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Background

Cell therapy is an exciting option for repairing the injured heart, one which has attracted 

considerable interest over the past 15 years. Consensus exists that the injection/infusion or 

tissue-based implantation of various cell types may exert therapeutic effects1–3, and there is 

general agreement that additional molecular, translational and clinical studies are required to 

define the optimal cell source, method of delivery, and underlying mechanism(s) of action.

One of the remaining questions in this field pertains to cardiomyocyte turnover under normal 

and diseased conditions and its contribution to the beneficial effects of cell therapy. While 

results published in the literature have not been consistent, we believe that time is ripe to 

formulate a consensus regarding many of the pertinent questions.

It is important to emphasize that the focus of this consensus statement is on cardiomyocyte 

renewal; it is not on cell therapy in general. Whereas we touch on some aspects of 

therapeutic strategies based on delivery of exogenous cells, our intent here is to define areas 
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of agreement, and areas requiring further elucidation related to the regenerative potential of 

the myocardium itself.

We have included references to the scientific literature throughout the document. Whereas it 

is impossible for us to include all publications in this expansive field, representative studies 

that corroborate statements herein have been cited.

Central questions

1. Definition of cardiomyocyte renewal

In this consensus statement, the term “cardiomyocyte renewal” is defined as the ability to 

replace lost cardiomyocytes by new ones. It is distinct from the turnover of cardiac proteins 

or the generation of polyploid cardiomyocytes (i.e. those harboring more than two sets of 

chromosomes), either by nuclear division giving rise to multinucleation or by duplication of 

DNA without nuclear division resulting in polyploid nuclei.

2. Naturally occurring cardiomyocyte renewal and proliferation

- During normal mammalian development

i. Growth of the heart during embryonic and fetal development involves 

an absolute increase in the number of cardiomyocytes and is brought 

about by differentiation of precursor cells and by division of relatively 

immature cardiomyocytes.

ii. The rodent heart continues to grow by means of cardiomyocyte 

proliferation (hyperplastic growth) in the early postnatal period.4 

During a brief postnatal window of 7 days in rodents, myocardial 

injury induces a regenerative response resulting in replacement of lost 

cardiomyocytes by new ones.5 Fate mapping studies suggest that this 

type of myocardial regeneration is mediated primarily by 

cardiomyocyte proliferation.5 It remains unclear whether this 

regenerative window exists in large animals or in humans.

iii. While cardiomyocytes appear to continue to renew throughout life, the 

quantitatively dominant mechanism of growth in the mammalian 

postnatal heart is an increase in cardiomyocyte size (reviewed in 

Heineke et al6).

iv. In the healthy, uninjured adult human and murine heart, the total 

number of cardiomyocytes remains essentially stable, and 

cardiomyocyte turnover is currently estimated at 0.5–2% per year in 

both species.47–9

- Following cardiac injury in adult mammals

i. Cardiomyocyte renewal rates may be higher after injury than under 

normal conditions.9
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ii. The experimental determination of cardiomyocyte turnover after 

cardiac injury can be challenging owing to inflammation, proliferation 

of stromal and vascular cells, and scar formation.

- After heart or bone marrow transplantation (chimerism)

i. Sex-mismatched heart transplantation in patients with end-stage heart 

failure or sex-mismatched bone marrow transplantation provide 

opportunities to ascertain experimentally cardiomyocyte renewal 

deriving from extra-cardiac sources.

ii. While data are not completely consistent, the preponderance of studies 

suggest that the level of cardiomyocyte chimerism after sex-

mismatched transplantation is <1%10–12, and may arise at least 

partially from fusion events10.

iii. Insufficient data are available to determine the time course within 

which such chimerism develops.

3. Mechanisms of endogenous cardiomyocyte renewal

There is no infallible means of tracking cell renewal in any organ system. However, in 

preclinical models of cardiomyocyte renewal (e.g. mouse and fish), genetic fate mapping 

studies provide the strongest level of scientific evidence. Critical biological issues such as 

promoter fidelity (leakiness and sensitivity), inefficient reporter expression (Cre 

recombinase activity), and cellular fusion or transfer of reporter proteins are relevant and 

must be considered in the interpretation of the findings. Further, appropriate control studies 

are essential to assess for deleterious consequences of haploinsufficiency which could result 

from genetic manipulation of an endogenous gene locus.

- Cardiomyocyte proliferation

i. The majority of studies suggest that cardiomyocyte renewal in the 

uninjured adult heart derives from a modest level of pre-existing 

cardiomyocyte mitosis.13–15 Support for this interpretation derives 

from experiments in zebrafish1617, newts18 and other species19 in 

which cardiomyocyte renewal occurs more robustly than in mammals.

- Resident stem/progenitor cells

i. Resident stem/progenitor cells contribute to multiple cell types within 

the ventricle, including cardiomyocytes. However, in terms of adult 

myocardial homeostasis in mice, current evidence suggests that their 

contribution under basal conditions or after cardiac injury is low 

(estimates in rodents based on genetic fate-mapping experiments 

suggest a rate of <0.01% per year).20, 21

- Extracardiac stem/progenitor cells

i. The contribution of extracardiac stem or progenitor cells to 

cardiomyocyte renewal has been studied largely with chimeric mice, in 

which the bone marrow is genetically labeled, and in parabiotic mice, 
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in which the circulation of a genetically labeled mouse is 

experimentally linked to another unlabeled mouse. Cell fusion and 

transdifferentiation events have been evaluated using genetic lineage 

tracing, and the findings are largely concordant. In humans, the role of 

extracardiac stem/progenitor cells in cardiomyocyte renewal has been 

studied by sex-mismatched heart and bone marrow transplantation.

ii. Homing of extracardiac bone marrow-derived cells to the uninjured 

heart is a rare event of uncertain physiologic relevance.

iii. Extracardiac bone marrow-derived cells enter the injured heart at a 

higher rate. The majority of these cells are of hematopoietic origin.

iv. A small fraction of cardiomyocytes within injured rodent hearts carry 

the genetically determined label of bone marrow cells (estimates in 

rodents based on genetic fate-mapping experiments suggest a rate of 

<0.2%22, 23). Most studies suggest that the majority of these cells 

originate from cell fusion, and <1% derive from transdifferentiation 

(estimates in rodents based on genetic fate-mapping experiments 

suggest a rate of <0.002% in total23).

4. Therapeutic manipulation of cardiomyocyte renewal

i. Most studies suggest that the infusion, injection or tissue-based implantation of 

cells of various origins confer therapeutic benefits to the injured heart.

ii. Cell-based therapies may affect endogenous cardiomyocyte renewal and/or 

directly generate new cardiomyocytes from the transplanted cells.

iii. The degree of new cardiomyocyte formation depends on the cell type, as well as 

on retention and survival of those cells within the heart. Retention of unselected 

bone marrow cells in the heart is low (a study in patients determined a rate of 

<3% for unselected bone marrow cells and approximately 10-fold higher with 

CD34+ cells 1 hour after coronary infusion24). It may be higher following cell 

injection into the myocardium.25 Co-injection of scaffolding materials and use of 

tissue engineering approaches may increase this rate.26

iv. The degree of engraftment and differentiation of transplanted cells into 

cardiomyocytes does not appear to match the extent of functional improvement, 

suggesting that other mechanisms account for at least part of the beneficial 

effects of cell therapy.27

v. Mechanisms of benefit of cellular transplantation experiments remain obscure 

but may involve paracrine actions, including exosome-derived effects on pre-

existing cardiac tissue28, 29, as well as cell-specific post-translational protein 

modifications.30

vi. Transplantation of cardiomyocytes derived from pluripotent stem cells can 

generate new myocardium that beats in synchrony with the host myocardium and 
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may contribute to systolic force generation, although the extent of this 

contribution has not been precisely determined.

- Bone marrow-derived cells

i. Prevailing evidence suggests that unfractionated bone marrow-derived 

cells do not become cardiomyocytes when infused or injected into the 

heart.31–33

ii. Fractionated bone marrow populations consisting of c-kit+ cells or 

mesenchymal stem cells may confer structural and/or functional 

benefits primarily by indirect biological activities that may promote 

cardiomyocyte renewal.3435, 36

iii. Initial studies with bone marrow-derived mesenchymal cells are 

promising37 and phase 3 trials are underway.

iv. Evidence for the ultimate fate of mesenchymal cells after infusion or 

injection into the heart is inconsistent, but some studies report 

unmanipulated mesenchymal cells can transdifferentiate into 

cardiomyocytes at low rates.38, 39

- Cardiac-derived stem/progenitor cells

i. Most experiments have been performed with c-kit+, cardiosphere-

derived cells, or Sca1+ cells isolated from heart biopsies and cultured in 

vitro.

ii. These cells can emerge as cells expressing cardiomyocyte markers 

when cultured in vitro under specific conditions, and they can also 

express some cardiomyocyte markers in vivo.4041 Co-culturing cardiac 

c-kit+ cells with mesenchymal stem cells enhances their lineage 

commitment towards a cardiac myocyte fate.42

iii. The degree of functional improvement following in vivo delivery of 

cardiac-derived stem/progenitor cells cannot be explained solely by 

new cardiomyocyte formation from transplanted cells, which is very 

low.43, 44

iv. Genetic or ex vivo manipulation of transplanted cardiac-derived stem/

progenitor cells enhances engraftment as well as structural and 

functional recovery of uninjured myocardium in preclinical animal 

models.45, 46

- Pluripotent cells

i. Pluripotent stem cells (embryonic stem cells [ESCs] or induced 

pluripotent stem cells [iPSCs]) proliferate in an undifferentiated state 

indefinitely, and upon exposure to specific culture conditions can 

differentiate into almost all cell types of the organism including 

cardiomyocytes.
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ii. The efficiency of differentiation of pluripotent stem cells into immature 

cardiomyocytes in vitro can exceed 80%.47–51

iii. Undifferentiated pluripotent stem cells can form teratomas when 

injected into the heart of immunocompromised organisms.52

iv. Pluripotent stem cell-derived cardiomyocytes successfully engraft, 

generating new myocardium when injected into the injured or 

uninjured heart of immunosuppressed animals.53–58a Long-term 

engraftment (> 3 months) of these cells has not been studied.

v. Pluripotent stem cell-derived cardiomyocytes can couple electrically 

with host cardiomyocytes, beating in synchrony, although evidence for 

proarrhythmic effects has been reported.54, 58

vi. Although direct force generation deriving from the injected myocytes 

may explain some of the functional improvement, it is not clear 

whether the degree of emergence of new myocardium entirely accounts 

for the degree of contractile improvement; paracrine signalling events 

may contribute as well.

- Stimulation of endogenous cardiomyocyte proliferationb

i. The normal turnover of cardiomyocytes can be stimulated as a 

therapeutic strategy to achieve regeneration.

ii. Endogenous cardiomyocyte proliferation can be enhanced by 

manipulation of cell cycle regulators59, 60, redox regulators61–63, 

growth factors acting through cell surface receptors6430 or through the 

transfer of nucleic acids acting intracellularly176566.

5. Important questions remaining to be answered

i. Identify mechanisms of endogenous cardiomyocyte renewal in mammals as a 

target for therapy, including mechanisms of cardiomyocyte proliferation and 

characterization of populations of proliferative cardiomyocytes.

ii. Define the relative roles of progenitor cell differentiation versus cardiomyocyte 

proliferation in regenerating the injured myocardium.

iii. Unveil mechanism(s) of benefit deriving from cell-based therapy, including the 

contribution of new cardiomyocytes, angiogenesis, anti-inflammatory actions, 

anti-fibrotic actions, anti-apoptotic actions, or other effects.

iv. Define the paracrine mechanisms or host immune response signals that mediate 

many of the beneficial effects of cell therapy.

v. Improve the efficiency of cell therapy with regard to modes of delivery, 

enhancement of engraftment, and differentiation.

aM.S. expressed concerns regarding use of the term “new myocardium” in this sentence.
bM.S. cited efficacy and feasibility concerns for “therapeutic strategy” implementation and caution regarding discrimination of 
“proliferation” from cell cycle induction without mitosis.
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vi. Explore new therapeutic options that provide the same beneficial effects as 

cellular transplantation, either through exosomes, selected paracrine factors, or 

induction of the innate and adaptive sterile immune responses in the heart.

vii. Define the risk/benefit aspects for genetically modified stem cells, pluripotent 

stem cell-based therapies, and cell combination strategies.
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