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11UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San 
Francisco, California 94143, USA

Abstract

Increased overall survival for patients with glioma brain tumours is associated with mutations in 

the metabolic regulator isocitrate dehydrogenase 1 (IDH1). Gliomas develop within a 

mechanically challenged microenvironment that is characterized by a dense extracellular matrix 

(ECM) that compromises vascular integrity to induce hypoxia and activate HIF1α. We found that 

glioma aggression and patient prognosis correlate with HIF1α levels and the stiffness of a tenascin 

C (TNC)-enriched ECM. Gain- and loss-of-function xenograft manipulations demonstrated that a 

mutant IDH1 restricts glioma aggression by reducing HIF1α-dependent TNC expression to 

decrease ECM stiffness and mechanosignalling. Recurrent IDH1-mutant patient gliomas had a 

stiffer TNC-enriched ECM that our studies attributed to reduced miR-203 suppression of HIF1α 
and TNC mediated via a tension-dependent positive feedback loop. Thus, our work suggests that 

elevated ECM stiffness can independently foster glioblastoma aggression and contribute to 

glioblastoma recurrence via bypassing the protective activity of IDH1 mutational status.

Malignant gliomas are a highly heterogeneous group of brain tumours that exhibit diverse 

invasiveness, aggressiveness and treatment responsiveness. Diffuse lower-grade gliomas 

(LGGs, World Health Organization (WHO) grades II and III) demonstrate highly variable 

clinical behaviour ranging from indolent to rapidly progressive1. LGGs often recur as 

glioblastomas (GBMs, WHO grade IV glioma), which are inarguably the most advanced and 

lethal adult brain tumour, with poor treatment responsiveness and a high recurrence rate 

contributing to poor patient outcome.

Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) characterize the majority 

of LGGs and a small percentage of GBMs, and define subtypes that associate with better 

responses to radiation treatment and an improved prognosis compared with gliomas with 

wild-type (WT) IDH1–4. Oncogenic IDH mutations divert metabolic flux resulting in high 

levels of (R)-2-hydroxyglutarate, an onco-metabolite implicated in hypoxia-inducible factor 

1 alpha (HIF1α) stability, epigenetic modifications and extracellular matrix (ECM) 

remodelling5. The relationship between IDH mutations and downstream HIF1α signalling 

remains unclear with conflicting reports suggesting elevated HIF1α protein in IDH-mutant 

tumours6 or, conversely, blunted hypoxia sensing through HIFα mediated by elevated 

activity of prolyl 4-hydroxylases7. As tumours are characterized by altered tissue-level and 

cellular mechanics, including ECM remodelling and stiffening, and a stiffened ECM can 

compromise blood vessel integrity to induce hypoxia and activate HIF1α (refs 8–10), we 

investigated the interplay between IDH1 mutation status, ECM mechanics, HIF1α signalling 

and GBM aggression.

Results

ECM stiffness associates with IDH1 mutations in primary tumours

To determine whether glioma aggression associates with ECM stiffness, we utilized atomic 

force microscopy (AFM) to quantify the stiffness11 of the ECM in a cohort of fresh-frozen 
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human brain biopsies representing non-tumour gliosis, de novo (primary) LGGs (WHO 

grades II and III) and de novo primary GBMs (WHO grade IV). We determined that gliotic 

tissue had the lowest ECM stiffness (Young's modulus, E;10–180 Pa) while LGGs (50–1,400 

Pa) and GBMs (70–13,500 Pa) were progressively stiffer (Fig. 1a). Consistent with the 

elevated ECM stiffness, mechanosignalling increased progressively from gliotic tissue to the 

stiffer GBMs, as indicated by higher phosphorylated focal adhesion kinase (pFAK residue 

Tyr397) and myosin light chain 2 (pMLC2 residue Ser19) (Fig. 1b). NanoString nCounter 

gene expression analysis12 of an outcome-predictive gene cluster13 (aggressiveness binned 

on a scale of 1–10 with 1 indicating the most aggressive) of human GBM tissue biopsies 

indicated a significant correlation between the proportion of highly stiff areas within a GBM 

tissue (E >1,400 Pa) and worst patient prognosis score (Fig. 1c, red). By contrast, those 

tissues that contained a high proportion of soft ECM regions (E < 200 Pa) had the best 

patient prognosis score13 (Fig. 1c, blue).

Interestingly, despite a strong overall correlation between ECM stiffness and glioma grade, 

relatively stiff and compliant subsets of patient tumours were evident in both the LGG and 

GBM samples. To explore this finding, we assessed the IDH1 mutational status in our cohort 

of patient samples. Mutations in IDH genes characterize the majority of LGGs and a small 

percentage of GBMs1–4. For both the LGG and GBM samples, we noted that the stiffness of 

the ECM in the R132H IDH1 tumours was significantly less than the ECM measured in the 

WT IDH1 tumours (Fig. 1d,e). To this end, the R132H IDH1 GBM samples exhibited 

mechanical characteristics more concordant with the LGG samples (Fig.1d,e). R132H IDH1 

GBM samples also had lower pFAK and pMLC2 levels, reflecting reduced 

mechanosignalling (Fig. 1f). These data demonstrate that ECM stiffness correlates with 

glioma aggression and that IDH1 mutational status associates with a softer ECM, regardless 

of histological grade.

TNC modifies ECM stiffness and mechanosignalling

To examine the relationship between IDH mutation and ECM stiffness, we used a candidate 

approach to profile major ECM constituents in GBM, hyaluronic acid (HA), and HA-

interacting molecules14,15. Immunohistochemistry revealed that the elevated ECM stiffness 

in the patients with poorer prognosis was accompanied by a substantial increase in HA 

expression as well as increased levels of TNC, and indicated that these levels increased 

progressively from gliosis to LGGs and to the GBMs (Fig. 2a and Supplementary Fig. 

2a,b)16. Importantly, ECM stiffness did not correlate with levels or distribution of type I 

collagen, vasculature or cellularity (Supplementary Fig. 1a–g). Indeed, a survey of the ECM 

status of the softer ECMs in the IDH1-mutant human GBM biopsies revealed a reduction in 

the levels of TNC (Fig. 2b). Further, bioinformatics analysis of publicly available messenger 

RNA expression data1 revealed a significant correlation between IDH1 mutational status and 

TNC expression in LGG tumours, with stratification of LGG patients by TNC upregulation 

revealing reduced patient survival (Fig. 2c,d).

Similarly, IDH1 mutational status correlated significantly with TNC mRNA expression in 

GBM17,18 tumours (Fig. 2e). NanoString nCounter gene expression analysis12 of TNC 

expression (where lower scores correspond to lower expression) in GBM samples yielded a 

Miroshnikova et al. Page 3

Nat Cell Biol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant correlation between TNC and the tumour aggressiveness score derived via the 

outcome-predictive gene expression signature (where lower scores correlated with reduced 

overall survival, Fig. 2f).

Consistent with a relationship between IDH1 mutational status, ECM stiffness and glioma 

aggression, ectopic expression of the R132H IDH1 mutation significantly improved the 

survival of nude mice bearing xenografts derived from either primary GBM cells or the U87 

cell line (Fig. 2g and Supplementary Fig. 2c,d). The resultant tumours were also softer and 

exhibited reduced mechanosignalling, as revealed by decreased pMLC2 and pFAK (Fig. 2h 

and Supplementary Fig. 2e,f). In both the primary and U87 xenograft models, we noted that 

the softer IDH1-mutant-expressing GBM tumours had low to negligible TNC expression 

(Fig. 2i and Supplementary Fig. 2g).

To experimentally test the role of TNC in ECM stiffness and glioma aggression, we knocked 

down TNC in primary GBM cells (WT IDH1, Supplementary Fig. 2h,i) and assessed the 

resulting effects on ECM stiffness and tumour aggression. Nude mice injected orthotopically 

with GBM cells with short hairpin RNA (shRNA)-reduced TNC not only survived longer 

(Fig. 2j), but the tumours were softer and had lower mechanosignalling, as revealed by 

reduced pFAK and pMLC2 (Fig. 2k,l). These findings demonstrate that TNC can impact 

glioma aggression by increasing ECM stiffness and suggest a molecular role for IDH1 

mutational status in perturbing this relationship.

HIF1α directly regulates TNC expression

Interestingly, we noted that compliant ECM regions in xenograft tumours with TNC 

knocked down (Fig. 2j–l) had reduced HIF1α expression19 (Supplementary Fig. 3a,b). 

Previous work implicated hypoxia and HIF1α signalling in TNC expression20,21. A 

bioinformatics analysis revealed a strong correlation between TNC mRNA upregulation and 

expression of hypoxia-induced genes in both WT and R132H IDH1 patient GBMs (Fig. 3a), 

and expression of carbonic anhydrase 9 (CA9), a HIF1α-target gene, was reduced in R132H 

tumours (Fig. 3b). Accordingly, we explored the relationship between GBM aggression and 

HIF1α-induced TNC expression.

TNC protein expression increased in (WT IDH1) human GBM cells cultured in vitro under 

hypoxia (Fig. 3c and Supplementary Fig. 3d,e). shRNA-mediated knockdown of HIF1α 
reduced hypoxia-dependent induction of TNC (SupplementaryFig.3c–f). To investigate the 

role of reduced HIF1α expression in vivo, we orthotopically injected the WT IDH1 primary 

GBM cells with shRNA-reduced HIF1α. Consistent with a direct link between HIF1α and 

TNC expression, reducing HIF1α expression increased survival and reduced 

mechanosignalling (Fig. 3d,e). Importantly, reducing HIF1α expression significantly 

correlated with reduced TNC mRNA and protein expression levels (Fig. 3f,g).

To determine whether HIF1α directly regulates TNC expression, we identified putative 

hypoxia-response elements in the promoter of TNC (provided in the Methods). We 

performed chromatin immunoprecipitation assays using HIF1α as the bait in WT IDH1 

human GBM cells and found that HIF1α binds directly to the TNC promoter as indicated by 

co-precipitation of HIF1α with the TNC promoter (Fig. 3h). As expected, this interaction 
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was largely dependent on HIF1α stabilization under reduced oxygen tension (1% O2, 

hypoxia, Fig. 3h). These data suggest that tissue mechanics and HIF1α could modify glioma 

aggression via a positive feedback loop.

R132H IDH1 primary GBMs cannot tune HIF1α

The presence of the IDH1 mutation could enhance GBM patient survival by increasing the 

production of the onco-metabolite (R)-2-hydroxyglutarate, which can induce genome-wide 

methylation alterations and alter cellular redox state to promote cellular transformation5,22. 

IDH1 could also influence tumour phenotype by regulating HIF1α (refs 6,7,23,24). 

Analysis of WT and R132H IDH1 GBM xenografts revealed that R132H IDH1 tumours had 

low to barely detectable nuclear HIF1α (and TNC) despite evident necrosis (asterisks) and 

hypoxia (Fig. 4a and Supplementary Fig. 3g).

Immunoblot analysis confirmed that the IDH1-mutant GBMs had significantly reduced total 

tissue HIF1α protein (Fig. 4b) suggesting a profound dysregulation of the hypoxic response 

in xenograft tumours expressing the R132H IDH1 mutation.

Experimentally, we observed a lack of upregulation of either HIF1α or TNC in R132H 

IDH1 GBM cells cultured in vitro under hypoxia, a finding that was recapitulated with 

experimental models endogenously expressing R132H IDH1 (Fig. 4c and Supplementary 

Fig. 4a–c). When we ectopically expressed a constitutively active HIF1α (CA-HIF)25 in the 

R132H IDH1 cells, we found a robust upregulation of TNC expression both under normoxia 

and hypoxia (Fig. 4c and Supplementary Fig. 4c). Importantly, survival was decreased in 

mice bearing orthotopic R132H IDH1 GBM tumours expressing the constitutively active 

HIF1α (CA-HIF) compared with vector-only tumours (Fig. 4d). Consistently, both 

mechanosignalling and TNC were elevated in constitutively active HIF1α tumours (Fig. 4e, 

f). These data suggest that the R132H IDH1 mutation blunts hypoxia sensing to reduce 

HIF1α-dependent TNC expression, and provide a potential explanation for why patients 

bearing tumours with mutations in IDH experience improved survival.

Mechanosignalling promotes R132H IDH1 tumour aggression

While IDH mutations may confer prolonged survival in glioma patients suffering from 

gliomas, IDH-mutation-bearing gliomas still frequently recur despite surgical resection and 

treatment26,27. Standard of care for GBM patients involves surgical resection followed by 

high-dose radiation treatment and chemotherapy. These treatment modalities can cause 

dramatic changes in the post-treatment tumour microenvironment, including the deposition 

and remodelling of ECM molecules, which we and others have shown to be associated with 

stromal stiffening28. Accordingly, we asked whether the post-treatment (secondary) IDH1-

mutant GBMs were stiffer than the patient-matched primary LGG or GBM tumours. AFM 

analysis of secondary IDH1-mutant patient GBMs revealed highly stiff ECMs that were 

significantly stiffer than those measured in primary IDH1-mutant GBMs and were as stiff, if 

not stiffer, than those measured in primary WT IDH1 GBMs (Fig. 5a left compared with 

Fig. 1e). Indeed, mechanical analysis of patient-matched IDH1-mutant GBM pairs, at initial 

diagnosis (primary tumour) and at recurrence (secondary tumour excised after treatment 

with gamma radiation and temozolomide chemotherapy), revealed a remarkable increase in 
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the stiffness of the associated ECMs in the secondary IDH1-mutant GBMs (Fig. 5a, right). 

Further, we noted a strong increase in TNC expression in secondary tumours for both LGG 

and GBM patient cohorts (Fig. 5b).

As such, we explored whether we could increase the aggression of R132H IDH1 GBM cells 

by enhancing mechanosignalling through plating the cells on a stiff substrate. We plated the 

R132H IDH1 GBM cells on two-dimensional polyacrylamide (PA) gels with a calibrated 

stiffness ranging from very soft (140 Pa, representing normal brain29,30) to stiff (6,000 Pa, 

representing the upper range of elastic moduli in GBM samples, as presented in Fig. 1d). We 

compared their characteristic cell spreading behaviour and found that R132H IDH1 cells 

spread better on stiff substrates (Fig. 5c). When R132H IDH1 cells were subjected to 

hypoxia, they showed a robust upregulation of HIF1A, TNC and Glut1 expression (Fig. 5d). 

By contrast, when plated on a soft substrate analogous to the soft ECMs we measured in 
vivo, they showed a blunted hypoxia sensing response (Fig. 5d). These findings indicate that 

a stiffened ECM overrides the blunted hypoxia sensing conferred by expression of the 

mutant R132H IDH1.

To directly assess whether enhancing mechanosignalling could override the blunted hypoxia 

sensing conferred by the R132H IDH1 gene, we ectopically expressed an auto-clustering β1 

integrin mutant (V737N) in the R132H IDH1 cells to recapitulate downstream stiffness-

dependent mechanosignalling through elevation of FAK signalling29. We found that R132H 

IDH1 GBM cells expressing the auto-clustering V737N mutated β1 integrin spread similarly 

on the soft and stiff substrates (Fig. 5c). Consistent with cell spreading, V737N R132H 

IDH1 GBM cells responded to hypoxia largely independently of the underlying substrate 

stiffness with robust increases in HIF1α, TNC and Glut1 expression levels on both soft and 

stiff substrates (Fig. 5d). These data indicate that ECM stiffness can induce HIF1α and 

suggest that the relationship between IDH1 mutation and hypoxia sensing through HIF1α 
may be largely dependent on the stiffness of the ECM micro environment of the tissue.

We performed xenograft injections of R132H IDH1 cells expressing either WT or V737N β1 

integrin to test whether enhancing cellular mechanosignalling in mutant GBMs would 

increase tumour aggression and, if so, whether this increase would be associated with 

elevated HIF1α and TNC expression. Survival was decreased in mice bearing the V737N β1 

tumours compared with WT β1 tumours (Fig. 5e). Tumours derived from R132H IDH1 

GBM cells expressing the V737N integrin demonstrated increased mechanosignalling (Fig. 

5f), and expressed elevated levels of both HIF1α and TNC (Fig. 5g). In contrast, R132H 

IDH1 GBM tumours expressing WT β1 integrin had low to negligible HIF1α and TNC 

protein expression, despite pronounced hypoxia (Fig. 5g). Interestingly, V737N tumours 

were substantially stiffer than control tumours (Fig. 5h), suggesting a positive feedback 

whereby elevated mechanosignalling increases TNC expression to increase ECM stiffness. 

These findings further link GBM aggression to tissue mechanics, and suggest that elevated 

mechanosignalling can bypass the protective activity imparted by the R132H IDH1 to 

promote tumour aggression.
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miR-203 targets HIF1α and TNC

Next, we explored the putative positive feedback whereby elevated mechanosignalling 

increases TNC expression to increase ECM stiffness. We previously found that ECM 

stiffness regulates microRNA expression to alter tumour progression, including miR-203, a 

microRNA implicated in GBM aggression, recurrence, and treatment responsiveness9,31–34. 

We found that R132H IDH1 cells expressed fivefold higher levels of miR-203 on soft PA 

gels compared with stiff gels (Fig. 6a). Further, we identified several putative consensus sites 

in the 3′ UTRs of both HIF1α and TNC mRNA (Supplementary Fig. 5a). Consistent with 

the hypothesis that tissue mechanics may induce HIF1α and TNC in GBMs expressing the 

mutant IDH1 by reducing levels of miR-203, reporter assays using the wild-type and 

mutated 3′UTR consensus sites confirmed that miR-203 interacts with and inhibits HIF1α 
transcription at three out of three predicted sites and TNC at one of two predicted sites (Fig. 

6b). Experimentally, we tested whether antagomiR-mediated knockdown35 of miR-203 

could elevate HIF1α and TNC levels in R132H IDH1 GBM cells grown in culture (on a soft 

ECM where miR-203 levels are elevated) and in vivo (Supplementary Fig. 5b). Consistent 

with a mechanistic interaction, we observed elevated HIF1α and TNC levels in R132H 

IDH1 GBM cells with reduced miR-203 (ant-203) compared with vector controls 

(Supplementary Fig. 5c,d), with a significant correlation between their protein expression 

(Fig. 6c). Importantly, orthotopically injected R132H IDH1 tumours with reduced miR-203 

exhibited decreased survival (Fig. 6d), increased TNC expression (Fig. 6e), and elevated 

ECM stiffness (Fig. 6f).

Next, we assessed the expression of miR-203 in our patient-matched primary and secondary 

tumours, using in situ and quantitative PCR, and found that the stiffer secondary tumours 

exhibited reduced miR-203 expression compared with their patient-matched primary tumour 

counterparts for patients who originally presented with either LGG or GBM tumours (Figs 

5a and 6g). Taken together, these data suggest that tumour therapy may contribute to the 

development of more aggressive IDH1-mutant GBMs by increasing ECM stiffness and 

reducing miR-203 expression (Fig. 6h).

Discussion

Here, we establish a clinically relevant role for ECM mechanics in glioma aggression. We 

link HIF1α-dependent hypoxia sensing and TNC expression with an aggressive tumour 

phenotype, and demonstrate that ECM stiffness directly represses miR-203 expression to 

activate HIF1α-dependent TNC deposition via a positive feedback loop. The relationship 

between IDH1 mutations and HIF1α is controversial6,7,24,36,37. Our studies highlight the 

cellular plasticity and sensitivity of R132H IDH1 GBM cells to ECM stiffness and oxygen 

tension. In all likelihood, mutations in IDH1 will exert a myriad of context-dependent effects 

to varying consequence depending on the origin of the tumour, the stage of the disease, the 

oxygen tension within the tumour and the duration of the disease. Gain-of-function IDH 

mutations often induce a CpG island methylator phenotype (G-CIMP)22,38 that is associated 

with improved outcome38. IDH mutations are most prevalent in LGG, which, as a result of 

being less proliferative and diffusely infiltrative, may be less hypoxic than higher-grade 

GBMs1,39,40. Therefore, LGGs frequently have a relatively long disease course where the 
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long-term effect of IDH mutations (global DNA hypermethylation) is likely to dominate 

LGG pathobiology. On the contrary, for the rapidly progressing GBMs, the acute effects of 

IDH1 mutation may profoundly dictate GBM cell behaviour. Our work presents an example 

of one mechanism, outside of the sustained effects imparted by hypermethylation, whereby 

expression of the mutant IDH1 can compromise HIF1α induction in response to hypoxia to 

modify the ECM and alter tissue mechanics and tumour aggression. Our findings suggest 

that ECM mechanics provides putative promising targets for therapeutic interventions aimed 

at disabling biomechanically driven pathways that intersect with glioma aggression to 

enhance treatment efficacy, delay disease progression, and improve patient survival.

Methods

Human samples

Human tissue samples, lacking any patient-identifying information, were either collected 

under approved study (protocol number 11-07588) and in accordance with the University of 

California, San Francisco Committee on Human Research policy, or obtained from the 

University of California, San Francisco Brain Tissue Bank. All human tissue samples were 

collected in compliance with informed consent policy. Being fully aware of the 

histopathological heterogeneity of glioblastoma ‘multiforme’, we performed a meticulous 

region-to-region analysis correlating the mechanical properties of the patient gliosis and 

tumour samples underlying Fig. 1. We worked with a pathologist to identify specific regions 

within the patient samples to correlate ECM stiffness with mechanosignalling in adjacent 

sections. In H&E-stained serial sections, distinct regions (varying from approximately 1–3 

mm2 in area) of the patient tumours were pathologist identified, with care taken to avoid 

vasculature and adjacent non-malignant tissue. Stiffness (as measured by AFM), 

immunostaining and in situ hybridization analyses were performed in region-matched 

adjacent serial sections.

Mouse studies

All mice were maintained in accordance with University of California Institutional Animal 

Care and Use Committee (IACUC) guidelines under protocol number AN109372-01. For all 

mouse xenograft studies, an hour before intracranial injection, cells were washed once with 

PBS solution, collected by trypsinization, counted, and re-suspended in PBS at 100,000 cells 

per microlitre. For intracranial injections, 5–6-week-old NCR nude female mice were 

anaesthetized with 2% isoflurane, injected subcutaneously with buprenorphine (0.03 

mgkg−1), and slowly injected with a 3 μl tumour cell suspension (300,000 cells per 3 μl 

injection) into the striatum, as described previously41. For TNC shRNA studies, TNC 

knockdown was induced by addition of 20 mM IPTG in the drinking water of mice for the 

duration of the entire experiment. Mice were euthanized when exhibiting 15% weight loss. 

For hypoxia experiments, mice were injected via intraperitoneal injection with 60 mg kg−1 

hypoxyprobe 70 min prior to euthanization.
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Immunostaining and immunoblotting

Immunofluorescence and immuno blotting analysis were performed as described 

previously29,30. For all immunoblotting, cells were lysed in RIPA or Laemmli buffer42. 

Antibodies used for immunofluorescence and immunoblotting analysis are listed below.

Antibodies and reagents

Antibodies were as follows (used at 1μg ml−1 for western blotting and chromatin 

immunoprecipitation (ChIP) and at indicated concentrations for immunofluorescence 

studies): tenascin C (Abcam ab108930; 1:1,000), pY397-FAK (Invitrogen 44625; 1:200), 

total FAK (BD Biosciences 610088), pMLC2 (Cell Signaling 3671; 1:200), total MLC2 

(Abcam ab92721, clone EPR3741; 1:200), p-MyPT1 (Millipore ABS45; 1:200), hyaluronic 

acid binding protein (Calbiochem, 385911; 1:500), aggrecan (Abcam ab3778; 1:500), 

versican (Abcam ab19345; 1:500), collagen 1 (Abcam ab34710; 1:1,000), propidium iodide 

(AcrosOrganics 440300250; 1 μg ml−1), β-actin (Sigma-Aldrich a5441), HIF1α (Abcam 

ab-1, for immunofluorescence; 1:200; Abcam ab1, for ChIP; Novus 100-449, for western 

blotting), hypoxyprobe (Hypoxyprobe, HP1-100 Kit; per manual), CD31 (BD 550389; 

1:500), laminin (Abcam ab11575; 1:500), RNA polymerase II (Millipore 05-623B), rabbit 

IgG isotype control (Cell Signaling 2729; 1:500), Alexa Fluor-conjugated goat secondary 

anti-mouse IgG and anti-rabbit IgG antibodies (Invitrogen A11012 and A11005; 1:500) and 

HRP-conjugated rabbit secondary antibody (GE Healthcare Life Sciences NA934VS; 

1:5,000).

Cell culture conditions

All cells were maintained at 37 °C and 5% CO2. Primary human GBM cells (GBM43) have 

been previously described43, and were cultured in Neurobasal-A media (Invitrogen) 

supplemented with B27 Supplement (Invitrogen), N2 Supplement (Invitrogen), 20ngml_1 

epidermal growth factor (Peprotech), 20ngml−1 fibroblast growth factor (Peprotech), and 

100 units ml−1 penicillin/streptomycin. U87 cells (obtained from and authenticated by 

ATCC) were grown in DMEM supplemented with 10% fetal bovine serum (Hyclone), 2mM 

L-glutamine, and 100 units ml−1 penicillin/streptomycin. TS603 cells (harbouring 

endogenous R132H IDH1) and TS667 cells (expressing WT IDH1) have been previously 

described44, and were grown in Neurobasal-A media (Invitrogen) supplemented with B27 

Supplement (Invitrogen), N2 Supplement (Invitrogen), 20ngml−1 epidermal growth factor 

(Peprotech), 20ngml−1 fibroblast growth factor (Peprotech), 20ngml−1 platelet-derived 

growth factor AA (Peprotech), and 100 units ml−1 penicillin/streptomycin. BT142 cells 

harbouring endogenous R132H were obtained from and authenticated by ATCC, and were 

grown in Neurobasal-A media (Invitrogen) supplemented with B27 Supplement 

(Invitrogen), N2 Supplement (Invitrogen), 20ngml−1 epidermal growth factor (Peprotech), 

20 ng ml−1 fibroblast growth factor (Peprotech), 20 ng ml−1 platelet-derived growth factor 

AA (Peprotech), and 100 units ml−1 penicillin/streptomycin. All primary cells and cell lines 

were authenticated by ATCC (where applicable), or by analysis of morphological and 

phenotypic characteristics as well as gene and protein expression.

No cell lines used in this study were found in the database of commonly misidentified cell 

lines that is maintained by ICLAC and NCBI Biosample. All primary cells and cell lines 
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were tested for mycoplasma contamination using a commercially available kit (PCR-

Mycoplasma Test Kit I/C (Promokine PK-CA91-1024), according to the manufacturer's 

instructions, at the onset of the work (tested negative) and have never exhibited 

contamination symptoms after initial testing. Derivative cells were transduced in vitro with a 

lentiviral vector-encoding firefly Luciferase and either eGFP (U87 lines) or mCherry 

(primary GBM lines) fluorescent proteins for combined bioluminescent imaging and flow 

sorting. For stable shRNA cell lines harbouring isopropyl β-D-1-thiogalactopyranoside 

(IPTG)-inducible transgenes, expression was induced with 100 μM IPTG five days before 

experimentation. For polyacrylamide hydrogel studies, cells were plated on fibronectin-

conjugated gels for either 8 h (protein analysis) or 24 h (mRNA analysis) prior to harvesting 

cell lysates.

Quantitative real-time PCR and in situ hybridization

Total cellular RNA was isolated using the mirVana miRNA isolation kit (Life Technologies 

AM1560), according to the manufacturer's instructions. Reverse transcription was performed 

from 2 μg of total RNA using random primers (Amersham Biosciences). PCR reactions were 

performed in triplicate with LightCycler Fast Start DNA Master SYBR Green Mix (Roche) 

using a Realplex29,30 epGradient S Mastercycler (Eppendorf) and the relative amount of 

cDNA was calculated by the comparative Ct method using the RPS20 ribosomal protein as a 

control. Primer sequences are: human TNC forward primer 5′-

TCTCAGGGTCATTCACCACA-3′, human TNC reverse primer 5′-CA 

CCGTGCGTGTAATTTCTG-3′, human HIF1α forward primer 5′-CAGTCGACA 

CAGCCTGGATA-3′, human HIF1α reverse primer 5′-TGTCCTGTGGTGACTT 

GTCC-3′, SLC2A1 forward primer 5′-GGCATCAACGCTGTCTTCTA-3′, SLC2A1 R 5′-

CAGCGAGGCCTATGAGGTG-3′, RPS20 forward primer 5′-AGGACCAGT 

TCGAATGCCTA-3′, and RPS20 reverse primer 5′-GATTCGATCAACTCAACTC 

CTG-3′.

For miRNA qPCR analysis, reverse transcription of specific miRNAs (from 10 ng of total 

RNA) was carried out using the real-time loop primers for each type of miRNA and the 

TaqMan miRNA RT Kit from Applied Biosystems (Life Technologies 4366596), according 

to the instructions. cDNA obtained from this step was used to carry out real-time 

quantitative TaqMan PCR for miR-203 (Life Technologies 4427975, Assay 000507) using 

the real-time primers provided, according to the instructions. Ct values were converted to 

fold expression changes (2 —ΔΔCt values) following normalization to U6 small nuclear 

RNA (Life Technologies 4427975, Assay 001973) or SNORD48 (Life Technologies 

4427975, Assay 001006).

miRNA in situ hybridization was performed as previously described using formalin-fixed, 

paraffin-embedded tissue sections (5 μm thickness)45. 5′-DIG labelled probes targeting 

miR-203 (Exiqon 35029-01), U6 small nuclear RNA (positive control, Exiqon 99002-01) or 

Scramble-miR (negative control, Exiqon 99004-01) were diluted to 40 nM in hybridization 

buffer. RNA was hybridized overnight at 58 °C for all probes.
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Chromatin immunoprecipitation (ChIP) studies

Samples were cultured under either normoxia or hypoxia (1% oxygen) and ChIP was 

performed using the ChIP-IT Express kit (Active Motif 5300), according to the instructions. 

Primer pairs are: intronic TNC set 1 (90 bp) forward primer 5′-

AAAGCAACCGTAGGATGACC-3 and reverse primer 5′-

ATCCCCACAGTTATTATTGTT-3′, intronic TNC set 2 (149 bp) forward primer 5′-

GGCTGTGATTTCTACACAAATGG-3′ and reverse primer 5′-

AGGGAATACACCTGGGAAGTG-3′, intronic TNC set 3 (152 bp) forward primer 5′-

CTGGTCCCATTTCCAGCTT-3′ and reverse primer 5′-CGA 

CCCCGAGTAGCTGTTAG-3′, exonic TNC set 4 (142 bp) forward primer 5′-ACA 

GCCTGCCTACTGTCACC-3′ and reverse primer 5′-GGAAGAAGTACCTGGAG 

TGTGG-3′, intronic TNC negative control (149 bp) forward primer 5′-GTGAAAT 

TCAAAATTAAGTTCAACAA-3′ and reverse primer 5′-CAAGTCGCATCCACT 

CTTGA-3′, and GAPDH positive control (149 bp) forward primer 5′-TACTAGCG 

GTTTTACGGGCG-3′ and reverse primer 5′-AGAGCGAAGCGGGAGGCT-3′.

Atomic force microscopy measurements

Atomic force microscopy (AFM) and analysis were performed using an MFP3D-BIO 

inverted optical atomic force microscope mounted on a Nikon TE2000-U inverted 

fluorescent microscope (Asylum Research) as described previously (Supplementary Fig. 

1a)11. Briefly, for pathologist-identified, regionally matched correlations between ECM 

stiffness and mechanosignalling, patient tissues were immunostained with multiple specific, 

patient-representative regions (4–10 regions per tumour) identified (with the x-and y-

coordinates noted and images acquired) for further AFM testing in serial sections 

(Supplementary Fig. 6c left). After patient tumour sections were secured for mechanical 

testing, the identified testing region was located via x- and y-coordinates using the optical 

microscope (Supplementary Fig. 6c right). Individual patient data were combined and 

graphed to depict correlations and the patient variability within the cohort(s) (Supplementary 

Fig. 6d,e).

Nanostring nCounter gene expression signature assessment

NanoString nCounter gene expression analysis12 of human GBM tissue biopsies was used to 

assess the 9-gene expression signature used as a surrogate for tumour aggressiveness13. 

Derived from a 38-gene predictor (validated as a significant predictor of overall survival), 

the top-ranked 9 genes were selected on the basis of the significance of survival association 

(fold change level) and technical considerations (including abundance and consistency of 

amplification of the target gene in FFPE samples)13. Aggressiveness reflects the overall 

survival prediction based on the meta-score calculated with the 9-gene signature13.

Lentivirus-mediated ectopic expression or knockdown

For ectopic expression or knockdown studies, lentiviral vectors (pLV lacI NeoR; gift from J. 

Lakins, UCSF, USA) were custom built to facilitate cloning of shRNA under inducible IPTG 

control. Briefly, oligonucleotides corresponding to validated shRNA from The RNAi 

Consortium (TRC) were designed and annealed to yield duplexes with 5′ and 3′ overhangs 
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complementary to AgeI and EcoRI sites of the modified U6 promoter containing three lacO 

binding sites for the bacterial repressor protein lacI (Sigma). pLV lacI_NeoR also provides 

for constitutive nuclear expression via the human EEF1a promoter of lacI tagged at the N 

terminus with three tandem repeats of the 9E10 myc epitope and at the C terminus with a 

nuclear localization sequence from SV40 large T antigen. The latter is co-expressed with the 

neomycin phosphotransferase gene from a bicistronic mRNA via an internal ribosome entry 

site (IRES) to provide selection of transduced cells with G418. Utilized TNC shRNA was 

TRCN0000230788.

Preparation of polyacrylamide gels substrates

Glass and silicon substrates were prepared by glutaraldehyde activation followed by 

conjugation with 10μg ml−1 (glass) or 20 μg ml−1 (silicon) fibronectin as described 

previously29. Polyacrylamide hydrogel substrates (soft: 2.5% acrylamide, 0.03% Bis-

acrylamide; stiff: 10% acrylamide, 0.5% Bis-acrylamide) were prepared as previously 

described with one modification: functionalization with succinimidyl ester was with 0.01% 

N6, 0.01% Bis-acrylamide, 0.025% Irgacure 2959, and 0.002% di(trimethylolpropane) 

tetraacrylate (Sigma)46. Following functionalization with succinimidyl ester, hydrogels were 

conjugated overnight with 20 μg ml−1 fibronectin at 4 °C and rinsed twice with PBS and 

DMEM before cell plating.

Immunofluorescence and imaging

Samples were fixed and labelled as previously described29, with multiple independent fields 

imaged on a Zeiss LSM 510 microscope system with either a 20 × Apo NA0.75 air or 40 × 

ApoLWDNA 1.15 water objective and 488 nm argon, 543 nm HeNe, and 633 nm HeNe 

excitation lines.

Clinical data analysis

Previously published and reanalysed microarray data were obtained from the TCGA 

Research Network (http://cancergenome.nih.gov) and downloaded from the CBio Portal for 

Cancer Genomics (http://www.cbioportal.org/public-portal/index.do) under the Low Grade 

Glioma1 and the Glioblastoma Multiforme17–19 data sets, with mean normalized expression 

scores (z scores) for genes of interest determined. Statistical significance of differences was 

determined using a two-tailed Mann–Whitney test, with P < 0.05 considered to be 

significant.

Genes used in the hypoxia gene signature include: ANXA2, BTG1, CA9, EDN1, EGR1, 

HMOX1, IER3, LDHA, LGAL3, LOXL2, PDK1, SLC2A1, TFRC, VDAC1 and VEGFA.

Statistics and reproducibility

All quantitative results were assessed by unpaired Student's t-test after confirming that the 

data met appropriate assumptions (normality, homogeneous variance, and independent 

sampling), non-parametric Wilcox/Mann–Whitney exact test (using the normal 

approximation for the U score), or the Kolmogorov–Smirnov distribution test (α = 0.05), all 

two-tailed. Unless otherwise indicated, all data were plotted with standard deviation error 

bars, and variances between groups being statistically compared are similar. For AFM 
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mechanical testing of clinical specimens, multiple regions were assessed (10 regions per 

patient), and regions were pooled per patient to establish a mean Young's modulus per 

patient; statistical analysis was performed on patient means (unless otherwise noted). 

Animal cohort and in vitro sample sizes were chosen to provide 85% power to detect an 

effect size of 2.5 with a two-sided error of less than or equal to 5%. All results were 

reproduced at least twice in the laboratory and the n-value denotes the sample size used in 

statistical testing. Graphpad/Prism software was used to conduct the statistical analysis of 

the data. P values less than or equal to 0.05 were considered to be significant. For animal 

studies, animals were randomly distributed among the different conditions by the 

investigator since the animals did not exhibit any size or appearance differences at the onset 

of the experiments. No animals were excluded. For mouse and clinical studies, mechanical 

testing was performed blinded and immunostaining intensity of tissue sections was scored 

blinded.

Data availability

Previously published microarray data1,17,18 that were reanalysed here are available from the 

TCGA Research Network (http://cancergenome.nih.gov) via download from the CBio Portal 

for Cancer Genomics (http://www.cbioportal.org/public-portal/index.do) under the Low 

Grade Glioma1 and the Glioblastoma Multiforme17–19 data sets. All other relevant data that 

support the findings and conclusions of this study are available from the corresponding 

author on request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ECM stiffness associates with IDH1 mutations in primary GBM tumours. (a) Distribution of 

ECM stiffness in non-malignant gliotic (Gliosis, n = 5 patient samples), WT IDH WHO 

grades II–III de novo (primary) glioma (LGG, n = 6 patient samples) and WT IDH WHO 

grade IV primary GBM (GBM, n = 8 patient samples) human patient samples as measured 

by AFM. Ten regions per patient are shown to illustrate mechanical heterogeneity (pooled 

patient means indicated with red lines). For statistical analysis, all maps were pooled per 

patient, and n values are patients per group (two-sided Kolmogorov-Smirnov test, P=1.1 × 

10−4 for LGG versus Gliosis and P = 3.23×10−5 for GBM versus Gliosis). (b) 
Immunofluorescence images and quantification for pMLC2 (green, left) and pFAK397 

(green, right) with DAPI (blue) for the tumours shown in a (mean ± s.d., n = 5 patient 

samples per group, one-way ANOVA with Tukey's multiple comparisons test, *P<0.05, 

**P<0.01, ***P< 0.001). (c) NanoString nCounter gene expression analysis score (binned 

on a scale from 1–10 with 1 indicating the most aggressive) plotted against proportion of 

highly stiff (E> 1,400 Pa, red) or soft (E<200Pa, blue) ECM areas (n=10 patient samples, 

linear regression where R2 = 0.7107 for >1,400Pa and R2 = 0.8725 for <200Pa). (d) 
Distribution of ECM stiffness in WT IDH1 (n = 4 patient samples) and R132H IDH1 (n = 6 

patient samples) primary LGG human patient samples as measured by AFM (two-sided 
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Kolmogorov-Smirnov test yielded P = 4.8× 10−5). (e) Distribution of ECM stiffness in WT 

IDH1 (n = 6 patient samples) and R132H IDH1 (n = 5 patient samples) primary GBM 

human patient samples as measured by AFM (two-sided Kolmogorov-Smirnov test yielded 

P = 6.5×10−5). (f) Immunofluorescence images and quantification for pMLC2 (green, left) 

and pFAK397 (green, right) with DAPI (blue) for the tumours shown in e (mean ± s.e.m., n 
= 6 patient samples for WT IDH1 and n = 5 patient samples for R132H IDH1, two-sided 

unpaired t-test where **P = 0.007, ***P = 0.0006). Scale bars, 50 μm.
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Figure 2. 
TNC modifies ECM stiffness and mechanosignalling. (a) Immunofluorescence images for 

TNC (green) and hyaluronic acid (red) with DAPI (blue), and quantification for TNC in 

primary LGG and primary GBM patient samples (mean ± s.e.m., n = 5 patient samples per 

group, two-sided unpaired t-test, ***P = 0.00032). (b) Immunofluorescence images and 

quantification for TNC with DAPI in WT IDH1 and R132H IDH1 primary LGG and 

primary GBM patient samples (mean ± s.e.m., n = 5 patient samples per group, two-sided 

unpaired t-test, **P = 0.0031 for LGG and ***P = 0.0008 for GBM). (c) The Cancer 

Genome Atlas (TCGA) data analysed for TNC upregulation in WT (n = 64 patients) and 

R132H IDH1 (n = 219 patients) human tumours (mean ± s.d., z-score threshold ±1.0, 

Mann–Whitney U-test, ***P< 0.0001). (d) Patient survival stratified by TNC status (TNC 

upregulation (n = 45 patients), TNC unchanged (n = 468 patients), z-score threshold ±1.0, 

log-rank/Mantel–Coxtest, ***P<0.0001). (e) TCGA data analysed for relative TNC 

expression in WT (n=199 patients) and R132H (n=12 patients) IDH1 human tumours (mean 

± s.d., Wilcox/Mann–Whitney U-test, ***P=4× 10−4). (f) NanoString nCounter gene 

expression analysis of tumours from Fig. 1c correlating TNC expression with raw 

NanoString nCounter aggressiveness scores (higher score indicating higher aggressiveness, n 
= 10 patient samples, linear regression where R2 = 0.8245). (g) Survival of xenograft mice 

injected with either WT IDH1 (red, n = 8 mice) or R132H IDH1 (orange, n = 8 mice) human 

GBM cells (log-rank (Mantel–Cox) test, P = 0.04). (h) Distribution of ECM stiffness in 

xenograft tumours from human GBM cells infected with either WT or R132H IDH1 cells (n 
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= 4 mice per group, n was used to derive statistics, histogram encompasses all measurements 

across the five regions of four mice, two-sided Kolmogorov-Smirnov test, P=1.3×10−3). (i) 
Immunofluorescence images and quantification for TNC with propidium iodide (PI) in 

xenograft tumours derived from either WT or R132H IDH1 human GBM cells (mean ± 

s.e.m., n = 4 WT mice, n = 5 R132H IDH1 mice, two-sided unpaired t-test, **P = 0.00023). 

Dashed lines indicate tumour edges. (j) Survival of xenograft mice injected with WT IDH1 

human GBM cells expressing either a control (CNL) scramble shRNA (red) or an shRNA 

targeting TNC (grey) (n = 8 mice per group, log-rank (Mantel–Cox) test, P = 0.03). (k) 
Distribution of ECM stiffness in xenograft tumours derived from WT IDH1 primary human 

GBM cells expressing either a control scramble shRNA (red) or shRNA targeting TNC 

(grey) (n = 6 mice per group, n was used to derive statistics, histogram encompasses all the 

measurements across all regions of all six mice, two-sided Kolmogorov-Smirnov test, P= 

1.73 × 10−2). (l) Immunofluorescence images and quantification for pFAK397 (***P = 

0.0008) and pMLC2 (*P = 0.009) with DAPI in xenograft tumours expressing control 

scramble shRNA or shRNA targeting TNC (mean ± s.e.m., n = 4 mice per group, two-sided 

unpaired t-test). Scale bar, 50 μm.
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Figure 3. 
HIF1α directly regulates TNC expression. (a) Analysis of publicly available TCGA data 

analysed for TNC upregulation in WT IDH1 patient tumours expressing >1 hypoxia gene 

(n=108 patients) or ≤1 hypoxia gene (n = 201 patients), and R132H IDH1 patient tumours 

expressing >1 hypoxia gene (n = 39 patients) or ≤1 hypoxia gene (n=160 patients) (mean ± 

s.d., z-score threshold ±1.0, one-way ANOVA with Dunn's multiple comparisons test where 

***P< 0.0001, *P<0.05). (b) Immunohistochemical analysis and quantification of 

percentage of CA9-positive tumour cells in IDH1 WT (red) versus IDH1 R132H (orange) 

GBM patient biopsies (mean ± s.e.m., n = 4 patient tissues per group, two-sided unpaired t-
test, *P = 0.0437). Inset scale bar, 15μm. (c) Correlation between TNC protein and HIF1α 
protein in WT IDH1 human GBM cells cultured in vitro (n=17 biological replicate samples, 

linear regression where R2 = 0.6547 and P< 0.0001). (d) Kaplan-Meier graph showing 

survival of xenograft mice injected with primary human GBM cells expressing either a 

control scramble shRNA (red, n = 7 mice) or an shRNA targeting HIF1α (grey, n = 9 mice) 

(log-rank (Mantel–Cox) test, **P = 0.0021). (e) Immunofluorescence images and 

quantification for pFAK397 (red, top, *P< 0.0239) and pMLC2 (red, bottom, **P<0.0114) 

with DAPI (blue) in xenograft WT IDH1 tumours expressing control scramble shRNA or 

shRNAtargeting HIF1α (mean ± s.d., n=3 mice per group). (f) Correlation graph between 

TNC mRNA expression and HIF1α mRNA in WT IDH1 human GBM cells (n=12 

biological replicate samples, linear regression where R2 = 0.6416, P< 0.0001). (g) 
Immunofluorescence images and quantification for TNC (red) in xenograft tumours derived 

from WT IDH1 primary human GBM cells expressing either a control scramble shRNA or 

an shRNA targeting HIF1α (mean ± s.d., n = 3 mice per group, two-sided unpaired t-test, 

***P = 0.0004). (h) Representative gel of chromatin immunoprecipitation studies in R132H 

IDH1 primary human cells demonstratingthe immunoprecipitation (IP) of HIF1α with the 

TNC promoter (Neg. CNL denotes negative control, Pos. CNL denotes positive control and 

Rpol2 denotes RNA polymerase II; mean ± s.e.m., n=3 biological replicate samples 
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including three intronic primer sets, two-sided unpaired t-test, *P = 0.0284). Scale bars, 

50μm unless otherwise indicated. Unprocessed original scans of blots are shown in 

Supplementary Fig. 7.
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Figure 4. 
R132H IDH1 primary GBMs cannot tune HIF1α. (a) Immunofluorescence images of 

xenograft tumours derived from primary human GBM cells expressing either WT or R132H 

IDH1 immunostained for TNC (green, left), HIF1α (green, middle), and hypoxyprobe 

(green, right) with PI (red); asterisks indicate areas of necrosis. (b) Immunoblot and 

quantification of xenograft tumours derived from either WT or R132H IDH1 primary human 

GBM cells. Results were normalized to β-actin and graphed relative to WT IDH1 expression 

(mean ± s.d., n = 3 mice per group, two-sided unpaired t-test, ***P< 0.001). (c) Left: 

quantification of HIF1α (left) and TNC (right) protein expression under hypoxia and 

normoxia in R132H IDH1 cells expressing either a control scramble (CNL, orange) or a 

constitutively active HIF1α (CA-HIF, grey) construct (mean ± s.e.m., n=4 biological 

replicate samples per group, one-way ANOVA with Tukey's multiple comparisons test, P< 

0.0001). Right: correlation between TNC protein expression and HIF1α protein in R132H 

IDH1 tumours expressing the constitutively active HIF1α (CA-HIF) (n = 15 biological 

replicates, linear regression where R2 = 0.7242, P< 0.0001). (d) Kaplan-Meier graph 

showing survival of xenograft mice injected with R132H IDH1 primary human GBM cells 

expressing either a vector control (CNL, orange, n=10 mice) or a constitutively active 

HIF1α (CA-HIF, grey, n = 9 mice, log-rank (Mantel–Cox) test, *P = 0.0482). (e) 
Immunofluorescence images and quantification for TNC (red) in xenograft tumours derived 

from either CNL or CA-HIF-expressing R132H IDH1 primary human GBM cells (mean ± 

s.d., n = 3 mice per group, two-sided unpaired t-test, *P = 0.0260). (f) Immunoblot and 
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quantification of pFAK397 (n = 3 mice per group, two-sided unpaired t-test, **P < 0.0044) 

and pMLC2 (mean ± s.d., n = 3 mice per group, two-sided unpaired t-test, **P < 0.0121) 

protein expression in CNL and CA-HIF1α xenografts normalized to total FAK and MLC2, 

respectively, and β-actin loading control, and represented as percentage of expression of 

CNL tumours (n=3 mice per group). Scale bars, 50μm. Unprocessed original scans of blots 

are shown in Supplementary Fig. 7.
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Figure 5. 
Mechanosignalling promotes R132H IDH1 tumour aggression. (a) Left: ECM stiffness in 

primary (Pr.) WT IDH1 (n = 3), primary R132H IDH1 (n = 3), and recurrent (Rec.) 

secondary R132H IDH1 (treated with temozolomide and radiation, n = 4) GBM human 

tumours (two-sided Kolmogorov-Smirnov test between primary and recurrent R132H IDH1 

tumours, P = 0.21 × 10−1). Right: ECM stiffness in matched pairs of R132H IDH1 primary 

and post-treatment secondary GBM human tumours (n = 3 patients per group, two-sided 

Kolmogorov-Smirnov, P = 2.11 × 10−3). (b) Immunofluorescence images and quantification 

for TNC in primary and recurrent secondary R132H IDH1 tumours (mean ± s.e.m., n = 5 

patients per group, two-sided unpaired Mann-Whitney test, **P = 0.0079 (top) and *P = 

0.0392 (bottom)). (c) Cell spreading area for R132H IDH1/WT β1 (orange) and R132H 

IDH1/V737N β1 (blue) primary human GBM cells grown on soft (140 Pa) or stiff (6,000 Pa) 

polyacrylamide (PA) gels (mean ± s.e.m., n = 3 biological replicate samples per group, one-

way ANOVA with Tukey's multiple comparisons, ***P= 1.09 × 10−2, *P<0.05). (d) HIF1α 
mRNA expression (left), Glut1 (middle), and TNC (right) for R132H IDH1/WT β1 (orange) 

and R132H IDH1/V737N β1 (blue) primary human GBM cells cultured on soft or stiff PA 

gels. Expression was normalized to RPS20 ribosomal RNA, which itself was not changed by 

ECM stiffness (graph shows the average of two biological replicate samples). (e) Survival of 

mice xenografted with R132H IDH1 primary human GBM cells expressing either WT β1 or 

V737N β1 (n = 8 mice per group, log-rank (Mantel–Cox) test, P<0.02). (f) Left: immunoblot 
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and quantification of FAK activity (pFAK397) in primary R132H IDH1 primary human 

GBM cells expressing either WT β1 (orange) or V737N β1 (blue). Results were normalized 

to total FAK (mean ± s.d., n = 3 mice per group, two-sided unpaired t-test, **P = 0.0229). 

Right: immunofluorescence imagesofxenografttumours derived from primary human R132H 

IDH1 primary human GBM cells expressing either WT β1 or V737N β1, and 

immunostained for pMLCwith PI. Dashed lines indicate tumour edges. (g) 
Immunofluorescence images of xenograft tumours derived from R132H IDH1 primary 

human GBM cells expressing either WT β1 or V737N β1 immunostained for TNC (left), 

HIF1α (middle), and hypoxyprobe (right) with PI; asterisks indicate areas of necrosis. 

Immunofluorescence was quantified as the percentage of WT IDH1/WT β1 (mean ± s.d., n 
= 6 mice per group, two-sided unpaired t-test, **P = 0.009 and ***P = 0.0002). (h) ECM 

stiffness in xenograft tumours derived from either WT β1 or V737N β1 R132H IDH1 

primary human GBM cells (n = 8 mice per group, two-sided Kolmogorov-Smirnov test, P = 

4.87 × 10−5). Scale bars, 50 [Am. Unprocessed original scans of blots are shown in 

Supplementary Fig. 7.
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Figure 6. 
miR-203 targets HIF1α and TNC. (a) miR-203 expression in R132H IDH1 primary human 

GBM cells cultured on soft or stiff PA gels in vitro normalized to SNORD48 small nucleolar 

RNA (graph shows the mean of two biological replicate samples). (b) Luciferase reporter 

assay performed on WT IDH1 cells using the wild-type (red) and mutated (black) 3′UTR 

consensus sites on HIF1α mRNA (left, three seed sequences) and on TNC mRNA (right, 

two seed sequences) normalized by secreted alkaline phosphatase levels; each group is 

graphed relative to its respective mutated group (mean ± s.e.m., n = 4 biological replicate 

samples, two-sided paired t-test, for HIF1α: **P = 0.0048, seed 1; *P = 0.0343, seed 2; **P 
= 0.0128, seed 3; for TNC: *P = 0.0286, seed 1; NS (not significant) P = 0.1071, seed 2). (c) 

Correlation between TNC and HIF1α protein expression levels in R132H IDH1 human 

GBM cells with reduced miR-203 (ant-203) compared with vector controls (CNL) cultured 

in vitro under hypoxia (n=12 biological replicate samples, linear regression R2 = 0.5923, 

P<0.0034). (d) Kaplan-Meier graph showing survival of mice xenografted with R132H 

IDH1 GBM cells expressing CNL (orange, n=10 mice) or ant-203 (grey, n=10 mice) (log-

rank (Mantel–Cox) test, ***P = 0.0002). Note, the same vector control cohort is shown in 

Fig. 4d-f. (e) Immunofluorescence images and quantification for TNC (red) in xenograft 

tumours derived from primary human GBM cells expressing either CNL or ant-203 vectors 

(mean ± s.d., n = 4 mice per group, two-sided unpaired t-test, *P = 0.0491). (f) Histogram 

showing the distribution of ECM stiffness in xenograft tumours derived from primary 

R132H IDH1 human GBM cells expressing either a CNL or ant-203 constructs (n = 5 mice 

per group, n was used to derive statistics, two-sided Kolmogorov-Smirnov test, **P<0.009). 

(g) Bright-field images (left) of miR-203 in situ hybridization in patient-matched primary 

and recurrent secondary R132H IDH1 patient glioma tumours. Top: patient-matched 

primary LGG and secondary GBM. Bottom: patient-matched primary GBM and secondary 
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GBM, with corresponding U6-positive control and scramble negative control. Insets show 

staining with DAPI. Right: qPCR quantification of miR-203 expression in the patient 

samples shown on the left; miR-203 expression was normalized by SNORD48 small 

nucleolar RNA expression (mean ± s.d., two-sided paired t-test, for LGG to GBM, n = 5 

patients and ***P = 0.0034; for GBM to GBM, n = 3 patients and ***P = 0.0006). (h) 

Graphic depicting a model of ECM stiffness-driven repression of miR-203 expression to 

activate HIF1α/TNC. Scale bars, 50 μm.
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