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Abstract

Control and Self-Calibration of Microscale Rate Integrating Gyroscopes (MRIGs)

by

Fu Zhang

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Roberto Horowitz, Chair

This dissertation investigates the design of control algorithms and calibration methods for
Microscale Rate Integrating Gyroscopes (MRIGs). As its name implies, a MRIG operates
in rate integrating mode and can directly measure the rotation angle of the base where it
is mounted. However, the MRIG mechanical system does not spontaneously operate in a
rate integrating mode, but requires an active controller. Such a controller enables the MRIG
to oscillate in a specific pattern that is related to the input rotation angle in a measurable way.

Conventional micro-machined gyroscopes (i.e. MEMS gyroscopes) operate in rate mode (as
apposed to rate integrating mode). That is, the gyroscope directly measures the rotation
rate of the base. The measured rotation rate is then numerically integrated over time to
obtain the input rotation angle. The main drawback of this measuring mechanism is that,
by integrating, the rate measurement error will propagate over time, causing the angle mea-
surement to drift from the real input angle. MRIG, by its operating principle, can directly
measure the input rotation angle; hence it suffers from no such error propagation.

A well-known control scheme for rate integrating gyroscopes was proposed by Lynch in 1995
[51]. This control scheme has demonstrated its efficacy on precisely fabricated rate integrat-
ing gyroscopes such as Hemispherical Resonance Gyroscopes (HRGs). However, for MRIGs
fabricated by micro-fabrication technology, fabrication imperfections significantly degrade
the gyro performance. In addition, the Lynch-proposed-scheme is essentially nonlinear. As
a consequence, the controller performance is hard to predict and analyze prior to real tests.

In this dissertation, a novel demodulation method is developed to transform the original non-
linear control problem into a linear time invariant controller design problem. This technique
is based on the averaging method proposed by Lynch [50] but enables the use of well stud-
ied linear system theory for MRIG controller design and analysis. The resulting controller
design for MRIGs is much more tractable and the performance is rather predictable. This
fundamental improvement also opens up new opportunities for implementing and analyzing



2

control systems based on linear control theory.

Two schemes are proposed in this dissertation to compensate for the parameter mismatches
caused by fabrication imperfections. The first one is based on electrostatic spring softening
and tuning. The basic operation principle is first introduced. Then a full derivation of this
method on a real MRIG configuration is conducted. Experimental results confirm that this
compensation scheme can significantly attenuate the parameter mismatch.

The other compensation scheme considered in this dissertation is an adaptive compensation
scheme consisting of three feedforward controllers. Each of them runs on top of the cor-
responding feedback control loop and estimates and compensates parameter mismatches in
real time. We also present a stability and convergence analysis that shows such adaptive
controllers converge to the correct values and perfectly cancel the parameter mismatch. A
simulation study performed on a MRIG model also confirms the efficacy of the compen-
sation scheme. Then a self-calibration process is proposed to automatically calibrate the
gyroscope. This self-calibration method requires no human involvement or auxiliary device,
hence enables the gyroscope to calibrate itself whenever necessary, even in use.
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Chapter 1

Introduction

1.1 Background

Gyroscopes are sensing devices that are widely used to measure angular motion (i.e. rota-
tion rate or rotation angle) of the object where they are mounted. They are self-contained
sensing devices that operate without the use of external reference signals like GPS. Applica-
tions of gyroscopes include inertial navigation systems, vehicles stabilization and consumer
electronics such as virtual reality, video games and smart phones, etc. [79, 19, 3].

By their functions, gyroscopes can be divided into two categories: rate gyroscopes and rate
integrating gyroscopes [74]. Rate gyroscopes operate in the rate mode, where the gyroscope
measures the rotation rate. The rotation angle is then obtained by numerically integrating
the measured rate. Rate integrating gyroscopes operate in the rate integrating mode, where
the gyroscope directly measures the rotation angle.

By their operation principles, gyroscopes include spinning mass gyroscopes, optical gyro-
scopes, vibratory gyroscopes, nuclear magnetic resonance gyroscopes and super-fluid gyro-
scopes [55, 42, 11, 88, 9]. We will briefly go through the first three types of gyroscopes in
this text.

Spinning mass gyroscopes are based on the conservation of angular momentum law. They are
usually configured with a wheel spinning at a very high speed with respect to a free movable
frame which is anchored on the base [85]. The high speed spinning wheel has a tremendous
angular momentum, which will tend to maintain its spinning axis at a constant direction. As
a result, the spinning axis will remain static relative to the inertial frame, while the mount
frame is rotating with the base. By detecting the relative rotation between the spinning
axis and the mount frame, the rotation angle of the base can be measured. This process is
illustrated in Fig. 1.1. Other variants of gyroscopes like gyrostats [25], gyrocompasses [39],
etc. are based on similar facts.
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Spinning 
Wheel

Mount 
frame

Spin axis

Figure 1.1: Operation principle of spinning mass gyroscopes. The spin axis does not alter
its direction regardless of the attitude change of the base.

Spinning mass gyroscopes were used for many years in the aerospace and military industries.
One successful spinning mass gyroscope is the Control Moment Gyroscope [41], which was
widely used in space aircraft and satellite stabilization [21]. However, spinning mass gyro-
scopes are typical mechanical systems with bulky size. Their miniaturization is rather dif-
ficult and suffers from many mechanical limitations like wear, friction, shock and vibration.
These drawbacks created great opportunities for optical and vibratory gyroscopes, which
respectively utilize the integrated optical and Micro-Electro Mechanical System (MEMS)
technologies for miniaturization [5].

The first optical gyroscope, the Ring Laser Gyroscope (RLG) [52], was developed in 1963,
soon after the discovery of laser technology. Other optical gyroscopes include Fiber Optical
Gyroscopes (FOGs) and integrated-optics gyroscopes [16, 17].

The operating principle of optical gyroscopes is based on the Sagnac effect [4]. As shown
by Fig. 1.2, the gyroscope sends two laser beams around a closed loop path in opposite
directions. If the beam splitter/receiver stays stationary, the two laser beams traverse the
same distance to arrive to the receiver. However, if the beam splitter/receiver is rotating
along the circle, then it takes a longer distance for the laser beam in front to traverse, causing
a phase shift between the two received lasers. By detecting this phase shift, the rotational
rate can be measured.

Because of its lack of mechanical moving parts, optical gyroscopes suffer from no mechan-
ical wear or friction. In addition, due to the high consistency of the laser speed, optical
gyroscopes provides extremely precise rotational rate information. Hence, they found many
high-end applications like navy shipboard navigation despite their high costs [20] .
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Beam splitter 
and recerver

Figure 1.2: Sagnac effect

The class of vibratory gyroscopes, also known as Coriolis Vibratory Gyroscopes (CVGs), are
based on the Coriolis effect. The basic configuration of most vibratory gyroscopes can be
described by a proof mass attached by two perpendicular springs, as shown in Fig. 1.3. In
this system, the mass oscillates along two directions that are perpendicular to each other. If
the gyroscope is stationary, oscillations along these two directions are independent. However,
when external rotation is present, oscillations along these two perpendicular directions will
be coupled by the Coriolis acceleration. Since the Coriolis acceleration is proportional to
the external rotation rate, by detecting the coupling motion, it is possible to measure the
rotational motion of the frame. Micro-Electro Mechanical System (MEMS) gyroscopes and
Hemispherical Resonator Gyroscopes (HRG) are the two most significant implementations
of Coriolis Vibratory Gyroscopes.

m

frame X-Axis

Y-
Ax
is

yk

xk

xc

yc

Figure 1.3: Schematic of a typical vibratory gyroscope configuration. The dampers are used
to account for energy dissipation.
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Figure 1.4: A generic MEMS gyroscope implementation (left) and the iMEMS ADXRS rate
gyroscope package by Analog Devices (right). Pictures are taken from [29].

Benefiting from the MEMS technology, MEMS gyroscopes have their effective mass, spring
components, sensing and driving electrodes all integrated in one package, as shown in Fig.
1.4. Such a package is in the size of electronic chips and can be integrated to driver circuits
board. Compared with conventional mechanical gyroscopes, MEMS gyroscopes are several
orders of magnitude smaller. In addition, MEMS batch processing techniques enable the
production of large quantities of MEMS gyroscopes at a very low cost. Due to these bene-
fits, MEMS gyroscopes have opened up new market opportunities [63, 58] and applications
in the area of low-cost to medium performance inertial devices, like consumer electronics
including smart phones, gaming systems, tablets, toys, wearable devices, etc., image stabi-
lization, automotive applications and miniaturized air vehicles (MAVs) [62, 70].

To date, all commercially available MEMS gyroscopes are of the rate measuring type [80].
The main drawback of rate gyroscopes is that, by numerically integrating the measured
rate, the measurement error will propagate, causing the angle measurement to drift from the
ground true base rotation angle. Such a drawback limits the use of MEMS gyroscopes to be
within low-end, cost and size crucial applications. More comprehensive discussion on rate
versus rate integrating gyroscopes will be presented in subsequent chapters.

Hemispherical Resonance Gyros (HRGs) are another type of vibratory gyroscopes. They
are configured with a thin solid-state hemispherical shell anchored by a thick stem at the
center, as shown in Fig. 1.5. This shell is driven to flexural resonance by electrostatic forces
generated by electrodes, which are deposited directly onto separate fused quartz structures
that surround the shell. Due to the inertial property of the flexural standing waves, the
Coriolis acceleration will cause a slow precession on the standing oscillatory wave [10], with a
rate proportional to the input angular rate. Therefore when subject to external rotation, the
standing wave does not totally rotate with the shell. The difference between both rotations,
which can be sensed, is nevertheless perfectly proportional to the input rotation [86].
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Figure 1.5: Configurations of a typical hemispherical resonator gyroscope (left) and a package
example (right). Pictures are taken from [32] and [22].

The most prominent advantage of HRGs is perhaps its extremely simple hardware, contain-
ing no moving parts. In addition, the material character of shell resonator is rather stable.
These features make HRGs extremely reliable and accurate, insensitive to external environ-
mental perturbations like vibrations, accelerations and shocks. Moreover, HRGs can operate
in either rate integrating mode (i.e. whole angle mode) that sense the standing waves po-
sition or rate mode (i.e. force to rebalance mode) that holds the standing wave in a fixed
orientation with respect to the gyro.

HRG is a very high-tech device that requires a sophisticated manufacturing process in order
to perfectly polish the hemispherical shell. In addition, in contrast to the MEMS gyroscopes,
components of the HRG (the shell resonator, pickoff and driving electrodes, etc.) are sepa-
rately manufactured. The multi-piece design requires a sophisticated assembly process. Such
a process produces devices that have very high performance but at the same time high cost,
large size and have a high power consumption [34].

1.2 Microscale Rate Integrating Gyroscopes (MRIGs)

MEMS gyroscopes have the advantage of very low cost and small size while rate integrating
gyroscopes like HRGs have the advantage of extremely high reliability and accuracy. Current
effort is being devoted on fabricating rate integrating gyroscopes using microfabrication tech-
nology, i.e. Microscale Rate Integrating Gyroscopes (MRIGs). Ideally, MRIGs can inherit
the benefits of both: size and cost as low as MEMS gyroscopes but performance competitive
with conventional HRGs [47, 73].
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Figure 1.6: A number of successfully demonstrated MRIGs. Pictures are respectively taken
from [37, 14, 78, 69].

.

Conventional micromachined gyroscopes (i.e. MEMS gyroscopes) measure the rotation rate
by employing energy being transferred from the primary driving direction to the secondary
sensing direction [1]. The resolution and sensitivity of MEMS gyroscopes are often improved
by maximizing Q-factors and reducing the frequency mismatch between the two directions
of vibration [84]. The measurement bandwidth is typically improved by utilizing a closed
loop driving strategy, or force-rebalance mode [50]. The improvement is however at the cost
of increasing the noise level and decreasing the bandwidth of the input angular rate.

In order for micromachined gyroscopes to measure the rotation angle directly, development
has to be made on several aspects: precision 3-D fabrication technologies utilizing high-Q
materials; wafer-level balancing and trimming techniques that reduce the effects of mass,
stiffness and damping mismatches; and active control and calibration architectures [73].

During the last a few years, 3-D fabrication technology as well as wafer-level balancing and
trimming techniques have been significantly improved. A number of MRIG prototypes have
been successfully fabricated and demonstrated, as shown in Fig. 1.6. More MRIGs can be
seen in [77, 31, 66, 78, 38, 65]

This dissertation considers the control and calibration for MRIGs. Topics covered in this
dissertation include MRIG modeling, feedback controller design, stiffness and damping mis-
match compensation and design of self-calibration methods.
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1.3 Outline of the Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 describes the basic
configurations and theory of MRIGs. A comprehensive MRIG dynamic model, taking into
account stiffness and damping mismatches caused by fabrication imperfections, is derived.
The control objective is casted based on the trajectory solution of ideal MRIGs.

Chapter 3 addresses the control design for MRIGs. A well known feedback control strategy
based on the averaging method introduced by Lynch [50] is first described. A full analysis of
the effect of nonlinearities and stiffness and damping mismatches is then performed on such
a control strategy. Then this dissertation presents a novel demodulation method that can
eliminate the nonlinearities inherited in the Lynch control strategy. A linear time invariant
controller design approach is proposed. Such an approach enables us to design, analyze and
predict the performance of the controller using well established linear system theory.

Chapter 4 considers the stiffness mismatch compensation. A scheme based on electrostatic
spring softening and tuning is proposed. It is shown that by applying a DC voltage on the
MRIG driving or sensing electrodes, the MRIG stiffness will be softened by an extent deter-
mined by the amount of applied DC voltage. This creates a way to re-balance the stiffness
mismatch caused by fabrication imperfections.

Chapter 5 considers an alternative mismatch compensation scheme. An adaptive feedfoward
compensation scheme is presented and proven to converge. Such an adaptive compensator
runs on top of the feedback controller and can estimate both stiffness and damping mis-
match in real time. In order to calibrate the gyro mismatches, artificial input rate is then
introduced to produce an autonomous calibration process. This self-calibration scheme is
capable of calibrating the MRIG fully autonomous, requiring no auxiliary device or human
involvement.

Chapter 6 concludes the dissertation by summarizing the results and major achievements.
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Chapter 2

Basics of MRIGs

This chapter introduces the basic configurations and theory of Microscale Rate Integrating
Gyroscopes (MRIGs). Mechanical and electronic components of a MRIG are modeled. A
comprehensive dynamics that describes the MRIG vibrations is derived, by accounting for
the stiffness and damping mismatch caused by fabrication imperfections [71]. The derived
model will serve as the basic model for controller design in the subsequent chapters.

Behaviors of ideal MRIGs are studied in detail, by removing all the stiffness mismatch and
damping effect from the comprehensive model. It is shown that the ideal MRIG is a natural
rate integrating gyro, requiring no exogenous control input. Based on these facts, control
objectives of actual MRIGs with stiffness mismatch and damping effect are casted.

2.1 Configurations of MRIGs

Electrodes
Pads

Shell 
resonator

Driving/sensing 
electrodes

Stem

Plate

Figure 2.1: Microscope image of a MRIG fabricated by Honeywell (left) and its concept
schematic (right). Courtesy of Burgess R. Johnson, Honeywell.
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As shown in Fig. 2.1, a typical MRIG consists of a thin micro-machined shell resonator
that is anchored on the plate by a thick stem at center. It also includes electrostatic driving
electrodes and electrostatic sensing electrodes. It can be seen that such a configuration is
very similar to that of Hemispherical Resonator Gyroscopes (HRGs). This is not surprising
as MRIGs are essentially HRGs micro-machined on a chip. As shown in Fig. 2.2, the MRIG
chip has a vacuum package with interfacing pads that can be used to drive or sense the
shell vibration. The MRIG package is integrated to an analog front-end electronics board
containing op-amps and D/A converters for the purpose of signal amplification and noise
reduction, and then to a digital processor for signal processing and control purposes.

3.3mm

Figure 2.2: Analog front-end electronics (Circular board) with a 3.3 mm by 3.3 mm MRIG
package manufactured by Honeywell, and a DSP board for gyro control. Courtesy of Burgess
R. Johnson, Honeywell.

2.2 Vibration Modes of the Shell Resonator

The shell resonator is usually very thin and deformable. The deformation is repetitive at
some resonance frequency that is determined by shell material and size. Hence, the shell
is also called shell resonator. As shown in Fig. 2.3, there are three prominent vibration
modes: n = 0 mode, n = 1 mode and n = 2 mode. The n = 0 mode refers to a vibration
where the whole shell resonator moves up and down; the n = 1 mode refers to a vibration
where the whole shell resonator tilts back and forth between left and right (primary vibration
mode), or forward and backward (secondary vibration mode); the n = 2 mode refers to a
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vibration where the shell deforms its rim along x and y axes (primary vibration mode), or
along a direction in between x and y axes (secondary vibration mode). These three modes
of vibration usually have different resonance frequencies. The preferred vibration mode
can hence be excited by modulating the driving signal onto the corresponding resonance
frequency.
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Figure 2.3: Vibration modes of a MRIG shell resonator simulated by ANSYS: n = 0 mode
moves up and down (top), n = 1 mode tilts (middle) and n = 2 mode deforms the shell
rim (bottom). Shapes of the shell resonator over a whole vibration period is considered.
Courtesy of Burgess R. Johnson, Honeywell
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2.3 The n = 2 Mode of Vibration

Among the three vibration modes discussed in preceding sections, the n = 2 mode is usually
selected as the gyro operating mode due to its stable vibration pattern. In addition, the
n = 2 mode of vibration has a modulate resonance frequency that achieves a good trade-off
between the input bandwidth and the cost. Lower vibration frequency needs to lower the
input rate bandwidth in order to obtain good Signal to Noise Ratio (SNR) while higher
vibration frequency requires much more sophisticated sampling circuits and faster processor,
which in turn increases the cost.

Fig. 2.4 depicts the top view of the n = 2 mode of vibration, when no external rotation
is present. There are two vibration modes in the category of n = 2 mode of vibration:
the primary vibration mode is the vibration pattern where the shell rim deforms into an
ellipse with the principal and secondary axes repetitively aligned with Cartesian x and y
axes; the secondary vibration mode is the vibration pattern where the shell rim deforms
into an ellipse with the principal and secondary axes repetitively aligned with Cartesian x′

and y′ axes, which is rotated 45 degrees from the Cartesian x− y coordinates. In addition,
it can be observed that the two vibration modes are independent, i.e. when the primary
vibration mode is excited, no vibration signal can be sensed from the secondary vibration
mode (denoted as anti-node in the figure) and vice versa.

 Antinode

Node

Primary vibration mode Secondary vibration mode

Primary

Seconadary

X-Axis

Y-
Ax

is

X’-A
xis

Y’-Axis

Figure 2.4: The primary and secondary vibration modes are independent for the n = 2 mode
of vibration, when no external rotation is present.
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2.4 Dynamics of the n = 2 Mode of Vibration

2.4.1 Equivalent Model

As discussed in preceding sections, the shell resonator’s n = 2 mode of vibration has pri-
mary and secondary vibration modes that are independent to each other, when no external
rotation is present. This fact enables us to model the shell resonator as a two dimensional
harmonic oscillator shown in Fig. 2.5, where the two vibration modes are geometrically
perpendicular, hence independent, to each other. This modeling approach can be validated
by a more accurate modeling process based on solid-state thin shell theory presented in [82].

OPrimary 
readout axisyk
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xd
yd

Secondary 
readout axis

Primary mode 
of vibration

Secondary mode 
of vibration
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damping axis

Secondary 
damping axis
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yee

xee

xee

yee
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yee

zee

ii
jj

kk
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Figure 2.5: Schematic of a two dimensional harmonic oscillator (left) and its coordinate
systems (right). In all the three types of coordinate systems, z-axis are the same and per-
pendicular to the paper plane.

Table 2.1: Summary of parameters in Fig. 2.5

Parameter Description Unit

Ω Input rotation rate rad/s
m Effective mass Kg
kx Stiffness of primary vibration mode N/m
ky Stiffness of secondary vibration mode N/m
dx Damping coefficient in the primary damping axis N · s/m
dy Damping coefficient in the secondary damping axis N · s/m
θω Azimuthal angle of stiffness axes rad
θτ Azimuthal angle of damping axes rad
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As shown in Fig. 2.5, due to the fabrication imperfections, the stiffness in the primary
vibration mode kx is different from the stiffness in the secondary vibration mode ky, causing
a stiffness mismatch. Dampers dx and dy are introduced to account for the energy dissipation.
dx is usually different from dy as the energy dissipation over different vibration directions
is usually different, which causes a damping mismatch. In addition, the readout electrodes
are not ideally aligned with the stiffness principal axes nor the damping principal axes, as
shown in Fig. 2.5. The resulting stiffness axes are misaligned with the readout axes by angle
θω while the damping axes are misaligned with the readout axes by angle θτ .

2.4.2 Coordinate Systems

In order to ease the subsequent analysis, we embed the readout axes, stiffness axes and
damping axes respectively with the coordinate systems {O, �ex, �ey, �ez}, {O, �ex

′, �ey
′, �ez

′} and
{O, �ex

′′, �ey
′′, �ez

′′}. Then,

[
�ex

′ �ey
′ �ez

′ ] = [ �ex �ey �ez
] ⎡⎣ cos(θω) − sin(θω) 0

sin(θω) cos(θω) 0
0 0 1

⎤⎦ (2.1)

and

[
�ex

′′ �ey
′′ �ez

′′ ] = [ �ex �ey �ez
] ⎡⎣ cos(θτ ) − sin(θτ ) 0

sin(θτ ) cos(θτ ) 0
0 0 1

⎤⎦ (2.2)

These three coordinate systems are all static to the base and rotate with the base at the
rate of �Ω, with respect to the inertial frame {O,�i,�j,�k}. Note that the rotation rate �Ω is
a vector that can be decomposed into either the body frame {O, �ex, �ey, �ez} or the inertial

frame {O,�i,�j,�k}:

�Ω =
[
�ex �ey �ez

] ⎡⎣ Ωx

Ωy

Ωz

⎤⎦ =
[
�i �j �k

]⎡⎣ Ωi

Ωj

Ωk

⎤⎦ (2.3)

2.4.3 Kinematics

Since the coordinate system {O, �ex, �ey, �ez} (as well as {O, �ex
′, �ey

′, �ez
′} and {O, �ex

′′, �ey
′′, �ez

′′} )

is rotating at the rate of �Ω, it is subject to

�̇ex = �Ω× �ex; �̈ex = �̇Ω× �ex + �Ω× �̇ex

�̇ey = �Ω× �ey; �̈ey = �̇Ω× �ey + �Ω× �̇ey

�̇ez = �Ω× �ez; �̈ez = �̇Ω× �ez + �Ω× �̇ez

(2.4)
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2.4.4 Position Vector and Force Vector

Since the readout electrodes can only sense the displacement information of the shell res-
onator along the readout axes, it is quite straightforward to decompose the position vector
of the point mass into the readout axes:

�p = �r + x�ex + y �ey
�̇p = �̇r + ẋ �ex + ẏ �ey + x �̇ex + y �̇ey
�̈p = �̈r + ẍ �ex + ÿ �ey + 2ẋ �̇ex + 2ẏ �̇ey + x �̈ex + y �̈ey

(2.5)

where �r is the position vector of the shell center and �̈r is the linear acceleration.

There are five types of forces acting on the point mass: gravity, normal force from the plate,
spring induced forces, damper induced forces and control forces produced by the electrodes.
Since the point mass is restricted to vibrate within the plane of �exO�ey, the normal force
cancels gravity, resulting in a total force as follows

�F = �f − kxx
′ �ex

′ − kyy
′ �ey

′ − dxv
′′
x �ex

′′ − dyv
′′
y �ey

′′ (2.6)

where �f is the control force applied on the point mass; x′ and y′ are respectively the �ex
′ and

�ey
′ components of the relative position vector of the point mass to the shell center; v′′x and

v′′y are respectively the �ex
′′ and �ey

′′ components of the relative velocity vector of the point
mass to the shell center. Therefore, they are respectively subject to[

x′

y′

]
=

[
cos(θω) sin(θω)
− sin(θω) cos(θω)

] [
x
y

]
(2.7)

and [
vx

′′

vy
′′

]
=

[
cos(θτ ) sin(θτ )
− sin(θτ ) cos(θτ )

] [
ẋ
ẏ

]
(2.8)

2.4.5 Dynamics

Applying Newton’s second law to the point mass yields

m�̈p = �F (2.9)

Substituting Eq. (2.5) into the left hand side of Eq. (2.9), and Eq. (2.7), Eq. (2.8), Eq.
(2.1) and Eq. (2.2) into the right hand side of Eq. (2.9) yields

ẍ− 2Ωzẏ +
(
ΩxΩy − Ω̇z

)
y +

(
kx
m

+
ky
m

2
− Ω2

y − Ω2
z

)
x+ r̈x

+
dx
m

+
dy
m

2
ẋ+

dx
m

− dy
m

2
(ẋ cos 2θτ + ẏ sin 2θτ ) +

kx
m

− ky
m

2
(x cos 2θω + y sin 2θω) = fx

m

ÿ + 2Ωzẋ+
(
ΩxΩy + Ω̇z

)
x+

(
kx
m

+
ky
m

2
− Ω2

x − Ω2
z

)
y + r̈y

+
dx
m

+
dy
m

2
ẏ +

dx
m

− dy
m

2
(ẋ sin 2θτ − ẏ cos 2θτ ) +

kx
m

− ky
m

2
(x sin 2θω − y cos 2θω) = fy

m

(2.10)
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where r̈x and r̈y are respectively the �ex and �ey components of the linear acceleration; Ωx, Ωy

and Ωz are respectively the �ex, �ey and �ez components of the rotation rate vector �Ω, as seen
in the first part of Eq. (2.3).

Re-parameterizing Eq. (2.10) using parameters summarized in Table 2.2 yields

ẍ− 2Ωzẏ +
(
ΩxΩy − Ω̇z

)
y +
(
ω2 − Ω2

y − Ω2
z

)
x

+
2

τ
ẋ+Δ

(
1

τ

)
(ẋ cos 2θτ + ẏ sin 2θτ )− ωΔω (x cos 2θω + y sin 2θω) = gx +

fx
m

ÿ + 2Ωzẋ+
(
ΩxΩy + Ω̇z

)
x+
(
ω2 − Ω2

x − Ω2
z

)
y

+
2

τ
ẏ −Δ

(
1

τ

)
(−ẋ sin 2θτ + ẏ cos 2θτ )− ωΔω (x sin 2θω − y cos 2θω) = gy +

fy
m

(2.11)

Table 2.2: Summary of parameters in Eq. (2.11)

Parameter Description Unit

x Position in the x direction m
y Position in the y direction m
fx Control force in the x direction N
fy Control force in the y direction N

ωx Resonance frequency in the x direction, ωx =
√

kx
m

rad/s

ωy Resonance frequency in the y direction, ωy =
√

ky
m

rad/s

ω Resonance frequency, ω =

√
ω2
y+ω2

x

2
rad/s

Δω Frequency mismatch, Δω =
ω2
y−ω2

x

2ω
rad/s

1
τx

Decay rate in the x direction, 1
τx

= dx
2m

1/s
1
τy

Decay rate in the y direction, 1
τy

= dy
2m

1/s
2
τ

Decay rate, 2
τ
= 1

τx
+ 1

τy
1/s

Δ
(
1
τ

)
Damping mismatch, Δ

(
1
τ

)
= 1

τx
− 1

τy
1/s

gx Deceleration in the x direction m2/s
gy Deceleration in the y direction m2/s

where the x and y directions refer to the two perpendicular readout axes in the equivalent
model. In the real shell resonator, the x direction refers to the Cartesian x and y axes, while
the y direction refers to the Cartesian x′ and y′ axes, as seen in Fig. 2.4.
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Noticing that in all applications the magnitude of the input rate �Ω is much smaller than the
resonance frequency ω, the quadratic terms (i.e. ΩxΩy,Ω

2
x,Ω

2
y and Ω2

z ) can be considered
as negligible. In addition, the linear decelerations gx and gy are usually far off the resonance
frequency ω, producing no significant effect on the system’s response. Changing the notation
Ωz to Ω yields the simplified shell resonator dynamics

ẍ− 2κΩẏ − κΩ̇y +
(
ω2 − κ2Ω2

)
x

+
2

τ
ẋ+Δ

(
1

τ

)
(ẋ cos 2θτ + ẏ sin 2θτ )− ωΔω (x cos 2θω + y sin 2θω) =

fx
m

ÿ + 2κΩẋ+ κΩ̇x+
(
ω2 − κ2Ω2

)
y

+
2

τ
ẏ −Δ

(
1

τ

)
(−ẋ sin 2θτ + ẏ cos 2θτ )− ωΔω (x sin 2θω − y cos 2θω) =

fy
m

(2.12)

where κ is a dimensionless gain factor that represents the ratio between the real external
rotation rate and the gyro rotation rate. This gain is usually calibrated prior to the gyro
operation. Ω refers to the rotation rate along the �ez axis.

Eq. (2.12) is the gyro model based on which the controller and compensation scheme will
be designed. In Eq. (2.12), terms 2κΩẋ and 2κΩẏ are the well known Coriolis accelerations,
which are proportional to the input rotation rate Ω. This is not surprising as the variables
x and y being considered are the positions relative to the body frame {O, �ex, �ey, �ez},which
is a non-inertial frame. It can be seen from Eq. (2.12) that the Coriolis accelerations 2κΩẋ
and 2κΩẏ couple the x and y motions. This coupling phenomenon is called Coriolis effect,
which is the fundamental operating principle of vibratory gyroscopes where the input rate
or angle is measured by detecting this amount of coupling motion.

It is worth mentioning that, the cross damping effect between x and y produces the forces
dyxẋ and dxyẏ that have the same form as the Coriolis acceleration. This can potentially
produce an alias of the input rate. Mathematically, by grouping terms ẍ, ẋ, x, ÿ, ẏ and y in
Eq. (2.12), we can obtain

ẍ+

(
2

τ
+Δ

(
1

τ

)
cos 2θτ

)
ẋ+
(
ω2 − κ2Ω2 − ωΔω cos 2θω

)
x

−
(
2κΩ−Δ

(
1

τ

)
sin 2θτ

)
ẏ︸ ︷︷ ︸

disturbed Coriolis acceleration

−
(
κΩ̇ + ωΔω sin 2θω

)
y =

fx
m

ÿ +

(
2

τ
−Δ

(
1

τ

)
cos 2θτ

)
ẏ +
(
ω2 − κ2Ω2 + ωΔω cos 2θω

)
y

+

(
2κΩ +Δ

(
1

τ

)
sin 2θτ

)
ẋ︸ ︷︷ ︸

disturbed Coriolis acceleration

+
(
κΩ̇− ωΔω sin 2θω

)
x =

fy
m

(2.13)
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Fortunately, as shown in Eq. (2.13), the damping mismatch term Δ
(
1
τ

)
sin 2θτ decreases the

Coriolis acceleration on the x direction while increasing the Coriolis acceleration on the y
direction. Such a different effect on Coriolis accelerations makes it possible to distinguish
and compensate the damping mismatch.

2.5 Electrostatic Sensing and Actuation

The sensing and actuation mechanisms used for detecting and driving the shell vibration
usually include electrostatic, electromagnetic or piezoresisitive sensing and actuation. Among
them, electrostatic sensing and actuation outperforms the other two mechanisms due to its
low cost and power usage, and good stability, speed and resolution. Moreover, electrostatic
electrodes are easy to integrate into Integrated Circuits (ICs) [7].

2.5.1 Electrostatic Sensing

Electrostatic sensing is based on parallel plate capacitance where the two movable plates will
charge or discharge, hence producing a measurable current on the conditioning circuits.

x

V

0xd

A

ui 2C

Op amp

i

1R

1C

2R

Figure 2.6: A parallel plate capacitor used as a sensor. A is the area of the plates; x0 is
the initial gap between plates; x is the displacement of the bottom plate; d = x0 − x is the
actual gap; V is the bias voltage; R1 � 1

ωC1
in order to direct the current i to the integrating

op-amp.

Fig. 2.6 shows a parallel plate capacitor and its integrating circuits. Based on the parallel
plate capacitance theory presented in [57], the capacitance for a parallel plate capacitor is

C =
εA

d
=

εA

x0 − x
(2.14)
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where ε is the permittivity of the material between plates.

Charges on the plates are
Q = CV (2.15)

If the plates are moving towards to each other, the capacitance C is increased. Given a
constant bias voltage, the plates will charge by Eq. (2.15), creating a current i

i =
dQ

dt
(2.16)

Since the applied bias voltage V is usually constant, substituting Eq. (2.14) and Eq. (2.15)
into Eq. (2.16) yields

i =
dC

dx

dx

dt
V =

εA

(x0 − x)2
V ẋ (2.17)

The series expansion of the current i around x = 0 is

i =
εA

x2
0

V ẋ+ 2
εA

x3
0

V xẋ+ o(x2) (2.18)

Since the magnitude of the shell deformation x is far less than the static gap x0, the higher
order terms o(x2) are negligible. In addition, since both of x and ẋ are at the frequency of
the resonance frequency ω, the cross term xẋ splits into a DC component and a 2ω frequency
component, which can both be eliminated by the conditioning circuits, making their effect
on the readout signal negligible. The simplified current is

i =

(
dC

dx

)
x=0

V ẋ (2.19)

Since the resistor R1 and capacitor are selected such that most of the current is directed to
the integrating circuits, the output voltage is

u =
R2

sR2C2 + 1
i (2.20)

Substituting Eq. (2.19) into Eq. (2.20) yields

u =

(
dC

dx

)
x=0

V
sR2

sR2C2 + 1
x (2.21)

That is, the transfer function from the plate displacement to the measured voltage is

G1(s) =

(
dC

dx

)
x=0

V
sR2

sR2C2 + 1
(2.22)

It can be seen that the readout circuit is essentially a high pass filter with corner frequency
of 1

R2C2
. This implies that adding the resistor R2 outperforms the pure integrator where

R2 = ∞, as it can effectively eliminate the DC disturbance in the readout signals.
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2.5.2 Electrostatic Actuation

Electrostatic actuation is based on parallel plate capacitance where the two charged parallel
plates produce an attractive force. The amount of attractive force produced is determined
by the charge on the plates.

x

V

0xd f

A

Figure 2.7: A parallel plate capacitor used as an actuator. V is the applied voltage; f is the
attractive force produced on the plates.

The potential energy of a capacitor shown in Fig. 2.7 is [64]

E =
1

2
CV 2 (2.23)

The resulting attractive force is

f = −∂E

∂d
= −1

2

(
∂C

∂d

)
V 2 (2.24)

Substituting Eq. (2.14) into Eq. (2.24) yields

f =
1

2

εA

d2
V 2 =

1

2

εA

(x0 − x)2
V 2 (2.25)

Performing a Taylor expansion and ignoring higher order terms yields the force produced by
the plates

f =
1

2

(
dC

dx

)
x=0

V 2 +
1

2

(
d2C

dx2

)
x=0

V 2x (2.26)

It can be seen that the desired electrostatic force can be obtained by applying appropriate
voltage on the electrodes.
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2.6 Electrodes Configurations

Fig. 2.1 shows the electrodes configuration in a real gyro. Mechanically, electrodes are usu-
ally placed inside the shell resonator, right next to the shell rim, to form a parallel plate
capacitor with the shell. The electrodes are fixed while the shell rim is deformable like a
moving plate. Electronically, the whole shell resonator is grounded while the electrodes are
connected to voltage sources that can be adjusted by controllers running on a processor.

A real gyro usually has multiple actuation and sensing electrodes that are respectively used
to actuate and sense the displacement of the shell resonator from different directions. Fig.
2.8 shows a shell resonator with 16 electrodes, whose electrical configuration is depicted in
Fig. 2.9.
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Figure 2.8: A shell resonator with 16 electrodes (left) and its equivalent model (right).
Electrodes labeled with texts in orange color are readout electrodes while the remaining are
used for actuation. Note that the readout electrodes also produce electrostatic forces. A
positive displacement in the x direction refers to a rim deformation where the principal axis
is horizontal while a negative one refers to a deformation where the principal axis is vertical.
A positive force in the x direction refers to a force that attempts to produce a positive
displacement in the x direction.
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Figure 2.9: Electrical configurations of a shell resonator with 16 electrodes.

By Eq. (2.21), the voltages showing on the readout buffers are

rx =
(
dC
dx

)
x=0

sR2

sR2C2+1
·
(

+ V [+x+]x[+x+] + V [+x−]x[+x−]
+ V [−x+]x[−x+] + V [−x−]x[−x−]

)

ry =
(
dC
dx

)
x=0

sR2

sR2C2+1
·
(

+ V [+y+]x[+y+] + V [+y−]x[+y−]
+ V [−y+]x[−y+] + V [−y−]x[−y−]

) (2.27)

where x[i] represents the displacement of the shell rim at i-th electrode; V [i] represents the
voltage applied on i-th electrode.
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2.6.1 Geometry

Assume that x is the displacement of the shell deformation in the x direction and y is the
displacement of the shell deformation in the y direction. Then the displacement at each of
the sensing electrodes are

x[+x+] = x
x[+x−] = x
x[−x+] = −x
x[−x−] = −x
x[+y+] = y
x[+y−] = y
x[−y+] = −y
x[−y−] = −y

(2.28)

The displacement at each of the actuation electrodes is

x[+(+x,+y)] =
√
2
2
(x+ y)

x[−(+x,+y)] =
√
2
2
(x+ y)

x[+(−x,+y)] =
√
2
2
(−x+ y)

x[−(−x,+y)] =
√
2
2
(−x+ y)

x[+(−x,−y)] =
√
2
2
(−x− y)

x[−(−x,−y)] =
√
2
2
(−x− y)

x[+(+x,−y)] =
√
2
2
(x− y)

x[−(+x,−y)] =
√
2
2
(x− y)

(2.29)

Assume fx is the total force on x direction while fy is the total force on y direction, then

fx =
√
2
2
{f [+(+x,+y)] + f [−(+x,+y)]− f [+(−x,+y)]− f [−(−x,+y)]

+ f [+(+x,−y)] + f [−(+x,−y)]− f [+(−x,−y)]− f [−(−x,−y)]}

+ f [+x+] + f [+x−]− f [−x+]− f [−x−]

fy =
√
2
2
{f [+(+x,+y)] + f [−(+x,+y)] + f [+(−x,+y)] + f [−(−x,+y)]

− f [+(+x,−y)]− f [−(+x,−y)]− f [+(−x,−y)]− f [−(−x,−y)]}

+ f [+y+] + f [+y−]− f [−y+]− f [−y−]

(2.30)

where f [i] denotes the attractive force produced by i-th electrode.
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2.6.2 Electrostatics

Combing Eq. (2.26) and Eq. (2.28) yields the forces produced by the readout electrodes

f [+x+] = 1
2

(
dC
dx

)
x=0

· (V [+x+])
2
+ 1

2

(
d2C
dx2

)
x=0

· (V [+x+])
2 · x

f [+x−] = 1
2

(
dC
dx

)
x=0

· (V [+x−])2 + 1
2

(
d2C
dx2

)
x=0

· (V [+x−])2 · x

f [−x+] = 1
2

(
dC
dx

)
x=0

· (V [−x+])
2 − 1

2

(
d2C
dx2

)
x=0

· (V [−x+])
2 · x

f [−x−] = 1
2

(
dC
dx

)
x=0

· (V [−x−])2 − 1
2

(
d2C
dx2

)
x=0

· (V [−x−])2 · x

f [+y+] = 1
2

(
dC
dx

)
x=0

· (V [+y+])
2
+ 1

2

(
d2C
dx2

)
x=0

· (V [+y+])
2 · y

f [+y−] = 1
2

(
dC
dx

)
x=0

· (V [+y−])2 + 1
2

(
d2C
dx2

)
x=0

· (V [+y−])2 · y

f [−y+] = 1
2

(
dC
dx

)
x=0

· (V [−y+])
2 − 1

2

(
d2C
dx2

)
x=0

· (V [−y+])
2 · y

f [−y−] = 1
2

(
dC
dx

)
x=0

· (V [−y−])2 − 1
2

(
d2C
dx2

)
x=0

· (V [−y−])2 · y

(2.31)

Since the bias voltage for electrodes are always static, the first terms 1
2

(
dC
dx

)
x=0

· V 2 in Eq.
(2.31) are always DC terms, showing no effect on the n = 2 mode of vibration that is at the
resonance frequency of ω. Therefore, this term will be removed from the effective control
forces in the subsequent analysis.
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Combing Eq. (2.26) and Eq. (2.29) yields the forces produced by the actuation electrodes

f [+(+x,+y)] = 1
2

(
dC
dx

)
x=0

· (V [+(+x,+y)])2

+
√
2
4

(
d2C
dx2

)
x=0

· (V [+(+x,+y)])2 · (x+ y)

f [−(+x,+y)] = 1
2

(
dC
dx

)
x=0

· (V [−(+x,+y)])2

+
√
2
4

(
d2C
dx2

)
x=0

· (V [−(+x,+y)])2 · (x+ y)

f [+(−x,+y)] = 1
2

(
dC
dx

)
x=0

· (V [+(−x,+y)])2

+
√
2
4

(
d2C
dx2

)
x=0

· (V [+(−x,+y)])2 · (−x+ y)

f [−(−x,+y)] = 1
2

(
dC
dx

)
x=0

· (V [−(−x,+y)])2

+
√
2
4

(
d2C
dx2

)
x=0

· (V [−(−x,+y)])2 · (−x+ y)

f [+(−x,−y)] = 1
2

(
dC
dx

)
x=0

· (V [+(−x,−y)])2

+
√
2
4

(
d2C
dx2

)
x=0

· (V [+(−x,−y)])2 · (−x− y)

f [−(−x,−y)] = 1
2

(
dC
dx

)
x=0

· (V [−(−x,−y)])2

+
√
2
4

(
d2C
dx2

)
x=0

· (V [−(−x,−y)])2 · (−x− y)

f [+(+x,−y)] = 1
2

(
dC
dx

)
x=0

· (V [+(+x,−y)])2

+
√
2
4

(
d2C
dx2

)
x=0

· (V [+(+x,−y)])2 · (x− y)

f [−(+x,−y)] = 1
2

(
dC
dx

)
x=0

· (V [−(+x,−y)])2

+
√
2
4

(
d2C
dx2

)
x=0

· (V [−(+x,−y)])2 · (x− y)

(2.32)
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2.6.3 Effective Control Forces

A commonly used driving strategy is biasing all the readout electrodes at the same voltage

V [+x+] = V [+x−] = Vb

V [−x+] = V [−x−] = −Vb

V [+y+] = V [+y−] = Vb

V [−y+] = V [−y−] = −Vb

(2.33)

Substituting Eq. (2.33) and Eq. (2.28) into Eq. (2.27) yields the readout signals

rx = 4
(
dC
dx

)
x=0

Vb
sR2

sR2C2+1
x

ry = 4
(
dC
dx

)
x=0

Vb
sR2

sR2C2+1
y

(2.34)

The gain and phase delay at the resonance frequency ω are respectively

g = 4
(
dC
dx

)
x=0

Vb
ωR2√

(ωR2C2)
2+1

φ = π
2
− tan−1 (ωR2C2)

(2.35)

For the actuation electrodes, the first terms of electrostatic force in Eq. (2.32), i.e. 1
2

(
dC
dx

)
x=0

·
(V [i])2, are utilized to excite the n = 2 mode of vibration. Hence, the squared voltage (V [i])2

at electrode i is modulated to the frequency of ω. Since both of (V [i])2 and x or y are at
the frequency of ω, terms like (V [i])2x and (V [i])2y will split into two components: a DC
component and a 2ω frequency component. Fortunately, neither of these two components
show any effect on the n = 2 mode of vibration. As a result, the forces in the x and y
directions can be simplified as

fx =
√
2
4

(
dC
dx

)
x=0

·

⎧⎪⎪⎨⎪⎪⎩
(V [+(+x,+y)])2 + (V [−(+x,+y)])2

− (V [+(−x,+y)])2 − (V [−(−x,+y)])2

+ (V [+(+x,−y)])2 + (V [−(+x,−y)])2

− (V [+(−x,−y)])2 − (V [−(−x,−y)])2

⎫⎪⎪⎬⎪⎪⎭
+ 2

(
d2C
dx2

)
x=0

V 2
b x

fy =
√
2
4

(
dC
dx

)
x=0

·

⎧⎪⎪⎨⎪⎪⎩
(V [+(+x,+y)])2 + (V [−(+x,+y)])2

+ (V [+(−x,+y)])2 + (V [−(−x,+y)])2

− (V [+(+x,−y)])2 − (V [−(+x,−y)])2

− (V [+(−x,−y)])2 − (V [−(−x,−y)])2

⎫⎪⎪⎬⎪⎪⎭
+ 2

(
d2C
dx2

)
x=0

V 2
b y

(2.36)

It is interesting to observe that the last terms in Eq. (2.36), i.e. 2
(

d2C
dx2

)
x=0

V 2
b x and

2
(

d2C
dx2

)
x=0

V 2
b y, respectively soften the stiffness in the x and y directions by an amount of
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of 2
(

d2C
dx2

)
x=0

V 2
b . Lumping the stiffness softening terms into the resonance frequency yields

the effective resonance frequency

ω̄ =

√
ω2 − 2

(
d2C

dx2

)
x=0

V 2
b (2.37)

and effective control forces

f̄x =
√
2
4

(
dC
dx

)
x=0

·

⎧⎪⎪⎨⎪⎪⎩
(V [+(+x,+y)])2 + (V [−(+x,+y)])2

− (V [+(−x,+y)])2 − (V [−(−x,+y)])2

+ (V [+(+x,−y)])2 + (V [−(+x,−y)])2

− (V [+(−x,−y)])2 − (V [−(−x,−y)])2

⎫⎪⎪⎬⎪⎪⎭

f̄y =
√
2
4

(
dC
dx

)
x=0

·

⎧⎪⎪⎨⎪⎪⎩
(V [+(+x,+y)])2 + (V [−(+x,+y)])2

+ (V [+(−x,+y)])2 + (V [−(−x,+y)])2

− (V [+(+x,−y)])2 − (V [−(+x,−y)])2

− (V [+(−x,−y)])2 − (V [−(−x,−y)])2

⎫⎪⎪⎬⎪⎪⎭
(2.38)

In practice, the controller is designed with respect to the effective force acting in the x and
y directions, i.e. f̄x and f̄y. In order to produce the required control force computed by the
controller, the voltage applied on each electrode can be

V [+(+x,+y)] =

√
max{f̄x+f̄y ,0}√

2
2 (

dC
dx )x=0

V [−(+x,+y)] =

√
max{f̄x+f̄y ,0}√

2
2 (

dC
dx )x=0

V [+(−x,+y)] =

√
max{−f̄x+f̄y ,0}√

2
2 (

dC
dx )x=0

V [−(−x,+y)] =

√
max{−f̄x+f̄y ,0}√

2
2 (

dC
dx )x=0

V [+(+x,−y)] =

√
max{f̄x−f̄y ,0}√

2
2 (

dC
dx )x=0

V [−(+x,−y)] =

√
max{f̄x−f̄y ,0}√

2
2 (

dC
dx )x=0

V [+(−x,−y)] =

√
max{−f̄x−f̄y ,0}√

2
2 (

dC
dx )x=0

V [−(−x,−y)] =

√
max{−f̄x−f̄y ,0}√

2
2 (

dC
dx )x=0

(2.39)

Notice that in principle, there are an infinity number of ways to produce the required control
forces, by properly choosing the electrodes voltage according to Eq. (2.38). Among them, Eq.
(2.39) is the one that attempts to distribute the actuation effort among all the 8 actuation
electrodes as even as possible.
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2.7 MEMS Units

Since the vibration scale of the shell resonator is very small, usually in microns, the commonly
used MKS units cause big numerical problems with such small numbers. Hence, the MEMS
units are widely used when analyzing MRIGs. A comparison between MKS units and MEMS
units is summarized in Table 2.3. It can be proven that all the aforementioned physical laws
still hold under the MEMS units, therefore requiring no modification on the gyro dynamics.

Table 2.3: MKS units versus MEMS units

Variables MKS units MEMS units

Length Meter Microns
Mass Kilograms Kilograms
Time Seconds Seconds
Energy Joule pico-Joule
Force Newtons micro-Newtons

Electric potential Volts Volts
Capacitance Fara pico-Fara

2.8 Precession of Ideal MRIGs

Ideal MRIGs refer to the class of MRIGs that are perfectly fabricated and trimmed to get rid
of all the damping, frequency mismatch and misalignments between the stiffness principal
axes and readout axes. Hence, an ideal MRIG is symmetric and free from energy dissipa-
tion. Ideal MRIGs are usually introduced for the purpose of analyzing the gyro behaviors. In
practice, due to the fabrication imperfections, a real MRIG usually suffers from a significant
level of frequency mismatch and energy dissipation.

Setting the damping term 1
τ
, damping mismatch term Δ( 1

τ
), and frequency mismatch term

Δω in Eq. (2.12) to zeros yields the dynamics of ideal MRIGs

ẍ− 2κΩẏ − κΩ̇y +
(
ω2 − κ2Ω2

)
x =

fx
m

ÿ + 2κΩẋ+ κΩ̇x+
(
ω2 − κ2Ω2

)
y =

fy
m

(2.40)

Since ideal MRIGs have no energy dissipation, they require no energy injection (i.e. control
forces) once excited. Setting all the control forces to zeros in Eq. (2.40) yields the free
response of ideal MRIGs

x = a cos θ cos (ωt+ φ0)− q sin θ sin (ωt+ φ0)

y = a sin θ cos (ωt+ φ0) + q cos θ sin (ωt+ φ0)
(2.41)
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It can be verified that, Eq. (2.41) is indeed the solution trajectory of ideal MRIGs, by sub-
stituting it into the dynamics Eq. (2.40). In Eq. (2.41), θ = θ0 −κ

∫ t

0
Ω (τ) dτ is the pattern

angle, a is the oscillation amplitude and q is the quadrature motion. a, q, θ0 and φ0 are
determined from the initial deformations of the MRIG shell resonator.

The solution trajectory described by Eq. (2.41) is plotted in Fig. 2.10. It can be seen that
the gyro’s principal axis of vibration (semi-major axis of the ellipse) is precessing in the
opposite direction to the input rate. The magnitude of the precession rate is proportional
to the input rate by gain factor κ. Hence, the pattern angle is also called precession angle
in this case. Aligning the initial precession angle θ0 with zero yields

θ = −κ

∫ t

0

Ω (τ) dτ = −κθext (2.42)

That is, the precession angle is proportional to the input rotation angle θext. As a result,
measuring the input rotation angle is no more than detecting the precession angle θ of the
gyro’s principal axis of vibration, which can indeed be achieved by demodulating the x and
y signals in Eq. (2.41). Notice that the magnitude of the input rate Ω is far smaller than
the resonance frequency ω. Such a frequency divergence makes the low frequency precession
angle separable from the high frequency x and y signals [87]. It is also worth mentioning
that, the demodulation techniques in turn place a bandwidth limit on the input rate in order
to achieve good Signal to Noise Ratio (SNR).

X-Axis

Y-
Ax

is

Time 
propagates

Principal and secondary 
vibration axis

Precession of the principal 
vibration axis

a
q

0

t

dt

Figure 2.10: An ideal MRIG is a natural rate integrating gyro requiring no control action.
The principal axis of vibration precess at a rate proportional to the input rate, at a constant
amplitude and quadrature that are determined by shell initial states.
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Notice that the precession angle shown in Fig. 2.10 does not represent the physical rotation
angle of the vibration mode in a shell resonator. This is because the the primary and
secondary vibration modes are not perpendicular as presented in Fig. 2.10, but intersect at
an angle of 45 degrees. As shown in Fig. 2.11, the physical rotation angle of the vibration
mode is half of the the precession angle demodulated from the readout signals x and y.
However, since the precession angle immediately implies the external rotation angle, thus
achieving the gyro goal, the physical rotation angle of the vibration mode is not of much
interest.

X-Axis

Y-Axis

90 degrees of 
precession angle

45 degrees of 
physical rotation

Figure 2.11: Physical rotation angle of the n = 2 vibration mode is half of the precession
angle sensed from readout signals.

2.9 MRIG Control Objectives

As discussed in the preceding section, ideal MRIGs can persistently precess at a rate propor-
tional to the input rate, requiring no control action. Hence, they are natural rate integrating
gyroscopes. However, actual MRIGs usually do not behave in this manner. For example,
the damping effect in the MRIG resonator will cause a constant energy loss and therefore
the resonator will eventually stop vibrating. Even during the vibration phase, the damping
mismatch Δ

(
1
τ

)
and the frequency mismatch Δω (see Eq. (2.12)) of the MRIG resonator

will cause the gyro’s principal axis of vibration not to precess correctly.

In this case, an active control scheme is required to enable the MRIG to operate in the
rate integrating mode. As is the case of ideal MRIGs, a well controlled MRIG should have:
(1) its vibration energy is maintained at a constant level; (2) its principal axis of vibration
should precess at a rate proportional to the input rate and (3) the gyro should exhibit zero
quadrature motion. Zero quadrature motion is preferred because it maximizes the Signal to
Noise Ratio (SNR) when demodulating the sensed x and y signals. Fig. 2.12 depicts the
desired trajectory of vibration for general MRIGs.
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Figure 2.12: The desired trajectory of vibration for a general MRIG.

2.10 Summary

In this chapter, the basic configurations of MRIGs were presented. Topics covered included
vibration modes of MRIG shell resonator, theory of electrostatic sensing and actuation,
MRIG conditioning circuits and electrodes configurations. A comprehensive model of the
n = 2 mode of vibration was derived by introducing an equivalent two dimensional harmonic
oscillator. The derived model takes into account the stiffness mismatch and damping effect,
provides the basic model for controller designs in the subsequent chapters. Then the class
of ideal MRIGs was studied in detail to show the gyro precession, which is the fundamental
principle of vibratory gyroscopes operating in the rate integrating mode. Finally, control
objectives of general MRIGs were casted.
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Chapter 3

A Linear Time Invariant Feedback
Controller Design Approach for
MRIGs

This chapter considers the feedback controller design for MRIGs. Three main control strate-
gies have been developed so far for different types of gyroscopes. The first category of control
strategies is the so called conventional mode of operation [60]. The basic idea behind this
strategy is driving one of the vibration modes (i.e. the drive mode) to a known oscillatory
motion and detecting the Coriolis acceleration coupled on the other vibration mode (i.e.
the sense mode) [18]. Since the Coriolis acceleration is linear to the input rate by a known
factor κ, the detected Coriolis acceleration immediately implies the input rate. The con-
ventional mode of opertation can be classified into the open-loop mode and the closed-loop
mode. The main difference between them is that in the latter one the sense mode is also
actively controlled to zero while the former one is free to oscillate with no applied control
force. In the open-loop mode of operation, the Coriolis acceleration couples the oscillations
on drive mode to the sense mode. The resulting oscillation amplitude on the sense mode
is proportional to that of drive mode. The proportional gain is linear to the input rate by
a factor that is determined by the gyro characteristics like Q-factor, frequency mismatch,
etc. [60, 1, 72] and [75]. Hence the input rate can be measured by detecting the oscillation
amplitude on the sense mode. Since the open-loop mode of operation is very simple and
easy to implement on circuitry, it has been widely used in MEMS rate gyroscopes. In the
closed-loop mode of operation, the oscillation amplitude on the sense mode is continuously
monitored and suppressed at zero by a feedback controller. Hence the closed-loop mode of
operation is also called force-to-rebalance mode. In addition, the amount of control action
used for suppressing the oscillation on sense mode is linear to the input rate [13]. Compared
with open-loop mode of operation, the closed-loop strategy has much higher bandwidth [35].
Several variants based on the conventional mode of operation have been developed to ad-
dress the issue of resolution [84, 81], bandwidth [2], oscillation amplitude[44, 53], frequency
mismatch [43], quadrature error [18, 83, 61], time varying input rate [24], etc.
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The second category of control strategies is Lyapunov method based adaptive controller [76,
56, 36, 23, 68, 59]. In this control scheme, the input rate is viewed as an unknown parameter
like stiffness and damping shown in Eq. (2.12). A Lyapunov function candidate that is
associated with the parameter estimation error, such as input rate estimation error and mis-
match estimation error, and variables being controlled, such as energy, quadrature, is defined.
Such a Lyapunov function has a negative semidefinite time derivative. Given the Barbalat’s
lemma and necessary persistence of excitation, it can be shown that the input rate estima-
tion error converges to zero, thus achieving the goal of measuring the input rate. This type
of control strategy usually requires accessing both gyro displacement and velocity. In those
situations where the velocity is not measurable, an additional state observer is necessary [62].

The third category of control strategies is the method of averaging developed by Lynch [50].
It decomposes the whole system into fast dynamics and slow dynamics and utilizes a group of
Proportional-Integral controllers to maintain the energy level and suppress the quadrature,
which are both contained in the slow dynamics. Such an approach is able to operate in either
rate or rate integrating mode [51]. When operating in the rate mode, an additional control
loop called rate control loop is switched on, to actively monitor the orientation of the vibra-
tion axis and keep it at a preferred angle of orientation. If the preferred angle of orientation
is set to zero, the controller is essentially the force-to-rebalance mode described in the con-
ventional mode of operation. When operating in the rate integrating mode, the rate control
loop is switched off, allowing the axis of vibration to freely precess at a rate proportional
to the input rate. Since the axis of vibration can travel any angle, depending on the input
rotation angle, the rate integrating mode is also called the whole angle mode. By providing
fundamentally unlimited input range and measurement bandwidth, the whole angle mode
has been widely used in conventional Hemispherical Resonator Gyroscopes (HRGs) [46, 48,
82, 49] and micromachined rate integrating gyroscopes [65, 81, 15, 27, 26] more recently.
Variants of the method of averaging were also proposed to compensate for the parameter
uncertainties in [45] and [28].

Among these three control strategies, the conventional and adaptive mode of operation are
both rate measuring algorithms. The method of averaging, however, fits right into the con-
trol objectives of MRIGs. Hence, it is adopted in this dissertation as the starting point for
subsequent controller designs. One limitation of the method of averaging is its nonlinearity,
which complicates the controller design and analysis. In addition, it requires the gyroscope
to be almost ideally polished and trimmed, in order to get rid of all mismatches [67]. Unfor-
tunately, such gyroscope cannot yet be mass produced using micro-fabrication technologies.
This chapter first briefly goes through the method of averaging, then presents a new demodu-
lation method that can eliminate the nonlinearities that occurred in the conventional method
of averaging. After this, the effect of mismatches is discussed. Compensation schemes for
compensating the mismatches will be covered in the following chapters.
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Figure 3.1: Block diagram of the method of averaging.

3.1 Review of Lynch’s Method of Averaging

The method of averaging originally introduced by Lynch [50] decomposes the MRIG control
objective into four sub control loops: an amplitude control loop, a quadrature control loop,
a phase lock loop (PLL) and a rate control loop if the gyro is operating in the rate mode.
The amplitude control loop attempts to maintain the vibration energy at a desired level.
The quadrature control loop is designed to suppress the quadrature motion at zero. In
addition, the method of averaging control scheme maintains a reference phase generator,
which provides a reference phase for signal demodulation and control force modulation. A
phase lock loop is utilized to synchronize the reference phase generator to the resonance
frequency of n = 2 mode of vibration. The rate control loop can be switched on or off,
depending on whether the rate or rate integrating mode is being activated. Fig. 3.1 shows
the diagram of the method of averaging control scheme and its interaction with MRIGs.

3.1.1 Signal Demodulation and Mixing

The signal demodulation and mixing module is designated to extract the energy, quadrature
and pattern angle from the sensed displacement signals x and y. Although imperfections like
frequency and damping mismatches deviate the gyro trajectory from the ideal case described
by Eq. (2.41), the resonance frequency ω does not change significantly. Hence, the sensed
displacements in the x and y axes can be decomposed into components in phase and in
quadrature with (ωt+ φ0) as follows
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x = a cos θ cos (ωt+ φ0)− q sin θ sin (ωt+ φ0)

y = a sin θ cos (ωt+ φ0) + q cos θ sin (ωt+ φ0)
(3.1)

where a, q and θ are respectively the vibration amplitude, quadrature motion and the pattern
angle (orientation angle) of the gyro’s principal axis of vibration. In contrast to the ideal case,
a, q are slowly varying over time and θ is not precessing at −κΩ. This form of representation
is called canonical form. Variables a, q, φ0 and θ are called canonical variables, as shown
in Fig. 3.2. The solution in canonical form is essentially an ellipse with its orientation,
semi-major axis and semi-minor axis that are slowly varying over time.

X-Axis

Y-
Ax
is

a
q

0

t

Figure 3.2: The MRIG canonical variables.

In order to extract the in phase and in quadrature components (the slowly varying com-
ponents) in the sensed x and y signals, a group of intermediate variables are obtained by
respectively multiplying the x and y signals by cosine and sine of the reference phase ωt+φ,
which is generated by the reference phase generator.

xc = 2x cos (ωt+ φ)
xs = 2x sin (ωt+ φ)
yc = 2y cos (ωt+ φ)
ys = 2y sin (ωt+ φ)

(3.2)

Then a low pass filter denoted by Glpf (s) is used to obtain the low frequency components in
xc, xs, yc and ys

ĉx = G(s) [xc] = G(s) [cx + a1 sin(2ωt+ φ1)]
ŝx = G(s) [xs] = G(s) [sx + a2 sin(2ωt+ φ2)]
ĉy = G(s) [yc] = G(s) [cy + a3 sin(2ωt+ φ3)]
ŝy = G(s) [ys] = G(s) [sy + a4 sin(2ωt+ φ4)]

(3.3)

where a1, a2, a3, a4, φ1, φ2, φ3 and φ4 are determined by a, q, θ, φ0. Their exact values are
not of interest as they are usually eliminated by the low pass filter. cx, sx, cy and sy are
respectively the in phase and in quadrature components of channel x and y, and defined as
follows
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cx := a cos θ cos δφ+ q sin θ sin δφ

sx := a cos θ sin δφ− q sin θ cos δφ

cy := a sin θ cos δφ− q cos θ sin δφ

sy := a sin θ sin δφ+ q cos θ cos δφ

(3.4)

where δφ = φ− φ0 is the phase reference error that should be eliminated by the phase lock
loop. It can be seen that cx, cy, sx and sy are slowly time varying variables, hence they
can be effectively separated from the high frequency components at 2ω by the low pass fil-
ter Glpf (s). Therefore, ĉx, ŝx, ĉy and ŝy in Eq. (3.3) can be interpreted as the estimate of
cx, sx, cy and sy respectively.

Notice that the system energy E, quadrature Q, pattern angle θ and phase reference error
δφ are related to Eq. (3.4) as follows

E := a2 + q2 = c2x + s2x + c2y + s2y

Q := 2aq = 2(cxsy − cysx)

R := (a2 − q2) cos 2θ = c2x + s2x − c2y − s2y

S := (a2 − q2) sin 2θ = 2(cxcy + sxsy)

L := (a2 − q2) sin 2δφ = 2(cxsx + cysy)

(3.5)

where R and S are two variables that respectively represents the cosine and sine of 2θ, and
L is a variable that represents the phase reference error. Notice that the definition of L only
takes the imaginary part from that of Eq. (31) in [50] because only the imaginary part is
used in the subsequent controller design. In practice, the energy, quadrature, pattern angle
and reference phase error are computed from the estimate of cx, cy, sx and sy

Ê = ĉ2x + ŝ2x + ĉ2y + ŝ2y

Q̂ = 2(ĉxŝy − ĉyŝx)

R̂ = ĉ2x + ŝ2x − ĉ2y − ŝ2y

Ŝ = 2(ĉxĉy + ŝxŝy)

θ̂ =
1

2
tan−1

(
Ŝ

R̂

)
L̂ = 2(ĉxŝx + ĉyŝy)

(3.6)

Since ĉx, ŝx, ĉy and ŝy are respectively the filtered version of cx, sx, cy and sy,

L̂ = 2 {(Glpf (s) [cx]) (Glpf (s) [sx]) + (Glpf (s) [cy]) (Glpf (s) [sy])}
L = 2(cxsx + cysy)

(3.7)
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It can be seen that the relation between L and its estimate L̂ (and also for energy E,
quadrature Q, variable R and S) is in general nonlinear. However, when the controller gains
are set to low values, cx, sx, cy and sy only contain low frequency components that the low
pass filter will not show an effect. As a consequence, the estimate of the in phase components,
in quadrature components, energy, quadrature and pattern angle can be considered as their
real values.

3.1.2 Control Action Modulation and Rotation

Part of the control objectives are to maintain the system energy while suppressing the quadra-
ture. However, as shown in Fig. 3.2, the amplitude axis and quadrature axis are rotated
from the x and y axes where the control forces are applied, by the pattern angle θ. In order
to control the amplitude and quadrature independently, it is necessary to rotate the control
forces by the same angle, as shown in Fig. 3.3. Mathematically,

fx = Fa cos θ − Fq sin θ

fy = Fa sin θ + Fq cos θ
(3.8)

where Fa and Fq are respectively the effective forces for amplitude and quadrature.

a
q

0

t

xf

yf aF

qF

Figure 3.3: MRIG canonical variables and control forces.

Moreover, in order to excite the n = 2 mode of vibration, which is at the resonance frequency
of ω, the control force needs to be at the same frequency. This can be achieved by modulating
the control forces onto the frequency of ω. Mathematically,

Fa = fac cos(ωt+ φ) + fas sin(ωt+ φ)

Fq = fqc cos(ωt+ φ) + fqs sin(ωt+ φ)
(3.9)

where fac , fas , fqc and fqs are respectively the effective forces on amplitude and quadrature
axes, in phase and in quadrature with the reference phase generator. As is the case of
E,Q, δφ and θ, fac , fas , fqc and fqs are also slowly time varying variables. Recall that ωt+φ
in Eq. (3.9) is the reference phase generated by the reference phase generator.
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3.1.3 Dynamics of the Controlled Variables

In this section, the approximate dynamics between the control inputs fac , fas , fqc and fqs ,
and the averaged outputs E,Q, θ and δφ is established following the results in [50]. This is
achieved by substituting Eq. (3.5) into Eq. (3.1); Eq. (3.1) into the left hand side of Eq.
(2.12); Eq. (3.9) into Eq. (3.8), Eq. (3.8) into the right hand side of Eq. (2.12) and equating
the components of x and y, in phase and in quadrature with the ωt+ φ, on both side of the
Eq. (2.12) (see Eq. (40) of [50]).

Ė = −
[
2

τ
+Δ

(
1

τ

)
cos 2(θ − θτ )

]
E −

√
E

ω
fas

Q̇ = −2

τ
Q − Δω sin 2(θ − θω)E +

√
E

ω
fqc

θ̇ = −κΩ +
1

2
Δ

(
1

τ

)
sin 2(θ − θτ ) +

1

2
Δω cos 2(θ − θω)

Q

E
− fqs

2ω
√
E

˙δφ = φ̇+
1

2
Δω cos 2(θ − θω) +

1

2
Δ

(
1

τ

)
sin 2(θ − θτ )

Q

E
+

fac

2ω
√
E

(3.10)

where the control actions for E,Q, θ and δφ are respectively fas , fqc , fqs and fac .

3.1.4 Controller Design

Eq. (3.10) are the state equations for the vibration energy, quadrature motion, pattern
angle and phase reference error. As proposed in [50], a group of Proportional Integral (PI)
feedback controllers can be used to respectively maintain the oscillation energy, suppress the
quadrature motion and eliminate the phase reference error. When the gyro is operating in
the whole angle mode, the pattern angle is free to precess, requiring no feedback control
action

fas = KE

[
(E − E0) +

1

2τE

∫ t

0

(E(τ)− E0) dτ

]
fqc = −KQ

[
Q+

1

2τQ

∫ t

0

Q(τ)dτ

]
fqs = 0

fac = 0

φ̇ = −KL

[
L+

1

2τL

∫ t

0

L(τ)dτ

]
,where L = (a2 − q2) sin 2δφ

(3.11)

Transition from the whole angle mode to the rate mode is accomplished by enabling the rate
control loop, which actively maintains the orientation of the vibration axis at a desired angle
θ0

fqs = KS

[
(θ − θ0) +

1

2τS

∫ t

0

(θ(τ)− θ0) dτ

]
(3.12)
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3.2 A Linear Time Invariant Feedback Controller

Design Approach for MRIGs

It has been pointed out in preceding sections that the relation between the real energy,
quadrature, phase reference error and their estimates are in general nonlinear. Such a non-
linearity limits the controller bandwidth and moreover makes the design and analysis of more
sophisticated controllers, that are used to address the issue of mismatch, noise, etc. more
difficult.

In this section, an alternative demodulation scheme is proposed, which results in linear
energy, quadrature and phase lock loop dynamics. Based on these liner dynamics, a number
of tools from well studied linear systems thereby can be utilized to design the controllers
and analyze the performance of MRIGs. Such a methodology also enables the use of more
sophisticated strategies, beyond the Proportional-Integral (PI) controller proposed in Lynch’s
paper [50].

3.2.1 A New Demodulation Scheme

As shown in Eq. (3.7), the nonlinearity in the conventional method of averaging lies in the
product between two filtered signals. Hence, in order to eliminate such a nonlinearity, the
basic idea behind the new demodulation scheme is, exchanging the order between multipli-
cation and low pass filtering. First, signals xc, xs, yc and ys in Eq. (3.2) are manipulated
as follows, to produce the energy, cosine and sine of pattern angle, and phase reference
error signals that are contaminated by some high frequency noise, which will be filtered
subsequently.

Eh = x2
c+x2

s+y2c+y2s
2

Rh = x2
c+x2

s−y2c−y2s
2

Sh = xcyc + xsys
Lh = 2(xcxs + ycys)

(3.13)

As shown in Appendix A, these variables are related to E,R, S and L as follows

Eh = E + aE sin (2ωt+ φE)
Rh = R + aR sin (2ωt+ φR)
Sh = S + aS sin (2ωt+ φS)
Lh = L+ a1L sin (2ωt+ φ1

L) + a2L sin (4ωt+ φ2
L)

(3.14)

where aE, aR, aS, a
1
L, a

2
L, φE, φR, φS, φ

1
L and φ2

L are determined by a, q, θ, φ0 and φ. Again,
their exact values are not of interest because these signals will be eliminated by the sub-
sequent low pass filtering. These residual signals after low pass filtering are at the same
frequency of 2ω or 4ω and are called nuisance noise.
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Then a low pass filter denoted by Glpf (s) is utilized to extract the low frequency energy,
pattern angle and phase reference error

Ê = Glpf (s) [Eh]

R̂ = Glpf (s) [Rh]

Ŝ = Glpf (s) [Sh]

θ̂ = 1
2
tan−1

(
Ŝ

R̂

)
L̂ = Glpf (s) [Lh]

(3.15)

The quadrature can be determined as follows

Qh = 2(ycys − xcxs) sin 2θ̂ + 2(xsyc + xcys) cos 2θ̂

Q̂ = Glpf [Qh]
(3.16)

As shown in Appendix A, assuming the convergence of the phase lock loop (i.e. δφ = 0) and
the correct pattern angle estimate (i.e. θ̂ = θ), the quadrature estimate is essentially the
real quadrature filtered by the low pass filter Glpf .

Qh = Q+ aQ sin(4ωt+ φQ) (3.17)

In summary, the new demodulation scheme has related the real energy, quadrature and phase
reference error to their estimates by the low pass filter Glpf , which is a linear time invariant
system. Hence, the resulting energy control loop, quadrature control loop and phase lock
loop all have linear dynamics.

3.2.2 Demonstration on Ideal MRIGs

In this section, the proposed demodulation scheme is verified by demonstrating the phase
lock loop on ideal MRIGs. Recall the solution of ideal MRIGs

x = a cos(θ) cos(φ)− q sin(θ) sin(φ)
y = a sin(θ) cos(φ) + q cos(θ) sin(φ)

θ = θ0 − κ
∫ t
t0
Ωdτ

φ = ωt+ φ0

(3.18)

Since ideal MRIGs have no energy dissipation, requiring no energy or quadrature control
loop, only the phase lock loop in Eq. (3.11) needs to be enabled, in order to estimate the
resonance frequency, oscillation phase, amplitude, quadrature and precession angle. Also
note that the phase lock loop runs inside the controller, sending no control action to the
gyroscope. Hence, the control forces fx and fy are essentially zeros. The low pass filter used
in this example is a first order Butterworth filter [12, 8].

Glpf (s) =
1

1 + s
ωc

(3.19)

where ωc is the corner frequency.
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Parameters for the MRIG and phase lock loop are summarized in Table 3.1.

Table 3.1: Parameters for the simulated MRIG and phase lock loop

Symbol Description Value Unit

ω Resonance frequency 10000 Hertz
Ω Input rate 1 Hertz
κ Gain factor 1 N/A
a Amplitude 1.0 Microns
q Quadrature 0.1 Microns
θ0 Initial precession phase 0 Radians
φ0 Initial oscillation phase 0 Radians
ωn Nominal frequency 10010 Hertz
KP Proportional gain 60 N/A
KI Integral gain 2030 N/A
ωc Corner frequency 100 Hertz

Fig. 3.4 shows the phase lock loop response. It can be seen that the PLL converges to the
real resonance frequency (upper left figure); reference phase generated by the phase reference
generator converges to the real oscillation phase (upper right figure); and energy, quadra-
ture converge to their correct values as shown by lower figures. The small DC bias between
the measured precession angle and its real value is caused by the phase delay of the low
pass filter. In particular, the upper right figure shows good match to the model predicted
response, except a slight difference taking place when the phase error becomes large. This
residual nonlinearity comes from the sine function in L = sin 2δφ, which essentially distorted
the linear gain and slowed down the system response. Another interesting phenomenon to
observe is the quadrature estimate as shown in the lower left figure. It can be seen that
there is a significant transient distortion before converging to the true value. This is because
of the transient response of the PLL (note that the distortion on Q̂ takes place at the same
time as L̂). However, such a transient distortion is not a problem in gyro control since the
phase lock loop converges much faster than the quadrature loop. Note that the PLL runs
inside the controller, involving no physical control actions, thus it is not susceptible to any
channel delays, gain mismatches, etc. Hence, gains for the PLL can usually be set to large
values that result in a fast-converging phase lock loop.

In order to show the superiority of the new demodulation scheme over the conventional one,
the stability of the two methods is investigated. Since the new demodulation scheme results
in a linear phase lock loop, the Routh-Hurwitz [40] criterion can be utilized to determine its
stability. It can be shown that the characteristic polynomial of the phase lock loop is

C(s) =
1

ωc

s3 + s2 + 2(a2 − q2)KP s+ 2(a2 − q2)KI (3.20)
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Figure 3.4: Demonstration of the phase lock loop on an ideal MRIG, using the new demodu-
lation scheme.Upper figures show the estimation error of the oscillation frequency and phase;
Lower figures show the time response of the demodulation variables: phase reference error,
quadrature, energy and pattern angle.

By the Routh-Hurwitz criterion, the sufficient and necessary condition for a stable phase
lock loop is

ωcKP > KI > 0 (3.21)

Fig. 3.5 shows the empirical stability versus the stability criterion over different KP and
KI values, on both demodulation schemes. Empirical stability is obtained by simulating the
system with sufficient long time and observing whether the PLL blows up or not. It can be
seen that for the new demodulation scheme, the empirical stability fits right into the Routh-
Hurwitz stability criterion. The conventional demodulation scheme, on the other hand, has
many unstable points crossing the stability boundary predicted by Routh-Hurwitz criterion,
hence providing a more conservative and unpredictable stability margin. In addition, the
new demodulation scheme’s performance, such as noise rejection, disturbance attenuation,
etc., is predictable by linear system theory while the conventional scheme has no system
theoretic performance guarantees.



CHAPTER 3. A LINEAR TIME INVARIANT FEEDBACK CONTROLLER DESIGN
APPROACH FOR MRIGS 42

3 3.2 3.4 3.6 3.8 4 4.2 4.4

x 10 4

50

52

54

56

58

60

62

64

66

68

70

 

 

Stability criterion
Stable points
Unstable points

3 3.2 3.4 3.6 3.8 4 4.2 4.4

x 10 4

50

52

54

56

58

60

62

64

66

68

70

 

 

Stability criterion
Stable points
Unstable points

PK

IK IK

PK

Figure 3.5: Empirical stability over different KP and KI values, for the new demodulation
scheme (left) and the conventional demodulation scheme (right).

3.2.3 The Gyro Phase Lock Loop

Recall that the phase reference error δφ, which is defined as

δφ := φ− (ωt+ φ0) (3.22)

where ωt + φ0 is the real oscillation phase while φ is the reference phase put out by the
reference phase generator, is subject to

˙δφ = φ̇− ω +
1

2
Δω cos 2(θ − θω) +

1

2
Δ

(
1

τ

)
sin 2(θ − θτ )

Q

E
+

fac

2ω
√
E

(3.23)

In the method of averaging scheme proposed in [50], fac is set to zero. The phase reference
error is eliminated by adjusting the phase estimate inside the controller

φ̇ = −KL
p L̂−KL

i

∫
L̂dτ + ωn (3.24)

whereKL
p andKL

i are respectively the proportional and integral gains for the phase lock loop;

ωn is the nominal resonance frequency, which is characterized prior to the gyro operation; L̂
is the phase reference error computed by

L̂ = Glpf (s) [Lh] (3.25)

Fig. 3.6 shows the system interconnections. Parameters in this figure are summarized in
Table 3.2. It can be seen that such a system is almost a LTI system except the sin 2x
component, which is nonlinear, and the output gain gL = a2 − q2, which is time varying,
being adjusted by the energy and quadrature control loops.
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Figure 3.6: Block diagram of the phase lock loop

Table 3.2: Summary of Signals and Symbols in Fig. 3.6

Symbol Description Comments

Gint Integrator Gint(s) =
1
s

gL Output gain gL = a2 − q2

GL
c PI Controller for PLL GL

c (s) = KL
p +KL

i
1
s

GL
lpf Low Pass filter for PLL N/A

dL Mismatch disturbance dL = 1
2
Δω cos 2(θ − θω)

+ 1
2
Δ
(
1
τ

)
sin 2(θ − θτ )

Q
E

nL Measurement noise nL = a1L sin(2ωt+ φ1
L)

+a2L sin(4ωt+ φ2
L)

ωn Nominal frequency N/A
ωn − ω Frequency bias DC bias

δω Frequency estimation error δω = φ̇− ω
δφ Phase estimation error N/A

In most cases, the stability and steady performance, such as disturbance and noise rejection,
are of concern when designing the PLL. This can be analyzed using linear system theory,
by approximating sin 2x with 2x. In addition, under ideal operating conditions, q ≈ 0, it
is reasonable to approximate gL with E0, which is the desired energy level. The resulting
disturbance and noise rejection functions are

Gd2L =
GL

p

1 +GlpfGL
c G

L
p

(3.26)

Gn2L =
GlpfG

L
c G

L
p

1 +GlpfGL
c G

L
p

(3.27)

where GL
p = 2E0Gint is viewed as the system plant to be controlled.
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It can be seen from the disturbance and noise rejection functions that, (1) Disturbances
degrade the phase reference error via the system sensitivity function. Since the disturbances
that contain the DC bias ωn−ω and the mismatch induced disturbance dL, are concentrated
on the low frequency range, a relative large proportional and integral gains are suggested, in
order to achieve large attenuation over the low frequency range on the sensitivity function.
(2) Noise degrades the phase reference error via the complementary sensitivity function.
Since the complementary sensitivity function has a very large attenuation gain over the high
frequency range due to the low pass filter, the noise can be effectively eliminated. Also note
that the noise is at a known frequency of 2ω and 4ω, notch filters can be utilized to achieve
improved filtering performance [90].

The disturbance and noise rejection for the frequency estimation error are

Gd2δω =
GlpfG

L
c G

L
p

1 +GlpfGL
c G

L
p

(3.28)

Gn2δω =
GlpfG

L
c

1 +GlpfGL
c G

L
p

(3.29)

It can be seen that the DC disturbance ωn − ω affects the frequency estimation error via
the system sensitivity function, which has a significant low gain at the low frequency range.
Hence the initial bias on frequency estimate causes no steady error; However, the frequency
mismatch induced disturbance dL degrades the frequency estimate via the complementary
sensitivity function, which has gain of one at the low frequency range. Therefore, the fre-
quency mismatch will cause the frequency estimate to oscillate around its real value, the
oscillation amplitude is 1

2
Δω, as indicated by Eq. (3.10);

3.2.4 The Gyro Energy Loop

Recall that the dynamics of the gyro’s averaged energy is given by

Ė = −
[
2

τ
+Δ

(
1

τ

)
cos 2(θ − θτ )

]
E −

√
E

ω
fas (3.30)

and the proposed energy controller in the method of averaging [50] is

fas = KE
p (E − E0) +KE

i

∫ t

0

(E(τ)− E0) dτ (3.31)

The resulting close loop system interconnection is shown in Fig. 3.7. Parameters are sum-
marized in Table 3.3. When designing the controller, the output gain is set to its nominal
value

√
E0

ω
and the damping mismatch Δ

(
1
τ

)
is set to zero. This technique consequently

produces a LTI system with a gain mismatch on the output channel and a variation on the
system loop transfer function’s pole. Such a gain mismatch and pole variation can, however,
be easily analyzed in frequency domain when designing the feedback controller.
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Figure 3.7: Block diagram of the energy control loop

Table 3.3: Summary of Signals and Symbols in Fig. 3.7

Symbol Description Comments

GE
p Controlled Plant GE

p = 1

s+ 2
τ
+Δ( 1

τ ) cos 2(θ−θτ )

gE Output gain gE =
√
E
ω

GE
c PI Controller for energy loop GE

c (s) = KE
p +KE

i
1
s

GE
lpf Low Pass filter for energy loop N/A

nE Measurement noise nE = aE sin(2ωt+ φE)

3.2.5 The Gyro Quadrature Loop

Recall that the quadrature dynamics is given by

Q̇ = −2

τ
Q − Δω sin 2(θ − θω)E +

√
E

ω
fqc (3.32)

The quadrature dynamics differs from the energy dynamics in that the mismatch disturbs
the quadrature as an external disturbance instead of altering its damping. The resulting
system block diagram is shown in Fig. 3.8 with parameters summarized in Table 3.4. Again,
the output gain gQ is set to

√
E0

ω
in order to produce a LTI system. Lumping the output gain√

E0

ω
into the system plant yields the disturbance attenuation transfer function for quadrature

control loop

Gd2Q =
GQ

p

1 +GQ
c G

Q
p G

Q
lpf

(3.33)

Similar to the phase lock loop (PLL), the disturbance, usually induced by frequency mis-
match, affects the quadrature via the system sensitivity function. However, since the control
action for quadrature is applied to the gyro resonator via physical actuator (i.e. electro-
static actuation mechanism), controller gains are usually set to low values in order to attain
sufficient robustness. The resulting bandwidth is much smaller than that of the PLL. As a
consequence, a significant disturbance resides in quadrature and degrades the gyro perfor-
mance.
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Figure 3.8: Block diagram of the quadrature control loop

Table 3.4: Summary of Signals and Symbols in Fig. 3.8

Symbol Description Comments

gQ Output gain gQ =
√
E0

ω

GQ
p Controlled Plant GQ

p = 1
s+ 2

τ

GQ
c PI Controller for quadrature loop GQ

c (s) = KQ
p +KQ

i
1
s

GQ
lpf Low Pass filter for quadrature loop N/A

dQ Mismatch disturbance dQ = −Δω sin 2(θ − θω)E

3.3 Effects of Mismatch On the Feedback Controller

When the gyro resonator is ideally fabricated with identical primary and secondary modes of
vibration, as shown in Eq. (3.10), the feedback controller presented in preceding sections can
effectively compensate the energy dissipation, suppress the quadrature and produce a preces-
sion rate on the principal axis of vibration. However, actual MRIGs usually have asymmetric
primary and secondary vibration modes, which produce significant damping and frequency
mismatches, as shown in Eq. (2.12). Since the frequency and damping mismatch behave as
disturbances, they can, in principle, be attenuated by the feedback controller discussed in
preceding sections. The amount of attenuation is determined by the controller gains. How-
ever, feedback controller gains, especially those in the energy and quadrature controllers,
are usually set to low values, in order to gain sufficient robustness. This results in a poor
disturbance rejection performance.

As shown in the energy dynamics in Eq. (3.30), the damping mismatch Δ
(
1
τ

)
alters the

damping ratio of the energy loop. Variations in the damping ratio do not change the steady
energy level, but either prolong or shorten the transient response. As a consequence, the vi-
bration energy can be effectively maintained at the desired level by the feedback controller in
spite of the damping mismatches. For the quadrature dynamics in Eq. (3.32), the frequency
mismatch Δω introduces an external disturbance at the frequency of 2κΩ. This causes the
quadrature to oscillate around zero, at the frequency of 2κΩ.



CHAPTER 3. A LINEAR TIME INVARIANT FEEDBACK CONTROLLER DESIGN
APPROACH FOR MRIGS 47

The effect of mismatches on pattern angle response is more complicated than that of quadra-
ture and energy. Recall that the pattern angle dynamics is given by

θ̇ = −κΩ +
1

2
Δ

(
1

τ

)
sin 2(θ − θτ ) +

1

2
Δω cos 2(θ − θω)

Q

E
− fqs

2ω
√
E

(3.34)

First, the damping mismatch Δ
(
1
τ

)
introduces an external disturbance at the frequency of

2κΩ, with an amplitude of 1
2
Δ
(
1
τ

)
. Such a sinusoidal disturbance causes the pattern angle

to oscillate around the input rotation angle. In addition, since both cos 2(θ− θω) and Q are
oscillating at the frequency of 2κΩ, the mismatch term 1

2
Δω cos 2(θ−θω)

Q
E
in Eq. (3.34) pro-

duces a DC bias on the precession rate. This in turn results in a ramp drift in the precession
angle. Finally, when the damping mismatch Δ

(
1
τ

)
is larger than 2κΩ, the precession angle

θ stalls at one of θτ + 1
2

[
2mπ + sin−1 2κΩ

Δ( 1
τ )

]
or θτ + 1

2

[
2mπ + π − sin−1 2κΩ

Δ( 1
τ )

]
, as shown

in Lemma 1, Appendix B. As a consequence, the gyro’s principal axis of oscillation fails to
precess. The stall condition in turn places a lower bound on the input rate for the gyro to
operate in the rate integrating mode.

|Ω| >
∣∣∣∣∣Δ
(
1
τ

)
2κ

∣∣∣∣∣ (3.35)

3.4 Simulation Study

3.4.1 Simulation Setup

In this section, a simulation study is performed on a MRIG model to verify the efficacy of
the new demodulation scheme and the effects of mismatches. The simulated MRIG model
parameters are drawn from an actual MRIG fabricated by Honeywell, as shown in Table 3.5

3.4.2 Warm Start

The transient response of the energy control loop usually causes a phase delay on the gyro
precession. This is because the gyro’s vibration axis does not precess correctly until gaining
a sufficient level of energy. In this section, we will start measuring the external rotation
angle only after the gyro has gained a sufficiently large oscillating energy level.

3.4.3 Phase Delay Compensation for Pattern Angle

As discussed in previous sections, the pattern angle is demodulated from the sensed x and y
signals via a low pass filter. An implementable low pass filter always has a small amount of
phase delay over the low frequency range where the input rate lies. As a consequence, the



CHAPTER 3. A LINEAR TIME INVARIANT FEEDBACK CONTROLLER DESIGN
APPROACH FOR MRIGS 48

Table 3.5: Parameters for the simulated MRIG

Symbol Description Value Unit

ω Resonance frequency 8082 Hertz
κ Gain factor 1 N/A
1
τ

Decay rate 0.9494 sec-1

Ω Input rate 10 Hertz
fs Sampling frequency 96000 Hertz
Δω Frequency mismatch 10 Hertz
θω Azimuthal angle of stiffness axes 0.3 Radians

Δ( 1
τ
) Decay rate 0.1402 sec-1

θτ Azimuthal angle of damping axes 0.2 Radians
ωn Nominal resonance frequency 8077 Hertz

measured pattern angle is delayed from the real one by an amount that depends on the low
pass filter being used. Such a delay can be compensated by estimating the input rate Ω̂ and
correcting the currently measured pattern angle by an amount of ∠Glpf (j2κΩ̂).

It can be seen that, compensating the phase delay in the pattern angle requires the knowledge
of input rate, which can be estimated in real time, using a recursive least square algorithm
[89]. The forgetting factor in the estimation algorithm is set to less than one, in order to
account for time varying input rates.

3.4.4 Low Pass Filter Design

The structure of low pass filters used for all the signals E,Q,R, S and L is the same

Glpf (s) = GButterworth(s) ·GNotch(s) (3.36)

where GButterworth is the first order Butterworth filter described in Eq. (3.19) with corner
frequency tuned at 620 Hertz, and GNotch is a Notch filter

GNotch(s) =
s2 + 2αω1s+ ω2

1

s2 + 2βω1s+ ω2
1

· s
2 + 2αω2s+ ω2

2

s2 + 2βω2s+ ω2
2

(3.37)

where ω1 and ω2 are the notch frequencies respectively set at 2ω and 4ω.

In practice, the real resonance frequency ω is not exactly known, the frequency estimate ω̂
is used instead in the notch filter. Since the frequency estimate is produced by the phase
lock loop (PLL) in real time, such a notch filter is called adaptive notch filter [90]. Fig. 3.9
shows the frequency shape of the low pass filter, when the PLL has converged.
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Figure 3.9: Bode plot of the low pass filter. Two notches are respectively set to 2ω and 4ω.

3.4.5 Control Loops Design

Since the phase lock loop runs inside the controller, it requires no physical control actions,
and therefore it is not susceptible to any output delay or gain mismatch. As a consequence,
its control gains can be set to large values in order to achieve large disturbance attenuation.
The resulting loop transfer function, gain margin and phase margin are shown in Fig. 3.10.
Fig. 3.11 shows the sensitivity function and complementary sensitivity function. It can be
seen that the PLL has a gain margin of 24.4 decibels, and a phase margin of 60.6 degrees.

Fig. 3.12 shows the noise attenuation for the phase lock loop. The closed loop system has
up to 300 decibels of attenuation on the nuisance noise, for both the phase reference error
and frequency estimation error. Fig. 3.13 shows the disturbance attenuation. It can be
seen that the disturbance induced by the frequency mismatch, which is concentrated on the
low frequency range, directly contaminates the frequency estimate. However, for the phase
reference error, the attenuation is quite large. For example, the attenuation gain at 20 Hertz
is up to 60.34 decibels.
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Figure 3.12: PLL noise rejection. The shown frequency estimate error has been normalized
by its real value ω.
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Figure 3.13: PLL disturbance rejection.

The energy and quadrature feedback loops have much lower gains than the PLL, in order to
attain a sufficient level of robustness with respect to the channel delays and gain mismatches.
The resulting loop transfer function for the quadrature loop is shown in Fig. 3.14. The energy
controller is identical to the quadrature controller. It can be seen that the tuned controller
attains 42.2 decibels of gain margin and 83.8 degrees of phase margin, which is sufficient to
stabilize the system even for significant gain mismatches and output delays.
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Figure 3.14: Quadrature control loop gain and phase margins.

Fig. 3.15 shows the noise and disturbance attenuation for the quadrature loop. It can be
seen that the quadrature loop attains up to 50 decibels of attenuation over the low frequency
disturbance. For example, the attenuation gain at 20 Hertz is up to 50.39 decibels.
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Figure 3.15: Quadrature control loop noise and disturbance rejection.
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3.4.6 Simulation Results for a Symmetric MRIG

In this section, the new demodulation scheme is demonstrated on a symmetric MRIG model
to validate its efficacy. A symmetric MRIG has identical primary and secondary vibration
modes. Hence, is is not susceptible to frequency or damping mismatches. Damping effect,
however, is taken into accounted in order to demonstrate the energy control loop.

Fig. 3.16 shows the time response of the phase lock loop. It can be seen that the frequency
estimate (left) and phase reference have reached their real values, during the warm startup
phase, which is set to 25 microseconds. In addition, the frequency and phase estimate at
convergence is quite clean, and not susceptible to nuisance noise.
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Figure 3.16: PLL time response.

Fig. 3.17 shows the energy and quadrature response. It can be seen that system energy and
quadrature are successfully maintained at the desired level during the startup phase. The
precession angle response is shown in Fig. 3.18. The left figure in Fig. 3.18 shows the time
response of the precession angle versus the real input rotation angle. It can be seen that
the precession angle precisely tracks the input rotation angle. As shown by the right figure
in Fig. 3.18, the tracking error between the precession angle, which is the measured input
rotation angle, and the ground true input angle is as small as 8×10−4 radians. This residual
error is a DC bias that does not drift over time.

The left figure in Fig. 3.19 shows the input rate estimate using the aforementioned recursive
least square algorithm. It can be seen that the rate estimate converges to the real one.
The estimate accuracy at 60 microseconds is up to 0.1 ppm, which exceeds the required
performance specifications.
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Figure 3.17: Energy and quadrature loop time response.
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Figure 3.19: Input rate estimate (left) and gyro precession (right).

The right figure in Fig. 3.19 shows the gyro trajectory. It can be seen that the gyro is fully
oscillated during the startup phase. When input rate is present, the gyro’s principal axis of
vibration precesses at a rate proportional to the input rate by the gain factor κ, which is one
in this simulation, with a constant energy level and zero quadrature motion. This achieves
all the MRIG control objectives.

3.4.7 Simulation Results for an Asymmetric MRIG with
Mismatches

The method of averaging with the new demodulation scheme has proved its efficacy on sym-
metric MRIGs in preceding sections. Since the new demodulation scheme results in LTI
control loops, the disturbance induced by frequency and damping mismatches should be
predictable by the closed loop disturbance attenuation functions. In this section, simulation
study is performed on an asymmetric MRIG to demonstrate the effect of mismatches, and to
verify the prediction of the new demodulation scheme. Parameters for the simulated MRIG
model are summarized in Table 3.5.

Fig. 3.20 shows the phase lock loop response. It can be seen that the frequency estimate
oscillates around its ground true value at the amplitude of 5 Hertz. The oscillation frequency
is twice of the input rate. For the phase reference error, the oscillation amplitude is about
0.0307. All these results are in agreement with analytical results that can be obtained from
the PLL disturbance attenuation transfer function in Fig. 3.13. Fig. 3.21 shows the energy
and quadrature responses. It can be seen that the energy is barely affected by the mismatch.
However, the quadrature is significantly degraded. The residual quadrature level is about
0.1946, which is in agreement with the analytical value obtained from the quadrautre loop
disturbance attenuation transfer function in Fig. 3.15
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Figure 3.20: PLL time response in the presence of mismatches. The left figure shows the
oscillation frequency estimate; the right figure shows the phase reference error.
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Figure 3.21: The energy (left) and quadrature (right) loops time response in the presence of
mismatches.
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Figure 3.22: Precession angle response (left) and its difference from the input rotation angle,
in the presence of mismatches.

Finally, the pattern angle response and its error from the input rotation angle is shown
in Fig. 3.22. It can be seen that, the frequency and damping mismatches introduce both
oscillatory and ramp drift in angle measurement, which is in agreement with the analytical
result obtained from section 3.3.

3.5 Summary

This chapter considered the feedback controller design for MRIGs. Due to its ability to
operate in the whole angle mode, the method of averaging introduced in [50] was utilized as
the starting point for performing the controller design. Nonlinearities that are the results of
the conventional method of averaging [50] were studied and a new demodulation scheme was
introduced in this chapter, in order to eliminate the nonlinearities. It was shown that the
new demodulation scheme can produce linear time invariant control loops, thus enabling the
use of linear system theory in MRIG controller design, which in turn simplifies the control
system design and analysis and produce more predictable MRIG performance and robustness
bounds, through the use of well-studied LTI control synthesis and analysis techniques. A
simulation study performed on a symmetric MRIG verified the efficacy of the proposed
scheme. Finally, the effect of stiffness and damping mismatches, which are inevitable in
MRIGs produced using existing micro-fabrication techniques, were analyzed. It was shown
that these mismatches can prevent the gyro from operating in the whole angle mode, lending
the necessity of mismatch compensation schemes, which will be introduced in the following
chapters.
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Chapter 4

Mismatch Compensation Using
Electrostatic Spring Softening And
Tuning

Analysis in preceding chapters has shown that the stiffness and damping mismatches caused
by fabrication imperfections can dramatically degrade the gyro performance and even cause
the gyro to stall in some extreme cases. Hence, in order for MRIGs to operate in the
whole angle mode, it is necessary to compensate these mismatches. For this purpose, several
approaches have been proposed. The first one is to eliminate the damping and stiffness
frequency mismatches during the manufacturing process to a level that does not signifi-
cantly affect the gyro performance. This is essentially the solution adopted for conventional
Hemispherical Resonator Gyroscope (HRGs) [34]. Such a manufacturing process is rather
sophisticated, requiring iterative polishing and extremely fine fabrication, and is not yet
available on current micro-fabrication mass product lines. The second approach is to com-
pensate for the mismatch via electrostatic spring softening and tuning during the calibration
phase. Unlike the first one, this approach can be performed after the resonator is packaged.
The third option is compensating for the mismatch by improving control algorithms. This
chapter considers the second approach while the third one will be covered in the next chapter.

4.1 Principle of Electrostatic Spring Softening and

Tuning

The basic idea behind the electrostatic spring softening and tuning is rather straightforward.
Recall that the electrostatic sensing and actuation can soften the gyro’s stiffness. As shown
in Eq. (2.37), the amount of softened stiffness is determined by the bias voltage applied
on the electrodes. Hence, by applying more bias voltage on the vibration mode with larger
stiffness, it is possible to re-balance the stiffness mismatch between them.
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Before continuing, we again show in Fig. 4.1 the sensing and actuation electrode configura-
tion (shown in Fig. 2.9) and review the electrode notation that was introduced in chapter 2
and will again be used here. As shown in Fig. 4.1, the four readout electrodes along x vibra-
tion mode are respectively denoted by +x+,+x−,−x+ and −x−; while the four readout elec-
trodes along y vibration mode are respectively denoted by +y+,+y−,−y+ and −y−. There-
fore, V [+y+] denotes the voltage produced on the +y+ electrode, while x[+y+] denotes the
displacement of the vibration mode along +y+ axis. The actuation electrodes are respectively
denoted by +(+x,+y),−(+x,+y),+(+x,−y),−(+x,−y),+(−x,−y),−(−x,−y),+(−x,+y)
and −(−x,+y). Therefore, V [+(+x,+y)] denotes the voltage applied on the +(+x,+y) elec-
trode, while x[+(+x,+y)] denotes the vibration displacement along +(+x,+y) axis.
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Figure 4.1: Electrical configurations of a shell resonator with 16 electrodes.

Composing the forces produced by sensing electrodes (see Eq. (2.31)) and forces produced
by actuation electrodes (see Eq. (2.32)) in the way described by Eq. (2.30), yields the total
forces in the primary and secondary modes of vibration, for a general voltage configuration
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(4.1)

While the frequency matrix from Eq. (2.12) is

K =

[
ω2 − ωΔω cos(2θω) −ωΔω sin(2θω)
−ωΔω sin(2θω) ω2 + ωΔω cos(2θω)

]
(4.2)

In order to compensate the off-diagonal elements in the frequency matrix, it is necessary to
apply a bias voltage on the actuation electrodes. Note that the actuation electrodes need
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also to produce control actions that are determined by the actual controller. Therefore, the
total voltage for each actuation electrode is

V [i] = Vb[i] + δV [i] (4.3)

where δV [i] � Vb[i] is used to produce the effective control force that is used to excite the
gyro’s n = 2 mode of vibration. The force in Eq. (2.26) can hence be rewritten as

f =
1

2

dC

dx

(
V 2
b + 2Vb · δV + δV 2

)
+

1

2

d2C

dx2

(
V 2
b + 2Vb · δV + δV 2

)
x (4.4)

where δV 2 is very small and negligible; 1
2
dC
dx
V 2
b is a DC component that produces no effect on

the gyro vibration, and 1
2
d2C
dx2 Vb ·δV ·x is far off the resonance frequency of the gyro vibration.

As a consequence, the force that affects the effective stiffness on each electrode is

f =
dC

dx
Vb · δV +

1

2

d2C

dx2
V 2
b x (4.5)

Setting the bias voltage for actuation electrodes to

V [+(+x,+y)] = V [−(+x,+y)] = V1

V [+(−x,−y)] = V [+(−x,−y)] = V1

V [+(+x,−y)] = V [+(+x,−y)] = V2

V [+(−x,+y)] = V [+(−x,+y)] = V2

(4.6)

and the bias voltage for sensing electrodes to

V [+x+] = V [+x−] = Vx

V [−x+] = V [−x−] = −Vx

V [+y+] = V [+y−] = Vy

V [−y+] = V [−y−] = −Vy

(4.7)
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yields the effective force in the primary and secondary mode of vibration

fx =
√
2
2

(
dC
dx

)
x=0

⎧⎪⎪⎨⎪⎪⎩
+ V1δV [+(+x,+y)] + V1δV [−(+x,+y)]
− V2δV [+(−x,+y)]− V2δV [−(−x,+y)]
+ V2δV [+(+x,−y)] + V2δV [−(+x,−y)]
− V1δV [+(−x,−y)]− V1δV [−(−x,−y)]

⎫⎪⎪⎬⎪⎪⎭
+
(

d2C
dx2

)
x=0

(V 2
1 + V 2

2 ) x

+
(

d2C
dx2

)
x=0

(V 2
1 − V 2

2 ) y

+ 2
(

d2C
dx2

)
x=0

V 2
x x

fy =
√
2
2

(
dC
dx

)
x=0

⎧⎪⎪⎨⎪⎪⎩
+ V1δV [+(+x,+y)] + V1δV [−(+x,+y)]
+ V2δV [+(−x,+y)] + V2δV [−(−x,+y)]
− V2δV [+(+x,−y)]− V2δV [−(+x,−y)]
− V1δV [+(−x,−y)]− V1δV [−(−x,−y)]

⎫⎪⎪⎬⎪⎪⎭
+
(

d2C
dx2

)
x=0

(V 2
1 − V 2

2 ) x

+
(

d2C
dx2

)
x=0

(V 2
1 + V 2

2 ) y

+ 2
(

d2C
dx2

)
x=0

V 2
y y

(4.8)

The resulting frequency softening matrix is given by
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The effective frequency matrix is hence K̄ = K − Ksoftening. In order to compensate the
diagonal and off-diagonal elements in the frequency matrix, it is necessary that

V 2
2 − V 2

1 =
mωΔω sin(2θω)(

d2C
dx2

)
x=0

(4.10)

V 2
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)
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(4.11)

The effective resonance frequency is hence

ω̄ =

√
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(
d2C
dx2

)
x=0
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V 2
1 + V 2

2 + V 2
x + V 2

y

)
m

(4.12)
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And the effective control forces are
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In practice, the required effective control force are computed by the actual controller. Then
the voltage applied on each electrode is determined as

δV [+(+x,+y)] = f̄x+f̄y

4
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dx )x=0
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√
2( dC

dx )x=0
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(4.14)

Notice that there are in principle an infinity number of ways to produce the required control
force. The solution in Eq. (4.14) is the one that distributes the control force into all the
actuation electrodes as uniformly as possible.

4.2 Experimental Validation

4.2.1 Experiment Platform Setup

This section performs an experimental study on real MRIGs in order to validate the mismatch
compensation scheme presented in last section. The MRIG was provided by Honeywell Inc.
As shown in Fig. 4.2, the MRIG package was first integrated to an analog front-end board
which performs preliminary filtering and amplification on the readout and actuation signals.
Then the analog front-end board is connected to the microprocessor board that performs
the control task.
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Figure 4.2: Control board for the MRIG fabricated by Honeywell. Courtesy of Burgess R.
Johnson, Honeywell

The microprocessor board is a customized OMAP-L138 evaluation board [54] with 8 onboard
CODECs of TLV320AIC3124. Each CODEC chip contains two ADC channels (i.e. left and
right) and two DAC channels (i.e. left and right). Hence, the microprocessor is capable of
receiving/driving up to 16 channels. Among them, two of the ADC channels are used to
receive the sensed x and y signals while all the DAC channels are used to either drive the
actuation electrodes or configure the bias voltage on the sensing electrodes. Since all the
CODEC chips are connected to the McASP port in the microprocessor, the voltages shown
on the CODECs (i.e. the bias voltages for the electrodes) are programmable via the software
running on the microprocessor. Fig. 4.3 shows the system interconnections. In addition, the
sampling rate for the DACs and ADCs in the CODAC chip were set to 96kHz. An interrupt
is generated by the McASP port once a new data is received from the CODEC.

The microprocessor used for implementing the controller is an OMAP-L138 C6-Integra
DSP+ARM processor [33] from Texas Instruments. It contains an ARM core and a DSP
core. The DSP core is a floating point processor that runs at 456MHz. In addition, it has
rich hardware resources, including pipelines and a SIMD instruction set architecture, which
can dramatically speed up the data processing speed.

The software that runs on the electronics consists of two parts: a software shell and a con-
troller applet. The shell performs three tasks: (1) initializes the system hardware including
setting the CODECs operation mode and sampling rate and registering interrupts handler;
(2) streams the buffer data via UART ports. A client running on the PC end can therefore
monitor the running status of the microprocessor in real time; (3) read the ADC data once
interrupted by CODECs and write the control actions into the corresponding DAC chan-
nels subsequently. In this way, the shell abstracted the electronic hardware and provided
a software level interface for the controller applet to read sensors and send out control actions.
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Figure 4.3: Interconnections of the MRIG, CODECs and the OMAP-L138 processor. Cour-
tesy of Burgess R. Johnson, Honeywell

The controller applet runs on top of the shell. It takes sensor inputs from the shell and
computes the appropriate control actions accordingly. In order to leave enough time for
the shell to stream buffer data, the controller applet should finish its computation no later
than 80 percent of the whole sampling period. Due to its rich computational resources, the
DSP core can in principle achieve this goal. In order to fully take advantage of the DSP
computational resources, the techniques that were utilized include: (1) All the codes were
placed on the L1 RAM memory. This can drastically improve the running speed as the L1
RAM is the fastest memory in OMAP L138 processor; (2) The chip specific math functions
were used instead of the standard C math function. The chip specific math functions are
provided by the chip manufacturer and are usually highly optimized for speed; (3) The
proper optimization options were enabled in Code Composer Studio when compiling the
codes. For example, turning off the debug symbols results in half the running time. Using
these techniques, the optimized code took less than 25 percent of the whole sampling period,
leaving much room for data streaming, and implementing more complicated controllers.
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4.2.2 Gain Mismatch and Phase Delay Compensation

Recall that there are two ADC channels for sensing the x and y signals, while there are eight
DAC channels for driving the n = 2 mode of vibration. Due to the circuitry mismatch over
the different ADC and DAC channels, the gain and phase delay over different input-output
pair is different. Such a gain mismatch and phase delay can be characterized by analyzing
the frequency response of each input-output channel pair with MRIG package bypassed.

A digital frequency analyzer was implemented in the DSP, in order to obtain the frequency
response of different input-output channel pair. The idea behind the implementation of
frequency analyzer is as follows. Assume that the input-output channel pair being inspected
has gain of gω and phase delay of φω, then making a sinusoidal signal on the output channel

x = a cos(ωt) (4.15)

where ω is the frequency point over which the gain gω and phase delay φω is investigated,
produces a signal on input channels shown as follows

y = gωa cos(ωt− φω) (4.16)

Then demodulating the input signal yields its in phase and in quadrature components with
ωt

cy = LPF [y cos(ωt)]
sy = LPF [y sin(ωt)]

(4.17)

where LPF [·] denotes low pass filtering.

It can be shown that
cy = 1

2
gωa cosφω

sy = 1
2
gωa sinφω

(4.18)

The gain and phase delay can therefore be computed as

gω = 2

√
c2x+c2y
a

φω = tan−1 sy
cy

(4.19)

In practice, the time t is set to n · ts where ts is the sampling period; a is set to different
values at different frequency points in order to obtain a good Signal to Noise Ratio (SNR).
For each concerned frequency point, the above demodulation process was performed in real
time for ten times of the time constant of the low pass filter, in order to make it sure that
the low pass filter has reached its steady state.The measured gain and phase delay are shown
in Fig. 4.4. Note that the phase delay is almost linear to the frequency due to the group
delay in CODECs.
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Figure 4.4: Gain and phase delay on input channel x (left) and channel y (right), over all of
the eight output channels.

When implementing a controller, it is necessary to apply the following compensations: (1)
Gain mismatch between the two input channels. The common gain needs no compensation
as it can be lumped into the output channel gain, which can be addressed by the controller
gain margins. (2) Phase delay difference between the two input channels. The common phase
delay needs no compensation as it can be lumped into the output channel delay, which can
be dealt by the output channel phase delay compensation techniques. (3) Phase delay on
the output channels.

From Fig. 4.4, the gain mismatch between the two input channels can be computed as
follows: For each of the eight output channels, compute the gain ratio between channel one
over channel two. Then averaging the eight ratios yields the gain mismatch. Performing
this procedure for all frequency points yields the gain mismatch over different frequency.
However, notice that the gain mismatch, even the gain itself, does not vary significantly
over frequencies, and it can hence be assumed to be constant. The phase delay difference
can be computed in the same way and assumed to be constant as well. In contrast to the
gain mismatch, phase delays on output channels are very sensitive to frequencies due to the
large group delay in the CODECs. Therefore, the phase delay on output channels have to
be instantaneously determined for the current frequency, and be compensated subsequently.
In order to do so, the phase delay for the two input channels are averaged to produce the
phase delay over different output channels. Then a second order polynomial is fitted to the
averaged phase delay for each output channel. The phase delays on output channels can
hence be computed by evaluating these second order polynomials.
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The gain mismatch between the two input channels can be compensated by multiplying one
of the sensed signals by an appropriate ratio. The phase delay difference can be compensated
by artificially delaying one of the input signals by the appropriate number of sampling steps.
Since delaying the input signal by one step yields a phase delay of ω · ts radians where ω is
frequency of the input signal and ts is the sampling time. This compensation method can
only compensate the phase delay difference that is larger than ω · ts.

Compensating the phase delay on output channels can be achieved by introducing an ad-
ditional phase delay of 2π − φi

d, where φi
d is the phase delay on i-th output channel. As a

result, in order to generate a signal sin(ωt), the real value that the software needs to send
to the CODECs is in the form of

f = sin(ωt+ φi
d) (4.20)

Since the eight output channels have different phase delays φi
d, evaluating eight sine functions

is rather time consuming. In oder to save computation time, the control action can be
computed as

f = sin(ωt) cos(φi
d) + cos(ωt) sin(φi

d) (4.21)

where cos(φi
d) and sin(φi

d) are computed a-priori and cos(ωt) and sin(ωt) are computed in
real time. In this way, Eq. (4.21) only requires evaluating the common sin(ωt) and cos(ωt)
terms for all output channels.

It is worth mentioning that, the above phase delay compensation method can only compen-
sate the fast dynamics (i.e. the carrier signal, see Eq. (3.9)) in the method of averaging,
it does not help with the slow dynamics (i.e. the envelope signal). As a consequence, the
feedback controllers presented in preceding chapters need to have enough phase margins in
order to stabilize the system.

4.2.3 MRIG Characterizing

Based on the experimental platform and phase compensation techniques presented in pre-
ceding sections, parameters of the MRIG can be characterized by obtaining the frequency
response of the MRIG. Omitting the external rotation rate in Eq. (2.12) yields

ẍ+
(
ω2 − ωΔω cos 2θω

)
x+

[
2

τ
+Δ

(
1

τ

)
cos 2θτ

]
ẋ

− ωΔω sin 2θωy +Δ

(
1

τ

)
sin 2θτ ẏ =

fx
m

ÿ +
(
ω2 + ωΔω cos 2θω

)
y +

[
2

τ
−Δ

(
1

τ

)
cos 2θτ

]
ẏ

− ωΔω sin 2θωx+Δ

(
1

τ

)
sin 2θτ ẋ =

fy
m

(4.22)
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Figure 4.5: Frequency response of the primary and secondary mode of vibration

The obtained frequency response for the MRIG is shown in Fig. 4.5. It can be seen that
the resonance frequency for primary vibration mode is at 8072 Hz while the secondary one
is 8092 Hz. The resulting frequency mismatch is as large as 10 Hz. The other characteristic
parameters are summarized in Table 4.1. As implied by the simulation results shown in
Chapter 3, such a MRIG is barely able to operate in the whole angle mode with the required
performance.

Table 4.1: MRIG characteristic parameters.

Variables Descriptions Values Units

fx Resonance frequency in the x direction 8072 Hertz
1
τx

Decay rate in the x direction 1.0897 1/sec

fy Resonance frequency in the y direction 8092 Hertz
1
τy

Decay rate in the y direction 0.8092 1/sec

f Mean resonance frequency 8082 Hertz
δf Frequency mismatch 10 Hertz
1
τ

Mean decay rate 0.9494 1/sec
Δ
(
1
τ

)
Damping mismatch 0.1402 1/sec
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4.2.4 Mismatch Compensation Using the Method of
Electrostatic Spring Softening and Tuning

This section presents the experimental results that verifies the mismatch compensation
scheme using the method of electrostatic spring softening and tuning. Only the diagonal
mismatch in the frequency matrix was compensated by applying the proper bias voltage on
readout electrodes. The bias voltage for actuation electrodes were all set to 5 volts. The bias
voltage for x axis was set to 5 volts as well, while the bias voltage for y axis was varying.
For each bias voltage applied on y direction, the MRIG was characterized by measuring its
frequency response. Fig. 4.6 shows the resonance frequency of the primary and secondary
vibration modes over different bias voltage on the readout y electrodes. It can be seen that,
as the bias voltage on y varies, the resonance frequency on x barely changes. This is in agree-
ment with the preceding analysis. The slight variation on the resonance frequency is due
to the parasitic voltage being varying over time and temperature. Moreover, the resonance
frequency on y decreases as its bias voltage increases. As shown in Table 4.2, when the bias
voltage is 6.78 volts, the frequency mismatch is tuned at its optimal. The tuned frequency
mismatch is as small as 0.5 Hertz.
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Figure 4.6: Resonance frequency of the primary and secondary mode of vibration over dif-
ferent bias voltage on y.

Table 4.2: Frequency mismatch over different bias voltage on y.

Bias voltage (volts) 6.3 6.7 6.78 6.81

Freq mismatch (Hertz) 10 3 0.5 -0.5
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4.3 Summary

This chapter considered the frequency mismatch compensation scheme using the method of
electrostatic spring softening and tuning. The principle behind such a compensation scheme
was derived in detail. In order to verify its efficacy, this compensation scheme was imple-
mented on a real MRIG provided by Honeywell. The experimental platform and several
implementation details like phase compensation, gain mismatch balancing were discussed.
Based on these theoretic derivation and experimental setup, experimental results were ob-
tained and validated the efficacy of the proposed compensation scheme. It was shown that
the compensation scheme can reduce the frequency mismatch to the level of 0.5 Hertz.
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Chapter 5

Mismatch Compensation Using
Adaptive Feedforward Controllers

As discussed in preceding chapter, there are three approaches that can be employed to re-
duce the effect of frequency and damping mismatches caused by fabrication imperfections in
gyroscopes. The first one, improving the manufacturing process, requires the use of an ex-
tremely sophisticated and expensive fabrication process, which is not yet available on micro-
fabrication product lines. MRIGs that are produced on currently available micro-fabrication
product lines, have a significant amount of mismatches, as indicated by the experimental
results shown in last chapter. The method of electrostatic spring softening and tuning can
effectively reduce the stiffness mismatch. But it can only be performed prior to the operation
of the gyro. Therefore, it is susceptible to parasitic voltages, which vary with temperature,
pressure, etc. Moreover, electrostatic softening can only compensate the stiffness mismatch
and requires human involvement. This chapter considers the third approach, which consists
in compensating the mismatches in the control algorithm and will show great superiority
over the electrostatic spring softening and tuning method.

Most of the adaptive controllers mentioned in Chapter 3 have the capability of estimating
and compensating the mismatches in real time. However, they were all designed for MEMS
gyros operating in rate mode. Very few mismatch compensation scheme specifically designed
for rate integrating gyroscopes can be seen in literatures. This is probably because all the
past rate-integrating gyroscopes are essentially for high-end applications where the cost is
of no concern. The resulting gyroscopes are almost ideally polished and trimmed during the
manufacturing process and get rid of all significant mismatches. A typical example is the
Hemispherical Resonator Gyroscopes (HRGs) [34].

[28] presented a damping and stiffness frequency mismatch compensation algorithm that runs
together with the conventional method of averaging. Simulation and experimental results
presented in [28] show that the compensation scheme is somewhat effective, but is not capable
of achieving high compensation precision, partly due to the heuristic nature of the algorithm.
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In this chapter, we propose an adaptive compensation scheme to compensate for the fre-
quency and damping mismatches. The proposed compensator runs as an add-on feedforward
compensator to the LTI feedback control scheme presented in Chapter 3. The PI controllers
provide the baseline feedback action with sufficient robustness, while the adaptive compen-
sator is dedicated to estimating and compensating the damping and frequency mismatches
in order to achieve a sufficient level of performance. The combination of these two schemes
can effectively compensate the gyro mismatches and stabilize the system. Simulation results
will be presented to show the efficacy of the adaptive compensator. In order to avoid the
stall condition and estimate the mismatches for relative small input rates, an artificial in-
put rate is used to autonomously calibrate the gyro. This self-calibration scheme is capable
of performing the gyro calibration automatically, requiring no auxiliary device or human
involvement.

5.1 Adaptive Feedforward Mismatch Compensation

As analyzed in preceding chapters, MRIG oscillation energy can be effectively maintained at
the desired level by a PI feedback controller, which requires no compensation action. Since
the phase lock loop runs inside the controller, requiring no physical control action, gains of
the phase lock loop can be set to large values, which can result in large attenuation gains over
the mismatch induced disturbance. The residual disturbance is nevertheless significant to
degrade the phase lock loop performance. In addition, the gains of the feedback PI controller
for quadrature regulation are usually set to low values, in order to obtain a sufficient level
of robustness. This results in poor disturbance rejection performance. As a consequence,
the frequency mismatch significantly degrades the performance of the quadrature feedback
control law, which in turn degrades gyro precession. Moreover, the pattern angle controller
is essentially open when the gyro is operating in whole angle mode. Therefore, any amount
of mismatches will directly act on the pattern angle loop and degrade its precession. In
sum, the phase lock loop and the quadrature and pattern angle controllers are all affected by
stiffness and damping mismatches, and in turn degrade gyro performance. Hence, in order
to achieve a sufficient level of gyro performance, the mismatches need to be compensated in
all these three controllers.

In this section, we propose the use of three adaptive feedforward compensators to respectively
compensate the mismatch in the quadrature, phase lock loop and pattern angle controllers.
Each of adaptive compensator consists of an estimator, which estimates the effective mis-
match using a recursive least square algorithm, and a compensator, which compensates the
mismatch in real time.
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5.2 Quadrature Control Adaptive Mismatch

Compensation

Recall that the averaged quadrature control dynamics can be expressed as follows

Q̇ = −2

τ
Q − Δω sin 2(θ − θω)E +

√
E

ω
fqc (5.1)

where the feedback control action fqc is given by Eq. (3.11).

Based on the block diagram shown in Fig. 3.8, the quadrature measured by the controller is

Q̂ = Gd2Q̂(s) [dQ − uQC ] (5.2)

where uQC is the feedforward control actions, which remains to be designed, and Gd2Q̂(s) =
GQ

p GQ
lpf

1+GQ
c GQ

p GQ
lpf

is the closed loop transfer function from the disturbance to the measured quadra-

ture level. Notice that Gd2Q̂(s) is a strictly causal system.

Since the controller is implemented in digital devices like DSPs, we design our controller
based on the discrete time model

Q̂(k) = Gd2Q̂(z) [dQ(k)− uQC(k)] (5.3)

where k is the sample index and Gd2Q̂(z) = (1−z−1)Z
[
G

d2 ̂Q
(s)

s

]
denotes the well-known zero

order hold discrete time transfer function of Gd2Q̂(s).

Notice that the disturbance can be rewritten as

dQ(k) = ΘT
QΦQ(k) (5.4)

where ΘQ = [Δω sin 2θωE, −Δω cos 2θωE]T is the parameter vector. Since the energy con-
trol loop always maintains the oscillation energy at the desired level E0, ΘQ can be consid-

ered to be a constant but unknown vector to be estimated. ΦQ(k) = [cos 2θ(k), sin 2θ(k)]T

is the regressor vector, and θ(k) is the pattern angle measured by the gyro. Notice that
given the gyro is precessing, the regressor vector ΦQ(k) is persistently exciting (i.e. P.E. �
rank

(
limm→+∞

Σk=m
k=0 ΦQ(k)ΦT

Q(k)

m

)
= 2).

The compensation action at step k is designed as follows

uQC(k) = Θ̂Q(k)
TΦQ(k) (5.5)

where the parameter estimate Θ̂Q(k) is updated by the following Parameter Adaptation
Algorithm (PAA)
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ΨQ(k − 1) = Gd2Q̂(z) [ΦQ(k)]

eoQ(k) = Q̂(k)− Θ̂Q(k − 1)TΨQ(k − 1) +Gd2Q̂(z)
[
Θ̂T

Q(k)ΦQ(k)
]

eQ(k) =
λQ
1 e

o
Q(k)

λQ
1 +ΨQ(k − 1)TFQ(k − 1)ΨQ(k − 1)

Θ̂Q(k) = Θ̂Q(k − 1) +
1

λQ
1

FQ(k − 1)ΨQ(k − 1)eQ(k)

FQ(k) =
1

λQ
1

[
FQ(k − 1)− λQ

2

FQ(k − 1)ΨQ(k − 1)ΨQ(k − 1)TFQ(k − 1)

λQ
1 + λQ

2 ΨQ(k − 1)TFQ(k − 1)ΨQ(k − 1)

]
Θ̂Q(0) ∈ R

2;FQ(0) ∈ S
2×2
+ ; 0 < λQ

1 ≤ 1; 0 < λQ
2 < 2

(5.6)

where S
2×2
+ denotes the set of two by two positive definite matrix.

It is worth mentioning that, in the algorithm described by Eq. (5.6), computing the a-

priori error eoQ(k) involves evaluating Gd2Q̂(z)
[
Θ̂T

Q(k)ΦQ(k)
]
, where Θ̂T

Q(k) is updated after

eoQ(k). This, however, does not violates the causality as Gd2Q̂(z) is strictly causal, evaluating

Gd2Q̂(z)
[
Θ̂T

Q(k)ΦQ(k)
]
only requires the knowledge of Θ̂T

Q(k−1)ΦQ(k−1), Θ̂T
Q(k−2)ΦQ(k−

2), etc. As shown in Lemma 2, Appendix C, if the gyro is precessing, the above PAA produces

zero Q̂ and in addition, the PAA converges to its ground true values and therefore perfectly
cancels the disturbance dQ, which in turn implies zero quadrature Q.

Q
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Q
Q
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Qf0
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QCu

PAA

cqf

ˆ
Q

Q
lpfG

Q̂ hQ Qn

Figure 5.1: The quadrature control adaptive mismatch compensator
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5.3 Phase Lock Loop (PLL) Adaptive Mismatch

Compensation

Recall that the averaged Phase Lock Loop (PLL) dynamics can be expressed as follows

˙δφ = φ̇+
1

2
Δω cos 2(θ − θω) +

1

2
Δ

(
1

τ

)
sin 2(θ − θτ )

Q

E
+

fac

2ω
√
E

(5.7)

where the feedback controller is given by Eq. (3.11).

Based on the block diagram shown in Fig. 3.6, the phase reference error measured by the
controller is

L̂ = Gd2L̂(s) [dL − uLC ] (5.8)

where uLC is the feedforward control action which remains to be designed and Gd2L̂(s) =
GL

pG
L
lpf

1+GL
c G

L
pG

L
lpf

is the closed loop transfer function from the disturbance to the measured phase

reference error. Notice that Gd2L̂(s) is strictly causal. The discretized model is

L̂(k) = Gd2L̂(z) [dL(k)− uLC(k)] (5.9)

where k is the sample index and Gd2L̂(z) = (1− z−1)Z
[
G

d2̂L
(s)

s

]
denotes the well-known zero

order hold discrete time transfer function of Gd2L̂(s).

Given zero quadrature level, the disturbance for PLL can be rewritten as

dL(k) = ΘT
LΦL(k) (5.10)

where ΘL =
[
1
2
Δω cos 2θω,

1
2
Δω sin 2θω

]T
is the parameter vector. ΦL(k) = [cos 2θ(k), sin 2θ(k)]T

is the regressor vector, and θ(k) is the pattern angle measured by the gyro. Notice that
given the gyro is precessing, the regressor vector ΦL(k) is persistently exciting (i.e. P.E. �
rank

(
limm→+∞

Σk=m
k=0 ΦL(k)Φ

T
L(k)

m

)
= 2).

The compensation action for PLL at step k is designed as follows

uLC(k) = Θ̂L(k)
TΦL(k) (5.11)

where the parameter estimate Θ̂L(k) is updated by the following Parameter Adaptation
Algorithm (PAA).
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ΨL(k − 1) = Gd2L̂(z) [ΦL(k)]

eoL(k) = L̂(k)− Θ̂L(k − 1)TΨL(k − 1) +Gd2L̂(z)
[
Θ̂T

L(k)ΦL(k)
]

eL(k) =
λL
1 e

o
L(k)

λL
1 +ΨL(k − 1)TFL(k − 1)ΨL(k − 1)

Θ̂L(k) = Θ̂L(k − 1) +
1

λL
1

FL(k − 1)ΨL(k − 1)eL(k)

FL(k) =
1

λL
1

[
FL(k − 1)− λL

2

FL(k − 1)ΨL(k − 1)ΨL(k − 1)TFL(k − 1)

λL
1 + λL

2ΨL(k − 1)TFL(k − 1)ΨL(k − 1)

]
Θ̂L(0) ∈ R

2;FL(0) ∈ S
2×2
+ ; 0 < λL

1 ≤ 1; 0 < λL
2 < 2

(5.12)

where S
2×2
+ denotes the set of two by two positive definite matrix.

Fig. 5.2 shows the block diagram of the phase lock loop with the feedback controller and
feedforward compensator. As shown in Lemma 2, Appendix C, if the gyro is precessing, the
above PAA produces zero L̂ and in addition, the PAA converges to its ground true values
and therefore perfectly cancels the disturbance dL, which in turn implies zero phase reference
error L.
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LCu

PAA

ˆ
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Figure 5.2: The Phase Lock Loop (PLL) adaptive mismatch compensator
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5.4 Pattern Angle Adaptive Mismatch Compensation

Given zero quadrature, the pattern angle has a dynamics in the form of

θ̇ = −κΩ +
1

2
Δ

(
1

τ

)
sin 2(θ − θτ )− uθ (5.13)

where the control action

uθ =
fqs

2ω
√
E

(5.14)

is normally set to zero in the whole angle operation mode, but will be used in this section
to compensate the damping mismatch disturbance.

The discrete time version of the pattern angle dynamics can be approximated as follows

θ(k) = θ(k − 1)− κΩts + dθ(k − 1)ts − uθ(k − 1)ts (5.15)

where ts is the sampling time and the damping mismatch-induced disturbance is

dθ(k) = aθ cos 2θ(k) + bθ sin 2θ(k) (5.16)

where aθ = −1
2
Δ
(
1
τ

)
sin 2θτ , bθ = 1

2
Δ
(
1
τ

)
cos 2θτ are the damping mismatch coefficients to

be estimated.

The compensation action is designed as follows

uθ = âθ(k) cos 2θ(k) + b̂θ(k) sin 2θ(k) (5.17)

where âθ(k) and b̂θ(k) are respectively the estimates of aθ and bθ at step k.

Collecting all the unknown parameters Ω, aθ and bθ yields the parameter vector

Γ �
[
Ω aθ bθ

]T
(5.18)

and corresponding regressor vector

Υ(k) �
[ −κts cos 2θ(k)ts sin 2θ(k)ts

]T
(5.19)

A normalized least mean square algorithm is utilized to update the parameter estimate Γ̂(k)
as follows, in order to estimate time varying input rates.

θ̂(k) = θ(k − 1)− κΩ̂(k − 1)ts

eθ(k) = θ(k)− θ̂(k)

Γ̂(k) = Γ̂(k − 1) + μ
Υ(k − 1)eθ(k)

ΥT (k − 1)Υ(k − 1)

(5.20)

where Ω̂ is the input rate estimate; θ̂(k) is the predicted pattern angle using the input rate
estimate; eθ(k) is the a-priori error and μ is the step size of the least mean square algorithm.
The resulting block diagram is shown in Fig. 5.3.
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Figure 5.3: The pattern angle adaptive mismatch compensator

Notice that the a-priori error eθ(k) is subject to

eθ(k) = Γ̃T (k − 1)Υ(k − 1) (5.21)

where Γ̃(k − 1) is the parameter estimation error. It is shown in [30] that the normalized
least mean square algorithm given by Eq. (5.20) converges to the ground true values if the
following conditions hold.

1. 0 < μ < 2;

2. The persistence of excitation, which is defined as P.E. � rank
(
limm→+∞

Σk=n
k=0Υ(k)ΥT (k)

n

)
,

is greater than or equal to 3

Under these circumstances, the PAA can correctly estimate and compensate the mismatches.
Therefore, the pattern angle precesses as desired.
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5.5 Simulation Study

5.5.1 Simulation Setups

In order to verify the efficacy of the proposed adaptive mismatch compensation scheme, it is
tested on a simulated MRIG model with parameters summarized in Table 3.5. Also notice
that the simulated gyro model essentially has the real MRIG parameters characterized in
Chapter 4 (see Table 4.1). The feedback controllers for the phase lock loop, quadrature and
energy are identical to those described in Chapter 3.

The three adaptive feedforward controllers, namely the quadrature feedforward controller,
the PLL feedforward controller and the pattern angle feedforward controller, are all turned
on in the simulation. Parameters for these adaptive controllers are summarized in Table 5.1.

Table 5.1: Summary of parameters for adaptive feedforward controllers

Parameters λQ
1 λQ

2 FQ(0) λL
1 λL

2 FL(0) μ

values 1.0 1.0

[
1e5 0
0 1e5

]
1.0 1.0

[
2e5 0
0 2e5

]
3e-5 ·max{1.0, |Ω̂(k)|}

5.5.2 Simulation Results
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Figure 5.4: Convergence of the PAA in the quadrature adaptive controller. The left figure
shows the parameter estimate. The right figure shows the a-priori error.
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For the quadrature adaptive controller, Fig. 5.4 shows the convergence of the parameter

estimate and a-priori error. It can be seen that the parameter estimate Θ̂Q =
[
âQ, b̂Q

]T
con-

verges to its correct value of ΘQ = [Δω sin(2θω)E,−Δω cos(2θω)E]T (the dotted red lines),
and the a-priori error converges to zero.

Fig. 5.5 shows a comparison of the quadrature response with and without the proposed adap-
tive compensation scheme. It can be seen that the adaptive feedforward compensator can
successfully estimate and compensate the disturbance that is induced by frequency mismatch.
The resulting quadrature level is drastically reduced, when compared to the uncompensated
case. In addition, the quadrature with adaptive compensation converges to zero at steady
state.
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Figure 5.5: Quadrature response with and without the proposed adaptive feedforward com-
pensator.

Fig. 5.6 shows the convergence of the parameter estimate and the a-priori error for the
phase lock loop. It can be seen that the parameter vector converges to its correct value of

ΘL =
[
1
2
Δω cos(2θω),

1
2
Δω sin(2θω)

]T
(the dotted red lines); In addition, the a-priori error

converges to zero.

Fig. 5.7 shows a comparison of the phase lock loop response with and without the proposed
adaptive compensation scheme. It can be seen that the adaptive feedforward compensator
can successfully estimate and compensate the disturbance in the phase lock loop. The re-
sulting phase reference error and frequency estimate error are drastically attenuated.
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Figure 5.6: Convergence of the PAA in the phase lock loop adaptive controller. The left

figure shows the parameter estimate Θ̂L =
[
âL, b̂L

]T
. The right figure shows the a-priori

error.
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Figure 5.7: Phase lock loop response with and without the proposed adaptive feedforward
compensator.

It is worth mentioning that, the residual oscillations observed in the a-priori error, phase
reference error and frequency estimate error are caused by the slow convergence rate of the
PAA. These oscillations will continue to decaying.
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Fig. 5.8 shows the convergence of the parameter estimate in the pattern angle adaptive
compensator. It can be seen that, the parameter adaptation algorithm converges. More
specifically, the input rate estimate Ω̂ converges to the real input rate, which is 10Hz, after
a warming startup phase where the input rate is zero. However, the mismatch estimates âθ
and b̂θ do not converge to the predicted values, which are respectively aθ = −1

2
Δ
(
1
τ

)
sin 2θτ

and bθ = 1
2
Δ
(
1
τ

)
cos 2θτ . This is because the feedback controller and the adaptive com-

pensator are running at a relative low sampling rate (i.e. 96kHz). The low sampling rate
couples the stiffness mismatch Δω to the damping mismatch Δ

(
1
τ

)
when discretizing the

gyro model and averaging the fast dynamics. In addition, the amount of coupling depends
on both the sampling rate and input rate. Fortunately, the proposed adaptive compensator
can effectively estimate the total mismatch and attenuate them within a level that does not
affect the gyro performance. As shown in the right figure in Fig. 5.8, the estimation error
for the input rate estimate Ω̂ at 1 seconds is at the magnitude of ppm.
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Figure 5.8: Convergence of the PAA in pattern angle adaptive compensator. The left figure

shows the parameter estimate Γ̂ =
[
âθ, b̂θ

]T
. The right figure shows the input rate estimate

response.

The left figure in Fig. 5.9 shows a comparison of the angle measurement error with and
without the proposed adaptive feedforward compensator. It can be seen that, without the
compensation scheme, the angle measurement suffers from both an oscillatory error and a
ramp drift. The adaptive compensator, on the other hand, dramatically reduces the effect
of the mismatch and tracks the input rotation angle with a constant bias. This DC bias is
caused by the transient response of the adaptive compensator, and is at the level of 10−2

radians.
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The right figure in Fig. 5.9 shows the vibration trajectory of the MRIG when the adaptive
compensator is converged. It can be seen that the gyro’s principal axis of vibration is
precessing at the input rate, with a constant level of energy and zero quadrature. This
achieves all the control objectives for MRIGs.
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Figure 5.9: The left figure shows the ange measurement error with and without the adaptive
feedforward compensator. The right figure shows the gyro precession when the adaptive
mismatch compensator is converged.

5.6 MRIG Self-Calibration

As indicated in last section, the proposed adaptive mismatch compensation scheme can ef-
fectively estimate and compensate for the MRIG frequency and damping mismatches, if the
system is persistently excited. In order to obtain the sufficient persistence of excitation, the
pattern angle needs to constantly precess. This can be achieved by introducing an artificial
input rate, which is produced as follows

uθ = âθ cos 2θ(k) + b̂θ sin 2θ(k)︸ ︷︷ ︸
Mismatch Compensation

− κΩa︸︷︷︸
Artificial Input Rate

(5.22)

It can be seen from Eq. (3.10) that, the artificially induced input rate Ωa has the same affect
on the gyro’s principal axis of vibration as that of a genuine input rate. As a consequence,
the gyro can be calibrated without the use of auxiliary device like rotation table or human
involvement. The artificial input rate can also avoid the stall condition that occurred for
small input rates, as described in Chapter 3.
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5.7 Summary

In this chapter, we proposed an adaptive scheme to compensate the damping and frequency
mismatches in MRIGs. The proposed adaptive compensators run as add-on feedforward
controllers, on top of the feedback controllers presented in preceding chapters. Such add-
on feedforward compensators preserve the robustness of the baseline feedback controllers,
but dramatically reduce the effects of disturbances and improve the controller performance.
Simulation results confirmed the efficacy of the proposed compensation scheme. In order to
obtain the sufficient persistence of excitation, which is necessary to calibrate the gyro mis-
matches, artificial input rate was introduced to autonomously calibrate the gyro, requiring
no auxiliary device or human involvement.
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Chapter 6

Conclusion

6.1 Conclusions

In this dissertation, a comprehensive methodology was developed to analyze Microscale Rate
Integrating Gyroscopes (MRIGs), including its modeling, controller design, mismatch com-
pensation and calibration.

A MRIG resonator has three vibration modes. Namely, the n = 1 mode, the n = 2 mode
and the n = 3 mode. These vibration modes have different vibration patterns and resonance
frequencies. Among these vibration modes, the n = 2 mode of vibration was selected as the
gyro operation mode due to its modulate resonance frequency and stable vibration pattern.
The n = 2 mode of vibration can be modeled as a two dimensional harmonic oscillator with
unbalanced stiffness and damping principal axes, in order to account for the fabrication im-
perfections. Applying the Newton’s second law and preliminary kinematics to the equivalent
model yields the gyro resonator’s equations of motion, which provide the basic system plant
model for subsequent controller design and analysis. Solution trajectory of ideal MRIG res-
onators was solved for analyzing the gyro precession. It was shown that an ideal MRIG
resonator is a natural rate integrating gyroscope that can automatically operate in the rate
integrating mode once excited, requiring no active control actions. Based on the ideal MRIG
precession, control objectives for general MRIGs, which suffer from energy dissipation and
mismatches, were casted.

For the MRIG control, the method of averaging was adopted as the control law due to
its simplicity and capability of operating in the rate integrating mode. However, analysis
showed that the conventional method of averaging essentially produces nonlinear control
loops, which cause big problems when designing and analyzing the performance of MRIG
controllers. A new demodulation scheme was proposed to eliminate the nonlinearity. The
new demodulation scheme, together with the method of averaging, produces linear control
loops. As a consequence, the well-studied linear system theory can be adopted to analyze



CHAPTER 6. CONCLUSION 87

MRIG performance. This provides a tractable and predictable way of designing and ana-
lyzing the performance of MRIG controllers. Such a fundamental improvement opened up
new opportunities for linear control theory for the control of MRIGs, and drastically ease
the MRIG controller design and analysis. Simulation study was performed on a symmetric
MRIG model and verified the efficacy of such a new demodulation scheme.

The feedback controller, the method of averaging with the new demodulation scheme, can
effectively operate a symmetric MRIG in rate integrating mode with a very high level of
accuracy that far meets the requirements. However, an actual MRIG produced on micro-
fabrication mass producing lines is usually susceptible to stiffness frequency mismatch and
damping mismatch due to the fabrication imperfections. Analysis and simulation study
showed that these mismatches dramatically degrade the gyro performance, even cause the
gyro to stall in some extreme conditions. This lends the necessity of mismatch compensation
schemes

Two compensation schemes that compensate for the gyro frequency and damping mismatches
were studied. The first one is electrostatic spring softening and tuning method. This method
can compensate the frequency mismatch via applying appropriate bias voltages on sensing
and actuation electrodes. Experiments showed that this method can reduce the frequency
mismatch within 0.5 Hertz, more than 26 decibels of attenuation on initial frequency mis-
match. The method of electrostatic spring softening and tuning can be performed after
the gyro resonator is packaged, but prior to the gyro operation. Hence its performance is
degraded by parasitic voltage that is varying over time and temperature when gyro is in
operation. In addition, such a compensation scheme is time consuming and requires much
human involvement.

The other way to compensate for the mismatch is improving the control algorithm. This
dissertation proposed an adaptive compensation scheme to compensate for the frequency
and damping mismatches. The proposed compensator runs as an add-on feedforward com-
pensator to the feedback controller. In this way, the feedback controller provides the baseline
controller with required robustness level, while the adaptive compensator is specifically used
to estimate and compensate the damping and frequency mismatches, in order to achieve a
sufficient level of performance. Simulation results indicated that such adaptive scheme can
correctly estimate and compensate the unknown mismatch. Since the convergence rate of
the adaptive scheme relies on input rates, it has a quite long transient response for small
input rates. Such a long transient response will in turn delay the gyro precession, hence
resulting in a considerable DC bias in angle measurement. In order to shorten the transient
response of the proposed adaptive compensators, and also obtain the sufficient persistence
of excitation and avoid the stall condition, an artificial input rate was introduced to speed
up the precession of gyro’s principal axis of vibration. It was also shown that, the artificial
input rate is capable of calibrating the gyro mismatches automatically, requiring no auxiliary
device or human involvement.



CHAPTER 6. CONCLUSION 88

6.2 Future Work

Based on the controller design methodology presented in this dissertation, several related
aspects of research can be performed in future.

Implement the feedback controller presented in this dissertation on real MRIGs. Most of the
effort in this dissertation has been focused on mathematical derivation and simulation, there
are many actual issues to investigate when implementing such a feedback control law. To
name a few, since the control actuation and the feedback signal are at the same frequency
(i.e. the resonance frequency of the n = 2 mode of vibration), feed-through takes place
on the electronic board. Feed-through can contaminate the readout signal and degrade the
control performance in some extent. In principle, such a feed-through can be eliminated
by modulating the control actuation onto a frequency that is far higher than the resonance
frequency. A very simple modulation scheme is flipping the sign of the voltages applied on
MRIG actuation electrodes back and forth at such a high frequency. Notice that sign flipping
does not alter the force produced on the electrode as the force is determined by the volt-
age squared (see Eq. (2.25)). Other considerations include saturation on control actuation,
computational complexity of the control algorithm, etc. Even though the simulation study
performed on MRIG model has shown that they can achieve very high level of performance,
it would be much convincing and great valuable if they can be demonstrated on real MRIGs.

Apply the mismatch compensation scheme and self-calibration method to actual MRIGs.
Simulation results presented in this dissertation has shown the efficacy of the adaptive mis-
match compensation scheme and the artificial precession rate. It would be interesting to ap-
ply them to actual MRIGs and investigate the convergence rate and accuracy of the on-line
parameter adaptation algorithm, the efficacy of artificial precession rate, and demonstrate a
working MRIG under different environment conditions.

The feedback controller and the parameter adaptation algorithm presented in this disserta-
tion are both running at the sampling rate (i.e. 96kHz). This is, however, not necessary.
Recall that the resonance frequency is around 8kHz. Since the feedback controller and pa-
rameter adaptation algorithm are built on the slow dynamics (i.e. the energy, quadrature,
phase reference error, and precession angle) which changes far slower than the high frequency
oscillation at the resonance frequency. The feedback control rate can be drastically reduced.
Only the control modulation needs to run at the sampling rate. This can significantly save
the computation time, without degrading the controller performance.

Design more complicated feedback controllers that can achieve better performance. The new
demodulation scheme presented in this dissertation enables the use of linear control theory
for MRIG control. But the controllers are not limited within the class of Proportional-
Integral (PI) controller that was presented in this dissertation. More complicated feedback
controller can be adopted to achieve better MRIG performance.
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Appendix A

Derivation of the New Demodulation
Scheme

Problem setups. Given the input signal in the form of

x = a cos θ cos (ωt+ φ0)− q sin θ sin (ωt+ φ0)

y = a sin θ cos (ωt+ φ0) + q cos θ sin (ωt+ φ0)
(A.1)

and a phase reference ωt + φ. The energy E, variable R, S, phase reference error L and
quadrature Q are respectively defined as

E = a2 + q2

R = cos 2θ
S = sin 2θ
L = (a2 − q2) sin 2(φ− φ0)
Q = 2aq

(A.2)

Need to show that Eh, Rh, Sh, Lh and Qh, which are respectively defined as

Eh = x2
c+x2

s+y2c+y2s
2

Rh = x2
c+x2

s−y2c−y2s
2

Sh = xcyc + xsys
Lh = 2(xcxs + ycys)

Qh = 2(ycys − xcxs) sin 2θ̂ + 2(xsyc + xcys) cos 2θ̂

(A.3)

where
xc = 2x cos (ωt+ φ)
xs = 2x sin (ωt+ φ)
yc = 2y cos (ωt+ φ)
ys = 2y sin (ωt+ φ)

(A.4)
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satisfies
Eh = E + aE sin (2ωt+ φE)
Rh = R + aR sin (2ωt+ φR)
Sh = S + aS sin (2ωt+ φS)
Lh = L+ a1L sin (2ωt+ φ1

L) + a2L sin (4ωt+ φ2
L)

Qh = Q+ a1Q sin(2ωt+ φ1
Q) + a2Q sin(4ωt+ φ2

Q)

(A.5)

for some aE, aR, aS, a
1
L, a

2
L, a

1
Q, a

2
Q, φE, φR, φS, φ

1
L, φ

2
L, φ

1
Q and φ2

Q.

Proof. In order to simplify the proof, define

C :=

[
xc + ixs

yc + iys

]
(A.6)

and

σ1 =

[
0 1
1 0

]
; σ2 =

[
1 0
0 −1

]
; σ3 =

[ − sin 2θ̂ cos 2θ̂

cos 2θ̂ sin 2θ̂

]
; (A.7)

Using these notations, it can be shown that Eq. (A.3) can be rewritten as

Eh = 1
2
C∗C

Rh = 1
2
C∗σ2C

Sh = 1
2
C∗σ1C

Lh = Im
[
CTC

]
Qh = Im

[
CTσ3C

] (A.8)

where C∗ denotes the complex conjugate of C; CT denotes the transpose of C; Im[C] denotes
the imaginary part of C.

Also notice that

C = 2

[
x
y

]
ei(ωt+φ) (A.9)

Substituting Eq. (A.1) into Eq. (A.9) yields

C = 2

[
cos θ − sin θ
sin θ cos θ

] [
cos(ωt+ φ0) 0

0 sin(ωt+ φ0)

] [
a
q

]
ei(ωt+φ) (A.10)

Substituting Eq. (A.10) into Eq. (A.8) and assuming θ̂ = θ yields

Eh = a2 + q2 + a2 cos(2ωt+ 2φ0)− q2 sin(2ωt+ 2φ0)
Rh = (a2 − q2) cos 2θ + (a2 + q2) cos 2θ cos(2ωt+ 2φ0)− 2aq sin 2θ sin(2ωt+ 2φ0)
Sh = (a2 − q2) sin 2θ + (a2 + q2) sin 2θ cos(2ωt+ 2φ0) + 2aq cos 2θ sin(2ωt+ 2φ0)
Lh = (a2 − q2) sin 2δφ+ 2(a2 + q2) sin(2ωt+ 2φ) + (a2 − q2) sin(4ωt+ 2φ0 + 2φ)
Qh = Q cos 2δφ−Q cos(4ωt+ 2φ0 + 2φ)

(A.11)

where δφ = φ− φ0.
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Comparing Eq. (A.11) with Eq. (A.2) and assuming δφ = 0, it can be seen that

Eh = E + aE sin (2ωt+ φE)
Rh = R + aR sin (2ωt+ φR)
Sh = S + aS sin (2ωt+ φS)
Lh = L+ a1L sin (2ωt+ φ1

L) + a2L sin (4ωt+ φ2
L)

Qh = Q+ aQ sin(4ωt+ φQ)

(A.12)

where
aE =

√
a4 + q4

φE = π
2
+ tan−1 q2

a2

aR =
√
E2 cos2 2θ +Q2 sin2 2θ

φR = π
2
+ tan−1 Q sin 2θ

E cos 2θ

aS =
√
E2 sin2 2θ +Q2 cos2 2θ

φR = π
2
− tan−1 Q cos 2θ

E sin 2θ

a1L = 2E
φ1
L = 2φ

a2L = a2 − q2

φ2
L = 2φ0 + 2φ

aQ = Q
φQ = −π

2
+ 2φ0 + 2φ

(A.13)

This completes the proof. �
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Appendix B

Proof of Lemma 1

Lemma 1. Given a nonlinear system described by

θ̇ = λ sin θ + c; |λ| > |c|, λ, c ∈ R (B.1)

there exists infinite number of equilibrium points:

θeq =

{
2mπ + sin−1

(− c
λ

)
2mπ + π − sin−1

(− c
λ

) ; m ∈ N (B.2)

Given λ > 0, then 2mπ + π − sin−1
(− c

λ

)
is the group of stable equilibrium points. Given

λ < 0, 2mπ + sin−1
(− c

λ

)
is the group of stable equilibrium points.

Proof. Equilibrium points of the system described by Eq. (B.1) can be obtained by setting
θ̇ = 0. The set of solutions is shown in Fig. B.1.

y c

siny

12 sin cm 12 sin cm

Figure B.1: Equilibrium points of the system θ̇ = λ sin θ + c.
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To show the stability of the equilibrium points, the proof for the case where λ < 0 is given
as follows. Proof for the case where λ > 0 is similar. Let θeq = 2mπ + sin−1

(− c
λ

)
be the

equilibrium to study.
θ = θeq + θ̃ (B.3)

where θ̃ is small variation from the equilibrium point.

Substituting Eq. (B.3) into Eq. (B.1) yields

˙̃θ = λ sin θeq cos θ̃ + λ cos θeq sin θ̃ + c; (B.4)

Since θeq = 2mπ + sin−1
(− c

λ

)
, we have

sin θeq = sin
[
sin−1

(
− c

λ

)]
(B.5)

= − c

λ
; (B.6)

Since the range of function sin−1(·) is [−π
2
, π
2
], over which the cosine function is always

positive. Therefore

cos θeq = cos
[
sin−1

(
− c

λ

)]
(B.7)

=

√
λ2 − c2

|λ| (B.8)

= −
√
λ2 − c2

λ
for λ < 0 (B.9)

Substituting Eq. (B.6) and Eq. (B.9) into Eq. (B.4) yields

˙̃θ = −c cos θ̃ −
√
λ2 − c2 sin θ̃ + c (B.10)

When θ̃ ≈ 0, cos θ̃ ≈ 1, sin θ̃ ≈ θ̃. As a result,

˙̃θ = −
√
λ2 − c2 θ̃ (B.11)

The linearized system is stable. As a result, the system given by Eq. (B.1) is stable at the
equilibrium points 2mπ + sin−1

(− c
λ

)
;m ∈ N. �
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Appendix C

Proof of Lemma 2

Lemma 2. Given a system described by

y(k) = G(z)
[
ΘTΦ(k)− u(k)

]
(C.1)

where G(z) is strictly casual and asymptotically stable; and u(k) is updated by the following
Parameter Adaptation Algorithm (PAA)

Ψ(k − 1) = G(z) [Φ(k)] (C.2)

eo(k) = y(k)− Θ̂(k − 1)TΨ(k − 1) +G(z)
[
Θ̂T (k)Φ(k)

]
(C.3)

e(k) =
λ1e

o(k)

λ1 +Ψ(k − 1)TF (k − 1)Ψ(k − 1)
(C.4)

Θ̂(k) = Θ̂(k − 1) +
1

λ1

F (k − 1)Ψ(k − 1)e(k) (C.5)

u(k) = Θ̂(k)TΦ(k) (C.6)

F (k) =
1

λ1

[
F (k − 1)− λ2

F (k − 1)Ψ(k − 1)Ψ(k − 1)TF (k − 1)

λ1 + λ2Ψ(k − 1)TF (k − 1)Ψ(k − 1)

]
(C.7)

Θ̂(0) = Θ0 ∈ R
n
+;F (0) = F0 ∈ S

n×n
+ (C.8)

0 < λ1 ≤ 1; 0 < λ2 < 2 (C.9)

Given the persistence of excitation, which is defined as

P.E. � rank

(
lim

m→+∞
Σk=m

k=0 Φ(k)Φ
T (k)

m

)
(C.10)

is greater than or equal to n, the PAA yields:

(1) e(k) → 0, eo(k) → 0;

(2) Θ̂(k) → Θ;
(3) y(k) → 0.
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Proof. Define the parameter estimation error

Θ̃(k) � Θ− Θ̂(k) (C.11)

Substituting Eq. (C.11) into Eq. (C.5) yields:

Θ̃(k) = Θ̃(k − 1)− 1

λ1

F (k − 1)Ψ(k − 1)e(k); (C.12)

Substituting Eq. (C.6) and Eq. (C.1) into Eq. (C.3) yields

eo(k) = Θ̃(k − 1)TΨ(k − 1) (C.13)

Substituting Eq. (C.12) into the Eq. (C.13) yields

eo(k) = Θ̃(k)TΨ(k − 1) +
1

λ1

Ψ(k − 1)TF (k − 1)Ψ(k − 1)e(k) (C.14)

Substituting the Eq. (C.14) into Eq. (C.4) yields

e(k) = Θ̃(k)TΨ(k − 1) (C.15)

As a result, e, Θ̃ and F are subject to

e(k) = Θ̃(k)TΨ(k − 1) (C.16)

Θ̃(k) = Θ̃(k − 1)− 1

λ1

F (k − 1)Ψ(k − 1)e(k) (C.17)

F (k) =
1

λ1

[
F (k − 1)− λ2

F (k − 1)Ψ(k − 1)Ψ(k − 1)TF (k − 1)

λ1 + λ2Ψ(k − 1)TF (k − 1)Ψ(k − 1)

]
(C.18)

which is a general Parameter Adaptation Algorithm. In addition, since G(z) is asymptoti-
cally stable and Φ(k) is persistently exciting, Ψ(k) is also persistently exciting [6]. As shown
in [6], the above PAA produces zero a-priori and a-posteriori errors (i.e. conclusion (1)),

and converges to the real values (i.e. conclusion (2)). Moreover, since Θ̂(k) → Θ, it implies
u(k) → d(k). Given that G(z) is asymptotically stable, it concludes y(k) → 0. �




