore, rather than using the cumbersome
notation N̄c, we simply use N̄ .

Using (2.12) in equation (2.11) gives our relation for α:

α2 ≡
(
H

L

)2

=
Ro [1 + (L/Rv)Ro]

N2
c − N̄2

f 2 (2.13)

where the Rossby number defined as Ro ≡ Vθ/(fL) can be well approximated as

Ro = ωc/(2f), (2.14)

ωc being the vertical component of vorticity at the vortex center. Defining the Burger number
as

Bu ≡
(
N̄H

fL

)2

, (2.15)

equation (2.13) may be as well rewritten as[(
Nc

N̄

)2

− 1

]
Bu = Ro

[
1 +

L

Rv
Ro

]
(2.16)

Equation (2.13) shows that α depends on two properties of the vortex: Ro and the
difference between the Brunt-Väisälä frequencies inside the vortex (i.e. N2

c ) and outside
the vortex (i.e. N̄2). Note that to derive relation (2.13), no assumption has been made
on the compressibility of the flow, Rossby number smallness, dependence of N̄ on z, or the
magnitude of Nc/N̄ . Therefore, equation (2.13) is applicable to Boussinesq, anelastic [Vallis,
2006], and fully compressible flows, cyclones (i.e., Ro > 0) and anticyclones (i.e., Ro < 0),
and geostrophic and cyclostrophic flows. In the cyclostrophic limit (i.e., |Ro| 	 1) with
Nc = 0 and Rv = L,

Ro (1 +Ro) → Ro2, (2.17)
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hence equation (2.13) becomes Vθ = HN̄ , agreeing with the findings of [Billant and Chomaz,
2001] and others. Equation (2.13) is easily modified for use with discrete layers of fluid rather
than a continuous stratification, and in that case agrees with the work of [Nof, 1981] and
[Carton, 2001].

Equation (2.13) has several consequences for equilibrium vortices. For example, because
the right-hand side of (2.13) must be positive, cyclones must have N2

c ≥ N̄2. Another
consequence is that anticyclones with −Ro < Rv/L, must have N2

c ≤ N̄2, and anticyclones
with −Ro > Rv/L, have N

2
c ≥ N̄2. In addition, equation (2.13) is useful for astrophysical

and geophysical observations of vortices in which some of the vortex properties are difficult
to measure. For example, Nc is difficult to measure in some ocean vortices [Aubert et al.,
2012], and H is difficult to determine in some satellite observations of atmospheric vortices
[de Pater et al., 2010], but their values can be inferred from equation (2.13).

Note that Nc is a measure of the mixing within the vortex; if the density is not mixed
with respect to the background flow, then Nc → N̄ (and the vortex is a tall, barotropic
Taylor column); if the density is well-mixed within the vortex so the (potential) density is
uniform inside the vortex, then Nc → 0 (as in the experiments of [Aubert et al., 2012]); if
N2

c > N̄2 (as required by cyclones), then the vortex is more stratified than the background
flow.

2.3 Previously Proposed Scaling Laws

Other relations for α that differ from our equation (2.13) have been published previously,
and the most frequently cited one is

α ≡ H

L
=

f

N̄
. (2.18)

This relationship is inferred from Charney’s equation for the quasi-geostrophic (QG) poten-
tial vorticity [equation (8) in Charney, 1971] that was derived for flows with |Ro| � 1 and
Nc/N̄ � 1. Separately re-scaling the vertical and horizontal coordinates of the potential
vorticity equation, and then assuming that the vortices are isotropic in the re-scaled (but
not physical) coordinates, one obtains the alternative scaling α = f/N̄ . Numerical simula-
tions of the QG equation for some initial conditions have produced turbulent vortices with
H/L ≈ f/N̄ [c.f., McWilliams et al., 1999, Dritschel et al., 1999, Reinaud et al., 2003], even
though significant anisotropy in the re-scaled coordinates was observed in similar simulations
[McWilliams et al., 1994]. The constraints under which the QG equation is derived are very
restrictive; for example, none of meddies or laboratory vortices studied by [Aubert et al.,
2012] meet these requirements because Nc/N̄ is far from unity. Therefore, it is not surpris-
ing that none of these vortices, including the laboratory vortices, agree with α ≈ f/N̄ , but
instead have α in accord with relation (2.13) [Aubert et al., 2012].

The constraints under which our equation (2.13) for α is derived are far less restrictive
than those used in deriving Charney’s QG equation (and we never need to assume isotropy).
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In particular, one of several constraints needed for deriving Charney’s QG equation is the
scaling required for the potential temperature (his equation (3)), which written in terms of
the potential density is

ρ̃

ρ̄
= −f

g

∂ψ

∂z
, (2.19)

where ψ is the stream function of horizontal velocity. This constraint alone (which is ef-
fectively the thermal wind equation) implies our relationship (2.13) for α. To see this, in
equation (2.19) replace

ψ with VθL, (2.20)

∂

∂z
with

1

H
, (2.21)

Vθ with RofL, (2.22)

ρ̃

ρ̄
with

H

ρ̄

[(
∂ρ

∂z

)
c

− ∂ρ̄

∂z

]
=
H

g

(
N̄2 −N2

c

)
. (2.23)

With these replacements, equation (2.19) immediately gives(
H

L

)2

= Ro
f 2

N2
c − N̄2

, (2.24)

which is the small Ro limit of equation (2.13).
Gill [1981] also proposed a relationship for α that differs from ours. He based his relation

for α on a model 2D zonal flow (that is, not an axisymmetric vortex, but rather a 2D vortex)
and found that α was proportional to

Ro f/N̄.

To determine α, Gill derived separate solutions for the flow inside and outside his 2D model
vortex, which he assumed was dissipationless and in geostrophic and hydrostatic balance.
Despite the fact that Gill’s published relation for α, obtained from the outside solution,
differs from ours, we can show that his solution for the flow inside his 2D vortex satisfies our
scaling relation for α: Gill’s solution for the zonal velocity (which is in the y direction) is

v = −(f/a)x (2.25)

(his equation (5.14) in dimensional form). His density anomaly is

ρ̃ = ρo (N̄
2/g) z (2.26)

(i.e. within the 2D vortex, ρ = ρo). The equation for v gives ωz = −(f/a), and therefore

Ro ≡ ωc

2f
= − 1

2a
(2.27)
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Substituting v and ρ̃ into the equations for geostrophic and hydrostatic balance, gives

∂p̃

∂x
= −ρo f

2

a
x (2.28)

and

∂p̃

∂z
= −ρo N̄2 z (2.29)

respectively. Using the definitions of H and L from Section 2.2 along with Ro = −1/(2a),
we obtain

α2 = −Ro f
2

N̄2
, (2.30)

which is our relation (2.13) in the limit of small Ro, L = Rv, and Nc = 0 (which are the
constraints under which Gill’s solution is obtained). Gill’s scaling for α is derived from the
flow outside the vortex, which he derived by requiring that both the tangential velocity and
density are continuous at the interface between the inside and outside solutions. In general,
this over–constrains the dissipationless flow (which only requires pressure and normal veloc-
ity to be continuous – see for example the vortex solution in Aubert et al. [2012] in which the
pressure and normal component of the velocity are continuous at the interface, but not the
density or tangential velocity.) The extra constraints force the solution outside Gill’s vortex
to have additional (unphysical) length scales, resulting in Gill’s relation for α differing from
ours. Aubert et al. [2012] show that Gill’s relationship for α does not fit their laboratory
experiments, meddies, or Jovian vortices. We examine the accuracy of both Charney’s and
Gill’s relationships in Section 2.7.

2.4 Gaussian Solution to the Dissipationless

Boussinesq Equations

It is possible to find closed–form solutions to the steady, axisymmetric, dissipationless Boussi-
nesq equations (e.g. [Aubert et al., 2012]). One solution that we shall use to generate initial
conditions for our initial–value codes is the Gaussian vortex with

p̃ = p̃c exp[−(z/H)2 − (r/L)2] (2.31)

vr = 0 (2.32)

vz = 0 (2.33)

where p̃c, H , and L are arbitrary constants. Then, ρ̃ is found from ∂p̃/∂z using equation (2.6),
and vθ is found from ∂p̃/∂r using equation (2.5) with ρ replaced by ρo. This Gaussian vortex
exactly obeys our relationship (2.13) for α when the Rossby number is defined as before as
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Ro ≡ ωc/(2f), when Rv is set equal to L, and when the vertical and horizontal scales are
defined as in Section 2.2. Note that N(r, z) within the vortex is not uniform, that

N2
c = N̄2 − 2p̃c/(ρoH

2), (2.34)

and that the vortex is shielded. By shielded, we mean that there is a ring of cyclonic (an-
ticyclonic) vorticity around the anticyclonic (cyclonic) core in each horizontal plane, and
therefore at each z, circulation due to the vertical component of the vorticity is zero (i.e.
the vortices are isolated). The Gaussian vortex could be a cyclone or an anticyclone de-
pending on the choice of constants. This vortex is well-studied and has been widely used
to model isolated vortices, especially in the oceans [e.g. Gent and McWilliams, 1986, Morel
and McWilliams, 1997, Stuart et al., 2011].

Another model that is used frequently in studies of barotropic and baroclinic vortices
is an axisymmetric vortex with a Gaussian vertical vorticity distribution [van Heijst and
Clercx, 2009, eqs. 18]. The velocity field of this vortex is

vθ(r, z) = f Ro
R2

r
{1− exp[−(r/R)2]} exp[−(z/H)2] (2.35)

vr = 0 (2.36)

vz = 0 (2.37)

This vortex is unshielded and non–isolated. The pressure and density anomalies (p̃ and ρ̃)
can be readily calculated from (2.5) and (2.6) in the geostrophic regime (i.e. v2θ neglected).
The length scales of the pressure anomaly (i.e. L and H), Ro, Nc/N̄ , and f/N̄ are then
found to satisfy the small Ro limit of (2.13) (i.e., equation (2.24))2. The velocity field of a
non–isolated vortex decays slowly with r; as a result, simulations with horizontally periodic
boundaries, such as the ones in section 2.5, have been found problematic for non–isolated
vortices in the presence of stratification, where inertio–gravity waves propagate and reflect
back from the boundaries. Therefore, non–shielded vortices are not studied numerically in
Case A of section 2.5.

2.5 Numerical Simulation of the Boussinesq

Equations

To use 3D numerical simulations to verify our relation (2.13) for α in a Boussinesq flow
with constant N̄ and f , we solve the equations of motion in a rotating-frame in Cartesian

2Note that L �= R.
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coordinates [Vallis, 2006]:

∇·v = 0 (2.38)

Dv

Dt
= −∇p

ρo
+ v × f ẑ− ρ̃

ρo
gẑ+ ν∇2v (2.39)

Dρ̃

Dt
= ρo

N̄2

g
w − ρ̃

τrad
, (2.40)

where D/Dt = ∂/∂t + v · ∇, and v = (u, v, w) (Notice that throughout this paper, we use
vz and w for the vertical component of velocity in the cylindrical and Cartesian coordinates,
respectively.) We include kinematic viscosity ν in equation (2.39), but neglect the diffusion of
density because diffusion is slow (e.g., for salt-water the Schmidt number is ∼ 700). Instead,
inspired by astrophysical vortices (e.g., Jovian vortices or vortices of protoplanetary disks)
for which thermal radiation is the main dissipating mechanism, we have added the damping
term −ρ̃/τrad to the density equation in (2.40) to model radiative dissipation, where τrad is
radiative dissipation time scale.

A pseudo–spectral method with 2563 modes is used to solve equations (2.38)–(2.40) in
a triply periodic domain (which was chosen to be 10 to 20 times larger than the vortex
in each direction). Details of the numerical method is the same as [Barranco and Marcus,
2006]. Second–order Adams–Bashforth and Crank–Nicholson methods are used for time
integration. For inviscid or high Reynolds number cases, hyperviscosity, similar to the one
used by [Barranco and Marcus, 2006], is used. Because rotating stratified flows support
inertio–gravity waves which reflect back from the periodic boundaries and interact with the
vortex, if necessary, a small frictional Rayleigh layer (sponge layer) is added at the edges of
the domain to damp wave reflections. The results of our triply periodic code are qualitatively,
and in most cases quantitatively, the same as solutions we obtained with a code with no–
slip vertical boundary conditions. That is because our vortices are far from the vertical
boundaries, and therefore the Ekman circulation is absent.

2.6 Numerical Results for Vortex Aspect Ratios

As shown in table 2.1, we have examined the aspect ratios of vortices in four types of initial-
value numerical experiments. The goal of these simulations is to determine how well the
aspect ratios α of vortices obey our relation (2.13) as they evolve in time.

Case A: Run-Down Experiments

In this case, our initial condition is the velocity and density anomaly of the Gaussian vortex
from Section 2.4 that is an exact equilibrium of the dissipationless Boussinesq equations
with constant f and N̄ . These are “run-down” experiments because they are carried out
either with radiative dissipation (i.e., finite τrad) or viscosity, but not both. Due to the
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Case N̄/Nc H/L τrad Ro Ek(10
−5)

A1 1/0 16/8 ∞ −0.2 25
A2 1/0 16/8 ∞ −0.2 12.5
A3 1/0 16/8 ∞ −0.2 6.25
A4 1/0.5 16/8 ∞ −0.14 25
A5 1/0.5 4/2 ∞ −0.14 25
A6 20/19.99 0.05/0.02 ∞ −0.11 500
A7 1/0 20/12 ∞ −0.12 11.1
A8 1/0 16/8 ∞ −0.2 25
A9 1/0 12/12 ∞ −0.04 11.1
A10 20/19.9 0.03/0.03 ∞ −0.2 222.2
A11 20/19.9 0.03/0.03 ∞ −0.2 11.1
A12 3.53/2.5 0.96/0.96 ∞ −0.5 39.3
A13 3.54/3.45 0.96/0.96 ∞ −0.023 39.3
A14 1.56/1.64 6.55/3.28 ∞ +0.0386 3.91
A15 0.5/0.75 16/8 ∞ +0.0477 4
A16 0.5/0.55 16/8 ∞ +0.0083 4
A17 3.33/3.49 1.44/0.72 ∞ +0.15 4
A18 3.33/3.17 1.44/0.72 ∞ −0.22 4
A19 10/10.5 0.16/0.08 ∞ +0.87 250
A20 3.33/3.49 1.44/0.72 1656 +0.14 0
A21 1/1.0475 16/8 1656 +0.015 0
A22 3.33/3.17 1.44/0.72 1237 −0.22 0
A23 3.33/3.49 1.44/0.72 120 +0.14 0
A24 3.33/3.17 1.44/0.72 120 −0.22 0
B1 1/0 20/12 ∞ −0.12 4
B2 1/0 20/12 ∞ −0.12 4
B3 1/0 20/12 ∞ −0.12 0
C1 1/0.761 6.09/5.67 ∞ +0.33 49.7
C2 1/0.709 5.91/5.67 ∞ +0.35 45.9
D1 2.5/2.5 40/2 ∞ −0.75 25.4
D2 2.5/2.5 40/2 ∞ −0.75 12.7
D3 1.67/1.67 90/4.5 ∞ −0.5 16.9
D4 5/5 10/0.5 ∞ −1 50.7
D5 20/20 0.6/.03 ∞ +0.8 24.4

Table 2.1: Parameters of the background flows and of the vortices at the “initial” time. For
Cases A, B, and D the “initial” time is t = 0, and for Case C the “initial” time is t = toff .
All values are in CGS units. For all cases, f = 5 rad/s, g = 980 m/s2, and ρo = 1 g/cm3.
Ekman number is defined as Ek ≡ ν/(fL2). See text for the difference between Cases B1
and B2. For Case C1, toff = 60 s and Q = −64 cm3/s, and for Case C2, toff = 30 s and
Q = −128 cm3/s.
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weak dissipation, the vortices slowly evolve (decay) and do not remain Gaussian. Also, as
a result of the dissipation (and decay), a weak secondary flow is induced (i.e. non-zero vr
and vz). The secondary flows and their roles are further discussed in Chapter 3, Marcus and
Hassanzadeh [2011], and Hassanzadeh and Marcus [2012].

Case B: Vortices Generated by Geostrophic Adjustment

This case is motivated by vortices produced from the geostrophic adjustment of a locally
mixed patch of density, e.g. generated from diapycnal mixing [see e.g. McWilliams, 1988,
Stuart et al., 2011]. Our flow is initialized with v = 0 and ρ̃ �= 0. For Cases B1 and B3 the
initial ρ̃ is that of the Gaussian vortex discussed in Section 2.4. But here, the initial flow is
far from equilibrium because v ≡ 0. In Case B2, the initial ρ̃ is Gaussian in r, but has a
top-hat function in z (for this case, the initial H is defined as the half-height of the top-hat
function). It is observed in the numerical simulations that geostrophic adjustment quickly
produces shielded vortices.

Case C: Cyclones Produced by Suction

Injection of fluid into a rotating flow generates anticyclones [Aubert et al., 2012], while
suction produces cyclones. We simulate suction by modifying the continuity equation (2.38)
as

∇ · v = Q(x, t) (2.41)

where Q is a specified suction rate function and x = (x, y, z). The flow is initialized with
v = ρ̃ = 0. Suction starts at t = 0 over a spherical region with radius of 6 cm and is turned
off at time toff . A shielded cyclone is produced and strengthened during the suction process.
As mentioned at the end of Section 2.2, for Ro > 0, relation (2.13) requires the flow to
be superstratified (i.e. Nc > N̄). Our numerical simulations show that the initial suction
creates super–stratification. Cases C1 and C2 have different suction rates and toff , but the
same total sucked volume of fluid, and it is observed that the produced cyclones are similar.
The dynamics of cyclones produced by localized suction are explored in details in Chapter 3.

Case D: Vortices Produced from the Breakup of Tall Barotropic

Vortices

The violent breakup of tall barotropic (z-independent) vortices in rotating stratified flows
can produce stable compact vortices [see e.g. Smyth and McWilliams, 1998]. In Case D, our
flows are initialized with an unstable 2D columnar vortex with

vθ = Ro f r exp(−(r/L)2) (2.42)

and ρ̃ = 0 (for this case, the initial H is the vertical height of the computational domain).
Note that the initial columnar vortex is shielded. Noise is added to the initial velocity field
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to hasten instabilities. The vortex breaks up and then the remnants equilibrate to one or
more compact shielded vortices (Figure 2.1). In each case, only the vortex with the largest
|Ro| is analyzed in Section 2.7.

2.7 Aspect Ratio: Numerical Simulations

In all cases, vortices reach quasi-equilibrium and then slowly decay due to viscous or radiative
dissipation except for Case B3 which is dissipationless and evolves only due to geostrophic
adjustment. As a result, Ro decreases, and the mixing of density in the vortex interior
changes (i.e., Nc changes). Therefore, it is not surprising that the aspect ratio α also changes
in time. Quasi-equilibrium is reached in Case A almost immediately. In Case B, vortices
quickly form and come to quasi-equilibrium after geostrophic adjustment. Quasi-equilibrium
is achieved following the geostrophic and hydrostatic adjustments after toff in Case C, and
(much longer) after the initial instabilities in Case D.

For each case, we use the results of the numerical simulations to calculate

Ro(t) ≡ ωc(t)

2f
(2.43)

and

Nc(t) ≡
√
N̄2 − g

ρo

(
∂ρ̃(x, t)

∂z

)
c

(2.44)

We compute L(t) and H(t) from the numerical solutions using their definitions given in
Section 2.2. Calculating L based on ∇2

⊥ rather than just r-derivatives is useful for non-
axisymmetric vortices. For example, due to a small non-axisymmetric perturbation added
to the initial condition of Case A8, the vortex went unstable and produced a tripole [van
Heijst and Kloosterziel, 1989]. Cases C1 and C2 also produced non-axisymmetric vortices.
We define the numerical aspect ratio as

αNUM(t) ≡ H(t)

L(t)
. (2.45)

We define the theoretical aspect ratio αTHR from equation (2.13) using Ro(t) and Nc(t)
extracted from the numerical results and the (constant) values of f and N̄ .

Figure 2.2 shows how well αTHR agrees with αNUM. The inset in Figure 2.2 shows that
the relative difference between the two values, calculated as

|1− (αNUM/αTHR)
2|,

is smaller than 0.07. For each case, the maximum difference occurs at early times or during
instabilities.
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(a) (b)

(c) (d)

Figure 2.1: Isosurfaces of 0.5max(ωz) (blue) and 0.5min(ωz) (red) for Case D1 at (a) t/T = 0,
(b) t/T = 60, (c) t/T = 120, and (d) t/T = 240, where T = 4π/f is the inertial period.
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Figure 2.2: Comparison of αNUM with αTHR (see text for definitions). The circles show the
value of |Ro(1 +Ro)|(αNUM/αTHR)

2 and the straight lines show the value of this expression
if αNUM ≡ αTHR. All 4122 data points (circles) collapse on the straight lines (and densely
cover them), validating our equation (2.13). Data points are recorded one inertial period
(= 4π/f) after the initial time (as defined in table 2.1) in Cases A-C, and 50 inertial periods
after t = 0 in Case D. Note that all of our simulated vortices have L = Rv. The horizontal
axis in the inset is the same as in the main Figure; the inset’s vertical axis is the relative
difference |1 − (αNUM/αTHR)

2| (which is < 0.07). (n.b., the left-most plotted point has
Ro(1 + Ro) � −0.25 due to the mathematical tautology that Ro(1 + Ro) ≥ −0.25 for all
values of Ro.)

Figure 2.3 compares the values of αNUM with αTHR as a function of time for six cases.
The Figure starts at time t = 0, so it includes vortices which are not in CG-H equilibrium to
examine the situations for which relationship (2.13) for α may not be good due to transients.
Cases A1, B1, and A20 in Figure 2.3a exhibit excellent agreement with our theoretical
prediction for α, while Case A8 shows a small deviation starting around t = 80(4π/f). This
deviation is a result of the vortex going unstable at this time (accompanying by relatively
large vr and vz) and forming a tripolar vortex. After the tripole comes to CG-H equilibrium,
its α once again agrees with theory. As the vortices dissipate, and Ro and Nc change, α can
either decrease in time (c.f., Case A1) or increase (c.f., Case A20).

Figure 2.3b shows Cases D1 and D3 from time t = 0. The remnant vortices that formed
from the violent break-up of the columnar vortices are initially far from the CG-H balance.
As a result, the value of αTHR at these early times does not fit well with the values of
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αNUM. However, after the CG-H balance is established in the remnants, our theoretical
relationship (2.13) becomes valid and αTHR agrees well with αNUM.

Figure 2.3a shows that the alternative scaling relation based on Charney’s QG equation,
α = f/N̄ , is not a good fit to our numerical data. Cases A1, A8, and B1 all have f/N̄ = 5
which is obviously far from the measured aspect ratio of these vortices. Case A20 has f/N̄ =
1.5 which again does not agree with αNUM. In fact, in all four cases, the difference between
αNUM(t) and f/N̄ increases with time, while αTHR(t) always remains close to αNUM(t). For
other cases in table 2.1, it has been observed that for vortices which are in CG-H equilibrium,
αNUM/(f/N̄) can be as large as 9.56 and as small as 0.11. The data displayed in Figure 2.3b
were carefully “cherry-picked” from all of our runs because they are unusual in that α → f/N̄
after a long time. The fluid within the remnants strongly mixed with the background fluid,
so at late times Nc → N̄ and Ro significantly decreases and therefore the conditions needed
for the validity of Charney’s QG equation are approached. Whether these results are a fluke
and whether α→ f/N̄ for all vortices that are created in one particular case is not yet clear.
The physics governing these vortices is currently be investigated and will be discussed in a
future paper.

Gill’s relation for α, discussed in Section 2.3, is not a good fit to any of our numerically
computed vortices. For example, the value of αNUM(t)/(Ro(t)f/N̄) is between 2 and 8 for
Case A1; 2 and 9 for Case A8; 80 and 160 for Case A20; and 4 and 7 for Case B1. The much
larger error observed for Case A20 is due to the fact that unlike the other three cases, Nc is
far from 0 in this case, and Gill’s derivation does not incorporate Nc �= 0.

2.8 Conclusion

We have derived a new relationship (2.13) for the aspect ratio α of baroclinic vortices in cyclo–
geostrophic and hydrostatic (CG-H) equilibrium and used numerical initial-value simulations
of the Boussinesq equations to validate this relation for a wide variety of unforced quasi-
steady vortices generated and dissipated with different mechanisms. Our new relationship
shows that α depends on the background flow’s Coriolis parameter f and Brunt-Väisälä
frequency N̄ , as well as properties of the vortex, including Ro and Nc. Thus, it shows
that all vortices embedded in the same background flow do not have the same aspect ratios.
In a companion paper, [Aubert et al., 2012] verify the new relationship with laboratory
experiments and show it to be consistent with observations of Atlantic meddies and Jovian
vortices.

Equation (2.13) for α has several consequences. For example, it shows that for cyclones
(Ro > 0), Nc must be greater than N̄ , that is, the fluid within a cyclone must be super-
stratified with respect to the background stratification. Mixing usually de-stratifies the flow
over a local region, and therefore cannot produce cyclones. This may explain why there are
more anticyclones than cyclones observed in nature. We numerically simulated local suction
to create cyclones, and we found that suction creates a large envelope of super-stratified flow
around the location of the suction and when the suction is stopped, the CG-H adjustment
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(a)

(b)

Figure 2.3: Time evolution of αTHR (continuous curves), and αNUM for Cases (a) A1 ◦, A8
�, B1 �, and A20 �, (b) D1 ◦, and D3 �. Cases A1, A8 and B1 have f/N̄ = 5 and Case
A20 has f/N̄ = 1.5 which differ significantly from α. Case D1 has f/N̄ = 2 and Case D3
has f/N̄ = 3 which agree with α only at the late times.
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makes cyclones. Details of these simulations and results of an ongoing laboratory experiment
will be presented in subsequent publications.

It is widely quoted that vortices obey the quasi-geostrophic scaling law α = f/N̄ (i.e.
Burger number Bu = 1). This is inconsistent with our relationship which written in terms
of Bu is

Bu =
Ro(1 +Ro)

(Nc/N̄)2 − 1
(2.46)

We found that, with the exception of one family of vortices, the quasi-geostrophic scaling
law was not obeyed by the vortices studied here (and by Aubert et al. [2012]), and could be
incorrect by more than a factor of 10. Another relationship proposed by Gill [1981] was also
found to produce very poor predictions of aspect ratio.

We found that α can either increase or decrease as the vortex decays, and our relation-
ship (2.13) shows that the dependence of α on Nc is specially sensitive when Nc is at the
order of N̄ , as it is for meddies and Jovian vortices [Aubert et al., 2012]. Our simulations
showed that Nc was determined by the secondary circulations within a vortex and that those
circulations are controlled by the dissipation. In a future paper we shall report on the details
of how dissipation determines the secondary flows and the temporal evolution of Nc, both
of which are important in planetary atmospheres, oceanic vortices, accretion disk flows, and
planet formation [Barranco and Marcus, 2005].
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Chapter 3

Baroclinic Cyclones Produced by
Localized Suction

3.1 Introduction

Vortices that swirl in the same (opposite) direction as (of) the background rotation are called
cyclones (anticyclones). Both cyclones and anticyclones exist in the oceans [Olson, 1991], but
large long–lived vortices are predominantly anticyclonic [see e.g. McWilliams, 1985, Sangrà
et al., 2009, Perret et al., 2011]. Cyclones and anticyclones also exist in the atmosphere of
Jupiter [Vasavada and Showman, 2005] and Saturn [Sayanagi et al., 2010], but large long–
lived vortices are mostly anticyclonic [Mac Low and Ingersoll, 1986, Cho and Polvani, 1996b].
For example, Jupiter’s Great Red Spot and White Ovals [Marcus, 1993], Red Oval [Go et al.,
2006], and Neptune’s Great Dark Spot [Smith et al., 1989] are all anticyclones.

The cyclone–anticyclone asymmetry is also observed in experimental and numerical stud-
ies and has received considerable attention in recent years. In rotating constant–density
flows, cyclones and anticyclones form 2D Taylor columns and their dynamics differ due to
the ageostrophic effects. Most numerical and laboratory studies found cyclonic predominance
in strongly rotating constant–density flows [see Moisy et al., 2010, and references therein].
On the other hand, the cyclone–anticyclone asymmetry in rotating stratified flows, where
vortices are essentially 3D [Hassanzadeh et al., 2012, Aubert et al., 2012], is still contro-
versial. Most numerical simulations of shallow–water or primitive equations [Polvani et al.,
1994, Cho and Polvani, 1996a, Koszalka et al., 2009] and laboratory experiments [Linden
et al., 1995, Perret et al., 2006] have shown the predominance of coherent anticyclones in

With minor modifications, Chapter 3 appears in:
P. Hassanzadeh, O. Aubert, P. S. Marcus, M. Le Bars, and P. Le Gal, Three–Dimensional Cyclones Produced
by Localized Suction in Rotating Stratified Flows: a Numerical and Experimental Study, to be submitted to
the Journal of Fluid Mechanics, 2013.



rotating stratified flow. (Note that the quasi–geostrophic equations are degenerate with re-
spect to the cyclone–anticyclone asymmetry, see e.g. Pedlosky [1990].) In contrast to these
studies, some laboratory experiments [Praud et al., 2006] and numerical simulations with
boundary dynamics [Hakim et al., 2002, Roullet and Klein, 2010] have reported cyclonic
predominance.

The dominance of anticyclones in most simulations, experiments, and observations can
be due to one or more of the following: (1) the creation mechanisms favor anticyclones
over cyclones [McWilliams, 1985, Perret et al., 2011], (2) anticyclones are more stable than
cyclones [Stegner and Dritschel, 2000, Graves et al., 2006], (3) anticyclones are easier to
observe [Marcus, 2004], (4) anticyclones have greater longevity compared to cyclones, and
(5) cyclones exist in a smaller parameter regime than anticyclones. All of these possibilities,
in particular the last two, need further investigation.

Cyclones have low–pressure centers so that in a horizontal plane, the radially inward
pressure force balances the radially outward Coriolis and centrifugal forces [Kundu and
Cohen, 2010]. To support the low–pressure core in the vertical, a baroclinic cyclone must have
an interior more stratified than the surrounding flow, so that the buoyancy force balances the
pressure force [Hassanzadeh et al., 2012, Aubert et al., 2012, also see Section 3.6]. Conversely,
baroclinic anticyclones in geostrophic balance have high–pressure cores and interiors less
stratified than their environments. Therefore, the dynamics of cyclones and anticyclones in
strongly rotating stratified flows differ not only because of the nonlinear effects, but also
because of their dissimilar internal stratification. The consequences of the latter for the
stability and longevity of the vortices has not been fully explored.

A region that is more stratified than the background flow (e.g., inside a cyclone) is called
super–stratified hereafter. For a process to produce cyclones in near cyclo–geostrophic and
hydrostatic balances, a super–stratified region has to be created. It has been suggested by
Hassanzadeh et al. [2012] and Aubert et al. [2012] that the super–stratification requirement
may be a key factor in the sparsity of cyclones, because mixing, which is ubiquitous in nature
because of turbulence, tends to de–stratify the flow and produces regions of less stratification,
and therefore favor anticyclones [McWilliams, 1985, 1988].

Localized suction (injection) is one of the standard methods used in laboratory exper-
iments for producing barotropic cyclones (anticyclones) in rotating flows with constant–
density [van Heijst and Clercx, 2009]. In rotating stratified flows, local injection of a constant
density fluid has been used to produce 3D baroclinic anticyclones [Griffiths and Linden, 1981,
Hedstrom and Armi, 1988, Bush and Woods, 1999, Aubert et al., 2012]. However, suction
has not been used previously as a method of creating local super–stratification, and with the
exception of Linden et al. [1995] and Cenedese and Linden [1999], has not been used to pro-
duce cyclones in rotating stratified laboratory flows. In analytic and numerical studies using
the linearized Boussinesq [McDonald, 1992], shallow–water [Davey and Killworth, 1989, Aiki
and Yamagata, 2000, 2004], or quasi–geostrophic [Hines, 1997] equations, localized sources
and sinks have been used to model buoyancy–driven circulation in the deep ocean and to
model the generation of oceanic vortices.

In this paper we show that 3D baroclinic cyclones can be produced by localized suction
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in a rotating, continuously stratified flow in both laboratory experiments and numerical
simulations. The purpose of this paper is to obtain a better understanding of how localized
suction produces cyclonic vorticity and super–stratification. Such physical understanding is
key in designing experimental studies of cyclones, of the cyclone–anticyclone asymmetry, and
also in the investigation of natural processes that are modeled as localized sinks. Additionally,
we investigate the dynamics of viscously decaying cyclones and the evolution of their super–
stratified interior and meridional velocities (i.e., secondary circulation). The remainder of
this section discusses why suction and injection are distinct phenomena and not the time–
reverse of each other. In Section 3.2 we present the experimental setup, and in Section 3.3
we rederive the Boussinesq equations to account for localized suction. Section 3.3 also briefly
reviews the numerical method used to solve these equations. Section 3.4 shows how rotation
and stratification affect the symmetries of the flow. Sections 3.5 and 3.6 discuss the details
of the flow field during suction and after the suction stops, respectively. Section 3.7 presents
our conclusion and plans for future work.

Suction versus Injection

We remind the reader that the suction/injection of viscous fluids from an orifice is not
time-reversible, and suction is therefore not the time–reverse of injection. Viscosity plays
an important role in injection, particularly at the tip of the orifice where it forms a vortex
sheet around a jet–like flow. On the other hand, suction has a more global effect: the fluid
moves toward the orifice from all directions, regardless of the orientation of the orifice [also
see Linden et al., 1995]. As a result, a candle can be easily put out by blowing air, but
not (easily) by sucking air. Another manifestation of the suction–injection asymmetry is
the reverse sprinkler, i.e. a lawn sprinkler submerged in a pool of water sucking the water
in. A question raised by Ernest Mach and popularized by Richard Feynman in his memoir
Surely You’re Joking, Mr. Feynman!, a reverse sprinkler in fact does not rotate because
of the absence of jets that produce torque in regular sprinklers to overcome the friction
of the bearings [see Jenkins, 2004, for further discussion and historical accounts]. This
understanding of suction will be exploited in Section 3.3 to derive the governing equations
modified for localized suction.

3.2 Laboratory Experiment

A rotating tank partially filled with linearly stratified salt–water is used in the laboratory
experiments (Figure 3.1). The apparatus is the same one used in Aubert et al. [2012] to
produce anticyclones by local injection. The square tank is 50× 50× 70 cm (all units in this
papers are in cgs). The Oster double–bucket method is used to produce a 30 cm deep layer
of linearly stratified fluid around the midplane with density profile ρ̄(z) = ρo[1 − N̄2(z −
15)/g], where N̄ is the Brunt–Väisälä frequency and is constant in each experiment, g is
the acceleration of gravity, ρo is the density of pure water, and z is the vertical coordinate
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Figure 3.1: Schematic of the experimental setup: the 50 × 50 × 70 cm tank is fixed on a
rotating table and filled with salt–water, linearly stratified in the 30 cm middle layer. A pipe
linked to a pump and a conductivity probe are mounted atop the tank and can translate
vertically along the axis of rotation of the tank using separate motors. A horizontal laser
sheet in the midplane (shown as a dotted line) and a top–view camera allows for recording
and PIV measurements. Not shown are a side–view camera and a random dots pattern (on
the opposite side of the tank facing the camera) for synthetic schlieren visualization.

measured from the middle of the tank. There is a 20 cm layer of pure water above the
stratified layer. The Coriolis parameter f is twice the rotation rate of the tank. As shown in
Figure 3.1, a pumping device is mounted on the top of the tank and is connected to a pipe
that goes down to the middle of the stratified fluid z = 0 along the axis of rotation of the
tank. The pipe has a diameter of 0.25 cm and can be moved vertically by a motor.

The entire stratified fluid is seeded with 30 μm particles. Particle Image Velocimetry
(PIV) is employed to measure the velocity field in the rotating frame in horizontal planes.
A microscale high–frequency conductivity probe [Head, 1983], also controlled by a motor
mounted atop the tank, can be moved vertically in the stratified fluid. The conductivity
probe is placed 0.7 cm off the axis of rotation and 1.5 cm above the midplane z = 0.
Assuming the stratification to be linear between the midplane and the location of the probe
and that the density at the midplane remains ρ̄(0), the density gradient is calculated from
the conductivity measurements. The synthetic schlieren technique [Dalziel et al., 2000] is
used to visualize density gradients in vertical planes. Even though the width of the tank is
large compared to the radii of the produced cyclones and the flow is 3D, the good agreement
between the density gradients measured with the synthetic schlieren technique and with the
probe allows us to use the non–intrusive synthetic schlieren measurements when the probe
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cannot be used because it disturbs the vortex.
Once the stationary tank is filled with the linear stratification, the tank is rotated at a

fixed rate and the fluid is spun up to achieve near solid–body rotation (note that exact solid–
body rotation cannot be achieved in the presence of diffusion, see e.g. von Zeipel [1924] and
Greenspan [1990, pp. 12]). At this time, marked as t = 0, the pipe is moved down vertically
along the center line of the tank to the midplane of the stratified fluid (i.e., z = 0). Fluid
is then sucked out of the tank at a given volumetric rate Qo [cm3/s] for ts seconds. After
suction stops, the pipe is slowly removed from the fluid. Measurements are done both during
and after the suction period.

3.3 Mathematical Formulation and Numerical

Simulation

In this section we present 3D Boussinesq equations modified to account for localized suction
of (continuously) stratified fluids. Although the equations are derived in the context of a
laboratory experiment (i.e., suction is through a vertical pipe and the fluid is salt–water),
the final equations are also suitable for modeling sinks (and sources) in oceans. The pseudo–
spectral method that was used to solve these equations is described at the end of this section.

Let M be the mass of the salt–water in some infinitesimal volume V ; Ms be the mass of
the salt in the same volume; ρ be the local mass density of the salt–water; ρs be the local
mass density of the salt; and ρw be the local mass density of pure water. Then ρ = M/V ;
ρs =Ms/V ; and ρw =Mw/V . Thus,

ρ = (Ms +Mw)/V = ρs + ρw (3.1)

We shall use the approximation that when salt is dissolved into pure water, the volume of
the mixed fluid does not change significantly. Then ρo ≡ ρw is constant in space and time,
but ρ(x, t) and ρs(x, t) are functions of space and time (x = (x, y, z)).

Conservation of the mass of water and salt, ignoring the diffusion of salt, requires

∂ρw
∂t

= −∇ · (ρwv) + Ṡw (3.2)

∂ρs
∂t

= −∇ · (ρsv) + Ṡs (3.3)

where Ṡs(x, t) and Ṡw(x, t) are the rates at which water and salt are being removed from
the tank by the suction through the tip of the pipe, which is modeled here as a small but
finite-sized spherical sink (see below). v(x, t) = (u, v, w) is the 3D velocity field. Because ρw
is constant (= ρo), the first equation simplifies to

∇ · v = Ṡw/ρo (3.4)
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Adding equations (3.2) and (3.3), and using the definition of total density ρ gives

∂ρ

∂t
= −∇ · (ρv) + Ṡ (3.5)

where Ṡ = Ṡw + Ṡs is the total rate at which salt–water is sucked from the tank.
The pipe removes water and salt simultaneously, and we assume that the mass fraction

of the salt that is removed by the pipe is equal to the local mass fraction of salt at the tip
of the pipe. Therefore

Ṡ

ρ
=
Ṡs

ρs
=
Ṡw

ρo
(3.6)

As a result, (3.4) becomes

∇ · v = Ṡ/ρ ≡ q(x, t), (3.7)

where q(x, t) is localized in space (see Section 3.3). Using equation (3.7) in (3.5) gives

∂ρ

∂t
= −(v · ∇)ρ− ρ(Ṡ/ρ) + Ṡ = −(v · ∇)ρ (3.8)

or

Dρ/Dt = 0 (3.9)

where D/Dt ≡ ∂/∂t+v ·∇. Unlike equation (3.7), the density equation (3.9) is not modified
by suction and does not include q.

The balance of momentum in an inertial frame gives

∂(ρv)

∂t
= −∇ · (ρvv)−∇p+ ρqv − ρgẑ+ μ∇2v (3.10)

where p is the pressure, ẑ is the unit vector in the z direction, and μ is the dynamic viscosity.
The third term on the right–hand side of (3.10) accounts for the loss of momentum through
the pipe because we assumed that removing a parcel of fluid by the pipe also removes (from
the domain) the momentum that the parcel carries. Note that because of the global effect of
suction, discussed in Section 3.1, the sink term ρqv does not have any directional preference
imposed by the orientation of the pipe3. Exploiting (3.7) and (3.9), equation (3.10) reduces
to

ρ
Dv

Dt
= −∇p− ρgẑ+ μ∇2v (3.11)

3As a result, equation (3.10) is not appropriate to model injection from an orifice, but it can still be used
to study some of the oceanic phenomena that can be modeled as a localized source. One example is the
formation of Meddies through heavier Mediterranean water sinking in the Atlantic ocean [Zenk and Armi,
1990, Aiki and Yamagata, 2004].
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Like the density equation (3.9), the momentum equation (3.11) is not changed by suction.
Consistent with previous approximations, we shall assume that the amount of the dis-

solved salt is very small (i.e., Ms � Mw). Therefore, ρs � ρo, which allows us to use the
Boussinesq approximation [Kundu and Cohen, 2010]. Therefore, we neglect the departure
of ρ from ρo in the momentum equation (3.11) except when multiplied by g:

ρo
Dv

Dt
= −∇p̃− ρ̃gẑ+ μ∇2v (3.12)

where p̃(x, t) ≡ p(x, t) − p̄(z) and ρ̃(x, t) ≡ ρ(x, t) − ρ̄(z) are respectively the pressure and
density anomaly, and dp̄/dz = −ρ̄g. Writing the density equation (3.9) in terms of ρ̃

Dρ̃

Dt
= ρow

N̄2

g
(3.13)

where N̄ ≡ √−g(dρ̄/dz)/ρo.
In a frame rotating with uniform angular velocity f/2 around the z axis, equations (3.7)

and (3.13) remain the same, and (3.12) is modified by the Coriolis force and becomes

ρo
Dv

Dt
= −∇p̃+ ρov × f ẑ− ρ̃gẑ+ μ∇2v (3.14)

where v is the (relative) velocity in the rotating frame hereafter, but the notation has not
been changed for convenience4. Equations (3.7), (3.13), and (3.14) are consistent with the
equations used by Davey and Killworth [1989] and McDonald [1992].

Taking the curl of equation (3.14) gives an equation for relative vorticity ω ≡ ∇× v:

Dω

Dt
= (ω · ∇)v + f

∂v

∂z
− (ω + f ẑ)q − g

ρo
∇× ρ̃ẑ+ ν∇2ω (3.15)

where f is assumed constant (f–plane approximation) and ν = μ/ρo. Using equation (3.7),
the vertical component of this equation simplifies to

Dωz

Dt
= (ω⊥ · ∇⊥)w − (ωz + f)(∇⊥ · v⊥) + ν∇2ωz (3.16)

where subscript ⊥ means the horizontal component. Note that by definition, cyclones (an-
ticyclones) have fωz > 0 (< 0) in their cores.

4The deflection of the isopycnals of ρ̄ from horizontal planes as a result of rotation is ignored assuming
that the centrifugal buoyancy is much smaller than the gravitational buoyancy, see e.g. Hassanzadeh et al.
[2012].
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Numerical Method

A pseudo–spectral method is used to solve equations (3.7), (3.13), and (3.14) in Cartesian
coordinates in a spatially triply periodic domain of size (2D)3. Details of the numerical
method are the same as Hassanzadeh et al. [2012]. Second–order Adams–Bashforth and
Crank–Nicholson methods are used for time integration. For inviscid or high Reynolds num-
ber cases, hyperviscosity, similar to the one used by Barranco and Marcus [2006], is applied
to remove energy from high wavenumbers. Because rotating stratified flows support inertio–
gravity waves which reflect back from the periodic boundaries, a thin Rayleigh frictional
layer (sponge layer) is added at the edges of the domain to damp wave reflections.

The center of the computational domain is at x = 0. For all cases, the background
density stratification is linear ρ̄(z) = ρo(1 − N̄2z/g) where N̄ is constant. The suction rate
function q(x, t) is defined as

q(x, t) =

⎧⎨
⎩

qo(x) 0 ≤ t/ts ≤ 1
qo(x) exp [−500 (t/ts − 1)] 1 < t/ts ≤ 1.05
0 t/ts > 1.05

(3.17)

where qo(x) is non–zero (negative) and nearly uniform inside a spherical region of radius
R centered at x = 0 and rapidly vanishes outside of the sphere (see Appendix A for more
details). The integral of qo(x) over the spherical region is equal to Qo which is a given
parameter. For all numerical simulations, 2563 Fourier modes are used and R = π/2 cm and
D = 20R, unless otherwise stated. Time steps Δt are chosen so that fΔt = 0.05 or smaller.

3.4 Relative Effect of Rotation versus Stratification

The time evolutions of super–stratification and cyclonic vorticity strongly depend on the
magnitude of the horizontal divergence ∇⊥ ·v⊥ and the vertical divergence ∂w/∂z (see equa-
tion 3.16 and sections 3.5 and 3.5). Therefore, we first study how the horizontal and vertical
divergences are affected by rotation and density stratification, in particular, to understand
how they change with f/N̄ .

In a non–rotating constant–density flow such as Case S1 (see Table 3.1), suction is ex-
pected to produce a flow with no directional preference (i.e., an isotropic flow). In fact,
the flow in Case S1 is isotropic, and for this case (∂u/∂x)c = (∂v/∂y)c = (∂w/∂z)c = qc/3
(Figure 3.2a), where the subscript c means evaluated at x = 0. Adding rotation or stratifica-
tion breaks the symmetries of the flow. Assuming strong rotation (i.e., f 	 |ωz|), negligible
viscous effects, and ignoring the fast time scales, no other term (3.16) can balance the second
term on the right–hand, resulting in |∇⊥ · v⊥| ≈ 0. Without suction and stratification, the
Taylor-Proudman theorem would follow from this analysis [Kundu and Cohen, 2010]. In
the presence of suction, |∇⊥ · v⊥| ≈ 0 along with the continuity equation ∇ · v = q gives
∂w/∂z ≈ q (Case S2 in Figure 3.2a). Therefore, in this case the flow toward the suction
region is mainly vertical.
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Case f N̄ Qo ts Comment Ro Nc

N̄
(∇⊥·v⊥)c

qc

E1 1.75 1.75 −6 20
E2 1.75 2 −0.6 45
E3 2 1.4 −0.24 20
E4 2 1.4 −3 15
E5 2 1.8 −12 8
E6 1.75 1.75 −1.2 50
E7 1.75 2 −0.24 40
E8 1.75 1.75 −1.2 100
E9 1.75 1.75 −3 80
E10 1.75 1.75 −3 40

S1 0 0 −2 40 constant ρ |ωz| ≈ 0 0.67
S2 2 0 −2 40 constant ρ 0.04 0.01
S3 0 2 −2 40 |ωz| ≈ 0 1.00 1.00
S4 5 2 −2 40 0.75 3.63 0.36
S5 2 2 −2 40 1.58 2.50 0.57
S6 10 2 −2 40 0.41 4.28 0.21
S7 5 2 −1 40 0.39 1.86 0.42
S8 5 2 −2 40 ν = 0 0.84 3.26 0.11
S9 5 2 −20 40 2.96 8.35 0.03
S10 5 2 −4 20 0.8 3.87 0.21

Table 3.1: Cases in laboratory experiments (E) and numerical simulations (S). f [rad/s] and
N̄ [rad/s] are the Coriolis parameter and the Brunt–Väisälä frequency of the background
density stratification, respectively. Qo [cm3/s] is the imposed volumetric suction rate. Suc-
tion starts at t = 0 and ends at ts [s]. The working fluid in the experiments is salt–water
with ρo = 1.02 g/cm3 and ν = 0.01 cm2/s. In the simulations, ρo = 1 g/cm3 and ν = 0.01
cm2/s, unless otherwise stated. The three columns on the right show the Rossby number Ro
(defined in (3.20)), normalized Brunt–Väisälä frequency at the center of the vortex Nc/N̄ ,
and normalized horizontal divergence evaluated the center of the cyclone, all at the end of
suction t = ts.
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Figure 3.2: Effect of rotation and stratification on the divergence of the velocity field during
suction. The solid lines show the normalized horizontal divergence ((∇⊥ · v⊥)/q)c and the
broken lines show the normalized vertical divergence ((∂w/∂z)/q)c. (a) The flow in Case S1
(blue, no symbol) is non–rotating (f = 0) and constant–density and has ((∇⊥ ·v⊥)/q)c = 2/3
and ((∂w/∂z)/q)c = 1/3. The vertical divergence ∂w/∂z dominates in Cases S2 (red •) which
is rotating and constant–density. The flow in Case S3 (black �) is non–rotating (f = 0) and
stratified, and has a dominant horizontal divergence. (b) Case S4 has f/N̄ = 2.5 (blue, no
symbol), Case S5 has f/N̄ = 1 (red •), and Case S6 has f/N̄ = 5 (black �).

Strong stratification suppresses vertical motions and decouples the flow into horizontal
layers [Kundu and Cohen, 2010]. As a result, for a non–rotating stratified flow such as Case
S3, we expect ∂w/∂z ≈ 0 and ∇⊥ · v⊥ ≈ q, which is observed in Figure 3.2a. Hence, the
flow in this case approaches the suction region largely horizontally. Oscillations in Cases S2
and S3 (Figure 3.2a) are due to the inertial and internal gravity waves, respectively.

In the presence of both rotation and stratification, the relative magnitude of the horizontal
and vertical divergences depends on f/N̄ . Figure 3.2b compares Cases S4–S6, which have
f/N̄ = 2.5, 1, and 5, respectively. As expected, a larger f/N̄ results in a larger vertical
divergence |∂w/∂z| compared to the horizontal divergence |∇⊥ · v⊥|. This understanding of
the role of f/N̄ will be used in sections 3.5 and 3.5 and is consistent with the analytical
results of McDonald [1992] for a point sink in rotating stratified flows (see his Figure 1).
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3.5 Flow Field During Suction

This section focuses on the flow field during suction, i.e. t ≤ ts. Table 3.1 lists the exper-
imental and numerical cases and their parameters. Note that in this paper we do not try
to quantitatively compare the numerical and experimental results during and after suction
because the presence of the pipe is not accounted for in the numerical solutions. Further-
more, a suction region as small as the pipe used in the experiment could not be used in the
simulations due to computational limits, while a bigger pipe could not be used in the exper-
iments because its removal at the end of suction would destroy the cyclone. However, the
experimental and numerical results agree qualitatively and they are used to complement each
other in order to gain a better understanding of the physics that generate the velocity field
(Section 3.5), cyclonic vorticity (Section 3.5), and density super–stratification (Section 3.5).
All cyclones in simulations and experiments remained axisymmetric during suction and were
centered at x = 0. Additionally, in simulation the vortices are symmetric with respect to
the z = 0 plane (this symmetry is hard to confirm in the experiments).

Velocity Field

Figure 3.3 shows the azimuthal velocity profiles during suction for Cases E1 and E2 (as a
reminder, all units are in cgs). The core in each case is in near solid–body rotation and has
cyclonic vorticity. Figure 3.4 presents the evolution of the velocity field, density, and vertical
vorticity during suction for Case S5. Figures 3.4a and 3.4c show the generation of radial and
vertical velocities toward the suction region, and Figures 3.4b shows the development of the
cyclonic azimuthal velocity. Steepening of the density profile in Figure 3.4d confirms that a
super–stratified region is developed and strengthen around the suction region. Figures 3.4e
and 3.4f show that a 3D cyclone is produced and intensified by suction. The vortex is found
to be shielded, i.e. at each z there is a ring of weak anticyclonic vorticity around the cyclonic
core (see Figures 3.4e around x/D ≈ 0.1, see Section 3.5 for an explanation). 3D cyclones
with super–stratified interior were produced in all cases in Table 3.1. The mechanisms that
produce the super–stratification and cyclonic vorticity are discussed next.

Super–Stratification

As discussed in Section 3.1, the interior of a cyclone must be more stratified than the back-
ground flow (i.e., it is super–stratified). Figure 3.5 shows the evolution of N̄2 − N2 during
suction and after it stops for Case S4 (Note that N ≡ √−g(∂ρ/∂z)/ρo). A super-stratified
region (i.e., with N̄2 < N2) is created and intensified during suction (Figures 3.5a and 3.5b).
Below we discuss how the density super–stratification is produced by localized suction.

Taking ∂/∂z of equation (3.9) gives

∂

∂t

∂ρ

∂z
= −(v · ∇)

∂ρ

∂z
− ∂u

∂z

∂ρ

∂x
− ∂v

∂z

∂ρ

∂y
− ∂w

∂z

∂ρ

∂z
(3.18)
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Figure 3.3: Azimuthal velocity profile along y = z = 0 obtained from the PIV measurements
for Cases E1 (blue •) at t/ts = 0.15 and E2 (red �) at t/ts = 0.8. Slope of the approximate
solid–body rotation in the core Ωc gives Ro ≡ Ωc/f ≈ 1 (E1) and 0.5 (E2).

At the center (i.e., x = 0), v = 0 by symmetry and ∂u/∂z = ∂v/∂z = 0 (because u and v
vanish along the z–axis). As a result, at the center, (3.18) reduces to

∂

∂t
N2

c = −
(
∂w

∂z

)
c

N2
c (3.19)

This equation shows that if (∂w/∂z)c < 0 (which is the case for suction), the Nc increases in
time from its initial value of N̄ , resulting in super–stratification (i.e., Nc > N̄). Figure 3.6a
shows the evolution of Nc(t) for Cases S4, S5, and S7 during suction. Case S4 has the largest
growth of Nc because it has the largest f/N̄ and qc, both of which create a large vertical
divergence |∂w/∂z|. Case S5 has f/N̄ smaller than Case S7, but qc is twice as large. The
net result is a faster growth of super–stratification in Case S5 compared to Case S7.

Super–stratification is also observed in the experimental results (Figure 3.6b). Case
E4, which has a much stronger suction Qo and larger f/N̄ , produces a stronger super–
stratification compared to Case E5. Figure 3.7 shows N̄2 − N2 in the y = 0 plane for Case
E1 from the synthetic schlieren measurements. The pattern of the density gradient field
looks qualitatively the same as the one obtained numerically (compare with Figure 3.5);
however, the magnitude of super–stratification is smaller in the experiments (Figure 3.6)
which is likely due to the presence of the real pipe in the experiments (also see Section 3.5).

The super–stratification decays after the suction stops in both simulations (Figures 3.5c
and 3.5d) and experiments (Figure 3.7c and 3.7d). This is because, as discussed in Sec-
tion 3.6, the vertical velocity changes direction once the suction stops. As a result, ∂w/∂z
becomes positive, decreasing Nc and de–stratifying the flow.
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Figure 3.4: Flow field for Case S5 at t/ts = 1/3 (blue solid line), t/ts = 2/3 (red broken
line), and t/ts = 1 (black dot–dashed line). (a) Radial velocity, u along y = z = 0; (b)
Azimuthal velocity, u along x = z = 0; (c) Vertical velocity, w along x = y = 0; (d) Density,
ρ along x = y = 0; (e) Vertical vorticity, ωz along x = z = 0; (f) Vertical vorticity, ωz along
x = y = 0. The flow remains axisymmetric during suction, and is symmetric with respect
to the midplane z = 0. Only a part of the domain is shown in (d)–(f) for better illustration.

36



(a) (b)

(c) (d)

Figure 3.5: Evolution of N̄2 − N2 = (g/ρo)(∂ρ̃/∂z) in the y = 0 plane in Case S4 at (a)
t/ts = 0.25, (b) t/ts = 1, (c) t/ts = 2, and (d) t/ts = 3.75. Only a part of the domain is
shown for better illustration.
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Figure 3.6: Evolution of Nc during suction in the simulations (a) and experiments (b). (a)
Cases S4 (blue solid line), S5 (red broken line), and S7 (black dot–dashed line). (b) Cases
E4 (blue solid line) and E5 (red broken line). See Table 3.1 for parameters of each case.

Generation of Cyclonic Vorticity

In cases with rotation, vertical vorticity ωz is produced in the flow in both simulations and
experiments. We define the Rossby number Ro as the ratio of the angular velocity at the
vortex core to the Coriolis parameter, which in the numerical cases can be calculated as

Ro ≡ ωc

2f
, (3.20)

where ωc is the vertical vorticity at the vortex center. Figure 3.8a shows the evolution of the
Rossby number of the cyclones during suction for Cases S4, S5, and S7, which have different
f/N̄ and Qo (see Table 3.1). To better understand the generation of cyclonic vorticity and
the effect of these parameters on the magnitude of Ro, we look at equation (3.16). As a
result of the symmetries mentioned before, v = 0 at x = 0 and w = 0 in the z = 0 plane.
Therefore, at x = 0 equation (3.16) simplifies to

∂ωc

∂t
= −ωc(∇⊥ · v⊥)c − f(∇⊥ · v⊥)c + ν(∇2ωz)c (3.21)

In this equation, only the second term on the right–hand side can produce vorticity if ω = 0
initially. Figure 3.8b shows the evolution of each term of this equation for Case S4. At
the beginning, cyclonic vorticity is produced and intensified by the effect of the background
rotation (i.e., the f(∇⊥ · v⊥)c term). Once ωc becomes comparable to f , the first term on
the right–hand side becomes significant as well, but so does the viscous term. These two
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Figure 3.7: Evolution of N̄2 −N2 = (g/ρo)(∂ρ̃/∂z) in the y = 0 plane in Case E1 visualized
by the synthetic schlieren technique at (a) t/ts = 0.25, (b) t/ts = 1, (c) t/ts = 2, and (d)
t/ts = 3.75.
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terms, which both depend on the magnitude of ωc, nearly counter balance each other. The
net result is a gradual decrease of ∂ωc/∂t over time. This can stop the growth of Ro in
more viscous cases, in particular in the presence of a real pipe in the experiments. The other
numerical cases in Table 3.1 follow the same mechanism as S4 in producing cyclones.

Generation of the anticyclonic shield around the cyclonic core (see Figure 3.4e) is due to
the change in the sign of the horizontal divergence outside the core (see Figure 3.4a). The
positive horizontal divergence outside the core produces anticyclonic vorticity through the
−f(∇⊥ · v⊥) < 0 term in equation 3.16. The magnitude of |ωz| in the shield is much weaker
than the magnitude of |ωz| in the core; this is because, in (3.16), not only |∇⊥ ·v⊥| is smaller
in the shield, but also (f + ωz) > f (< f) if fωz > 0 (< 0).

To understand the effect of f/N̄ and qc/N̄ on Ro, equation (3.21) is rewritten as

∂Ro

∂t
= −(0.5 +Ro)(∇⊥ · v⊥)c + ν

(∇2ωz)c
2f

(3.22)

In this equation, the difference between Cases S4 and S5 is the magnitude of the horizontal
divergence which is larger in Case S5 (because it has a smaller f/N̄). As a result, the second
term on the right–hand side is larger in magnitude in Case S5, resulting in a larger ∂Ro/∂t
and therefore larger growth of Ro (see Figure 3.8a). Suction in Case S7 is weaker compared
to Case S4 (i.e., smaller |qc|/N̄). This results in a smaller horizontal divergence in Case
S7 (compared to S4), and finally a weaker cyclone. Notice that no vorticity is produced
in a non–rotating constant–density flow because if f = 0 and ∇ρ̃ = 0, there is no term in
equation (3.15) that can produce vorticity if v = ω = 0 initially (see Table 3.1).

Figure 3.9 shows the evolution of the Rossby number Ro in Cases E2, E6, and E7. Using
the PIV measurements, the angular velocity used in the calculation of the Rossby number is
extracted from the approximate solid–body rotation at the core of the cyclone. As expected,
increasing the suction rate Qo (with f/N̄ kept roughly the same) results in larger Ro. In
cases with stronger suction (i.e., larger Qots), such as Cases E8 and E9, the growth of the
Rossby number is observed to stop around Ro = 1 which might be due to large viscous
dissipation around the pipe.

3.6 Flow Field After Suction Stops

After the suction stops, the cyclones decay in simulations (Figure 3.10a) and in experiments
(Figure 3.10b) because of viscous dissipation. Figure 3.11 shows the azimuthal velocity field
after the suction stops for Cases E1 and E2. In each case, the core is nearly in solid–body
rotation, but the angular velocity has reduced after the suction stopped (compare with
Figure 3.3). Figure 3.12 shows the flow field (velocity, density, and vorticity) of Case S4
at three different times after the suction stops. The radial and azimuthal velocities and
vertical vorticity decrease in time due to the viscous dissipation, and the density anomaly
ρ̃ = ρ− ρ̄ reduces, weakening the super–stratification. The reduction of super–stratification
is due to the reversal of the direction of the vertical velocity after the suction stops (compare
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Figure 3.8: (a) Evolution of the Rossby number Ro ≡ ωc/(2f) for Cases S4 (blue solid line),
S5 (red broken line), and S7 (black dot–dashed line), where ωc is the the vertical vorticity
at the center of the vortex. (b) Case S4, evolution of different terms of equation (3.21) at
x = 0: (∂ωc/∂t) (blue marked line), −f(∇⊥ · v⊥)c (red broken line), −ωc(∇⊥ · v⊥)c (black
dot–dashed line), and ν(∇2ωz)c (light blue solid line).
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Figure 3.9: Evolution of Ro during suction in the experiments for Cases E2 (black �), E6
(blue �) and E7 (red •). Cases E2, E6, E7 have (f/N̄, Qo) = (0.875,−0.6), (1,−1.2),
(0.875,−0.24), respectively (see Table 3.1).
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Figure 3.10: Evolution of Ro in simulations (a) and experiments (b) after suction stops for
Cases (a) S4 (blue solid line), S5 (red broken line), and S7 (black dot–dashed line); (b) E6
(red •), E8 (blue �), and E9 (black �). See Table 3.1 for the parameters of each case.
T = 4π/f is the inertial period.

Figures 3.4c and 3.12c). The physics behind this reversal and its consequences are discussed
below.

Secondary Circulation

Viscous dissipation induces a meridional secondary circulation in decaying cyclones and an-
ticyclones [Hassanzadeh et al., 2012]. This ageostrophic flow consists of vertical and radial
velocities and can be explained by looking at the dominant horizontal force balance of the
vortex. As discussed before, cyclones in cyclo–geostrophic balance have low–pressure cen-
ters, so that in a horizontal plane, the inward pressure force balances the outward Coriolis
and centrifugal forces, which are both proportional to the azimuthal velocity. Viscous dissi-
pation reduces the azimuthal velocity (and consequently the Coriolis and centrifugal forces),
resulting in an imbalance between the inward and outward horizontal forces. As a result, a
radial flow is induced toward the low–pressure center. A converging radial flow (i.e., nega-
tive horizontal divergence) produces a positive vertical divergence (i.e., ∂w/∂z > 0) due to
conservation of mass (notice that q = 0 now). Therefore, the direction of the radial flow in
a viscously decaying cyclone (Figure 3.12a) is the same as the direction of the radial flow
during suction (Figure 3.4a); on the other hand, the direction of the vertical velocity flips
(see Figures 3.4c and 3.12c). Reversal of the vertical velocity (and the change in the sign of
the vertical divergence) occurs quickly in all numerical cases in Table 3.1 (see Figure 3.13),
except for Case S8 (inviscid) in which the vertical and radial velocities rapidly disappear. In-

42



−6 −4 −2 0 2 4 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

v

Figure 3.11: Azimuthal velocity profile obtained from the PIV measurements for Cases E1
(blue •) at (t − ts)/T = 3.5 and E2 (red �) at (t − ts)/T = 12. Slope of the approximate
solid–body rotation in the core gives Ro ≈ 0.9 (E1) and Ro ≈ 0.24 (E2).

terestingly, this abrupt change in the ageostrophic flow does not de–stabilize the geostrophic
flow. Notice that the secondary circulations in these simulations and experiments are not rel-
evant to Ekman pumping [Pedlosky, 1990] because no Ekman layer exists in our simulations
(the domain is periodic), and the tall layer of stratified fluid between two the thick layers of
constant density fluid (see Figure 3.1) strongly damps Ekman pumping in the experiments.

Figure 3.14a shows the streamlines of the secondary flow for Case S4 at two different
times. The secondary flow extends well beyond the boundaries of the vortex (Figure 3.14b).
As a result, even though the secondary flow is weak compared to the primary flow (compare
Figures 3.12a and 3.12b), it plays an important role in the dynamics of the cyclone by
changing its interior stratification. After the vertical velocity reverses, the positive vertical
divergence reduces the super–stratification as expected from equation (3.19). Weakening of
the super–stratification is observed in both numerical and experimental results (Figure 3.15,
also Figures 3.5 and 3.7). Note that after the suction stopped, the conductivity probe
was removed with the pipe because it was strongly disturbing the flow. Therefore Nc(t) in
Figure 3.7 is obtained from the synthetic schlieren measurements. Direct measurement of
the weak secondary flow is a challenging task in laboratory experiments, but the reduction
of Nc(t) in experimental results is an indirect indication of the direction of the vertical
velocity w (employing equation (3.19)). Weak secondary flows not only significantly change
the interior stratification of vortices (both cyclones and anticyclones), but they can also
transport tracers vertically which is of great importance in the ocean [Klein and Lapeyre,
2009] and atmosphere [de Pater et al., 2010].
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Figure 3.12: Flow field for Case S5 at (t− ts)/T = 0 (blue solid line), (t− ts)/T = 4.8 (red
broken line), and (t− ts)/T = 9.6 (black dot–dashed line). T = 4π/f is the inertial period.
(a) Radial velocity, u along y = z = 0; (b) Azimuthal velocity, u along x = z = 0; (c)
Vertical velocity, w along x = y = 0; (d) Density, ρ along x = y = 0; (e) Vertical vorticity,
ωz along x = z = 0; (f) Vertical vorticity, ωz along x = y = 0. The flow is axisymmetric,
and is symmetric with respect to the midplane z = 0. Only a part of the domain is shown
in (d)–(e) for better illustration.
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(broken lines) divergences for Cases S4 (thick blue) and S6 (thin red).
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Figure 3.14: Streamlines of the secondary flow for Case S4 in the y = 0 plane. (a) At
(t−ts)/T = 24 (thin red line) and (t−ts)/T = 103.5 (thick blue line), T = 4π/f is the inertial
period. (b) Zoomed in at (t − ts)/T = 103.5, the thick black line shows the approximate
boundaries of the vortex calculated using the horizontal and vertical characteristic length
scales of pressure anomaly p̃, see (3.24).
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Figure 3.15: Evolution of Nc in experiments and simulations after suction stops for Cases
(a) S4 (blue solid line), S5 (red broken line), and S7 (black dot–dashed line); (b) E1 (blue
�), E8 (black �) and E10 (red •). See Table 3.1 for the parameters of each case. T = 4π/f
is the inertial period.

Aspect Ratio

Recently, we proposed a relationship for the aspect ratio α of baroclinic vortices [Hassanzadeh
et al., 2012]: (

H

L

)2

=
Ro (1 +Ro)

N2
c − N̄2

f 2 (3.23)

where H and L are the characteristic vertical and horizontal length scales of the pressure
anomaly p̃ [see Hassanzadeh et al., 2012, for more details]. One immediate consequence of
equation (3.23) is that for anticyclones (i.e., Ro < 0), Nc < N̄ if Ro > −1, and Nc > N̄
if Ro < −1, all because the right–hand side of (3.23) has to be positive. For cyclones (i.e.,
Ro > 0), this results in Nc < N̄ for any Ro, meaning that the flow inside the cyclone has to
be super–stratified.

Aubert et al. [2012] experimentally validated (3.23) for anticyclones produced by injec-
tion, and Hassanzadeh et al. [2012] confirmed this equation numerically for cyclones and
anticyclones created and dissipated via various mechanisms, including two cases of cyclones
produced by localized suction. Here we confirm (3.23) for more cases. Following Hassanzadeh
et al. [2012], we calculate H(t) and L(t) as

H(t) =

√∣∣∣∣ p̃

∂2p̃/∂z2

∣∣∣∣
c

and L(t) =

√∣∣∣∣ 2p̃

∇2
⊥p̃

∣∣∣∣
c

, (3.24)
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Cases S4 (blue �), S5 (red •), S6 (black �), and S7 (green � with broken line).

and compare H/L with the aspect ratio obtained from equation (3.23) for numerically–
calculated values of Ro(t) and Nc(t). Figure 3.16 shows how well the two aspect ratios
agree. The maximum relative error is 0.3%. Accurate measurement of the aspect ratio of
the cyclones, their Nc, and Ro at the same time is not feasible in the current laboratory
setup; therefore, equation (3.23) could not be validated in the experiments results.

3.7 Conclusion

Creation of 3D baroclinic cyclones using localized suction in rotating linearly stratified flows
is studied numerically and experimentally. Nonlinear Boussinesq equations are modified to
account for localized suction, which is modeled as a small spherical sink, and the equations
are solved numerically. Experiment is conducted in a rotating tank filled with salt–water,
where fluid is sucked through a small pipe.

The simulations show that localized suction produces negative vertical ∂w/∂z < 0 and
horizontal ∇⊥ ·v⊥ < 0 divergences, and that the relative strength of the divergences depends
on the ratio of the Coriolis parameter to the Brunt–Väisälä frequency f/N̄ . The vorticity
(3.21) and density (3.19) equations simplified using the symmetries of the flow show that
negative horizontal divergence produces cyclonic vorticity, and that negative vertical diver-
gence creates local super–stratification. In each experimental and numerical case (except
the non–rotating and constant–density ones), a single coherent long–lived 3D cyclone with
a super–stratified interior is created and intensified during suction. Super–stratification is
visualized in the experiments using the synthetic schlieren technique.

Once the suction stops, the cyclones decay due to the viscous dissipation. A simple
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physical argument is given on why a viscously decaying cyclone has a secondary circulation
(i.e., non–zero vertical and radial velocity) with ∂w/∂z > 0 and ∇⊥ · v⊥ < 0. Therefore,
the vertical velocity is expected to reverse once the cyclone starts to decay. The reversal
is observed in the numerical results. Although the secondary circulation is much weaker
than the cyclo–geostrophic flow, its role in the dynamics of the cyclone is significant. The
vertical velocity with positive divergence mixes the flow inside and outside of the cyclone
and reduces the super—stratification (as evident from (3.19)). Measuring the secondary
flow is challenging in the laboratory, but the weakening of the super–stratification in the
experimental results is an indirect evidence of the reversal of the vertical velocity.

This paper provides a better understanding of the physics of the flows produced by lo-
calized suction in rotating stratified flows, the mechanisms that create cyclonic vorticity and
local super–stratification, and the secondary circulation of viscously decaying 3D baroclinic
cyclones. This understanding can be applied later to design and conduct well–controlled
experimental studies of cyclone–anticyclone asymmetry, and in particular the implications
of this asymmetry for the stability, longevity, and secondary circulation of geophysical and
astrophysical vortices. In addition, the role of the secondary circulation in the dynamics of
3D vortices, especially its effect on their internal stratification and longevity, merits further
numerical and experimental investigation.
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Chapter 4

Self–Replicating 3D Vortices in
Stably–Stratified Rotating Shear

4.1 Introduction

For a protostar to accrete gas from its surrounding protoplanetary disk (PPD) [Armitage,
2011] and grow into a star, the PPD must have an instability capable of transporting an-
gular momentum radially outward [Balbus and Hawley, 1998]. This requirement has led to
an intense effort to find instabilities in PPDs and other rotating flows in which the angular
momentum satisfies Rayleigh’s criterion for centrifugal stability, i.e., the absolute value of
the angular momentum increases with increasing radius [Rayleigh, 1917]. Numerical studies
[Balbus et al., 1996, Shen et al., 2006] of ideal gases in PPDs and experimental studies [Ji
et al., 2006] of constant density fluids in rotating flows where the velocity obeys Rayleigh’s
criterion show that the flows are both linearly and finite-amplitude stable to hydrodynamic
perturbations. In regions of a PPD where the gas is sufficiently ionized to couple to mag-
netic fields, the magneto-rotational instability (MRI) [Balbus and Hawley, 1998] can oper-
ate. However, large regions of PPDs, known as dead zones, are too cool to ionize sufficiently
and have MRI. Strato-rotational instabilities [Le Bars and Le Gal, 2007] and Rossby wave
instabilities [Lovelace et al., 1999] could de-stabilize a PPD, but they require unrealistic im-
permeable radial boundaries on the PPD or a large continually-forced density perturbation,
respectively. Thus, star formation remains problematic.

Here we report a new type of finite-amplitude instability that occurs in neutrally-stable,
shearing flows with stably-stratified densities (as in a PPD) and with velocities that would
satisfy Rayleigh’s stability criterion if the densities were constant – as assumed in Rayleigh’s

With minor modifications, Chapter 3 appears in:
P. S. Marcus, S. Pei, C–H Jiang, and P. Hassanzadeh, Self–Replicating Three–Dimensional Vortices in
Neutrally-Stable Stratified Rotating Shear Flows, submitted to the Physical Review Letters, 2013.



analysis. These flows include plane and circular Couette flows, which have been used to
model PPDs. Our new instability allows a small-size perturbation to form large vortices.
In particular, their radii can be as large as the vertical pressure scale height of a PPD.
The 3D vortices found in our study have a unique property: a vortex that grows from a
single, local perturbation triggers a 1st-generation of vortices that grow at nearby locations.
The 1st-generation of vortices grows large and triggers a 2nd-generation. The triggering of
subsequent generations continues ad infinitum. The vortices do not advect in the cross-
stream direction (radial direction of a PPD), but the front dividing the vortex-populated
fluid from the unperturbed fluid does. This is shown in Figures 4.1 and 4.2. Because the
vortices grow large and spawn new generations of vortices that march across the domain of
a dead zone, we refer to vortices that self-replicate in this manner as zombie vortices. To
understand star formation, it is important to determine how initial noise creates instabilities,
but here we focus on the formation and self-replication of zombie vortices.

The simplest flow that is not linearly unstable in which zombie vortices occur is a verti-
cally stably-stratified Boussinesq fluid in an unbounded plane Couette flow. The unperturbed
velocity is

v = V̄ (x) ŷ (4.1)

with

V̄ (x) ≡ σx, (4.2)

where σ is the uniform shear, x and y are the cross-stream and stream-wise coordinates
respectively, and quantities with “hats” are unit vectors. The span–wise direction is z,
which is also the direction of density stratification and gravity g, so that the unperturbed
density is

ρ̄(z) = ρ0(1−N2z/g), (4.3)

where ρ0 is a constant and

N ≡
√
− g

ρ0

dρ̄

dz
(4.4)

is the Brunt-Väisälä frequency, which is uniform throughout the domain. The flow is on a
rotating turntable with angular velocity Ωẑ ≡ f/2ẑ, where f is the Coriolis parameter.
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Figure 4.1: Zombie vortices start near the origin in the x–y plane with subsequent generations
sweeping outward in x (the horizontal axis is x, the vertical axis is y). The vorticity ωz is
red for cyclones; blue for anticyclones; and green for ωz = 0. This Couette flow has f/N = 1
and σ/N = −3/4. The perturbing vortex at the origin cannot be seen because the plane
shown here is at z = −0.404. The x-y computational domain is |x| ≤ 4.7124; |y| ≤ 2.3562,
and is larger than shown. (a) t = 64/N . (b) t = 256/N . (c) t = 576/N . (d) t = 2240/N .
See text for details.

4.2 Critical Layers

In the rotating frame, the dissipationless equations for the velocity v are:

∂v

∂t
= −(v · ∇)v − ∇Π

ρ0
+ fv × ẑ− (ρ− ρ0)g

ρ0
ẑ (4.5)

∂ρ

∂t
= −(v · ∇)ρ (4.6)

∇ · v = 0, (4.7)

where Π is the pressure head. When equations (4.5)–(4.7) are linearized about v̄ = V̄ (x) ŷ
and ρ̄(z), the eigenmodes are proportional to

ei(kyy+kzz−st),
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Figure 4.2: Zombie vortices sweep outward from the perturbing vortex at the origin in the x–z
plane shown at y = 0 (the horizontal axis is x, the vertical axis is z). Anticyclonic ωz is black
and cyclonic is white. This is the same flow as in Figure 4.1. The computational domain
has |z| ≤ 4.7124 and is larger than shown. The Rossby number of the initial perturbing
anticyclone at the origin is Ro ≡ ωz/f = −0.31. (a) t = 128/N . Only the vortex at the
origin is present, but critical layers with s = 0 and |m| = 1, 2, and 3 are visible. The faint
diagonal lines correspond to internal inertia-gravity waves with shear, not critical layers. (b)
t = 480/N . 1st-generation vortices near |x| = 1 and 1/2 have rolled-up from critical layers
with s = 0 and |m| = 1 and 2, respectively. (c) t = 1632/N . 2nd-generation |m| = 1 vortices
near |x| = 0 and 2 were spawned from the 1st generation vortices near |x| = 1. Another
2nd-generation of |m| = 1 vortices is near |x| � 1/2 and 3/2, which were spawned by the
1st generation near |x| = 1/2. All 2nd-generation vortices rolled up from critical layers with
|m| = 1. (d) t = 3072/N . 1st, 2nd and 3rd generation vortices.
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where we assume periodic boundary conditions in z and y. When the density ρ̄ is stably-
stratified (i.e., with real N �= 0) or constant (N = 0) this plane Couette flow is neutrally
stable for all Ω (i.e., the imaginary part of s is zero and the eigenmodes neither grow nor
decay). The eigen-equation for the stream functions of the eigenmodes of equations (4.5)–
(4.7) is a generalization of Rayleigh’s equation [Drazin and Reid, 2004] and is a 2nd-order
o.d.e. The coefficient of the highest-derivative term is[

V̄ (x)− s

ky

][(
V̄ (x)− s

ky

)2

−
(
N

ky

)2
]
. (4.8)

It is well known that the eigenmodes of an o.d.e. are singular at locations x∗ where the
coefficient of the highest-derivative term of the eigen-equation is equal to zero. At x∗, the
eigenmode has a critical layer [Drazin and Reid, 2004]. For fluids with constant density
(N ≡ 0), the critical layers of uni-directional shearing flows have been well-studied and
have V̄ (x∗) equal to the phase speed s/ky of the eigenmode. We refer to these as barotropic
critical layers; they are not of interest to us because laboratory experiments and numerical
calculations show that these critical layers are not easily excited and do not produce vortices.
Eigenmodes with barotropic critical layers have singularities in the stream-wise components
of their velocities, but not other components.

For N �= 0, expression (4.8) shows that there are eigenmodes with barotropic critical
layers at

V̄ (x∗)− s/ky,

but we found that they remain difficult to excite and never form vortices. However, there is
a new class of eigenmodes with critical layers with

V̄ (x∗)− s/ky ±N/ky = 0.

We refer to the latter as baroclinic critical layers. These have not been explored before.
Eigenmodes with baroclinic critical layers are neutrally stable (i.e., s is real). These eigen-
modes are easily excited by small disturbances, always produce large-amplitude vortex layers,
and often produce zombie vortices because their singularities are in the vertical z compo-
nents of their velocities. To see why, note that the z-component of the curl of equation (4.5)
gives

∂ωz

∂t
= −(v · ∇)ωz + (ω · ∇)vz + (f + σ)

∂vz
∂z

, (4.9)

where ω is the relative vorticity with respect to the equilibrium flow, i.e.,

ω ≡ ∇× (v− V̄ (x) ŷ).

Equation (4.9) shows that the generalized Coriolis term

(f + σ)(∂vz/∂z)
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is a source for ωz. Within the baroclinic critical layer, the z-component of the velocity is
nearly anti-symmetric about the plane with x = x∗; on one side of the layer vz → ∞, and on
the other side vz → −∞; thus, the Coriolis term in equation (4.9) creates a large-magnitude
vortex layer centered at x∗ made of dipolar segments with one side having cyclonic vorticity
(ωzf > 0) and the other with anticyclonic vorticity (ωzf < 0) (c.f., Figure 4.1a).

We consider only the case of anticyclonic shear with σ < 0 and f > 0. Note that PPDs
have anticyclonic shear and are periodic in their stream-wise, or azimuthal, direction like
the Couette flow studied here. The equations of motion (4.5)–(4.7) and boundary conditions
are invariant under translations in y and z, and also under translation in x by δ when
accompanied by a stream-wise boost in velocity of σδ. The latter symmetry is known as
the shift and boost symmetry, c.f., [Goldreich and Lynden-Bell, 1965, Marcus and Press,
1977], and is exploited when using shearing sheet boundary conditions of PPDs [Barranco
and Marcus, 2006, Balbus and Hawley, 1998]. From this point on, we use non-dimensional
units with time in units of 1/N and length in units of

|(LN)/(2πσ)|,
where L is the periodicity length in the stream-wise direction, so ky in expression (4.8) is
2πm/L, where m is an integer. Baroclinic critical layers have ky �= 0, and expression (4.8)
shows that in dimensionless units are at:

x∗ = −s± 1

m
. (4.10)

Due to the shift-and-boost symmetry, the origin of the x-axis is not unique, so equation (4.10)
has the following meaning: x∗ is the cross-stream distance between a finite-amplitude per-
turbation and the location of the baroclinic critical layer that it excites.

4.3 Single Vortex Perturbation

Our numerical solutions of equations (4.5)–(4.7) show that many types of perturbations
create zombie vortices. For verification, our solutions were computed with two independent
codes using the methodology in [Barranco and Marcus, 2006]. One code treated the cross-
stream boundaries as periodic with energy damping, and the other used the shearing sheet
approximation. In the example in Figures 4.1 and 4.2, the initial perturbation is a small-
volume anticyclone with a Rossby number

Ro ≡ ωz

f

of −0.31 at the origin superposed on the unperturbed flow V̄ (x) and ρ̄(z). Figure 4.1 shows
ωz in an x–y plane. The perturbing vortex is steady, so it excites critical layers with temporal
frequencies s = 0. Thus, equation (4.10) shows that the critical layers are at |x∗| = 1/|m|
and that the vortex at the origin has no critical layers with x > 1. At early times, Figure 4.1a
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shows that vortex layers form at the critical layers: at each critical layer with wavenumber
|m|, ωz appears at x = 1/|m| as |m| segments of dipolar stripes aligned in the stream-wise y
direction. A Fourier analysis shows that the stripes have s = 0. We have shown previously
[Marcus, 1990, 1993] that in shear flows with fσ < 0, cyclonic vortex layers aligned in
the stream-wise direction are stable, whereas anticyclonic layers are unstable, roll-up into
discrete anticyclones, and merge to form one large anticyclone. This behavior is seen in
Figure 4.1b. The anticyclonic vorticity at x = 1/3 has already rolled up and merged into
a single large anticyclone (near y = 1.5). The anticyclonic vorticity at x = 1/2 has rolled
up into a large anticyclone near y = −0.5. In contrast, the cyclonic ωz near x = 1/2 has
formed a continuous, but meandering, filament. At later times (Figure 4.1c) the anticyclones
near x = 1/3 (and near y = 2) and near x = 1/2 (and near y = −1) have become larger.
Moreover, Figures 4.1c and 4.1d show critical layers and vortices at x > 1, which cannot be
created by the perturbation at the origin. The layers at x > 1 are due to the self-replication
of the 1st-generation vortices at |x| ≤ 1. A vortex at any location will excite critical layers
in a manner exactly like the original perturbing vortex at the origin due to the shift-and-
boost symmetry (and will have s = 0 when viewed in the frame moving with the perturbing
vortex). Figure 4.1c, shows 2nd-generation critical layers at x = 4/3, 3/2, 2, and 2/3 all with
|m| = 1 and excited by the 1st-generation vortices at x = 1/3, 1/2, 1, and −1/3, respectively.
Figure 4.1d, shows 3rd-generation critical layers at 2 < x ≤ 3, and 4th-generation critical
layers becoming excited at x > 3. At late times the vortices from m = 1 critical layers
dominate the flow. (See Figure 4.2d.) At very late times, the vortices have widths in their
cross-stream directions of order unity. (See below.)

Figure 4.2 shows the flow in Figure 4.1 viewed in the x–z plane and illustrates our
main result: at late times the domain in the x–z plane fills with anticyclones. Because
the flow is homogeneous with uniform σ and N , the vortices form a regular lattice despite
the flow’s turbulence. As time progresses in Figure 4.2, the vortex population spreads out
from the perturbing vortex at the origin. At early times 4.2a) the flow has 1st-generation
critical layers, with |m| = 1, 2, and 3 being the most visible. In this first generation, and
all subsequent generations, a perturbing vortex creates four vortices at its |m| = 1 critical
layers. The new vortices form at locations in x that are ±lx distant from the perturbing
vortex and at locations in z that are ±lz distant from the perturbing vortex. The distance
in x between a perturbing vortex and the centerline of the |m| = 1 critical layer it excites
(and the centerline of the dipolar vortex segment it creates) is unity, but the distance to the
anticyclonic piece of the dipolar vortex is lx, which is slightly greater than unity. At the time
of Figure 4.2b the 2nd-generation m = 1 critical layers created by the 1st-generation vortices
with |m| = 1, 2, and 3 are all visible near |x| = 2lx, (3/2)lx, and (4/3)lx respectively. At
later times (Figure 4.2d), the |m| = 1 vortices that were descended from the 1st-generation
|m| = 1 vortices dominate the flow. These dominant vortices form a lattice and are located
at

[x = 2n lx, z = 2j lz]
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and at
[x = (2n+ 1)lx, z = (2j + 1)lz],

for all integers n and j.
The characteristic |Ro| of late-time zombie vortices is of order that of the initial pertur-

bation. After a vortex forms, its |Ro| intensifies to its approximate peak value within a few
of its turn-around times, and it remains near that value indefinitely. Based on several nu-
merical experiments, it appears that the late-time values of |Ro| depend on the parameters,
N , f and σ rather than on the properties of the initial perturbation. To examine the energy
of the vortices and discover its source, we decomposed the flow’s energy into two orthogonal
parts: (1) the zonal component consisting of the kinetic energy of the stream-wise velocity
component with Fourier modes kz = ky = 0 (i.e., the background shearing flow); and (2) the
non-zonal component consisting of everything else, including the potential energy

g

∫
z(ρ− ρ̄) (d volume).

If the initial flow were the unperturbed flow V̄ (x)ŷ and ρ̄, then the initial energy would be
all zonal. In the flow in Figures 4.1 and 4.2, there is a small initial non-zonal component
of the energy due to the initial vortex at the origin. At late times, the non-zonal energy
component represents the energy of the zombie vortices (and their turbulence and waves).
After initial transients with faster than exponential growth, the non-zonal energy increases
exponentially from just after the time of Figure 4.1a to the time in Figure 4.2d with an
e-folding time of ∼ 1000. The non-zonal energy component in Figure 4.2d is more than 400
times larger than its initial value, and that energy is supplied by the zonal component. The
total energy is not conserved either with shearing sheet boundaries or with energy-damping
periodic boundaries. In the latter, the vortices primarily lose energy by radiating internal,
shearing inertia-gravity waves to the boundaries. If the self-replication is self-similar, we
would expect the perimeter of the front between the vortex-dominated flow and unperturbed
flow in each x-z plane to grow as t and the number of vortices to increase as t2, which is
consistent with our numerical experiments. After transients, the energy of the vortices, i.e.,
the non-zonal energy component, grows exponentially in time because the volume of each
vortex grows exponentially in our calculations. That exponential growth must eventually
stop because the cross-stream widths of the vortices cannot become larger than unity without
them overlapping.

4.4 Conclusion

Neutrally-stable, shearing, stably-stratified Couette flow can be finite-amplitude unstable. In
the example here, baroclinic critical layers are excited by a small vortex, but our calculations
show that a variety of small-volume, small-energy perturbations cause critical layers to grow
and roll-up into large-volume, large-energy vortices. In general, this instability self-replicates
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with each new vortex exciting new layers that roll-up until the domain fills with compact
3D (i.e., not Taylor columns) vortices. The robustness of zombie vortices is self-evident from
the fact that they are embedded in turbulent flows and survive indefinitely. They survive by
drawing energy from the background shear flow at a rate that is faster than their dissipation
rate. For constant N and σ, the unperturbed flow is homogeneous, and vortex self-replication
is self-similar with zombie vortices forming a regular lattice. The regularity of the lattice
allows for reinforcement: each vortex re-excites four other vortices in the lattice, and each
vortex in the lattice is continually re-excited by four other vortices.

Zombie vortices occur frequently in our numerical simulations of Boussinesq and com-
pressible fluids, so they pose a paradox: if they are so common, why have they not been
reported earlier? We believe there are three reasons:

1. instabilities have not been systematically sought in stratified Couette flows [Le Bars
and Le Gal, 2007];

2. with few exceptions [Tevzadze et al., 2008], stability studies of ideal gases in PPDs
were carried out with no initial vertical stratification [Balbus et al., 1996, Shen et al.,
2006];

3. the necessary spatial resolution to compute critical layers is lacking in many calcula-
tions.

Zombie vortices occur in our calculations of the dead zones of protoplanetary disks [Bar-
ranco and Marcus, 2005], which suggest that they may have an important role in star and
planet formation. In addition, zombie vortices should be observable in laboratory circular
Couette flows with stratified salt water for parameter values where the flow is linearly stable
and where the angular momentum of the flow increases with increasing radius.
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Appendix A

Suction Rate Function qo(x)

As discussed in section 3.3, qo(x) is nearly uniform and negative inside a spherical region of
radius R located at the center of the domain x = 0. Outside the spherical region, qo decays
rapidly. Therefore, the profile of qo in each direction looks like a top–hat function of width
2R with smoothed edges.

In a triply periodic domain, the integral of qo(x) over the entire domain must be zero.
This is because, integrating (3.7) over the entire domain gives∫

∂u

∂x
dx︸ ︷︷ ︸

=0

+

∫
∂v

∂y
dx︸ ︷︷ ︸

=0

+

∫
∂w

∂z
dx︸ ︷︷ ︸

=0

=

∫
qo(x)dx (A.1)

where each term on the left–hand side is found to be zero using the divergence theorem and
periodicity (the time dependence of q is ignored for simplicity). The integral of qo(x) over the
spherical suction region (i.e., sink) is equal to Qo < 0. Therefore, to satisfy the requirement
in (A.1), an injection region (i.e., source) must exist in the domain. In another word, this is
because the sucked flow cannot be supplied through periodic boundaries.

Here we have chosen to evenly spread the source over the entire space outside the spherical
sink. Therefore, the integral of qo(x) over the region outside the spherical suction region is
−Qo > 0. Because the volume of a sphere with radius R is much smaller than the volume of
the entire domain with width D = 20R, the distributed injection qo > 0 (outside the sphere)
is much weaker than the localized suction qo < 0 (inside the sphere). As a result, this choice
of source is not expected to significantly affect the flow field. Particularly, we remind the
reader that because of the third term on the right–hand side of (3.10), the (small) amount of
fluid injected into the domain at each point has the same momentum as the local momentum
of the flow. Excluding this term would have resulted in injecting fluid with zero velocity into
a point that might have non-zero local velocity, resulting in a fictitious drag. Such drag can
be significant in a strongly rotating flow where velocities are large even far from the sink
because of the (background) solid–body rotation.

Note that unlike Davey and Killworth [1989], McDonald [1992] and us, Aiki and Yama-
gata [2000, 2004] did not include the equivalent of the ρqv term on the right–hand side of



(3.10) in their shallow–water equations. Therefore, the ρqv term arising from the ∇ · (ρvv)
term on the left hand–side of (3.10) is not canceled out in the formulation presented by
Aiki and Yamagata [2000] (their equation (2.3)). However, these authors did not include
the contribution of the solid–body rotation to the velocity field of the shallow–water equiv-
alent of the uncanceled ρqv term, resulting in this term (in the rotating frame) being small
compared to the Coriolis term. As a result, Aiki and Yamagata [2000] found their results to
be insensitive to the existence of this term, and not significantly different from the results
reported by Davey and Killworth [1989].
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