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Deep learning for detecting
visually impaired cataracts using
fundus images

He Xie1†, Zhongwen Li2†, Chengchao Wu3, Yitian Zhao2,4,
Chengmin Lin5, Zhouqian Wang1, Chenxi Wang1, Qinyi Gu1,
Minye Wang1, Qinxiang Zheng1,2*, Jiewei Jiang3* and
Wei Chen1,2*
1National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University,
Wenzhou, China, 2Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China, 3School of
Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, China, 4Cixi Institute of
Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of
Sciences, Ningbo, China, 5Department of Ophthalmology, Wenzhou Hospital of Integrated Traditional
Chinese and Western Medicine, Wenzhou, China

Purpose: To develop a visual function-based deep learning system (DLS) using
fundus images to screen for visually impaired cataracts.

Materials and methods: A total of 8,395 fundus images (5,245 subjects) with
corresponding visual function parameters collected from three clinical centers
were used to develop and evaluate a DLS for classifying non-cataracts, mild
cataracts, and visually impaired cataracts. Three deep learning algorithms
(DenseNet121, Inception V3, and ResNet50) were leveraged to train models to
obtain the best one for the system. The performance of the system was evaluated
using the area under the receiver operating characteristic curve (AUC), sensitivity,
and specificity.

Results: The AUC of the best algorithm (DenseNet121) on the internal test dataset
and the two external test datasets were 0.998 (95% CI, 0.996–0.999) to 0.999
(95% CI, 0.998–1.000),0.938 (95% CI, 0.924–0.951) to 0.966 (95% CI,
0.946–0.983) and 0.937 (95% CI, 0.918–0.953) to 0.977 (95% CI,
0.962–0.989), respectively. In the comparison between the system and
cataract specialists, better performance was observed in the system for
detecting visually impaired cataracts (p < 0.05).

Conclusion: Our study shows the potential of a function-focused screening tool
to identify visually impaired cataracts from fundus images, enabling timely patient
referral to tertiary eye hospitals.
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1 Introduction

Worldwide, the incidence of visual impairment is increasing
(GBD, 2019 Blindness and Vision Impairment Collaborators,
2021), which is an important public health problem, with
cataracts being the leading cause of visual impairment
(Flaxman et al., 2017). According to recent research, among
the 2.2 billion people who suffer from visual impairment
worldwide, 134 million are blind, and 571 million have
moderate-to-severe visual impairment in 2020 due to cataracts
(Bourne et al., 2017; Flaxman et al., 2017). In low- and middle-
income countries, especially in Southeast Asia and Africa,
cataracts lead to higher rates of visual impairment than in
high-income countries due to limited healthcare and financial
resources (Lam et al., 2015). The World Health Organization
(WHO) has adopted a 30 percent increase in effective coverage of
cataract surgery as a new global target for eye care by 2030
(WHO, 2021). Therefore, there is an urgent need to facilitate and
expedite cataract screening capabilities, especially for
underserved populations.

Traditional cataract screening requires a professional
ophthalmologist to assess the lens through a slit-lamp
microscope (Gali et al., 2019) and grading methods based on
the lens opacity classification system LOCS II (Chylack et al.,
1989) or LOCS III (Chylack et al., 1993) (Lens Opacities
Classification System, LOCS) and Wisconsin cataract grading
system (Wong et al., 2013), which limits the efficiency of large-
scale cataract screening. A simple and effective model for
screening and referral remains a key challenge for the
sustainable implementation of cataract screening programs. To
enhance community screening for retinal disease in some
countries (Lian et al., 2016; Verbraak et al., 2019), they have
implemented telemedicine or artificial intelligence analysis of
fundus images acquired by non-specialists. Grading the
assessment of cataracts by fundus images may also be an
effective solution. Abdul-Rahman used Fourier analysis to
quantify optical degradation in fundus images, which was
shown to be correlated well with the LOCS III (Abdul-
Rahman et al., 2008).

Several studies have developed deep learning systems (DLSs)
to grade the severity of cataracts based on the blurriness of fundus
images. According to the visibility of the optic disk or retinal
vessels of the fundus images, they classified cataracts into 3, four
or 5 grades (Xiong et al., 2017; Zhang et al., 2019; Xu et al., 2020;
Yue Zhou and Li, 2020). Considering that visual acuity is one of
the most common indicators for evaluating the impact of
cataracts on patients, it would be more meaningful to establish
a visual function-based cataract grading system (WHO, 2020).
This functional cataract screening program is more targeted for
cataract patients, which can reduce the excessive referral of
people with mild visual impairment and reduce the pressure
on tertiary eye hospitals.

In this study, we developed a visual function-based DLS for
populations based on fundus images, especially for the screening
of visually impaired cataracts. In addition, we used images
taken by different types of fundus cameras from three
institutions to evaluate the effectiveness and generalizability of
the system.

2 Materials and Methods

2.1 Image datasets

In this retrospectively study, a total of 6,997 fundus images
(4,346 subjects) collected from Zhejiang Eye Hospital at Wenzhou
(ZEHWZ) between September 2020 and March 2021 were used to
develop the DLS. The ZEHWZ dataset included cataract patients
whose best corrected decimal visual acuity (BCDVA) was good
(>0.6) within 1 month after cataract surgery and non-cataract
patients without refractive media opacities. The fundus images
were captured without mydriasis before surgery. The exclusion
criteria were traumatic cataracts, congenital cataracts and lens
dislocation, corneal diseases, asteroid hyalosis, vitreous
haemorrhage, and severe retinal and optic nerve diseases. Poor
quality and unreadable images were also excluded: images out of
focus; images underexposed; images overexposed; incomplete
images with more than 1/3 peripheral halo.

Two additional datasets, including 1,398 fundus images
obtained from two other institutions retrospectively, adopted the
same inclusion criteria and exclusion criteria as ZEHWZ for external
testing. One was derived from the inpatient department at Zhejiang
Eye Hospital at Hangzhou (ZEHHZ), consisting of 1,097 images
from 730 individuals; the other was derived from outpatient clinics
and the inpatient department at Ningbo Eye Hospital (NEH),
consisting of 301 images from 169 individuals.

This study adhered to the principles of the Declaration of
Helsinki and was approved by the Ethics Committee of Zhejiang
Eye Hospital at Wenzhou (Number, 2022-008-K-06-01). Due to the
retrospective study design and the use of fully anonymized fundus
images, the need for informed patient consent was waived by the
review committee.

2.2 Criteria of cataract classification

The diagnosis of each fundus image was diagnosed by two
cataract specialists based on the previous medical records and the
results of the ophthalmology examination. If there was a difference
between the two cataract specialists, there would be a third senior
cataract specialists for diagnosis. All fundus images with a definitive
diagnosis were screened for quality control. Poor quality and
unrecognizable images were excluded.

All fundus images were classified into three categories: non-
cataracts, mild cataracts, and visually impaired cataracts. Non-
cataracts were defined as patients with transparent lenses and
without refractive media opacities. Mild cataracts were defined as
cataracts with mild vision impairment with BCDVA ≥0.3, and
visually impaired cataracts were defined as cataracts with
moderate-to-severe vision impairment or blindness with
BCDVA < 0.3. Typical examples of non-cataract and cataract
fundus images are displayed in Figure 1.

2.3 Image preprocessing

During image preprocessing, each image was uniformly scaled
down to 224 × 224 pixels, and the pixel values were normalized
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FIGURE 1
Typical examples of fundus images of non-cataracts, mild cataracts, and visually impaired cataracts (A)Non-cataracts (B) The cataract with BCDVA=
0.8 (C) The cataract with BCDVA = 0.5 (D) The cataract with BCDVA = 0.3 (E) The cataract with BCDVA = 0.1 (F) The cataract with BCDVA = HM/BE.

FIGURE 2
Flow chart for the development and evaluation of the DLS. ZEHWZ = Zhejiang Eye Hospital at Wenzhou; ZEHHZ = Zhejiang Eye Hospital at
Hangzhou; NEH = Ningbo Eye Hospital.

Frontiers in Cell and Developmental Biology frontiersin.org03

Xie et al. 10.3389/fcell.2023.1197239

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1197239


between 0 and 1. Then, data augmentation techniques were applied
to increase the diversity of the dataset and thereby alleviate the
overfitting problem during deep learning training. The new samples
were generated by a simple transformation of the original image,
simulating “real world” acquisition conditions. Random cropping,
rotation of 90°, and horizontal and vertical flipping were applied to
the images of the training dataset to increase the sample size to six
times the original size (from 4,901 to 29,406).

2.4 Development and evaluation of the DLS

The fundus images drawn from the ZEHWZ dataset were
randomly divided into training, validation, and internal test
datasets at a ratio of 70%:15%:15%. The training and validation
datasets were used to develop the system, and the test dataset was
used to evaluate the performance of the system. Images from the
same person were only assigned to a single dataset to prevent deep
learning leaks and biased evaluations.

To find the best deep learning model for distinguishing non-
cataracts, mild cataracts, and visually impaired cataracts, three
convolutional neural network (CNN) architectures (DenseNet121,
Inception-v3, and ResNet50) were compared. The parameters of the
CNN were initialized with weights pretrained for ImageNet
classification.

The deep learning models were trained using PyTorch (version
1.6.0) as the backend. Using the Adaptive Estimation of Moments
(ADAM) optimizer, the initial learning rate was 0.001, β1 was 0.9,
β2 was 0.999, and the weight decay was 1e-4. Eachmodel was trained
for 80 epochs. During the training, the validation loss was evaluated
on the validation dataset after each epoch and used as a reference for
model selection. Each time the validation loss was reduced, the
model state and corresponding weight matrix were saved. The
model state with the lowest validation loss was saved as the final
state of the model for the test dataset.

The diagnostic performance of the three-class classification
model was then evaluated on two independent external test
datasets. The development and evaluation process of the system
is shown in Figure 2. Using the t-distributed stochastic neighbour
embedding (t-SNE) technique, the embedding features of each class
learned by the model were displayed in a two-dimensional space.

2.5 Visualization heatmap

To understand which areas of fundus images were most likely to
be used by deep learning models to generate decisions for this
system, we use the Gradient-weighted Class Activation Mapping
(GradCAM) technique to generate heatmaps. This technique uses
the gradients of any target concept, flowing into the final
convolutional layer to produce a localization map highlighting
the important regions in the image for predicting the concept
(Ramprasaath et al., 2020). Hotter colours represent the regions
with more contribution to the predicted output, while cooler colours
may indicate relatively less contribution to the predicted output.
Using this method, heatmaps were generated to illustrate the basic
principles of DLSs in differentiating between non-cataracts, mild
cataracts, and visually impaired cataracts.

2.6 Characteristics of misclassification by
the deep learning system

A senior cataract specialists who had not been involved in the
initial diagnosis reviewed the characteristics of all images
misclassified by the DenseNet121 algorithm and analysed the
possible causes of misclassification in combination with the
corresponding BCDVA.

2.7 DLS versus cataract specialists

To assess our DLS in the context of cataract detection, we
recruited two cataract specialists with 3 and 10 years of clinical
experience. The ZEHHZ dataset was employed to compare the
performance of the best system (DenseNet121) to that of the
cataract specialists with the reference standard. The system and
specialists independently classified each image into one of the
following three categories: non-cataracts, mild cataracts, and
visually impaired cataracts. Notably, to reflect the level of
experience of the cataract specialists in normal clinical practice,
they were not told that they were competing with an AI-based
system to avoid competition bias.

2.8 Statistical analysis

The performance of the deep learning system for the
classification of non-cataracts, mild cataracts, and visually
impaired cataracts was evaluated by employing the one-versus-
rest tactic and calculating the AUC, sensitivity, specificity, and
accuracy. Statistical analysis was performed using Python 3.7.8
(Wilmington, Delaware, United States of America). The 95%
confidence intervals (CIs) for sensitivity, specificity, and accuracy
were calculated by the Wilson scoring method using the Stats model
package (version 0.11.1), and those for the area under the receiver
operating characteristic (ROC) curve (AUC) were calculated using
an empirical bootstrap procedure with 1,000 repetitions. We plotted
the receiver operating characteristic (ROC) curve to demonstrate the
capability of the system by plotting the ratio of true positive cases
(sensitivity) to false positive cases (1-specificity) using the Scikit-
learn (version 0.23.2) and Matplotlib (version 3.3.1) packages; a
larger AUC indicated better performance. Unweighted Cohen’s
kappa coefficients were calculated to compare the results of the
system to a reference standard. Differences in sensitivity, specificity,
and accuracy between systems and the cataract specialists were
analysed using the McNemar test. All statistical tests were two-sided
with a significance level of 0.05.

3 Results

3.1 Characteristics of the datasets

After removing 515 poor-quality images, a total of
8,395 qualified images (3,569 images of non-cataracts,
3,245 images of mild cataracts, and 1,581 images of visually
impaired cataracts) from 5,245 individuals were used to develop
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and externally evaluate the DLS. Further information on the datasets
from ZEHWZ, ZEHHZ, and NEH is summarized in Table 1.

3.2 Performance of different deep learning
algorithms on the internal test dataset

This study used three classical deep learning algorithms,
DenseNet121, ResNet50, and Inception-v3, to train the models.
The t-SNE technique showed that the features of each category
learned by the DenseNet121 algorithm were more separable than
those learned by ResNet50 and Inception-v3 (Figure 3A). The
performance of the three algorithms on the internal test dataset
is shown in Figures 3B,C, which indicates that the best algorithmwas
DenseNet121. More information, including the accuracy, sensitivity,
and specificity of the algorithms, is presented in Table 2.

The best algorithm achieved an AUC of 0.999 (95% confidence
interval [CI], 0.998–1.000), a sensitivity of 98.3% (95% CI,
97.1–99.5), and a specificity of 98.8% (95% CI (97.9–99.7)) in
detecting non-cataracts. The best algorithm discriminated mild
cataracts from non-cataracts and visually impaired cataracts with
an AUC of 0.958 (95% CI, 0.946–0.968), a sensitivity of 83.2% (95%
CI, 79.5–86.9), and a specificity of 94.1% (95% CI, 92.3–95.9). The
best algorithm discriminated visually impaired cataracts from non-
cataracts and mild cataracts with an AUC of 0.956 (95% CI,
0.944–0.968), a sensitivity of 84.7% (95% CI, 79.8–89.7), and a
specificity of 93.1% (95% CI, 91.4–94.8). Based on the reference
standard of the internal test dataset, the unweighted Cohen’s kappa
coefficient of the best algorithm, DenseNet121, was 0.845
(0.817–0.873).

3.3 Performance of the different deep
learning algorithms on the external test
datasets

The performance of the DenseNet121, ResNet50, and Inception-
v3 algorithms for cataract validation on the external test dataset is

shown in Figure 4, confirming that DenseNet121 achieved the best
performance. The t-SNE technique also indicated that the features of
each category learned by the DenseNet121 algorithm were more
separable than those learned by Inception-v3 and ResNet50
(Figure 4A–D).

For the ZEHHZ dataset, the system based on
DenseNet121 achieved AUCs of 0.998 (95% CI, 0.996–0.999),
0.938 (95% CI, 0.924–0.951), and 0.937 (95% CI, 0.918–0.953) in
the classification of non-cataracts, mild cataracts, and visually
impaired cataracts, respectively. In the NEH dataset, the system
based on DenseNet121 achieved AUCs of 0.998 (95% CI,
0.995–1.000), 0.966 (95% CI, 0.946–0.983), and 0.977 (95% CI,
0.962–0.989) in the classification of non-cataracts, mild cataracts,
and visually impaired cataracts, respectively.

The details on the classification performance of the three
algorithms with the external datasets are shown in Table 2. In
the ZEHHZ dataset, the accuracies of the best algorithm
(DenseNet121) in the detection of non-cataracts, mild cataracts,
and visually impaired cataracts were 97.3% (95% CI, 96.3–98.2),
85.5% (95% CI, 83.4–87.6), and 88.2% (95% CI, 86.3–90.1),
respectively. In the NEH dataset, the accuracies of the best
algorithm in the detection of non-cataracts, mild cataracts, and
visually impaired cataracts were 98.7% (95% CI, 97.4–100.0), 89.7%
(95% CI, 86.3–93.1), and 91.0% (95% CI, 87.8–94.3), respectively.

Based on the reference standards of the ZEHHZ and NEH
datasets, the unweighted Cohen’s kappa coefficients of the best
algorithm, DenseNet121, were 0.762 (0.728–0.796) and 0.845
(0.793–0.897), respectively.

3.4 Heatmaps

We use heatmaps to provide insights into regions of the fundus
images that might influence the algorithm’s prediction. Based on the
heatmaps shown in Figure 5, we observed that the regions
highlighted by the algorithm matched well with the clear features
on the fundus image. For the fundus images of the non-cataracts, the
region highlighted by the heatmaps was relatively consistent: large

TABLE 1 Summary of datasets.

Item ZEHWZ dataset ZEHHZ dataset NEH dataset

Total no. of images 7,349 1,211 350

Total no. of qualified images 6,997 1,097 301

No. of subjects 4,346 730 169

Age, mean/range (years) 46.54/5–92 50.70/3–92 48.04/4–87

No. (%) of women 2,333/53.68 425/58.22 99/58.58

Camera model Canon CR-2 PLUS AF (Japan) Canon CR-2 (Japan) RetiCam 3,100 (China)

Training Set (70%) 4,901 Validation Set (15%) 1,048 Test Set (15%) 1,048

Non-cataracts No. (%) 2,141 (43.68) 458 (43.70) 458 (43.70) 405 (36.92) 107 (35.55)

Mild cataracts No. (%) 1808 (36.89) 387 (36.93) 387 (36.93) 560 (51.05) 103 (34.22)

Visually impaired cataracts No. (%) 952 (19.42) 203 (19.37) 203 (19.37) 132 (12.03) 91 (30.23)

ZEHWZ = zhejiang eye hospital at wenzhou; ZEHHZ = zhejiang eye hospital at hangzhou; NEH , ningbo eye hospital.
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range, circular, and centred. For the fundus images of mild cataracts,
the regions highlighted by the heatmaps are smaller, eccentric, oval,
and around the optic disk, For the fundus images of visually
impaired cataracts, the regions highlighted by the heatmaps are
irregular. Figure 5 shows typical heatmaps of non-cataracts, mild
cataracts, and visually impaired cataracts, respectively.

3.5 Classification errors

In the internal and external test datasets, a total of 293 images
(11.98% of the total 2,446) were inconsistent with the diagnostic
reference standard by the DenseNet121 algorithm. In the non-
cataracts group (970 images), 38 images (3.92%) were

misclassified as mild cataracts by the system, 89.47% (34 images)
of which were misclassified due to dark shooting, the region
highlighted by the heatmaps was eccentric and oval, as the mild
cataracts, for the images were slightly darker, slightly defocused or
surrounded by the halo. In the mild cataracts group (1,050 images),
11 images (1.05%) were misclassified as non-cataracts by the system
due to clarity of the fundus images, most of the patients are early
cortical or nuclear cataracts, the highlighted region of the heatmaps
show large range, circular, and centred, as the non-cataracts. 167
(15.90%) images were misclassified as visually impaired cataracts by
the system, of which 65.27% images had relatively poor BCDVA
(BCDVA < 0.5) with blurred fundus images and 10.78% had good
BCDVA (BCDVA between 0.8–1.0) with advanced cortical opacity,
whose fundus images were blurred, the highlighted region of the

FIGURE 3
Performance of deep learning algorithms in the internal test dataset from Zhejiang Eye Hospital at Wenzhou (A) Visualization by t-distributed
stochastic neighbour embedding (t-SNE) of the separability for the features learned by deep learning algorithms. Different coloured point clouds
represent the different categories (B) Confusion matrices describing the accuracies of three deep learning algorithms (C) Receiver operating
characteristic curves indicating the performance of each algorithm for detecting non-cataracts, mild cataracts, and visually impaired cataracts.
“Normal” indicates non-cataracts. “Mild” indicates mild cataract. “Severe” indicates visually impairing cataract.

Frontiers in Cell and Developmental Biology frontiersin.org06

Xie et al. 10.3389/fcell.2023.1197239

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1197239


TABLE 2 Performance of three deep learning algorithms in the internal and external test datasets.

One-vs.-rest
classification

ZEHWZ internal test dataset ZEHHZ external test dataset NEH external test dataset

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

Normal vs mild + severe

DenseNet121 98.3% (97.1–99.5) 98.8% (97.9–99.7) 98.6% (97.8–99.3) 93.3% (90.9–95.8) 99.6% (99.1–100.0) 97.3% (96.3–98.2) 97.2% (94.1–100.0) 99.5% (98.5–100.0) 98.7% (97.4–100.0)

ResNet50 97.8% (96.5–99.2) 98.3% (97.3–99.3) 98.1% (97.3–98.9) 86.2% (82.8–89.5) 99.7% (99.3–100.0) 94.7% (93.4–96.0) 96.3% (92.7–99.9) 99.0% (97.5–100.0) 98.0% (96.4–99.6)

Inception-v3 98.3% (97.1–99.5) 96.9% (95.6–98.3) 97.5% (96.6–98.5) 93.1% (90.6–95.6) 96.4% (95.0–97.8) 95.2% (93.9–96.4) 94.4% (90.0–98.8) 92.3% (88.5–96.0) 93.0% (90.1–95.9)

Mild vs normal + severe

DenseNet121 83.2% (79.5–86.9) 94.1% (92.3–95.9) 90.1% (88.3–91.9) 82.1% (79.0–85.3) 89.0% (86.4–91.7) 85.5% (83.4–87.6) 87.4% (81.0–93.8) 90.9% (86.9–94.9) 89.7% (86.3–93.1)

ResNet50 83.2% (79.5–86.9) 92.6% (90.6–94.6) 89.1% (87.2–91.0) 83.9% (80.9–87.0) 83.6% (80.5–86.7) 83.8% (81.6–86.0) 88.3% (82.2–94.5) 88.9% (84.5–93.3) 88.7% (85.1–92.3)

Inception-v3 80.1% (76.1–84.1) 92.7% (90.8–94.7) 88.1% (86.1–90.0) 80.4% (77.1–83.6) 88.5% (85.8–91.2) 84.3% (82.2–86.5) 72.8% (64.2–81.4) 88.4% (83.9–92.8) 83.1% (73.3–89.3)

Severe vs normal + mild

DenseNet121 84.7% (79.8–89.7) 93.1% (91.4–94.8) 91.5% (89.8–93.2) 75.8% (68.4–83.1) 89.9% (88.1–91.8) 88.2% (86.3–90.1) 83.5% (75.9–91.1) 94.3% (91.1–97.4) 91.0% (87.8–94.3)

ResNet50 80.3% (74.8–85.8) 93.0% (91.3–94.7) 90.6% (88.8–92.3) 74.2% (66.8–81.7) 91.2% (89.4–93.0) 89.2% (87.3–91.0) 81.3% (73.3–89.3) 93.8% (90.6–97.1) 90.0% (86.6–93.4)

Inception-v3 80.8% (75.4–86.2) 93.5% (91.8–95.2) 91.0% (89.3–92.8) 75.8% (68.4–83.1) 90.9% (89.1–92.7) 89.1% (87.2–90.9) 80.2% (72.0–88.4) 95.2% (92.4–98.1) 90.7% (87.4–94.0)

ZEHWZ = zhejiang eye hospital at wenzhou; ZEHHZ = zhejiang eye hospital at hangzhou; NEH = ningbo eye hospital.

“Normal” indicates non-cataracts. “Mild” indicates mild cataracts. “Severe” indicates visually impaired cataracts.
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FIGURE 4
Confusionmatrices and receiver operating characteristic (ROC) curves for three deep learning algorithms performance in two external test datasets.
The t-distributed stochastic neighbour embedding (t-SNE) (A–D) presenting the separability for the features learned by deep learning algorithms in
ZEHHZ and NEH external test datasets. Confusion matrices (B–E) describing the accuracies of two deep learning algorithms in the ZEHHZ and NEH
external test datasets. ROC curves (C–F) indicating the performance of each algorithm for discriminating among non-cataracts, mild cataracts, and
visually impaired cataracts in the ZEHHZ and NEH external test datasets. The performance of two cataract specialists were also indicated (C). ZEHHZ,
Zhejiang Eye Hospital at Hangzhou. NEH, Ningbo Eye Hospital. “Normal” indicates non-cataracts. “Mild” indicates mild cataract. “Severe” indicates visually
impaired cataract.
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FIGURE 5
Saliency maps highlighting regions that the algorithm focuses on when making classification (A) Non-cataracts (B) mild cataracts (C) visually
impaired cataracts. Each category is shown in a pair of an original image (left) and a corresponding heatmap (right). In these heatmaps, hotter areas
(i.e., reds and oranges) are indicative of regions with increased contributions towards the predicted output, and colder regions (blues and greens) might
be indicative of relatively less contribution. For each subgroup, each set of two images (from two different eyes) consistently shows the same region
or feature highlighted by the algorithm.

FIGURE 6
Details of deep learning system error classification in internal and external test datasets. (A) Themisclassfication of the non-cataracts group; (B) The
misclassfication of the mild cataracts group; (C) The misclassfication of the visually impaired cataracts group.

Frontiers in Cell and Developmental Biology frontiersin.org09

Xie et al. 10.3389/fcell.2023.1197239

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1197239


heatmaps was irregular, as the visually impaired cataracts. In the
visually impaired cataracts group (426 images), 77 images (18.08%)
were systematically misclassified as mild cataracts, the heatmaps
show the characteristic of the mild cataracts: smaller, eccentric, oval,
and around the optic disk, because among these classification errors,

most cataracts’ BCDVAs were not too bad (89.61% of the Images
had BCDVA ≥0.1). The misclassification BCDVA situation of the
DLS is shown in Figure 6. Figure 7 shows typical example of
misclassified images of “non-cataract” incorrectly classified as
“mild cataract”, misclassified images of “mild cataract”

FIGURE 7
Typical examples of misclassified images by the DLS (A) Images of “non-cataract” incorrectly classified as “mild cataract”. The fundus image was
around by the halo (B) Images of “mild cataract” incorrectly classified as “non-cataract”. The patient had cataracts in the early stage, BCDVA = 1.0 (C)
Images of “mild cataract” incorrectly classified as “visually impaired cataract”. The patient had advanced cortical opacity, BCDVA = 0.6 (D) Images of “mild
cataract” incorrectly classified as “visually impaired cataract”. Patients with small pupils reduced the amount of light entering their eyes (BCDVA =
0.4) (E) Images of “visually impaired cataract” incorrectly classified as “mild cataract”. The patient had a small-scale posterior subcapsular area,
BCDVA = 0.16.
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incorrectly classified as “non-cataract”, images of “mild cataract”
incorrectly classified as “visually impaired cataract”, and images of
“visually impaired cataract” incorrectly classified as “mild cataract”,
respectively.

3.6 Comparison of the deep learning system
and cataract specialists

In the ZEHHZ dataset, for the classification of non-cataracts,
mild cataracts, and visually impaired cataracts, the cataract specialist
with 3 years of experience achieved accuracies of 98.7% (98.1–99.4),
84.9% (82.7–87.0), and 86.1% (84.1–88.2), respectively, the senior
cataract specialist with 10 years of experience achieved accuracies of
97.3% (96.3–98.2), 83.5% (81.3–85.7) and 86.2% (84.2–88.3),
respectively, and the DLS achieved accuracies of 97.3%
(96.3–98.2), 85.5% (83.4–87.6) and 88.2% (86.3–90.1),
respectively. Our system had comparable performance to that of
cataract specialists in classifying non-cataracts and mild cataracts
and had better performance in classifying visually impaired cataracts
(p < 0.05) (Table 3 and Figure 4C).

4 Discussion

We developed a single-modality DLS using only fundus images
to detect both mild cataracts and visually impaired cataracts in the
general population. Our main finding was that the system based on a
convolutional neural network could discriminate among non-
cataracts, mild cataracts, and visually impaired cataracts, and the
DenseNet121 algorithm had the best performance. In the internal
and two external test datasets, the AUCs of the system based on the
best algorithm were 0.998–0.999, 0.938–0.966, and 0.937–0.977,
respectively, which demonstrated the broad generalizability of
our system. In addition, the unweighted Cohen’s kappa
coefficients were 0.762–0.845, which showed good consistency
between the outcomes of the DLS and the reference standard,

further substantiating the effectiveness of our system. Moreover,
our system has better performance in classifying visually impaired
cataracts than cataract specialists.

The visual function-centric DLS in this study can serve as a
simple, automated, and comprehensive cataract screening
deployment tool. This system only needs to input fundus images
and does not require other time-consuming and labour-intensive
professional ophthalmic operations to obtain the severity of the
patients’ cataract and the range of the best corrected visual acuity. Its
simplicity can be used as an effective tool for community screening
options, especially in resource-poor regions. It can not only screen
for cataracts and but also can tell patients about their eye health.
Moreover, visually impaired cataracts can be screened out and
referred to tertiary eye hospitals.

With the increase in fundus disease-based primary care
programs and community screening programs (Lin et al., 2021;
Ruamviboonsuk et al., 2022), fundus photography is a routine
examination procedure, and the cataract algorithm of this study
can be used as an add-on algorithm to these existing devices with
minimal additional cost to achieve more disease screening functions.
In addition, the blurring of some fundus images caused by severe
cataracts is a common cause of ungradable fundus disease (Scanlon
et al., 2005). Our algorithm can screen out the fundus images of non-
cataracts and mild cataracts because the fundus images of these two
groups have relatively high definition, which can improve the
accuracy of intelligent screening of fundus diseases and reduce
the burden of unnecessary manual classification, enabling more
effective referrals and improving the capacity of the existing
screening programs for eye diseases. The visually impaired
cataracts selected by the algorithm can be referred to a tertiary
eye hospital for treatment. The workflow is shown in Figure 8.

Most of the previous studies on deep learning algorithms for
cataracts based on fundus images focused on the artificial
classification of the blurriness of the fundus images (Xiong et al.,
2017; Zhang et al., 2019; Xu et al., 2020; Yue Zhou and Li, 2020). The
annotations are subjective, and there is no accurate corresponding
clinical guiding significance. In these studies, the application of these

TABLE 3 Performance comparison of DenseNet121 with cataract specialists in the ZEHHZ dataset.

DenseNet121 Specialists A Specialists B P1 P2

Normal vs mild + severe

Sensitivity (95% CI) 93.3% (90.9–95.8) 99.0% (98.0–100.0) 99.8% (99.3–100.0) 0.000 0.000

Specificity (95% CI) 99.6% (99.1–100.0) 98.6% (97.7–99.4) 95.8% (94.3–97.3) 0.065 0.000

Accuracy (95% CI) 97.3% (96.3–98.2) 98.7% (98.1–99.4) 97.3% (96.3–98.2) 0.014 1.000

Mild vs normal + severe

Sensitivity (95% CI) 82.1% (79.0–85.3) 77.0% (73.5–80.5) 73.6% (69.9–77.2) 0.001 0.000

Specificity (95% CI) 89.0% (86.4–91.7) 93.1% (91.0–95.3) 93.9% (91.8–95.9) 0.002 0.000

Accuracy (95% CI) 85.5% (83.4–87.6) 84.9% (82.7–87.0) 83.5% (81.3–85.7) 0.576 0.074

Severe vs normal + mild

Sensitivity (95% CI) 75.8% (68.4–83.1) 75.0% (67.6–82.4) 75.8% (68.4–83.1) 1.000 1.000

Specificity (95% CI) 89.9% (88.1–91.8) 87.7% (85.6–89.7) 87.7% (85.6–89.7) 0.005 0.006

Accuracy (95% CI) 88.2% (86.3–90.1) 86.1% (84.1–88.2) 86.2% (84.2–88.3) 0.012 0.019

ZEHHZ = Zhejiang Eye Hospital at Hangzhou. P1 refers to the p-value that was calculated between the deep learning system and cataract specialist A using the two-sided McNemar test.

P2 refers to the p-value that was calculated between the deep learning system and cataract specialist B using the two-sidedMcNemar test. Cataract specialist A has 3 years of clinical experience.

Cataract specialist B has 10 years of clinical experience. “Normal” indicates non-cataracts. “Mild” indicates mild cataract. “Severe” indicates visually impairing cataract.
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algorithms did not meet the actual situation and needs of the
communities, and most of the previous studies did not consider
the state of visual function. Recently, Tham et al. (2022) developed
an algorithm for the automatic detection of visually significant
cataracts with an AUC of 0.916–0.966. However, their algorithm
can only distinguish visually significant cataracts from mild
cataracts in cataract patients, but our algorithm can further
classify non-cataracts from cataracts, which is of great
significance for cataract screening and eye health guidance in
communities. At the same time, our algorithm can also
distinguish mild cataracts from non-cataracts. Although the
patients only need regular follow-up and observation, we can
give them some suggestions for controlling and delaying the
progression of cataracts, for numerous studies had found that the
risk factors for cataract formation had been associated with lifestyle
and systemic diseases, include smoking, ultra-violet light exposure,
alcohol intake, nutritional status, diabetes mellitus, hypertension,
obesity, chronic kidney disease and autoimmune disease (Ang and
Afshari, 2021). Therefore, we can advise the patients to choose a
healthy lifestyle and control systemic diseases, such as controling
blood sugar well. In addition, in our research, we compared three
different CNN algorithms: DenseNet121, ResNet50, and Inception-
v3. Among them, Densenet121 is the most accurate algorithm. It has
a variety of advantages used in their study when compared to two
other algorithms: alleviating the vanishing-gradient problem,
strengthening feature propagation, encouraging feature reuse, and
substantially improving parameter efficiency (Huang et al., 2019).

Reducing false negative misclassification of visually impaired
cataracts is critical to avoid missing cataract patients who should be
referred to tertiary eye centres for surgical intervention. A total of
18.08% (77/970) of visually impaired cataracts were misclassified as
mild cataracts. Analysis of the misclassified fundus images found

that 89.61% (69/77) of them had moderate visual impairment (0.1 ≤
BCDVA<0.3). The optometry to get BCDVA is subjective and
requires the patient’s cooperation. Some cataract patients with
relatively poor visual acuity might give up their efforts to see
some small optotypes. Therefore, the actual visual acuity of the
patients may be slightly better than the checked visual acuity.
Additionally, this misclassification may be caused by a small-
scale posterior subcapsular cataract. This type of cataract has a
greater impact on visual acuity, while its small-scale turbidity has
less impact on the quality of fundus images (Stifter et al., 2005).
Reducing false positive cataract results for visually impaired
cataracts is also an important consideration in community
screening programs to avoid unnecessary referrals. In this study,
65.27% (109/178) of patients incorrectly diagnosed with cataracts
had BCDVA < 0.5. In some countries, the population in need of
cataract surgery is defined as having BCDVA<0.5, with cataracts as
the main cause of vision impairment or blindness (WHO, 2021).
Referral of these patients would not waste medical resources. Some
patients with advanced cortical opacity have poor contrast
sensitivity, although their visual acuity is good (Maraini et al.,
1994). Therefore, these false positives may still need to be
referred to a tertiary eye centre and cannot be completely
considered incorrect referrals.

This study has several limitations. First, we did not investigate
the influence of corneal diseases and vitreous haemorrhage on
fundus images. However, the incidence of spontaneous vitreous
haemorrhage and corneal opacity in the general population is low,
0.007% (Manuchehri and Kirkby, 2003) and 3.7% (Mukhija et al.,
2020), respectively. If the patient has corneal opacity or vitreous
haemorrhage, he or she must go to the hospital for further
examination, and the recommendation given by the system
would still apply. Second, the optometry is affected by patient

FIGURE 8
Deployment of the DLS in the existing fundus disease screening workflow.
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compliance. Therefore, misclassification due to subjective
measurement errors cannot be completely ruled out.

We developed and evaluated a novel single-modality, fundus
image-based DLS for the detection of cataracts, especially visually
impaired cataracts. The performance of the DLS is comparable to
that of the experienced cataract specialist, indicating that this DLS
can not only be used to screen cataract patients but also facilitate a
timelier and more accurate referral of visually impaired cataract
patients from communities to tertiary eye hospitals.
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