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Abstract of the Dissertation

The Interaction Between Weak Variants of Square and

Other Combinatorial Principles in Set Theory

by

John Susice

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Itay Neeman, Chair

We investigate weak variants of Jensen’s square principle�κ and show that there are a variety

of set-theoretic principles which although inconsistent with �κ, are nonetheless consistent

with one of its weak variants.

It is well-known that�ω1 is inconsistent with Chang’s Conjecture. Sakai, however, showed

that �ω1,2 is compatible with Chang’s Conjecture, assuming the existence of a measurable

cardinal [Sak13]. In light of this, he posed the question of the exact consistency strength of

this conjunction. We answer this question by pushing down Sakai’s large cardinal hypothesis

to an ω1-Erdős cardinal, which is optimal due to work of Silver and Donder [DJK81].

Shelah and Stanley showed that for κ uncountable, �κ implies the existence of a non-

special κ+-Aronszajn tree [SS88]. We show that this result is best possible in the sense that

for any regular κ, �κ,2 is consistent with “all κ+-Aronszajn trees are special” (assuming the

existence of a weakly compact cardinal). Moreover, by employing methods of Golshani and

Hayut [GH16], we are able to establish this consistency result simultaneously for all regular

κ from the existence of class many supercompact cardinals.

Finally, we introduce a weak variant R∗2(ℵ2,ℵ1) of the reflection principle R2(ℵ2,ℵ1)

introduced by Rinot and show that unlike Rinot’s principle our weak variant is consistent

with �(ω2) (though still inconsistent with �ω1).
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CHAPTER 1

Introduction

The study of square sequences is an integral component of modern set theory. Square

sequences were first introduced by Jensen during the course of his research on the fine

structure of L [Jen72]. They are defined as follows:

Definition 1.1. Suppose that κ is some cardinal. A�κ sequence is a sequence ~C = 〈Cα : α <

κ+〉 such that the following hold:

• If α < κ+ is a limit ordinal then α Cα is a club subset of α.

• If α < κ+ is a successor ordinal, say α = ᾱ + 1, then Cα = {ᾱ}.

• (Coherence) If α ∈ LimCβ then Cα = Cβ ∩ α.

• The order type of each Cα is ≤ κ.

We say that �κ holds if a �κ sequence exists.

Observe that such a sequence cannot be threaded, i.e. there is no club C ⊆ κ+ such

that C ∩ α = Cα for all α ∈ LimC. For this reason, square principles are considered to

be canonical examples of incompactness. Moreover, not only are they strong witnesses to

incompactness in and of themselves, they also serve as crucial ingredient in the construction

of many other combinatorial objects which exhibit strong non-compactness properties.

For example, recall the definition of definition of non-reflecting stationary set:

Definition 1.2. Suppose that κ is a regular uncountable cardinal and S ⊆ κ is stationary.

We say that S is non-reflecting if for all α < κ of uncountable cofinality, S ∩ α is non-

stationary.
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Theorem 1.3 ([Jen72]). Suppose that �κ holds. Then there is a non-reflecting stationary

subset of κ+ consisting only of points of countable cofinality.

Proof. Let ~C = 〈Cα : α < κ+〉 be a �κ sequence. For α < κ+ of cofinality ω, let

f(α) = otpCα

Observe that f(α) ≤ κ < α if κ < α < κ+, so by Fodor’s Lemma there is stationary S

consisting of ordinals of countable cofinality such that f � S is constant, i.e. otpCα = otpCβ

for all α, β ∈ S. We claim that S is non-reflecting.

Supposing otherwise, choose γ < κ+ of uncountable cofinality such that S∩γ is stationary

in γ. Since Cγ is club in γ, by assumption we may take two points α < β which both lie in

S ∩ LimCγ. By coherence,

Cα = Cγ ∩ α

Cβ = Cγ ∩ β

and so in particular otpCα < otpCβ, contradicting α, β ∈ S.

One catalyst for the recent interest in the tension between compactness and incompact-

ness in combinatorial set theory has been the proliferation of new weak square principles in

recent years. Foremost among these have been the “Schimmerling Square Principles” �κ,λ

(which are intermediate in strength between �κ and weak square �∗κ) and “Round Bracket

Square” �(κ).

Definition 1.4 ([Sch95]). Suppose that κ is an infinite cardinal and λ is a (potentially finite)

cardinal. A �κ,λ sequence is a sequence ~C = 〈Cα : α ∈ Limκ+〉 such that:

• If α < κ+ is a limit ordinal, Cα is a collection of club subsets of α.

• If α < κ+ is a successor ordinal, say α = ᾱ + 1, then Cα = {{ᾱ}}.

• (Coherence) If C ∈ Cβ and α ∈ LimC, then C ∩ α ∈ Cα.
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• If C ∈ Cα, then otpC ≤ κ.

We say that �κ,λ holds if there exists a �κ,λ sequence.

Observe that �κ is �κ,1 and �∗κ is �κ,κ. The principle �κ,λ decreases in strength as λ

increases, and separation results for these principles were proved in unpublished work by

Jensen as well as in [CFM01].

Definition 1.5 ([Jen72]). Suppose that κ is some infinite cardinal. A �(κ) sequence is a

sequence ~C = 〈Cα : α < κ〉 such that:

• If α < κ is a limit ordinal, Cα is club in α.

• If α < κ is a successor ordinal, say α = ᾱ + 1, then Cα = {ᾱ}.

• (Coherence) If β < κ and α ∈ Lim (Cβ), then Cβ ∩ α = Cα.

• ~C cannot be threaded, i.e. there is no club D in κ such that D ∩ α = Cα for all

α ∈ Lim (D).

Note that �κ implies �(κ).

In Chapter 2 we review the basic properties of posets which force the principles �µ,2, �(κ)

as well as other posets which thread these sequences. These posets will be used extensively

in the subsequent chapters to establish the various consistency results.

In Chapter 3 we establish the consistency of “�ω1,2 + Chang’s Conjecture” from an ω1-

Erdős cardinal and also answer another question of Sakai’s concerning the inconsistency of

square principles with higher Chang’s Conjectures. Work in this chapter is joint with Itay

Neeman.

In Chapter 4 we force the consistency of “�κ,2 + All κ+-Aronszajn trees are special”

from a weakly compact cardinal, and show how the methods of Golshani and Hayut may be

used to establish a global result.
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Finally, in Chapter 5 we introduce our weak variant R∗2(ℵ2,ℵ1) of Rinot’s reflection

principle R2(ℵ2,ℵ1) and obtain the compatibility of this principle with �(ω2) as well as its

incompatibility with �ω1 .
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CHAPTER 2

Forcing to Add �µ,2 and �(κ)

In this chapter we describe two basic posets that we will use to force the weak variants of

square we are concerned with in this thesis. We also introduce threading posets associated

with these sequences and demonstrate how the composition of a poset for adding a square

sequence and another for threading it may be absorbed into a Levy Collapse. The latter

observation will prove essential when we seek to lift elementary embeddings in the following

chapters.

The essential ingredients in the aforementioned absorption results are the following well-

known lemmas, which we will invoke without comment.

Lemma 2.1 (Solovay, see e.g. [Kan09], [Cum10]). Let µ ≤ λ be regular cardinals, and

suppose that P is a < µ-closed poset with |P| = λ which forces |λ| = µ. Then P is forcing

equivalent to Col (µ, λ).

Corollary 2.2. Suppose that κ is an inaccessible cardinal and µ < κ is regular. Suppose

moreover that P is a separative < µ-closed poset with |P| < κ. Then P × Col (µ,< κ) '

Col (µ,< κ).

2.1 The Cummings-Schimmerling Poset

The first poset we describe is one introduced by Cummings and Schimmerling [CS02] which,

given cardinals µ < κ with µ regular and κ inaccessible, will simultaneously collapse κ to

become µ+ and add a �µ,2 sequence.

We will denote this poset by P(µ,< κ). A conditiion p in P(µ,< κ) is a function such
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that:

1. The domain of p is a closed set of ordinals below κ of cardinality < µ.

2. If α ∈ dom p is a successor ordinal, say α = ᾱ + 1, then the unique element of p(α) is

{ᾱ}.

3. If α ∈ dom p is a limit ordinal with cofinality < µ then 1 ≤ |p(α)| ≤ 2 and each element

of p(α) is a club subset of α with order type < µ.

4. If α ∈ dom p is a limit ordinal with cofinality ≥ µ then p(α) = {C}, where C is some

closed subset of α with order type < µ such that maxC = sup (dom p ∩ α).

5. (Coherence) If α ∈ dom p, C ∈ p(α), and β ∈ C, then β ∈ dom p. If moreover

β ∈ LimC, then C ∩ β ∈ p(β).

The ordering of the poset is defined by q ≤ p iff dom q ⊇ dom p and:

(a) q(α) = p(α) for all α ∈ dom p of cofinality < µ.

(b) If α is of cofinality ≥ µ, p(α) = {C}, and q(α) = {D}, then C = D ∩ (maxC + 1).

The Cummings-Schimmerling poset will not be < µ-closed but will still be sufficiently

closed so as to not add bounded subset of µ:

Definition 2.3. Suppose that ν is some ordinal. A poset P is said to be ν-strategically

closed if Player II has a winning strategy in the following game G(P, ν) of length ν:

I p1 p3 · · · pω+1 · · ·

II p2 · · · pω pω+2 · · ·

In this game the two players alternate building a descending chain 〈pξ : 1 ≤ ξ < ν〉 with

Player II playing at all even ordinals (including limits) and Player II loses if he is unable to

make a legal move.

Suppose that µ is some cardinal. We say that P is < µ-strategically closed if it is ν-

strategically closed for all ν < µ.
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Lemma 2.4. Suppose that µ < κ are cardinals with µ regular and κ inaccessible. Then

P(µ,< κ) is < µ-strategically closed and κ-Knaster. Moreover, in the generic extension by

P(µ,< κ), κ = µ+ and �µ,2 holds.

Proof. We prove strategic closure. Fix ν < µ. We define a winning strategy for Player II

in the game G(P(µ,< κ), ν). Suppose that ξ < ν is even and 〈pζ : 1 ≤ ζ < ξ〉 have already

been played.

If ξ is a successor ordinal then Player II plays an arbitrary extension pξ of pξ−1 such that

sup (dom (pξ)) is strictly greater than sup (dom (pξ−1)). Now suppose that ξ is a nonzero

limit ordinal and let

D =
⋃

1≤ζ<ξ

dom (pξ)

We define a condition pξ with domain D̄ = D ∪ Lim (D) which extends all 〈pζ : 1 ≤ ζ < ξ〉.

First, if α ∈ D with cf (α) < µ, we let pξ(α) = pζ(α) for any 1 ≤ ζ < ξ such that

α ∈ dom (pζ). If α ∈ D with cf (α) ≥ µ then for each 1 ≤ ζ < ξ let Cζ be the unique element

of pα(ζ) and let pξ(α) = {C}, where

C =
⋃
ζ<ξ

Cζ ∪
{

sup
⋃
ζ<ξ

Cζ

}
If α ∈ LimD \D is below supD then choose β ∈ D least such that α < β. Note that β must

be a limit ordinal by conditions (2), (5) in the definition of P(µ,< κ). We claim cf (β) ≥ µ.

Suppose otherwise and let E be an element of pξ(β) (note that pξ(β) has already been

defined). If α is not a limit point of E, then let γ be the least element of E above α. Then

α < γ < β, and by condition (5) in the definition of P(µ,< κ) we have γ ∈ D, contradicting

choice of β.

Thus cf (β) ≥ µ as desired, and so if we let E be the unique element of pξ(β) (again,

this has already been defined) then clause (4) in the definition of P(µ,< κ) guarantees

max (E) = α, and we may define pξ(α) = {E}.

7



Finally, if α = supD, let

pξ(α) = {max (dom (pζ)) : 1 ≤ ζ < ξ}

It should be clear that pξ as defined above is a condition in P(µ,< κ) and the strategy

described is a winning strategy for Player II in G(P(µ,< κ), ν).

The rest of the lemma may be proved exactly as in [CS02].

Note that an argument similar to the one above will show that if µ = ℵ1 then P(µ,< κ)

is in fact countably closed.

In the proof of our consistency results it will be crucial that for µ < κ0 < κ1 with µ

regular and κ0, κ1 inacessible, P(µ,< κ0) may be viewed as a factor of P(µ,< κ1). In order

to precisely state the necessary factorization result, we first define two auxilliary posets:

Suppose that ~C = 〈Cα : α < µ+〉 is a �µ,2-sequence. We let T = T~C be the poset of closed

bounded C ⊆ µ+ of order-type < µ such that C threads 〈Cα : α ≤ maxC〉 in the sense

that C ∩ α ∈ Cα for all α ∈ LimC. For C,D ∈ T, we set D ≤ C if and only if D is an

end-extension of C.

Finally, if G is the generic added by P(µ,< κ0), then Q = Qµ,κ0,κ1,G is the poset defined

in V [G] by setting q ∈ Q iff:

(1) The domain of q is a set of limit ordinals in the interval (κ0, κ1) of size < µ.

(2) If α ∈ dom q has cofinality < µ then 1 ≤ |q(α)| ≤ 2 and each element of q(α) is a club

subset of α with order type < µ.

(3) If α ∈ dom q has cofinality ≥ µ then q(α) = {C}, where C is a club subset of α with

order type < µ such that maxC ≥ sup (dom q ∩ α).

(4) (Coherence) If α ∈ dom q, C ∈ q(α), and β ∈ LimC, then:

(A) If β > κ0, then β ∈ dom q and C ∩ β ∈ q(β).

(B) If β < κ0, then C ∩ β ∈ Cβ, where 〈Cβ : β < κ0〉 is
⋃
G.

8



For two elements p, q ∈ Qµ,κ0,κ1,G, we set p ≤ q iff:

(1) dom q ⊆ dom p.

(2) For all α ∈ dom q:

(a) If α has cofinality < µ then p(α) = q(α).

(b) If α has cofinality ≥ µ, p(α) = {C}, and q(α) = {D}, then C is an end-extension of

D.

Lemma 2.5. Suppose that µ < κ0 < κ1 are cardinals with µ regular and κ0, κ1 inaccessible,

and Ġ is the canonical name for the P(µ,< κ0)-generic. Then if we let Ṫ = Ť⋃
Ġ, Q̇ =

Q̌µ,κ0,κ1,Ġ
, there is an isomorphism between a dense subset of P(µ,< κ1) and a dense subset

of P(µ,< κ0) ∗ Ṫ ∗ Q̇. In particular these two forcings are equivalent, and so informally we

may view them as being equal.

Proof. As in [CS02].

Lemma 2.6. Suppose that µ < κ are cardinals with µ regular and κ inaccessible. Let

P = P(µ,< κ), let Ġ be the canonical name for the P-generic, and let Ṫ = Ť⋃
Ġ. Then there

is a dense subset of P ∗ Ṫ which is < µ-closed and so in particular P ∗ Ṫ is forcing equivalent

to Col (µ, κ).

Proof. Let D be the dense set of conditions in P ∗ Ṫ of the form (p, ť) which are flat in the

sense that max (dom p) = max t. We claim that D is as desired. To see this, suppose that

ν < µ is a limit ordinal and let 〈(pξ, ťξ) : ξ < ν〉 be a descending sequence of conditions in

D. We find a lower bound p∗ for 〈pξ : ξ < ν〉 as in the limit case of Lemma 2.4, except that

we set

p∗
(

sup
ξ<ν

(max (dom pξ))
)

= {t∗}

where

t∗ =
⋃
ξ<ν

tξ

9



Then (p∗, ť∗) ∈ D is our desired lower bound. Since D is < µ-closed, |D| = κ, and D forces

|κ| = µ, D is forcing equivalent to Col (µ, κ) by a well-known result due to Solovay (see, e.g.

Lemma 2.3 of [Sak13]).

2.2 Forcing to Add �(κ)

We now describe the forcing introduced by Sakai [Sak13] which, given uncountable regular

κ, introduces a �(κ) sequence.

Definition 2.7 ([Sak13]). Suppose that κ is an uncountable regular κ. Then S = S(�(κ))

is defined as follows: Conditions in S are sequences p = 〈Cα : α ≤ δ〉 (δ < κ) such that

(i) If α ≤ δ is limit, then Cα is a club subset of α.

(ii) If α ≤ δ is a successor ordinal, say α = ᾱ + 1, then Cα = {ᾱ}.

(iii) Cα threads 〈Cβ : β < α〉, i.e. if γ ∈ Lim (Cα), then Cα ∩ γ = Cγ.

We refer to δ as the height of the condition p and write δ = height (p) (note that strictly

speaking, if we view p as a sequence, its length is δ + 1 rather than δ).

Lemma 2.8 ([Sak13]). Suppose that κ is an uncountable regular cardinal. Then S is κ-

strategically closed.

Proof. Consider the game G = G(S, κ) as described in Definition 2.3. We describe a winning

strategy for Player II in this game. First, suppose that ξ = ξ̄+ 1 is an even successor ordinal

and Player I has played pξ̄ at stage ξ̄. Then Player II chooses pξ which strictly extends pξ̄.

Next, suppose that ξ is a limit ordinal. Next, suppose that ξ is a limit ordinal and the

players have played 〈pζ : 1 ≤ ζ < ξ〉. Let

Cξ = {height (pζ) : 1 ≤ ζ < ξ}

Then Player II plays

pξ =
⋃

1≤ζ<ξ

pζ ∪ {(ξ, Cξ)}

10



at stage ξ. By induction we may show that for each limit ξ < κ the set Cξ is club in height (pξ)

and threads
⋃

1≤ζ<ξ pζ . Therefore pξ ∈ S and pξ is a lower bound of 〈pζ : 1 ≤ ζ < ξ〉, showing

that this is a winning strategy as desired.

Lemma 2.9 ([Sak13]). Let κ be an uncountable regular cardinal. Then S(�(κ)) forces �(κ).

Proof. Let S = S(�(κ)) and let G be S-generic over V . We claim that
⋃
G is a �(κ) sequence

in V [G]. First note that for all α < κ Dα = {p ∈ S : height (p) ≥ α} is dense in S by Lemma

2.8. Thus by genericity of G it remains only to verify that
⋃
G may not be threaded in

V [G]. Let C ∈ V [G] be a club in κ and let Ċ be a name such that C = ĊG and 
S “Ċ is

a club.” In order to show that C doesn’t thread
⋃
G, it suffices by genericity to show that

the following set is dense (in V):

EĊ =
{
p ∈ S : p 
 height (p̌) ∈ Lim (Ċ) ∧ Ċ ∩ height (p̌) 6= p̌(height (p̌))

}
To show this, work in V and fix q ∈ S. Recursively construct a descending sequence 〈qn : n <

ω〉 of conditions in S as well as an ascending sequence 〈αn : n < ω〉 of ordinals in κ such that:

• q0 = q.

• For all n < ω, qn+1 
 α̌n ∈ Ċ ∧ α̌n > height (qn).

• αn < height (qn+1)

Let α∗ = supn<ω αn, D = {α2k : k < ω}. Then

p∗ =
⋃
n<ω

qn ∪ {(α∗, D)}

is an element of EĊ below q, as desired.

We now state the definition and basic properties of the threading forcing associated to

these square sequences.
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Definition 2.10 ([Sak13]). Suppose that κ is an uncountable regular cardinal and ~C =

〈Cα : α < κ〉 is a �(κ) sequence. Then the poset for threading ~C is the poset T = T ~C
1

whose conditions are closed bounded subsets D of κ such that if γ ∈ LimD, then D∩γ = Cγ.

The poset is ordered by end-extension.

We also have an analogue of Lemma 2.6 for the forcing S(�(κ)):

Lemma 2.11. Suppose that κ is an uncountable regular cardinal, S = S(�(κ)) is the poset

for adding a �(κ) sequence, and Ṫ = Ť⋃
Ġ, where Ġ is the canonical name for the S-generic.

Then S ∗ Ṫ contains a < κ-closed dense subset.

Proof. Let

D =
{
s ∗ ť ∈ S ∗ Ṫ : t ∈ V ∧ height (s) = max (t)

}
We claim that D is as desired. First we argue for density. With this in mind, let p∗ q̇ ∈ S∗ Ṫ

be arbitrary. By Lemma 2.8 we may take s ≤ p and r ∈ V such that s 
 q̇ = ř. Extending

s if necessary, we may assume without loss of generality that height (s) > max (r). Let

t = r ∪ {height (s)}. Then s ∗ ť is in D and extends p ∗ q̇ as desired.

For < κ-closure, suppose that β < κ is a limit ordinal and 〈sα∗ ťα : α < β〉 is a descending

sequence of elements of D. If we let

t∗ =
⋃
α<β

tα

s∗ =
⋃
α<β

sα ∪
{(

sup
α<β

height (sα), t∗
)}

then s∗ ∗ ť∗ is the desired lower bound of this sequence.

1Recall that the forcing to thread a �µ,2 sequence described in the previous section was also denoted by
T. We trust that no confusion will be introduced by employing the same symbol for both forcings, as in the
following it should be clear from context which type of square sequence we’re threading.
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CHAPTER 3

The Consistency of “�ω1,2 + Chang’s Conjecture” From

an ω1-Erdős Cardinal

3.1 Background

Chang’s Conjecture is a model-theoretic principle asserting a strengthening of the Löwenheim-

Skolem Theorem [Cha65]. Chang’s Conjecture was originally shown to be consistent assum-

ing the existence of a Ramsey cardinal by Silver (see [KM78]) and this assumption was later

weakened to the existence of an ω1-Erdős cardinal [DL89]. This result is best possible, since

Chang’s Conjecture implies that ω2 is ω1-Erdős in the core model [DJK81].

Chang’s Conjecture is known to be incompatible with Jensen’s square principle �ω1 (see

[Tod07]) but was recently shown to be consistent with Schimmerling’s square principle �ω1,2

by Sakai [Sak13], assuming the existence of a measurable cardinal. In light of this consistency

upper bound, Sakai posed the following:

Question 3.1. What is the consistency strength of the conjunction of Chang’s Conjecture

with �ω1,2?

In Corollary 3.11 we show that the consistency of the given statement follows from the

existence of an ω1-Erdős cardinal, answering Sakai’s question. Section 3.2.1 will cover some

basic preliminaries, such as the definition of the relevant square principle and large cardinal.

In Section 3.2.2 we describe our forcing poset. In Silver’s consistency proof, he used what is

now called a Silver forcing poset–a modification of the Levy Collapse forcing which allows

larger supports [KM78]. Cummings and Schimmerling [CS02] have introduced another vari-
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ant of the Levy Collapse forcing which collapses inaccessible κ to ω2 while simultaneously

adjoining a square sequence. Our forcing will be a hybrid of these two posets–in other words

it will be a “Silverized” Cummings-Schimmerling poset.

Finally, in Section 3.2.3 we give the proof of our result, which is based on the methods

of [Sak13] and [DL89].

In Section 3.3 we investigate the relation between weak square principles and model the-

oretic transfer properties (i.e., generalizations of Chang’s Conjecture) of the form (λ+, λ)�

(κ+, κ) for κ ≥ ℵ1. Sakai proved the following:

Theorem 3.2 (Sakai, [Sak13]). Suppose that (λ+, λ) � (κ+, κ), where κ is an uncountable

cardinal and λ is a cardinal > κ. Moreover, suppose that either of the following holds:

(I) λ<λ = λ

(II) κ < ℵω1, and there are strictly more regular cardinals in the interval [ℵ0, κ] than in

the interval (κ, λ].

Then �λ,κ fails.

Although Theorem 3.2 imposes substantial constraints on the interaction of weak square

principles and model theoretic transfer properties, there are many instances where it does

not apply. For example, it does not answer the question of whether (ℵ4,ℵ3) � (ℵ2,ℵ1) is

incompatible with �ω3,2 when 2ℵ2 > ℵ3.

In light of these limitations, Sakai posed the following question:

Question 3.3 (Sakai, [Sak13]). Let κ be an uncountable cardinal and λ a cardinal > κ.

Does (λ+, λ)� (κ+, κ) imply the failure of �λ,2?

We answer this question in the affirmative in Corollary 3.19 (in fact we obtain the failure

of �λ,ω under these hypotheses and more under slightly stronger hypotheses–see Corollaries

3.20 and 3.21). Taking κ = ℵ1, λ = ℵ3 in this theorem shows that indeed (ℵ4,ℵ3)� (ℵ2,ℵ1)

is incompatible with �ω3,2, regardless of the value of 2ℵ2 . Work in this chapter is joint with

Itay Neeman.
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3.2 The Consistency of Chang’s Conjecture and �ω1,2 from an ω1-

Erdős Cardinal

3.2.1 Preliminaries

In the following, for any cardinal θ we denote by H(θ) the collection of all sets whose

transitive closure has size < θ. We frequently confuse a structure and its underlying set.

I.e., if M = 〈M, . . .〉 is a structure and α is an ordinal, we write α ⊆ M to mean α ⊆ M .

All structures we consider have at most countably many symbols in their signature.

Definition 3.4. Chang’s Conjecture is the assertion that for any structure N with ω2 ⊆ N ,

there exists M� N such that |M| = ℵ1 and |M ∩ ω1| = ℵ0.

We observe that to verify Chang’s Conjecture it suffices to verify it for models with

underlying set H(ω2):

Claim 3.5 (Folklore). Suppose that for all structures H = 〈H(ω2) , . . . 〉 there existsM� H

of cardinality ℵ1 such that |M ∩ ω1| = ℵ0. Then Chang’s Conjecture holds.

Proof. This is a standard model-theoretic argument. Suppose that N = 〈N,R1, R2, . . . 〉 is

any structure with ω2 ⊆ N . We may assume without loss of generality that |N | = ℵ2. Let

π : N → H(ω2) be any injection which is the identity on ω2. LetH = 〈H(ω2) , Ñ , R̃1, R̃2, . . . 〉,

where Ñ is a predicate representing membership in π [N ] and R̃i is a predicate representing

Ri in the natural way. By our assumption there is M � H of cardinality ℵ1 such that

|M ∩ ω1| = ℵ0. Pulling back via π, we get the desired submodel of N .

In order to obtain our consistency result, we will need to make use of a large cardinal

hypothesis:

Definition 3.6. A cardinal κ is said to be ω1-Erdős if for any partition f : [κ]<ω → 2, there

is H ∈ [κ]ω1 which is homogeneous for f .
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Lemma 3.7 (Silver). If κ is ω1-Erdős, then for any structure M with κ ⊆ M, there is a

set of indiscernibles I ∈ [κ]ω1 for M. Morever, if M has underlying set H(κ) and includes

among its predicates some C which is a well-ordering of its universe, we may take the set of

indiscernibles I to be remarkable in the sense that for any γ ∈ I, I\γ is a set of indiscernibles

for 〈M, (δ)δ<γ〉.

Proof. See [Kan09].

3.2.2 The Poset

Our poset P is a “Silverized” version of the one described in Section 2.1 in the sense that

we modify the poset described there to allow conditions with ω1-sized support. We define

P = Pκ as follows: set p ∈ P iff p is a function so that

(1) The domain of p is a closed ≤ ω1-sized set of limit ordinals less than κ.

(2) If cf α = ω and α ∈ dom p then 1 ≤ |p (α)| ≤ 2 and each set in p(α) is a club subset of

α with countable order type.

(3) If cf α = ω1 and α ∈ dom p then p(α) = {C} where C is a club subset of α with order

type ω1.

(4) If cf α ≥ ω2 then p(α) = {C} where C is a closed bounded subset of α with countable

order type such that maxC ≥ sup (dom p ∩ α).

(5) If α ∈ dom p, C ∈ p(α) and β ∈ lim (C), then β ∈ dom p and C ∩ β ∈ p(β).

(6) The supremum of otpC taken over all C ∈ p(α), cf α ≥ ω2, is strictly below ω1.

For two elements p, q ∈ Pκ, we set p ≤ q iff:

1. dom q ⊆ dom p

2. For all α ∈ dom q:
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(a) If cf α ∈ {ω, ω1}, then p(α) = q(α).

(b) If cf α ≥ ω2, p(α) = {C} and q(α) = {D}, then C is an end-extension of D in the

sense that D = C ∩ (max (D) + 1).

Lemma 3.8. Suppose that κ is inaccessible. Then P = Pκ is κ-c.c. and countably closed,

and collapses κ to ℵ2 while adding a �ω1,2-sequence.

Proof. The proof is very similar to that of the corresponding result in [CS02]. The fact that

P is κ-c.c. follows from a standard ∆-system argument. If we can show that P is countably

closed, then the second conclusion follows immediately. So suppose that 〈pn : n < ω〉 is a

decreasing sequence of conditions.

Let X be the set of α ∈
⋃
n<ω dom pn such that the value of pn(α) does not eventually

stabilize and let

Y = {sup
n<ω

max pn(α) : α ∈ X}

Observe that Y ∩
(⋃

n<ω dom pn
)

= ∅, since if α ∈ X, then the fact that max (pn(α)) ≥

sup (dom pn ∩ α) for every n gives

sup
n<ω

max pn(α) /∈
⋃
n<ω

dom pn

We will define a condition pω with domain
(⋃

n<ω dom pn
)
∪Y which is a lower bound for

〈pn : n < ω〉. First, if α ∈
⋃
n<ω dom pn \X, let pω(α) be the eventual value of the sequence

〈pn(α) : n < ω〉. If α ∈ X, then set

pω(α) =
⋃
n<ω

pn(α) ∪ {sup
n<ω

max pn(α)}

Finally, if α ∈ Y , then α = supn<ω max pn(β) for a unique β ∈ X, and we set

pω(α) =
⋃
n<ω

pn(β) ∪ {sup
n<ω

max pn(β)}

for this β. We refer to the condition pω defined above as the canonical lower bound of

〈pn : n < ω〉.

17



We also define a threading poset for a given�ω1,2-sequence. Supposing that ~C = 〈Cα : α < ω2〉

is a such a sequence, we let T = T~C be the poset of closed bounded subsets C of ω2 of count-

able order type such that C threads 〈Cα : α ≤ maxC〉 in the sense that C ∩ α ∈ Cα for all α

which are limit points of C.

If C,D ∈ T, then we set C ≤ D if and only if C is an end-extension of D.

Finally, suppose that µ < κ are two inaccessible cardinals. If G is the generic added by

Pµ, then Q = Qµ,κ,G is the poset in V [G] defined by setting q ∈ Q iff:

(a) dom q is a closed ≤ ω1-sized set of limit ordinals in the interval (µ, κ).

(b) If cf α = ω and α ∈ dom q, then 1 ≤ |q(α)| ≤ 2 and each element of q(α) is a club with

countable order type.

(c) If cf α = ω1 and α ∈ dom q then q(α) = {C} where C is a club subset of α with order

type ω1.

(d) If cf α ≥ ω2, then q(α) = {C} where C is a closed bounded subset of α with countable

order type such that maxC ≥ sup (dom q ∩ α).

(e) If α ∈ dom q, C ∈ q(α), and β ∈ limC, then:

(A) If β > µ, then β ∈ dom q and C ∩ β ∈ q(β).

(B) If β < µ, then C ∩ β ∈ Cβ, where 〈Cβ : β < µ〉 is
⋃
G.

(f) The supremum of otpC taken over all C ∈ q(α), cf α ≥ ω2, is strictly below ω1.

For two elements p, q ∈ Qµ,κ, we set p ≤ q iff:

(1) dom q ⊆ dom p

(2) For all α ∈ dom q:

(a) If cf α ∈ {ω, ω1}, then p(α) = q(α).
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(b) If cf α ≥ ω2, p(α) = {C}, q(α) = {D}, then C is an end-extension of D.

Claim 3.9. Suppose that µ, κ are inaccessible cardinals with µ < κ, and Ġ is the canonical

name for the Pµ-generic. Then if we let Ṫ = Ť⋃
Ġ, Q̇ = Q̌µ,κ,Ġ, there is an isomorphism

between a dense subset of Pκ and a dense subset of Pµ∗Ṫ∗Q̇. In particular these two forcings

are equivalent, so informally we may view them as being equal.

Proof. As in [CS02].

3.2.3 The Proof

Theorem 3.10. Suppose that κ is an ω1-Erdős cardinal. Let P = Pκ. Then for any P-generic

G, V [G] satisfies Chang’s Conjecture.

Corollary 3.11. The existence of an ω1-Erdős cardinal is equiconsistent with “Chang’s

Conjecture plus �ω1,2.”

Proof of Corollary 3.11. By Theorem 3.10 and Lemma 3.8 an ω1-Erdős cardinal suffices for

the consistency of Chang’s Conjecture plus �ω1,2. By [DJK81], the consistency of Chang’s

Conjecture implies that of the existence of of an ω1-Erdős cardinal.

Proof of Theorem 3.10. Suppose thatG is a P-generic over V . Then ω
V [G]
2 = κ and (H(κ))V [G] =

H(κ)[G]. Let H = 〈H(κ),∈, Ṙ〉, which we view as a name for a structure H[G] with under-

lying set H(κ)[G] and predicate R = ṘG ⊆ H(κ)[G].

We seek a condition p∗ ∈ P and a name Ȧ for an elementary substructure A of H[G]

such that p∗ forces |Ȧ| = ℵ1, |A ∩ ω1| = ℵ0. With this in mind, let I = {ια : α < ω1} be a

collection of remarkable indiscernibles for H. For each α < ω1, let Iα = {ιδ : δ < ωα} be the

set of the first ωα indiscernibles and let γα = ιωα. Let Mα be the Skolem Hull of Iα in H.

We construct a sequence 〈p∗α : 1 ≤ α < ω1〉 by induction on α so that:

(a) If 1 ≤ α < β < ω1 then p∗β ≤ p∗α.
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(b) p∗α is a master condition for P over Mα.

(c) p∗α is an element of Pγα .

We begin with the base case α = 1. Consider the set P ∩M1 = (PON)M1 , which is a

proper class in M1. Observe that since M1 is elementary in H, M1 satisfies “P has the

<-ON chain condition.” In other words, M1 believes that every antichain in P is a set. For

each antichain A in M1, let A↓ = {p ∈ P : (∃q ∈ A) p ≤ q} be the downwards closure of A.

Let {Ai : i < ω} enumerate the collection of all maximal antichains which are elements of

M1. By induction we may construct a descending sequence {ri : i < ω} of elements of P such

that ri ∈ A↓i ∩M1. Let p∗1 ∈ P be the canonical lower bound for the sequence {ri : i < ω}.

Then p∗1 is a master condition for P over M1 and is an element of Pγ1 , as desired.

Next suppose that α is limit. Choose a sequence 〈αn : n < ω〉 cofinal in α, and let p∗α be

the canonical lower bound for
〈
p∗αn : n < ω

〉
. It should be clear that properties (a)-(c) are

satisfied, since P ∩Mα =
⋃
n<ω (P ∩Mαn), and P ∩Mα = (PON)Mα has the <-ON chain

condition in Mα.

Finally we consider the case where α = ᾱ + 1 is a successor ordinal. We distinguish

between the case where ᾱ is limit and where ᾱ is itself a successor ordinal, considering first

the latter. Since p∗ᾱ was chosen to be a master condition for P over Mᾱ, we have

p∗ᾱ 
Mᾱ[Ġ] � H[Ġ] ∧ON ∩Mᾱ[Ġ] = ON ∩Mᾱ

Consider Mα. By remarkability of the indiscernibles which generate Mα, we have

H(γᾱ) ∩ Mα = Mᾱ and Pγᾱ ∩ Mα = P ∩ Mᾱ. Moreover, p∗ᾱ is a master condition for

the forcing Pγᾱ over the model Mα, since Pγᾱ has the γᾱ-c.c. and therefore every antichain

of Pγᾱ in Mα is as element of H(γᾱ) ∩Mα =Mᾱ. So if we let Ġγᾱ be the canonical name

for the Pγᾱ-generic, then

p∗ᾱ 
Mα[Ġγᾱ ] � H[Ġγᾱ ] ∧ON ∩Mα[Ġγᾱ ] = ON ∩Mα
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Working in V , let Ṫ = Ť⋃
Ġγᾱ

be the canonical name for the threading forcing associated to

Gγᾱ . Let {Ḃi : i < ω} enumerate all names in Mα which are forced by p∗ᾱ to be maximal

antichains of Ṫ. By induction we may construct a descending sequence
{
ťi : i < ω

}
of “check-

names” (by which we mean canonical names for elements of V ) for elements of T = ṪGγᾱ

such that

p∗ᾱ 
 ťi ∈ Ḃ
↓
i ∩Mα[Ġγᾱ ]

where Ḃ↓i is a name for the downwards closure of Bi = Ḃ
Gγᾱ
i in T. Observe that we may

take canonical names for elements of V ťi rather than merely arbitrary names ṫi since p∗ᾱ is

a master condition for Pγᾱ over Mα.

Still working in V , we let

t =
⋃
i<ω

ti

p∗∗ᾱ = p∗ᾱ ∪ {(sup (Mᾱ ∩ κ), {t})}

Then p∗ᾱ ∗ ť is a master condition for Pγᾱ ∗ Ṫ over Mα. Proceeding as above, we may find

q̇ ∈ Q̇ = Qγᾱ,ON,Ġγᾱ
, such that p∗ᾱ ∗ ť ∗ q̇ is a master condition for Pγᾱ ∗ Ṫ ∗ Q̇ overMα. Thus

if we set p∗α = p∗∗ᾱ ∗ ť ∗ q̇, we may view p∗α as a master condition for P overMα which extends

p∗ᾱ. We note that p∗α(sup (Mᾱ ∩ κ)) = {t}.

For nonzero limit ᾱ, the construction is exactly as above, except we modify p∗α(sup (Mᾱ ∩ κ))

to be {t, F}, where t is a master condition for the threading poset associated to the generic for

Pγα (as above) and F = {sup (Mδ ∩ κ) : δ < ᾱ}, rather than merely taking p∗α(sup (Mᾱ ∩ κ))

to be {t}.

Observe that this is the only place in the proof where we use the allowed “two-ness” of

the square sequence. Moreover, in adding F we preserve the coherence property since its

initial segments of limit length were put on the square sequence at earlier successor of limit

stages.
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Finally, at the end of the construction we set

p∗ =
⋃
α<ω1

p∗α ∪
{

(sup (
( ⋃
α<ω1

Mα

)
∩ κ), F ∗)

}
where F ∗ = {sup (Mα ∩ κ) : α < κ}. The construction ensures that this is a condition in

P = Pκ. In particular, successor of limit stages ensure that the initial segments of limit

length of F ∗ appear on the square sequence, and so when adding F ∗ there is no danger of

violating coherence. Moreover, p∗ is a master condition for P over M =
⋃
α<ω1

Mα. Thus

p∗ forces that M[G] is the desired elementary submodel of H[G].

3.3 Chang’s Conjecture vs. Squares

In this section we concern ourselves with generalizations of Chang’s Conjectures to higher

cardinals.

Definition 3.12. Suppose that τ ≤ κ < λ are cardinals. We write (λ+, λ) � (κ+, κ) if for

every structure N with λ+ ⊆ N , there existsM� N such that |M| = κ+ and |M∩λ| = κ.

Similarly, we write (λ+, λ)�τ (κ+, κ) if for every structure N with λ+ ⊆ N , there exists

M� N such that |M| = κ+, |M ∩ λ| = κ, and τ ⊆M.

Observe that Chang’s Conjecture is equivalent to (ℵ2,ℵ1)� (ℵ1,ℵ0) and that (λ+, λ)�

(κ+, κ) is equivalent to (λ+, λ) �ω (κ+, κ) for any infinite cardinals κ < λ. Moreover, we

also have:

Lemma 3.13. Suppose that τ ≤ κ < λ are infinite cardinals and there are at most τ many

cardinals between κ and λ. Then (λ+, λ)�τ (κ+, κ) implies (λ+, λ)�κ (κ+, κ).

Proof. The lemma is implicit in [Sak13]. Specifically, the conclusion of the lemma holds by

following the argument of Case (2) of Lemma 4.15 in [Sak13].

Lemma 3.14. Suppose that τ ≤ κ < λ are infinite cardinals such that λτ = λ. Then

(λ+, λ)� (κ+, κ) implies (λ+, λ)�τ (κ+, κ).
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Proof. Take B = τ in Case (1) of Lemma 4.15 in [Sak13].

In the argument below we make use of the following claim without comment:

Claim 3.15. Suppose that for all sufficiently large θ and all structures H = 〈H(θ),∈, . . . 〉

there exists M� H such that |M ∩ λ+| = κ+, |M ∩ λ| = κ, and τ ⊆M. Then (λ+, λ)�τ

(κ+, κ).

The proof is entirely analogous to that of Claim 3.5.

Lemma 3.16 (Folklore). Suppose that κ < λ are infinite cardinals and θ is a sufficiently large

regular cardinal. Let M be an elementary substructure of 〈H(θ) ,∈〉 such that |M ∩ λ+| = κ+

and |M ∩ λ| = κ. Then the order type of M ∩ λ+ is κ+.

Proof. Suppose otherwise for a contradiction. Since |M ∩ λ+| = κ+, the order type of M∩λ+

must be strictly greater than κ+. Let α be the κ+ element of M ∩ λ+. Observe that α ≥ λ

(since there are only κ many elements of M below λ) and hence by elementarity λ = |α| is

an element of M . Applying elementarity again, there is f ∈ M which is a bijection from α

to λ. In particular,

f“ (M ∩ α) ⊆M ∩ λ

which is a contradiction since the left hand side has cardinality κ+ (since f is a bijection)

whereas the right hand side has cardinality κ.

Lemma 3.17 (Folklore). Suppose that M is an elementary substructure of 〈H(θ) ,∈〉 for

some sufficiently large θ and α ∈ M . Letting µ = cf α, if f ∈ M is an increasing function

from µ into α whose range is cofinal in α, then

sup (f“ (M ∩ µ)) = sup (M ∩ α)
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Proof. Clearly sup (f“(M ∩ µ)) ≤ sup (M ∩ α), since f ∈ M and f : µ → α. For equality,

suppose for a contradiction that

sup (f“(M ∩ µ)) < sup (M ∩ α)

and choose β ∈M ∩ α such that β > sup (f“ (M ∩ α)). By elementarity

M |= (∃ ξ ∈ µ) (f(ξ) > β)

and so choosing ξ0 ∈M ∩ µ to witness the existential statement above we have:

sup (f“(M ∩ µ)) < β < f(ξ0)

an obvious contradiction.

Theorem 3.18. Suppose that κ < λ are uncountable cardinals and τ ≤ κ is infinite. Suppose

moreover that �λ,τ holds. Then (λ+, λ)�τ (κ+, κ) fails.

Corollary 3.19. Suppose that κ < λ are uncountable cardinals and (λ+, λ)� (κ+, κ) holds.

Then �λ,ω fails.

Proof. Immediate from the theorem and the fact that (λ+, λ) � (κ+, κ) is equivalent to

(λ+, λ)�ω (κ+, κ).

Corollary 3.20. Suppose that κ < λ are uncountable cardinals and there are at most

countably many cardinals between κ and λ. Then (λ+, λ) � (κ+, κ) implies the failure of

�λ,κ.

Proof. This follows immediately from Theorem 3.18 and Lemma 3.13 by taking τ = ω.

Observe that the same argument shows that if there are at most τ many cardinals between

κ and λ then (λ+, λ)�τ (κ+, κ) implies the failure of �λ,κ.

Corollary 3.21. Suppose that κ < λ are uncountable cardinals and τ ≤ κ is some infinite

cardinal with λτ = λ. Then (λ+, λ)� (κ+, κ) implies the failure of �λ,τ .
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Proof. Immediate from Theorem 3.18 and Lemma 3.14.

Proof of Theorem 3.18. Suppose for a contradiction that�λ,τ held in conjunction with (λ+, λ)�τ

(κ+, κ), and let ~C = 〈Cξ : ξ < λ+〉 be a �λ,τ sequence. Choose M an elementary substructure

of 〈H(θ) ,∈, ~C〉 (for sufficiently large θ) such that |M ∩ λ+| = κ+, |M ∩ λ| = κ, and τ ⊆M .

Fix a club C∗ ∈ Csup (M∩λ+). By Lemma 3.16, we may choose a club D in sup (M ∩ λ+)

of ordertype κ+. We assume moreover that D consists only of limits of ordinals in M .

Claim 3.22. For all sufficiently large α ∈ C∗, the ordertype of C∗ ∩ α is not an element of

M .

Proof. These ordertypes are distinct elements of λ, and since |M ∩λ| = κ, at most κ of them

can belong to M . Since the cofinality of supC∗ = sup (M ∩ λ+) is κ+, the result follows

immediately.

Claim 3.23. For all sufficiently large α ∈ LimC∗, α /∈M .

Proof. Choose α ∈ LimC∗ and note that C∗ ∩ α ∈ Cα. If α ∈ M , then Cα ⊆ M (since

|Cα| ≤ τ and τ ⊆M) and so in particular C∗ ∩ α ∈M , giving otp (C∗ ∩ α) ∈M . By Claim

3.22, this may happen for only boundedly many α ∈ C∗.

For each α below sup (M ∩ λ+), let α↑ denote the least element of M which is ≥ α.

Claim 3.24. For all sufficiently large α ∈ Lim (C∗ ∩D), α↑ is strictly greater than α.

Proof. Immediate from Claim 3.23.

Now define:

Z =
{
µ ≤ λ : µ = cf (α↑) for unboundedly many α in Lim (C∗ ∩D)

}
Claim 3.25. |Z| ≤ κ.
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Proof. For each α ∈ Lim (C∗ ∩D), α↑ is an element of M below λ+, and therefore its

cofinality is an element of M ∩ (λ+ 1), which has cardinality κ.

Claim 3.26. There is µ ∈ Z with µ ≥ κ+.

Proof. By Claim 3.25, it is enough to find unboundedly many α ∈ Lim (C∗ ∩D) such that

cf (α↑) ≥ κ+.

Fix any α ∈ Lim (C∗ ∩D) large enough for Claim 3.24, with cf (α) = κ. Observe that

there are unboundedly many such α since the ordertype of C∗ ∩ D is κ+. By choice of α,

sup(M ∩ α↑) = α < α↑. Then:

κ = cf α < cf α↑

by Lemma 3.17.

Claim 3.27. |Z| ≥ 2.

Proof. By Claim 3.25, it suffices to find disjoint A1, A2 ⊆ Lim (C∗ ∩D) such that A1, A2 are

unbounded and for any α1 ∈ A, α2 ∈ A2, we have cf (α↑1) 6= cf (α↑2).

To do so, choose distinct regular η1, η2 ≤ κ. Observe that this is possible since κ is

uncountable. Now let

A1 = {α ∈ Lim (C∗ ∩D) : cf α = η1}

A2 = {α ∈ Lim (C∗ ∩D) : cf α = η2}

Clearly A1, A2 are disjoint and unbounded. Moreover, for any α1 ∈ A1, α2 ∈ A2, we have

cf (α↑1) 6= cf (α↑2) by Lemma 3.17.

Now to prove the theorem:

Fix distinct µ1, µ2 ∈ Z with µ1 > µ2 and µ1 ≥ κ+. Fix α1, α2 ∈ Lim (C∗ ∩D), large

enough for Claims 3.22 and 3.23 and with α1 < α2, so that cf (α↑1) = µ1 and cf (α↑2) = µ2.

Fix E ∈M cofinal in α↑2 of ordertype µ2.
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Let

U =
{

sup (C ∩ α↑1) + 1: C ∈
⋃
ξ∈E

Cξ with sup (C ∩ α↑1) < α↑1
}

Claim 3.28. sup (C∗ ∩ α↑1) + 1 ∈ U .

Proof. Note first that C∗∩α↑1 is bounded in α↑1, since otherwise we would have α↑1 ∈ LimC∗,

and as α↑1 > α1 is an element of M this would contradict choice of α1. Now since E is club

in α↑2 and belongs to M , we have α2 = sup (M ∩ α↑2) ∈ E, where the equality follows from

Lemma 3.17. Since C∗ ∩ α2 ∈ Cα2 , and since C∗ ∩ α2 ∩ α↑1 = C∗ ∩ α↑1 is bounded in α↑1, it

follows by definition that sup (C∗ ∩ α↑1) + 1 is in U .

We have U ∈ M by elementarity and since the parameters used are in M . U has

cardinality < µ1 by definition and since µ1 > max (µ2, κ). Since cf (α↑1) = µ1, it follows that

U is bounded in α↑1.

Moreover, since U ∈ M we have supU ∈ M , and since supU < α↑1 it follows that

supU ≤ α1. But this contradicts Claim 3.28, since α1 ∈ C∗ and therefore

sup (C∗ ∩ α↑1) + 1 ≥ α1 + 1 > α1
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CHAPTER 4

The Consistency of “�κ,2 + SATP(κ+)”

4.1 Background

Given some infinite cardinal κ, a κ-Aronszajn tree is a tree of height κ without cofinal

branches all of whose levels have cardinality < κ. By classical results of König and Aronszajn,

respectively, there are no ℵ0-Aronszajn trees but there are ℵ1-Aronszajn trees.

Of particular interest to us are special Aronszajn trees. For any successor cardinal κ+,

we say that a κ+-Aronszajn tree T is special if there exists a function f : T → κ such that

if x <T y then f(x) 6= f(y). Following [GH16], if there are Aronszajn trees of height κ+ and

all such trees are special, we say that the Special Aronszajn Tree Property holds at κ+, and

denote this by SATP(κ+).

By a result of Baumgartner, Malitz, and Reinhardt [BMR70] the forcing axiom MAℵ1

implies SATP(ℵ1). Laver and Shelah [LS81] showed that SATP(ℵ2) is consistent assuming

the existence of a weakly compact cardinal. The forcing which achieves this result is a Levy

Collapse of κ to ℵ2 followed by an iteration of length ≥ κ+ of posets which successively

specialize all new κ-Aronszajn trees arising in the extension.

Golshani and Hayut [GH16] showed that under the same assumption it is consistent

that SATP(ℵ1) and SATP(ℵ2) hold simultaneously, and achieved a global result by showing

that it is consistent that SATP(κ+) holds simultaneously for all regular κ, assuming the

existence of a proper class of supercompact cardinals. This result is achieved by adapting

the methods of [LS81] to specialize all possible names for trees of height κ+ while anticipating

the specialization of trees of height κ.
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We show that the result of Laver and Shelah may be improved by establishing the con-

sistency of SATP(ℵ2) with �ω1,2. By a result of Shelah and Stanley [SS88] SATP(ℵ2) is

incompatible with �ω1 , so this result is optimal. Our result is obtained by using an iteration

similar to that of Laver-Shelah, with the exception that we use a poset of Cummings and

Schimmerling [CS02]–which collapses weakly compact κ to ℵ2 while adding a �ω1,2-sequence

simultaneously–in place of the Levy Collapse.

Furthermore, we show that our methods are compatible with the anticipatory framework

of Golshani and Hayut, and thus we are also able to obtain the analogous global result–

namely the consistency of SATP(κ+) plus �κ,2 for all regular κ.

4.2 Specializing Trees with Anticipation

In this section we review the methods of [GH16] for specializing trees while anticipating

subsequent forcing.

First we introduce the modified Baumgartner forcing which specializes a single tree while

anticipating a single subsequent forcing.

Definition 4.1 ([GH16]). Suppose that µ < κ are regular cardinals in V and I2 ∗ İ1 is a

κ-c.c. two-step iteration which forces κ = µ+. Suppose moreover that Ṫ is an I2 ∗ İ1-name

for a κ-Aronszajn tree, which we view as a subset of κ× µ. Then Bµ,I1(Ṫ ) is defined in V I2

as the poset of partial functions f : κ × µ → µ of size < µ such that if s, t ∈ dom f and

f(s) = f(t), then


V
I2

I1 š ⊥Ṫ ť

The forcing is ordered by reverse inclusion.

If µ is understood (as it usually is) then we suppress the dependence on µ and write

BI1(Ṫ ) in place of Bµ,I1(Ṫ ).

Lemma 4.2 ([GH16]). Suppose µ < κ are regular cardinals and, I2 ∗ İ1 is a κ-c.c. forcing
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which forces κ = µ+, Ṫ is an I2 ∗ I1-name for a κ-Aronszajn tree, and G is I2-generic. Then

in V [G] the following hold:

(a) BI1(Ṫ ) is < µ-closed.

(b) In the extension by the generic for BI1(Ṫ ) there is a function F : κ × µ → µ which is a

specializing function for the tree Ṫ [G] [H] for any I1-generic H.

Now we describe the general form of iterations ~I2 and ~I1 such that ~I2 specializes all

κ-Aronszajn trees while anticipating forcing by ~I1.

Definition 4.3. Suppose that µ < κ < κ+ ≤ δ are regular cardinals in V , and the iterations

~I2 = 〈〈I2
γ : γ ≤ δ〉, 〈J̇2

γ : γ < δ〉〉

~̇I1 = 〈〈İ1
γ : γ ≤ δ〉, 〈J̇1

γ : γ < δ〉〉

are as follows:

• I2
1 = P(µ,< κ), the forcing which collapses κ to µ+ while adding �µ,2.

• I2
γ is the iteration with < µ-support of 〈J̇2

γ′ : γ
′ < γ〉. In other words, if γ is a limit

ordinal of cofinality ≥ µ, then I2
γ is the direct limit of 〈I2

γ′ : γ
′ < γ〉, if γ is a limit

ordinal of cofinality < µ, then I2
γ is the inverse limit of 〈I2

γ′ : γ
′ < γ〉, and if γ = γ̄ + 1

is a successor ordinal then I2
γ = I2

γ̄ ∗ J̇2
γ̄.

• Each İ1
γ is an I2

γ-name for a µ-c.c. poset.

• J̇2
γ is a name for the poset BI1γ (Ṫγ), where Ṫγ is an I2

γ ∗ İ1
γ-name for a κ-Aronszajn tree,

chosen according to some appropriate bookkeeping function.

Then we refer to ~I2 as an “iteration which collapses κ to µ+, adds �µ,2 and specializes all

κ-Aronszajn trees while anticipating the subsequent iteration ~I1” (or some similar locution

for the sake of brevity).
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Definition 4.4 ([GH16]). Suppose that µ < κ < δ are regular cardinals and ~I2 is an

iteration of length δ which collapses κ to µ+, adds �µ,2, and anticipates the iteration ~̇I1 in

the sense described above. Let γ ≤ δ be some ordinal and suppose that M is an elementary

substructure of H(θ) (θ sufficiently large) of cardinality κ such that Vκ ∪M<κ ∪ {γ} ⊆ M

and M contains all relevant parameters. Furthermore, let φ : κ→ M be a bijection and for

all α < κ set Mα = φ“α. We say that ~I2, ~̇I1 are suitable for M , φ, γ if:

(1) For all γ̄ ≤ γ, 
I2γ “İ1
γ̄ is µ-c.c.”

(2) For all α < κ and γ̄ ∈Mα ∩ γ, if:

(a) I2
γ̄ ∩Mα is a regular subposet of I2

γ̄ ∩M .

(b) 
I2γ̄∩M “İ1
γ̄ ∩Mα is a regular subiteration of İ1

γ̄ ∩M .”

(c) Ṫγ̄ ∩Mα is an (I2
γ̄ ∩Mα) ∗ (İ1

γ̄ ∩Mα)-name for an α-Aronszajn tree.

Then forcing with (I2
γ̄ ∩M) ∗ (İ1

γ̄ ∩M)/G, where G is generic for (I2
γ̄ ∩M) ∗ (İ1

γ̄ ∩Mα),

doesn’t add any new branches to the tree named by Ṫγ̄ ∩Mα.

We will need to make use of the following basic lemma about forcings which don’t add

branches to trees:

Lemma 4.5 (Folklore, see [CF98], [KT79]). Suppose that T is a κ-tree and P is a κ-Knaster

poset. Then forcing with P doesn’t add a branch to T .

4.3 Obtaining �ω1,2 + SATP(ℵ2) + SATP(ℵ1)

Theorem 4.6. Suppose that µ < κ < κ+ ≤ δ are cardinals with µ, δ regular and κ weakly

compact. Suppose moreover that

~I2 = 〈〈I2
γ : γ ≤ δ〉, 〈J̇2

γ : γ < δ〉〉

~̇I1 = 〈〈İ1
γ : γ ≤ δ〉, 〈J̇1

γ : γ < δ〉〉
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are two iterations such that ~I2 collapses κ to µ+, adds �µ,2, and specializes all κ-Aronszajn

trees while anticipating ~I1 (in the sense described in the previous section).

Finally, suppose that for all ordinals γ ≤ δ there exists M elementary in H(θ) (θ suf-

ficiently large) of cardinality κ such that Vκ ∪ M<κ ∪ {γ} ⊆ M , M contains all relevant

parameters, and ~I2, ~̇I1 are suitable for M , φ, γ (for some fixed bijection φ : κ → M). Then

the generic extension by I2
δ ∗ İ1

δ satisfies

κ = µ+ ∧�µ,2 ∧ SATP(κ) ∧ 2µ ≥ δ

The majority of the remainder of this section is devoted to giving a proof of this result.

We follow closely the proof of the main theorem in [GH16].

Lemma 4.7. For every γ ≤ δ, I2
γ is < µ strategically closed.

Proof. The forcing I2
γ is a < µ-strategically closed forcing (namely, P(µ,< κ)) followed by

the < µ-support iteration of < µ-closed posets.

Lemma 4.8. For every γ ≤ δ, 
I2γ “İ1
γ is µ-c.c.” and 
I2δ “İ1

γ is µ-c.c.”

Proof. This is immediate from the definition of suitability of ~I2, ~̇I1.

Lemma 4.9. For every γ ≤ δ, I2
γ is κ-Knaster.

Proof. By induction on γ. For the base case, we know I2
1 ' P(µ,< κ) is κ-Knaster by Lemma

2.4. So suppose γ ≤ δ and each I2
γ′ is κ-Knaster for all γ′ < γ. We seek to show that I2

γ is

also κ-Knaster.

If γ is a limit ordinal and µ ≤ cf γ 6= κ this is immediate since any subset of I2
γ of

cardinality κ may be refined to a subset of I2
γ′ of cardinality κ for some γ′ < γ.

If γ is a limit ordinal with cf γ = κ this follows from a ∆-system argument.

Thus suppose that either γ is a limit ordinal with cf γ < µ or γ = γ̄ + 1 for some ordinal

γ̄. Fix M as in the hypothesis of the theorem, and in either case fix an increasing sequence

32



{γi : i < cf γ} in M which is cofinal in γ (if γ = γ̄ + 1 is a successor ordinal we say its

cofinality is 1 and we let γ0 = γ̄, so in this case {γi : i < 1} is cofinal in γ).

Let R be a subset of Vκ which encodes both M and φ (where φ is the bijection from the

hypothesis of Theorem 4.6). Fix a < κ-complete normal filter F on κ which extends the

club filter and satisfies

{α < κ : (Vα,∈, R ∩ Vα) |= ψ} ∈ F

for each formula ψ which is Π1
1 over Vκ. For all α < κ set Mα = φ“α.

Claim 4.10 ([LS81], [GH16]). Assume that γ̄ ∈ γ ∩M , and for all ¯̄γ ∈ γ̄ ∩M we have

that I2
¯̄γ is κ-Knaster and Ṫ¯̄γ is an I2

¯̄γ ∗ İ1
¯̄γ-name for a κ-Aronszajn tree. Then there exists

X = Xγ̄ ∈ F such that for all α ∈ X and ¯̄γ ∈ γ̄ ∩Mα:

1. α is inaccessible.

2. Mα ∩ κ = α.

3. M<α
α ⊆Mα.

4. I2
¯̄γ ∩Mα is a regular subposet of I2

¯̄γ ∩M and is α-c.c.

5. I1
¯̄γ ∩Mα is equivalent to an I2

¯̄γ ∩Mα-name.

6. (I2
¯̄γ ∗ İ1

¯̄γ) ∩Mα is a regular subposet of (I2
¯̄γ ∗ İ1

¯̄γ) ∩M .

7. (I2
¯̄γ ∗ İ1

¯̄γ) ∩Mα forces that T¯̄γ ∩ (α× µ) is an α-Aronszajn tree.

Proof. Let X = Xγ̄ be the set of all α < κ that satisfy these requirements for all ¯̄γ ∈ γ̄∩Mα.

The claim follows immediately from a Π1
1 reflection argument together with the fact that F

extends the club filter. In (7) we make use of the fact that (I2
¯̄γ ∗ İ1

¯̄γ) ∩M forces that T¯̄γ is a

κ-Aronszajn tree, which follows from observing that (I2
¯̄γ ∗ İ1

¯̄γ) ∩M is a regular subposet of

I2
¯̄γ ∗ İ1

¯̄γ (this is itself a consequence of the fact that I2
¯̄γ ∗ İ1

¯̄γ has the κ-c.c., by the inductive

hypothesis).
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Definition 4.11 ([LS81]). A condition p ∈ I2
γ is said to be determined if there is in V a

sequence 〈xξ : 1 ≤ ξ < γ〉 such that for all 1 ≤ ξ < γ, p � ξ 
I2ξ p (ξ) = x̌ξ.

As in [LS81], we may easily observe that the set of determined conditions is dense in I2
γ.

Definition 4.12 ([GH16]). Suppose that p ∈ I2
γ ∩M is some condition and α < κ. Write

p = 〈p(ξ) : ξ < γ〉. Then p � Mα denotes the condition 〈p′(ξ) : ξ < γ〉, where p′(ξ) is the

trivial condition if ξ /∈ Mα and p′(ξ) = p(ξ) ∩Mα otherwise. We say that p is α-compatible

if p �Mα forces that p is a determined condition in (I2
γ ∩M)/(GI2γ ∩Mα).

Claim 4.13. Let X = Xγ̄ be as in the previous claim. Then for every α ∈ X, ¯̄γ ∈ (γ̄ + 1)∩

Mα, p̄ ∈ I2
γ ∩Mα, α-compatible pL, pR ∈ I2

γ ∩M with p̄ = pL �Mα = pR �Mα, and every pair

(ẋL, ẋR) of (I2
¯̄γ ∩M) ∗ (I1

¯̄γ ∩Mα)-names for nodes in T¯̄γ above level α, there are α-compatible

conditions pL∗ , p
R
∗ ∈ I2

γ ∩M , p̄∗ ∈ I2
γ ∩Mα, and a sequence

〈rη, ξη, x̌Lη , x̌Rη : η < ϑ〉

(for some ϑ < µ) in Mα such that:

(a) pL∗ ≤ pL, pR∗ ≤ pR and p̄∗ = pL∗ �Mα = pR∗ �Mα.

(b) For all η < ϑ p̄∗ 
I2γ∩Mα
rη ∈ İ1

γ ∩Mα.

(c) For all η < ϑ, ξη < α and xLη , xRη are elements of {ξη} × µ with xLη 6= xRη .

(d) (pL∗ � ¯̄γ, rη � ¯̄γ) 
 x̌Lη ≤ ẋL and (pR∗ � ¯̄γ, rη � ¯̄γ) 
 x̌Rη ≤ ẋR.

(e) p̄∗ 
I2γ∩Mα
{ṙη : η < ϑ} is a maximal antichain in İ1

γ.

Proof. Suppose α ∈ X, ¯̄γ ∈ (γ̄ + 1)∩Mα, and fix names ẋL, ẋR for nodes in T¯̄γ of level ≥ α

and conditions p̄, pL, pR as in the statement of the claim. It follows from the choice of α

that for any (I2
¯̄γ ∩M) ∗ (İ1

¯̄γ ∩Mα)-generic G the branches in T¯̄γ � α below ẋL, ẋR are not in

V [G ∩ (I2
¯̄γ ∗ I1

¯̄γ) ∩Mα].
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Subclaim 4.14. For any pair (sL, t), (sR, t) of conditions in (I2
γ ∩M) ∗ (İ1

γ ∩Mα) such that

sL, sR are α-compatible and sL � Mα = sR � Mα, there is another pair (qL, r), (qR, r) of

conditions in (I2
γ ∩M) ∗ (İ1

γ ∩Mα) such that:

• (qL, r) ≤ (sL, t) and (qR, r) ≤ (sR, t)

• (qL � ¯̄γ, r � ¯̄γ), (qR � ¯̄γ, r � ¯̄γ) force incompatible values for the branches below ẋL and

ẋR

• qL, qR are α-compatible

• qL �Mα = qR �Mα.

Proof. This is done exactly as in [GH16]. We give the proof for the convenience of the

reader. Suppose the opposite for the sake of a contradiction, and consider pairs (sL, t),

(sR, t) witnessing the negation. Let H be (I2
¯̄γ ∗ İ1

¯̄γ) ∩ Mα-generic with (sL � ¯̄γ) � Mα =

(sR � ¯̄γ) � Mα ∈ H and Ji be (I2
¯̄γ ∩M)/(I2

¯̄γ ∩ H)-mutually generic with (si � ¯̄γ, t) ∈ Ji (for

i ∈ {L,R}).

If Ki is any [(I2
¯̄γ ∗ İ1

¯̄γ) ∩M ]/(H ∗ Ji)- generic (i ∈ {L,R}) then in V [H][Ji][Ki] there is

a branch bi in the tree T¯̄γ ∩ (α× µ) consisting of nodes which lie below xi. Moreover, by

condition (2) of Definition 4.4, we have bi ∈ V [H][Ji] (note, however, that V [H][Ji] may not

recognize that all nodes in bi are below xi, or even that T¯̄γ itself is a tree). Nonetheless, by

condition (1) of Definition 4.4 there exists µi0 < µ and a collection {b̌iξ : ξ < µi0} of names for

elements of V [H][Ji] which are cofinal branches through T¯̄γ ∩ (α× µ) such that in V [H][Ji]

the following holds:


[(I2¯̄γ∗İ
1
¯̄γ
)∩M ]/(H∗Ji)

(
∃ξ < µi0

) (
b̌iξ = ḃi

)
where ḃi is the canonical name for the branch bi described above.

Moreover, by the assumption of the subclaim, there must exist ξL < µL0 and ξR < µR0

such that bLξL = bRξR . Denoting this common value by b, we have

b ∈ V [H][JL] ∩ V [H][JR]
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and since JL, JR were chosen to be mutually generic we have b ∈ V [H]. But this is a

contradiction since (I2
¯̄γ ∗ İ1

¯̄γ) ∩Mα forces T¯̄γ ∩ (α× µ) to be an α-Aronszajn tree.

Invoking this claim, we may find a pair of conditions (pL0 , r0), (pR0 , r0) in (I2
γ∩M)∗(İ1

γ∩Mα)

with pL0 ≤ pL, pR0 ≤ pR, and pL0 � Mα = pR0 � Mα together with ξ0 < α and elements xL0 , xR0

in {ξ0} × µ such that

(pL0 � ¯̄γ, r0 � ¯̄γ) 
 x̌L0 ≤ ẋL

(pR0 � ¯̄γ, r0 � ¯̄γ) 
 x̌R0 ≤ ẋR

Furthermore, we may assume that if we let tL0 be the unique element of pL0 (0)(α) and tR0 be

the unique element of pR0 (0)(α) then

(
pL0 �Mα

)
(0) ∗ ťL0 ,(

pR0 �Mα

)
(0) ∗ ťR0

are flat conditions in P(µ,< α) ∗ Ṫα, where Ṫα = Ť⋃
ĠP(µ,<α)

.

Proceeding inductively, suppose ν < µ and we have defined the pairs (pLη , ṙη), (pRη , ṙη)

in (I2
γ ∩ M) ∗ (İ1

γ ∩ Mα), p̄η in I2
γ ∩ Mα, and ťLη , ťRη in Ṫα ∩ M together with ξη and xLη ,

xRη ∈ {ξη} × µ, such that:

• The sequences 〈pLη : η < ν〉 and 〈pRη : η < ν〉 are decreasing and for each η pLη and pRη

are α-compatible.

• p̄η = pLη �Mα = pRη �Mα.

• p̄η 
I2γ∩Mα
ṙη ∈ İ1

γ ∩Mα.

• For η0 < η1 < ν, p̄η1 
I2δ∩Mα
ṙη0 , ṙη1 are incompatible.

• ξn < α, xLη , xRη ∈ {ξη} × µ and xLη 6= xRη .

• (pLη � ¯̄γ, ṙη � ¯̄γ) 
 x̌Lη ≤ ẋL.

• (pRη � ¯̄γ, ṙη � ¯̄γ) 
 x̌Rη ≤ ẋR.
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• tLη is the unique element of pLη (0)(α).

• tRη is the unique element of pRη (0)(α).

• (pLη � Mα)(0) ∗ ťLη , (pRη � Mα)(0) ∗ ťRη are flat conditions in P(µ,< α) ∗ Ṫα, where

Ṫα = Ť⋃
ĠP(µ,<α)

.

If ν is a successor ordinal let qLν = pLν−1, qRν = pRν−1. Otherwise, let

tLν =
⋃
η<ν

tLη ∪

{
sup

⋃
η<ν

tLη

}

tRν =
⋃
η<ν

tRη ∪

{
sup

⋃
η<ν

tRη

}

and let qLν , qRν be lower bounds of
{
pLη : η < ν

}
,
{
pRη : η < ν

}
such that both tLν , tRν appear on

the (approximations to) square sequences qLν (0), qRν (0). These lower bounds may be seen to

exist by an argument similar to that used to prove strategic closure in Lemma 2.4. Namely,

each initial segment of tLη , tRη of limit order type has already been placed on pLη (0), pRη (0)

for some η < ν, and therefore we may place tLν , tRν on qLν (0), qRν (0) without any danger of

violating coherence. Observe that this is the part of the argument where we exploit the

“two-ness” of the principle �κ,2 (and hence of the poset used to force it). Namely, we seek to

ensure that pL∗ , pR∗ agree on Mα, and so must put both threads on both conditions. Finally,

note that in either case (ν successor or limit) we have qLν , q
R
ν are α-compatible conditions in

I2
γ ∩M and qLν �Mα = qRν �Mα. Let q̄ν = qLν �Mα = qRν �Mα. If

q̄ν 
I2γ∩Mα
{ṙη : η < ν} is a maximal antichain

we halt the construction and set pLν = qLν , pRν = qRν . Otherwise proceed exactly as when

obtaining r0, except now working below sν . Namely, find a condition sν forced to be incom-

patible with every rη (η < ν) and choose (pLν , rν), (pRν , rν), p̄ν , ξν < α, and xLν , x
R
ν ∈ {ξν}×µ

such that:

• (pLν , rν), (p
R
ν , rν) ∈ (I2

γ ∩M) ∗ (İ1
γ ∩Mα).
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• pLν , pRν are α-compatible.

• (pLν , rν) ≤ (qLν , sν) and (pRν , rν) ≤ (qRν , sν).

• p̄ν = pLν �Mα = pRν �Mα.

• (pLν � ¯̄γ, ṙν � ¯̄γ) 
 x̌Lν ≤ ẋL.

• (pRν � ¯̄γ, ṙν � ¯̄γ) 
 x̌Rν ≤ ẋR.

• tLν is the unique element of pLν (0)(α).

• tRν is the unique element of pRν (0)(α).

• (pLν � Mα)(0) ∗ ťLν , (pRν � Mα)(0) ∗ ťRν are flat conditions in P(µ,< α) ∗ Ṫα, where

Ṫα = Ť⋃
ĠP(µ,<α)

By Lemma 4.8 this process terminates after < µ many steps. At its completion we get an

ordinal ϑ < µ, descending sequences 〈pLη : η ≤ ϑ〉 and 〈pRη : η ≤ ϑ〉 of conditions in I2
γ ∩M ,

as well as sequences 〈p̄η : η < ϑ〉, 〈rη : η < ϑ〉, and 〈(ξη, ťLη , ťRη , x̌Lη , x̌Rη ) : η < ϑ〉 such that:

• (pLη , rη), (p
R
η , rη) ∈ (I2

γ ∩M) ∗ (İ1
γ ∩Mα).

• pLη , pRη are α-compatible.

• p̄η = pLη �Mα = pRν �Mα.

• xLη , xRη ∈ {ξη} × µ.

• (pLη � ¯̄γ, ṙη � ¯̄γ) 
 x̌Lη ≤ ẋL.

• (pRη � ¯̄γ, ṙη � ¯̄γ) 
 x̌Rη ≤ ẋR.

• tLη is the unique element of pLη (0)(α).

• tRη is the unique element of pRη (0)(α).

• (pLη � Mα)(0) ∗ ťLη , (pRη � Mα)(0) ∗ ťRη are flat conditions in P(µ,< α) ∗ Ṫα, where

Ṫα = Ť⋃
ĠP(µ,<α)
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Finally, set pL∗ = pLϑ , pR∗ = pRϑ . Then this pair (pL∗ , p
R
∗ ) together with 〈rη, ξη, x̌Lη , x̌Rη : η < ϑ〉

are as desired.

Following [GH16], let us call the sequence 〈(rη, ξη, x̌Lη , x̌Rη ) : η < ϑ〉 an α-separating witness

for the nodes ẋL, ẋR relative to pL∗ , pR∗ . We now continue with the proof of Lemma 4.9:

Claim 4.15. There is X ∈ F such that for every condition p ∈ I2
γ ∩M and α ∈ X there are

conditions pL, pR ≤ p (both in M) such that pL �Mα = pR �Mα and for every γ′ ∈ γ ∩Mα,

any pair of elements above α in dom (pL(γ′))× dom (pR(γ′)) has an α-separating witness in

Mα relative to pL � γ, pR � γ.

We call such a pair (pL, pR) an α-separating pair.

Proof. Recall that we chose a sequence {γi : i < cf γ} cofinal in γ. For each i < cf γ let Xγi

be as in Claim 4.13, and let X =
⋂
i<cf γ Xγi . This X suffices, as may be seen by applying

Claim 4.13 cf γ many times and using the < µ-strategic closure of I2
γ.

Returning to the proof of the κ-c.c., let X be as in Claim 4.15 and let 〈pα : α < κ〉 ∈M

be a sequence of conditions in I2
γ. For every α ∈ X we may extend pα to an α-separating

pair (pLα, p
R
α ) ∈ M . Let sα ∈ Mα be the list of separating witnesses and let p̄α denote

pLα �Mα = pRα �Mα.

The function α 7→ (sα, p̄α) is regressive, and so by normality of F there is a set Y

which is positive with respect to this filter and a pair (s∗, p̄∗) such that for all α ∈ Y

(sα, p̄α) = (s∗, p̄∗). By further thinning we may assume that for every α0, α1 ∈ Y with

α0 < α1 we have pLα0
, pRα1

∈Mα1 . Similarly, we may assume without loss of generality that

{
supp (pLα) ∪ supp (pRα ) : α ∈ Y

}
is a ∆-system with root R.

We claim that for any α0 < α1 in Y , pα0 is compatible with pα1 , as witnessed by the

condition q given by q(γ′) = pLα0
(γ′) ∪ pRα1

(γ′) for every γ′ < γ.
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We must show that q so defined is a condition. Clearly | dom (q)| < µ and so it remains

only to show that q � γ′ forces that q(γ′) is a condition in J̇2
γ′ for all γ′ < γ. We proceed by

induction on γ′. For γ′ = 0 q(γ′) ∈ P(µ,< κ), since pLα0
(γ′), pRα1

(γ′) have identical intersection

with Mα0 and are disjoint above α0.

Now assume γ′ > 0 and q � γ′ is a condition. Without loss of generality Ṫγ′0 is an I2
γ′ ∗ İ1

γ′-

name for a κ-Aronszajn tree, as otherwise J̇2
γ′ is a name for the trivial forcing. We may also

assume γ′ ∈ R, since otherwise q(γ′) is either pLα0
(γ′) or pRα1

(γ′).

In order to show that q � γ′ 
 q(γ′) is a condition we must show that if ẋL, ẋR ∈

dom (q(γ′)) and q � γ′ 
 q(γ′)(ẋL) = q(γ′)(ẋR), then

(q � γ′, 1̇I1
γ′

) 
I2
γ′∗İ

1
γ′
ẋL ⊥ ẋR

Since pLα0
� Mα0 = p̄ = pRα1

� Mα1 , we may assume without loss of generality that both ẋL,

ẋR are names for nodes above level α0. Letting s∗ = 〈rη, ξη, x̌Lη , x̌Rη : η < ϑ〉 be our fixed

separating witness, we have:

(pLα0
� γ′, ṙη � γ

′) 
 x̌Lη ≤ ẋL

(pRα1
� γ′, ṙη � γ

′) 
 x̌Rη ≤ ẋR

By the induction hypothesis q � γ′ is a condition extending both pLα0
� γ′ and pRα0

� γ′ and so

in particular, since x̌Lη 6= x̌Rη , for all η < ϑ we have

(q � γ′, ṙη � γ
′) 
 ẋL ⊥Ṫγ′ ẋ

R

Since {ṙη : η < ϑ} is forced to be a maximal antichain, we have

(q � γ′, 1̇I2
γ′

) 
 ẋL ⊥Ṫγ′ ẋ
R

as desired.

Remark. It behooves us to observe that the proof of Lemma 4.9 actually gives us something

stronger–namely that for any S ⊆ δ such that I2
δ � S is a regular subposet of I2

δ , and for any

I2
δ � S-generic K, the quotient I2

δ/K is κ-Knaster. The proof of this is almost identical to that
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of Lemma 4.9, but we must observe that every name Ṫγ for a κ-Aronszajn tree considered

in the iteration remains a name for a κ-Aronszajn tree in V [K]. This is true since any such

tree is κ-Aronszajn (in fact, special) in V [K][L], where L is generic for I2
δ/K.

From Lemmas 4.8 and 4.9 we have

Lemma 4.16. For all γ ≤ δ I2
γ ∗ İ1

γ has the κ-c.c.

Lemma 4.17. Let I = I2
δ ∗ İ1

δ be as above and suppose that G is I-generic over V . Then:

(a) µ remains a cardinal in V [G], (µ+)V [G] = κ, and (µ++)V [G] = (κ+)V .

(b) V [G] |= 2µ ≥ δ.

(c) V [G] |= �µ,2.

Now we are ready to complete the proof of Theorem 4.6.

Lemma 4.18. Suppose that X ∈ V [G] and X ⊆ κ. Then X ∈ V [GI2γ∗İ1γ ] for some γ < δ.

Proof. Immediate from Lemma 4.16.

Lemma 4.19. The poset I forces SATP(κ).

Proof. Suppose that T is an κ-Aronszajn tree in V [GI] and let Ṫ be a canonical name for

it. Then for some γ < δ it is an Iγ-name and Ṫ = Ṫγ. By construction of the forcing poset,


Iγ+1 “Ṫ is special” and since V [GIγ+1 ] and V [GI] have the same cardinals T remains special

in the latter generic extension.

This concludes the proof of Theorem 4.6.

Corollary 4.20. Suppose that there is a weakly compact cardinal. Then in some generic

extension of V the following holds:

�ω1,2 + SATP(ℵ2) + SATP(ℵ1)
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Proof. Let κ be weakly compact and let

~I2 = 〈〈I2
γ : γ ≤ δ〉, 〈J̇2

γ : γ < δ〉〉

~̇I1 = 〈〈İ1
γ : γ ≤ δ〉, 〈J̇1

γ : γ < δ〉〉

be two iterations such that ~I2 collapses κ to ℵ2, adds �ω1,2, and specializes all κ-Aronszajn

trees while anticipating ~̇I1–where ~̇I1 is an ~I2-name for the Baumgartner forcing–i.e. a finite

support iteration of posets of finite approximations to specializing functions of trees chosen

according to some appropriate bookkeeping function. For each ordinal γ ≤ δ let M be an

arbitrary elementary substructure of H(θ) (θ sufficiently large) of cardinality κ such that

Vκ ∪M<κ ∪ {γ} ⊆ M and M contains all relevant parameters, and let φ : κ → M be an

arbitrary bijection. Then ~I2, ~̇I1 are suitable for M , φ, γ by the remark after the proof of

Lemma 4.9 together with [BMR70]. Therefore the result follows immediately from Theorem

4.6.

4.4 The Global Result

Using the methods of [GH16] we are able to obtain our result simulaneously at ω many

successive cardinals.

Theorem 4.21. Let µ be an uncountable regular cardinal and assume that there are ω

many supercompact cardinals above µ. Then there is a generic extension of V in which

�µ+n,2 + SATP(µ+n+1) holds for all n ≥ 0. Furthermore, if µ = ℵ1, we may ensure that

SATP(ℵ1) holds as well.

Proof. Let 〈κn : n < ω〉 be an increasing sequence of indestructibly supercompact cardinals

above µ and let δ = (supn<ω κn)++. In the following it will be convenient to write κ−1 = µ.

If µ = ℵ1, let R = ω ∪ {−1}, and otherwise let R = ω. Let h : δ \ {0} → R be a function

such that for all n ∈ R, h(α) = n for unboundedly many α < δ. We define an iteration

~I = 〈〈Iγ : γ ≤ δ〉, 〈J̇γ : γ < δ〉〉
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as well as auxilliary forcings Iγ(> κn), İγ(κn), and İγ(< κn) for n ∈ R, γ ≤ δ such that:

(a) Iγ ' Iγ(> κn) ∗ İγ(κn) ∗ İγ(< κn)

(b) Iγ(> κn) is < κn-strategically closed.

(c) For all n ≥ 0, 
Iγ(>κn) İγ(κn) is κn-c.c. and < κn−1- strategically closed, and for n = −1,


Iγ(>κn) İγ(κn) is c.c.c.

(d) For all n ≥ 0, 
Iγ(>κn)∗İγ(κn) İγ(< κn) is κn−1-c.c. and < µ-closed.

Set I1 =
∏

n<ω P(κn−1, < κn), where the product is taken with full support, and then let

• I1(< κn) =
∏

m<n P(κm−1, < κm) for n ≥ 0 and is the trivial forcing for n = −1.

• I1(κn) = P(κn−1, < κn) for n ≥ 0 and is the trivial forcing for n = −1.

• I1(> κn) =
∏

m>n P(κm−1, < κm), also taken with full support.

Now suppose that 2 ≤ γ ≤ δ and we have already defined Iγ′ , Iγ′(> κn), İγ′(κn), and

İγ′(< κn) for all γ′ < γ and n ∈ R. We define Iγ, İγ(> κn), and İγ(< κn) as follows:

• If γ is a limit ordinal then Iγ is the set of all p with domain γ such that p � γ′ ∈ Iγ′ for

all γ′ < γ, for all n ≥ 0 we have | supp (p) ∩ h−1(n)| < κn−1, and for n = −1 we have

| supp (p) ∩ h−1(n)| finite.

• If γ = γ̄ + 1 is a successor ordinal and n = h(γ̄) then let Ṫγ̄ be an Iγ̄-name for a

κn-Aronszajn tree chosen according to some bookkeeping function, and let

Iγ = Iγ̄ ∗ ḂIγ̄(<κn)(Ṫγ̄)

Observe that ḂIγ̄(<κn)(Ṫγ̄) is an Iγ̄(> κn−1)-name (if n = −1 we mean here that it is

an Iγ̄-name) and so may be viewed as an Iγ̄(κn)-name in the extension by Iγ̄(> κn).

For n ∈ R let

Iγ(> κn) =

{
p ∈ Iγ : p(0) ∈ I1(> κn) ∧ supp (p) \ {0} ⊆

⋃
m>n

h−1(m)

}
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Then Iγ(> κn) is a regular subforcing of Iγ. We let İγ(κn) be an Iγ(> κn)-name for the poset

Iγ(κn) =
{
p ∈ Iγ : p(0) ∈ I1(κn) ∧ supp (p) \ {0} ⊆ h−1(n)

}
and let İγ(< κn) be an Iγ(> κn) ∗ İγ(κn)-name for the poset

Iγ(< κn) =

{
p ∈ Iγ : p(0) ∈ I1(< κn) ∧ supp (p) \ {0} ⊆

⋃
m<n

h−1(m)

}

Observe that Iγ ' Iγ(> κn) ∗ İγ(κn) ∗ İγ(< κn).

Lemma 4.22. Let G>κn be generic for Iγ(> κn) and Ġκn be an Iγ(> κn)-name for the

generic for İγ(κn). If n ≥ 0, then V [G>κn ] |= “Iγ(κn) is < κn−1-strategically closed” and

V [G>κn ∗ Ġκn ] |= “İγ(< κn) is < µ-strategically closed.”

Proof. Clearly

V [G>κn ] |= Iγ(κn) is < κn−1-strategically closed

since Iγ(κn) may be defined as an iteration with < κn−1-support in V [G>κn ] where each

iterand has the requisite closure. The fact that

V [G>κn ∗ Ġκn ] |= İγ(< κn) is < µ-strategically closed.

may be argued similarly.

Lemma 4.23. Let G>κn, Ġκn be as in the statement of Lemma 4.22. Then V [G>κn ] |=

“Iγ(κn) is κn-Knaster” and V [G>κn ∗ Ġκn ] |= “İγ(< κn) is κn−1-Knaster.” Moreover, we

actually have V [G>κn ] |= “Iγ(κn)/L is κn-Knaster,” for any L which is generic for a regular

subiteration of Iγ(κn).

Proof. We prove these simultaneously using induction on n. For each m > n let Gκm denote

the generic for Iγ(κm) and let Ṫ(κm) = Ť⋃
Ġκm

be the Iγ(κm)-name for the poset which

threads
⋃
Gκm with conditions of size < κm−1. An argument similar to that given in Lemma
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2.6 tells us that Iγ(κm) ∗ Ṫ(κm) is < κm−1-closed. Moreover, it is clear that this poset forces

|κm| = κm−1 and has size ≤ δ. Let Ṫ(> κn) be the Iγ(> κn)-name for

T(> κn) =
∏
m>n

T(κm)

where T(κm) = Ṫ(κm) [Gκm ] and the product is taken with full support. Then Iγ(> κn) ∗

Ṫ(> κn) is < κn-closed, forces |κm| = κn for all m > n, and has cardinality ≤ δ, and

so there is a regular embedding from Iγ(> κn) ∗ Ṫ(> κn) into Col (κn, δ)–in fact we have

Col (κn, δ) ' (Iγ(> κn) ∗ Ṫ(> κn))× Col (κn, δ). Let (G>κn ∗ Ḣ>κn)×Kn be generic for the

latter poset.

Then to show that Iγ(κn) is κn-Knaster in V [G>κn ] it suffices to show that it satisfies this

property in V [(G>κn ∗ Ḣ>κn)×Kn]. But (Iγ(> κn) ∗ Ṫ(> κn))× Col (κn, δ) ' Col (κn, δ) is

< κn-directed closed and therefore κn is supercompact (and in particular weakly compact)

in V [(G>κn ∗ Ḣ>κn) ×Kn]. Thus Iγ(κn) is κn-Knaster in this generic extension by Lemma

4.9 from the proof of Theorem 4.6. More precisely, we apply Lemma 4.9 to the pair ~Iγ(κn),

~̇Iγ(< κn). Note that in order to do so we must have that this pair is suitable (with regard

to sufficiently closed elementary substructures of H(θ)) in the sense of Definition 4.4. But

part (1) of this definition follows from the inductive hypothesis of the current lemma and

part (2) follows from Lemma 4.5 in conjunction with the inductive hypothesis.

For the “moreover” part of the lemma, use the remark after the proof of Lemma 4.9

rather than Lemma 4.9 itself.

Finally, for the second part of the lemma, recall that by the inductive hypothesis we have

V [G>κn−1 ∗ Ġκn−1 ] |= “İγ(< κn−1) is κn−2-Knaster”

Since G>κn−1 = G>κn ∗ Ġκn , Iγ(< κn) ' Iγ(κn−1) ∗ İγ(< κn−1), and V [G>κn−1 ] |= “İγ(κn−1)

is κn−1-Knaster” by the inductive hypothesis, we have

V [G>κn ∗ Ġκn ] = V [G>κn−1 ] |= İγ(< κn) is κn−1-Knaster

as desired.
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Now Theorem 4.21 follows immediately from Lemmas 4.22 and 4.23.

Finally we may use an Easton-support iteration of the ω-block posets given by Theorem

4.21 exactly as in [GH16] to obtain a global result:

Theorem 4.24. Assume that there are class many supercompact cardinals with no inacces-

sible limit. Then there is a class forcing extension of V in which �κ,2 + SATP(κ+) holds for

all regular κ.
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CHAPTER 5

A Weak Stationary Reflection Principle and �(ω2)

5.1 Background and Basic Definitions

The goal of this chapter is to introduce the weak reflection principle R∗2(ℵ2,ℵ1) and show

that it is compatible with �(ω2). To that end we begin in this section by introducing all

relevant definitions and observing some basic properties of the relevant forcing posets. In

Section 5.2 we give the proof of the consistency result, which uses ideas of [Mag82] together

with strong closure properties of the poset to add �(κ) (as well as its composition with the

associated threading poset). The proof proceeds by iterating shooting ω1-closed unbounded

subsets of reflection points for partitions of ω2 into stationary sets (in a sense to be precisely

described below).

Definition 5.1. Suppose that µ is a regular cardinal. We say that a set X of ordinals is

µ-closed if whenever α is a limit point of X of cofinality µ, α is an element of X.

Definition 5.2. Suppose that X is a set of ordinals. Then the the trace of X is given by:

Tr (X) = {α : cf α ≥ ω1 ∧X ∩ α is stationary in α}

If X is a stationary subset of some cardinal κ and α ∈ Tr (X), we refer to α as a reflection

point of X and say X reflects at α.

For a cardinal κ and uncountable regular µ < κ, let Eκ
µ = {α < κ : cf α = µ}, Eκ

<µ =

{α < κ : cf α < µ}. Assaf Rinot introduced the following principle:

• R2(κ, µ): For every partition Eκ
<µ =

⋃
i<µ Si of Eκ

<µ there exists j < µ and a µ-closed

set C ⊆ Eκ
µ such that for all α ∈ C,

⋃
i<j Si is stationary in α.
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An easy argument shows this to be equivalent to the following:

• For every partition Eκ
<µ =

⋃
i<µ Si of Eκ

<µ there exists j < µ and µ-closed C ⊆ Eκ
µ such

that for all α ∈ C there exists i < j with Si stationary in α.

Assaf Rinot showed that R2(ℵ2,ℵ1) is inconsistent with �(ω2) [Rin16]. We repeat the

argument for the reader’s convenience. Suppose �(ω2) and R2(ℵ2,ℵ1) held simultaneously

and let 〈Cα : α < ω2〉 be a �(ω2)-sequence. By [Rin14] we may assume without loss of

generality that for all j < ω2 {α : minCα = j} is stationary. Let Si, i < ω1 be given by:

Si =


{α < ω2 : minCα = i} i 6= 0

{α < ω2 : minCα = 0 ∨minCα ≥ ω1} i = 0

By R2(ℵ2,ℵ1), there exists 1 ≤ j < ω1 and ω1-closed D ⊆ Eω2
ω1

such that for every α ∈ D

there exists i < j such that Si reflects at α. Using stationarity of Sj, fix α ∈ D ∩ Sj. Then

minCα = j and so Lim (Cα) is disjoint from Si for all i < j, which contradicts stationarity

of
⋃
i<j Si in α.

We introduce a weaker reflection principle R∗2(κ, µ) and show that although R∗2(ℵ2,ℵ1)

is nontrivial (in the sense that it is not a consequence of ZFC) it is consistent with �(ω2).

R∗2(κ, µ) will be the following principle:

• For every partition Eκ
<µ =

⋃
i<µ Si of Eκ

<µ there exists µ-closed D ⊆ Eκ
µ such that for

all α ∈ D some Si is stationary in α.

Note that the difference between R∗2(κ, µ) and Rinot’s principle R2(κ, µ) is that there is no

bound j on i.

Claim 5.3. R∗2(ℵ2,ℵ1) is incompatible with �ω1 (and hence in particular is not a consequence

of ZFC).

Proof. Suppose that �ω1 holds and let 〈Cα : α < ω2〉 witnesses this. I.e.,

• Cα is club in α for all limit α < ω2.
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• otp (Cα) ≤ ω1 for all α < ω2.

• (Coherence) If α is a limit point of Cβ then Cα = Cβ ∩ α

Define Si, i ≤ ω1 by:

Si = {α : otpCα = i}

If R∗2(ℵ2,ℵ1) were to hold, then in particular there would exist β ∈ Eℵ2
ℵ1

and i ≤ ω1 with Si

stationary in β. But this is impossible since |Lim (Cβ) ∩ Si| ≤ 1 by coherence.

In the following, for µ < κ we frequently confuse functions f : Eκ
<µ → µ with the associ-

ated partitions Eκ
<µ =

⋃
i<µ S

f
i , where Sfi = {α < κ : f(α) = i}.

Definition 5.4. If κ is some cardinal, µ < κ is regular uncountable and f : Eκ
<µ → µ is

some partition of Eκ
<µ into µ many pieces, let A(f) denote the poset of all µ-closed bounded

D ⊆ Eκ
µ such that for all α ∈ D there exists i < µ with α ∈ Tr (Sfi ), ordered by end-extension.

We will later have occasion to use the following well-known lemma:

Lemma 5.5 ([Bau76], [Mag82]). Suppose that κ is some uncountable regular cardinal and

S ⊆ κ is stationary. Suppose moreover that P is a countably closed forcing notion and G is

P-generic. Then S remains stationary in V [G].

5.2 The Proof

Theorem 5.6. Suppose that there is a weakly compact cardinal. Then in some generic

extension of V , �(ω2) holds in conjunction with R∗2(ℵ2,ℵ1).

Proof. The idea of the proof is to collapse weakly compact κ to become ℵ2, force to add

�(κ), and then iterate club-shooting posets as in [Mag82].

Assume that in the ground model V we have 2κ = κ+. Let C = Col (ω1, < κ) and let Ṡ

be a name for the poset which adds �(κ) in V C, as in Definition 2.7. Working in V C∗Ṡ, let

~I = 〈〈Iγ : γ ≤ κ+〉, 〈J̇γ : γ < κ+〉〉
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be an iteration with ≤ ω1-support such that for each γ < κ+ J̇γ is an Iγ-name for A(ḟγ),

where ḟγ is some Iγ-name for a partition of Eκ
ℵ0

into ℵ1 many pieces chosen according to

some bookkeeping function for exhausting them (see [Mag82] for details). Let I denote Iκ+

and let G ∗ Ḣ ∗ İ be generic for C ∗ Ṡ ∗ İ. We claim that the generic extension by G ∗ Ḣ ∗ İ

is as desired.

Lemma 5.7. V [G ∗ Ḣ] |= “for all γ ≤ κ+, Iγ is countably closed and satisfies the κ+-c.c.”

Proof. Standard.

Let Ṫ = Ť⋃
Ḣ be a name for the poset in V C∗Ṡ which threads

⋃
H. The main claim of

the proof is the following:

Lemma 5.8. For all γ < κ+ the following hold:

(A) V C |= “forcing with S ∗ İγ ∗ Ṫ doesn’t introduce bounded subsets of κ”. In other words,

(κ<κ)V
C∗Ṡ∗İγ∗Ṫ

= (κ<κ)V
C
. In particular, (κ<κ)V

C∗Ṡ∗İγ
= (κ<κ)V

C
.

(B) V C∗Ṡ∗İγ∗Ṫ |= “There exist unboundedly many α ∈ Eκ
ℵ1

such that α ∈ Tr (S
ḟγ
i ) for some

i < ω1.” Equivalently, V C∗Ṡ∗İγ satisfies the same.

Proof. We proceed by induction on γ. For (A), suppose that Ẏ is a C ∗ Ṡ ∗ İγ ∗ Ṫ-name for

a bounded subset of κ. Let M̃ be an elementary substructure of H(θ) for sufficiently large

θ such that

γ ∪ (κ+ 1) ∪
{
Ẏ ,C ∗ Ṡ ∗ İγ ∗ Ṫ

}
⊆ M̃

and M̃ has cardinality κ. Let M be the transitive collapse of M̃ . Observe that Ẏ and

C ∗ Ṡ ∗ İγ are elements of M .

By weak compactness of κ there exist transitive N and an elementary embedding j : M →

N with critical point κ. Letting G be M -generic for C, we may lift j to an embedding

j : M [G]→ N [G∗]

50



where G∗ is N -generic for j(C) = Col (ω1, < j(κ)). Arguments as in [Mag82] show that

C ∗ Ṡ ∗ İγ, j � C ∗ Ṡ ∗ İγ are elements of N . By Lemmas 2.11, 2.2 the poset C ∗ Ṡ ∗ İγ ∗ Ṫ

embeds regularly into j(C) and so there is a C ∗ Ṡ ∗ İγ ∗ Ṫ-generic of the form G ∗ Ḣ ∗ İ ∗ J̇

(where G is as above) which is an element of N [G∗].

Working in N [G∗] and letting S = ṠG, H = ḢG∗ , J = J̇G
∗
, we have that

⋃
H ∪

{(κ, {
⋃
J})} ∈ j(S) is a master condition for the embedding j : M [G] → N [G∗], and so we

may lift this to an embedding

j : M [G ∗ Ḣ]→ N [G∗ ∗ Ḣ∗]

where Ḣ∗ names a generic for j(S). Finally, let Iγ = İG∗Ḣγ , I = İG∗Ḣ , and let p∗ be given by

p∗ =
⋃

(j“I) ∪ {(j(α), κ̌) : α < γ}

Note that p∗ ∈ N [G∗ ∗ Ḣ∗], since j � Iγ ∈ N [G∗ ∗ Ḣ∗]. We claim that p∗ is a master condition

for the embedding j : M [G ∗ Ḣ] → N [G∗ ∗ Ḣ∗], i.e. that p∗ ∈ j(Iγ) and p∗ ≤ j(p) for all

p ∈ I. Provided p∗ is a condition in j(Iγ) the latter is immediate, and so we concentrate on

proving p∗ is in fact such a condition.

Let 〈Ĩδ : δ < j(γ)〉 be j(〈Iδ : δ < γ〉) and let 〈 ˙̃fδ : δ < j(γ)〉 be j(〈ḟδ : δ < γ〉). We show

by induction on δ ≤ j(γ) that p∗ � δ is in Ĩδ. If δ is a limit point or is not an element of j“γ

then this is immediate from the inductive hypothesis and the definition of p∗. Thus suppose

that δ = ε + 1 is a successor ordinal with δ (and hence ε) in j“γ. Write δ = j(δ̄), ε = j(ε̄).

By the inductive hypothesis p∗ � ε ∈ Ĩε, so to show p∗ � δ ∈ Ĩδ we need only to show that

p∗ � ε 
Ĩε p
∗(ε) ∈ A( ˙̃fε).

With this in mind, choose some Ĩε-generic I∗ε 3 p∗ � ε. We seek to show

N [G∗][H∗][I∗ε ] |= p∗(ε)[I∗ε ] ∈ A( ˙̃fε)

By the inductive hypothesis p∗ � ε ∈ Ĩε and by definition it extends j(p � ε̄) for each p ∈ I.

Therefore j : M [G][H]→ N [G∗][H∗] may be lifted to

j : M [G][H][Iε̄]→ N [G∗][H∗][I∗ε ]
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where Iε̄ = I ∩ Iε̄. By definition of p∗ we have

p∗(ε)[I∗ε ] =
⋃
p∈I

j(p(ε̄)[Iε̄]) ∪ {κ}

=
⋃
p∈I

p(ε̄)[Iε̄] ∪ {κ}

since j(p(ε̄) [Iε̄]) = p(ε̄)[Iε̄] for each p ∈ I. Since κ is the critical point of the elementary

embedding j, we have f̃ε � κ = fε̄, and since each p(ε̄)[Iε̄] is an ω1-closed subset of κ such

that for all α ∈ p(ε̄)[Iε̄], α ∈ Tr (Sfε̄i ) for some i < ω1, it remains only to show that κ itself

is a point of reflection. In other words we must show that

N [G∗][H∗][I∗ε̄ ] |= (∃i < ω1)
(
Sfε̄i is stationary in κ

)
Recall that H∗, I∗ε are generic for the countably closed posets j(S), Ĩε = j(Iε̄) respectively.

Therefore by Lemma 5.5, it suffices to show that

N [G∗] |= (∃i < ω1)
(
Sfε̄i is stationary in κ

)
Recall that G∗ is generic for j(C) = Col (ω1, < j(κ)). Moreover, C ∗ Ṡ ∗ İε̄ ∗ Ṫ is countably

closed, and so

j(C) ' C ∗ Ṡ ∗ İε̄ ∗ Ṫ ∗ Col (ω1, < j(κ))

Therefore we may write G∗ ' G ∗ Ḣ ∗ İε̄ ∗ J̇ ∗ K̇, where K̇ names another generic for

Col (ω1, < j(κ)). Since this poset is countably closed, by Lemma 5.5 again it suffices to show

that

N [G][H][Iε̄][J ] |= (∃i < ω1)
(
Sfε̄i is stationary in κ

)
which is itself implied by

V [G][H][Iε̄][J ] |= (∃i < ω1)
(
Sfε̄i is stationary in κ

)
But the statement above is immediate since κ remains a cardinal in V [G][H][Iε̄][J ] by part

(A) of the inductive hypothesis, and so long as κ remains a cardinal, in any partition of κ
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into ω1 many sets, at least one of the sets in the partition is stationary. This concludes the

proof that p∗ is a master condition, and therefore allows us to lift the embedding to

j : M [G][H][I]→ N [G∗][H∗][I∗]

Finally, it is easy to see that
⋃
J is a T-master condition for the embedding above, and so

we may lift j one more time to

j : M [G][H][I][J ]→ N [G∗][H∗][I∗][J∗]

for some j(T)-generic J∗ 3
⋃
J . Moreover, the argument above shows that this is witnessed

by some master condition m ∈ N [G∗]. Now we are done by an argument as in [Mag82].

The key point is that j(Ẏ )[G∗ ∗ Ḣ∗ ∗ İ∗ ∗ J̇∗] = Ẏ [G ∗ Ḣ ∗ İ ∗ J̇ ] ∈ N [G∗], and hence by

elementarity Ẏ [G ∗ Ḣ ∗ İ ∗ J̇ ] ∈M [G].

For (B), first note that it suffices to show that the desired result holds in V C∗Ṡ∗ ˙Iγ by part

(A). With this in mind, let G ∗ Ḣ ∗ İ be generic for C ∗ Ṡ ∗ İγ, and let

j : M [G][H][I]→ N [G∗][H∗][I∗]

be a generic elementary embedding as in the proof of part (A). Furthermore, let β < κ be

arbitrary. We seek to show that

M [G][H][I] |= (∃α < κ) (∃i < ω1)
(
α > β ∧ α ∈ Tr (S ḟ

γ
i )
)

By elementarity it suffices to show

N [G∗][H∗][I∗] |= (∃α < j(κ)) (∃i < ω1)
(
α > β ∧ α ∈ Tr (S

˙̃
f
j(γ)
i )

)
But the veracity of the latter statement may be witnessed by taking α = κ, by an argument

identical to that in part (A).

Lemma 5.9. The forcing C ∗ Ṡ ∗ İκ+ has the κ+-c.c.

Proof. Standard, using the fact that we assumed 2κ = κ+ in the ground model.
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Now Theorem 5.6 follows from Lemmas 5.7, 5.8, and 5.9. More precisely, Lemmas 5.7,

5.9 give preservation of ω1 and all cardinals ≥ κ+ and Lemma 5.8 gives preservation of κ

(which becomes ℵ2) and shows that the posets A(fγ) add closed unbounded sets witnessing

R∗2(ℵ2,ℵ1).
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