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In this master thesis research project, we synthesized the Pt:TiO2-B thin films as the anode 

material for lithium-ion batteries using the pulsed laser deposition (PLD) method, which is 

a totally waterless process. Considering the poor electronic conductivity of TiO2-B, we aim 

to upgrade the electrochemical performance of TiO2-B by integrating Pt into its matrix to 

improve its electronic and ionic conductivity. By varying the oxygen partial pressure during 

the PLD synthesis, we obtained the Pt:TiO2-B thin film with different Pt content of 1.5%, 6% 

and 12% revealed by Rutherford backscattering spectrometry (RBS) analysis. Materials 

characterization techniques, including XRD and TEM, were used to verify thin films’ 

composition and structure. The as-prepared Pt:TiO2-B thin films were then used to 

assemble full cells of lithium-ion batteries (LIBs) and examined by chronopotentiometry 

and cyclic voltammetry tests. The result indicates that Pt:TiO2-B thin films present 

excellent electrochemical performance with high rate capacity and cycling stability, which 

reveals its promising application as anode materials for LIBs, and Pt dopant plays an 

important role in upgrading the TiO2-B electrochemical performance. This project suggests 
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using PLD to synthesize TiO2 based materials doped with conductive substances to 

improve its electrochemical conductivity is an effective and simple way to obtain high-

performance anode materials for lithium-ion batteries. 
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CHAPTER 1: Introduction 

1.1 Introduction to Lithium-ion Batteries 

Energy, materials, and information technology are the three pillars of contemporary 

science. Energy has always played an important role in human life. In recent years, with the 

development of world economics, people’s demand for energy storage materials has 

expanded tremendously. Battery can store electrical energy and provide electrical energy 

to other devices through energy conversion, which greatly mitigates the restriction of 

energy storage and conversion raised by climate and regional restrictions. Among them, 

lithium-ion batteries (LIBs) are now considered to be one of the most promising power 

sources for hybrid electric vehicles and electronic devices due to their high ratio capacity 

and high cycle stability. [1][2] 

In 1976, M.S. Whittingham made the first lithium-ion battery using the Li-TiS2 system. [3] 

However, it has not been successfully commercialized due to the serious safety hazards 

caused by lithium’s dendrites. In 1980, Armond first proposed the idea of replacing the 

metal lithium as anode material in the lithium battery with insertion-compound.[4] In this 

new system, both the cathode and anode materials are capable of conducting the Li-ion 

intercalation/deintercalation, which help resolve the safety problems of lithium ion 

batteries. In the meantime, Li-insertion compounds (LiMO2, M=Mn, Co, Ni) were 

synthesized successfully by Goodenough, [5] and found that lithium ions in Li-insertion 

compounds can reversibly intercalate and deintercalate. Auborn JJ successfully assembled 

the MoO2 (WO2) / LiPF6-PC/LiCoO2 rocking chair battery with good cycle stability in 1987, 

which proves that Armond's new system is feasible. [6] In 1990, SONY Corporation 

developed a lithium-ion battery using LiCoO2/graphite, which overcomes the shortcomings 
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of low cycle life and poor safety of LIBs.[7] It marks a significant breakthrough in the 

battery industry that lithium-ion batteries are commercially available. 

 

Figure 1.1 Schematic representation of rechargeable lithium-ion battery 

Lithium-ion batteries consists of four parts as shown in Figure 1.1, including cathode, 

anode, electrolyte and separator. Layered substances that can store and exchange lithium 

ions easily and quickly are generally used as lithium-ion batteries’ electrode materials. 
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Electrolyte, such as LiPF6 and LiClO4, plays an important role in transporting ions in 

lithium-ion batteries, while the main function of the separator, like glass fiber, 

polypropylene (PP) and polyethylene (PE), is to isolate the cathode and anode materials, so 

that the electrons in the lithium ion battery cannot transmit to form the short circuit, but 

the lithium ions in the electrolyte can pass freely. 

The essence of lithium-ion battery is the difference of lithium ion’s concentration in the 

system. During the charge process, lithium ions are extracted from cathode materials, 

diffused to anode through the electrolyte, and then embedded in the anode material’s 

lattice to store energy. While the lithium ions are enriched near the anode, the cathode is in 

a lean lithium state, so electrons are transmitted to the anode through external circuit to 

make the charge in an equilibrium state. Discharge is just the opposite process. Lithium 

ions are released from the anode material, diffused to cathode through the electrolyte, and 

then embedded back to the cathode material’s lattice to release energy. Thanks to the 

stable structure of the electrode materials, the intercalation/deintercalation process of 

lithium ions in the electrode materials will not damage its crystal structure but only cause a 

small change in the interlayer spacing, which ensures the reversibility of charge and 

discharge process and the stability of Li-ion batteries. During the charge and discharge 

process, lithium ions shuttle between the anode and the cathode and move like a rocking 

chair, which makes Li-ion battery also referred to as “Rocking chair battery”.[4] 

 

1.2 Cathode materials of Lithium-ion Batteries 

Since cathode materials is the original source of lithium ions in the battery, it plays a 

significant role in the system of LIBs. Li-insertion compound, such as LiCoO2, LiMn2O4 and 
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LiFePO4, which can allow fast and reversible intercalation and deintercalation of Li-ions, 

are typically used as cathode materials. 

The most commonly used cathode material is LiCoO2.[9] With practical capacity of about 

140 mAh/g, only half of the capacity of graphite as anode materials, LiCoO2 has been 

studied extensively by doping and coating to enhance its electrochemical performance. 

Higher capacity of the cathode or the anode will result in higher capacity of LIBs. In 

addition, cobalt is rare and very expensive, so it will greatly increase the cost of production 

of LIBs, which is not commercially favorable for the application of LIBs. Researchers 

dedicate to synthesize Li-insertion compound with lower content of cobalt and nickel and 

higher content of other easily available transition metals to lower the cost of cathode 

materials. High-performance cathode material that can be put into practical use is still 

being researched and developed. 

 

1.3 Anode materials of Lithium-ion Batteries 

Anode material is another core factor that matters the performance of LIBs. Three kinds of 

mechanism exist for anode material’s role in LIBs. [11] 

1) Intercalation materials, which have relatively low practical capacity but good cycling 

stability, including graphite, TiO2 based materials and carbon-based materials, that 

have channels or layered space to accommodate Li-ion’s intercalation and 

deintercalation.  

2) Alloy materials, like Si and SnO2 that have large specific capacity but poor cycling life 

because of the large volume expansion and distraction in the process of Li-ion’s alloying 

and dealloying. 
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3) Conversion materials, such as transition metal oxides (Fe2O3, MnO2, CuO), sulphides, 

nitrides and phosphides with large theoretical capacity but poor cycling performance 

due to the poor electrical conductivity and unexpected side reactions. These materials 

will react with Li-ions to form lithium compounds during the charge process. 

Graphite is currently the mainstream commercial anode material of LIBs in electronic 

devices and electric vehicles. [12][13] However, practical application of LIBs has been 

greatly limited owing to the use of graphite anodes. [2] Its specific capacity has reached the 

limit and cannot meet the continuous large-current discharge capability required for large-

scale power batteries which will lead to safety issues. [14] Research on viable methods to 

synthesize alternate anode materials with higher reversible capacity and cycling stability 

still needs to be carry out. 

 

1.4 Introduction to TiO2-B 

Titanium dioxide (TiO2) is a wide-used semiconductor material in many different 

applications. Developing anode material with good performance upon cycling is crucial for 

improving LIBs’ performance, researchers have dedicated to studying TiO2 as anode 

material because of its low cost, small volume change, environmental benignancy, high 

reversible specific capacity and chemical stability. [15][16][17][18] Moreover, TiO2 has 

relatively high working voltage, so that the battery can effectively inhibit the formation of 

the solid electrolyte interphase (SEI) on the anode surface during the charging and 

discharging process, thereby improving the safety performance of the battery. There exist 

eight different kinds of TiO2 crystals, [19][20][21][22][23][24] some of which are 
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extensively used for LIBs’ research, such as rutile and anatase. The mechanism of lithium 

ion’ s insertion and extraction process in TiO2 is shown below. 

xLi++TiO2+xe- ⇌LixTiO2 

Phase Space group Density(g/cm3) Lattice parameters(Å) 

Anatase I41/amd 3.79 a=3.78, c=9.51 

Rutile P42/mnm 4.13 a=4.59, c=2.96 

Brookite Pbca 3.99 a=9.17, b=5.46, c=5.14 

TiO2-B C2/m 3.62 a=12.18, b=3.74, c=6.52, β=107.05° 

TiO2-Ⅱ Pbcn 4.33 a=4.52, b=5.5, c=4.94 

TiO2-Ⅲ P21/c 3.79 a=4.64, b=4.76, c=4.81, β=99.2° 

TiO2-H I4/m 3.46 a=10.18, c=2.97 

TiO2-R Pbnm 3.87 a=4.9, b=9.46, c=2.96 

Table 1.1 Structure parameters of eight kinds of TiO2 polymorphs  

Among all the TiO2 polymorphs, the bronze polymorph of titanium dioxide (TiO2-B) is an 

excellent option for anode materials of LIBs because of its open structure and channel 

which are conducive to fast insertion and extraction process of lithium ions by a 

pseudocapacitive Faradaic process. [25][26][27] It was first synthesized by Marchand 

using hydrothermal method in 1980. [22] TiO2-B’s crystal structure belongs to monoclinic 

crystal system; the crystal structure of TiO2-B is shown in the upper row of Figure 1.2. It is 

composed of TiO6 octahedra that share edges and corners, and possesses open channels 

along the b-axis, which is favorable for the lithium-ion’s intercalation and deintercalation 

process. 
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Figure 1.2 Crystal structure of TiO2-B and Ca:TiO2-B 

Upper row: Crystal structure of TiO2-B projected along: (a) [100] direction; (b) [010] 

direction; (c) [001] direction; Lower row: Crystal structure of Ca:TiO2-B projected along: (a) 

[100] direction; (b) [010] direction; (c) [001] direction. [25] 

CaTi5O11 (Ca:TiO2-B) is a template layer used to stabilize TiO2-B since Ca could stabilize the 

structure of TiO2-B so that TiO2-B could be deposited stably on SrTiO3 substrate. Anatase 

phase, rather than TiO2-B, will be obtained if we directly deposit pure TiO2 on SrTiO3 

substrate, [28] but highly crystalline TiO2-B will form on the a-b plane of CaTi5O11 layer by 

depositing pure TiO2 on the CaTi5O11 layer above the SrTiO3 layer, due to the closely related 

lattice structure between Ca:TiO2-B and TiO2-B phases. [25] The crystal structure of 

Ca:TiO2-B is shown in the lower row of Figure 1.2, which is a variant phase of TiO2-B 
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structure with additional Ca atoms and superlattice twinning in essence. It belongs to 

orthorhombic crystal system and has lattice parameters of a=12.1702 Å, b=3.8012 Å, 

c=17.9841 Å. Open channels along b-axis are also visible in the Ca:TiO2 structure. Thus, it 

will be conducive to the transport of Li-ions during the charge and discharge process. 

However, as a semiconductor material, TiO2-B has low electronic and ionic conductivity 

and has relatively low theoretical capacity, which limits its application as a potential high-

performance anode material. Researchers have tried to incorporate TiO2-B with conductive 

materials, such as carbon nanotubes(CNTs) and reduced graphite oxide(RGO), to improve 

electronic conductivity and accelerate the lithium ion transmission speed, thus to enhance 

the electrochemical performance of TiO2-B. [29][30][31][32][33] Nevertheless, TiO2 on the 

CNTs and RGO surface will still subject to the huge volume change and decomposition 

during the charging and discharging process, which results in the degradation of electrode 

materials as cycling. [34] Another way to promote the performance of TiO2 is to use 

nanocrystalline TiO2 as anode materials. [35][36] When material size is reduced to the 

nanometer level, it can effectively shorten the diffusion distance of lithium ions and 

electrons, increase the specific contact area between the electrolyte and the electrode. 

Therefore, it can improve the electrochemical performance of TiO2. In recent years, TiO2 

has been extensively studied in various forms, such as nanotubes, nanowires, nanoparticles 

and nanosheets. [37][38][39][40] The challenge is that such measures can only change the 

electrical conductivity between the surface of the electrode and adjacent ions, but the 

intrinsic resistance of TiO2 is not effectively improved. 
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1.5 Objective and Outline of this thesis 

Herein, we intend to upgrade the electrochemical performance of TiO2-B by doping Pt 

inside TiO2-B matrix[41]. In this project, we change the Pt content in TiO2-B thin films by 

varying the oxygen partial pressure in order to find the most suitable preparation 

environment of Pt:TiO2-B, and hence to better the electrochemical performance of Pt:TiO2-

B. Crucially, we prepare TiO2-B with a waterless process[25] rather than hydrothermal 

methods which is typically used [40][42][43][44][45][46][47], but it will introduce water 

into the TiO2-B lattice structure which will result in the randomized crystal orientation and 

impurity of TiO2-B lattice [48]. Thus, we can dope the pure TiO2-B with Pt, which lay a solid 

foundation for its application in LIBs. Using epitaxial crystalline TiO2-B films, grown by 

pulsed laser deposition (PLD), it shows that by increasing the oxygen partial pressure in 

pulsed laser deposition, Pt content decreased in TiO2-B films. Our results show that Pt:TiO2-

B thin films present excellent electrochemical performance with high rate capacity and 

cycling stability, which reveals its promising application as anode materials for LIBs. 

 

This thesis consists of the following chapters: 

CHAPTER 1: Introduction                              

CHAPTER 2:  Synthesis and characterization of Pt:TiO2-B thin film                                   

CHAPTER 3:  Results and discussion 

CHAPTER 4:  Conclusions and future work 
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CHAPTER 2: Synthesis and characterization of Pt:TiO2-B thin film 

2.1 Introduction 

In this chapter, methods and experimental procedures of synthesis and characterization of 

Pt:TiO2-B thin film are discussed. Pulsed laser deposition (PLD), a totally waterless process, 

is used to deposit Ca:TiO2-B and Pt:TiO2-B on (100) SrTiO3 substrate. Rutherford 

backscattering spectrometry (RBS), Hall measurement, X-ray diffraction (XRD) and 

Transmission electron microscopy (TEM) are tested for analysis of chemical composition 

and structural characterization of the as-prepared Pt:TiO2-B thin film. 

Chronopotentiometry and Cyclic Voltammetry (CV) tests are carried out to test the 

electrochemical performance of Pt:TiO2-B as anode material of Lithium ion batteries. 

 

2.2 Epitaxial growth by pulsed laser deposition (PLD) 

Epitaxial growth refers to the deposition of a crystalline overlayer on a crystalline 

substrate with the same crystal orientation. Ca:TiO2 and Pt:TiO2 thin films used in this 

thesis were prepared in the same way as our group’s previous experiments[25][41]. The 

CaTi4O9 sample applied to grow Ca:TiO2-B thin films were prepared by blending 80% TiO2 

and 20% CaO powders, sintering at 1400℃, and pressed into a pellet under the force of 

10000lb. The Pt:TiO2 sample used for Pt:TiO2-B thin film growth was prepared by mixing 

50% of TiO2 and 50% PtO2 powder and treated in the same way as preparing CaTi4O9 

sample. At a repetition rate of 10Hz, a 248-nm KrF excimer laser with a pulse duration of 

22ns and a fluence of ~3.4J·cm-2 was used for pulse laser deposition under a base pressure 

of <10-7 Torr. Ca:TiO2-B thin film was deposited on a (100) SrTiO3 substrate at 800℃ in the 

oxygen ambient of 0.05Torr for an hour, while the Pt:TiO2-B thin film was deposited on the 
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same substrate at 550℃ in the oxygen ambient of 6mTorr, 16mTorr, 50mTorr for an hour, 

respectively, which corresponds to 12%, 6%, 1.5% of Pt content in each Pt:TiO2 sample, 

respectively. Results are revealed by Rutherford backscattering spectrometry (RBS) 

analysis[41]. 

 

2.3 Composition and Structural characterization 

Rutherford Backscattering Spectrometry (RBS) was conducted in a Tandetron high voltage 

particle accelerator at Michigan Ion Beam Laboratory. TiO2-B and Pt:TiO2-B samples are all 

cut into 6*6mm pieces. From a deuterium source, A 30°beamline was energized at 1MeV 

under room temperature. The experimental spectra were fitted using the SIMNRA software 

to obtain elemental information; we set Pt, Ti, O compositions as the variable parameters in 

the software.  

Hall effect measurement of Pt:TiO2-B samples was conducted on MMRH-50 Hall and 

measurement system at Michigan University in the Vander Pauw configuration, [49] which 

aims to measure the electrical properties of Pt:TiO2-B thin films. Formulas to calculate the 

resistivity (ρ), carrier concentration (n) and Hall mobility (μ) are shown below. 
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Rs is the sheet resistance, d is the film thickness, f is the sample geometry factor, which 

takes the value between 0-1, ns is the sheet carrier density and e is the elementary charge. 

The X-ray diffraction(XRD) patterns were obtained on a Rigaku rotating-anode 

diffractometer and Rigaku smart-lab X-ray diffractometer using the parallel beam optics 

within 2θ range from 7°to 80°. The X-ray generator was operated at 40kV and 44mA 

using Cu Kα radiation (λ = 0.15406 nm). Films’ thicknesses were measured by a Veeco 

Dektak profilometer and confirmed with TEM images. The thickness value is used to 

calculate the mass of anode materials and specific capacity for electrochemical test. Using a 

JEOL JEM 2100F TEM and JEOL Grand Arm-300CF TEM equipped with a spherical 

aberration corrector (Cs-corrected) operated at 300kv, we observe the morphology and 

microstructure of the as-prepared Pt: TiO2-B thin films. Cross-sectional TEM samples were 

prepared by using the Allied High Tech Multiprep system and Gatan PIPS (Precision ion 

polishing system), since well-prepared TEM specimens is the foundation for high quality 

TEM images. 

 

2.4 Electrochemical test 

Electrochemical tests aim to understand the process of Li-ion’s intercalation and 

deintercalation in the electrode, which relates to the electrochemical performance of 

electrode materials. To find out the electrochemical performance of Pt:TiO2-B thin film as 

anode materials, thin films were assembled in full cells, in which metallic Li acts as counter 

and reference electrode. Battery cells were assembled in a glove box filled with argon, with 

O2 and H2O levels below 2 and 1 ppm, respectively. The assembly schematic diagram of test 

cells is shown in Figure 2.1. Electrochemical experiments were tested at room temperature 
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on a Princeton Applied Research VersaSTAT MC 4-channel system operating in the 

galvanostatic mode using lithium metal anode, non-aqueous electrolyte (1mol LiPF6 in 

ethylene carbonate: dimethyl carbonate 1:1(v/v), Sigma-Aldrich) and an l.55mm-thick 

glass fiber separator between two electrodes. The structure of EL-Cell ECC-Std 

electrochemical cell and Princeton Applied Research VersaSTAT multichannel 

electrochemical testing system are shown in Figure 2.2 and 2.3. The potentiostat possesses 

five electrode lead, including working electrode (WE, electrode material of interest) lead, 

counter electrode (CE) lead, sense electrode (SE, usually connects to the working 

electrode, which combination often referred to as the working-sense) lead, reference 

electrode (RE, measures/controls the voltage between itself and the sense electrode) lead 

and ground lead. Batteries, capacitors and fuel cells are generally connected using the two-

electrode connection as shown in Figure 2.4(a). Aqueous electrochemistry experiments and 

EIS experiments are usually connected using the three-electrode connection shown in 

Figure 2.4(b), while some specific experiments might require four-electrode connection as 

shown in Figure 2.4(c). All electrochemical experiments in this thesis adopt the two-

electrode connection. Cycled cells were separated in the same glove box, and post-cycling 

films were washed in dimethyl carbonate (obtained from Sigma-Aldrich) three times and 

dried in the fume hood overnight before XRD and TEM tests. 

The electrochemical experiment data of Ca:TiO2-B and Pt:TiO2-B thin films as anode 

material are all obtained on VersaStudio software and tested by the VersaSTAT system. 

Figure 2.5 and 2.6 show the screenshot of the VersaStudio software in 

Chronopotentiometry and Cyclic Voltammetry (CV) experiment on Pt:TiO2-B thin film.  
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In order to conduct the chronopotentiometry experiment, the first step is to calculate the 

1C current for the electrode material of interest. For the Ca:TiO2-B sample, it has a 

theoretical density of 3.637 g cm-3 and a specific capacity of 294mA h/g,  so a 160nm thick 

Ca:TiO2-B thin film with the area of 0.243cm2 has a theoretical capacity of: 

160×10-7cm×0.243cm2×3.637g/cm3×294mAh/g=4.16×10-3 mAh 

Since 1C refers to full charge or discharge its capacity in one hour, 1C current equals to 

4.16uA for this sample. For Pt:TiO2-B thin films, it is difficult to calculate the theoretical 

weight of each sample with Pt dopant. And to measure the actual mass by a balance is not 

applicable with the mass of several micrograms. Calculation on Pt:TiO2-B thin films’ 

chronopotentiometry experiments will be discussed later after obtain the RBS result of the 

chemical composition of targeted materials to calculate the sample weight so that 1C 

current of each sample could be calculated.  

The battery capacity of each sample is calculated by multiplying the time period (h) with 

the current (mA); the specific capacity is obtained by dividing the battery capacity by the 

mass of each sample. The Coulombic efficiency of electrode materials for lithium ion 

batteries is defined as below. 

Coulombic efficiency= lithium ions that can be extracted/ lithium ions that can be stored, 

which also equals to the value of discharge capacity over charge capacity. The higher the 

value of Coulombic efficiency is, the better the cycle stability of the electrode material will 

be, with more Li ions could be constantly extracted from the electrode material. 
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Figure 2.1 Assembly schematic diagram of test cells. 

 

Figure 2.2 Structure of EL-Cell ECC-Std electrochemical cell. https://el-cell.com/ 

https://el-cell.com/
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Figure 2.3 Princeton Applied Research VersaSTAT multichannel electrochemical testing 

system. https://www.ameteksi.com/ 
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Figure 2.4 Three kinds of electrode connection (a)Two electrode connection; (b)Three 

electrode connection; (c)Four electrode connection. https://www.ameteksi.com/ 

 

https://www.ameteksi.com/
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Figure 2.5 Screenshot of VersaStudio software in a chronopotentiometry experiment on 

Pt:TiO2-B thin film. The 1C current is set as 1.36uA and the voltage range is 1-3V. 
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Figure 2.6 Screenshot of VersaStudio software in a Cyclic Voltammetry experiment on 

Pt:TiO2-B thin film. The voltage range is 1-3V and the scan rate is 0.1mV/s. 
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CHAPTER 3: Results and discussion 

3.1 Rutherford Backscattering Spectrometry (RBS) 

P(O2) (mTorr) Pt(at%) Ti(at%) O(at%) X in TiOx 

6 12 30 58 1.9 

30 6 33 61 1.8 

50 1.5 33.5 65 1.9 

Table 3.1 RBS analysis of the chemical composition of Pt:TiO2 thin films versus P(O2) [41] 

 

Figure 3.1 RBS result of Pt:TiO2 thin films. 
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According to Rutherford Backscattering Spectrometry result in Table 3.1 and Figure 3.1, Pt 

peak can be clearly identified and we can easily find that with the increase of oxygen partial 

pressure in pulsed laser deposition, Pt content, which corresponds to the density of Pt:TiO2 

thin films, decreased in TiO2-B films, so the Pt peak is more pronounced with lower oxygen 

partial pressure. This phenomena might result from the presence of oxygen vacancies, 

[50][51][52] these vacancies will perform as potential sites for the growth of Pt 

nanoparticles. [41][53][54] Thus, higher P(O2) will result in lower Pt content in Pt:TiO2-B 

thin films. 

 

3.2 Hall effect measurement 

Table 3.2 Hall effect measurement of Pt:TiO2 thin films 

 

 

6mT O2 

Pt-TiO2-B 

 (12% Pt) 

30mT O2 

Pt-TiO2-B 

 (6% Pt) 

50mT O2 

Pt-TiO2-B 

 (1.5% Pt) 

Film Thickness 

d (nm) 
58.6 29.2 30  

Carrier Conc. 

n (cm-3) 
7.27×1013 4.01×109 2.22×109 

Resistivity 

ρ(Ω·cm) 
1.40×104 6.29×104 1.16×105 

Mobility 

μ (cm2/V·s) 
6.13 -- too resistive -- too resistive 
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The result of Hall effect measurement reveals that 12% Pt content can increase the 

conductivity of Pt:TiO2 thin films, while 6% Pt content’s enhancement on conductivity is 

not large enough to be measured. It should be noticed that these resistive thin films will 

bring unexpected experimental error when conducting the electrochemical test. Since both 

the SrTiO3 substrate and the Pt:TiO2 thin films are not conductive, copper foil warp has to 

be added when assembling the full cell to make the whole system works, which might 

influence the electrochemical performance of Pt:TiO2 thin films. 

 

3.3 X-Ray Diffraction (XRD) 

 

Figure 3.2 XRD pattern of as-prepared Pt:TiO2-B thin films on (100) SrTiO3 substrate with 

Pt content of 1.5%, 6% and 12%. 
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Figure 3.2 shows the θ–2θ X-ray diffraction (XRD) pattern of as-prepared Pt:TiO2-B thin 

film with different Pt content. Ca:TiO2-B, TiO2-B and SrTiO3 substrate can be clearly 

discerned in the XRD pattern, and Pt peak can also be identified in the Pt:TiO2-B thin films 

with Pt content of 12%, but lower Pt content cannot be recognized in the XRD pattern due 

to the insufficient amount of Pt in the sample. 

 

Figure 3.3 XRD pattern of post-cycling Pt:TiO2-B thin films on (100) SrTiO3 substrate with 

Pt content of 1.5% and 6%. 

 

The potential anode materials’ response to long cycling was examined by XRD to check if 

there are any changes of phases after intensive cycling. After cycling for thousands of times, 

compared with the XRD pattern of as-prepared Pt:TiO2-B thin films, XRD pattern of post-

cycling Pt:TiO2-B thin films, as shown in Figure 3.3, are essentially unchanged, which 

indicates that most phases of Pt:TiO2-B thin film are kept the same during the charge and 
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discharge process. Thus, Pt:TiO2-B thin film is stable as anode material for lithium-ion 

batteries.  
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3.4 Transmission Electron Microscopy (TEM) 

 

Figure 3.4 STEM-HAADF images of Ca:TiO2-B and Pt:TiO2-B thin films on (100) SrTiO3 

substrate grown under oxygen partial pressures of 6, 16 and 50 mTorr, which equals to Pt 

content of 12%, 6%, 1.5%, respectively. [41] 
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Figure 3.5 STEM-HAADF images of Pt:TiO2-B thin film grown under 16mTorr on (100) 

SrTiO3 substrate templated with Ca:TiO2-B. 

 

Figure 3.6 (A-C) High-resolution HAADF images of Pt nanoparticles under various oxygen 

partial pressures of 6, 16 and 50mTorr. 

In order to change different Pt content in the Pt:TiO2-B thin films, three different oxygen 

partial pressure-p(O2), which was kept below 100mTorr to hinder the formation of Pt 

oxide, was used for Pt:TiO2-B thin films growth. An overview image of as-prepared 

Ca:TiO2-B and Pt:TiO2-B thin films on (100) SrTiO3 substrate under different oxygen partial 

pressure is shown in Figure 3.4. From the STEM-HAADF (Scanning Transmission Electron 
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Microscopy-High-Angle Annular Dark Field) image, with the increase of oxygen partial 

pressure in pulsed laser deposition, Pt’s distribution become more scarce in Pt:TiO2-B thin 

films. We can clearly see the layered structure of Pt:TiO2-B thin film on (100) SrTiO3 

substrate templated with Ca:TiO2-B in Figure 3.5 and the layer thickness of Pt:TiO2-B can 

also be verified in the STEM image. From the high-resolution HAADF images of Pt 

nanoparticles in Figure 3.6, Pt nanoparticles’ crystallographic change raised by different 

oxygen partial pressure can also be identified. 
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3.5 Chronopotentiometry tests 

For the C-rate currents used for chronopotentiometry tests of Pt:TiO2-B thin films were 

calculated based on theoretical capacity of TiO2-B of 335 mA h/g. and theoretical density of  

3.616g/cm3, and platinum’s theoretical density is 21.45 g/cm3. 

According to the RBS result, the Pt:TiO2-B thin film with Pt content of 1.5% has 33.5% Ti 

and 65% O. The mass of the sample is 4.06*10-6g as calculated as below. 

The sample’s area is 0.278 cm2 and it has the thickness of 30nm, so the sample’s volume is 

8.35*10-6cm3. 

V%=atomic weight% / density 

VTiO2-B%=(0.335*47.87g/mol+0.65*16g/mol)/3.616g/cm3=7.311 

VPt%=0.06*195.078/21.45=0.546 

VTiO2-B=(7.311/(7.311+0.546))* 8.35*10-7 =7.77*10-7 cm3 

MTiO2-B=7.77*10-7 cm3*3.616g/cm3=2.81*10-6 g 

VPt=(0.546/(7.311+0.546))* 8.35*10-7 =5.80*10-8 cm3 

MPt=5.80*10-8 cm3*21.45 g/cm3=1.25*10-6 g 

Mtotal =MTiO2-B+ MPt=4.06*10-6 g 

Thus, it has a theoretical capacity of 4.06*10-6 g *335mAh/g=1.36×10-3 mAh. Since 1C 

refers to full charge or discharge its capacity in one hour, 1C current equals to 1.36uA for 

this sample. 

The Pt:TiO2-B thin film with 6% Pt, 33% Ti and 61% O has the weight of 4.405*10-6g and 1C 

current of 1.137uA, calculated in the same fashion as above. And the Pt:TiO2-B thin film 

with 12% Pt, 30% Ti and 58% O has the weight of 5.20*10-6g and 1C current of 1.74uA. 
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Figure 3.7 Galvanostatic charge-discharge profiles of Ca:TiO2-B (a) and Pt:TiO2-B thin films 

on (100) SrTiO3 substrate with (b) 1.5% (c) 6% (d) 12% Pt content at each current rate 

from 1C to 120C and then return to 1C. 

 

Figure 3.7 presents the first galvanostatic charge-discharge curves of Ca:TiO2-B and Pt: 

TiO2-B thin film with Pt content of 1.5%, 6% and 12% at each current rate from 1C to 120C 

and then return to 1C, the largest charge capacity among them can reach over 800 mAh/g 

for the Pt:TiO2-B thin film with Pt content of 6% in the first cycle, which doubles the 

theoretical capacity of TiO2-B, but the first discharge capacity is only 583.71 mAh/g, so the 

coulombic efficiency only reaches 70%, signifying a high irreversible capacity in the first 

cycle. This phenomenon can be ascribed to the formation of solid electrolyte interface (SEI) 

layer at the surface of the anode material in the first cycle. [55]SEI layer is formed by the 

reaction between anode materials and electrolyte. Some irreversible capacity is created 

during this process, which results in the high value of the discharge capacity. The formation 

of SEI layers has a critical impact on the performance of the electrode material. 

[56][57][58][59] On the one hand, the formation of SEI film consumes part of the lithium 

ion, so that the irreversible capacity of the first charge and discharge process is increased, 

and the charge and discharge efficiency of the electrode material is lowered; On the other 

hand, the stable SEI layer is insoluble in organic solvents, so that it can be stably present in 

an organic electrolyte solution, and the solvent molecule cannot pass through the 

passivation layer, thereby effectively preventing co-intercalation of solvent molecules and 

avoiding the damage caused by the embedded electrode material, thus greatly improving 

the cycle performance and lifetime of the electrode. 
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It is very prominent that Pt:TiO2-B thin film with different Pt content all have significantly 

larger specific capacity than pure Ca:TiO2-B thin film, which indicates that Pt can effectively 

improve the electrochemical performance of TiO2-B thin film. One possible explanation to 

this phenomenon is that Pt can increase the electronic and ionic conductivity in the 

lithium-ion battery system so that more lithium ions can be transported in and out of 

anode materials,  but detailed mechanism of enhancement still needs to be investigated by 

in-situ XRD and TEM to deduce the role of Pt played in the charge and discharge process. 

Another possible reason for such high specific capacity might relates to the double-layer 

charging, which is a non-Faradic process. [60] When the electrode materials touch the 

electrolyte, causing the charges to be arranged and allowing Li-ions to be stored near the 

surface of electrode except for the part that intercalated into the crystal structure. Thus, 

this double-layer charging process will significantly increase the specific capacity of 

electrode materials. 

With the current increased from 1C to 120C, the specific capacity of all four samples 

decreased considerably because only a small amount of Pt:TiO2-B thin film near the 

electrode surface can actually be lithiated at high current rate. When the current rate was 

reset back to 1C, both the Pt:TiO2-B thin films with the Pt content of 1.5% and 12% can still 

retain high specific capacity of nearly 90%, which shows excellent endurance of this 

potential anode material. Even though the Pt:TiO2-B thin film with the Pt content of 6% has 

high specific capacity up to more 800 mAh/g in 1C current, but its capacity drops much 

more severe than the other two Pt: TiO2-B thin films. When the current rate rises to 120C, it 

only has specific capacity of 18.43 mAh/g, which is not favorable for its application that 

requires fast charge and discharge capabilities. However, both the Pt:TiO2-B thin films with 
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the Pt content of 1.5% and 12% can still maintain about 100 mAh/g at 120C current rate, 

which reveals the superiority of these two materials as anode materials for LIBs. 

 

Figure 3.8 Specific capacities of Ca:TiO2-B and Pt:TiO2-B thin film on (100) SrTiO3 

substrate with 1.5%, 6% and 12% Pt content at a charge-discharge rate of 10C for 100 

cycles. 

 

Cycling stability is another important aspect for the evaluation of electrode materials. 

Therefore, each sample were charged and discharged at the current rate of 10C for 100 

cycles to test its cycling stability as shown in Figure 3.8, the specific capacity can still 

maintain at nearly 300 mAh/g for the Pt:TiO2-B thin film with Pt content of 1.5% and 12% 
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in the 100th cycle under 10C current rate, while the specific capacity of  Pt:TiO2-B thin film 

with Pt content of 6% has decreased to roughly 200 mAh/g and Ca:TiO2-B possesses much 

lower specific capacity down to about 55 mAh/g under the same treatment. Thus, Pt:TiO2-B 

thin films with 1.5% and 12% Pt content have better electrochemical performance in 

capacity retention than pure Ca:TiO2-B and Pt:TiO2-B thin film with Pt content of 6% under 

long cycling test. In additional, we can find out that all the potential anode materials 

maintain high coulombic efficiency of almost 97% in most cycles. The capacity loss and low 

coulombic efficiency in the first ten cycles is visible in samples of both Ca:TiO2-B and 

Pt:TiO2-B thin film due to their low electronic conductivity. After 10 cycles, however, the 

capacity loss is much lower than the first 1o cycles and the coulombic efficiency restored to 

nearly 97% for Ca:TiO2-B and Pt:TiO2-B thin film with Pt content of 1.5% and 12%, but the 

one with Pt content of 6% has relatively lower coulombic efficiency around 95%. 
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3.6 Cyclic Voltammetry (CV) tests 
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Figure 3.9 Cyclic voltammetry (CV) curves of Ca:TiO2-B (a) and Pt:TiO2-B thin film on (100) 

SrTiO3 substrate with (b) 1.5% (c) 6% (d) 12% Pt content from 1.0V-3.0V at scan rates 

from 0.1mV/s to 1mV/s. 

 

Lithium ion’s intercalation and deintercalation process of the as-prepared anode material 

are revealed by the cyclic voltammetry (CV) measurement. In the CV graphs in Figure 3.9, 

we can find that there is an evident peak located at 1.25V, which should also be attributed 

to the formation of SEI layer at the surface of the anode material[55]. These peaks 

disappeared after three cycles which indicates that SEI layer can segregate the anode 

material from electrolyte to prevent further reaction between the electrolyte and anode 

materials. A pair of redox peaks at roughly 1.5 V and 1.75V can be noticed in the sample 

with Pt content of 1.5%, which represents the pseudocapacitive Li+ intercalation and 

deintercalation process of TiO2-B, respectively. [27][40] The other two Pt:TiO2-B samples 

have redox peaks at roughly 1.5V and 2.0V, which also corresponds to the Li-ion insertion 

and extraction process in TiO2 lattice.[55] The specific capacity of each sample calculated 

by integrating the cyclic voltammograms fit well with the value obtained by 

chronopotentiometry tests. 
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CHAPTER 4: Conclusions and Future work 

In conclusion, Pt:TiO2-B thin film was prepared by PLD (pulsed laser deposition) 

successfully verified by TEM images and is an potential candidate for anode material of 

LIBs. It is reasonable to conclude that Pt dopant plays an important role in upgrading the 

TiO2-B electrochemical performance as anode material of LIBs. Among all the three Pt:TiO2-

B thin films with Pt content of  1.5%, 6% and 12% we prepared, the one with Pt content of 

1.5% has the best electrochemical performance up to 668.2 mAh/g in 1C current and still 

has specific capacity of 603.66 mAh/g after intensive cycling. But the mechanism of 

enhancement by such a small amount of Pt still needs to be investigated by more advanced 

techniques, such as in-situ XRD and TEM, since the electronic conductivity is not improved 

measurably by Hall effect measurement. The Pt:TiO2-B thin film with Pt content of 12%, 

whose conductivity has been improved significantly, also shows good electrochemical 

performance that is comparable to the one with Pt content of 1.5%, which proves our initial 

hypothesis for this project. The Pt:TiO2-B thin film Pt content of 6% has relatively poor 

performance compared with the other two samples, while it is still far superior than pure 

Ca:TiO2-B thin film. 

Our work provides a candidate high-performance anode material for lithium-ion batteries. 

Coupled with other high-performance cathode material, such as LiFePO4 and other 

modifications, [1][38]that can express the entire capacity of Pt:TiO2-B thin film, these two 

material will become a promising combination of electrode materials for lithium-ion 

batteries. In addition, doping conductive substances inside TiO2 matrix is an effective way 

to elevate the electrochemical performance of TiO2-based materials with low electronic and 

ion conductivity as anode materials. Pulsed laser deposition, a waterless synthesis method, 
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should also be paid more attention considering its advantage over traditional 

hydrothermal method when preparing high-quality crystalline TiO2-B thin film. This thesis 

project would be instructive for the improvement of electrode materials with poor 

electronic conductivity for lithium ion batteries. 

Future work on relative projects should focus on finding proper and effective dopant 

materials and synthesis procedures for improvement on conductivity and explaining the 

mechanisms of conductive substances played in the enhancement. 
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