
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Old and New Approaches to Optimal Real-Time Multiprocessor Scheduling

Permalink
https://escholarship.org/uc/item/42c6b8q4

Author
Levin, Gregory Matthew

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/42c6b8q4
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

OLD AND NEW APPROACHES TO OPTIMAL
REAL-TIME MULTIPROCESSOR SCHEDULING

A dissertation submitted in partial satisfaction
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Gregory M. Levin

September 2013

The Dissertation of
Gregory M. Levin
is approved:

Professor Scott Brandt,
Chair

Professor Carlos Maltzahn

Professor David Helmbold

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Gregory M. Levin

2013

Table of Contents

1 Introduction 1

1.1 Motivation 2

1.2 Organization 4

1.3 Background and Notation 5

1.4 Contributions 11

2 DP-Fair: Understanding the Past 13

2.1 What’s Wrong with Greedy Schedulers? 14

2.2 Deadline Partitioning and DP-Fair 18

2.3 Extended Problem Domains and Algorithmic Modifications 26

2.4 Survey of Deadline Partitioning Algorithms 45

2.5 Conclusions 52

3 RUN : A Peek at the Future 54

3.1 Introduction 55

3.2 Additional Modeling and Notation 60

3.3 Servers 66

3.4 RUN Off-Line Reduction 72

3.5 RUN On-Line Scheduling 82

iii

3.6 Assessment 87

3.7 Related Work 103

3.8 Conclusion 104

4 Conclusion 105

4.1 Future Work 106

4.2 Contributions 107

iv

List of Figures

1.1 Simple Scheduling Problem . 8

1.2 Fluid versus Actual Schedules . 10

2.1 Greedy Counter-example . 17

2.2 The DP-Wrap Algorithm . 25

2.3 Multiple Nested Subslices . 31

2.4 Difficulties with δ > p . 41

2.5 Work Remaining Curves in a T-L Plane 48

3.1 A Schedule and Its Dual . 57

3.2 RUN Global Scheduling Approach . 59

3.3 A Simple Preview of RUN . 64

3.4 A Two-Server Set . 67

3.5 Client Deadline Misses in a Valid Server Schedule 68

3.6 Server Budget and Client Jobs . 69

3.7 A Single Reduction Level . 76

3.8 RUN Server Tree and Schedules at all Reduction Levels 84

3.9 Two Preemptions from One Job Release 93

3.10 Plot: Reduction Levels from Various Packing Algorithms 96

3.11 Plot: Scheduling Performance of the LCM Packing Algorithm 96

3.12 Plot: Reductions and Preemptions vs Number of Tasks 99

3.13 Plot: Preemptions for One- and Two-Reduction Task Sets 101

3.14 Plot: Migrations/Preemptions vs Processors for Various Schedulers . . . 102

3.15 Plot: Preemptions and Partitioning vs Utilization 102

v

List of Tables

3.1 Sample Reduction and Proper Subsets 79

3.2 Reduction Example with Different Outcomes. 82

A.1 Summary of Notation . 110

vi

Abstract

Old and New Approaches to Optimal

Real-Time Multiprocessor Scheduling

by

Gregory M. Levin

We consider the problem of scheduling a collection of processes, or tasks, on a

multiprocessor platform. The tasks in question have real-time computing requirements,

meaning that they have frequent processing deadlines that must be met. We are inter-

ested in optimal scheduling algorithms, which find a correct schedule for a set of tasks

whenever it is possible to do so.

Recent work in the field has used the notions of fluid scheduling and deadline

partitioning to guarantee optimality and improve performance. In the first part of this

dissertation, we develop a unifying theory of existing approaches with the DP-Fair

scheduling policy, and show how it easily proves and explains existing approaches. We

then present a simple DP-Fair scheduling algorithm, DP-Wrap, which serves as a least

common ancestor to many recent algorithms. We also show how to extend DP-Fair to

the scheduling of sporadic tasks with arbitrary deadlines.

While easy to understand and implement, DP-Fair algorithms have the draw-

back of incurring a significant overhead in preemptions and migrations. In the second

part of this dissertation, we present RUN, the first optimal algorithm which does not

rely on a DP-Fair approach. Instead, RUN reduces the multiprocessor problem to a

series of much easier uniprocessor problems. RUN’s average preemptions per job never

exceeded 3 in any simulation, and has a provable upper bound of 4 for most task sets.

It also reduces to Partitioned EDF whenever a proper task-to-processor partitioning is

found, and significantly outperforms all existing optimal algorithms.

vii

This work is dedicated

to the best parents I know.

(Those would be mine, in case you were wondering.)

viii

Academic Acknowledgments

This work is the result of a number of collaborations, and would not exist

without the help of all these fine people. First and foremost is my advisor Scott Brandt.

From its beginning as a class project right through its defense, this work was made

possible by his support, encouragement, and insight. He has been a pleasure to work

with both personally and professionally, and even more importantly, he took me on two

free trips to Europe!

Thanks to Caitlin Sadowski and Ian Pye for their early collaborations on this

work, back when it was just a class project. Caitlin in particular got the project rolling,

provided many key insights, and kept things moving through all our work on DP-Fair.

Thanks to Shelby Funk, an unintended coauthor. Unbeknownst to us, Shelby

was making the same discoveries as us at the same time. After we submitted what were

essentially two copies of the same paper to the same conference, we got together to

combine these two papers into one superior one. She brought new ideas to the project,

as well as invaluable wisdom and experience. She also forever improved my PowerPoint

presentations with a few insightful comments.

Thanks to Paul Regnier, George Lima, and Ernesto Massa from Brazil. Prior

to their insights and innovations, scheduling duality was just a curiosity. They turned it

into something fantastic, and allowed me to join them in sharing it with everyone else.

Finally, thanks to Carlos Maltzahn and David Helmbold for sitting on my

defense committee, and shepherding this work through its final stages.

ix

Personal Acknowledgments

First and foremost, thanks to my family, for everything: to Mom, for her love

and support; to Keith, for being more awesome than can reasonably be expected of a

little brother; and to Dad, who we lost along the way.

Enormous love and thanks to Caitlin, Ian, and Jaeheon, for being my Santa

Cruz family for the last seven years; for cooking me hundreds of meals; for keeping me

company through work, play and travel; and for making me happy and at home every

single time I’m around them.

Thanks to Renee N for friendship, intellectual geekery, and for frequent en-

couragement and prodding to get this thing done. Thanks to David, Gillian, and the

GNoD group for fun, movies, and games. Thanks to Alicia and Brian for a great place

to live, great food, and great company. Thanks to Krista for always being there, and

for just generally being Krista. Love and thanks to Cj, for all her love and support, and

for starting me off on this endeavor. And thanks to Avani for the push I needed at the

beginning.

Thanks to old teachers John Jackson, Donna Williams, Art Benjamin, and Ed

Scheinerman, who got me from grade school through the first Ph.D. with their wisdom,

support, and enthusiasm for mathematics. Great teachers make all the difference, and

they were the best.

And finally, thanks to Renee H for love, support, travel, adventure, games,

pottery, inspiration, chaos, and other wonderful things too numerous to mention. And

for being my best friend for the last five years.

x

Chapter 1

Introduction

1

This dissertation is focused on pushing the theoretical state of the art in op-

timal real-time multiprocessor scheduling. First, we will understand existing solutions

to the problem by describing a simple theory that clarifies and unifies known optimal

algorithms. We will then present a brand new approach, which defies this theory and

greatly outperforms all previous approaches.

1.1 Motivation

Multiprocessor systems are becoming more and more common, as not just per-

sonal computers but even tablets, smart phones, and small embedded systems are being

produced with multiple cores. Many of the implications of a multiprocessor system,

including scheduling issues, are still not well understood. Multiprocessor scheduling

(the scheduling of various tasks on multiple processors) is particularly difficult in the

presence of real-time constraints (when tasks have recurring execution deadlines that

must be met). Real-time scheduling algorithms that are known to perform very well on

uniprocessor systems, such as Earliest Deadline First (EDF) [33], do not perform as

well on multiprocessors.

Broadly, there are two types of multiprocessor scheduling algorithms: global

and partitioned. Global algorithms use a single scheduler for all of the processors and

allow tasks to migrate between processors. Partitioned algorithms initially partition

tasks among processors, and then schedule each processor with a simpler uniprocessor

scheduling algorithm; task migration is not allowed. Partitioned EDF is a simple exam-

ple: after assigning tasks to processors, it simply runs uniprocessor EDF independently

on each processor. Most previous algorithms (e.g., [8, 29]) prefer this partitioned ap-

proach, since uniprocessor scheduling is much easier to implement. However, partitioned

algorithms are not optimal, in the sense that they can fail to schedule theoretically fea-

sible task sets. Some task sets simply cannot be divided among the available processors,

2

even though they are within the system’s available capacity when migration is allowed.

And as the partitioning of tasks among processors is essentially the NP-Complete bin

packing problem, finding a viable partition can be challenging. In the worst case, exam-

ples may be constructed where partitioned schedulers fail to successfully schedule tasks

sets that only require (50 + ε)% of processor capacity [8, 35].

Given the large potential for inefficiencies in partitioned approaches, there has

been much interest in recent years in global schedulers, and in particular in optimal

scheduling algorithms. In 1996, Baruah et al. [4] introduced the pfair algorithm, the

first optimal multiprocessor scheduler for periodic real-time tasks. pfair uses propor-

tional fairness to ensure that tasks receive processor time roughly proportional to their

rates, not just at their deadlines, but at all times. By migrating tasks between proces-

sors, pfair can successfully schedule any task set whose execution requirement does not

exceed processor capacity.

More recently, a number of algorithms have exploited deadline partitioning

(subdividing time into slices where all tasks have the same deadline) to achieve op-

timality while greatly reducing the number of required context switches and process

migrations [3, 10, 47, 48]. These algorithms enforce proportional fairness only at these

shared deadlines, greatly reducing the overhead of preemptions and migrations. Subse-

quent papers have expanded on these basic models. All these algorithms, while super-

ficially different, have achieved optimality by tracking the fluid schedule (average rate

curve) of each task. Until now, there has been little apparent recognition of the power

and simplicity of the theory that underlies their successes. The first part of this work

explores the commonality of these various optimal algorithms, and provides a unifying

theory of their behavior. The second part will go beyond this theory, and introduce a

much more efficient optimal algorithm that is not tied to this old paradigm.

3

1.2 Organization

This dissertation is divided into four chapters. This first chapter provides some

background and motivation on the problem at hand, and introduces the problem model

and notation.

The second chapter details DP-Fair, a simple, elegant theory that encom-

passes and explains all previous solutions to the scheduling problem at hand. Sec-

tion 2.1 motivates our approach by examining the shortcomings of greedy approaches

to this problem. Section 2.2 introduces the theory of DP-Fair scheduling for periodic

task sets. DP-Fair consists of three simple, almost obvious rules which guarantee the

correctness of any scheduling algorithm which adheres to them. It also describes the

DP-Wrap algorithm, the simplest optimal scheduling algorithm to date. Section 2.3

extends our DP-Fair rules and the DP-Wrap algorithm to sporadic tasks with arbi-

trary deadlines, and the even more general problem model of unrelated, aperiodic jobs.

Section 2.4 surveys previous multiprocessor scheduling algorithms, and shows how they

may be easily described within the context of the DP-Fair scheduling rules.

The third chapter introduces RUN, the first optimal multiprocessor schedul-

ing algorithm which does not adhere to the DP-Fair scheduling rules. By placing

much smaller overconstraints on schedules, it incurs only about a fifth as many pre-

emptions and migrations as other optimal algorithms. Section 3.1 introduces scheduling

duality, and shows how this provides a different approach to overcoming the flaws of

greedy schedulers. Section 3.2 provides some needed additional notation and system

modeling. Section 3.3 introduces severs, which aggregate and schedule multiple tasks

as one. Section 3.4 describes the off-line process whereby the RUN algorithm reduces

the multiprocessor scheduling problem to a set of much simpler uniprocessor scheduling

problems. Section 3.5 describes how RUN then translates the on-line schedules for these

uniprocessor systems into a schedule for the original multiprocessor system. Section 3.6

4

provides some theoretical bounds on the performance of the RUN algorithm, and also

the results of side-by-side simulation comparisons with other optimal algorithms.

The fourth chapter considers possible directions for future work, and summa-

rizes our contributions. Appendix A provides a table summarizing the notation used

throughout this dissertation. Appendix B discusses several bin packing algorithms that

may be used as subroutines of RUN. Appendix C provides a proof that the problem of

finding a feasible schedule with fewest migrations is NP-Complete.

1.3 Background and Notation

We consider the scheduling of n periodic [33] or sporadic [14, 15] tasks on a

system of m identical processors. Without loss of generality, we assume the speed of

each processor is 1, i.e., each processor performs one unit of work per unit of time.

All work needing to be executed will be part of some job. Formally, a real-time job

(henceforth, just “job”) is a finite sequence of instructions which become available for

execution at some particular time, and which must be completed by some subsequent

time. Since jobs generally represent small amounts of work needed by some larger

process, we collect a related sequence of jobs into a task. As an example, a DVD player

program might have a playback task, and 24 times per second, that task will release

a job which requires some amount of processor time to decode compressed data and

translate it into one frame on the screen. Any job which misses its deadline results in

a frame being displayed late or not at all.

Given a collection of such tasks, the basic problem is to find a schedule to spec-

ify which task (if any) runs on each processor at any given instant, with the restriction

that no task can run on multiple processors at once. We assume no dependence between

tasks (the order of execution of tasks is unimportant). We allow context switches (re-

placing one executing task with another on some processor) and migrations (moving a

5

task from one processor to another) at any time. We say that a task is preempted if it is

replaced on its processor by another task before the work of its current job is complete.

Note that any preemption is also a context switch, but not vice versa.

Even though computers operate on discrete clock cycles and atomic CPU in-

structions, we will generally model time as continuous. For convenience, however, in

our examples and our simulation code, we take all job release times, workloads, and

deadlines to be integers. This makes examples easier to read, and our code easier to

describe and maintain. Our continuous model of time permits us to measure processor

time as intervals instead of counting clock ticks, and we allow context switches and

migrations to occur at any time, not just at integral times.

We wish to treat all jobs of a task as identical, but in practice, workloads

may vary from one job to the next. Further, we may not know beforehand the exact

execution requirement of each job. Instead, we will just assume that we know the worst

case execution time (WCET), or upper bound, of a job. By assuming a single WCET for

all jobs from a task, we may treat all jobs of a task as identical. If a job falls short of its

WCET estimate, we may switch to a different task sooner, or simply idle its processor

to fill in the excess time. We will henceforth simply assume that all jobs do work exactly

equal to their WCET. Now let us be more precise about describing our tasks.

Definition 1.1 (Task). A task τi = (pi, ci, δi) is a process that invokes an infinite

sequence of identical jobs {Ji,h}h>1. A task is characterized by three quantities: its

period pi, which represents the minimum interarrival time of consecutive jobs; its work

ci, which is the worst case execution time of each job; and its duration δi, which is the

length of time between a job’s release and its deadline.

We say that a job Ji,h of τi arrives or is released (we use the terms interchange-

ably) when it becomes available for execution. We denote the arrival time of Ji,h by

ai,h, so that its deadline occurs at time ai,h + δi. Thus Ji,h must be allowed to execute

6

for ci time units during the interval [ai,h, ai,h + δi). If δi = pi, we refer to this as an im-

plicit deadline and, dropping the implicit δi, use the abbreviated notation τi = (pi, ci);

otherwise, we say the task has an arbitrary deadline. If τi is a periodic task, then its

first job arrives at time t = 0 and all its remaining jobs arrive exactly pi time units

apart, i.e., ai,h = (h− 1)pi for all h. If τi is a sporadic task, then its first job may arrive

at any time t > 0 and the remaining jobs arrive no less than pi time units apart, i.e.,

ai,1 > 0, and ai,h > ai,h−1 + pi for all h > 1. We let T = {τ1, τ2, . . . , τn} denote a set of

n periodic or sporadic tasks.

One important characteristic of a task τi is its rate ρi, which for tasks with

implicit deadlines is ρi = ci/pi (sometimes referred to as its utilization or density). For

periodic tasks, the rate measures the proportion of time a task executes on average. For

sporadic tasks, the rate measures the “worst-case average”, i.e., the average proportion

of required computing time assuming a soon-as-possible sequence of arrivals (ai,h =

ai,h−1 + pi). When deadlines are not equal to periods, we define the task’s rate to be

ρi = ci/min{pi, δi}. Notice that if δi = pi then this matches the definition for implicit

deadlines. The total rate of task set T , denoted ρ(T), is the sum of the individual rates:

ρ(T) =
n∑
i=1

ρi .

In general, the rate is the proportion of one processor that we will need to allocate to

a task. The utilization of a task set on a system is the fraction of processing resources

which it requires, i.e., ρ(T)/m. We will generally be interested in task sets with 100%

utilization, that is, ρ(T) = m.

Formally, a schedule is a function which, at all non-negative times, assigns to

each processor zero or one tasks1. We will only concern ourselves with legal schedules,

1In Chapter 3, we will present a slightly different formal definition of “schedule”, where task-to-
processor assignment is not specified. There we will only specify which tasks are running at any given
time, and then deal with task-to-processor assignment separately. This is only a matter of convenience;
these differences are minor, and easy to reconcile formally if need be.

7

Figure 1.1: Simple Scheduling Problem
Three tasks, each with a rate of 2/3, can run successfully on two processors with migration. Up
arrows indicate arrivals; down arrows indicate deadlines.

in which no task is assigned to more than one processor at a time, and where tasks

are only assigned when they have some outstanding job with work remaining. Further,

we are only interested in valid schedules, which are legal and in which all jobs meet

their deadlines. We say that a set of tasks is feasible if some valid schedule exists,

and a scheduling algorithm is optimal if it finds a valid schedule for every feasible task

set. A simple example depicted in Figure 1.1 demonstrates a set of 3 tasks that can be

successfully scheduled on two processors only when one of them divides its time between

both CPUs. We say that a scheduling algorithm is on-line if the arrival times of jobs are

not known ahead of time. This distinction is relevant only when we consider sporadic

tasks (by definition, the future behavior of periodic tasks is known in advance).

Not all valid schedules are equally good. In order to reduce overhead, schedul-

ing algorithms must have short execution times and also try to minimize other costs,

such as those associated with context switches and migrations. Any system will require

some amount of time for a processor to change the context (memory, cache, etc.) from

one task to another, or to move the context of a task from one processor to another.

Ultimately, we will use the number of migrations and context switches observed as the

metric with which we compare various scheduling algorithms. It is also instructive to

compare the number of preemptions suffered; a context switch when a job’s work is

complete is a necessary part of scheduling, whereas the preemption of an uncompleted

8

job is strictly a scheduler-based decision. Consequently, preemption counts can provide

a better picture of how much extra overhead the scheduler itself is adding. Although

highly system-dependent, task migrations generally take longer than context switches

(sometimes prohibitively longer), but both operations consume system time. Because

global scheduling algorithms migrate tasks and also tend be complex (and, therefore,

have long run times), partitioned schemes are preferred in practice. Newer multipro-

cessor architectures, such as multicore processors, have significantly reduced migration

overhead. The preference for partitioned scheduling may no longer be necessary in these

environments.

Initially, we will focus on periodic tasks with implicit deadlines, and save the

more general cases for Section 2.3. Ironically, although our primary goal is to minimize

context switches and migrations, we will follow the conventions of other recent papers

in the field and assume that these operations are “free”, i.e., that they occur instantly2.

Under this assumption, we should have enough CPU time to complete all jobs (i.e., the

task set is feasible) provided:

(i) Total task workload doesn’t exceed total CPU capacity (ρ(T) 6 m),

(ii) No task’s workload exceeds its period or deadline (ρi 6 1 ∀i), and

(iii) Process migration is allowed.

Given unlimited context switching and migration, it is not hard to see that

these constraints are sufficient in our theoretical model. In fact, this is just an exten-

sion of the uniprocessor case presented by Liu and Layland [33]. Imagine that we can

reschedule our jobs after each ε of time. As ε → 0, we can turn each task τi on or off

sufficiently often so that it appears to be running continuously on a fraction ρi of a

processor. In the limit, each job executes at exactly its necessary rate and, when all

2Alternatively, we can assume the overhead costs are included in the tasks’ execution requirements.
This is a valid assumption if the worst-case number of context switches and migrations can be determined
in advance, which is often the case. However, it could lead to very pessimistic worst case execution
times.

9

Figure 1.2: Fluid versus Actual Schedules
The fluid rate curve decreases continuously at a rate of ρi, while the actual work remaining
curve only decreases (at a rate of 1) while the task is executing.

rates sum to no more than m, all jobs finish on time. Srinivasan et al. [45] refer to

this continuous fractional execution as the fluid scheduling model. Figure 1.2 shows

the the fluid and actual scheduling of one job from task τi. The vertical axis shows

work remaining, which starts at ci when the job is released, and decreases to 0 by the

deadline. The fluid rate curve decreases continuously at a rate of ρi ; the actual work

remaining curve decreases at a rate of one when τi is executing, and is horizontal when

τi is idle.

Finally, if context switches and migrations are free, then in theory it does not

matter which processor is hosting a given task, only which tasks are running at a given

time. This assumption can lead to clearer scheduling descriptions (e.g., Figures 1.1 &

2.1). In fact, some recent algorithms give no explicit prescription for how to assign tasks

to processors [10,21].

Determining the feasibility of a periodic task set is easy; much more challenging

is actually finding a valid schedule that minimizes context switches and migrations.

This has been the goal of recent papers in this problem domain, and is our primary

10

interest. Unfortunately, finding a valid schedule with the fewest possible migrations is

NP-Complete (see Appendix C), so we will have to content ourselves with heuristics

and comparisons to other efforts. Understanding existing schedulers, and finding more

efficient ones, is the primary focus of this work.

1.4 Contributions

Prior to the work in this dissertation, the existing optimal real-time multipro-

cessor scheduling algorithms were seen as diverse and complex. There was no apparent

discussion of their similarity, and the proofs of their correctness were long and involved.

Except for the original algorithm pfair, which is highly over-constrained, optimal al-

gorithms all rely on deadline partitioning (or sharing), but otherwise appear to have

substantially different approaches. Our introduction of DP-Fair theory greatly sim-

plifies this field of work. It provides three obviously necessary scheduling rules that,

when used with deadline partitioning, also prove sufficient to guarantee optimality.

It turns out that all previous optimal deadline partitioning algorithms were following

these rules implicitly without acknowledging them (or deviating slightly in ways that

clearly didn’t break their correctness). Further, the proof of DP-Fair requires only

half a page in the original publication [30], making the theory of optimal scheduling

much more accessible. We also present the DP-Wrap algorithm, which is the sim-

plest optimal algorithm to date, and which serves as a sort of least common ancestor,

structurally speaking, to previous algorithms. The end result is a new unifying theory

that easily proves the correctness of previous algorithms, and along with comparisons

to DP-Wrap, greatly simplifies their understanding. Additionally, this simple new ap-

proach to optimal scheduling provides a light framework on which to build scheduling

solutions to more general problem domains.

Unfortunately, deadline partitioning requires certain overconstraints on the

11

schedule which lead to considerable inefficiencies. However, prior to the work in this

dissertation, no other approach to optimal scheduling was known. Our RUN algorithm

is the first optimal algorithm not bound by the constraints of deadline partitioning, and

represents a new direction in the theory of optimal scheduling. Further, because it is

not bound by these usual constraints, it is, on average, five times more efficient that any

previous approach. It also reduces naturally to a partitioned scheduling approach on

any task set for which partitioned scheduling is viable, making it a single ideal solution

to optimal scheduling in all cases.

12

Chapter 2

DP-Fair: Understanding the Past

13

2.1 What’s Wrong with Greedy Schedulers?

2.1.1 Greedy Scheduling Algorithms

In order to motivate our approach in this section, we will examine the short-

comings of greedy schedulers, which are preferred for uniprocessors and partitioned

algorithms. Greedy schedulers are an attractive and common first approach to schedul-

ing [8] because they are straightforward to explain and implement. They often attempt

to encapsulate the criticality (likeliness of a missed deadline) of a job into a single

characteristic and then use that to greedily schedule jobs.

Several successful greedy algorithms have been found for uniprocessor schedul-

ing. Two of the earliest are from a seminal paper by Liu et al. [33]. The first is Rate

Monotonic (RM) scheduling, which statically sorts jobs by their rates, and guarantees

feasible schedules for up to ∼ 70% processor utilization. 100% utilization in guaranteed

by their second algorithm, Earliest Deadline First (EDF). Here, whenever jobs are com-

pleted or introduced, the job with the earliest deadline is selected to run. While EDF is

optimal on a uniprocessor, it is suboptimal in a multiprocessor environment [16]. A task

set where EDF fails to find a feasible schedule is depicted in Figure 1.1 (the necessary

rescheduling at time t = 1 does not correspond to the introduction or completion of any

job).

Another well studied greedy scheduling algorithm which is optimal on one

processor is preemptive Least Laxity First (LLF), initially introduced as the least slack

algorithm [40]. LLF always runs the job with least laxity: time remaining until the next

deadline minus time required for the remaining workload (i.e., allowable idle time).

Since LLF requires laxity to be recomputed at every clock tick, it has a large overhead,

and causes numerous context switches when two jobs have the same laxity. MLLF [42]

reduces scheduling events and context switches, but is still more complicated than EDF

and provides no obvious advantage. Although neither LLF nor MLLF are optimal in a

14

multiprocessor setting [29], LLF can find a feasible schedule in some cases where EDF

cannot. For the task set in figure 1.1, EDF will run two jobs to completion, leaving

one job only one time unit to complete its two units of work. LLF, on the other hand,

will interrupt one of the first jobs when the idle job reaches zero laxity at time t = 1,

producing the schedule shown.

The LLF scheduler is based partially on the observation that a schedule has

become infeasible if any job ever has negative laxity in its current period (a job has

more work than time remaining). Clearly, any job whose laxity has reached zero must

be immediately activated and run continuously until its deadline in order to complete

its work on time. This leads us to our second consideration when designing a greedy

algorithm. The “greedy” part tells us which task(s) to schedule, but we must also specify

when we will do the scheduling. That is, at what times should we re-sort and apply our

greedy preference? We have a list of three standard scheduling events:

Job Release:

A task has reached the beginning of its period, and a new job is available

Work Complete:

A task has finished the work of its current job, and must be turned off

Zero Laxity:

A task has no remaining laxity for its current period, and must be turned on

Any simple greedy algorithm will specify a greedy sort key and which schedul-

ing events it will observe. For example, adding Zero Laxity events to EDF gives

a hybrid scheduler known as EDZL [11]. While this provides an improvement over

standard EDF for multiprocessors, EDZL is still not optimal.

15

2.1.2 Greedy Algorithms Are Shortsighted

To motivate our solutions to the optimal scheduling problem, we will examine

why greedy scheduling algorithms fail. In general, when a greedy algorithm fails to

provide an optimal solution, it’s because the algorithm proceeds by making some locally

optimal (greedy) decision without global knowledge, or concern for the “big picture.”

Consider the following:

Example 2.1. Let

T = { τ1 = (10, 9), τ2 = (10, 9), τ3 = (20, 4) }

be the set of periodic tasks shown in Figure 2.1, where τi = (period, work), and m =

ρ(T) = 9/10 + 9/10 + 4/20 = 2 is the number of processors. It seems inevitable

that any sensible greedy scheduling policy would choose to initially schedule tasks τ1

and τ2 (which have earlier deadlines, lower laxities, higher rates, etc.) over task τ3

(which has huge laxity, low rate, and a long deadline). As we shall see in a moment,

something critical then happens at time t = 8, but even then, any common greedy

scheme would still prefer τ1 and τ2 over τ3 (they still have earlier deadlines, lower laxities,

and higher “remaining rates”- 1/2 vs. 4/12). However, if these tasks are allowed to run

to completion at t = 9, then during the [9, 10) time interval, only τ3 has work remaining,

and so only it is scheduled; the other processor sits idle. Let’s suppose we are scheduling

with LLF, as shown in Figure 2.1. When new jobs of τ1 and τ2 arrive at t = 10, they

are switched on, and execute until τ3 causes a zero-laxity event at t = 17. τ1 is switched

off, but is switched on at t = 18 when it reaches zero laxity. So τ2 is switched off, but

it also reaches zero laxity at t = 19. At this point, we have three tasks with zero laxity,

and only two processors, so a deadline will be missed. The cause of this missed deadline

is the idle time suffered during the [9, 10) time interval. At time t = 10, (9+ 9+3) = 21

units of work remain until the shared deadline at t = 20, but only 20 units of processor

16

Figure 2.1: Greedy Counter-example
Task set which confounds known greedy schedulers using common events. (a) shows an incorrect
greedy schedule, while (b) shows a feasible proportional schedule.

time are available. In a periodic system with 100% utilization, any idle time eventually

forces a deadline miss, as the next theorem shows.

Theorem 2.1. When the total rate of a periodic task set is equal to the number of

processors, then no feasible schedule can contain any idle processor time.

Proof. Given tasks τ1, . . . , τn on m processors where the rates sum to m. In a feasible

schedule, task τi, at the end of h periods, must have done work equal to hci = h(pi ρi) =

(hpi) ρi = ah+1 ρi, where ah+1 is the ending time of the hth period. Let t′ be the first

positive time at which all tasks reach a deadline simultaneously (i.e., the least common

multiple of their periods). Then the total work done by all tasks by time t′ must be∑
i t
′ ρi = t′

∑
i ρi = t′m. This much work can be accomplished by time t′ only if all

processors are running continuously until this time. Any idle time implies less than t′m

total work can be done, and some deadline will be missed.

We can now see where LLF failed on our previous example. In their initial

period, τ1 and τ2 each require 1 unit of idle time. Because there is only one other

task in the system to fill it, these two blocks of idle time cannot be allowed to occur

17

simultaneously. τ3 must be started no later than t = 8 in order to fill up the idle blocks

of both τ1 and τ2. This can be seen by looking at the collective idle time remaining for

τ1 and τ2: with 2 units of idle time needing to be filled and only one other task to fill

them, clearly one of these two tasks must begin idling at t = 8. But the greedy models

discussed so far are inadequate for detecting this: no practical greedy criteria would

select τ3 over τ1 or τ2 to run at t = 8, and even if it would, none of our three standard

scheduling events occur at this time to force a rescheduling. In fact, no event set that

considers only individual tasks would include t = 8; to see this event, we must consider

both τ1 and τ2. But this example constitutes a very simple task set. In task sets with

many tasks and highly varying periods, we might need to consider many or all possible

subsets of tasks in order to reliably detect all such “collective idle time” events. This

might well lead to an NP-Hard search space, and is clearly impractical. As is usually the

case when a greedy approach fails, the failure is due to a lack “global knowledge”: not

looking further into the future, or not considering the combined behavior of multiple

items. So how are we to overcome these shortcomings, and develop an efficient algorithm

that is more “far-sighted”? The first solution to this problem is surprisingly simple, and

is achieved by a specific overconstraining of our system.

2.2 Deadline Partitioning and DP-FAIR

Prior to our work presented in Chapter 3, the only known solutions to the

“global knowledge” problem were variations on proportional fairness. By over-constraining

our scheduling requirements, proportional fairness forces tasks to march in step with

their fluid rate curves more precisely than is theoretically necessary. Suppose we modify

Example 2.1 to

{ τ1 = (10, 9), τ2 = (10, 9), τ3 = (10, 2) } .

18

All we have done is to impose the additional requirement that task τ3 complete a

proportional share of its work every time the other tasks reach their deadlines. Suddenly

τ3 has an observable Zero Laxity event at time 8: τ3 cannot remain idle any longer if

it is to complete its work on time. So naturally τ3 is switched on; τ1 and τ2 will each run

for one of the remaining two time units on the other processor, and a feasible schedule

results (see Figure 2.1(b)). In this example, where the third period was a multiple of

the first two, it is easy to reformulate the problem in this way. When we have numerous

jobs with disparate periods, the question of when to force jobs to hit their proportional

rate quotas is not immediately obvious.

The first solution to this problem was the pfair scheduling scheme [4]. pfair

creates a scheduling event and recomputes the set of running tasks at every multiple of a

discrete time quantum. The notion of proportional fairness used is very strict, requiring

the actual work completed by a task to be within 1 unit of its fluid rate curve at each

time quantum. The result of this policy is a large number of scheduling calculations and

context switches, with correspondingly high overhead. Intuitively, it seems unnecessary

to adhere so closely to the fluid schedule: performance could be improved by a more

judicious choice of scheduling events.

2.2.1 DP-FAIR Conditions for Periodic Tasks

To motivate our next step, we recall the following result by Hong and Le-

ung [25].

Theorem 2.2. No optimal on-line scheduler can exist for a set of (unrelated, aperiodic)

jobs with two or more distinct deadlines on any m-processor system, where m > 1.

Note that Theorem 2.2 does not apply when all deadlines are equal. In fact,

Hong and Leung also present the Reschedule algorithm, which they prove is optimal

when all jobs have the same deadline, even when some jobs arrive within the scheduling

19

interval and their arrival time is unknown. Their Reschedule algorithm, like our

own DP-Wrap algorithm (Section 2.2.2) and several other schedulers, is based on

McNaughton’s wrap-around rule [38]. Let us first consider the benefit of forcing all jobs

to have the same deadline.

Deadline partitioning (DP) is the technique of partitioning time into slices,

demarcated by all the deadlines of all tasks in the system. Within each slice, all jobs

are allocated a workload for the time slice and these workloads share the same deadline.

While a number of recent algorithms [3, 10, 47] have used deadline partitioning, there

has not previously been a unifying theory for why this technique is so effective. With

the DP-Fair (Deadline Partitioning with Fairness) conditions presented below, we

provide such a theory.

There are two aspects to deadline partitioning: allocating the workloads for all

tasks for each time slice, and scheduling within a time slice. We say that an algorithm

using this approach is DP-Correct if (i) the time slice scheduler will execute all jobs’

allocated workload by the end of the time slice whenever it is possible to do so, and (ii)

jobs are allocated workloads for each slice so that it is possible to complete this work

within the slice, and completion of these workloads causes all tasks’ actual deadlines to

be met. In other words, any DP-Correct scheduler is optimal.

Before we proceed, we will require some additional notation. We let t0 = 0 and

t1, t2, . . . denote the distinct deadlines of all tasks in T , where tj < tj+1 for all j > 0.

Then the jth time slice, denoted Sj , is [tj−1, tj), and has length Lj = tj − tj−1. Unless

otherwise noted, we only consider one time slice Sj at a time. As general conventions,

when time t is a parameter, we will subscript (e.g., Xt) to refer to “remaining X”, and

parenthesize (e.g., X(t)) to refer to “X so far”. Subscript h will index the hth job in a

task, i will represent task τi, and j is for time slice Sj . Appendix A contains a summary

of all notation used throughout this work.

We analyze schedules by considering execution during Sj , drawing heavily on

20

notation from the LLREF scheduling algorithm [10]. The local execution remaining of a

task τi at time t, denoted ei,t, is the amount of time that τi must execute before the next

time slice boundary, i.e., between times t and tj . A task’s local rate ri,t = ei,t/(tj − t) is

the proportion of time between t and tj that τi must spend executing. We let Et and Rt

denote a task set’s summed local remaining execution and rate, respectively, at time t.

The scheduling process is most easily understood when the task set has full

utilization, i.e., ρ(T) = m. Since we do not generally expect full utilization, one or

more dummy tasks may be introduced to make up the difference. With this intent, we

define the slack of a task set to be S(T) = m − ρ(T). Consider a time slice of length

10 on 2 processors, and a task set with ρ(T) = 1.5. The system has the capacity to

do 20 units of work, but with only 15 units of work to be done, 5 units of idle time

must appear somewhere within the slice. While common sense might dictate that an

algorithm should always be doing work if there is work to be done, and that the idle

time should therefore come at the end of the slice, this is an unnecessary over-constraint

on algorithm design. By viewing slack as one or more dummy jobs and idle time as a

necessary activity, we provide maximum freedom in scheduling the time slice.

Note that our description of idle time as a capacity-consuming resource, and

our attempts to provide maximum flexibility in scheduling it, are not just for conve-

nience. While our model treats it as dead processor time, that “dead time” can actually

be employed for a number of purposes, including load balancing [7], improving perfor-

mance [3, 31], creating a work-conserving scheduler [20, 21], or running non-real-time

tasks in a hybrid system [32].

We now propose a minimally restrictive set of scheduling rules, DP-Fair,

which ensure that an algorithm is DP-Correct and provide substantial latitude for

algorithm design. DP-Fair Allocation for periodic task sets with implicit deadlines is

quite simple: ensure that all tasks hit their fluid rate curves at the end of each slice

by assigning each task a workload proportional to its rate; that is, task τi is assigned

21

workload ei,tj−1 = ρi×Lj for time slice Sj . With these allocations in mind, we are ready

to formulate our DP-Fair Scheduling conditions. Fj(t) in Rule 3 is a freed slack term

that will be used in Section 2.3.1, but for now is just zero.

Definition 2.1 (DP-Fair Scheduling for Time Slices). A slice-scheduling algorithm is

DP-Fair if it schedules jobs within a time slice Sj according to the following rules:

Rule 1: Always run a job with zero local laxity;

Rule 2: Never run a job with no remaining local work;

Rule 3: Do not voluntarily allow more than (S(T)×Lj) +Fj(t) units of idle time

to occur in Sj before time t.

We now prove that any DP-Fair scheduler is optimal via a pair of Lemmas.

Lemma 2.3. If tasks T are scheduled within Sj according to DP-Fair, and Rt 6 m

at all times t ∈ Sj , then all tasks in T will meet their local deadlines at the end of Sj .

Proof. A task can only miss its (local) deadline if it achieves negative (local) laxity.

However, by Rule 1, any job that hits zero laxity will be run to completion on some

processor. The only way this scheme can fail to finish all jobs’ local workloads on time

is if more than m jobs simultaneously have zero laxity, so that one of them cannot be

run. Since a zero laxity job has ri,t = 1, we would have Rt > m+ 1, contradicting our

assumption that Rt 6 m.

Lemma 2.4. If a feasible set T of periodic tasks with implicit deadlines is scheduled

in Sj using any DP-Fair algorithm, then Rt 6 m will hold at all times t ∈ Sj .

Proof. Let us introduce the dummy job τn+1 representing idle time, and give it rate

S(T) (which can be larger than 1, since this one “job” is allowed to run on multiple

processors at once 3). We let en+1,t be the portion of the total S(T) × Lj idle time in

3Alternately, imagine S(T)/ε jobs, each with rate ε, as ε→ 0. These jobs would fill up the required
S(T) idle time on any processors, could be run in parallel, and would not, individually, need to run on
more than one processor at a time.

22

Sj not yet used up by time t, and let

Et =
n∑
i=1

ei,t and E′t =
n+1∑
i=1

ei,t

be the work remaining at time t in our original and extended task sets, respectively.

Now, the m processors are consuming the workload from τ1, . . . , τn+1 at a rate of m

per time unit, so of the mLj units of work and idle time that needed to be consumed

at the beginning of Sj , m(tj − tj−1) −m(t − tj−1) = m(tj − t) remain at time t, i.e.,

E′t = m(tj − t). Then

Rt =
n∑
i=1

ei,t
tj − t

6
1

tj − t

n+1∑
i=1

ei,t =
E′t
tj − t

= m ,

as desired.

Theorem 2.5. Any DP-Fair scheduling algorithm for periodic task sets with implicit

deadlines is optimal.

Proof. For any feasible task set T , Lemmas 2.3 and 2.4 show that all tasks will meet

all local deadlines at the end of time slices by following DP-Fair’s rules; that is, each

job’s work completed will match its fluid rate curve at every system deadline, including

its own. Since any τi’s fluid rate curve is zero at its own deadlines, it follows that τi

will meet its deadlines. This holds for all jobs from all tasks in T . Thus any DP-Fair

algorithm will correctly schedule any feasible task set, and so is optimal.

Rules 1 - 3 of Definition 2.1 are about as simple a set of criteria as one could

hope for. In essence,

If a job needs to be started now in order to finish on time, then start it. If a job finishes,

then stop it. Don’t allow idle time in excess of the task set’s slack.

23

Requiring every task to hit its fluid rate curve at every system deadline (i.e., DP-Fair

Allocation) is clearly an overconstraint. However, given this objective, these three rules

are obviously necessary. What is surprising, given their simplicity, is that they are also

sufficient. As these rules are so simple, they leave plenty of room to design scheduling

algorithms that attempt to reduce the number of context switches and task migrations

or address variants of the basic problem model.

2.2.2 The DP-WRAP Algorithm for Periodic Tasks

We now present our DP-Wrap algorithm. DP-Wrap is a simplification of

EKG [3], and is perhaps the simplest possible DP-Fair scheduler. The algorithm may

be visualized as follows. To schedule jobs in Sj , make a “block” of length ρi for each

τi, and line these blocks up along a number line (in any order), starting at zero. Their

total length will be no more than m. Split this stack of blocks into length 1 chunks at

1, 2, . . . ,m−1, and assign each chunk to its own processor. Each length 1 chunk of tasks

represents the scheduling of tasks on the respective processor; tasks which are sliced in

two migrate between their two processors (this task-to-processor scheme is essentially

McNaughton’s wrap around algorithm [38]). See Figure 2.2 for an illustration with 7

tasks and 3 processors. To find the actual timing points of context switches within any

Sj , multiply each length 1 segment by Lj .

It is immediately clear from this description that all three DP-Fair scheduling

rules are satisfied. Tasks which migrate are run at the beginning of the slice on one

processor, and at the end on the other. So long as such a task has rate no more than

1 (which is required for any feasible schedule), its running times on the two processors

will not overlap. We now have the straightforward DP-Wrap scheduling algorithm:

compute the context switch times indicated in the diagram (partial sums of task rates),

reduce modulo 1 for each processor, and multiply times by Lj . Except for this last mul-

tiplication, all calculations can be done once as a preprocessing step, so long as the task

24

Figure 2.2: The DP-WRAP Algorithm
(a) Seven tasks with rates shown above. These are lined up in arbitrary order, then split at
length 1 intervals.
(b) Each processor runs its task set over a length 10 time slice. Jobs sliced in (a) are seen
migrating in (b).

set is static. Note that there is no computational overhead at secondary events: here, a

“scheduling event” (which in many algorithms requires iterating through all jobs, per-

forming various calculations, or even sorting them) is merely following a predetermined

instruction to replace one task with another on one processor; no “decisions” are made

at run time.

Notice that, in general, there will be m−1 tasks which are required to migrate.

Further, if we repeat a predetermined ordering for each time slice, each of these m− 1

tasks will migrate twice per slice: once in the middle, and again at the end, when it

moves back to its starting processor. We can cut this number of migrations in half simply

by reversing (mirroring [3]) the ordering of tasks on each processor in odd-numbered

slices. Looking at the example in Figure 2.2, task 3 runs for the first 0.3 of the slice

on processor 2, then for the last 0.2 on processor 1. If we reverse the ordering within

each processor for the next slice, then task 3 will start on processor 1 (for 0.2) and then

finish on processor 2 (for 0.3).

25

Theorem 2.6. The DP-Wrap scheduling algorithm with mirroring in odd slices will

produce at most n− 1 context switches, n− 1 preemptions, and m− 1 migrations per

slice.

Proof. With mirroring, context switches and migrations only occur in the middle of a

slice, never at the end. In the worst case, every job except the first causes a context

switch when it is started, resulting is n − 1 context switches per slice. At least one of

these jobs will have a deadline at the end of the slice, and so the context switch which

turns this job off would not be counted as a preemption. However, if (i) this job is

migrating, and its first segment is turned off before migrating to complete on another

processor, or (ii) this job is the last job on the last processor, and so is not context

switched off, then this soonest-deadline job will not provide a non-preemptive context

switch. So while, on average, the number of preemptions will be slightly less than the

number of context switches, in any given slice there may still be n − 1 preemptions.

Finally, there are (at most) m− 1 tasks which migrate once each per slice (or fewer, if

some task fully fills a processor and does not need to wrap onto the next processor).

Various heuristics could be added to improve DP-Wrap’s performance in

terms of context switches and migrations (e.g., EKG). Instead, we present DP-Wrap

in its simplest form to demonstrate how the DP-Fair scheduling rules can lead to a

minimal optimal algorithm, which is both easy to describe and implement, and which

requires little computational overhead.

2.3 Extended Problem Domains and Algorithmic Modifi-

cations

Due to their simplicity, the DP-Fair scheduling rules may be extended to

various generalizations of the scheduling problem without excess complications. In

26

this section, we will see how to expand DP-Fair to handle tasks with sporadic job

arrivals and deadline lengths that differ from periods. We will even show how DP-Fair

algorithms can schedule a randomly arriving sequence of unrelated jobs. We also discuss

various modifications to the DP-Wrap algorithm.

2.3.1 DP-FAIR for Sporadic Tasks and Constrained Deadlines

We begin by expanding DP-Fair to handle tasks with sporadic job arrivals.

We will also consider constrained deadlines, where δi 6 pi and, consequently, rate

ρi = ci/δi ; the case of arbitrary deadlines (additionally allowing δi > pi) is addressed in

Section 2.3.4. Note that constrained deadlines may be viewed as a special case of spo-

radic arrivals, so we needn’t treat them differently. That is, if a task with a constrained

deadline has an expected arrival at some release time after its deadline, this can be ac-

commodated by any mechanism which handles the unexpected arrival of a late sporadic

task at some point after its deadline. To deal with this new gap between deadline and

arrival, we will give more detailed rules for how to allocate workloads within a time slice

in these cases. We will also need to be more careful about how and when we delineate

our time slices. The DP-Fair rules of Definition 2.1 for scheduling within a time slice

remain the same, except that we now use the Fj(t) term in Rule 3.

We maintain the (sufficient but no longer necessary) requirements that ρ(T) 6

m and ρi 6 1 ∀i. These conditions are necessary for sporadic task sets with implicit

deadlines in the sense that we must be able to accommodate all possible arrival patterns

that do not violate the minimum inter-arrival time – including the worst case scenario

when all arrivals occur as early as allowable (i.e., all tasks behave like implicit deadline

periodic tasks). However, it is possible to have a sporadic system with ρ(T) > m that

is still schedulable if enough jobs are sufficiently late, so the constraint is not necessary

for all specific instances of sporadic arrivals. Similarly, it is not difficult to construct

task sets with constrained deadlines that violate the condition that ρ(T) 6 m, and

27

yet may be feasibly scheduled. For example, if τ1 = (2, 1, 1) and τ2 = (2, 1, 2) then

ρ1 = 1 and ρ2 = 0.5, giving ρ(T) = 1.5. Even so, this task set is feasible on m = 1

processor because τ2 can wait for 1 time unit whenever both tasks have a job arrive

simultaneously. The ρi 6 1 constraint, on the other hand, must always hold if task

parallelism is to be avoided. Since our extended DP-Fair rules do not handle these

cases, DP-Fair algorithms are no longer optimal for constrained deadline systems (that

is, they cannot schedule all feasible task sets). In fact, it has recently been shown that

there can be no optimal algorithm for sporadic task sets when deadlines can be smaller

than periods [19]. Thus we will limit ourselves to showing that DP-Fair algorithms are

optimal on task sets with ρ(T) 6 m and ρi 6 1 ∀i.

With periodic arrivals and implicit deadlines, we know at the outset exactly

when all deadlines/arrivals will occur, and so have available a complete map of all future

time slices. With the sporadic arrival of a task with a short deadline in the middle of

a long time slice, we might have an unexpected deadline appear in the middle of the

current slice. When this happens, we will need to subdivide our time slice into secondary

subslices. Suppose τi has no available job at the beginning of slice Sj = [tj−1, tj), and

that it’s next job arrives at time t with a deadline of t+δi, so that tj−1 < t < t+δi < tj .

In order to ensure that τi meets its deadline at t+ δi, we will split the remainder of Sj

into subslices S1
j = [t, t+ δi) and S2

j = [t+ δi, tj). We refer to this as a splitting arrival.

It is possible that another job with a short deadline might arrive and further subdivide

a subslice. A top-level time slice is a primary slice; no other time slice was active when

it began, and so it is not contained within any other slice. For the moment, we will only

prove results about primary slices; we will still allow sporadic arrivals in the middle of

time slices, but we will assume that an arrived job’s deadline does not fall before the

end of the current slice. We will deal with the issue of subslices in Section 2.3.2.

Another complication created by sporadic tasks and constrained deadlines is

failure of tasks to use all the execution capacity reserved for them. For example, since

28

ρi = ci/δi when δi < pi, the time between deadline and next period represents unused

capacity. The same is true for the delay between earliest possible and actual arrivals

for a sporadic task. During this time (i.e., between ai,h−1 + δi and ai,h), the processor

capacity reserved for the task is going unused, and so is going into the system’s pool

of available idle time, or “slack.” In the time between a task’s deadline and its next

job arrival, we say that the task is freeing slack (or inactive); a task is active between

times ai,h and ai,h + δi (even if it has no work remaining). Thus, for each task, time

is partitioned into slack-freeing and active periods. Because ρ(T) 6 m, τi “owns” a

portion ρi of the system’s total capacity m, even during times when the task is inactive.

For this reason, we sometimes attach a task’s freed slack to it for accounting purposes,

even though this slack goes into the system’s general pool of idle processor time.

Let us be more precise about our accounting of how a task’s work and freed

slack consume its allocated capacity. Similarly to how ei,t represents local execution

time remaining, we will let κi,t represent local capacity remaining for task τi at time

t. Local execution is only consumed (at a rate of 1) when the task is executing; local

capacity is consumed either by the task executing (at a rate of 1) or freeing slack (at

a rate of ρi). We define αi,j(t) and fi,j(t) to be the amounts of time that τi has been

active or freeing slack, respectively, during slice Sj as of time t. We use αi,j and fi,j

as shorthands for αi,j(tj) and fi,j(tj), the total active and inactive times of τi in Sj ,

respectively.

In time slice Sj , τi will ultimately be allotted a total of ρi×αi,j local execution

time (although some of this may be allocated dynamically mid-slice if a new job arrives).

τi will also free ρi×fi,j slack during this time slice. Thus, in Sj of length Lj , τi is allotted

total capacity

κi,tj−1 = ρi(αi,j + fi,j) = ρi×Lj ,

as expected. Since ρi×αi,j is added to ei,t over the course of Sj , and κi,t and ei,t both

29

decrease at a rate of 1 while τi is executing, we always have ei,t 6 κi,t. Example 2.2

illustrates the progression of ei,t and κi,t, as well as the subdividing of time slices.

Finally, we define the total freed slack in Sj as of time t to be

Fj(t) =
n∑
i=1

(ρi×fi,j(t)) .

This is the same freed slack term seen in Rule 3.

We now formalize the rules for time slice boundaries and work allocation in

our new problem domain.

Definition 2.2 (DP-Fair Allocation for Extended Task Model). An algorithm has

DP-FAIR Allocation if, for every time slice S = [t1, t2), end time t2 and local execution

times are determined according to the following rules:

Rule 4: At the beginning of any time slice, we compute its ending to be the

minimum of all future deadlines among all active tasks. That is, when S begins

at time t1, we set S = [t1, t2), where

t2 = minτi∈A(t){di | di is the next deadline of τi after t},

and A(t) is the set of active tasks (with or without work remaining) at time t. If

no tasks are active at t1, we begin the next slice as soon as one arrives.

Rule 5: For each task τi, if it is active at t1, assign it a local execution requirement

of ei,t1 = ρi(t2 − t1). If τi is inactive at t1, ei,t1 = 0; if it arrives (becomes

active) at time ai,h in the middle of S (with a deadline ai,h + δi > t2), assign it

ei,ai,h = ρi(t2 − ai,h).

Because of Rule 4, no deadline can occur within a time slice. If a job arrives

and also has a deadline within the current slice, a new subslice is created which ends

at this job’s deadline. If a job arrives during the current slice with a deadline after the

30

Figure 2.3: Multiple Nested Subslices
τi has two arrivals within the primary time slice Sj . The first divides the remainder of Sj into

S1j and S2j , and then the second divides the remainder of S2j into S2,1j and S2,2j .

end of that slice, no subslices are created; Rule 4 will account for that deadline at the

appropriate future time. Hence, every deadline ends some time slice, and consequently,

a task can never become inactive during a time slice. That is, any task will (i) remain

active for an entire slice, (ii) become active during the slice, and remain active until the

end, or (iii) remain inactive for the entire slice.

The following example traces local work and capacity over a primary time

slice, and also illustrates how multiple arrivals from a single task within a time slice can

create nested subslices.

Example 2.2. To illustrate the above ideas, suppose that the sporadic task τi = (4, 2)

is inactive, and late in its next arrival at the beginning of time slice Sj = [100, 120).

Since ρi = 0.5, its initial capacity is κi,100 = ρi×Lj = 10. Since it is inactive, ei,100 = 0.

See Figure 2.3 for reference.

Suppose it has a job arrive at time t = 108, with a deadline at t = 112. As

it is freeing slack in the interval [100, 108), κi,108 = 10 − 0.5(8) = 6. Since the job has

31

workload 2, ei,108 = 2. The remainder of Sj is partitioned into subslices S1
j = [108, 112)

and S2
j = [112, 120). Suppose τi immediately executes this workload to completion by

time t = 110. Then κi,110 = 6 − 2 = 4, and ei,110 = 0. These are unchanged when S1
j

ends at t = 112, and τi resumes freeing slack.

Suppose the next job of τi arrives at t2 = 114. Now κi,114 = 4 − 0.5(114 −

112) = 3, and ei,114 is set back up to 2. Further, S2
j is recursively subdivided into

S2,1
j = [114, 118) and S2,2

j = [118, 120). τi will do 2 units of work during S2,1
j , so we’ll

have κi,118 = 3− 2 = 1, and ei,118 = 0. If τi remains inactive during S2,2
j , then κi,t will

drop at a rate of 0.5 from 1 to 0 by time 120.

Now suppose that another job of τi were to arrive at t = 119. No further

subslices would be created, because it’s deadline would be at time 123, outside of the

current slice. Instead, when slice Sj+1 starts at time 120, the end of this next slice can

be no later than 123 due to this deadline. At this new arrival at t = 119, τi would

be assigned a local workload of ei,119 = ρi(120 − 119) = 0.5 by Rule 5. We will

subsequently prove that the idle time reserved by Rule 3 will be sufficient to handle

this new additional workload.

Lemmas 2.7 and 2.8 below establish some properties of primary time slice Sj .

In their proofs, we will assume we have no splitting arrivals during Sj . In Section 2.3.2,

we will show that these results also apply to subslices.

Lemma 2.7. A DP-Fair algorithm cannot cause more than (S(T)×Lj) +Fj(t) units

of idle time in time slice Sj prior to time t.

Proof. Since Rule 3 prohibits voluntary idle time in excess of this amount and Fj(t)

is a non-decreasing function, we only need to prove that mandatory idle time (when

we have fewer jobs with work remaining than processors) cannot force this limit to be

broken. Let Ij(t) be the amount of idle time as of time t during slice Sj = [tj−1, tj).

For the sake of contradiction, let t′ be the first failure point in Sj . Since Ij and Fj are

32

continuous functions of t, this means that Ij(t
′) = (S(T)×Lj) +Fj(t

′) and Ij(t
′+ ε) >

(S(T)× Lj) + Fj(t
′ + ε) for all sufficiently small ε > 0.

Since no task which is active at time t′ can become inactive before the end of Sj ,

if a task has no work to do at time t′, it is either because it has not yet become active,

or because it has finished its entire workload for the current slice. We can therefore

partition T into three sets based on task status at time t′: let A be the set of active

tasks with work remaining, B be the set of unarrived (slack freeing) tasks, and C be

the set of active tasks that have completed their allotted work for Sj . More specifically,

• A = {τi | ei,t′ > 0}

• B = {τi | τi is inactive}, and

• C = {τi | τi is active and ei,t′ = 0}.

For convenience, we will let ρX = ρ(X) =
∑

i∈X ρi for X ∈ {A,B,C}.

Based on our definition of local capacity, any task τi should account for ρi Lj

processor time during Sj with a combination of work done and idle time from slack

freed. At time t′, all freed slack has been consumed as idle time, so B’s allotment of

processor time has been used up exactly. C tasks, on the other hand, have already used

all of their allotted time, having freed their slack (if any) and finished their workloads.

That is, they have consumed ρC Lj processor time, and are ρC(tj− t′) ahead of their fair

share at time t′. Similarly, the static slack pool S(T)Lj is already consumed, and so is

S(T)(tj − t′) ahead of its proportional allotment at time t′. This means that tasks in

A must be collectively (ρC +S(T))(tj − t′) units behind on their use of processor time.

If they were keeping up with their fluid rate curves, they would have ρA(tj − t′) work

remaining, so as it is they must have exactly

ρA(tj − t′) + (ρC +S(T))(tj − t′) = (m− ρB)(tj − t′)

33

work remaining, since ρA + ρB + ρC +S(T) = m.

Given our definition of t′, Rule 3 tells us that we cannot choose to idle pro-

cessors at time t′. If |A| > m, then we can run m tasks at time t′. Ij(t) will not

immediately increase, contradicting our definition of t′. Thus, we must have |A| < m.

By Rule 1, we know that each job in A, if left to run on its own processor, will finish its

work on time. Thus A can’t have more than |A|(tj − t′) work remaining. From above,

(m− ρB)(tj − t′) 6 |A|(tj − t′) ⇒ ρB > m− |A| .

Tasks in B are freeing slack at a rate of ρB at time t′; the system is only adding idle time

at a rate of m− |A|. Then Fj(t) is growing at least as fast as Ij(t) at time t′, and Ij(t)

cannot immediately exceed S(T)Lj + Fj(t), again contradicting our choice of t′. There

can be no first failure time t′, so our inequality holds for all t ∈ Sj by contradiction.

Lemma 2.3 from the previous section makes no assumption about implicit

deadlines or periodicity, and so is still valid in this extended problem domain. Once we

have shown that Rt 6 m for all t in a time slice, and extended this result to subslices,

our desired conclusion will soon follow.

Lemma 2.8. If a set T of sporadic tasks with constrained deadlines is scheduled using

any DP-Fair algorithm, then at any time t, Rt 6 m will hold for local remaining rate

Rt in time slice Sj .

Proof. As of time t ∈ Sj = [tj−1, tj), the system has consumed m(t − tj−1) capacity,

either by executing jobs, or by idling. If it has idled for Ij(t) time units by time t then

Lemma 2.7 gives Ij(t) 6 S(T)Lj +Fj(t). If we let wi,j(t) be the work executed on task

τi during Sj as of time t, then we have

m(t− tj−1) = Ij(t) +

n∑
i=1

wi,j(t) , (2.1)

34

and

κi,t = κi,tj−1 − wi,j(t)− ρi fi,j(t)

= ρi Lj − wi,j(t)− ρi fi,j(t) . (2.2)

Recalling that ri,t(tj − t) = ei,t 6 κi,t ,

Rt(tj − t) =
n∑
i=1

ei,t

6
n∑
i=1

κi,t

=
n∑
i=1

(ρi Lj − wi,j(t)− ρi fi,j(t)) by (2.2)

= ρ(T)Lj −
n∑
i=1

wi,j(t)− Fj(t)

6 (m− S(T))Lj −
n∑
i=1

wi,j(t) + (S(T)Lj − Ij(t))

= mLj − (m(t− tj−1)) by (2.1)

= m(tj − t) (2.3)

and we see that Rt 6 m, as desired.

Note that Lemma 2.7 and Inequality 2.3 hold in the current slice even at the

moment of a new job arrival. That is, Rt 6 m will hold even if all inactive jobs were

to suddenly arrive with active periods lasting the remainder of the slice. The portion

of Inequality 2.3 which says “
∑

i κi,t 6 m(tj − t)” can be interpreted as “Even in the

event of the simultaneous worst case releases of all inactive tasks, the system has still

reserved enough capacity to schedule them all.”

35

2.3.2 Splitting Arrivals and Subslices

Lemmas 2.7 and 2.8 were derived only for primary (top level) time slices, and

under the assumption of no splitting arrivals. We will now show how to distribute work-

loads in a subslice so that these results apply there as well. The basic idea is simple: we

distribute remaining workloads proportionately between the two new subslices. How-

ever, in order to establish the correctness of this, we must proceed cautiously. In brief,

our prior results show that the system is feasible at the moment of a splitting arrival;

if we take the remaining workloads for the slice, and then pretend that we have a new

system of n tasks with these workloads and a common deadline at the end of the current

slice, then this virtual system may be treated as a top level slice, and the above results

will still apply. Throughout, we will assume that for primary slice Sj = [tj−1, tj), task

τi is inactive at tj−1, and has an arrival at time t ∈ Sj which splits the remainder of Sj

into subslices S1
j = [t, t + δi) and S2

j = [t + δi, tj). In order to establish the validity of

this temporary virtual system, we need the following Lemma.

Lemma 2.9. When a splitting arrival occurs in a primary slice Sj , the system remains

feasible; that is, a valid schedule still exists for the system at that moment.

Proof. Suppose the arrival of τi splits Sj as described above. Now imagine that instead

of τi, we see the arrival of τ ′i , with the same rate ρi but a deadline at tj instead of

t + δi. This job would have work equal to ρi(tj − t), and as described in the proof of

Lemma 2.8, the system will have reserved this much capacity for τ ′i ’s execution as of

time t. Lemma 2.8 would apply, and Lemma 2.3 would tell us that all local deadlines

may be met, indicating a feasible system. For any feasible schedule executed during

the unsplit interval [t, tj), we could instead run two proportional copies of that schedule

during the intervals [t, t + δi) and [t + δi, tj); the same amount of total work would be

done by each task during [t, tj). In particular, τ ′i would do ρi((t+ δi)− t) work during

the first interval, and ρi(tj − (t + δi)) work during the second. This provides us with

36

a feasible schedule for our original system with τi and its splitting arrival: the new job

of τi requires ρi((t + δi) − t) units of work during the first interval (the duration of

its job, or S1
j), and during the second interval S2

j we may idle a processor in place of

the execution of τ ′i . In this way, all local deadlines may be met, and thus the splitting

arrival does not cause the system to become infeasible.

Since the system is feasible at the instant t of a splitting arrival, we may take

a snapshot of the remaining local workloads at this moment, and proceed as if we have

a fresh new system defined by these workloads, with one deadline at the splitting point

t + δi, and all other deadlines at tj , the end of the primary slice. We collectively refer

to these temporarily altered tasks and and this time interval SDj = S1
j ∪ S2

j as a slice

domain. Note that within the perspective of this domain there are no splitting arrivals:

τi is arrived at the domain’s start time t, and its deadline is known. As per Rule 4, at

time t we establish one slice S1
j lasting until the first deadline at t+ δi, and at that time

create a second slice S2
j lasting until the next deadline at tj . As Lemma 2.9 establishes

that the virtual system of this domain is feasible, we may apply Lemmas 2.7 and 2.8

to deduce that our DP-Fair scheduling policies are correct within this domain. We

formalize this procedure below.

Definition 2.3 (DP-Fair Time Slice Splitting). An algorithm has DP-FAIR Slice

Splitting if slice-splitting arrivals are handled according to the following rules:

Rule 6: Suppose a job of task τi arrives at time t and has a deadline at t+ δi, and

the current time slice Sj = [tj−1, tj) at t is such that tj−1 < t < t+δi < tj ; that is,

τi arrives and has its next deadline all within Sj . Then we split the remainder of

Sj into two subslices S1
j = [t, t+ δi) and S2

j = [t+ δi, tj). This rule may be invoked

repeatedly / recursively by multiple jobs arriving within a primary slice.

Rule 7: At the moment of a splitting arrival, we establish a virtual system, or slice

domain, which we use to schedule our actual system for the remainder of Sj , i.e.,

37

during the interval SDj = [t, tj). WLOG, suppose that τ1 is the splitting task. Our

virtual task set is T ′ = {τ ′1, . . . , τ ′n}, has sporadic arrivals and implicit deadlines,

and releases a job for τ ′i at time t if τi is active at this time. The tasks are defined

by τ ′1 = (δ1, ρ1 δ1) and τ ′i = (tj − t, ei,t) for i = 2, . . . , n. That is, τ ′1 has a deadline

at t + δi and the usual workload, and each other τ ′i which was active at t has its

next deadline at tj and a workload equal to the local remaining execution of τi at

time t. During SDj , the virtual system is scheduled according to Rules 1 - 7, and

that schedule is applied to the original corresponding tasks in T .

In short, when a splitting arrival occurs, we schedule the remainder of the current time

slice as if it were a virgin system with no history, using remaining local workloads and

deadlines. Note that Rule 5 is still used to assign local executions within the domain’s

subslices, but the “rate” ρi referred to within Rule 5 is actually the rate ρ′i of the

temporary domain task τ ′i , so that ρ′1 = ρ1 and ρ′i = ei,t/(tj − t) for i = 2, . . . , n.

Lemma 2.10. If a set T of sporadic tasks with constrained deadlines is scheduled using

any DP-Fair algorithm, then local execution deadlines will be met for all tasks within

all primary slices and subslices.

Proof. As described in Rule 7, the scheduling of a subslice is equivalent to scheduling

a primary slice in a different, but still feasible, system with no splitting arrivals. Then

our previous Lemmas 2.7 and 2.8 apply to this other virtual system. Should another

splitting arrival occur within the slice domain, we will merely apply Rule 6 and Rule 7

recursively, and create another virtual system within the domain. Because the domain

is mimicking a top level system, the creation of a subdomain is equally valid. Within

any such domain, Lemma 2.8 tells us that Rt 6 m at all times, and so Lemma 2.3

indicates that all local deadlines will be met.

Since we have shown that Lemmas 2.7 and 2.8 hold even in the presence of

38

splitting arrivals and subslices, we may now prove our principal result. The correctness

of this approach follows easily from our preceding discussion.

Theorem 2.11. Any DP-Fair scheduling algorithm is optimal for sporadic task sets

with constrained deadlines where ρ(T) 6 m and ρi 6 1 ∀i.

Proof. Unlike Theorem 2.5, a task finishing its local workload at the end of some time

slice does not ensure that it hits its fluid rate curve at that point, if that time slice is a

subslice. Let’s suppose that the splitting arrival of τ1 at time t subdivides Sj = [tj−1, tj)

in the usual way. τ2 may be below its fluid rate curve when τ1 arrives (perhaps τ2 has yet

to execute during Sj). Since it’s remaining local execution e2,t is divided proportionally

between S1
j = [t, t + δ1) and S2

j = [t + δ1, tj), τ2 will still be below its fluid rate curve

at the end of the subslice S1
j . However, this is not a problem, because τ2 cannot have

a deadline at the end of S1
j . Because τ2 was not a splitting arrival (at least at the level

of the slice domain containing Sj), it’s earliest possible deadline is tj . And because the

work remaining for τ2 (namely, e2,t) is divided between S1
j and S2

j , and Lemma 2.10 tells

us that local workloads are completed by their deadlines in these subslices, we know

that the total remaining workload e2,t of τ2 will be completed by the end of S2
j , which is

also the end of Sj . As for τ1, it’s local workload within S1
j is its entire workload (since

it’s deadline is at the end of S1
j), and so Lemma 2.10 tells us that it will complete its

splitting job on time.

Thus we see that, while every task might not match its fluid rate curve at

the end of every slice, every task will match its fluid rate curve at the end of any slice

whose end might coincide with the task’s deadline. That is to say, all tasks match their

fluid rate curves at their own deadlines, and thus meet their deadlines. The system is

therefore correctly scheduled by our DP-Fair rules.

39

2.3.3 Modifying DP-WRAP

Modifying DP-Wrap to handle sporadic arrivals is fairly straightforward. The

first difference is that slice schedules are no longer practically identical, differing only

in length and mirroring. Because the set of active jobs will change from slice to slice,

DP-Wrap will need to recompute the schedule of each slice on-line, rather than relying

on a look-up table which was computed off-line. This is still a very simple process: local

workloads for the new time slice are computed, lined up as blocks, and divided onto

processors at intervals equal to the length of this slice, much as described in Section 2.2.2.

The other modification from the periodic case is the handling of jobs which

arrive in the middle of the current slice. A non-splitting arrival is assigned a local

workload as described in Rule 5, and is merely wrapped onto the end of the existing

stack-of-blocks schedule. In the event of a splitting arrival, we subdivide the remainder

of the current slice and assign it a slice domain, as described in Rule 6 and Rule 7.

Once we have used remaining local executions to create workloads for the temporary

tasks of the slice domain (Rule 7), scheduling the two subslices of the domain is done

exactly as DP-Wrap would schedule any other time slice. Any subsequent splitting

arrival is handled by creating additional subdomains. Mirroring is still used when the

set of active tasks does not change between subsequent slices.

2.3.4 Arbitrary Deadlines

Let us now consider the problem where deadlines can be larger than periods

via the following example.

Example 2.3. Consider the periodic task set T on m = 2 processors where τ1 = (6, 4)

and τ2 = τ3 = τ4 = τ5 = (3, 1, 6). Since ρ(T) = 4/6 + 4(1/3) = 2, and 4 + 4× 2× 1 = 12

units of work must be done by time 6 in order to meet our time slice deadlines, the

system can allow no idle time. The first deadline of this system is at time 6. Figure 2.4

40

Figure 2.4: Difficulties with δ > p :
With deadlines longer than periods, the DP-Fair rules can result in forced idle time.

illustrates the schedule of this task set during the interval [0,6) if we run τ2 then τ3

to completion on the first processor and τ4 then τ5 on the second. At time 2, tasks

τ2, . . . , τ5 are out of work. Only at this point is τ1 forced to run by zero laxity. Until

more work arrives for τ2, . . . , τ5 at time 3, the other processor sits idle. Theorem 2.1 does

not apply here because these tasks do not all have implicit deadlines, and in fact the

task set is still feasible at time 6. Nonetheless, this unforced idle time shows how longer

deadlines disrupt DP-Fair’s ability to fully utilize all processors when ρ(T) = m.

Allowing deadlines longer than periods breaks the “global knowledge” granted

by giving all tasks the same deadlines. There is a critical arrival event at t = 3, but

because we haven’t ended a time slice there, τ1 doesn’t “know” about it, and doesn’t

know to complete a proportional amount of its workload by that time. Fortunately, the

problem is easily solved by adding a deadline at that arrival time. Specifically, if we

are given a task where δi > pi, we simply impose an artificial deadline of δ′i = pi. This

doesn’t increase the task’s rate ρi, and if the artificial deadline is met, the the real one

will certainly be also.

Unfortunately, these artificial deadlines might force unnecessary slice bound-

aries. In the absence of artificial deadlines, if a task were to finish its workload in some

slice prior to its deadline, then that period of the task wouldn’t create a slice bound-

ary. Increasing the number of time slices, in turn, incurs additional overhead from the

41

added context switches and migrations. So while the artificial deadline solution is sim-

ple and effective, it may not be the best possible way to deal with arbitrary deadlines.

Funk et al. [23] discuss some techniques for removing unnecessary time slice boundaries.

2.3.5 Admission Control of Aperiodic Jobs

Our approach to scheduling sporadic tasks with constrained deadlines can ac-

tually be extended to a much more general job model. To see how, consider the set B of

unarrived jobs (as described in the proof of Lemma 2.7). Until one arrives, they may be

treated as one undifferentiated mass, freeing slack at a rate of ρB, and holding enough

capacity in reserve to finish all their remaining workloads should they all arrive at once.

In this light, it does not actually matter what their periods or individual workloads are;

the system will behave the same until some job in B arrives, regardless of what those

jobs are. The only exception is when one of those unarrived jobs is forcing the very next

slice boundary, which can happen when some task with δi < pi has had its deadline in a

previous slice, and its next arrival is at the end of the current slice. Even then, we could

opt to ignore that next arrival (slice boundary) until the job actually arrives, treat it as

a sporadic arrival instead of a constrained deadline, and then deal with it according to

the usual rules. In other words, at any given time, we can construct our schedule based

only on active jobs, so long as we’re holding enough capacity in reserve to deal with the

arrival of any set of jobs with total rate ρB.

With this in mind, we realize that the DP-Fair strategy for sporadic tasks

with constrained deadlines will work just as well for independent, aperiodic jobs with

or without deadlines. We first consider the jobs with deadlines. Consider a sequence

of such jobs J1, J2, . . ., where Ji = (ai, ci, di) arrives at time ai, and must complete a

workload ci before a deadline at time di. We will assign such a job a rate of ci/(di−ai).

These jobs are not recurring or in any way related to each other, and unlike the periodic

and sporadic task model, we have no idea what jobs may arrive or when. So long as

42

we impose the restriction that at no time do we allow jobs with summed rate in excess

of m into the system, we may schedule these jobs using the DP-Fair rules. Thus, we

have a simple mechanism for admission control of aperiodic tasks with deadlines when

using the DP-Fair strategy.

Now consider a job Ji = (ai, ci) that has no deadline. If there is no urgency

to it, we may simply execute it during otherwise idle processor time. If Ji is of higher

priority, or if a number of these deadline-free jobs are backing up, we can assign it an

artificial deadline d′i so that it may reserve some amount of processor time. Ji’s rate

would be ci/(d
′
i − a′i), where a′i is the time at which the system assigns the artificial

deadline, and d′i is made sufficiently large so that Ji’s new rate doesn’t cause the active

job set to exceed the total rate limit of m.

The allocation of time slices and the arrival of new jobs are handled according

to Rules 4 - 7. At the end of any time slice, the next time slice is determined by Rule 4,

and local executions are determined as in Rule 5. Should a new job arrive whose

deadline falls within the current slice, subslices are formed as in Rule 6, and remaining

local executions are subdivided according to Rule 7. Scheduling within a slice must

simply obey Rules 1 - 3, as usual. Any scheduling algorithm for independent aperiodic

jobs that follows Rules 1 - 7 is said to be DP-Fair. The DP-Wrap algorithm for

aperiodic jobs simply uses the usual stack-and-slice scheduling for each time slice, and

uses Rules 4 - 7 to determine slice lengths and workloads, and to deal with splitting

arrivals.

Theorem 2.12. Given a set of independent, randomly arriving jobs {Ji}i>1, any DP-

Fair algorithm will schedule it successfully so long as, at any time t, the set of active

jobs At at time t satisfies (i) ρi 6 1 for all Ji ∈ At, and (ii)
∑

Ji∈At ρi 6 m. Further,

the DP-Wrap algorithm is DP-Fair.

Proof. As previously discussed, this more generalized job model does not change how

43

jobs are scheduled within a time slice. Consequently, it is still true that an algorithm

following the DP-Fair rules will result in any job Ji’s actual work curve matching its

fluid rate curve at the end of (i) any primary (top level) time slice that started with

Ji active, and (ii) any subslice that was created by the arrival of Ji. These necessarily

include the end of the time slice which corresponds to Ji’s deadline, guaranteeing that

its workload will be completed on time. Lemma 2.10 still guarantees the successful

completion of jobs who’s entire span is within a single slice. The DP-Wrap algorithm

does not behave any differently within slices than it did in previous cases, and so still

follows the DP-Fair rules.

Note that our condition that
∑

Ji∈At ρi 6 m at all times is overly restrictive.

By shifting workloads between slices, it would be fairly easy to deal with some situations

where this condition is temporarily violated. For example, jobs could get ahead of their

fluid rate curves while
∑

Ji∈At ρi < m, freeing additional capacity to deal with an added

task that temporarily brought
∑

Ji∈At ρi > m. Also, there is no reason that we cannot

schedule systems comprised of periodic, sporadic and aperiodic task sets using this

strategy. This further illustrates the inherent flexibility of the DP-Fair approach.

2.3.6 Some Simplifications

Rule 6’s time slice splitting could be very complicated, particularly if it is

done recursively for several tasks within a single time slice. We can avoid ever having

to split time slices in this manner by ensuring time slices are never longer than the

earliest possible next deadline. That is, at the beginning of each time slice, set the end

of the slice to be the soonest of all deadlines of all arrived jobs and also of the unarrived

jobs, were they to arrive at that moment. Like our solution for arbitrary deadlines, this

simplifies scheduling but increases context switches and migrations by creating slice

boundaries that aren’t always necessary.

44

We could also simplify Rule 3 by replacing it with sufficiently strong heuris-

tics. A simple one is “Never allow a processor to idle if there are tasks waiting to

execute.” A somewhat less restrictive rule is “At all times t, at least dRte tasks are ex-

ecuting jobs.” These rules would be easier to implement in practice, and yet are easily

verified to satisfy Rule 3.

2.4 Survey of Deadline Partitioning Algorithms

We now explain and analyze a number of recent papers in the context of DP-

Fair. Unless otherwise noted, the following algorithms only address periodic task sets

with implicit deadlines. The 1996 pfair algorithm [4] was the first optimal multipro-

cessor scheduler. It enforces a very strict notion of proportional fairness by ensuring

that each task’s work completed is within 1 of its fluid rate curve at every multiple of

some discrete time quantum. It is computationally complex, and the frequent context

switching and migrating would cause a high overhead in practice.

The first algorithm to use the technique of deadline partitioning seems to be

the 2003 Boundary Fair (BF) algorithm [47]. It is a variation on pfair, with the same

quantum-based timing, but with one key improvement. It makes the observation that

it is only necessary for tasks to agree with their fluid rate curves at their deadlines.

Consequently, it only enforces proportional fairness at the deadlines of tasks. Because

of the resultant integer rounding, workload assignments aren’t quite DP-Fair, but the

scheme is DP-Correct, and closely resembles DP-Wrap. However, because BF is

also based on discrete units of work and time, there is still substantial complexity and

overhead in dealing with round-off issues in amounts of allocated work.

Subsequent algorithms have all been based on continuous time, and benefited

from the resulting simplicity. The discrete time model is somewhat more realistic, as

processors operate on discrete clock cycles. However, as job workloads will generally be

45

much larger than this minimal time quantum, continuous time should generally be a

good approximation, and small roundoff errors can be dealt with in any number of ways.

Most recent papers in the field seem to be derived from one of two optimal algorithms,

EKG [3] and LLREF [10], that appeared in the latter half of 2006. While later papers

tackle related problem domains or present sub-optimal variants, none make substantial

theoretical progress on the basic problem of optimal scheduling. We will examine these

first two papers in some detail, and then survey others that have followed.

2.4.1 Improvements with EKG

Like DP-Wrap, the EKG (“EDF with task splitting and k processors in a

group”) algorithm is a variation of McNaughton’s wrap around algorithm [38], but with

two significant improvements. First, we observe that the n−m+ 1 non-migrating tasks

actually form a partitioned task set; that is, each one is permanently assigned to a

single processor. On any processor, the interval between the execution of the migrating

tasks at the beginning and end of a time slice consists of that processor running jobs

assigned exclusively to it. Instead of assigning proportioned workloads to these tasks,

EKG schedules them with EDF. In Figure 2.2, for example, we might view Processor

1 as a uniprocessor system with 80% capacity, and two tasks with rates of 0.3 and 0.5.

In scheduling these two tasks, we essentially ignore all other tasks in the system, and

run the simple, uniprocessor-optimal EDF algorithm. In this way, all tasks except the

migrators may be “decoupled” from the proportional deadline scheme, allowing them

to complete with fewer context switches. This method is known as task splitting or

semi-partitioning. The m − 1 migrating tasks are still tightly coupled. The task split

between Processors 1 and 2 must be scheduled in sync with the one on 2 and 3, which

must be synced with the task split on 3 and 4, etc. The deadlines of all tasks, migrating

and partitioned, impose slice boundaries.

46

EKG’s second advantage over the basic DP-Wrap is its clever use of slack

in the task set when ρ(T) < m. The algorithm divides and decouples processors into

groups of k, each of which operates independently from other groups. The extra space

at the end of a group is not filled in with a partial task, but instead is left idle to

consume the slack in S(T). Because no task wraps onto the next processor, tasks

before and after this gap needn’t be synchronized. Each processor group may then be

scheduled independently. Since a processor group only needs to observe the deadlines

of its own tasks, these tasks are subjected to fewer time slices, and consequently, fewer

context switches and migrations. When k = m, we have optimality; when k = 2, we

can guarantee only 66% utilization, but with significantly fewer context switches and

migrations.

2.4.2 The T-L Plane Visualization

The Time and Local Execution Time Plane (“T-L Plane”) model of Cho et al.

[10] provides a convenient means of visualizing a time slice S = [t0, tf). The T-L Plane

is represented as an isosceles right triangle, with time on the horizontal axis, and work

remaining on the vertical axis. As time moves forward, a task’s work remaining curve

will not follow its fluid rate curve, but instead will be in one of two modes:

• If it is running, it will have a slope of −1, since both axes are on the same scale

• If it is idle, it will have a slope of 0

A task’s work remaining curve will alternate between these two modes as it

is turned on and off. (Figure 1.2 gives a simple picture of the progression of one job

through this plane, drawn next to its fluid rate curve.) By time tf , all curves must have

height 0 (i.e., tasks have completed their work for this slice.) These are reset to heights

proportional to their rates for the beginning of the next slice. A Zero Laxity event

is an inactive job (horizontal curve) hitting the hypotenuse; a Work Complete event

47

Figure 2.5: Work Remaining Curves in a T-L Plane
Seven tasks on three processors. At each secondary Zero Laxity or Work Complete event,
the three jobs with most work remaining are executed.

is an active job (slope = −1) hitting the horizontal axis. A sample T-L Plane with

executing jobs can be seen in Figure 2.5, with events indicated by time ti and vertical

lines.

The LLREF (“Largest Local Remaining Execution First”) scheduler is based

on the T-L Plane visualization. At t0 and at each secondary event, LLREF sorts the

jobs by work remaining, and activates the m highest jobs. LLREF is a greedy scheduler,

but it is also optimal because it adheres to the DP-Fair rules. Its greedy behavior is

actually unnecessary, creates a higher computational overhead than EKG, and causes

more context switches than are required to be DP-Fair. Also, this policy gives no

prescription for the assignment of jobs to processors; it does not address the issue of

task migration at all.

48

2.4.3 Subsequent Work

A number of subsequent algorithms have expanded on ideas introduced by

EKG and LLREF. They do not represent improvements in optimal scheduling, per se.

Instead, they reduce context switches and migrations for sub-100% utilization task sets,

and address variants of our basic scheduling problem. There are two main classifications:

those that follow EKG and use task-splitting, and those that use variants of LLREF’s

T-L Plane model.

Andersson and Bletsas [1] propose an EKG variant for dealing with sporadic

task sets. Time slices are bounded by small, fixed width intervals rather than task dead-

lines. Like EKG, a tunable parameter (corresponding to time slice widths) is available,

and can bring schedulable utilization arbitrarily close to 100% at the cost of more con-

text switches and migrations. A sequel to this paper introduces the EDF-SS(DTMIN/ρ)

algorithm [2], which extends the problem to tasks with arbitrary deadlines. It also uses

fixed-width time slices, but attempts to split tasks with the smallest minimum deadlines.

The Ehd2-SIP algorithm [26] is also similar to EKG, but sacrifices optimal-

ity for improved general performance. It starts with a general wrap around task-to-

processor assignment, but with tasks stacked in increasing period order. Then, rather

than utilizing any notion of fluid scheduling, it uses EDF to schedule tasks on each

processor, subject to the following exception: the “right-hand” half of a split task al-

ways has highest priority on its processor, unless it’s “left-hand” other half is already

running on the adjacent processor. This scheme only allows for 50% processor utiliza-

tion in the worst case, but generally has high scheduling success until total utilization

reaches the 80-90% range. These success rates are higher than strict partitioning EDF

algorithms, although Ehd2-SIP suffers from more preemptions; conversely, EKG tends

to have a higher success rate at the cost of more preemptions. The sequel to Ehd2-SIP

is EDDP [27], which uses EKG’s scheme of only partially filling processor capacity. It

49

also schedules each processor with EDF, but removes priority for the right half of a

split task, and artificially adjusts deadlines to improve schedulability. Its worst case

utilization improves to 65%, but performance is otherwise similar.

The E-TNPA algorithm [21] extends the T-L Plane/LLREF algorithm with two

major improvements. First, when the total utilization is under 100%, it runs an excess

time apportionment algorithm at the beginning of each slice, and distributes unused

CPU time among tasks in the form of increased workloads within the slice. Once this

is done for a new slice, it runs as if it were a normal T-L Plane, but with different

rates. In this way, E-TNPA is work-conserving, that is, it never idles a processor when

any idle task has unfinished work in its current period. The second improvement is the

realization that the sorting of tasks by laxity at each scheduling event within the slice is

unnecessary. Instead, the paper merely claims that tasks can instead be ordered based

on the needs of the application/environment. This still requires scheduling invocations

at every Zero Laxity and Work Complete secondary event. The authors provided

a modified approach to their work-conserving scheduler with TRPA [20]. Instead of

apportioning free time at the beginning of a slice, they now allow tasks to run arbitrarily

(subject to the zero laxity rule) until such time as remaining required work in the slice to

meet all fluid schedule goals equals the remaining processor capacity in the slice. Both

E-TPNA and TRPA mimic the T-L Plane/LLREF system when given 100% utilization

task sets, and like LLREF, they only prescribe which tasks should be running at a

given time. With no scheme for assigning tasks to processors, it is difficult to gage the

potential overhead of migrations.

Two other papers extend LLREF into different problem variants. Chen et al.

[9] extend the T-L Plane model to uniform multiprocessors (processors have different

speeds, but treat all tasks equivalently) with their T-Ler Plane model. Added to the

T-L Plane are lines representing remaining capacity in the plane for each processor. A

50

new “line hitting” event is added, where a task’s token intersects a processor’s execution

capacity line. At this point, the task is assigned to the processor for the rest of the time

slice, and henceforth ignored. Funk et al. [22] present the LRE-TL algorithm, which

modifies LLREF with various overhead reductions, as well as extends it to both the

uniform multiprocessor and sporadic task problem variants. LRE-TL also does away

with the sorting of events by laxity at each secondary event within the T-L Plane. It

uses a pair of heaps to order the running and idle tasks and determine when the next

secondary event will occur. This reduces the computational overhead of processing at

each secondary event from O(n) to O(lg n).

Finally, in a recent work [41], a new algorithm called U-EDF (Unfair scheduling

algorithm based on EDF) has been proposed. U-EDF starts with a DP-Fair algorithm,

but relaxes the proportional fairness assumption in order to decrease the need for pre-

emptions and migrations. While not proven to be optimal, U-EDF correctly scheduled

more than thousand randomly generated task sets. In all those experiments, U-EDF

significantly reduced the average number of preemptions and migrations per job when

compared with existing optimal algorithms.

2.4.4 A Note on Performance

Because DP-Wrap is designed to be simple and instructive, not optimized for

performance, we do not expect it to outperform more optimized and complex optimal

algorithms. The RUN algorithm presented in Chapter 3 does significantly outperform

all prior optimal algorithms, and so extensive simulation results are presented there,

some of which compare the performance of DP-Wrap with EKG and LLREF. In

brief, because LLREF does a significant amount of unnecessary preempting, DP-Wrap

incurs about a third as many context switches and migrations as LLREF4. At 100%

4In actuality, as LLREF does not assign jobs to processors, we had to devise a greedy method for
this in an attempt to measure its migration performance.

51

processor utilization, DP-Wrap and EKG have exactly the same number of migrations,

as they migrate exactly the same tasks at the same time. EKG does only about 3/4 as

many context switches, as it is running uniprocessor EDF on the non-migrating tasks on

each processor. As processor utilization decreases, EKG’s performance relative to DP-

Wrap improves, as EKG’s processor grouping heuristic is designed to take advantage

of task set slack.

In terms of algorithmic complexity, DP-Wrap has the clear advantage. It

does O(n) work at the beginning of each slice to determine switching and migration

times, and then each event just requires a constant time lookup. For periodic task

sets with implicit deadlines, every slice is equivalent, so the only work needed at the

beginning of a slice is multiplying the reusable schedule by the length of the slice,

giving minimal overhead. Scheduling complexity per slice for LLREF and LRE-TL

are O(n2) and O(n log n), respectively. EKG will also have a worst-case O(n log n) per

slice complexity due to its EDF subroutine, but is more efficient in practice. BF is

O(n) per slice, (like DP-Wrap, it does its slice scheduling up front), but each slice is

scheduled differently, and the complexity due to time quantum rounding is high.

2.5 Conclusions

Our work on DP-Fair algorithms was not meant to improve upon existing op-

timal algorithms in terms of performance. Rather, we sought to improve understanding

of existing solutions, and find common features of these solutions to use as a framework

for future developments. With our DP-Fair scheduling theory and rules, we provide ex-

tremely simple, almost obvious, scheduling guidelines which are nonetheless sufficient to

guarantee optimality. Because our theory easily explains the correctness of all previous

competitive algorithms, we have managed to unify all prior work on this problem into

one simple framework. We have also provided DP-Wrap as a minimal yet competitive

52

example of how to translate this theory into a workable algorithm.

Unfortunately, the imposition of all system deadlines upon all tasks under

DP-Fair creates a large overhead on the system. Between its release and deadline,

a long job might be divided into a dozen or more time slices, each of which requires

turning the job on and off to meet its intermediate proportional work requirements.

These overconstraints on the system impose a large number of potentially unnecessary

context switches and migrations. Ultimately, in order to make substantial improvements

in efficiency, we had to abandon the constraints of DP-Fair and move in another

direction. In the next chapter, we will see a brand new approach to optimal scheduling

that provides a substantial reduction in operational overhead.

53

Chapter 3

RUN : A Peek at the Future

54

3.1 Introduction

In this chapter, we introduce RUN, the first optimal scheduling algorithm that

is not based on the DP-Fair rules. While these rules make optimal scheduling very

simple, they do impose a large number of job deadlines on the system, and subsequently

result in a large number of unnecessary context switches and migrations. Our new RUN

algorithm uses the novel construction of dual scheduling to achieve optimal results with

far fewer overconstraints, and results in (on average) 80% fewer context switches and

migrations than known DP-Fair algorithms. To motivate dual scheduling, we will once

again use greedy schedulers as an inspiration.

3.1.1 Scheduling Duality

Recall Example 2.1 from Section 2.1.2:

T = { τ1 = (10, 9), τ2 = (10, 9), τ3 = (20, 4) } .

In Figure 2.1 and the subsequent discussion, we saw that no greedy approach could

schedule this task set because no greedy algorithm would recognize the collective idle

time requirement of τ1 and τ2, or recognize the “joint idle time” event that occurs at

t = 8. However, that is not strictly true; it is possible for a greedy scheduler to detect

the required event at t = 8 if we schedule the tasks’ idle time rather than their work

time using the dual of this task set.

Suppose we wish to schedule a set T of n tasks that fully utilizes m processors,

i.e., ρ(T) = m. As noted in Theorem 2.1, no processor idle time is allowed in a valid

schedule, so at each time instance, exactly m tasks must be executing. Since n − m

tasks must always be idle, determining which tasks will be idle is just as important as

(and is, in fact, fully equivalent to) determining which tasks will be executing. The

parallel system for scheduling idle time instead of execution time is known as the dual

55

system. We construct this dual system by creating n dual tasks which represent the idle

time requirements of the original tasks, and scheduling them on n−m dual processors.

For the task set T from Example 2.1, for instance, since τ1 = (10, 9) must be

idle for exactly 1 out of every 10 time units, it’s dual task will be τ∗1 = (10, 1). In this

way we construct the dual task set

T ∗ = { τ∗1 = (10, 1), τ∗2 = (10, 1), τ∗3 = (20, 16) } .

These dual tasks have total rate ρ(T ∗) = 1/10 + 1/10 + 16/20 = 1, and so may be

correctly scheduled on a single processor via EDF (recall that EDF is optimal on unipro-

cessor systems). Figure 3.1(a) shows the EDF schedule of T ∗. Dual tasks τ∗1 and τ∗2

share the earliest deadline of 10, and have 1 unit of work in their first period, so these

are scheduled during intervals [0, 1) and [1, 2), respectively. At t = 2, only τ∗3 with a

deadline of 20 has work remaining, and so it is scheduled until τ∗1 and τ∗2 release new jobs

at t = 10. As all tasks now share the deadline of 20, we allow τ∗3 to continue executing,

so as to avoid a pointless context switch (ties in EDF may be broken arbitrarily). When

it finishes at t = 18, τ∗1 and τ∗2 may successively execute the 1 unit of work of their

second jobs.

Because T ∗ is the dual of T , Figure 3.1(a) shows the scheduling of the idle

time of the tasks of T . We may easily translate this into a schedule for T by idling

each τi whenever τ∗i is executing, and by executing τi whenever τ∗i is idle. The resultant

schedule of T is shown in Figure 3.1(b). Because EDF produced a valid schedule for

T ∗, we now also have a valid schedule for T .

We now formalize the dual system. Given the problem of scheduling a full

utilization task set

T = { τ1 = (p1, c1), . . . , τn = (pn, cn) }

56

Figure 3.1: A Schedule and Its Dual
(a) shows the dual task set T ∗ scheduled using EDF. (b) shows the schedule of T that is inferred
from the dual schedule.

on m processors (which we henceforth refer to as the primal system), the dual scheduling

problem requires scheduling

T ∗ = { τ∗1 = (p1, p1 − c1), . . . , τ∗n = (pn, pn − cn) }

on n − m processors. Given any schedule (valid or otherwise) of τ1, . . . , τn, the dual

schedule of τ∗1 , . . . , τ
∗
n is the schedule that has τ∗i executing precisely when τi is idle, and

vice versa. Consequently, a Work Complete event in the primal is a Zero Laxity

event in the dual, and vice versa. We easily verify that

ρ(T ∗) =
n∑
i=1

pi − ci
pi

=

n∑
i=1

(
1− ci

pi

)
= n−

n∑
i=1

ci
pi

= n− ρ(T) = n−m ,

so that T ∗ is feasible on n−m processors. Finally, note that the dual of a dual is just

the primal.

As observed in our example, duality yields a simple solution to the multipro-

57

cessor scheduling problem when we have one more task than processor.

Lemma 3.1. Any scheduling problem with m processors and m + 1 tasks (where the

total rate of the tasks is m) may be scheduled by applying EDF to the uniprocessor

dual.

Proof. This follows directly from the above discussion and the fact that EDF is optimal

for uniprocessor scheduling.

From the primal’s view, the above translates into the following scheduling

policy:

1. Schedule all tasks except the one with the earliest deadline

2. The only preemptive scheduling events needed are Zero Laxity and Job Re-

lease times

It seems strange from the primal’s point of view, but we will never need to explicitly

schedule Work Complete events, any more than we need to schedule Zero Lax-

ity events for EDF on a uniprocessor; if the task set is feasible, these will attend to

themselves.

3.1.2 RUN Overview

Unfortunately, n > m + 1 in most task systems, so by itself Lemma 3.1 is

mostly a curiosity. However, since the general dual contains n−m processors, reducing

the number of tasks in the primal will reduce the number of dual processors. We

can accomplish this by packing multiple tasks together into a single aggregate task,

or server. Once we have a dual with fewer processors, we can also consolidate the

dual tasks, compute the dual of the dual, and obtain even fewer processors. This

packing/dual operation is known as a reduction. A sequence of reductions will result in

a hierarchy of virtual systems, which terminates in one or more uniprocessor systems.

58

Figure 3.2: RUN Global Scheduling Approach
The RUN off-line reduction combines the pack and dual operations. The RUN on-line schedul-
ing uses the DSE rule, the EDF algorithm for servers, and a job-to-processor assignment scheme.

This reduction process may be carried out off-line before scheduling begins. Once we

have our reduction sequence, the uniprocessor system(s) may be scheduled on-line using

EDF. From this a schedule may be derived for the original m processor system. This is

the RUN (Reduction to UNiprocessor) algorithm in a nutshell, and is summarized in

Figure 3.2.

The RUN algorithm represents a significant advancement for both theory and

scheduling efficiency. The first contributions are the theoretical building blocks of Dual

Scheduling Equivalence (DSE) and limited proportional fairness. DSE uses the dual

system to derive feasible schedules for the primal system, and represents a new way of

finding feasible schedules. While DP-Fair algorithms enforce proportional fairness on

every task at every deadline, RUN only requires that the tasks on a server collectively

receive their fair share of processor time at the deadlines of that server. By placing

weaker over-constraints on the system, we can reduce the overhead of excess context

switches and migrations.

59

From these components, we derive the RUN scheduling algorithm. RUN

presents the following advantages:

• Through a sequence of off-line reduction operations, RUN allows the complicated

multiprocessor scheduling problem to be solved by the much simpler application

of EDF to uniprocessor systems.

• RUN significantly outperforms existing optimal algorithms in terms of preemp-

tions and migrations. Run has a theoretical upper bound of O(logm) average

preemptions per job on m processors, and an observed average of less than 3

preemptions per job in each of our simulations.

• RUN reduces naturally to the simple and efficient Partitioned EDF on any system

where Partitioned EDF would find a correct schedule.

3.2 Additional Modeling and Notation

In order to accommodate duality and servers, we will need to expand and alter

some of our notation and system modeling from Chapter 2. Duality requires 100%

utilization, so that at all times, m tasks are executing and n − m tasks are idle. As

a result, we will not consider sporadic tasks or arbitrary deadlines in this chapter, as

both of these lead to idle processors. However, we will extend our task model to a

generalization of periodic tasks.

3.2.1 Fixed-Rate Tasks

When we combine multiple tasks into a server, that server will have all the

deadlines of the component tasks, and a rate equal to the summed rates of those com-

ponents. Since the component tasks generally won’t share deadlines, the server won’t

be periodic, and its jobs won’t be identical. We will use J.a, J.d, and J.c to refer to a

60

job J ’s arrival time, deadline, and workload (WCET), respectively. Thus J is required

to execute for J.c time during the interval [J.a, J.d).

The server itself will be described by its rate and arrival times. Since servers

are just virtual tasks which release a sequence of jobs in a virtual system, the concepts

of task and server are largely interchangeable. We will examine servers in further detail

in in Section 3.3, but we introduce our generalized task model here:

Definition 3.1 (Fixed-Rate Task). Let ρ 6 1 be a positive real number and A a

countably infinite set of non-negative integers which includes zero. The fixed-rate task

τ with rate ρ and arrival times A, denoted τ :(ρ,A), releases an infinite sequence of jobs

satisfying the following properties:

1. A job of τ arrives at time t if and only if t ∈ A

2. A job J of τ arriving at time J.a has deadline J.d = min{t ∈ A | t > J.a}

3. The workload of job J is J.c = ρ(J.d− J.a)

Periodic tasks are just a special case of fixed-rate tasks. Given a periodic task

τ = (p, c), we may represent this as a fixed rate task τ :(ρ,A), where ρ = c/p and

A = {kp | k ∈ N}. As all tasks (and servers) in this chapter are fixed-rate tasks, we

shall henceforth simply refer to them as “tasks”.

Since we will have tasks and servers at multiple virtual levels, we may no longer

simply index all tasks with i = 1, . . . , n. Consequently, we denote the rate and arrival

set of a task τ with ρ(τ) and A(τ), respectively. As implied by item (2) of Definition 3.1,

we assume the implicit deadline model, i.e., that the deadline of τ ’s current job is equal

to the arrival time of its next job. Consequently, A(τ) \ {0} is the set of τ ’s deadlines,

and each task has exactly one active job at any time.

61

3.2.2 Schedules

We will now modify our definition of “schedule” slightly. Traditionally, as in

Section 1.3, a schedule specifies which tasks are running on which processors at all times.

However, dual scheduling is only concerned with which tasks are running (or idle) at any

give time, and not with processor assignment. Consequently, we will exclude processor

assignment from our definition of “schedule” in this chapter. Once we’ve determined

which tasks are running, determining processor assignment is relatively easy, and will

be addressed in Section 3.6.1.

Definition 3.2 (Schedule). Consider a set of jobs J (typically generated by a set of

tasks) on a platform of m identical processors. Let eJ,t denote the work remaining for

job J at time t. A (legal) schedule Σ is a function from the set of all non-negative times

t onto the power set of J such that (i) |Σ(t)| 6 m for all t, and (ii) if J ∈ Σ(t), then

J.a 6 t and eJ,t > 0. Thus Σ(t) represents the set of jobs executing at time t.

Condition (ii) requires that we only execute jobs which have arrived and have

work remaining. Note also that Σ(t) is a set of jobs, meaning that no job is selected

multiple times in a single time instant, i.e., no job can execute simultaneously on dif-

ferent processors. These two facts imply that the above definition is, in fact, for legal

schedules (see Section 1.3). As before, a valid schedule is one in which all deadlines are

met.

3.2.3 Fully Utilized System

A system of m processors is fully utilized by a task set T provided that (i)

the total rate ρ(T) of T is equal to m; (ii) all jobs always require their full WCET

times; and (iii) all tasks release a job a time zero. Henceforth, we will only consider

fully utilized systems. We will observe, however, that this assumption does not actually

restrict our task model.

62

First, if the total rate of T is less than m, idle (dummy) tasks may be inserted

as needed to make up the difference. In fact, the careful placement of these dummy

tasks may significantly improve system performance by allowing us to partially or fully

partition our task set onto fixed processors (see Section 3.6.1).

Second, assume that a job J has a WCET estimate of J.c, but that it completes

after consuming only c′ < J.c units of processor time. In such a case, the system can

easily simulate J.c − c′ of J ’s execution by blocking a processor accordingly. We may

thus assume that a job’s WCET estimate is always correct, and that each job J of τ

executes for exactly J.c = ρ(τ)(J.d− J.a) time during the interval [J.a, J.d).

Third, suppose that some task τ has its initial job arrive at some time s > 0,

and that s is known at the outset. We may then add a dummy job J0 with arrival time

0, deadline s, and execution time J0.c = ρ(τ)s.

So without loss of generality, we henceforth assume that all systems are fully

utilized. One consequence of this is that, in any valid schedule Σ on m identical pro-

cessors, we must have |Σ(t)| = m for all times t.

3.2.4 A Simple Example

Before we formally define servers, or the dual or pack operations, we will

give a simple example of the RUN algorithm, to provide a context for understanding

the subsequent exposition. Figure 3.3 illustrates all the involved steps. Let us start

with a set of five periodic tasks:

T = { τ1 = (10, 2), τ2 = (15, 9), τ3 = (20, 6), τ4 = (15, 6), τ5 = (30, 15) }

Since sum of the rates is ρ(T) = 2/10 + 9/15 + 6/20 + 6/15 + 15/30 = 2, we wish to

schedule T on m = 2 processors (Figure 3.3(a)).

Our first step is to pack tasks with lower rates together into aggregate fixed-

63

Figure 3.3: A Simple Preview of RUN
This demonstrates a simple execution of RUN on 5 tasks and 2 processors.

64

rate tasks (servers). We will pack τ1 and τ2 together into τ12 with rate 2/10+9/15 = 4/5,

and deadlines at all multiples of 10 or 15. Similarly, we pack τ3 and τ4 together into

τ34, giving us our new packed task set

TP = { τ12 :(4/5, 10N ∪ 15N), τ34 :(7/10, 15N ∪ 20N), τ5 :(1/2, 30N) } ,

recalling that τi :(ρi, Ai) is a fixed-rate task with rate ρi and arrival times Ai (Fig-

ure 3.3(b)).

Our next step is to find the dual of this packed set of tasks (Figure 3.3(c)):

T ∗P = { τ∗12 :(1/5, 10N ∪ 15N), τ∗34 :(3/10, 15N ∪ 20N), τ∗5 :(1/2, 30N) } .

Recall that a dual task has the same deadlines and complimentary rate to its primal

task. Since the dual rates sum to one, we may schedule T ∗P on a single (virtual dual)

processor using EDF. τ∗12 has the earliest deadline at t = 10, so we run it to completion

at time t = 2. τ∗34 has the next deadline at t = 15, so we execute its 3/10 × 15 = 4.5

units of work from t = 2 to t = 6.5. And so forth. The complete EDF schedule for T ∗P

through t = 30 is shown in Figure 3.3(d).

From this EDF dual schedule of T ∗P , we may infer a schedule for TP . Specifi-

cally, τi will execute precisely when τ∗i is idle, and vice versa. This will tell us when tasks

in TP must execute (Figure 3.3(e)); assigning tasks to processors is a simple matter, and

is shown in Figure 3.3(f), but we’ll save the details for Section 3.6.1.

Finally, since τ12 is just a server (placeholder) for the execution of its clients

τ1 and τ2, we replace the execution of τ12 with the EDF scheduling of τ1 and τ2, and

similarly for τ34, τ3, and τ4. The final RUN schedule is shown in Figure 3.3(g).

With this simple example as motivation, we proceed with the formal definitions

of servers, duality, packing, and reductions that define the RUN algorithm.

65

3.3 Servers

RUN’s reduction from multiprocessor to uniprocessor systems is enabled by

aggregating tasks into servers. We treat servers as tasks with a sequence of jobs, but

they are not actual tasks in the system; each server is a proxy for a collection of client

tasks. In any instant when a server is running, its allocated processor time is actually

being used by one of its clients. A server’s clients are scheduled via some internal

scheduling mechanism.

Since we treat servers as tasks, the rate of a server can never be greater than

one; consequently, this section focuses only on uniprocessor systems. We precisely define

the concept of servers (Section 3.3.1) and show how they correctly schedule the client

tasks associated with them (Section 3.3.2). We return to multiprocessors in the following

section.

3.3.1 Server model and notations

A server for a set of tasks is defined as follows:

Definition 3.3 (Server/Client). Let T be a set of tasks with total rate given by ρ(T) =∑
τ∈T ρ(τ) 6 1. A server σ for T , denoted ser(T), is a virtual task with rate ρ(T),

arrival times A(σ) = ∪τ∈T A(τ), and some internal scheduling policy to schedule the

tasks in T . T is the set of σ’s clients, and is denoted cli(σ).

We refer to a job of any client of σ as a client job of σ. If σ is a server and Γ

a set of servers, then ser(cli(σ)) = σ and cli(ser(Γ)) = Γ.

As we will see in Section 3.4.2, the packing of clients into servers is done off-

line prior to execution, and remains static during on-line scheduling. It is therefore

unambiguous to define the rate ρ(σ) of server σ to be ρ(cli(σ)). Since servers are

themselves tasks, we may also speak of a server for a set of servers. And since a server

may contain only a single client task, the concepts are largely interchangeable.

66

Figure 3.4: A Two-Server Set
A set of two servers for three tasks. The notation X(µ) indicates that ρ(X) = µ.

By Definition 3.3, the execution requirement of a server σ in any interval

[ah, ah+1) equals ρ(σ)(ah+1 − ah), where ah and ah+1 are consecutive arrival times in

A(σ). Then the workload for job J of server σ with J.a = ah and J.d = ah+1 equals

J.c = eJ,J.a = ρ(σ)(J.d− J.a), just as with a “real” job. However, since a server σ is a

just proxy for its clients, the jobs of σ are just budgets of processor time allocated to

σ so that its clients may execute. These budget jobs of σ may be viewed as σ simply

replenishing its budget for each interval [ah, ah+1). Similarly, if J is the current job of

σ at time t, then eJ,t is just the budget of σ remaining at time t.

As an example, consider Figure 3.4, where Γ is a set comprised of the two

servers σ1 = ser({τ1}) and σ2 = ser({τ2, τ3}) for the tasks τ1, and τ2 and τ3, respectively.

If ρ(τ1) = 0.4, ρ(τ2) = 0.2 and ρ(τ3) = 0.1, then ρ(σ1) = 0.4 and ρ(σ2) = 0.3. Also, if

σ = ser(Γ) is the server in charge of scheduling σ1 and σ2, then Γ = cli(σ) = {σ1, σ2}

and ρ(σ) = 0.7.

Task sets and servers with summed rates of one are a key part of RUN’s

construction. We therefore define unit sets and unit servers, both of which can be

feasibly scheduled on one processor.

Definition 3.4 (Unit Set/Unit Server). A set Γ of servers is a unit set if ρ(Γ) = 1. The

server ser(Γ) for a unit set Γ is a unit server.

We say that a server meets its deadlines if all of its budget jobs meet theirs.

Even if this is the case, the server must employ an appropriate scheduling policy to

ensure that its clients also meet their deadlines.

67

(a) Valid schedule of the budget jobs of σ. Jσh is the hth job of σ.

0 1 2 3 4 5 6

J2,1 J1,1

J1,1 J2,1

(b) Job J1,1 misses its deadline when σ prioritizes job J2,1 of τ2.

0 1 2 3 4 5 6

J1,1 J2,1 J2,1 J1,2 J1,2 J2,2 J1,3 J2,2

J1,1 J2,1 J1,2 J1,3,J2,2

(c) A valid schedule of jobs of τ1 and τ2 by σ.

Figure 3.5: Client Deadline Misses in a Valid Server Schedule
Schedule of τ1 :(1/2, 2N) and τ2 :(1/3, 3N) by a single server σ on a dedicated processor, where
A(σ) = {2, 3, 4, 6, . . .} and ρ(σ) = 5/6. σ meets its deadlines (a), but it’s client may either miss
(b) or meet (c) their deadlines, depending on how they are scheduled by σ.

For example, consider two periodic tasks τ1 :(1/2, 2N) and τ2 :(1/3, 3N) (rates

are 1/2 and 1/3, and periods are 2 and 3, respectively, and initial arrival times are

zero). Consider a server σ scheduling these two tasks on a dedicated processor. We

have A(σ) = {0, 2, 3, 4, 6, . . .} and ρ(σ) = 5/6. σ’s first job Jσ1 will arrive at Jσ1 .a = 0,

and will have deadline Jσ1 .d = 2 and workload eJσ1 ,0 = ρ(σ)(2 − 0) = 5/3, i.e., σ has a

budget of 5/3 for the interval [0, 2).

Figure 3.5(a) shows a valid schedule for the first four budget jobs of σ. But

suppose that σ employs a scheduling policy for its clients where τ2 is given priority over

τ1 (see Figure 3.5(b), where Ji,j represents the jth job of τi). Then J2,1 will consume one

unit of time before J1,1 begins its execution. The remaining server budget eJσ1 ,1 = 2/3

will be insufficient to complete J1,1’s workload of 1 by its deadline at time 2. We see

that a server meeting its deadlines does not insure that its clients will meet theirs.

If, on the other hand, σ’s scheduling policy had prioritized τ1 at time zero,

this deadline miss would be avoided. This is the case with the optimal EDF scheduling

policy, which is shown in Figure 3.5(c).

68

Figure 3.6: Server Budget and Client Jobs
cli(σ) = {τ1 :(1/2, 2N), τ2 :(1/3, 3N)} and ρ(σ) = 5/6. The graph shows budget (work) remain-
ing in four consecutive server jobs; below is the schedule of client jobs. Crosshatched regions
represents execution of external jobs.

3.3.2 EDF Server

We will henceforth use EDF as our servers’ scheduling policy, as it is optimal,

simple, and efficient.

Rule 1 (EDF Server). Servers in RUN will be EDF servers, which schedule their client

jobs with EDF.

As an illustrative example, consider a set of two periodic tasks T = {τ1 :(0.4, 2N),

τ2 :(0.2, 3N)}. Since ρ(T) = 0.6 6 1, we can define an EDF server σ to schedule T such

that cli(σ) = T and ρ(σ) = 0.6. Figure 3.6 shows both the evolution of eJσ ,t during

interval [0, 6) and the schedule Σ of T by σ on a single processor. In this figure, ij

represents the j-th job of τi. During intervals [12
3 , 2), [25

6 , 3
1
6), [42

3 , 4
5
6) and [51

3 , 5
1
2), the

execution of σ is replaced with execution of external events represented by crosshatched

regions.

Note that a unit EDF server σ has rate ρ(σ) = 1 and must execute continuously

in order to meet its clients’ deadlines. Deadlines of σ have no effect, since budgets are

replenished (a new budget job arrives) the instant they are depleted (at the old budget

69

job’s deadline).

Theorem 3.2. The EDF server σ = ser(Γ) of a set of servers Γ produces a valid

schedule of Γ when ρ(Γ) 6 1 and all jobs of σ meet their deadlines.

Proof. By treating the servers in Γ as tasks, we can apply well known results for schedul-

ing task systems. For convenience, we assume that σ executes on a single processor; this

need not be the case in general, so long as σ does not execute on multiple processors in

parallel.

Recall from Definition 3.3 that ρ(Γ) =
∑

σi∈Γ ρ(σi). We first prove the theorem

for ρ(Γ) = 1, then use this result for the case of ρ(Γ) < 1.

Case ρ(Γ) = 1 : Let ηΓ(t, t′) be the execution demand within a time interval [t, t′),

where t < t′. This demand gives the sum of all execution requests (i.e., jobs) that arrive

no earlier than t and have deadlines no later than t′. By Definition 3.3, this quantity is

bounded above by

ηΓ(t, t′) 6 (t′ − t)
∑
σi∈Γ

ρ(σi) = t′ − t (3.1)

It is known [5,6] that there is no valid schedule for Γ if and only if there is some interval

[t, t′) such that ηΓ(t, t′) > t′ − t. Since Equation 3.1 implies that this cannot happen,

some valid schedule for Γ must exist. Because σ schedules Γ using EDF and EDF is

optimal [5, 33], σ must produce a valid schedule.

Case ρ(Γ) < 1 : In order to use the result for case ρ(Γ) = 1, we introduce a slack-

filling task τ ′, as illustrated in Figure 3.6, where A(τ ′) = A(σ) and ρ(τ ′) = 1 − ρ(σ).

We let Γ′ = Γ ∪ {τ ′}, and let σ′ be an EDF server for Γ′. Since ρ(Γ′) = 1, σ′ produces

a valid schedule for Γ′.

Now consider the scheduling window WJ = [J.a, J.d] for some budget job J of

70

σ. Since A(τ ′) = A(σ), τ ′ also has a job J ′ where J ′.a = J.a and J ′.d = J.d. Since

σ′ produces a valid schedule, τ ′ and σ do exactly ρ(τ ′)(J.d − J.a) and ρ(σ)(J.d − J.a)

units of work, respectively, during WJ . Since there are no deadlines or arrivals between

J.a and J.d, the workload of τ ′ may be arbitrarily rearranged or subdivided within the

interval WJ without compromising the validity of the schedule. We may do this within

all scheduling windows of σ so as to reproduce any schedule of σ where it meets its

deadlines. Finally, since σ and σ′ both schedule tasks in Γ with EDF, σ will produce

the same valid schedule for Γ as σ′, giving our desired result.

As noted above, a server and its clients may migrate between processors, as

long as no more than one client executes at a time. This will allow us to schedule

multiple servers on a multiprocessor platform.

3.3.3 Benefits of the RUN Server Model

Compared to the proportional fairness in DP-Fair approaches to optimal

scheduling, the limited proportional fairness required by RUN’s server mechanism en-

forces a much weaker notion of fairness. In DP-Fair algorithms, every task must do its

proportional share of work between all system deadlines. The budget jobs of a server,

on the other hand, only require that its clients collectively receive their proportional

share of processor time between every client deadline. For example, if the three clients

of a server have summed rate of 0.8, then proper scheduling of the servers’ jobs ensures

that these three clients share 80% of a processor’s capacity between any two of their

deadlines. The servers’ allocation of its budget to its clients need not be proportionally

fair at any particular point, so long as its internal scheduling mechanism (e.g., EDF)

ensures that its clients meet their deadlines. Nonetheless, according to Theorem 3.2,

this limited proportional fairness is sufficient to guarantee the correct scheduling of a

server’s clients. Because this approach applies much weaker over-constraints to the sys-

71

tem than traditional proportional fairness, it incurs a significantly lower overhead of

preemptions and migrations for optimal scheduling.

Unlike periodic tasks, fixed-rate tasks do not, and need not, make all of their

arrival times known at the outset. It is sufficient that they have implicit deadlines, i.e.,

that there are neither gaps nor overlaps between a task’s consecutive jobs. In order for a

server to set the deadline for its next budget job, it only needs to know the next deadline

of each of its clients. This is also sufficient for an EDF server to make its scheduling

selections from among its clients. Thus, unlike periodic tasks, which implicitly provide

all their arrival times at the outset, fixed-rate tasks need only make their next arrival

time known in order to be scheduled on-line by an EDF server.

3.4 RUN Off-Line Reduction

In this section, we describe the dual and pack operations, which are used

iteratively in an off-line procedure to reduce a multiprocessor task system to a col-

lection of uniprocessor systems. The dual operation is just the formal mechanism for

expressing the previously introduced dual system. Recall that, for a system with n tasks

and m processors, the dual system will require n−m processors. The pack operation

aggregates multiple low-rate tasks into a single high-rate task (server). This packing

decreases n, and consequently, decreases the number of processors in the dual system.

Since the dual rate of τ is computed as ρ(τ∗) = 1− ρ(τ), this also means that the duals

of these packed servers will generally have low rates, and may themselves be packed

into even fewer servers. Given this synergy, we compose the two operations into a sin-

gle reduce operation, which, when applied iteratively, eventually reduces our original

system down to one or more uniprocessor systems. In Section 3.5 we will show how the

EDF schedules for these uniprocessor systems may be transformed back into a schedule

for the original multiprocessor system.

72

3.4.1 dual Operation

The introduction of duality in Section 3.1.1 shows a special case wherein m+1

tasks are to be scheduled on m processors. In such a case, the dual task set has an total

rate of one, and may therefore be scheduled on a single processor. The primal schedule

is then easily inferred, as shown in Figure 3.1. We will now formalize these results, and

extend them to general systems of fixed-rate tasks (servers).

Definition 3.5 (Dual Server). The dual server σ∗ of a server σ is a server with the

same deadlines as σ and with rate ρ(σ∗) equal to 1 − ρ(σ). If Γ is a set of servers,

then its dual set Γ∗ is the set of dual servers to those in Γ, i.e., σ ∈ Γ if and only if

σ∗ ∈ Γ∗.

The dual of a unit server (which has rate ρ(σ) = 1 and must execute continu-

ously in order to meet its clients’ deadlines) is a null server, which has rate ρ(σ∗) = 0

and never executes.

Definition 3.6 (Dual Schedule). Let Γ be a set of servers and Γ∗ be its dual set. Two

schedules Σ of Γ and Σ∗ of Γ∗ are duals if, for all times t and all σ ∈ Γ, σ ∈ Σ(t) if and

only if σ∗ 6∈ Σ∗(t); that is, σ executes exactly when σ∗ is idle, and vice versa.

σ, Γ, and Σ are referred to as primal relative to their duals σ∗, Γ∗, and Σ∗. As

with any good notion of “duality”, we find that the dual of the dual is just the primal,

i.e., (σ∗)∗ = σ, (Γ∗)∗ = Γ and (Σ∗)∗ = Σ. In fact, it is this property of dual schedules

that motivated the avoidance of task-to-processor assignment in Definition 3.2. Here

we are only concerned with which tasks (or servers) are executing at any given time;

task-to-processor assignment may be handled as a separate step (see Section 3.6.1).

We now establish Dual Scheduling Equivalence (DSE) which states that the

schedule of a primal set of servers is correct precisely when its dual schedule is correct.

73

Theorem 3.3 (Dual Scheduling Equivalence). Let Γ be a set of n = m + k servers

with k > 1 and ρ(Γ) = m, an integer. For a schedule Σ of Γ on m processors, let Σ∗

and Γ∗ be their respective duals. Then ρ(Γ∗) = k, and so Γ∗ is feasible on k processors.

Further, Σ is valid if and only if Σ∗ is valid.

Proof. First,

ρ(Γ∗) =
∑
σ∗∈Γ∗

ρ(σ∗) =
∑
σ∈Γ

(1− ρ(σ)) = n− ρ(Γ) = k ,

so k processors are sufficient to schedule Γ∗. Next, we prove that if Σ is valid for Γ then

Definition 3.2 implies that Σ∗ is valid for Γ∗.

Because Σ is a valid schedule on m processors and we assume full utilization,

Theorem 2.1 indicates that Σ always executes m distinct tasks. The remaining k = n−m

tasks are idle in Σ, and so are exactly the tasks executing in Σ∗. Hence Σ∗ is always

executing exactly k distinct tasks on its k (virtual dual) processors. Since Σ is valid,

any job J of server σ ∈ Γ does exactly J.c = ρ(σ)(J.d− J.a) units of work between its

arrival J.a and its deadline J.d. During this same time, σ∗ has a matching job J∗ where

J∗.a = J.a, J∗.d = J.d, and

J∗.c = ρ(σ∗)(J∗.d− J∗.a)

= (1− ρ(σ))(J.d− J.a)

= (J.d− J.a)− J.c

That is, J∗’s execution requirement during the interval [J.d, J.a) is exactly the length

of time that J must be idle. Thus, as J executes for J.c during this interval in Σ, J∗

executes for J∗.c in Σ∗. Consequently, J∗ satisfies condition (ii) of Definition 3.2 and

also meets its deadline. Since this holds for all jobs of all dual servers, Σ∗ is a valid

schedule for Γ∗.

74

The converse also follows from the above argument, since (Σ∗)∗ = Σ.

Once again, see Figure 3.1 for a simple illustration. We now summarize this

dual scheduling rule for future reference.

Rule 2 (Dual Server). At any time, execute in Σ the servers of Γ whose dual servers

are not executing in Σ∗, and vice versa.

Finally, we define the dual operation D from a set of servers Γ to its dual set Γ∗

as the bijection which associates a server σ with its dual server σ∗, i.e., D(σ) = σ∗. We

adopt the usual notational convention for the image of a subset. That is, if f : A→ B

is a function from A to B and A′ ⊆ A, we understand f(A′) to mean {f(a) | a ∈ A′}.

For example, D(Γ) = {σ∗ | σ ∈ Γ} = Γ∗.

Note that Theorem 3.3 does not provide any particular rules for generating a

schedule; it merely establishes the equivalence of scheduling n tasks on m processors

with scheduling their dual tasks on n−m virtual processors. This can be advantageous

when n −m < m, so that the number of processors is reduced in the dual system, as

seen in Figure 3.1. The pack operation ensures this desirable outcome.

3.4.2 pack Operation

We cannot generally expect to find n−m < m. Consider the example of a set

T of 5 tasks, each with rate 2/5. Here, n = 5, m = ρ(T) = 2, and n−m = 3 > 2. The

dual tasks in T ∗ have rates of 3/5, and will require 3 processors to schedule. Here, the

dual operation has made the system larger, not smaller.

However, suppose we combine two pairs of tasks in T into two new tasks

(servers), each with rates of 2/5 + 2/5 = 4/5. Then the dual of this new 3 task set has

rates 1/5, 1/5, and 3/5, and may be scheduled on a single processor. This is because

this dual system requires n−m processors, and we have just reduced n by two without

changing m. This is the essence of the pack operation.

75

Figure 3.7: A Single Reduction Level
Packing, pack, and dual operations applied to Γ = {σ1, σ2, . . . , σ7}, resulting in a reduction to
a unit set of three servers {σ8, σ9, σ10} with σ8 = D◦PA(σ1), σ9 = D◦PA(σ6), σ10 = D◦PA(σ3).
The notation X(µ) means that ρ(X) = µ.

Definition 3.7 (Packing). Let Γ be a set of servers. A partition {Γ1, Γ2, . . ., Γk} of Γ

is a packing of Γ if ρ(Γi) 6 1 for all i and ρ(Γi) + ρ(Γj) > 1 for all i 6= j. An algorithm

A is a packing algorithm if it partitions any set of servers into a packing. In such a case,

we denote the packing of Γ produced by A as πA[Γ].

An example of packing a set Γ of 7 servers into three sets Γ1, Γ2 and Γ3, is

illustrated by rows 1 and 2 of Figure 3.7. We will use traditional bin-packing algorithms

as our packing algorithms. These are described in detail in Appendix B.

Theorem 3.4. The first-fit, worst-fit and best-fit bin-packing algorithms are packing

algorithms.

Proof. At any step of these three algorithms, a new bin can only be created if the

current task to be allocated does not fit in any of the existing partially filled bins. Now

suppose that ρ(Γi) + ρ(Γj) 6 1 for some two bins, where Γj was created after Γi. Then

the first item τ placed in Γj must have ρ(τ) 6 ρ(Γj) 6 1− ρ(Γi). That is, τ fits in bin

Γi, contradicting the need to create Γj for it. Therefore ρ(Γi) +ρ(Γj) > 1 must hold for

any pair of bins.

Hereafter, we assume that A is a packing algorithm. We now wish to assign a

76

dedicated server to schedule each part Γi of the partition πA[Γ].

Definition 3.8 (PACK operation). Let Γ be a set of servers, A a packing algorithm, and

πA[Γ] the resultant packing. For each Γi ∈ πA[Γ], we assign it a dedicated server ser(Γi).

The pack operation PA is the mapping from Γ onto the set {ser(Γi) | Γi ∈ πA[Γ]} of

these servers such that, if Γi ∈ πA[Γ] and σ ∈ Γi, then PA(σ) = ser(Γi). That is, PA

associates a client σ ∈ Γ with the server ser(Γi) responsible for scheduling σ and the

other clients which πA packs into Γi.

By our notational conventions, PA(Γ) = {ser(Γi) | Γi ∈ πA[Γ]} is the set of

all aggregated servers responsible for scheduling Γ. For example, Figure 3.7 shows that

PA(σ6) = ser(Γ2) is the aggregated server responsible for scheduling all the clients in

Γ2, and that PA(Γ) = {PA(σ1),PA(σ6),PA(σ3)}.

Definition 3.9 (Packed Server Set). A set of servers Γ is packed if it is a singleton,

or if |Γ| > 2 and for any two distinct servers σ and σ′ in Γ, ρ(σ) + ρ(σ′) > 1 and

cli(σ) ∩ cli(σ′) = {}.

Consequently, the packing of a packed server set Γ is the collection of singleton

sets {{σ}}σ∈Γ. As we are only concerned with packings that result from the application

of some packing algorithm A, we will henceforth drop the implicitly understood A from

π[Γ] and P.

3.4.3 reduce Operation

We now compose the dual and pack operations into the reduce operation.

As will be shown, a sequence of reductions transforms a multiprocessor scheduling prob-

lem into a collection of uniprocessor scheduling problems. This off-line transformation

is the cornerstone of the RUN algorithm.

77

Lemma 3.5. Let Γ be a packed set of servers, and let D(Γ) be the dual set of Γ.

Suppose we apply a pack operation P to D(Γ). Then

| P ◦D(Γ) | 6
⌈
|Γ|+ 1

2

⌉
.

Proof. Let n = |Γ|. Since Γ is packed, there is at most one server σ in Γ such that

ρ(σ) 6 1/2. This implies that at least n − 1 servers in D(Γ) have rates less than 1/2.

When these n − 1 dual servers are packed, they will be, at a minimum, paired off.

Thus, the packing will partition D(Γ) into at most d(n − 1)/2e + 1 subsets. Hence,

|P ◦D(Γ)| 6 d(n+ 1)/2e.

Thus, packing the dual of a packed set reduces the number of servers by at

least (almost) half. Since we will use this pair of operations repeatedly, we define the

reduce operation to be their composition.

Definition 3.10 (REDUCE Operation). Given a set of servers Γ and a packing al-

gorithm A, the reduce operation on a server σ in Γ, denoted R(σ), is the compo-

sition of the dual operation D with the pack operation P associated with A, i.e.,

R(σ) = D◦P(σ).

Figure 3.7 illustrates the steps of the reduce operation R. As we intend

to apply reduce repeatedly until we are left with only unit servers, we now define a

reduction sequence.

Definition 3.11 (Reduction Level/Sequence). Let i > 1 be an integer, Γ a set of

servers, and σ a server in Γ. The operator Ri is recursively defined by R0(σ) = σ and

Ri(σ) = R◦Ri−1(σ). {Ri}i is a reduction sequence, and the server system Ri(Γ) is said

to be at reduction level i.

Theorem 3.8 will show that a reduction sequence on a server set Γ with ρ(Γ) =

m always arrives at a collection of terminal unit servers. Table 3.1 shows 10 tasks (or

78

Table 3.1: Sample Reduction and Proper Subsets

Server Rate

R0(Γ) 0.6 0.6 0.6 0.6 0.6 0.8 0.6 0.6 0.5 0.5

P(R0(Γ)) 0.6 0.6 0.6 0.6 0.6 0.8 0.6 0.6 1→
R1(Γ) 0.4 0.4 0.4 0.4 0.4 0.2 0.4 0.4 0

P(R1(Γ)) 0.8 0.8 0.4 1→
R2(Γ) 0.2 0.2 0.6 0

P(R2(Γ)) 1

servers) transformed into a unit server via two reduce operations and a final pack.

Notice that two unit servers appear before the final reduction level (indicated in the

table by 1→). A subset of tasks in Γ which eventually gets reduced to a terminal unit

server is referred to as a proper subset. A proper subset always has an integral summed

rate, and may be scheduled on a subset of processors independently from the rest of Γ.

A proper subset, all the intermediate primal and dual servers down to and including the

unit server, and the processor(s) assigned to them, are collectively known as a proper

subsystem. The three proper subsystems in Table 3.1 are separated by blank columns.

When intermediate unit servers are encountered prior to the final reduction

level, there are two ways of dealing with them: we may isolate them or ignore them.

Under the first approach, when an intermediate unit server is found, it is treated as a

terminal unit server. The proper subsystem that generated it is isolated from the rest

of the system, assigned its own processors, and scheduled independently. For example,

in Table 3.1, the proper subset {0.8, 0.6, 0.6} would be assigned two processors, which

would be scheduled independently from the other four processors and seven tasks. This

approach is more efficient in practice, because these independent subsystems do not

impose events on, or migrate into, the rest of the system. The simulations detailed in

Section 3.6.6 use this approach.

We may also deal with intermediate unit servers by ignoring them. The dual

of a unit server is a null server. If we ignore the fact that we have found an intermediate

unit server, then its dual null server simply gets packed into some other server in the

79

next level. In Table 3.1, observe the unit server that results from the tasks {0.5, 0.5}.

The unit server’s dual has rate 0, and may be packed along with the dual servers

{0.2, 0.4, 0.4} into another unit server. Under this approach, we do not consider these

intermediate unit servers to be terminal unit servers, nor do we consider them to be the

root of a proper subsystem. Under this view, Table 3.1 contains only one terminal unit

server and one proper subsystem. It is still possible for a system to have more than one

terminal unit server, but only if they all appear at the same final reduction level. For

the remainder of this section and the next, we will adopt this approach for dealing with

intermediate unit servers, because it simplifies our exposition and proofs.

We now provide two intermediate results which will be used to establish The-

orem 3.8.

Lemma 3.6. Let Γ be a set of servers, and let P(Γ) be the set of servers assigned to

the packing π[Γ] of some pack operation on Γ. Then ρ(Γ) 6 |P(Γ)|. Further, if not all

servers in P(Γ) are unit servers, then ρ(Γ) < |P(Γ)|

Proof. Since ρ(σ) 6 1 for all servers σ ∈ P(Γ),

ρ(Γ) =
∑

Γi∈π[Γ]

ρ(Γi) =
∑

σ∈P(Γ)

ρ(σ) 6
∑

σ∈P(Γ)

1 = | P(Γ) | .

If not all servers in P(Γ) are unit servers, then ρ(σ) < 1 for some σ ∈ P(Γ), and the

inequality above is strict.

Lemma 3.7. Let Γ be a packed set of servers, not all of which are unit servers. If ρ(Γ)

is a positive integer, then |Γ| > 3.

Proof. If Γ = {σ1} and σ1 is not a unit server, then ρ(Γ) < 1, not a positive integer. If

Γ = {σ1, σ2} is a packed set, then ρ(Γ) = ρ(σ1) + ρ(σ2) > 1; but ρ(Γ) is not 2 unless σ1

and σ2 are both unit servers. Thus |Γ| is neither 1 nor 2.

80

Theorem 3.8 (Reduction Convergence). Let Γ be a set of servers where ρ(Γ) is a

positive integer. Then for some p > 0, P(Rp(Γ)) is a set of unit servers.

Proof. Let Γk = Rk(Γ) and ΓkP = P(Γk), and suppose that ρ(ΓkP) is a positive integer.

If ΓkP is a set of unit servers, then p = k and we’re done.

Otherwise, according to Lemma 3.7, |ΓkP | > 3. Observe that

Γk+1
P = P(Γk+1)

= P ◦R(Γk)

= P ◦D◦P(Γk)

= (P ◦D)(ΓkP)

Since ΓkP is a packed set of servers, Lemma 3.5 tells us that

|Γk+1
P | 6

⌈
|ΓkP |+ 1

2

⌉

Since d(x+ 1)/2e < x whenever x > 3, and we know |ΓkP | > 3, it follows that

|Γk+1
P | < |ΓkP | .

Note that packing a set does not change its rate, so ρ(Γk) = ρ(ΓkP). We’ve as-

sumed that ρ(ΓkP) is a positive integer, and that ΓkP are not all unit servers, so Lemma 3.6

tells us that ρ(ΓkP) = ρ(Γk) < |ΓkP |. By setting m = ρ(ΓkP) and n = |ΓkP |, so that m < n,

we may apply Theorem 3.3 to the dual of ΓkP to deduce that ρ(D(ΓkP)) = ρ(Γk+1) =

ρ(Γk+1
P) is also a positive integer.

We now see that Γk+1
P also has positive integer rate, but contains fewer servers

than ΓkP . Hence, starting with the packed set Γ0
P = P(Γ), each iteration of P ◦D either

produces a set of unit servers or a smaller set with positive integer rate. This iteration

81

Table 3.2: Reduction Example with Different Outcomes.

First Packing Second Packing

R0(Γ) .4 .4 .2 .2 .8 .4 .4 .2 .8 .2

P(R0(Γ)) .8 .4 .8 1 1

R1(Γ) .2 .6 .2

P(R1(Γ)) 1

can only occur a finite number of times, and once |ΓkP | < 3, Lemma 3.7 tells us that ΓkP

must be a set of unit servers; we have found our p = k, and are done.

In other words, a reduction sequence on any set of servers eventually produces

a set of unit servers. We will show how to schedule the proper subsystem of each unit

server in the next section. First, note that the behavior of the R operator is dependent

on the packing algorithm associated with its pack operation PA. For example, Table 3.2

shows two packings of the same set of servers. One produces one unit server after one

reduction level and the other produces two unit servers with no reductions. While

some packings may be “better” than others (i.e., lead to a more efficient schedule),

Theorem 3.8 implicitly proves that all pack operations “work”; they all lead to a correct

reduction to some set of unit servers.

3.5 RUN On-Line Scheduling

Now that we have transformed a multiprocessor system into one or more

uniprocessor systems, we show how the schedule of the multiprocessor system can be

deduced from the (virtual) schedules of the derived uniprocessor systems. First we

schedule the clients of the terminal unit servers using EDF. We then iteratively filter

this schedule backwards through the reduction hierarchy, using Dual Scheduling Equiv-

alence at dual levels, and EDF at pack levels. This comprises the on-line scheduling

portion of our optimal RUN algorithm.

Theorem 3.8 says that a reduction sequence produces a collection of one or

82

more terminal unit servers. As shown in Table 3.1, the original task set may be parti-

tioned into the proper subsystems associated with these unit servers, which may then

be scheduled independently. So without loss of generality, we assume in this section

that T is a proper subset, i.e., that it is handled by a single terminal unit server at the

final reduction level.

The scheduling process is illustrated by inverting the reduction tables from

the previous section and creating a server tree whose nodes are the servers generated

by iterations of the pack and dual operations. The terminal unit server becomes the

root of the server tree, which represents the top-level virtual uniprocessor system. The

root’s children are the unit server’s clients, which are scheduled by EDF.

As an illustrative example, let us consider the first proper subsystem in Ta-

ble 3.1. To these 5 tasks with rates of 3/5, we will assign periods of 5, 10, 15, 10, and

5. Then our initial task set becomes

T = {τ1 :(3/5, 5N), τ2 :(3/5, 10N), τ3 :(3/5, 15N), τ4 :(3/5, 10N), τ5 :(3/5, 5N)}.

Figure 3.8(a) shows the inverted server tree, with these 5 tasks as the leaves, and the

terminal unit server as the root. We demonstrate the scheduling process that occurs

at time t = 4 by circling the servers chosen for execution. First, the terminal unit

server schedules its children using EDF. At t = 4, only the child node σ12 has any work

remaining, so it is chosen to execute (circled). After this, we propagate the circles down

the tree using Rules 1 (schedule clients with EDF) and 2 (DSE). For convenience, we

restate these here in terms of the server tree:

Rule 1 (EDF Server). If a packed server is executing (circled), execute the child node

with the earliest deadline among those children with work remaining; if a packed server

is not executing (not circled), execute none of its children.

83

(a) RUN decision tree at time t = 4

(b) Run schedule

Figure 3.8: RUN Server Tree and Schedules at all Reduction Levels
T = {τ1 :(3/5, 5N), τ2 :(3/5, 10N), τ3 :(3/5, 15N), τ4 :(3/5, 10N), τ5 :(3/5, 5N)}. Σ0 is the schedule
of T on 3 physical processors. Σ1 is the schedule of R(T) = {σ6, σ7, σ8, σ9, σ10} on 2 virtual
processors, and Σ2 is the schedule of R2(T) = {σ11, σ12, σ13} on 1 virtual processor.

Rule 2 (Dual Server). Execute (circle) the child (packed server) of a dual server if and

only if the dual server is not executing (not circled).

Let us continue to follow the branch beneath σ12. σ12 is the dual of P(σ8),

which will be idle since σ12 is executing. Since P(σ8) is not executing (not circled),

neither are either of its clients. However, these clients, σ8 and σ9, are the duals of P(τ3)

and P(τ4), respectively, so these two servers will be executing (circled). Finally, P(τ3)

84

and P(τ4) are each servers for a single client, so each of these clients, namely τ3 and τ4,

will also execute. The full schedule for all levels of the system is shown through time

t = 10 in Figure 3.8(b), and indeed, we see that τ3 and τ4 are executing at time t = 4.

By similarly propagating the circling of nodes down the tree (Figure 3.8(a)), we see that

τ1 also executes at t = 4, while τ2 and τ5 are idle.

In practice, we only need to invoke the above scheduler when some subsystem’s

EDF scheduler generates a scheduling event (i.e., Work Complete or Job Release).

In fact, when some EDF server’s client has a Work Complete event, we only need

to propagate the changes down from that server. For example, if we examine the EDF

server P(σ6) and its clients at time t = 3, we see that σ6 generates a Work Complete

event, and σ7 takes over its execution. While this has the effect of context switching

from τ2 to τ1 in our schedule of T , the event has no effect on other branches of the tree.

On the other hand, because a server inherits its arrival times from its clients, any arrival

time of a task in T will become an arrival time for a client of the terminal unit server,

and will cause a scheduler invocation at the top level. Therefore any Job Release

event will cause a rescheduling of the entire tree.

Each child server scheduled by a packed server must keep track of its own

workloads and deadlines. These workloads and deadlines are based on the clients of the

packed server below it. That is, each server node which is not a task of T simulates

being a task so that its parent node can schedule it along with its siblings in its virtual

system. The process of setting deadlines and allocating workloads for virtual server jobs

is detailed in Section 3.3.1.

The process described so far, from reducing a task set to unit servers, to the

scheduling of those tasks with EDF servers and duality, is collectively referred to as the

RUN algorithm, and is summarized in Algorithm 1. We now finish proving it correct.

85

Algorithm 1: Outline of the RUN algorithm

I. OFF-LINE

A. Generate a reduction sequence for T
B. Invert the sequence to form a server tree

C. For each proper subsystem T ’ of T
Define the client/server at each virtual level

II. ON-LINE

Upon a scheduling event:

A. If the event is a job arrival at level 0

1. Update deadline sets of servers on path up to root
2. Create jobs for each of these servers accordingly

B. Apply Rules 3 & 4 to schedule jobs from root to leaves, determining the m jobs
to schedule at level 0

C. Assign the m chosen jobs to processors, according to some task-to-processor
assignment scheme

Theorem 3.9 (RUN correctness). If Γ is a proper set under the reduction sequence

{Ri}i6p, then the RUN algorithm produces a valid schedule Σ for Γ.

Proof. Again, let Γk = Rk(Γ) and ΓkP = P(Γk) with k < p. Also, let Σk and Σk
P be the

schedules generated by RUN for Γk and ΓkP , respectively.

By Definition 3.8 of the pack operation P, ΓkP is the set of servers in charge of

scheduling the packing of Γk. Hence, ρ(Γk) = ρ(ΓkP). Finally, let µk = ρ(Γk) = ρ(ΓkP),

which, as seen in the proof of Theorem 3.8, is always an integer.

We will work inductively to show that schedule validity propagates down the

reduction tree, i.e., that the validity of Σk+1 implies the validity of Σk.

Suppose that Σk+1 is a valid schedule for Γk+1 = D(ΓkP) on µk+1 processors,

where k + 1 6 p. Since k < p, ΓkP is not the terminal level set, and so must contain

more than one server, as does its equal-sized dual Γk+1. Further, since Γk+1 is the dual

of a packed set, none of these servers can be unit servers, and so |Γk+1| > µk+1. The

conditions of Theorem 3.3 are satisfied (where n = |Γk+1|, m = µk+1, and n > m),

so it follows from our assumption of the validity of Σk+1 that Σk
P = (Σk+1)∗ is a valid

schedule for ΓkP on µk processors.

86

Also, since ΓkP is a collection of aggregated servers for Γk, it follows from

Theorem 3.2 that Σk is a valid schedule for Γk (i.e., scheduling the servers in ΓkP

correctly ensures that all of their client tasks in Γk are also scheduled correctly). Thus

the validity of Σk+1 implies the validity of Σk, as desired.

Since uniprocessor EDF generates a valid schedule Σp for the clients of the

terminal unit server at the final reduction level p, it follows inductively that Σ = Σ0 is

valid for Γ on ρ(Γ) processors.

3.6 Assessment

3.6.1 RUN Implementation

The pack operation described in Section 3.4.2 is carried out by a standard

bin-packing algorithm, where “bins” are servers of capacity one, and items are tasks or

other servers whose “sizes” are their rates. For our implementation of RUN’s pack step,

we use best-fit decreasing bin-packing, as it consistently outperforms other bin-packing

heuristics (albeit by only a small margin; see Section 3.6.5 and Appendix B for details).

This runs in O(n log n) time, where n is the number of items being packed.

Whenever an intermediate unit server is encountered during the reduction

process, we make it a terminal unit server, and isolate its proper subsystem from the

rest of the system, as discussed in Section 3.4.3.

At each scheduler invocation, once the set of m running tasks is determined

(as in Figure 3.8(a)), we use a simple greedy task-to-processor assignment scheme. In

three passes through these m tasks, we:

1. leave already executing tasks on their current processors

2. assign idle tasks to their last-used processor, when its available, to avoid unnec-

essary migrations

3. assign remaining tasks to free processors arbitrarily.

87

Best-fit decreasing bin-packing and EDF are not the only choices for partition-

ing and uniprocessor scheduling. RUN may be modified so that it reduces to a variety

of partitioned scheduling algorithms. Best-fit bin packing can be replaced with any

other bin-packing (partitioning) scheme that (i) uses additional “bins” when a proper

partitioning onto m processors is not found, and (ii) creates a packed server set. Simi-

larly, any optimal uniprocessor scheduling algorithm can be substituted for EDF. In this

way, the RUN scheme can be used as an extension of different partitioned scheduling

algorithms, but one that could, in theory, handle cases when a proper partition on m

processors can’t be found.

3.6.2 Reduction Complexity

We now observe that the time complexity of a reduction procedure is poly-

nomial and is dominated by the pack operation. However, as there is no optimality

requirement on the (off-line) reduction procedure, any polynomial-time heuristic suffices.

There are, for example, linear and log-linear time packing algorithms available [12,24].

Lemma 3.10. If Γ is a packed set of at least 2 servers, then ρ(Γ) > |Γ|/2.

Proof. Let n = |Γ|, and let µi = ρ(σi) for σi ∈ Γ. Since Γ is packed, there exists at

most one server in Γ, say σn, such that µn 6 1/2; all others have µi > 1/2. Thus,∑n−2
i=1 µi > (n− 2)/2. As µn−1 + µn > 1, it follows that ρ(Γ) =

∑n
i=1 µi > n/2.

Theorem 3.11 (Reduction Complexity). RUN’s off-line generation of a reduction se-

quence for n tasks on m processors requires O(logm) reduction steps and O(f(n)) time,

where f(n) is the time needed to pack n tasks.

Proof. Let {Ri}i6p be a reduction sequence on T , where p is the terminal level described

in Theorem 3.8. Lemma 3.5 shows that a reduce, at worst, reduces the number of

servers by about half, so p = O(log n).

88

Since constructing the dual of a system primarily requires computing n dual

rates, a single reduce requires O(f(n) + n) time. The time needed to perform the

entire reduction sequence is described by T (n) 6 T (n/2) + O(f(n) + n), which gives

T (n) = O(f(n)).

Since T is a full utilization task set, ρ(T) = m. If we let n′ = |P(T)|,

Lemma 3.10 tells us that m = ρ(T) = ρ(P(T)) > n′/2. But as P(T) is just the

one initial packing, it follows that p also is O(log n′), and hence O(logm).

3.6.3 On-line Complexity

Since the reduction tree is computed off-line, the on-line complexity of RUN

can be determined by examining scheduling Rules 1 and 2, and the task-to-processor

assignment scheme.

Theorem 3.12 (On-line Complexity). Each scheduler invocation of RUN takes O(n)

time, for a total of O(jn logm) scheduling overhead during any time interval when n

tasks releasing a total of j jobs are scheduled on m processors.

Proof. First, let’s count the nodes in the server tree. In practice, σ and D(σ) may be

implemented as a single object / node. There are n leaves, and as many as n servers in

P(T). Above that, each level has at most (approximately) half as many nodes as the

preceding level. This gives us an approximate node bound of n+n+n/2+n/4+· · · ≈ 3n.

Next, consider the scheduling process described by Rules 1 and 2. The com-

parison of clients performed by EDF in Rule 1 does no worse than inspecting each client

once. If we assign this cost to the client rather than the server, each node in the tree is

inspected at most once per scheduling invocation. Rule 2 is constant time for each node

which “dualed”. Thus the selection of m tasks to execute is constant time per node,

of which there are at most 3n. The previously described task-to-processor assignment

89

requires 3 passes through a set of m tasks, and so may be done in O(m) 6 O(n) time.

Therefore, each scheduler invocation is accomplished in O(n) time.

Since we only invoke the scheduler at Work Complete or Job Release

events, any given job (real or virtual) can cause at most two scheduler invocations. The

virtual jobs of servers are only released at the arrival times of their leaf descendants,

so a single real job can cause no more than O(logm) virtual jobs to be released, since

there are at most O(logm) reduction levels (Theorem 3.11). Thus j real jobs result in

no more than jO(logm) virtual jobs, so a time interval where j jobs arrive will see a

total scheduling overhead of O(jn logm).

3.6.4 Preemption Bounds

We now prove an upper bound on the average number of preemptions per job

through a series of lemmas. To do so, we count the preemptions that a job causes,

rather than the preemptions that a job suffers. Thus, while an arbitrarily long job

may be preempted arbitrarily many times, the average number of preemptions per job

is bounded. When a context switch occurs where A begins running and B becomes

idle, we say that A replaces B; if the current job of B still has work remaining, we say

that A preempts B. Because all scheduling decisions are made by EDF, we need only

consider the preemptions caused by two types of scheduling events: Work Complete

events (w.c.e.), and Job Release events (j.r.e.) (which occur concurrently with job

deadlines).

Lemma 3.13. Each job from a task or server has exactly one j.r.e. and one w.c.e..

Further, the servers at any one reduction level cannot release more jobs than the original

task set over any time interval.

Proof. The first claim is obvious and is merely noted for convenience.

Next, since servers inherit deadlines from their clients and jobs are released at

90

deadlines, a server cannot have more deadlines, and hence not release more jobs, than

its clients. A server’s dual has the same number of jobs as the server itself. Moving

inductively up the server tree, it follows that a set of servers at one level cannot have

more deadlines, or more job arrivals, than the leaf level tasks.

Lemma 3.14. Scheduling a set T of n = m + 1 tasks on m processors with RUN

produces an average of no more than one preemption per job.

Proof. When n = m+1, there is only one reduction level and no packing; T is scheduled

by applying EDF to its uniprocessor dual system. We claim that dual j.r.e.s cannot

cause preemptions in the primal system.

Since all scheduling is done by applying EDF to T ∗ on a single virtual proces-

sor, a j.r.e. can only cause a context switch when the arriving job J∗h, say from task

τ∗, has an earlier deadline than, and thus preempts, the previously running job. Let Jh

be the corresponding job of τ∗’s primal task τ , and recall that J∗h.a = Jh.a = J∗h−1.d =

Jh−1.d.

Now let us consider such a context switch, where J∗h starts executing in the

dual at its arrival time J∗h.a. In the primal system, τ ’s previous job Jh−1 stops executing

at time Jh−1.d = J∗h.a. When a job stops executing at its deadline in a valid schedule,

it must be the case that it completes its work exactly at its deadline, and stopping

a completed job does not count as a preemption. Thus dual j.r.e.s do not cause

preemptions in the primal system. By Lemma 3.13, there can be at most one w.c.e.

in the dual, and hence one preemption in the primal, for each job released by a task in

T , as desired.

Lemma 3.15. A context switch at any level of the server tree causes exactly one context

switch between two original leaf tasks in T .

Proof. We proceed by induction on the level where the context switch occurs, showing

91

that a context switch at any level of the server tree causes exactly one context switch

in the next level below (less reduced than) it.

Consider some tree level where the switch occurs: suppose we have a pair of

client nodes (not necessarily of the same server parent) C+ and C−, where C+ replaces

C−. All other jobs’ “running” statuses at this level are unchanged. Let σ+ and σ− be

their dual children in the server tree (i.e., C+ = σ∗+ and C− = σ∗−), so by Rule 2, σ−

replaces σ+ (see Figure 3.9 for node relationships).

Now, when σ+ was running, it was executing exactly one of its client children,

call it C+,1; when σ+ gets switched off, so does C+,1. Similarly, when σ− was off, none

of its clients were running; when it gets switched on, exactly one of its clients, say C−,1,

begins executing. Just as the context switch at the higher (more reduced) level only

effects the two servers C+ and C−, so too are these two clients C+,1 and C−,1 the only

clients at this lower level affected by this operation; thus, C−,1 must be replacing C+,1.

So here we see that a context switch at one client level of the tree causes only a single

context switch at the next lower client level of the tree (in terms of Figure 3.9, (i) causes

(ii)). This one context switch propagates down to the leaves, so inductively, a context

switch anywhere in the tree causes exactly one context switch in T .

Lemma 3.16. If RUN requires p reduction levels for a task set T , then any j.r.e. by

a task τ ∈ T can cause at most d(p+ 1)/2e preemptions in T .

Proof. Suppose task τ releases job J at time J.a. This causes a job release at each

ancestor server node above τ in the server tree (i.e., on the path from leaf τ to the

root). We will use Figure 3.9 for reference, and note that this is only meant to represent

the portion of the server tree relevant to our discussion.

Let σ be the highest (furthest reduction level) ancestor EDF server of τ on

which this j.r.e. causes a context switch among its clients (σ may be the root of the

server tree). In such a case, some client of σ (call it C+) has a job arrive with an

92

Figure 3.9: Two Preemptions from One Job Release

In this 3-level (portion of a) server tree, a job release by τ corresponds to a job release and
context switch at the top level (i), which propagates down to the right of the tree (ii, iii). That
same job release by τ can cause it to preempt (iv) another client C+,0,0 of its parent server σ+,0.

earlier deadline than the currently executing client (call it C−), so C+ preempts C−.

As described in the proof of Lemma 3.15, C−’s dual σ− replaces C+’s dual σ+, and

this context switch propagates down to a context switch between two tasks in T (see

preemption (iii) in Figure 3.9).

However, as no client of σ+ remains running at time J.a, the arrival of a job

for τ ’s ancestor C+,0 at this level cannot cause a j.r.e. preemption at this time (it may

cause a different client of σ+ to execute when σ+ begins running again, but this context

switch will be charged to the event that causes σ+ to resume execution). Thus, when

an inherited j.r.e. time causes a context switch at one level, it cannot cause a different

(second) context switch at the next level down. However, it may cause a second context

switch two levels down (see preemption (iv)). Figure 3.9 shows two context switches,

(iii) and (iv), in T that result from a single j.r.e. of τ . One is caused by a job release

by τ ’s ancestor child of the root, which propagates down to another part of the tree

(iii). τ ’s parent server is not affected by this, stays running, and allows τ to preempt

its sibling client when its new job arrives (iv).

93

While σ is shown as the root and τ as a leaf in Figure 3.9, this argument would

still apply if there were additional nodes above and below those shown, and τ were a

descendant of node C+,0,1. If there were additional levels, then τ ’s j.r.e. could cause

an additional preemption in T for each two such levels. Thus, if there are p reduction

levels (i.e., p+ 1 levels of the server tree), a j.r.e. by some original task τ can cause at

most d(p+ 1)/2e preemptions in T .

Theorem 3.17. Suppose RUN performs p reductions on task set T in reducing it to a

single EDF system. Then RUN will suffer an average of no more than d(3p + 1)/2e =

O(logm) preemptions per job (and no more than 1 when n = m+ 1) when scheduling

T .

Proof. The n = m+1 bound comes from Lemma 3.14. Otherwise, we use Lemma 3.13 to

count preemptions based on jobs from T and the two EDF event types. By Lemma 3.16,

a j.r.e. by τ ∈ T can cause at most d(p+ 1)/2e preemptions in T . The context switch

that happens at a w.c.e. in T is, by definition, not a preemption. However, a job of

τ ∈ T corresponds to one job released by each of τ ’s p ancestors, and each of these

p jobs may have a w.c.e. which causes (at most, by Lemma 3.15) one preemption in

T . Thus we have at most p + d(p + 1)/2e = d(3p + 1)/2e preemptions that can be

attributed to each job from T , giving our desired result since p = O(logm) (see proof

of Theorem 3.12).

In our simulations, we almost never observed a task set that required more

than two reductions. For p = 2, Theorem 3.17 gives a bound of 4 preemptions per

job. While we never saw more than 3 preemptions per job in our randomly gen-

erated task sets, it is possible to do worse. The following 6-task set on 3 proces-

sors averages 3.99 preemptions per job, suggesting that our proven bound is tight:

T = {(.57, 4000), (.58, 4001), (.59, 4002), (.61, 4003), (.63, 4004), (.02, 3)}.

94

Also, there do exist task sets that require more than 2 reductions. A set of

only 11 jobs with rates of 7/11 is sufficient, with a primal reduction sequence of rates:

{
(11)

7

11

}
→
{

(5)
8

11
,

4

11

}
→
{

10

11
,

9

11
,

3

11

}
→ {1}

Such constructions require narrowly constrained rates, and randomly generated task

sets requiring 3 or more reductions are rare. By generating tens of thousands of task

sets, we eventually found a 3-reduction task set on 18 processors, and a 4-reduction

set on 24 processors, but these were not part of the thousand-set samples that we ran

simulations on. Even when we generated task sets with 100 processors and hundreds of

tasks, 3- and 4-reduction sets occurred in fewer than 1 in 600 of the observed sets.

3.6.5 Heuristics

We chose best-fit decreasing as our bin-packing subroutine based on simula-

tions involving multiple bin-packing heuristics (methodology of simulation will be dis-

cussed in the next section). By far the strongest indicator of performance, measured in

terms of preemptions per job, is the number of reduction levels required by a given task

set. And as Table 3.2 shows, the number of reductions is a function of the particular

packing used. In all of our various simulations on randomly generated task sets, we

only encountered task sets that required 0, 1, or 2 reduction levels, and 0 reduction

levels were only found at lower total utilizations. We have tested the best-fit, first-fit

and worst-fit bin-packing heuristics with sizes (rates) arranged in both arbitrary and de-

creasing order (see Appendix B for more details on bin packing algorithms). Figure 3.10

shows the number of full-utilization task sets out of 1000 simulations which require only

one reduction level, as a function of the number of tasks. As fewer reduction levels are

preferred, we see that packing tasks in decreasing order always outperforms arbitrary

order. Although the three decreasing heuristics we tried performed similarly, best-fit

95

 0

 200

 400

 600

 800

 1000

10 16 24 32 48

O
n

e
 R

e
d

u
c
ti
o

n

Number of Tasks

(a) 8 processors

 0

 200

 400

 600

 800

 1000

26 32 40 48 56 64 96

O
n

e
 R

e
d

u
c
ti
o

n

Number of Tasks

BFD

FFD

WFD

BFA

FFA

WFA

(b) 24 processors

Figure 3.10: Reduction Levels from Various Packing Algorithms
Number of task sets out of 1000 requiring 1 reduction for RUN simulations on 8 and 24 processors
at full utilization. Any task set not requiring 1 reduction required only 2.

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

20 24 28 32 36 40 44 48 52 56

M
ig

ra
ti
o

n
 p

e
r

J
o

b

Number of Tasks

WFD
BFD
FFD
LCM

 1.4

 1.6

 1.8

 2

 2.2

20 24 28 32 36 40 44 48 52 56

P
re

e
m

p
ti
o

n
 p

e
r

J
o

b

Number of Tasks

WFD
BFD
FFD
LCM

Figure 3.11: Scheduling Performance of the LCM Packing Algorithm
Migrations- and preemptions-per-job by RUN using 4 different bin-packing heuristics. Simula-
tions were run on m = 16 processors for n = 18, . . . , 56 tasks at 100% utilization.

was consistently the best, and hence was our choice for RUN’s implementation.

Since we observed that all decreasing bin-packing heuristics perform similarly,

we concluded that, so long as tasks are packed in decreasing rate order, it doesn’t much

matter which bin a task is placed in, so long as it fits. With this in mind, we tested a

different bin-packing criteria, where bins were selected based on compatibility of task

periods. As with other decreasing heuristics, tasks are placed in bins one at a time, in

decreasing rate order, with a new bin created whenever a task doesn’t fit in any existing

bin. When a task would fit in multiple bins, we select the bin where the addition of the

task caused the smallest increase to the Least Common Multiple (LCM) of the periods

of tasks already in that bin. For this purpose, the “period” of an aggregated server was

96

taken to be the LCM of the “periods” of its clients. The benefit of this approach is that,

when tasks of compatible (i.e., large common divisor) periods are grouped together in

servers, those servers have fewer job releases, and consequently cause fewer scheduler

invocations and preemptions. As a simple example, if we have two tasks with period

5, and these are placed on different servers (bins), then each of those servers must be

switched on and off every 5 units of time as its jobs are released and completed; if

both tasks are on the same server, only one server is burdened with job releases on this

period.

Figure 3.11 shows average migrations- and preemptions-per-job for a varying

number of tasks simulated on 16 processors. As in Figure 3.10, best-fit slightly outper-

formed our new “LCM-fit” heuristic in terms of task sets requiring only one reduction

level. However, when task set schedules were simulated, the LCM-fit packer suffered

4-5% fewer preemptions and migrations per job than any of the other bin-packers. This

is attributable to the reduction in server jobs that comes from grouping tasks of com-

patible periods onto the same server. In spite of this slightly improved performance, we

chose to use the best-fit heuristic for our primary simulations. The LCM-fit bin packer

is complex, and its particular benefit is heavily dependent on our choice of randomly

generating integral periods in the range [5,100]. We include these results merely to

demonstrate that there is potential benefit in grouping tasks according to periods, and

that this benefit could be significant in environments where some tasks have strongly

compatible periods.

Recall from Section 3.4 that duality is only defined for task sets with 100%

utilization. When there is not full utilization, we may fill in the task set slack with

one or more dummy tasks. Any collection of dummy tasks with individual rates no

more than one and which bring the summed rate to m will suffice. But if we create

these dummy tasks intelligently, we may greatly improve scheduling performance. To

97

this end, we introduce the slack packing heuristic to distribute a task system’s slack

S(T) = m− ρ(T) among the aggregated servers at the end of the initial pack step. A

bin packing will rarely result in all bins being completely full; however, we may create

full bins by adding dummy tasks which precisely fill up their remaining room. Such a

filled bin is a unit server, and may be assigned its own dedicated processor. This server,

and its client tasks and processor, are scheduled with uniprocessor EDF, and do not

interact with the rest of the system. As more servers are filled with dummy tasks and

isolated, the system becomes smaller and more efficient to schedule.

For example, suppose that the task set from Figure 3.8 runs on four processors

instead of three. The initial pack can only place one 0.6 rate task per server. From

the 1 unit of slack provided by our fourth processor, we create a dummy task τd1 with

ρ(τd1) = 0.4 (and arbitrarily large deadline), pack it with τ1 to get a unit server and

give it its own processor. Similarly, τ2 also gets a dedicated processor. The remaining

0.2 units of slack are put into a third dummy task, which is scheduled along with τ3,

τ4, and τ5 on the remaining two processors in the usual fashion. But now τ1 and τ2

need never preempt or migrate, so the schedule is more efficient. With 5 processors,

this approach yields a fully partitioned system, where each task has its own processor.

With low enough utilization, the first pack usually results in m or fewer servers. In

these cases, slack packing gracefully reduces RUN to Partitioned EDF.

3.6.6 Simulation

We have evaluated RUN via extensive simulation using task sets generated

for various levels of n tasks, m processors, and total utilization ρ(T)/m. Task rates

were generated in the range of [0.01, 0.99] following a suggested procedure by Emberson

et al. [18] for the use of Stafford’s randfixedsum() function [46]. Task periods were

drawn independently from a uniform integer distribution in the range [5, 100] and sim-

ulations were run for 1000 time units. Values reported for migrations and preemptions

98

 0

 0.2

 0.4

 0.6

 0.8

 1

9 12 16 20 24

F
ra

c
ti
o

n
 o

f
T

a
s
k
 S

e
ts

Number of Tasks

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

9 12 16 20 24

P
re

e
m

p
ti
o

n
s
 p

e
r

J
o

b

Number of Tasks

(a) 8 processors

 0

 0.2

 0.4

 0.6

 0.8

 1

17 20 24 28 32 36 40 44 48 52

F
ra

c
ti
o

n
 o

f
T

a
s
k
 S

e
ts

Number of Tasks

 0.5

 1

 1.5

 2

 2.5

 3

17 20 24 28 32 36 40 44 48 52

P
re

e
m

p
ti
o

n
s
 p

e
r

J
o

b

Number of Tasks

(b) 16 processors

 0

 0.2

 0.4

 0.6

 0.8

 1

33 36 40 48 56 64 80 96

F
ra

c
ti
o

n
 o

f
T

a
s
k
 S

e
ts

Number of Tasks

 0.5

 1

 1.5

 2

 2.5

 3

33 40 48 56 64 80 96

P
re

e
m

p
ti
o

n
s
 p

e
r

J
o

b

Number of Tasks

(c) 32 processors

Figure 3.12: Reductions and Preemptions vs Number of Tasks
Fraction of task sets requiring 1 (filled box) and 2 (empty box) reduction levels; Distributions of
the average number of preemptions per job, their quartiles, and their minimum and maximum
values. All RUN simulations on 8, 16 and 32 processor systems at full utilization.

are per job averages, that is, total counts were divided by the number of jobs released

during the simulation, averaged over all task sets. For each data point shown, 1000 task

sets were generated.

For direct evaluation, we generated one thousand random n-task sets for each

99

value n = 17, 18, 20, 22, . . . , 52 (we actually took n up to 64, but results were nearly

constant for n > 52). Each task set fully utilizes a system with 8, 16 or 32 processors.

We measured the number of reduction levels and the number of preemption points. Job

completion is not considered a preemption point.

The left plots of Figure 3.12 shows the number of reduction levels; none of the

task sets generated require more than two reductions. For m = n + 1 (9, 17 and 33)

tasks, only one level is necessary, as seen in Figure 3.1, and implied by Theorem 3.3. For

8, 16 and 32 processors, we observe that one or two levels are needed for n ∈ [10, 22],

n ∈ [18, 44] and n ∈ [34, 95], respectively. None of our observed task sets require a

second reduction for n > 22, n > 44 and n > 96. With low average task rates, the

first pack gives servers with rates close to 1; the very small dual rates then sum to 1,

yielding the terminal level.

The box-plots in the right column of Figure 3.12 show the distribution of

preemption points as a function of the number of tasks. We see a strong correlation

between the number of preemptions and number of reduction levels; where there is

mostly only one reduction level, preemptions per job is largely independent of the size

of the task set. Indeed, for n > 16, n > 36 and n > 80, the median preemption count

stays nearly constant just below 1.5.

This correlation between preemptions and reduction levels is shown explicitly

in Figure 3.13. In the two plots, we vary number of processors and number of tasks,

while keeping the number of tasks in a range where both 1- and 2-reduction task sets are

common. We observer that average preemptions per job is nearly constant as processors

and tasks vary, and is almost entirely a function of whether a task set requires 1 or 2

reduction levels. Single reduction task sets average about 1.46 preemptions per job,

while two reduction task sets average about 2.15 preemptions per job. As can be seen

in Figure 3.12, the variance in average preemptions as the number of jobs changes

(right-hand plots) tracks very closely with changes in the proportion of one- and two-

100

 0

 0.5

 1

 1.5

 2

 2.5

 3

4 8 16 24 32

P
re

e
m

p
ti
o
n

 p
e
r

J
o
b

Number of Processors

One Reduction Sets
Two Reduction Sets

 0

 0.5

 1

 1.5

 2

 2.5

 3

28 30 32 34 36

P
re

e
m

p
ti
o
n

 p
e
r

J
o
b

Number of Tasks

One Reduction Sets
Two Reduction Sets

Figure 3.13: Preemptions for One- and Two-Reduction Task Sets
Preemptions-per-job by RUN on task sets requiring 1 and 2 reduction levels. In the first plot,
m = 4, . . . , 32 and n = 2m; in the second plot, m = 16 and n = 28, . . . , 37; both show task sets
with 100% utilization.

reduction task sets (left-hand plots). Although the range bars in the right-hand figures

show considerable variance between task sets, no task set generated for these simulations

ever incurred more than 3 average preemptions per job.

Next, we ran comparison simulations against other optimal algorithms. In

Figure 3.14, we count migrations and preemptions made by RUN, LLREF [10], EKG [3]

and DP-Wrap (with these last two employing the simple mirroring heuristic) while

increasing processor count from 2 to 32. Most of LLREF’s results are not shown to

preserve the scale of the rest of the data. Whereas the performance of LLREF, EKG and

DP-Wrap get substantially worse as m increases, the overhead for RUN quickly levels

off, showing that RUN scales quite well with system size. This is to be expected, as

there is an observed upper bound of 3, and a theoretical upper bound of 4, preemptions

per job for one- and two-reduction level task sets, and sets requiring more reduction

levels are exceedingly rare.

Finally, we simulated EKG, RUN, and Partitioned EDF at lower task set uti-

lizations (LLREF and DP-Wrap were excluded, as they consistently perform worse than

EKG). Because 100% utilization is unlikely in practice, and because EKG is optimized

for utilizations in the 50-75% range, we felt these results to be of particular interest.

For RUN, we employed the slack-packing heuristic. Because this often reduces RUN to

Partitioned EDF for lower utilization task sets, we include Partitioned EDF for com-

101

 0

 2

 4

 6

 8

 10

 4 8 12 16 20 24 28 32

M
ig

ra
ti
o
n
s
 p

e
r

J
o
b

Number of Processors

LLREF
 DP-Wrap

EKG
RUN

 0

 5

 10

 15

 20

 4 8 12 16 20 24 28 32

P
re

e
m

p
ti
o
n

s
 p

e
r

J
o
b

Number of Processors

LLREF
 DP-Wrap

EKG
RUN

Figure 3.14: Migrations/Preemptions vs Processors for Various Schedulers
Migrations- and preemptions-per-job by LLREF, DP-Wrap, EKG, and RUN as number of pro-
cessors m varies from 2 to 32, with full utilization and n = 2m tasks. Note: DP-Wrap and EKG
have the same migration curves.

 0

 2

 4

 6

 8

 10

 55 60 65 70 75 80 85 90 95 100

P
re

e
m

p
ti
o

n
s
 p

e
r

J
o

b

Utilization

EKG
RUN
 EDF

 0

 0.2

 0.4

 0.6

 0.8

 1

 76 80 84 88 92 96 100F
ra

c
ti
o

n
 o

f
T

a
s
k
 S

e
ts

 P
a

rt
it
io

n
e

d

Utilization

Success

Figure 3.15: Preemptions and Partitioning vs Utilization
Preemptions per job for EKG, RUN, and Partitioned EDF as utilization varies from 55 to 100%,
with 24 tasks on 16 processors; Partitioning success rate for best-fit bin packing under the same
conditions.

parison in Figure 3.15’s preemptions per job plot. Values for Partitioned EDF are only

averaged over task sets where a successful partition occurs, and so stop at 94% utiliza-

tion. The second plot shows the fraction of task sets that achieve successful partition

onto m processors, and consequently, where RUN reduces to Partitioned EDF.

With its few migrations and preemptions at full utilization, its efficient scaling

with increased task and processor counts, and its frequent reduction to Partitioned EDF

on lower utilization task sets, RUN represents a substantial performance improvement

in the field of optimal schedulers.

102

3.7 Related Work

We have already surveyed numerous optimal and other multiprocessor schedul-

ing algorithms in Section 2.4, so we will note only briefly the relationship of these and

other works with RUN. Subsequent to pfair [4], all previous optimal algorithms (e.g.,

BF [47], LLREF [10], EKG [3], and DP-Wrap) used some DP-Fair scheme to achieve

optimality. These all relied on the enforcement of proportional fairness at all system

deadlines. RUN greatly outperforms all these by relying instead on the less restrictive

scheme of limited proportional fairness, which gives a server and its clients their collec-

tive proportional allotment of processor time between each of the server’s deadlines.

Other recent works have used the semi-partitioning approach to limit migra-

tions [2, 3, 17, 28, 36]. Under this scheme, some tasks are allocated off-line to fixed

processors, much like in the partitioned approach, while other tasks are designated to

migrate. These approaches present a trade-off between implementation overhead and

achievable utilization; optimality may sometimes be achieved at the cost of higher mi-

gration overhead. RUN employs a different semi-partitioning approach, where tasks are

partitioned among servers instead of processors. These servers will schedule their client

tasks much as a dedicated processor would, but the server and its clients are not fixed

on any physical processor. Both versions of semi-partitioning apply, in various ways,

the simpler problem of uniprocessor scheduling to multiprocessor scheduling.

Other related work may be found on the topic servers. The concept of task

servers has been extensively used to provide a mechanism to schedule soft real-time

tasks [34], for which timing attributes like period or execution time are not known a

priori. There are server mechanisms for uniprocessor systems which share some similar-

ities with those presented herein [13, 44]. Other server mechanisms have been designed

for multiprocessor systems [2,3,39]. Unlike these approaches, RUN treats each server as

if it were a uniprocessor system, allowing us to hide the complexities of multiprocessor

103

scheduling within the server tree structure.

3.8 Conclusion

We have presented the optimal RUN multiprocessor real-time scheduling al-

gorithm. RUN transforms the multiprocessor scheduling problem into an equivalent

set of uniprocessor problems. Theory and simulation show that only a few preemption

points per job are generated on average, allowing RUN to significantly outperform prior

optimal algorithms. RUN reduces to the more efficient partitioned approach of Parti-

tioned EDF whenever best-fit bin packing finds a proper partition, and scales well as

the number of tasks and processors increases.

These results have both practical and theoretical implications. The overhead

of RUN is low enough to justify implementation on actual multiprocessor architectures.

At present, our approach only works for fixed-rate task sets with implicit deadlines.

Theoretical challenges include extending the model to more general problem domains

such as sporadic tasks with constrained deadlines. The use of uniprocessor scheduling

to solve the multiprocessor problem raises interesting questions in the analysis of fault

tolerance, energy consumption and adaptability. We believe that this novel approach

to optimal scheduling introduces a fertile field of research to explore and further build

upon.

104

Chapter 4

Conclusion

105

4.1 Future Work

While the work herein represents a considerable step forward on the problem

of multiprocessor scheduling, it also leaves a number of questions unanswered, and

suggests future avenues of research. One problem generalization not addressed herein is

that of uniform multiprocessors, where processors run at different speeds, but treat all

tasks uniformly. While optimal schedulers have been found which extend the LLREF

algorithm [9,22], we believe that the general DP-Fair theory may be extended to cover

this broader problem model. The difficulty in this is highlighted by this observation:

since different processors will consume a task at different rates, the concept of zero laxity

becomes ill-defined; a task with zero laxity on one processor may have considerable laxity

on another, and Rule 1 of DP-Fair then becomes unclear. Nonetheless, some work

has been done in this direction, and we believe that the simplicity and flexibility of

DP-Fair makes an eventual solution promising.

Also of interest is extending RUN to more generalized problem domains, like

tasks with sporadic arrivals. Because RUN’s duality relies on full utilization at all times,

and an inactive task implies an underutilized system, it is not immediately obvious how

to extend duality and RUN when arrivals don’t coincide with deadlines. We also believe

there is potential for other non-deadline-partitioning algorithms like RUN. Work is being

done on one such algorithm called QPS (Quasi-Partitioned Scheduler) [37]. While QPS

has a slightly higher overhead than RUN, it does not rely on duality, and appears to

be adaptable to sporadic arrivals. More generally, RUN and QPS represent a new

family of algorithms that are as yet not fully understood. We would like to develop

a general theory for these algorithms in the same way that DP-Fair explained and

unified previous deadline partitioning approaches.

Finally, perhaps the greatest challenge is to take these theoretical algorithms

and implement them on a real CPU scheduler. In the past, partitioned schedulers

106

have been preferred because they are simple, and because task migration represents

a significant overhead. However, these partitioned approaches have the potential for a

substantial amount of unutilized processor capacity. With RUN’s significant reduction in

the number of context switches and migrations, it may be approaching the point where it

would be a more efficient practical scheduler on some real systems. The implementation

and successful comparison of RUN or some similar optimal algorithm on a real system

would be the ultimate fruition of this research.

4.2 Contributions

Prior to the work in this dissertation, there was no general theory for the op-

timal multiprocessor scheduling of real-time tasks. The few optimal algorithms that

existed were mostly unrelated, with disparate approaches and complex exposition and

proofs. The first, pfair [4], maintained strict proportionate fairness, with work complete

curves nearly matching fluid rate curves at all times, and thus incurred an excessive over-

head of context switches and migrations. Subsequent algorithms reduced overhead by

relying on deadline partitioning. The first of these was BF [47], which made substantial

improvements over pfair, but still used the same discrete time model, and suffered the

same resultant complexity. LLREF [10] employed the novel TL-Plane visualization and

used a continuous time model, but incurred a considerable overhead from its reliance on

frequent least laxity sorts and the resultant migrations and context switches. EKG [3]

was the most efficient of these previous optimal algorithms, but was still complex in its

presentation and proof of correctness.

In this dissertation we have presented a theoretical model to unify and clar-

ify the previous deadline partitioning algorithms. Our DP-Fair theory provides three

simple, nearly obvious rules for multiprocessor scheduling. And while these rules are

clearly necessary for successful scheduling, we provide a simple proof that, when com-

107

bined with the deadline partitioning approach, they are also sufficient to guarantee that

a scheduling algorithm is optimal. From these three simple rules, we derive DP-Wrap,

the simplest optimal scheduling algorithm to date. Using DP-Wrap as a framework,

we can easily explain the behavior of previous optimal algorithms, see their common

characteristics, and immediately infer their correctness. We thus have a simple frame-

work for understanding all prior efforts in the field of optimal multiprocessor scheduling.

The simplicity of this framework has also allowed us to extend it and the DP-Wrap

algorithm to the more general domain of sporadic tasks and arbitrary deadlines. For

this work we were awarded Best Paper at the 2010 Euromicro Conference on Real-Time

Systems (ECRTS) [30].

Unfortunately, while deadline partitioning makes multiprocessor scheduling

very simple, its requirement that all tasks match their fluid rate curves at all deadlines

imposes a substantial overconstraint on the system, and results in potentially unneces-

sary context switches and migrations. However, prior to the work in this dissertation,

no other approach was know. With the introduction of our RUN algorithm, we move

beyond this limitation. By employing the novel mechanism of scheduling duality, we are

able to ensure correct schedules while imposing much less restrictive overconstraints on

our algorithm. The improvements are considerable: in simulated comparisons with pre-

vious algorithms, we observe, on average, 80% fewer context switches and migrations.

And, more generally, while other optimal algorithms see their performance degrade as

system size increases, RUN has provably low, constant upper bounds on overhead for

nearly all task sets. Finally, for task sets where a partitioned approach will suffice, RUN

reduces naturally to Partitioned EDF, making this one algorithm the ideal solution in

all cases. RUN represents a new paradigm in optimal multiprocessor scheduling, and

a significant improvement in performance. For this work we received the Best Paper

award at the 2011 Real-Time Systems Symposium (RTSS) [43].

108

Appendix A

Notatation

109

m number of processors
n number of tasks

τ, J, σ task, job, server
T set of tasks {τ1, . . . , τn}

τ = (p, c, δ) task with period p, workload c, deadline δ
τ = (p, c) task with period p, workload c, implicit deadline

pi period (minimum interarrival time) of τi
ci workload of each job of τi
δi time between arrival and deadline of τi
ai,h arrival time of hth job of τi
ρi ci/min{pi, δi} (rate of τi)
ρ(T)

∑
i ρi (total rate of T)

S(T) m− ρ(T) (total slack of T)

Sj jth time slice, time interval = [tj−1, tj)
tj jth system deadline (end time of Sj)
Lj tj − tj−1 (length of Sj)
ei,t local execution remaining for τi at t
ri,t ei,t/(tj − t) (local remaining rate of τi at t)
Et total local execution remaining at t
Rt total local rate remaining at t

κi,t local capacity remaining for τi at t
αi,j(t) time τi has been active in Sj as of t
fi,j(t) time τi has freed slack in Sj as of t
wi,j(t) work executed by τi in Sj as of t
Fj(t)

∑
i ρi fi,j(t) (total slack freed in Sj as of t)

Ij(t) total idle time in Sj as of t

τ :(ρ,A) fixed-rate task with rate ρ, and arrival times A
A(τ) set of arrival times of task τ

J.a, J.c, J.d arrival time, execution time, deadline of J
eJ,t work remaining for job J at time t
eσ,t budget of server σ at time t
Γ set of servers
Σ schedule of a set of tasks or servers

cli(σ) set of client servers (tasks) of σ
ser(Γ) server of the set of servers (tasks) Γ
τ∗; D(τ) dual task of τ ; dual operator
πA[Γ] partition of Γ by packing algorithm A
P(σ) server of σ given by pack operator

R = D ◦ P reduce operator

Table A.1: Summary of Notation
The first group of symbols defines a task set, the second group is used throughout Chapter 2,
the third is used in Section 2.3, and the fourth in Chapter 3.

110

Appendix B

Bin Packing

The packing algorithms described in Section 3.4.2 are actually just traditional

bin-packing algorithms. The bin-packing problem is described as follows:

Definition A.1 (Bin Packing). Given a set of objects S = {σ1, . . . , σn}, each having

some weight between 0 and 1, we wish to partition S into as few subsets as possible,

subject to the restriction that no subset contains elements whose weights sum to more

than one. That is, we wish to “pack” the elements of S into “bins”, each with a

maximum capacity of one, and use as few bins as possible.

The decision version of this problem, namely, “Can we pack S into at most k

bins?”, is NP-Complete. We refer to any partition of S into subsets of weights at most

one as a “packing”. A bin-packing algorithm is simply an algorithm which partitions a

weighted set into a proper packing.

The standard bin-packing algorithms we will consider all follow the same gen-

eral outline: for each σ in S (taken one at a time), find some existing bin into which σ

fits (that is, where adding σ to the bin will not cause that bin’s total weight to exceed

one), and place σ in it; if σ does not fit into any existing bin, create a new one, and

place σ in that. The algorithms vary in (i) how to choose a bin for σ if it fits in multiple

existing bins, and (ii) how to order the elements of S. The first-fit algorithm places σ

111

into the first examined bin into which it fits (bins are typically examined in the order

in which they were created). The best-fit algorithm places σ into the bin with the least

remaining room into which it still fits. The worst-fit algorithm places σ into the bin with

the most remaining room, if it fits. S is ordered randomly unless otherwise specified.

The suffix decreasing is appended to any of these (e.g., “worst-fit decreasing”) if S is

ordered by decreasing weight.

As bin-packing is NP-Complete, none of these simple algorithms are optimal,

that is, none are expected to find a packing with the fewest possible bins. However,

they are fast, and do well enough for our purposes. In Section 3.4.2, we use bin-packing

algorithms to assign client tasks (or servers) to aggregated servers, where the “weight” of

a client task is its rate, and no “bin” (server) can contain clients of total rate exceeding

one.

112

Appendix C

Minimizing Migrations is NP-Complete

We now show that finding a feasible schedule with the fewest possible mi-

grations is NP-Complete via a reduction from Bin Packing. Thus, although we have

searched for heuristics to reduce the number of migrations and preemptions in a feasible

scheduling, it is unlikely that we could find an algorithm that produced a schedule with

the fewest migrations or preemptions.

Bin Packing: An instance (s1, . . . , sN ,M) of the bin packing decision problem (where

0 < si 6 1 and M ∈ N) asks, “Can a set of N items with sizes s1, . . . , sN be fit into M

bins, where each bin can hold any subset of items whose total size is no more than 1?”

Multiprocessor Real-Time Periodic Task Scheduling: An instance (p1, . . . , pn,

c1, . . . , cn,m, t, k) of the MRTPTS decision problem (where 0 < ci 6 pi, t > 0,

m, k ∈ N, and
∑
ci/pi 6 m) asks, “Given n periodic tasks τi = (pi, ci) on m pro-

cessors, the constraints guarantee that a feasible scheduling exists for these tasks, given

that migrations are allowed. Does there exist a feasible scheduling in which at most k

migrations occur by time t?”

Bin packing is known to be NP-Complete. We prove that MRTPTS is NP-Hard

via a reduction from Bin Packing.

113

Consider the following transform T : BP →MRTPTS defined by

T (s1, . . . , sN ,M) = (p1, . . . , pn, c1, . . . , cn,m, t, k) ,

where

n = N

p1 = · · · = pn = 1

ci = si , for i = 1, . . . , n

m = M

t = 1

k = 0

Since we are allowing no migrations (k = 0), a feasible scheduling would be a partitioned

scheduling, with jobs finishing by their deadlines at time 1 if and only if the jobs on each

processor have workloads which sum to no more than one. Thus a feasible scheduling

corresponds precisely with a successful bin packing, and our reduction transformation

preserves yes/no instances. MRTPTS is therefore NP-Hard.

A feasible schedule with at most k migrations for a “yes” instance of MRTPTS

would be a verifiable polynomial certificate, so MRTPTS is in NP, and thus is NP-

Complete.

114

References

115

Bibliography

[1] Björn Andersson and Konstantinos Bletsas. Sporadic multiprocessor scheduling

with few preemptions. Euromicro Conference on Real-Time Systems (ECRTS),

pages 243–252, 2008.

[2] Björn Andersson, Konstantinos Bletsas, and Sanjoy K. Baruah. Scheduling

arbitrary-deadline sporadic task systems on multiprocessors. In IEEE Real-Time

Systems Symposium (RTSS), pages 385–394, 2008.

[3] Björn Andersson and Eduardo Tovar. Multiprocessor scheduling with few preemp-

tions. In IEEE Embedded and Real-Time Computing Systems and Applications

(RTCSA), pages 322–334, 2006.

[4] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate

progress: a notion of fairness in resource allocation. Algorithmica, 15(6):600–625,

1996.

[5] S. K. Baruah and Joel Goossens. Scheduling real-time tasks: Algorithms and

complexity. In Joseph Y-T Leung, editor, Handbook of Scheduling: Algorithms,

Models, and Performance Analysis. Chapman Hall/CRC Press, 2004.

[6] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-time

sporadic tasks on one processor. In IEEE Real-Time Systems Symposium (RTSS),

pages 182–190, 1990.

116

[7] Sanjoy K. Baruah and John Carpenter. Multiprocessor fixed-priority schedul-

ing with restricted interprocessor migrations. Journal of Embedded Computing,

1(2):169–178, 2004.

[8] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. K. Baruah.

A categorization of real-time multiprocessor scheduling problems and algorithms.

In Handbook on Scheduling Algorithms, Methods, and Models, pages 30.1–30.19.

Chapman Hall/CRC, 2004.

[9] Shih-Ying Chen and Chih-Wen Hsueh. Optimal dynamic-priority real-time schedul-

ing algorithms for uniform multiprocessors. IEEE Real-Time Systems Symposium

(RTSS), pages 147–156, 2008.

[10] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-time scheduling algorithm

for multiprocessors. In IEEE Real-Time Systems Symposium (RTSS), pages 101–

110, 2006.

[11] S.-K. Cho, S. Lee, A. Han, and K.-J. Lin. Efficient real-time scheduling algo-

rithms for multiprocessor systems. IEICE Transactions on Communications, E85-

B(12):2859–2867, 2002.

[12] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for

NP-hard problems, chapter Approximation algorithms for bin packing: a survey,

pages 46–93. PWS Publishing Co., Boston, MA, USA, 1997.

[13] Z. Deng, J. W.-S. Liu, and J. Sun. A scheme for scheduling hard real-time applica-

tions in open system environment. In Euromicro Conference on Real-Time Systems

(ECRTS), pages 191–199, 1997.

[14] Michael Dertouzos. Control robotics : the procedural control of physical processors.

Proceedings of the IFIP Congress, pages 807–813, 1974.

117

[15] Michael Dertouzos and Aloysius K. Mok. Multiprocessor scheduling in a hard real-

time environment. IEEE Transactions on Software Engineering, 15(12):1497–1506,

1989.

[16] S.K. Dhall and C.L. Liu. On a real-time scheduling problem. Operations Research,

26(1):127–140, 1978.

[17] Arvind Easwaran, Insik Shin, and Insup Lee. Optimal virtual cluster-based multi-

processor scheduling. Real-Time Systems, 43(1):25–59, 2009.

[18] Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the synthesis

of multiprocessor tasksets. In Workshop on Analysis Tools and Methodologies for

Embedded and Real-time Systems (WATERS), pages 6–11, 2010.

[19] Nathan Fisher, Joël Goossens, and Sanjoy Baruah. Optimal online multiprocessor

scheduling of sporadic real-time tasks is impossible. Real-Time Systems, 45(1-

2):26–71, June 2010.

[20] Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki. New abstraction for op-

timal real-time scheduling on multiprocessors. IEEE Embedded and Real-Time

Computing Systems and Applications (RTCSA), pages 357–364, 2008.

[21] Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki. Work-conserving optimal

real-time scheduling on multiprocessors. In Euromicro Conference on Real-Time

Systems (ECRTS), pages 13–22, 2008.

[22] S. Funk and V. Nadadur. Lre-tl: An optimal multiprocessor algorithm for sporadic

task sets. Conference on Real-Time and Network Systems (RTNS), pages 159–168,

2009.

[23] Shelby Funk, Greg Levin, Caitlin Sadowski, Ian Pye, and Scott Brandt. Dp-fair:

118

a unifying theory for optimal hard real-time multiprocessor scheduling. Real-Time

Systems, 47(5):389–429, Sep 2011.

[24] Dorit S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS

Publishing Co., Boston, MA, USA, 1997.

[25] Kwang Soo Hong and Joseph Y.-T. Leung. On-line scheduling of real-time tasks.

IEEE Transactions on Computers, 41:1326–1331, 1992.

[26] Shinpei Kato and Nobuyuki Yamasaki. Real-time scheduling with task splitting on

multiprocessors. IEEE Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA), pages 441–450, 2007.

[27] Shinpei Kato and Nobuyuki Yamasaki. Portioned edf-based scheduling on mul-

tiprocessors. ACM International Conference on Embedded Software (EMSOFT),

pages 139–148, 2008.

[28] Shinpei Kato, Nobuyuki Yamasaki, and Yutaka Ishikawa. Semi-partitioned schedul-

ing of sporadic task systems on multiprocessors. In Euromicro Conference on Real-

Time Systems (ECRTS), pages 249–258, 2009.

[29] J.Y.T. Leung. A new algorithm for scheduling periodic, real-time tasks. Algorith-

mica, 4(1):209–219, 1989.

[30] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt. Dp-fair: a simple model

for understanding optimal multiprocessor scheduling. In Euromicro Conference on

Real-Time Systems (ECRTS), pages 3–13, 2010.

[31] Caixue Lin and Scott A. Brandt. Improving soft real-time performance through

better slack management. IEEE Real-Time Systems Symposium (RTSS), pages

3–14, 2005.

119

[32] Caixue Lin, Tim Kaldewey, Anna Povzner, and Scott A. Brandt. Diverse soft real-

time processing in an integrated system. IEEE Real-Time Systems Symposium

(RTSS), pages 369–378, 2006.

[33] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a

hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[34] J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.

[35] Jose Maria López, M. Garcia, José Luis Diaz, and Daniel F. Garcia. Worst-case uti-

lization bound for EDF scheduling on real-time multiprocessor systems. Euromicro

Conference on Real-Time Systems (ECRTS), pages 25–34, 2000.

[36] E. Massa and G. Lima. A bandwidth reservation strategy for multiprocessor real-

time scheduling. In IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 175–183, 2010.

[37] E. Massa, G. Lima, P. Regnier, G. Levin, and S. Brandt. Quasi-partition schedul-

ing: Achieving optimality in sporadic real-time multiprocessor systems. To appear,

2013.

[38] R. McNaughton. Scheduling with deadlines and loss functions. Management Sci-

ence, 6(1):1–12, October 1959.

[39] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and migrating periodic tasks

on multiple resources. In IEEE Real-Time Systems Symposium (RTSS), pages 294–

303, 1999.

[40] A. K. Mok. Fundamental design problems of distributed systems for the hard-

real-time environment. Technical report, Massachusetts Institute of Technology,

Cambridge, MA, USA, 1983.

120

[41] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Reducing preemptions

and migrations in real-time multiprocessor scheduling algorithms by releasing the

fairness. In IEEE Embedded and Real-Time Computing Systems and Applications

(RTCSA), pages 15–24, Aug 2011.

[42] S.H. Oh and S.M. Yang. A modified least-laxity-first scheduling algorithm for real-

time tasks. IEEE Embedded and Real-Time Computing Systems and Applications

(RTCSA), pages 31–36, 1998.

[43] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt. Run: Optimal multi-

processor real-time scheduling via reduction to uniprocessor. In IEEE Real-Time

Systems Symposium (RTSS), pages 104–115, 29 2011-dec. 2 2011.

[44] M. Spuri and G. Buttazzo. Scheduling aperiodic tasks in dynamic priority systems.

Real-Time Systems, 10(2):179–210, 1996.

[45] Anand Srinivasan, Philip Holman, James H. Anderson, and Sanjoy K. Baruah. The

case for fair multiprocessor scheduling. International Symposium on Parallel and

Distributed Processing (IPDPS), April 2003.

[46] Roger Stafford. Random vectors with fixed sum.

http://www.mathworks.com/matlabcentral/fileexchange/9700, Jan. 2006.

[47] D. Zhu, D. Mossé, and R. Melhem. Multiple-resource periodic scheduling problem:

how much fairness is necessary? In IEEE Real-Time Systems Symposium (RTSS),

pages 142–151, 2003.

[48] Dakai Zhu, Xuan Qi, Daniel Mossé, and Rami Melhem. An optimal boundary fair

scheduling algorithm for multiprocessor real-time systems. Journal of Parallel and

Distributed Computing, 71(10):1411–1425, 2011.

121

