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Abstract 

The control-of-variables strategy is often considered to be the 

superior strategy when children learn from experiments. 

However, by simulating Bayesian likelihoods of outcomes 

from a water displacement task, we show that certain 

confounded comparisons may support belief revision better 

than controlled comparisons. We tested this assumption by 

experimentally varying the types of comparisons that 

participants observed in a learning task involving balls of 

different sizes and materials (N = 90, age range 6- to 9-yrs). 

In the Size, Material, and Mixed conditions we presented 

controlled comparisons. In the Confounded Incongruent 

Condition, we presented confounded comparisons in which 

the larger ball was made of the heavier material. In line with 

our hypotheses, children in the Confounded Incongruent 

Condition revised their beliefs more than children in the other 

conditions, as indicated by higher transfer test scores. These 

findings suggest that confounded comparisons may in fact 

sometimes provide more optimal information for learning. 

Keywords: control-of-variables strategy; science learning; 
Bayesian computational modeling; virtual simulation 

Introduction 

As part of inquiry-based science instruction, experiments can 

be an effective way to learn about scientific phenomena 

(Minner et al., 2010). The logic is that when learners conduct 

or observe experiments, or interpret their results, they can 

learn about the involved phenomena. In the context of such 

learning experiments, the control-of-variables strategy (CVS; 

Chen & Klahr, 1999) is generally considered the gold 

standard. In this strategy, only the variable of interest is 

varied, while all other variables are held constant. Because 

this strategy is central to confirm causal effects in scientific 

experiments, it has been assumed that it is also central to 

learning from experiments in an educational setting. 

Accordingly, research in science learning has focused mainly 

                                                           
1 “Volume” and “density” would be the more physically accurate 

terms. However, as this is not a physical study, we will use the more 

intuitive and simple terms “size” and “material”.  

on investigating how to foster CVS as a skill (Schwichow et 

al., 2016), rather than questioning its superiority as a general 

learning strategy. 

However, the philosophical community has argued that one 

can also learn from “soft interventions”, i.e., interventions 

that change the value of one variable without necessarily de-

confounding other variables (see, e.g. Eberhardt & Scheines, 

2007). Cognitive Developmentalists have similarly pointed 

to noisier forms of interventions to support learning. For 

example, Gopnik and Wellman (2012) claimed that 

informative interventions “need not be the systematic, 

carefully controlled experiments of science” and that “even 

less controlled interventions can be extremely informative 

about causal structure“ (Gopnik & Wellman, 2012, p.18).  

To explore how learners reason about different possible 

causal associations, powerful tools for analyzing the 

informativeness in learning experiments have been 

developed. In particular, Bayesian computational models of 

learning provide a framework for considering how a learner 

might probabilistically evaluate competing causal beliefs in 

light of evidence. These models have helped to characterize 

and explain the causal learning of children and adults alike 

(e.g. see Gopnik & Tenenbaum, 2007, Gopnik & Bonawitz, 

2014 for a review).  

In the present study, we show that confounded 

interventions can be not only as informative, but even more 

informative, than controlled interventions. We first use 

Bayesian methods to provide a logical and mathematical 

basis for this argument. We then provide empirical support 

for this hypothesis by reporting results from a science 

learning study. The paradigm and learning context were 

based on a study by Theobald and Brod (2021). We used a 

virtual learning environment in which two balls of different 

size (small, medium, large) and material1 (polystyrene, wood, 

iron) were shown above water containers with equal amounts 

of water. Elementary school children were presented with 

confounded or controlled comparisons and were asked to 
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predict which of the balls displaces more water on a 5-point 

scale (left, rather left, equal, rather right, right). Then, 

participants were shown an animation of the outcome. 

Learning from confounded and controlled 

experiments 

If certain conditions are met, i.e. if all explanatory variables 

are independent of each other and if we have no prior 

assumptions about the causal relationships between these 

variables and the outcome, the CVS will always be superior. 

In natural learning situations, however, these conditions are 

almost never met. First, children hold specific assumptions 

about natural phenomena in order to explain their everyday 

experiences. These assumptions can sometimes be inaccurate 

(Confrey, 1990; Vosniadou & Ioannides, 1998). For 

example, in the domain of water displacement, elementary 

school children typically believe that the mass, rather than the 

volume, of an object determines how much water it displaces 

(Dawson & Rowell, 1984; Linn & Eylon, 2000; Piaget & 

Inhelder, 1978). 

Second, children’s reasoning takes place in the context of 

more abstract framework theories (Carey, 2000; Keil, 1991; 

Wellman & Gellman, 1992; Gopnik & Meltzoff, 1997; 

Vosniadou, 1994). These framework theories define which 

concepts or causal relationships are considered during 

learning. For example, children apparently have a “more 

causes more” heuristic. As a result, they appear to consider 

only positive associations between the variables involved 

(size, material, mass) and the amount of displaced water. That 

is, they may not consider the hypothesis that smaller objects 

displace more water than larger ones. 

Third, the physical world is full of interrelated variables 

that are potentially relevant to a given phenomenon. For 

example, the mass of an object is the product of its volume 

and its density. Thus, if either volume or density is varied, 

mass will necessarily be varied as well. This means that the 

CVS may not be readily applicable in such a case2. In 

summary, learners’ preconceptions about scientific 

phenomena, their framework theories, and the 

interrelatedness of variables uniquely characterize reasoning 

in the context of science learning. 

How do these characteristics affect the adequacy of the 

CVS? In our example of water displacement, consider a 

learner who believes that mass determines water 

displacement, but is not entirely sure—it could also be 

volume. The learner strictly follows the CVS for deciding 

between mass and volume as causal variables. Therefore, in 

a learning experiment, this learner compares a large iron ball 

with a small iron ball to conduct a controlled test of the effect 

of mass. This person will observe that the large iron ball 

displaces more water and will take this as evidence 

supporting the hypothesis that mass determines water 

displacement. Because of the inherent confounding of size 

                                                           
2 To overcome this confound, one could use a container and fill it 

with different amounts of water. However, this brings other 

problems as the density of such an object is unclear. 

and mass, this seemingly controlled experiment is actually 

misleading. 

Now imagine another learner who holds a mass 

misconception but does not follow the CVS. This learner 

compares a large but light object (such as a large polystyrene 

ball) with a small but heavy object (such as a small iron ball). 

If the learner had no framework theories, the result that the 

large polystyrene ball displaces more water would be 

ambiguous. It could indicate that volume has a positive effect 

or that mass has a negative effect on water displacement. 

However, because negative effects are not considered by the 

learner, the result clearly supports volume as the causal 

variable. The comparison, although confounding volume and 

density, is highly informative. These examples demonstrate 

that there are cases where the CVS is not optimal. This calls 

for methods to decide which types of comparisons are most 

informative in a novel reasoning situation 

Bayesian likelihood as a measure of 

informativeness 

Bayesian statistics defines principles of induction, i.e., of 

learning from data about the true state of the world. The main 

principle is Bayes’ theorem: the probability of a state after 

seeing the data (called the posterior) is proportional to the 

product of the probability of that state before seeing the data 

(called the prior) and the probability of the data given that 

state (called the likelihood) (see e.g. Griffiths et al., 2001 for 

a review). 

This logic can be translated to reasoning in learning 

experiments. The prior corresponds to a learner’s initial 

knowledge, the likelihood corresponds to the information 

provided by a learning experiment, and the posterior 

corresponds to the knowledge after learning. For example, a 

learner’s prior knowledge about water displacement can be 

represented by a probability distribution over the candidate 

causal variables (size, material, mass). If a learner believes 

that mass determines water displacement, then mass would 

have the largest probability in this distribution. If this learner 

is then presented a comparison of a large polystyrene ball 

against a small metal ball in a learning experiment, the 

outcome that the larger polystyrene ball displaces more water 

is very likely given volume is the true causal variable, but 

unlikely if mass or density is the true causal variable. 

Multiplying the learner’s prior probability distribution with 

these likelihoods yields a posterior probability distribution 

and thus, a model of the learning process. Recently, this 

modeling approach has been applied to children’s learning in 

water displacement tasks, demonstrating the feasibility of 

such an approach to capturing children’s learning 

(Colantonio et al., 2023). 

Since the likelihood represents the information provided by 

the learning experiment, it is the key to a formal analysis of 

informativeness. The likelihood of an outcome in a learning 
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experiment is determined in 5 steps: (1) numerically coding 

the features in question for both conditions shown in the 

experiment, (2) defining normal distributions with the feature 

value as the mean and the feature value*0.22 (Weber’s ratio 

representing perceptual noise; Dehaene, 2007; Droit-Volet et 

al., 2008) as the standard deviation, (3) drawing a large 

number of values from these distributions and counting 

whether these values are equal or different, (4) translating 

these counts to the answering scale used in the learning 

experiment by means of linear regression for the upper and 

lower part of the scale. These steps are described in detail in 

Colantonio et al. (2023). 

The method is applied to each relevant feature, i.e., size, 

material, and mass. The chosen code for each of these 

features (as defined in step 1) should be plausible in the 

context of the study design and the assumed knowledge of 

the children, and it should account for the interrelatedness of 

the variables. For simplicity, we chose to code the three ball 

sizes (small, medium, large) by the integers 1, 2, and 3, 

respectively, because we assumed that this would reflect 

children's perception of these sizes. We also decided to code 

the three materials (polystyrene, wood, iron) with the integers 

1, 2, and 3, respectively, as we assumed that this would reflect 

children's knowledge of the densities of the involved 

materials. Moreover, we coded mass as the product of the 

values for volume and density, as this reflects the actual 

relationship between these variables. 

In addition to believing that either volume, density, or mass 

determines water displacement, children might also believe 

that water displacement does not follow a systematic causal 

rule. Therefore, we defined the likelihood for a "random" 

hypothesis by dividing 1 by the number of response options 

(in our case there were five options: left, rather left, equal, 

rather right, right). That is, given the random hypothesis, all 

outcomes have a likelihood of 0.2. Note that while 

likelihoods are calculated for all response options, and while 

the likelihoods across options sum to 1, the most relevant 

likelihood for modeling the learning process is that of the 

actual outcome. When we use the term likelihood, we mean 

the likelihood of the outcome of the learning experiment. It 

is this outcome that children observe and that provides them 

with new information (Colantonio et al., 2023). 

A taxonomy of comparisons 

In order to decide which comparisons are most informative 

in a novel reasoning situation, we must first define the types 

of comparisons that can occur in this context. One can 

distinguish between controlled (only one variable varies), 

confounded (multiple variables vary), and identical (no 

variable varies) comparisons. Subcategories can then be 

defined for both controlled and confounded comparisons. 

Controlled comparisons contain a subcategory for each 

variable involved (only variable A varies, only variable B 

varies, etc.). In our case, we distinguish between comparisons 

in which only the size of the balls is varied (called size 

comparisons) and comparisons in which only the material of 

the balls is varied (called material comparisons). For 

confounded comparisons, one can distinguish whether the 

variables involved are contrasted or matched. In our case, we 

distinguish between comparisons in which one ball is both 

larger and made of the heavier material (called confounded 

congruent) and comparisons in which one ball is larger but 

made of the lighter material (called confounded incongruent). 

In cases with more than two variables, more subcategories 

arise. Table 1 shows an example stimulus for each of the five 

types. 

 

Results of computational analyses Calculating likelihoods 

for these five types of comparisons provides insight into their 

informativeness. The likelihoods in Table 1 show that 

identical comparisons and confounded congruent 

comparisons are uninformative. The likelihood of the 

outcome (that the large iron ball displaces more water/that the 

two wooden balls displace equal amounts of water) is equally 

likely given the three hypotheses. Thus, nothing can be 

learned from these comparisons. Size comparisons are 

potentially misleading, even though they vary only one 

variable. The result that the large polystyrene ball displaces 

more water is equally likely under either the size hypothesis 

or the mass hypothesis. Thus, a learning experiment 

presenting such a comparison could be misinterpreted as 

indicating that heavier objects displace more water. Finally, 

both material comparisons and confounded incongruent 

comparisons are informative. The outcome of these 

comparisons is quite likely given the correct size hypothesis, 

but rather unlikely given the incorrect material or mass 

hypothesis. The likelihoods suggest that confounded 

incongruent comparisons are the most informative, as they 

allow the clearest distinction between the correct and 

incorrect causal variables. 

 

Table 1: Exemplary comparisons of each type together with 

likelihood (LH) of the outcome given the three hypotheses. 

 

Type  Exemplary 

comparison 

LH 

given 

size 

LH 

given 

material 

LH 

given 

mass 

Size 

 

0.99 0.26 0.99 

Material 

 

0.51 0.08 0.07 

Confounded 

incongruent 
 

0.91 0.00 0.03 

Confounded 

congruent 
  

0.99 0.99 1.00 

Identical 

 

0.53 0.51 0.53 
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Empirical exploration of modeling results 

Our computationally simulated results reveal cases in which 

the confounded comparisons can actually provide more 

informative data than controlled comparisons. Further, our 

results reveal that some controlled comparisons (i.e., size 

comparisons) may even provide misleading information to a 

learner. 

In the present study, we sought to explore whether 

children’s learning outcomes follow these simulated 

predictions. How might confounded incongruent 

comparisons support children’s learning about water 

displacement? To investigate this, participants completed 

three trials in the learning experiment described above. The 

types of comparisons presented in the learning experiment 

were varied between participants. In the Size, Material, and 

Confounded Incongruent experimental conditions, the 

respective comparisons were shown. In addition, there was a 

Mixed Condition in which material and size comparisons 

were subsequently shown. This condition was included 

because it reflects a standard application of the CVS, i.e., 

varying the relevant causal variables one after the other. We 

hypothesized that children’s performance in the posttest and 

the transfer test would be better in the Confounded 

Incongruent Condition than in the Size, Material, and Mixed 

conditions. 

Method 

The present study has been preregistered on the Open Science 

Framework: https://osf.io/te34n. 

Sample 

To date, 90 participants have taken part in the study. Data 

collection is ongoing and will be completed when data from 

168 participants has been collected. The mean age of the 

current sample was 8.07 years (SD = 1.04, min = 6, max = 

9.97). There were 37 female and 53 male participants. Only 

children between the ages of six and nine years with 

sufficient knowledge of the German language were accepted 

as participants. Participants received a small thank-you gift 

worth approximately €5. 

Procedure 

Research assistants approached children or their parents at a 

booth in a local natural history museum and asked them to 

participate in a study that took approximately 15 minutes. If 

they agreed, they were taken to a separate room and parents 

signed an informed consent form. Parents were asked to wait 

outside or in a separate area of the testing room. The children 

were tested in individual sessions. They were instructed that 

their task was to learn about water displacement. They were 

told that the tasks would involve balls made of three materials 

(polystyrene, wood, iron). The children were given equally 

sized balls of these materials to feel their weight. Then a short 

video was played showing a person pushing a rubber ball 

under water and how this causes the water to rise. This 

ensured that the children understood that the issue was water 

displacement and not buoyancy. 

Participants then completed the pretest (6 trials), the 

learning task (1 warm-up, 3 learning trials), the posttest (6 

trials), and the transfer test (13 trials). In the pretest and 

posttest, children saw two balls printed on a sheet of paper 

and were asked to indicate which one would displace more 

water on a 5-point scale (left, rather left, equal, rather right, 

right). The learning task took place in a virtual learning 

environment in which two water containers with equal 

amounts of water were shown, each with a ball on top. As in 

the pre- and posttest, participants were asked to predict which 

of the balls would displace more water on a 5-point scale. 

After giving their answer, they saw an animation of the balls 

being pushed underwater and of the water rising. This 

animation was 5 seconds long, with the final water level 

shown for 2 seconds. The transfer test consisted of three 

subtasks. First, participants had to indicate which of two 

objects (e.g., pyramids, cuboids) would displace more water 

on a 5-point scale. Second, participants were asked to draw a 

line indicating how far the water would rise relative to a given 

object if certain objects were submerged. Finally, participants 

were explicitly asked why a larger and heavier ball displaces 

more water than a smaller and lighter one. All three tasks 

were completed on a sheet of paper. 

Because the ability to read, write, or use a computer mouse 

varies greatly between the ages of 6 and 9, the experimenter's 

assistance was flexibly adapted to each child's individual 

needs. Upon completion of all tests (or premature termination 

of the study), the children received their thank-you gift. 

Design & Material 

There were four between-participants conditions (Size, 

Material, Confounded Incongruent, Mixed) that defined 

which types of comparisons were presented in the learning 

task. In the Size Condition and in the Material Condition, 

comparisons were presented in which only the size or only 

the material of the two balls was varied, respectively. In the 

Confounded Incongruent Condition, both the material and the 

mass of the two balls were varied in such a way that the larger 

ball was made of the lighter material. In the Mixed Condition, 

only the mass and only the material of the two balls was 

varied in subsequent trials, reflecting a standard application 

of the CVS. 

The second of the three learning trials was an 

uninformative (confounded congruent) comparison. This trial 

was introduced to prevent children from drawing conclusions 

from the fact that the same one variable was varied 

throughout the task. In all four conditions, the same 

uninformative comparison (small polystyrene ball vs. large 

wooden ball) was used. Thus, the experimental 

manipulations only affected the first and third learning trials. 

The order of the first and third learning trials was 

counterbalanced. 

The pretest contained two comparisons of each type 

involved in the learning task (material, size, confounded 

incongruent). The posttest contained the same items, but with 
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the sides of the balls reversed and the order of the items 

changed. In the warm-up trial, an uninformative (confounded 

congruent) comparison was shown to allow children to 

become familiar with the virtual learning environment and its 

user interface. In the Mixed Condition, one item from the 

Material Condition and one item from the Size Condition was 

shown.  

Results 

Figure 1 shows the mean posttest and transfer test accuracies 

in the four conditions. To statistically test for differences 

between conditions, we fitted mixed logit regression models 

with the package lme4 (Bates et al., 2015). The dependent 

variable in these models was the accuracy of solving a 

posttest or transfer test item (0/1). The predictors were a 

categorical variable indicating the condition and a z-

standardized decimal variable indicating children’s age in 

years. The models contained by-participant random 

intercepts. The model for the posttest explained a significant 

amount of variance in the data (χ2(4) = 14.33; p < .01). The 

parameter estimates for this model are shown in the left 

columns of Table 2. The reference category is the 

Confounded Incongruent Condition. That is, the intercept 

indicates the log odds of solving a posttest item in that 

condition for a child with mean age (8.07 years). The 

parameter estimates show that accuracy on the posttest was 

significantly reduced when participants learned from size 

comparisons compared to confounded incongruent 

comparisons.  

 

 
 

 
 

Figure 1: Means and standard errors of the posttest (top) and 

transfer test accuracy (bottom) in the four conditions. 

 

The model for the transfer test also explained a significant 

amount of variance in the data (χ2(4) = 10.77; p < .05). The 

parameter estimates (Table 2, right columns) indicate that 

transfer test accuracy was significantly reduced when 

children learned from material, mixed, and size comparisons 

compared to confounded incongruent comparisons. Age had 

a positive effect on transfer test performance. In summary, 

confounded incongruent comparisons were just as helpful for 

learning as material and mixed comparisons as measured by 

posttest scores, and significantly better for learning across all 

conditions, as measured by transfer of knowledge. 

 

Table 2: Parameter estimates of the mixed logit regression 

model predicting posttest and transfer test accuracy by 

condition and age.  

 

Parameter Posttest Transfer test 

Estimate SE Estimate SE 

Intercept 1.12*** 0.25 1.00*** 0.30 

Material 0.07 0.35 -0.84* 0.41 

Mixed 0.11 0.34 -0.84* 0.41 

Size -0.78* 0.34 -1.05* 0.42 

Age 0.21 0.12 0.19 0.14 

Note. * p < .05; ** p < .01; *** p < .001; The reference is the 

Confounded Incongruent Condition. Age is in years and z-

standardized. 

Discussion 

When learning from experiments, the control-of-variables 

strategy (CVS; Chen & Klahr, 1999) is generally considered 

to be most informative. However, because children have 

certain preconceptions about scientific phenomena 

(Vosniadou & Ioannides, 1998) and because physical 

variables can be related, the CVS is not optimal in many 

reasoning situations. One way to formally analyze the 

informativeness of different types of comparisons is to 

perform simulations of the Bayesian likelihood. We 

performed such simulations for a learning task on water 

displacement. The results suggested that confounded 

incongruent comparisons may be most informative and that 

controlled size comparisons may be potentially misleading. 

This assumption was empirically supported with data from 

90 elementary school children. 

Logit regression models for the transfer test showed that 

accuracy was increased in the Confounded Incongruent 

Condition compared to the other three conditions, as 

expected. For the posttest, we found that performance was 

lowest in the Size Condition, while it was similar in the other 

conditions. This result was not as expected, as we 

hypothesized that the posttest performance would be most 

accurate in the Confounded Incongruent Condition. 

Nevertheless, this result is highly plausible. As discussed 

above, size comparisons in particular are potentially 

misleading. If children initially believed that mass determines 

water displacement, the size comparisons may have 

supported this inaccurate belief. Besides, we believe that the 
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transfer test is more meaningful than the posttest because it 

indicates the actual change of concepts. 

Our findings have important practical implications. 

Educational psychology has put a lot of effort into studying 

the ability to use the CVS and how to promote it (Schwichow 

et al., 2016). However, our results suggest an additional 

relevant skill. That is, the ability to analyze a reasoning 

situation in order to figure out what kinds of comparisons can 

actually be helpful. Since children already have difficulty 

understanding the logic of controlled experiments, the fact 

that these controlled experiments are sometimes misleading 

may be even more difficult to grasp. However, some pilot 

studies in our lab in which children created their own 

comparisons suggest that there may be an intuitive 

understanding of the informativeness of confounded 

comparisons. In our next study, we plan to contribute to this 

issue by investigating the intuitive or deliberate application 

of confounded comparisons in learning experiments. 

In addition, our work raises an interesting theoretical 

question: what is the difference between learning and 

scientific inquiry? In discussing this question, it is important 

to note that science has two modes of inquiry, i.e., the 

exploratory mode and the confirmatory mode. These modes 

have different goals, i.e., to discover new causal patterns and 

to test expected causal patterns, respectively. We believe that 

the exploratory mode of scientific inquiry is more akin to 

learning. In this mode of inquiry, it is appropriate to confound 

variables in order to find new effects, because any effect will 

subsequently be backed by further confirmatory analyses. 

However, the confirmatory mode of scientific inquiry 

substantially differs from learning. In this mode of inquiry, 

any confound is a problem because it creates ambiguity. 

Controlled experiments maximize certainty about the causal 

effects of a variable and hence are the method of choice in 

the confirmatory mode of inquiry. 

In summary, the ultimate goal of scientists is accuracy, 

certainty, and consideration of all possible effects (even 

unexpected and unlikely ones). For learners, the goal may be 

more practical—to be able to correctly predict certain 

outcomes in order to feel in control of the environment. 

Further theoretical and empirical work is needed to clarify the 

implications of these issues for human reasoning. 

Conclusion 

Our study challenges the CVS as a superior strategy in 

learning experiments by showing, both computationally and 

empirically, that confounded comparisons can support 

learning just as well (if not better) than controlled ones. We 

hope that our findings and the methods involved inspire 

researchers to delve deeper into the intricacies of reasoning 

in science learning. 
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