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ABSTRACT OF THE THESIS 
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Professor Rany Salem, Chair 
 

 

Type 2 diabetes is a multifactorial disease that is the result of glycemic disfunction in the 

body. Risk for type 2 diabetes is influenced by the interplay of multiple lifestyle, environmental, 

and genetic factors. Prior genome wide association studies have identified hundreds of genetic 

variants associated with type 2 diabetes. However, the majority of these genetic studies have 

failed to consider the role of environmental risk factors on disease risk, e.g. gene x environment 

interaction analyses. The role of smoking as a modulator in the association between genetic 

variants and type 2 diabetes is of particular importance, since smoking is a modifiable risk factor 
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and has been established as a causal risk factor for type 2 diabetes. Conducting a gene by 

smoking interaction analysis on type 2 diabetes allows consideration of both genetic and 

environmental risk factors and has the potential to unveil novel single-nucleotide polymorphisms 

(SNPs) that influence disease vulnerability typically missed by traditional analytic approaches. 

To conduct a large-scale gene x environment study, phenotypic and genotypic data on 345,955 

individuals was utilized from 14 studies within two biomedical repositories, dbGaP and UK 

Biobank. Phenotypic data extracted from the studies were reviewed and harmonized prior to 

performing a gene by smoking genome-wide association study (GWAS) for each study. 

Individual GWAS statistics were combined through meta-analysis, stratified by racial/ethnic 

groups. This study included the following sample of individuals: 324,834 of European ancestry, 

9,040 of African ancestry, 6,125 of Hispanic ancestry, and 5,956 of Asian ancestry. The study 

sample includes 40, 994 diabetics and 34,764 current smokers, and majority females (55%, 

177,369). Results from the meta-analysis produced genome-wide significant SNPs for the 

European ancestry main effect and the Asian ancestry interaction effect. The European ancestry 

main effect results revealed a genome wide significant (p-value 9.59x10-33) signal in the TCF7L2 

gene, a commonly replicated SNP in several GWAS’s of type 2 diabetes. The smoking by SNP 

results found SNPs at the genome-wide suggestive (p-value ≤1x10-5) level. The Asian ancestry 

interaction results revealed inflated results driven by two studies with modest sample size that we 

considered false positives, and therefore not included in the final results. This work underscores 

the importance of conducting gene by smoking interaction analyses on type 2 diabetes to identify 

genetic variants that influence disease vulnerability. 
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Chapter I: 

Introduction 

 

Type 2 Diabetes Background 

Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by glycemic 

disfunction.1 T2D is one of the leading causes of death and responsible for increased morbidity 

and healthcare costs in the United States.2 Individuals with T2D require lifelong clinical 

treatment, management, and supervision.2 Medical care costs for individuals living with T2D are 

two times higher than those without T2D.3 A study conducted by the American Diabetes 

Association (ADA) in 2017 estimated that the economic impact of diabetic illnesses results in an 

annual cost of diagnosed conditions at 327 billion dollars, an increase of 82 billion dollars (26%) 

since last examined in 2012.3 The individual and national economic burden of this condition 

continues to increase linearly, placing it as a top health priority.3,4 The International Diabetes 

Federation (IDF) places T2D as an illness of growing public health importance, due to its 

increasing prevalence and significant cause morbidity, death, and economic costs.4   

The Centers for Disease Control and Prevention’s (CDC) 2020 National Diabetes 

Statistics Report indicates that 1 in 10 individuals have T2D and 1 in 3 individuals are 

prediabetic in the United States.5 Globally, prevalence of type 2 diabetes will increase to 693 

million by 2045, a 50% increase from the year 2017.4 Investigation into the distribution of T2D 

disease burden by sociodemographic status reveals that 80% of individuals living with diabetes 

are from low to middle income countries.6 The CDC report notes that 15% of diabetic 

individuals are current smokers, while 36% are former smokers.5 Comparatively, the CDC 

reported in 2018 that 13.7% of the US population (≥18 years old) are current smokers.7   
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Furthermore, the 2014 Surgeon General’s Report, titled ‘The Health Consequences of 

Smoking—50 Years of Progress’, concludes that smoking is causally associated to T2D, 

increasing risk of T2D by 30% to 40% in active smokers vs. nonsmokers.8 It is essential to 

consider the possibility that many diabetic individuals stop smoking due to their condition, for 

that reason the risk associated with smoking on T2D may be greater than observed. The report 

states that smoking directly affects glucose regulation, with a positive dose-response relationship 

between quantity of cigarette intake and risk of T2D.8 The report underscores the gap in 

knowledge on the biological explanation behind this relationship and suggested the need for 

further research to understand the mechanistic and epidemiological impact of this relationship.8  

 

Pathophysiology of Type 2 Diabetes 

T2D, also known as adult-onset diabetes, is characterized by glycemic dysfunction and 

elevated serum glucose levels. There are multiple pathophysiological mechanisms that can lead 

to glycemic dysfunction, however, there are two common pathways. The first common 

mechanism occurs when pancreatic 𝛽-cell function is impaired, and insulin secretion fails to 

sufficiently respond to elevated glucose levels leading to dysregulated serum glucose 

control.1,9,10 A second common mechanism is insulin resistance and occurs when cells in the 

body fail to respond to insulin and do not uptake glucose from the blood, resulting in high levels 

of blood glucose.1,9,10 Insulin resistance is a physiological dysfunction commonly observed 

amongst obese individuals. Clinical manifestations of T2D include unexplained weight loss, 

fatigue, polyuria, repeated infections, dry mouth, decreased vision, irritability, and sexual 

dysfunction.11 Diagnosis of T2D is determined through a blood test involving a metabolic panel 

(serum glucose, insulin, or HbA1c levels).12,13 Treatment options available include anti-diabetes 
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medication, and lifestyle changes, such as diet and exercise.14 Patients with long-term 

progressive disease states are at an elevated risk for a multitude of comorbidities, including, 

diabetic kidney disease, end stage renal disease, diabetic retinopathy, diabetic neuropathy, 

cardiovascular complications.15 

 

Risk Factors of Type 2 Diabetes   

Development of T2D often involves the interplay of environmental, lifestyle factors, and 

genetic traits. Risk factors of T2D can be compartmentalized into two broad categories: 

modifiable, and non-modifiable risk factors. Modifiable risk factors include smoking, sleep 

quality, stress, lack of physical activity, sedentary lifestyle, and poor diet.11,15–17 Non-modifiable 

risk factors of T2D include age, race/ethnicity, family history of diabetes, gestational diabetes, 

and genetic variants.11,15–17 Risk factors such as, visceral obesity or ectopic fat, high blood 

pressure, low high-density lipoproteins (HDL) or high triglycerides can be considered as 

modifiable and non-modifiable, as they are influenced by behavioral and genetic influence.11,15–17 

The racial or ethnic groups that experience a higher prevalence of T2D include African 

Americans, Hispanics, American Indian/Alaskan Natives, Hawaiians, Pacific Islander, and 

Asians.18,19 Prevalence of T2D among these racial groups is ~10% higher than European ancestry 

populations overall.18 

 

Genetics of Type 2 Diabetes 

T2D has long been observed to run in families, suggesting a genetic component.20 Risk of 

T2D increases with number of affected parents, with a 40% increase in those with one diabetic 

parent and 70% increases in those with two diabetic parents.20 T2D has strong genetic 
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heritability, which is the proportion of phenotypic variation that is attributable to genetic factors, 

ranging from 20% to 80%.20 Therefore, comprehensive understanding of T2D requires 

consideration of the role of genetic variation on disease susceptibility.20  

Genetics have been instrumental providing insights into T2D pathophysiology.21 Early 

genetic studies, comprised of linkage and candidate gene studies, had limited success.22 The 

emergence of GWAS has been pivotal in shedding insight into the genetic basis of many 

complex or chronic diseases, including T2D.21–24 The expansion of GWAS over the past decade 

has provided essential information in identifying genetic variants and genes associated with 

disease susceptibility, insights into personalized medicine, and discovery of novel 

pharmacological treatments.21–23 GWAS’s are a highly ubiquitous study design in genetic 

epidemiology and involve the analysis of millions of single-nucleotide polymorphisms (SNPs) 

genetic variants with a phenotype of interest (e.g. disease status or quantitative trait).21,24–26 With 

the use of GWAS studies, researchers have identified risk loci for hundreds of traits and diseases 

of public health importance, including asthma, T2D, coronary artery disease, and several types of 

cancers.27,28  

GWAS of T2D have identified hundreds of loci. The National Institute of Health (NIH) 

Genetics Reference reports prior studies have identified approximately 150 gene variants 

associated with the risk of developing T2D.29 A study conducted in 2013 elaborated on initial 

gene discoveries from GWAS; such include the TCF7L2 gene, first discovered by Sladek et al., 

which is the most consistently replicated gene associated with T2D globally.30 While some genes 

are seen in diverse populations globally, the HHEX gene has been found in several GWAS’s of 

T2D significant among European and Asian ancestry populationst.30 A review published by 

Olokoba et al. in 2012 reported several other genes with strong association to the development of 
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T2D, which include the following: PPARG, FTO, KCNJ11, NOTCH2, WFS1, CDKAL1, 

IGF2BP2, SLC30A8, and JAZF1.31 

Although several studies have identified and replicated dominant gene variants related to 

T2D, recent literature focuses on analyzing millions of genetic variants to provide a more 

complete picture of genes that influence disease susceptibility. Large-scale GWAS studies have 

provided insights into both common and rare genetic variants that influence T2D susceptibility. 

A GWAS meta-analysis conducted by Xue et al. in 2018 identified 139 common variants at a p-

value level of <5x10-8 and 4 rare variants at the <5x10-9 p-value level (higher threshold required 

to control genome-wide false positive rate) associated with T2D.32 Another study published in 

2018 by Mahajan et al. used similar methodology to conduct a GWAS, however, they expanded 

the study through combining data from 31 GWAS’s to include 74,124 T2D cases and 824,006 

controls.33 The study discovered 231 loci with genome-wide significance in the BMI-unadjusted 

analysis and 152 loci in the BMI-adjusted analysis.33 This study performed BMI-adjusted and 

unadjusted GWAS to identify T2D risk effects driven primarily by BMI or adipose tissue, as 

BMI is an effect modifier for T2D.33 This study identified 135 novel T2D risk.33 Flannick et al. 

investigated the role of rare variants on T2D risk through use of whole-genome and exome 

sequencing of genetic data.34 This study examined the association of over 27 million SNPs, 

indels, and gene variants with T2D.34 Another study by Flannick et al. conducted an exome-

sequencing of 20,791 cases of T2D and 24,440 controls to identify rare gene associations with a 

minor allele frequency (MAF) of 0.5%.35 This study identified 4 genes at the exome-wide 

significance level and 30 SLC30A8 gene alleles that indicated protection against T2D.35 These 

studies emphasizes the importance of evaluating rare variants and their contribution to risk of 
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complex diseases such as T2D, as whole genome-sequencing allows to capture more novel and  

rare variants missed in GWAS studies.34,35 

While genetic studies have allowed for the discovery of various genetic polymorphisms 

involved in development of T2D, the influence of environmental risk factors on genetic 

variations involved in disease susceptibility is largely unknown. GWAS studies analyzing only 

main genetic effects entail an important study limitation. The majority of GWAS’s consider 

environmental measures as nuisance parameters to be factored out and do not account for the 

role of these factors on disease susceptibility.36 To address this limitation, there is a need to 

consider gene by environment analyses at scale to gain insights on the shared genetic effect of 

genetic variants and environmental factors on disease susceptibility. 

The objective of gene by environment interaction studies is to examine the joint impact of 

both genes and environmental influences on disease susceptibility.37 Gene by environment 

interactions may be of particular value in the study of complex disease as they directly examine 

the interplay of environmental factors and genetic variants not captured in standard genetic 

analyses.37 Gene by smoking interaction studies are emerging as an important genetic 

epidemiology study framework, with studies considering a broad set of disease outcomes such as 

chronic obstructive pulmonary disease (COPD), colorectal cancer, serum lipids, pulmonary 

function, coronary heart disease, coronary artery calcification, and hypertension.38–44 A literature 

review on gene by environment interactions on T2D identified several studies that investigated a 

variety of exposures, including alcohol consumption, physical activity, and lifestyle changes.45–47 

As of date, there is only one article regarding gene by smoking interaction on T2D, however, this 

paper has included only a handful of studies (n=74,583) and did not incorporate a sex stratified 
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analysis. Sex stratified analyses are of importance since there are significant difference in 

smoking prevalence by sex as noted in the Healthy People 2020 survey.48,49  

 

Research Aims and Goals  

The research question being addressed in this study considers whether smoking 

influences genetic susceptibility of individuals to T2D. The aim of this study is to perform a 

large-scale gene by smoking interaction on T2D, using studies retrieved from two 

biorepositories, the Database of Genotypes and Phenotypes (dbGaP), and UK Biobank.50,51 

dbGaP is an NIH sponsored biorepository with genetic and phenotype data managed by the 

National Center for Biotechnology Information (NCBI).19,52 UK Biobank is a study based in the 

United Kingdom collecting genetic data to evaluate disease risk.53 These biorepositories provide 

a resource for investigators to conduct genetic studies on phenotypes and disease endpoints of 

interest. This study is comprised of three main goals. The first goal of this study is to extract 

variables of interest from datasets within dbGaP and UK Biobank and harmonize the variables of 

interest according to established phenotype definitions and categorizations. The second goal is to 

conduct a genome-wide association study to analyze the interaction between smoking and T2D 

through analysis of single-nucleotide polymorphisms. The final goal of this study is to identify 

genetic variants associated with the impact of smoking on T2D.
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Chapter II: 

     Materials and Methods 

 

Study Samples 

This project leverages studies that were previously retrieved from the database for 

Genotypes and Phenotypes (dbGaP), an NIH sponsored biorepository created and managed by 

The National Center for Biotechnology Information, and UK Biobank study supported by the 

National Health Service (NHS).50–54 All NIH funded genetic studies (e.g. genetic, genome, 

genotyping arrays and sequencing data) are required to submit both genetic and phenotypic data 

to dbGaP. The dbGaP collection contains extensive and diverse amount of individual-level data 

regarding variables, datasets, and molecular assays data.54 UK Biobank is a biobank scale 

prospective cohort study supported by the NHS, designed and conducted with data sharing in 

mind.55 UK Biobank collected data on a variety of phenotypic information and biological 

samples from ~500,000 individuals in the United Kingdom between the ages of 40 to 69 from 

2006 to 2010.55 The objective of both dbGaP and UK Biobank is to make available extensive 

individual level phenotypic and genotypic data to the research community and allow 

investigators to explore a wide variety of questions in the relationship between human genetic 

variation on disease susceptibility.50,55 The Salem lab has previously requested and retrieved data 

for >150 dbGaP studies and UK Biobank.  

Fourteen studies were included in this project after comprehensive review to identify 

studies with genome-wide genotyping array data and relevant phenotype data availability (e.g. 

smoking exposure and diabetes disease status). Thirteen studies were acquired via dbGaP for this 

project, include: The National Institute on Aging Long Life Study (LLFS – phs000397, 
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n=1,800), The Research Program on Genes, Environment, & Health (RPGEH – phs000788, 

n=74,303), Geneva Diabetes Study (GENEVA – phs000091, n=5,552), GWAS on Cataract and 

HDL (CATARACT – phs000170, n=2,177), Northwestern Nugene Project: T2D (NW – 

phs000237, n=1,288), Development and Use of Network Infrastructure for GWAS (DUNI – 

phs000234, n=1,438), GWAS of Peripheral Artery Disease (PAD – phs000203, n=3,048), 

Catheterization Genetics (CATHGEN – phs000703, n=1,152), National Institute of Diabetes & 

Digestive Kidney Disease (NIDDK – phs000524, n=3,367), Atherosclerosis Risk in 

Communities (ARIC – phs000280, n=10,137), Cardiovascular Health Studies (CARDIA – 

phs000285, n=2,347), Cardiovascular Health Studies (CHS – phs000287, n=3,754), Multi-Ethnic 

Study of Atherosclerosis (MESA – phs000209, n=6,164). The fourteenth study, UK Biobank 

(UKBB), included 229,428 participants of European ancestry, after excluded individuals to break 

related pairs (below 1st cousin pairs).  

 

Phenotype Definitions and Harmonization  

The fourteen studies consisted of a mix of study types, including cross-sectional studies, 

case-control studies, case set studies, and longitudinal studies. There is significant heterogeneity 

in availability of relevant phenotypes and variability in modes of measure due to study type and 

original intent of variable collection. Phenotype harmonization and standardization is the primary 

challenge in secondary data analysis across multiple studies. Phenotype definitions and 

categorizations (detailed below) were established prior to data extraction and harmonization. A 

few challenges of the phenotype harmonization in this project include: 1) assortment of naming 

schema unique to each study, 2) multiple variables for the same phenotype, 3) ambiguous 

phenotype labels and 4) varying units. To tackle these challenges, a detailed catalog of each 
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study was performed to identify variables of interest, and use of the statistical software, R 

Studios, to rename variables, carefully review variable categorizations, measurement units, 

missingness, and generate a clean harmonized variable set of each of the fourteen studies.  

T2D was defined by a through a broad set of measures, including lab tests, metabolic 

panel, or, self-report of medical history and/or medication. The multiple criteria facilitate 

defining T2D across a large set of studies with heterogeneity in available phenotypic data. The 

aim of using lab tests/metabolic panel and report data allows maximization the of study 

inclusion, while establishing clear cutoffs. Use of self-report data increases susceptibility to 

misclassification, though disease status was checked and cross-referenced using different 

diabetes variables where available in each study. Table 3 presents the criteria used to define T2D 

in this project and was adapted from reference to the American Diabetes Association 

guidelines.12 T2D status was defined in a hierarchal order: (1) an Oral Glucose Tolerance Test 

(OGTT) of ≥200 mg/dl, (2) a Fasting Plasma Glucose (FPG) of ≥126 mg/dl, (3) physician 

diagnosis, (4) self-report, and (5) T2D medication report. The first two types of tests are 

administered through a lab test or metabolic panel. Oral glucose tolerance tests are typically 

considered the gold standard of glucose measurement as it provides the most accurate 

assessment. The FPG test is the most commonly utilized, since it is faster and easier as subjects 

are only required to complete a post fasting blood draw, versus timed collection post standard 

glucose intake in OGTT. The OGTT and FPG test cut-offs were based on the 2020 version of the 

American Diabetes Association T2D classifications.12 Determination of T2D status through 

physician diagnosis, self-report, or T2D medication status, are all considered a form of self-

report. Participants involved in the study fill out questionnaires or assessments of medical history 

to determine patient history. Medications that were included in the datasets and considered T2D 
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prescriptions included metformin, sulfonylureas, thiazolidinediones, meglitinides, biguanides, 

alpha-glucosidase inhibitors, DPP-4 inhibitors, and insulin.  

As Table 4 illustrates, smoking status is divided into following three categories, never 

smokers, current smokers, and former smokers.56 The category of never smokers are defined as 

individuals who report being non-smokers and/or have smoked ≤100 cigarettes (<0.02 pack 

years) in their lifetime.56 Categories include an “and/or” to indicate the use of different variables 

used to form the categorizations of “current”, “former”, and “never”. Current smokers are 

defined as individuals who report smoking now and/or have been smoking at least within the 

past one month or more, and/or have smoked >100 cigarettes (>0.02 pack years) in their lifetime. 

Former smokers have smoked ≥100 cigarettes (≥0.02 pack years) in their lifetime and are 

defined as individuals who self-report as former smokers, and/or not current smoker. For the 

purposes of this study, extraction of smoking status data focused on current smokers and never 

smokers for the analysis. Smoking related measures collected in each study differed 

considerably, a significant source of heterogeneity in quantifying and harmonizing this 

behavioral factor. Information on smoking encompassed a range of measurements such as report 

of smoking status, pack years, having ever smoked 100 cigarettes in a lifetime, number of 

cigarettes per day, number of cigarettes per week, number of years an individual smoked, age of 

individual when they started smoking, average number of daily cigarette use, smoking history, 

and cigarettes per week. The majority of studies had limited data on smoking status and 

comprised of categorical variable definitions: never smoker, current smoker, and former smoker. 

Variable manipulation was conducted to format smoking categories into the gross categories of 

current smokers and never smokers. The former smoker category was established for the 

purposes of distinguishing smoking status and avoiding misclassification. 
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Genotype Quality Control and Imputation  

dbGaP studies have been genotyped on a broad set of genotyping arrays and platforms, 

creating heterogeneity in terms of genetic data across studies in terms of both total variants and 

genetic coverage. Moreover, dbGaP does not require or employ a systematic methodology for 

standardizing and quality controlling (QC) genetic data. A small fraction of dbGaP studies 

provide quality-controlled genetic data, but unfortunately, each study performs their own unique 

QC, resulting in heterogeneity between studies. To address this issue, the Salem lab developed 

and applied a stringent genotype quality control protocol for raw genetic data from each dbGaP 

study. In brief, the quality control protocol included variant call and subject call rate filters, test 

of heterozygosity, Hardy-Weinberg Equilibrium, allele frequency checks, strand checks and 

assignment of standardized variant ID. The QC protocol utilized custom UNIX and R code, in 

addition to Plink, EIGENSTRAT, and KING program. The program, Plink, was used for the 

purpose of data manipulation of genotype files, while the program EIGENSTRAT was used for 

Principal Component Analysis, and KING was used to identify the unrelated subset of 

participants.  

To expand genomic coverage and enable meta-analysis of results from individual studies, 

genotype imputation was performed for each dbGaP study. Genotype imputation is a statistical 

technique that leverages directly genotyped variants and a reference panel to infer ungenotyped 

variants. Imputation was performed by the Salem lab for each dbGaP study, stratified by 

genotyping array and ethnic/racial group using the NIH-funded Michigan Imputation server.57 

Prior to genotype imputation each dbGaP study had between 400k-1.5M variants, however, post 

imputation included ~43 million genetic variants. In addition to facilitating meta-analysis across 

studies, genotype imputation also results in increased power for GWAS.58 
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Genetic data from UK Biobank was genotyped on two highly similar arrays.55 The 

majority of participants (n=438,427) were genotyped using the Applied Biosystems UK Biobank 

Axiom Array, and a subset of 49,950 participants were genotyped using Applied Biosystems UK 

BiLEVE Axiom Array.55 To facilitate use of the UKBB resource by the research community, 

genotype QC and imputation were performed centrally by primary UKBB investigators. Prior to 

imputation, genetic data from two arrays was combined and a stringent QC procedure was 

performed. 
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Table 1. Type II Diabetes Categorization 

Type 2 Diabetes 

Lab Tests/Metabolic Panel  
1. Oral Glucose Tolerance Test (OGTT): ≥200 mg/dl 
2. Fasting Plasma Glucose (FPG): ≥ 126 mg/dl 

Reported 
  

3. Physician Diagnosis 
4. Self-Report 
5. Medication Report 

 

Table 2. Smoking Status Definition  

 
 
 
 
 

Smoking Status Definition 

Never Smokers 
  

Self-reports never smokers 
AND/OR      Not current smoker & pack-year <0.02 
AND/OR      Smoked <100 cigarettes in lifetime  

Current Smokers 
  

Self-reports current smoker 
AND/OR      Smoked  ≥ Past 1 month 
AND/OR      Smoked  >100 cigarettes in lifetime  

Former Smokers 
  

Self-reports former-smokers  
AND/OR      Not current smoker & pack-year ≥0.02 
AND/OR      Smoked ≥100 cigarettes in lifetime 
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Statistical Analyses 

The primary aim of this study is to assess the relationship between gene x smoking 

interactions on T2D. We implemented a statistical model with a joint framework that entails a 

single regression model with both genetic main effects and gene by smoking interaction among 

the smokers vs. non-smokers. The statistical analysis structure requires a multiple logistic 

regression with interaction as shown in the following equation: 

 𝑙𝑜𝑔𝑖𝑡 = 𝛼 + 𝛽!𝑥! + 𝐵"𝑥" + 𝛽! × 𝛽" 

The exposure variables are smoking and SNP, and the outcome of interest is T2D. Potential 

confounding factors included in the model are gender, age, race, case-control status, and the first 

10 principal component analysis (PCA) of GWAS data for each racial group. All analyses were 

performed by racial/ethnic group. Additionally, analyses were further stratified on gender, case-

control status (if applicable), and genotyping array. To account for biased sample recruitment in 

case-controls studies, analyses were stratified by case-control stratum. The variables of age and 

principal component were adjusted for in the analysis process. The statistical model utilized for 

the purpose of this study is as follows:  

𝑇2𝐷 = 𝛼 +	𝛽! ∗ 𝑆𝑁𝑃 + 	𝛽" ∗ 𝑆𝑀𝑂𝐾𝐸	 + 	𝛽# ∗ 𝑆𝑁𝑃 ∗ 𝑆𝑀𝑂𝐾𝐸 + 𝐶𝑂𝑉𝐴𝑅𝐼𝐴𝑇𝐸𝑆 

 

Genome-Wide Association Study (GWAS) 

GWAS is a commonly used methodology in genetic epidemiology to analyze a genome-

wide sets of variants for diseases or phenotypes of interest.59 GWAS studies allow researchers to 

efficiently analyze millions of variants, the majority of which are single-nucleotide 

polymorphisms (SNP), across the genome against a complex trait or disease traits of interest.59 

Results of a GWAS identifies genetic variants, genes, and genomic regions that are associated 
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with a disease of interest, and in turn, to provide insights into gene biology, disease 

pathophysiology, and guide pharmaceutical development.28 In this study, GWAS was performed 

using SNPTEST, a program created by researchers at the University of Oxford.60 SNPTEST is a 

computationally efficient program that implements a broad set of statistical methods commonly 

used in genetic epidemiology and GWAS analyses, including interaction analyses.60 All GWAS 

analyses were all conducted on the NRNB cluster. 

 
Meta-analysis 

A meta-analysis study is a type of quantitative epidemiological study design that 

systematically leverages data from a variety of previous research studies to form analyses and 

derive conclusions from them.61 Meta-analysis studies are a powerful methodology, which 

increase study power and precision, and provide a better association estimate within 

populations.61,62 A limitation of meta-analysis is the challenge of dealing with heterogeneity 

among the different studies being analyzed, and the presence of potentially small sample sizes 

within some of the included studies.62  

In this project, meta-analysis will be used to combine GWAS summary statistics from 

individual studies and subsets to produce one set of GWAS summary statistic for each of the 4 

racial groups (European ancestry, African Ancestry, Hispanic Ancestry, and Asian Ancestry). 

Stratification by race is commonly utilized in genetic epidemiology studies to account for 

differences in allele frequencies between populations, a significant source of bias in genetic 

studies., Moreover, race/ethnic group stratification minimizes differences in disease prevalence, 

environmental and lifestyle factors, such as diet and lifestyle factors within the group. METAL is 

a widely used meta-analysis program in genetic epidemiology and has been optimized to be 

computationally efficient meta-analyses of dozens across millions of genetic variants common in 
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genetic studies.63 This program uses a fixed effects model to perform an inverse variance-

weighted average meta-analysis.63,64 Prior to conducting the meta-analysis, SNPTEST GWAS 

outputs for individual chromosomes are merged together and a QC protocol is applied to 

summary statistics. The summary statistics QC protocol involves checks for null values, 

removing implausible beta statistics and p-values, and application of a minor allele count (MAC) 

10 filter. The MAC 10 filter is used to specify that the cases and controls each have a minimum 

of 10 copies of each allele, which has been shown to reduce false positives and p-value inflation. 

Finally, the QC protocol applies a genomic control, to correct for inflation in GWAS summary 

statistics due to potential sample admixture. Genomic control estimates inflation in GWAS 

summary statistics by calculating the lambda (λ), and the median chi-square value for all SNPs in 

the GWAS. When the study sample and number of variants is large, λ follows a chi-square 

distribution (χ21i with 1 degree of freedom). λ values greater than 1 indicate inflation and a 

correction is applied to all variant test statistics (deflation factor).65 Meta-analysis is performed 

on QC’ed GWAS summary statistics by running through METAL stratified by race, and generate 

combined p-values, odds-ratios, allele frequency, and test of heterogeneity. Subsequently, a filter 

is applied to the meta-analysis output which requires SNP results to be derived from at least two 

studies. Finally, to identify independent regions and variants associated with the outcome of 

interest, the meta-analysis results are clumped. ‘Clumping’ is a statistical procedure in which 

GWAS results are filtered to identify top independent signals in a region, while taking into 

account the linkage disequilibrium (correlation) between variants. This involves identification of 

the most significant SNP for each haplotype block based on a specified p-value threshold. 

Clumping was performed considering two p-value thresholds, genome-wide significant (5x10-8) 

and genome-wide suggestive (1x10-5). 
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Chapter III: 

Results 

 

Study Datasets 

 The sample includes 345,955 individuals across 14 studies and contains 324,834 

individuals of European ancestry, 9,040 of African ancestry, 6,125 of Hispanic ancestry, and 

5,956 of Asian ancestry. The study includes 40,994 individuals with T2D and 301,940 without 

T2D, as well as 34,764 current smokers and 184,060 never smokers. The sex distribution of the 

sample involves 156,212 males and 189,743 females. Approximately 65% of the sample 

population is derived from UK Biobank, while the rest is from dbGaP. The different study types 

from the sample consisted of cross-sectional, case-control, case set, and longitudinal studies. 

Table 3 is a breakdown of the demographics for each study by racial ancestry. Table 4 provides 

the study population and encompasses a list of the studies, the study label, and total number of 

participants in each study. 

 

Table 3. Study Characteristics 

Ancestry N Gender Type 2 Diabetes (n) Smoking (n) 

    Male (n) Female (n) Non-Diabetic  Diabetic Never Current 

European 324834 147465 (45%) 177369 (54%) 286442 (88%) 35382 (11%) 171443 (52%) 32230 (10%) 

African 9040 3746 (41%) 5294 (58%) 5987 (66%) 3044 (33%) 4724 (52%) 1902 (21%) 

Hispanic 6125 2516 (41%) 3609 (59%) 4603 (75%) 1521 (35%)  3595 (58%)  430 (7%) 

Asian 5956 2485 (41%) 3471 (58%) 4908 (82%) 1047 (17%) 4298 (72%) 202 (3%) 

Total 345955 156212 (45%) 189743 (55%) 301940 (88%) 40994 (12%) 184060 (53%) 34764 (10%) 
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Table 4. Study Population 

Study Type Study Race N Male(n) Female(n) Type 2 Diabetes(n) Smoking (n) 

           Non-
Diabetic  Diabetic Never Current 

Cross-Sectional  The National Institute on Aging Long Life Study (LLFS) 
    European 1800 842 958 1557 240 1189 137 

Cross-Sectional  Research Program on Genes, Environment and Health (RPGEH) 

    

European 62,827 25,826 37,001 54,987 7,840 34,039 2,668 
Black 1931 711 1,220 1470 461 1061 143 
Asian 5193 2,111 3,082 4,348 845 3,727 159 

Hispanic 4352 1,577 2,775 3,558 794 2,648 219 
Case Control  Geneva Diabetes Study (GENEVA) 

    European 5552 2,366 3,186 2,929 2,499 2,488 574 
Case Control  Genome-Wie Association Study on Cataract and HDL (CATARACT) 

    European 2177 891 1,286 1,473 704 1,092 188 
Case Control  Northwestern Nugene project: Type 2 Diabetes (NW) 

    European 1288 640 648 623 604 566 102 
Case Control  Development and Use of Network Infrastructure for GWAS (DUNI) 

    European 1438 594 844 1,121 317 607 58 
Case Control  GWAS of Peripheral Artery Disease (PAD) 

    European 3048 1,900 1,148 2,537 511 713 1,194 
Case set  Catheterization Genetics (CATHGEN) 

    
European 882 456 426 663 219 430 452 

Black 270 129 141 162 108 148 122 
Case set  National Institute of Diabetes and Digestive Kidney Diseases (NIDDK) 

    
European 1517 914 603 906 611 666 141 

Black 1451 704 747 701 750 619 283 
Hispanic 399 242 157 124 275 211 26 

Longitudinal Atherosclerosis Risk in Communities (ARIC) 

    
European 7885 3728 4157 6087 1798 3118 1969 

Black 2252 870 1382 1348 904 1032 672 
Longitudinal Coronary Artery Risk Development in Young Adults Study (CARDIA) 

    
European 1343 635 708 1,236 105 766 332 

Black 1004 393 611 892 106 906 301 
Longitudinal Cardiovascular Health Study (CHS) 

    European 3192 1268 1924 2,224 968 1511 339 
Black 562 209 353 350 211 256 88 

Longitudinal Multi-Ethnic Study of Atherosclerosis (MESA) 

    

European 2457 1,186 1,271 2,091 362 1,086 278 
Black 1570 730 840 1,064 504 702 293 

Hispanic 1374 697 677 921 452 736 185 
Asian 763 374 389 560 202 571 43 

Longitudinal UK Biobank (UKBB) 
    European 229428 106,219 123,209 208,008 18,604 123,172 23,798 

Total  345955 156212 189743 301940 40994 184060 34764 
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GWAS Analyses and Results 

GWAS analyses was first conducted individually for each study, using the joint 

framework to analyze both genetic main and interaction effects. Studies were stratified by race, 

gender, case control status, and genotype array, while also adjusted for PCA’s and age, to obtain 

an unbiased estimate. Studies with familial relatedness were broken up to create an unrelated 

subset based on a specified pihat value dependent on each study. Once studies were individually 

analyzed, a meta-analysis was performed to combine study statistics and produce one set of 

results for each racial ancestry (European, African, Hispanic, Asian). The final meta-analysis 

results generated a total sample size of 345,955 individuals. Top SNPs from the meta-analysis 

results are provided stratified by racial ancestry as well as the full list of SNP results. The top 

SNPs are chosen based on a p-value cutoff (≤0.05), SNPs associated T2D established through 

prior literature, presence of the SNP in two or more racial ancestries at a p-value of ≤0.05, 

consistency in direction of effect, and degree of heterogeneity.  

 Results are presented separately for interaction and main effect analyses, including 

quantile-quantile plots (QQ) and Manhattan plots. A Manhattan plot illustrates the p-value of 

SNPs on a negative log scale for the y-axis and SNP genome position (by chromosome and 

position) on the x-axis. The Manhattan plot is used to visually identify genomic position with 

significance and problematic variant signals or regions. QQ plots are a useful tool to graphically 

compare the observed versus the expected p-value distributions. The QQ plots use a negative 

logarithmic scale (for both x- and y-axes), annotated with λ (inflation factor), and a 95% 

confidence interval to help identify problematic results (e.g. severe inflation) and studies that 

require further investigation. Clumping was performed using two p-value thresholds: genome-

wide significant threshold (p-value <5x10-8) and genome wide suggestive variants (p-value 
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<1x10-5). Moreover, variants were organized by minor allele frequency (MAF) into two 

categories, common and uncommon SNPs. SNPs with an MAF <1% were categorized as 

uncommon variants. To reduce potential false positives, particularly for smaller non-European 

results, genome-wide suggestive variants were prioritized for consideration if they were 

nominally significant (p-value <0.05) in another racial group result. Finally, variants in the 

uncommon genome-wide suggestive category are not presented in the results or discussion 

sections below due to high probability of being false positives. 

 

European Ancestry: Interaction Effect 

The Manhattan plots for the European interaction effect (Figure 1) shows several SNPs 

that have reached genome-wide suggestive level, along with three positions on chromosomes 2, 

3, and 8, that are close to genome-wide significance level, which may have been possible to 

attain with a larger sample size. The European interaction QQ plot (Figure 2) displays a line that 

indicates the observed values have shown to follow within the expected range within the 95% 

confidence interval. 

 Clumping of the European ancestry interaction effect results revealed zero variants at the 

genome-wide significant threshold (p-value <5x10-8) and 55 genome-wide suggestive SNPs 

(1x10-5). Of the suggestive significance loci, 43 were common variants and 3 had significance 

(p-value <0.05) in another racial ancestry group. The full list of common SNPs are provided in 

Table 7 and top SNPs are provided in Table 5. Two of the SNPs are on an intergenic region, the 

first of which is the rs6826172 on chromosome 4, and the second is the rs10915300 on 

chromosome 1. The third SNP is rs261227 on chromosome 5 and is on the LOC101929710 gene 
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with a p-value of 2.57x10-6. The LOC101929710 gene is uncharacterized and the function of this 

gene is currently unknown.66  

 

European Ancestry: Main Effect 

The Manhattan Plot for European Ancestry Main Effect (Figure 3) shows a highly 

significant p-value on chromosome 10, which is the TCF7L2 gene. The Manhattan plots shows 

several other genomic markers have reached genome-wide significance, however, after filtering 

out uncommon SNPs, these markers were not considered in the final results. Figure 4 displays 

the QQ plot for the European Ancestry main effect. The QQ plot is graphed on a negative 

logarithmic scale and shows the observed outcome (the plotted black line) as higher than the 

expected range or the 95% confidence interval (the two red lines). The λ value (1.21) is greater 

than 1, which indicates that the observed p-values are more significant than expected and slight 

genomic inflation. 

The meta-analyzed GWAS on individuals of European ancestry identified 34 genome-

wide significant SNPs from the main effect (p-value <5x10-8). Results from main effect also 

displayed varying levels of frequencies, similar to the interaction effect, and as a result the 

uncommon SNPs were filtered out. Once filtered and categorized, the only SNP that remained as 

a common significant variant is the rs7903146 on chromosome 10, which has a p-value of 

9.59x10-33. This SNP is located on the TCF7L2 gene, an established gene known for being 

involved in the pathophysiology of causing T2D.22,67 The transcription factor-7 like two gene 

(TCF7L2) is widely proven in literature as a gene with high impact on disease susceptibility 

since it effects sensitivity of β-cell to incretins, which are metabolic hormones that induce a 

decrease in blood glucose.67 Results on the top SNPs for the main effect are provided in Table 8. 
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Figure 1. Manhattan Plot: European Ancestry Interaction Effect. Figure 1 illustrates a 
Manhattan plot that allows visual inspection of the distribution of p-values of the interaction 
effect from the meta-analysis GWAS of Europeans. The x-axis represents the genomic position, 
and the y-axis represents a negative logarithmic scale of p-values. The top red dotted line is the 
genome-wide significant threshold while the bottom red dotted line is the genome-wide 
suggestive threshold. The plot indicates several positions that have reached genome-wide 
suggestive level. The color sequence is shown to visually differentiate chromosome locations.  
 
 
 

 
 
Figure 2. QQ Plot: European Ancestry Interaction Effect. Figure 2 is a quantile-quantile 
(QQ) plot for interaction effect of individuals from European ancestry. This QQ plot provides a 
graphical method to assess the distribution of GWAS p-values. The figure plots observed p-
values versus expected p-values on a negative log scale. The red lines represent the 95% 
confidence interval and the plotted black lines is the p-value. 
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Figure 3. Manhattan Plot: European Ancestry Main Effect. Figure 3 illustrates a Manhattan 
plot that allows visual inspection of the distribution of p-values of the main effect from the meta-
analysis GWAS of Europeans. The x-axis represents the genomic position, and the y-axis 
represents a negative logarithmic scale of p-values. The top red dotted line is the genome-wide 
significant threshold while the bottom red dotted line is the genome-wide suggestive threshold. 
The plot displays 36 positions with genome-wide significance (5x10-8) with the highest p-value 
pertaining to rs7903146 on chromosome 10. 
 
 

 
 

Figure 4. QQ Plot: European Ancestry Main Effect. Figure 4 is the quantile-quantile (QQ) 
plot for the European ancestry main effect. The figure plots observed p-values versus expected p-
values on a negative log scale. The red lines represent the 95% confidence interval and the 
plotted black lines is the p-value. This figure displays the observed value (plotted black line) as 
higher than the expected value.  
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African Ancestry: Interaction Effect 

Figure 5 is the Manhattan plot for the African ancestry interaction effect illustrating 

several markers at the genome-wide suggestive level. The QQ plot is presented in Figure 6, 

which shows the observed outcome well below the expected range with a λ less than one 

(𝜆=0.946), indicating the sample is underpowered due to modest overall sample size in African 

ancestry studies.  

Interaction results from the African ancestry analysis generated a list of zero genome-

wide significant (p-value of 5x10-8) SNPs, and 18 SNPs at the genome-wide suggestive level (p-

value of 1x10-5). The 18 SNPs still remained after being filtered for an MAF ≥1% for common 

SNPs (Table 9). Since the SNP results are genome-wide suggestive, the 18 SNPs were further 

examined for significance across at least one other racial ancestry. Only 1 SNP showed 

significance at a p-value threshold of <0.05 among the African and Asian ancestries. The SNP is 

rs13100451on chromosome 3, with a p-value of 6.45x10-6 and lies on the ST6GAL1 gene. The 

ST6GAL1 gene, known as ST6 beta-galactoside alpha-2 6-sialyltransferase 1, is a type II 

membrane protein that catalyzes the transfer of sialic acid to galactose-containing substrates.68 

Rudman et al. described the ST6GAL1 gene as a novel candidate risk gene for T2D from prior 

GWAS studies published on the risk associated with individuals of European and South Asian 

ancestry.69  

 

African Ancestry: Main Effect  

Figure 7 is the Manhattan plot for the African Ancestry main effect illustrating several 

markers that have reached the genome-wide suggestive level, along with three positions on 

chromosomes 7 and 14 that are quite close to the genome-wide significant p-value of 5x10-8. 
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Similar to the interaction effect, the QQ plot (Figure 8) reveals a lower distribution of p-values 

than expected, with a λ less than 1 (𝜆=0.977). This is likely reflecting lack of power due to 

modest overall sample size in African ancestry studies.  

Results from the main effect analysis of African ancestry identified zero genome-wide 

significant (p-value of 5x10-8) SNPs and 37 SNPs at a genome-wide suggestive level (p-value of 

1x10-5). All 37 SNPs were common and reported in Table 10, similar to the African ancestry 

interaction effect results. Since the SNP results were genome-wide suggestive, the 37 SNPs were 

filtered based on significance (p-value of <0.05) in at least one other racial ancestry from the 

GWAS analysis, leaving 3 SNPs. The first SNP, rs73337298 is located on chromosome 7, in an 

intergenic region. The second SNP is rs9866900 on chromosome 3, with a p-value of 1.97x10-6 

and is on the NAALADL2 gene. The NAALADL2 gene was significant in the African ancestry, 

Hispanic ancestry, and Asian ancestry results. The NAALADL2 gene, otherwise known as N-

acetylated alpha-linked acidic dipeptidase like 2, is part of the glutamate carboxypeptidase II 

family.70 A study by Berndt et al. found this gene has been associated with prostate cancer 

aggressiveness and is related to the prostate-specific membrane antigen, a diagnostic and drug 

target for prostate cancer.70 The NAALADL2 gene has also been reported in a study by Zhang et 

al. that conducted a quantitative trait locus association analyses on influencing pleiotropy of 

Metabolic Syndrome.71 NAALADL2 gene mutation is associated to visceral fat and insulin 

responsiveness in the metabolic syndrome association study.71 The third SNP is rs16954017 on 

chromosome 15, with a p-value of 8.21x10-6 and is on the TMED3 gene. The TMED3 variant was 

significant in the African ancestry and Asian ancestry results. The TMED3 gene, also known as 

transmembrane p24 trafficking protein 3, has primarily been discovered to be a potential drug 

target in metastatic suppressor in colon cancer.72,73 However, a study conducted by Hall et al. on 
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the effects of high glucose exposure on global gene expression and DNA methylation in human 

pancreatic islets, found that the TMED3 gene showed differences in mRNA expression between 

high glucose treated pancreatic islets and control treated islets in the pancreas.74   
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Figure 5. Manhattan Plot: African Ancestry Interaction Effect. Figure 5 illustrates a 
Manhattan plot that allows visual inspection of the distribution of p-values of the interaction 
effect from the meta-analysis GWAS of Africans. The x-axis represents the genomic position, 
and the y-axis represents a negative logarithmic scale of p-values. The top red dotted line is the 
genome-wide significant threshold while the bottom red dotted line is the genome-wide 
suggestive threshold. The graph shows 18 SNPs that have reached a genome-wide suggestive 
level (1x10-5).  
 
 

 
 

Figure 6. QQ Plot: African Ancestry Interaction Effect. Figure 6 is a quantile-quantile (QQ) 
plot of the interaction effect from individuals of African ancestry. The plot provides a graphical 
representation of observed p-values versus expected p-values on a negative log scale. The red 
lines represent the 95% confidence interval and the plotted black lines is the p-value.  
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Figure 7. Manhattan Plot: African Ancestry Main Effect. Figure 7 illustrates a Manhattan 
plot that allows visual inspection of the distribution of p-values of the main effect from the meta-
analysis GWAS of Africans. The x-axis represents the genomic position, and the y-axis 
represents a negative logarithmic scale of p-values. The top red dotted line is the genome-wide 
significant threshold while the bottom red dotted line is the genome-wide suggestive threshold. 
The graph shows 37 SNPs that have reached a genome-wide suggestive level. 
 

 

 
 

Figure 8. QQ Plot: African Ancestry Main Effect. Figure 8 is a quantile-quantile (QQ) plot of 
the main effect from individuals of African ancestry. The plot provides a graphical representation 
of observed p-values versus expected p-values on a negative log scale. The red lines represent 
the 95% confidence interval and the plotted black lines is the p-value.  
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Hispanic Ancestry: Interaction Effect 

The Manhattan plot for the Hispanic Ancestry interaction effect (Figure 9) displays 

several SNPs at the genome-wide suggestive level, along with three particular positions on 

chromosomes 7 and 14 that are quite close to the genome-wide significance level, which may 

have been attained given a larger sample size. Figure 10 provides the QQ plot for the interaction 

effect, which shows the observed line is slightly lower than the expected line, with a λ below 1 

(𝜆=0.937). The figure displays variability towards the top end of the graph from the rest of the 

line. 

Results from the meta-analyzed GWAS of Hispanic ancestry for the interaction effect 

found zero genome-wide significant (p-value of 5x10-8) SNPs and 5 genome-wide suggestive 

SNPs (p-value of 1x10-5). All 5 SNPs are common, with an MAF ≥1% (see Table 11). Since 

results are genome-wide suggestive, the SNPs were filtered based on significance (p-value 

<0.05) in at least one other racial group from the GWAS analysis, resulting in 1 SNP remaining. 

The SNP is rs73209286 on chromosome 8, with a p-value of 6.14x10-6 and is on the BLK gene, 

which was significant in Hispanic and European ancestry studies. BLK, or B lymphocyte kinase, 

is a gene that encodes a nonreceptor tyrosine-kinase among the family of proto-oncogenes 

involved in cell proliferation and differentiation.75 The function of this protein in B-cell 

development and stimulates insulin synthesis and secretion in response to glucose, while it also 

enhances the expression of pancreatic beta-cell transcription factors.75 A study conducted by 

Borowiec et al. in 2009 discovered mutations on the BLK locus is associated with mature onset 

diabetes of the young and described BLK as a modulator of beta-cell function.76  
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Hispanic Ancestry: Main Effect 

The Manhattan Plot for Hispanic Ancestry main effect (Figure 10) shows several SNPs 

that have reached past the genome-wide suggestive p-value cut-off value on the negative 

logarithmic scale. The QQ plot for the main effect (Figure 12) shows the observed values are 

mostly within the expected range, with a λ of a slightly over 1 (𝜆=1.015). 

The meta-analyzed GWAS on individuals of Hispanic ancestry identified zero genome-

wide significant (p-value of 5x10-8) SNPs and 26 genome-wide suggestive SNPs (p-value of 

1x10-5) for the main effect, all of which were common and provided in Table 12. Since results 

are genome-wide suggestive, SNPs were filtered based on significance (p-value <0.05) in at least 

one other racial ancestry from GWAS analysis, and 3 SNPs remained. Two of the SNPs are on 

an intergenic region: the rs113240724 SNP on chromosome 2, and the rs2416722 SNP on 

chromosome 9. The third SNP is rs11264442 on chromosome 1, with a p-value of 6.12x10-6 and 

falls on the LMNA gene. The LMNA indicated to be significant among Hispanic and European 

ancestral studies. The LMNA gene, known as lamin A/C, provide instructions for the proteins 

lamin A and lamin C, which are intermediate filaments that provide cells with stability and 

strength.77 Two studies have investigated the role of LMNA gene mutations in increasing 

susceptibility to T2D and found an association with disease risk.78,79  
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Figure 9. Manhattan Plot: Hispanic Ancestry Interaction Effect. Figure 9 illustrates a 
Manhattan plot that allows visual inspection of the distribution of p-values of the interaction 
effect from the meta-analysis GWAS of individuals with Hispanic ancestry. The x-axis 
represents the genomic position, and the y-axis represents a negative logarithmic scale of p-
values. The top red dotted line is the genome-wide significant threshold while the bottom red 
dotted line is the genome-wide suggestive threshold. 
 
 

 
 

Figure 10. QQ Plot: Hispanic Ancestry Interaction Effect. Figure 10 is a quantile-quantile 
(QQ) plot of the interaction effect from individuals of Hispanic ancestry. The plot provides a 
graphical representation of observed p-values versus expected p-values on a negative log scale. 
The red lines represent the 95% confidence interval and the plotted black lines is the p-value.  
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Figure 11. Manhattan Plot: Hispanic Ancestry Main Effect. Figure 11 illustrates a Manhattan 
plot that allows visual inspection of the distribution of p-values of the main effect from the meta-
analysis GWAS of Hispanic individuals. The x-axis represents the genomic position, and the y-
axis represents a negative logarithmic scale of p-values. The top red dotted line is the genome-
wide significant threshold while the bottom red dotted line is the genome-wide suggestive 
threshold. The figure shows 26 significant SNPs that are at the genome-wide suggestive level. 

 
 

 
 

Figure 12. QQ Plot: Hispanic Ancestry Main Effect. Figure 12 is a quantile-quantile (QQ) 
plot of the interaction effect from individuals of Hispanic ancestry. The plot provides a graphical 
representation of observed p-values versus expected p-values on a negative log scale. The red 
lines represent the 95% confidence interval and the plotted black lines is the p-value.  
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Asian Ancestry: Interaction Effect  

The Manhattan Plot for the Asian ancestry interaction effect (Figure 13) shows several 

genetic markers with spectacularly low p-values on chromosomes 2, 3, 8, and 13, which do not 

reflect typical Manhattan plots that normally display a skyscraper shape on highly significant 

genomic positions, instead of single dots on the figure. The QQ plot (Figure 14) for the 

interaction effect of Asian Ancestry appears to follow a normal distribution except for the set of 

unexpected variants with extremely low p-values. 

The GWAS interaction results on individuals of Asian ancestry found 6 genome-wide 

significant SNPs (p-value ≤5x10-8). The observed genome-wide significant p-values (9.51x10-188, 

2.67x10-38, 1.03x10-36, 7.27x10-30, 1.01x10-12, 1.08x10-11) are highly unexpected given the small 

sample size of Asian ancestry samples (n=5,956, smokers=1,047, T2D=202) in comparison to 

what was observed in other racial groups. We investigated the unexpectedly low variants by 

reviewing the study specific results and finding the results are mainly driven by two studies 

(MESA & RPGEH) with low sample sizes. We conclude the observed genome-wide significant 

loci are very likely false positives and drop them from further consideration or discussion. The 

results are reported in Table 5 as part of the top SNPs and in Table 13 for all common SNPs, to 

be fully comprehensive and transparent, however should be viewed with high skepticism.    

 

Asian Ancestry: Main Effect  

The Manhattan Plot for the Asian ancestry main effect (Figure 15), shows several 

genomic markers at genome-wide suggestive level. Markers on chromosomes 4, 5, and 7 are 

particularly high and are close to the genome-wide significant cut-off. The QQ plot (Figure 16) 
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displays a normal line with the observed values slightly higher than the expected near the top of 

the graph, while having a λ a little below one (𝜆=0.997). 

The meta-analyzed GWAS on individuals of Asian ancestry found 23 genome-wide 

suggestive SNPs (p-value of 1x10-5) for the main effect, all of which were common (see Table 

14). Since results are genome-wide suggestive, the 23 SNPs were filtered based on a significant 

p-value threshold (≤0.05) across at least two racial ancestries. As a result, 2 SNPs remained. The 

first SNP is rs78355386 on chromosome 9, which is on an intergenic region. The second SNP is 

rs1671407 on chromosome 8, with a p-value of 8.59x10-6 and is on the DLC1 gene. The DLC1 

variant was significant in Hispanic and Asian ancestry results. The DLC1 gene, known as DLC1 

(Deleted in Human Liver Cancer 1) Rho GTPase activating protein, is a member of the rhoGAP 

family, which are involved in regulation of GTP-binding proteins.80,81 The function of this gene 

acts as a tumor suppressor in prevalent cancers such as prostate cancer, lung cancer, colorectal 

cancer, and breast cancer.80 Interestingly, a GWAS by Matoba et al. of smoking behavior in 

165,436 Japanese individuals found that the DLC1 gene was associated with smoking 

initiation.82  
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Figure 13. Manhattan Plot: Asian Ancestry Interaction Effect. Figure 13 illustrates a 
Manhattan plot that allows visual inspection of the distribution of p-values of the interaction 
effect from the meta-analysis GWAS of Asian ancestry. The x-axis represents the genomic 
position, and the y-axis represents a negative logarithmic scale of p-values. The top red dotted 
line is the genome-wide significant threshold while the bottom red dotted line is the genome-
wide suggestive threshold. 
 
 

 
Figure 14. QQ Plot: Asian Ancestry Interaction Effect. Figure 14 is a quantile-quantile (QQ) 
plot of the interaction effect from individuals of Asian ancestry. The plot provides a graphical 
representation of observed p-values versus expected p-values on a negative log scale. The red 
lines represent the 95% confidence interval and the plotted black lines is the p-value.  
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Figure 15. Manhattan Plot: Asian Ancestry Main Effect. Figure 15 illustrates a Manhattan 
plot that allows visual inspection of the distribution of p-values of the main effect from the meta-
analysis GWAS of Asian ancestry. The x-axis represents the genomic position, and the y-axis 
represents a negative logarithmic scale of p-values. The top red dotted line is the genome-wide 
significant threshold while the bottom red dotted line is the genome-wide suggestive threshold. 
 
 

 
 

Figure 16. QQ Plot: Asian Ancestry Main Effect. Figure 16 is a quantile-quantile (QQ) plot of 
the interaction effect from individuals of Asian ancestry. The plot provides a graphical 
representation of observed p-values versus expected p-values on a negative log scale. The red 
lines represent the 95% confidence interval and the plotted black lines is the p-value.  
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Cross Ancestry Comparison 

 Meta-analysis SNP results from each racial ancestry were investigated for significance at 

a p-value threshold of <0.05 across the different racial group analyses to prioritize loci. Results 

from the genome-wide significant common SNPs outputs (European ancestry main effect and 

Asian ancestry interaction effect) were examined in European, African, Hispanic, and Asian 

ancestral analyses by genomic position for significance at a p-value threshold of 0.05 in at least 

two or more studies. The Asian ancestry interaction SNP results were not significant in other 

racial studies. The TCF7L2 gene on chromosome 10 (rs7903146) from the European ancestry 

results is also nominally significant in individuals of African (p-value of 3.16x10-3) and Hispanic 

(p-value of 1.25x10-2) ancestries. The p-values of significant SNPs across different racial groups 

are provided in Table 15 for the interaction effect and Table 16 for the main effect. A breakdown 

of that SNP for each racial group is provided in Table 17 for the interaction effect and Table 18 

for the main effect. The TCF7L2 gene is the only genome-wide significant result shown to also 

be significant in other races.  

 Genome-wide suggestive common SNPs were evaluated for significance at a p-value of 

<0.05 cut-off in at least two racial studies, a total of 13 genes were identified in this cross-

ancestry look-up. Six of the SNPs are on an intergenic region. The ST6GAL1 gene, previously 

mentioned in the African ancestry interaction effect, is also significant in the Asian (p-value of 

2.26x10-2) GWAS results. The NAALADL2 gene from the African ancestry results was 

significant in Hispanic ancestry results (p-value of 2.25x10-2) and Asian ancestry results (p-value 

of 1.54x10-2) as well. The TMED3 gene from the African results showed significance in the 

Asian ancestry results (p-value of 3.73x10-3). The BLK gene, discussed in Hispanic ancestry 

results, was significant in European ancestry results (p-value of 1.40x10-2). The LMNA gene 
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discussed in the Hispanic ancestry results was significant in individuals of European ancestry (p-

value of 4.06x10-2) ancestry. From the Asian ancestry results, the DLC1 gene showed nominal 

significance in Hispanic ancestry results (p-value of 4.55x10-2). 
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Table 5. Top SNPs from Interaction Effect 
 

Top SNPs: Interaction Effect 
Ancestry CHR Marker SNP Gene EA NEA Freq P-value OR 
European 4 4:158480125 rs6826172 Intergenic A G 0.8768 1.46E-06 0.81 
European 5 5:95902989 rs261227 LOC101929710 A C 0.607 2.57E-06 1.15 
European 1 1:5026921 rs10915300 Intergenic A G 0.2369 5.06E-06 1.17 
African 3 3:186653218 rs13100451 ST6GAL1 A T 0.4341 6.45E-06 1.61 
Hispanic 8 8:11374228 rs73209286 BLK A C 0.0445 6.14E-06 4.51 

Asian 2 2:108747865 rs9917181 Intergenic T C 0.6197 2.67E-38 26.47 
Asian 2 2:138093273 rs1463279 THSD7B T C 0.7018 1.08E-11 0.18 
Asian 3 3:194772806 rs4677798 Intergenic A G 0.7266 7.27E-30 21.04 
Asian 8 8:21562155 rs7826525 GFRA2 A G 0.5542 9.51E-188 0.01 
Asian 8 8:12515242 rs62488764 LOC729732 T C 0.5243 1.01E-12 0.07 
Asian 13 13:69233302 rs12871979 Intergenic A G 0.7464 1.03E-36 0.06 

*Abbreviations: CHR: chromosome, SNP: single-nucleotide polymorphism, EA: effect allele, 
NEA: non-effect allele, Freq: frequency, OR: odds ratio. 
 
 
 
Table 6. Top SNPs from Main Effect.  
 

Top SNPs: Main Effect 
Ancestry CHR Marker SNP Gene EA NEA Freq P-value OR 
European 10 10:114758349 rs7903146 TCF7L2 T C 0.2934 9.59E-33 1.29 
African 3 3:174808476 rs9866900 NAALADL2 A T 0.1713 1.97E-06 1.44 
African 15 15:79630253 rs16954017 TMED3 A T 0.6133 8.21E-06 1.30 
African 7 7:6328946 rs73337298 Intergenic A G 0.1071 1.58E-06 1.58 
Hispanic 1 1:156104375 rs11264442 LMNA A G 0.0357 6.12E-06 2.54 
Hispanic 9 9:122590178 rs2416722 Intergenic A T 0.0991 1.97E-06 1.75 
Hispanic 2 2:164851254 rs113240724 Intergenic T C 0.9679 2.25E-06 0.34 

Asian 8 8:13222219 rs1671407 DLC1 A T 0.2374 8.59E-06 1.43 
Asian 9 9:7686600 rs78355386 Intergenic A T 0.9615 6.23E-06 0.35 

*Abbreviations: CHR: chromosome, POS: genomic position, SNP: single-nucleotide 
polymorphism, EA: effect allele, NEA: non-effect allele, Freq: frequency, OR: odds ratio. 
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Table 7. European Ancestry Interaction Effect Common Variants 
 

European Ancestry Interaction Effect: Genome-Wide Suggestive & Common Variants 
CHR Position SNP Gene EA NEA Freq P-value OR 

1 1:16806683 rs7520744 CROCCP3 A G 0.1191 6.55E-07 1.26 

1 1:184508413 rs144420111 C1orf21 A G 0.9895 3.44E-06 0.48 
1 1:96126649 rs11165462 LOC101928219 T C 0.4119 3.47E-06 1.15 
1 1:5026921 rs10915300 Intergenic A G 0.2369 5.06E-06 1.17 
1 1:53263826 rs4351588 ZYG11B A T 0.6273 8.29E-06 0.88 
2 2:205366177 rs78262818 Intergenic A C 0.9738 3.32E-07 0.63 
2 2:19952783 rs11692297 Intergenic T C 0.1214 2.81E-06 1.23 

2 2:39911151 rs13427136 TMEM178A T C 0.9329 2.95E-06 0.63 
3 3:20754619 rs62234997 Intergenic A G 0.7406 1.58E-07 0.84 
3 3:148353411 rs1602698 Intergenic C G 0.8761 1.37E-06 0.80 
3 3:191405080 rs13323801 Intergenic A T 0.0987 2.17E-06 1.32 
3 3:2211932 rs6789159 CNTN4 A G 0.3081 8.27E-06 1.19 
4 4:158480125 rs6826172 Intergenic A G 0.8768 1.46E-06 0.81 

4 4:6751596 rs75775756 Intergenic C G 0.9138 1.78E-06 0.78 
4 4:49642993 rs10452406 Intergenic T G 0.3331 4.98E-06 1.25 
5 5:167079454 rs112850392 TENM2 A G 0.9873 1.19E-06 0.52 
5 5:95902989 rs261227 LOC101929710 A C 0.607 2.57E-06 1.15 
5 5:139066854 rs34897167 Intergenic A C 0.1103 4.09E-06 1.26 
5 5:103679062 rs75368393 Intergenic A G 0.9598 6.75E-06 0.72 

5 5:178088566 rs7730583 Intergenic A G 0.0721 7.91E-06 1.35 
6 6:115574669 rs368832345 Intergenic T C 0.9667 1.76E-06 0.63 
6 6:32087258 rs62402721 ATF6B T C 0.0253 3.89E-06 2.25 
7 7:154206637 rs78773933 DPP6 T G 0.8859 2.70E-06 0.80 
8 8:38845890 rs149162978 HTRA4/TM2D2 T C 0.0774 1.66E-06 1.30 
8 8:89239596 rs72675183 MMP16 T C 0.0417 9.56E-06 1.40 

10 10:129100209 rs985872861 DOCK1 CA C 0.0278 4.70E-06 1.73 
11 11:57211797 rs150617079 Intergenic A C 0.0147 3.95E-06 1.76 
11 11:25398182 rs2404078 Intergenic A T 0.2484 5.20E-06 0.86 
11 11:72407884 rs2306613 ARAP1 T C 0.9036 5.82E-06 0.80 
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Table 7. European Ancestry Interaction Effect Common Variants (continued) 
 

European Ancestry Interaction Effect: Genome-Wide Suggestive & Common Variants (continued)   
CHR Position SNP Gene EA NEA Freq P-value OR 

11 11:81509968 rs1903240 Intergenic A C 0.1445 6.33E-06 1.26 
11 11:83524658 rs12362201 DLG2 T C 0.0582 8.30E-06 1.33 
12 12:49312681 rs117646559 CCDC65 T G 0.0118 6.03E-07 4.22 
12 12:42298802 rs1328324106 Intergenic T ACTT 0.3639 7.72E-06 0.83 
13 13:55868470 rs77608207 Intergenic T G 0.9722 4.01E-06 1.64 
14 14:40046061 rs75360298 LOC105370461 A C 0.9766 7.11E-06 0.63 
14 14:49390161 rs72690222 LOC105378178 A T 0.6956 8.26E-06 0.87 
15 15:94945704 rs7180682 MCTP2 A G 0.5982 3.88E-06 0.87 
16 16:24685446 rs80237910 TNRC6A A C 0.0245 3.25E-06 1.58 
17 17:74311627 * * A ACTT 0.0112 4.49E-06 2.03 
18 18:24592493 rs62082096 CHST9 A C 0.0167 2.51E-06 1.68 
18 18:50887302 rs11663173 DCC T C 0.0108 7.50E-06 5.02 
19 19:7030780 rs1690412 MBD3L5 A C 0.7336 2.82E-06 0.81 
22 22:47944748 rs10460765 Intergenic T C 0.7144 2.33E-06 0.86 

*Position not affiliated with any SNP or gene. 
 
 
Table 8. European Ancestry Main Effect Common Variants 
 

European Ancestry Main Effect: Genome-Wide Significant and Common Variants 

CHR Position SNP Gene EA NEA Freq P-value OR 
10 10:114758349 rs7903146 TCF7L2 T C 0.2934 9.59E-33 1.29 
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Table 9. African Ancestry Interaction Common Variants 
 

African Ancestry Interaction Effect: Genome-Wide Suggestive & Common Variants 
CHR Position SNP Gene EA NEA Freq P-value OR 

3 3:1669255 rs280127 Intergenic A G 0.802 4.08E-06 0.55 
3 3:186653218 rs13100451 ST6GAL1 A T 0.4341 6.45E-06 1.61 
3 3:128540990 rs111882733 Intergenic A G 0.7501 7.37E-06 1.73 
3 3:12532057 rs299640 TSEN2 T C 0.3707 8.35E-06 1.59 
4 4:76814405 rs113631320 PPEF2 A T 0.061 9.49E-06 2.86 
8 8:28002281 rs12542344 ELP3 A C 0.1411 2.60E-06 0.46 
8 8:112742197 rs1904365 Intergenic A T 0.7848 4.60E-06 1.78 
10 10:108560037 rs822000 SORCS1 T C 0.2959 7.77E-06 1.65 
11 11:92163754 rs495762 FAT3 A G 0.1231 8.55E-06 2.05 
12 12:12575171 rs11054898 BORCS5 T C 0.2173 3.30E-06 0.55 
13 13:36401746 rs9574698 DCLK1 T C 0.7143 5.62E-06 0.60 
17 17:47227275 rs62079771 B4GALNT2 A G 0.1364 1.44E-06 0.45 
17 17:29009905 rs7222253 LOC105371723 C G 0.4849 7.97E-06 0.63 
20 20:7090913 rs77095026 Intergenic A C 0.0401 7.01E-07 4.67 
20 20:7123709 rs115561333 Intergenic T C 0.972 3.72E-06 0.10 
20 20:38633460 rs6071895 LINC01370 T C 0.1745 8.81E-06 1.78 
20 20:7092065 rs78069445 Intergenic C G 0.9589 8.97E-06 0.26 
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Table 10. African Ancestry Main Effect Common Variants 
 

African Ancestry Main Effect: Genome-Wide Suggestive & Common Variants 
CHR Position SNP Gene EA NEA Freq P-value OR 

1 1:169502942 rs147838710 F5 A G 0.0227 7.48E-06 4.55 
1 1:169497628 rs76904241 F5 T G 0.023 4.96E-06 4.50 
1 1:169492236 rs114542453 F5 A G 0.0232 2.88E-06 4.53 
1 1:169491048 rs370366327 F5 A G 0.0232 2.88E-06 4.53 
1 1:169483175 rs76510731 F5 C G 0.0232 3.90E-06 4.37 
1 1:169494232 rs115191744 F5 A G 0.0234 2.42E-06 4.61 
1 1:169472898 rs115195224 Intergenic A C 0.0241 5.52E-06 3.95 
1 1:38609717 rs74390957 LOC105378654 A G 0.9375 8.73E-06 0.57 
1 1:169475850 rs116773669 Intergenic A C 0.9762 2.93E-06 0.24 
1 1:169482063 rs75764442 F5 C G 0.9767 4.24E-06 0.23 
1 1:169490119 rs77136555 F5 C G 0.9768 2.95E-06 0.22 
1 1:169495651 rs114407237 F5 T C 0.9768 4.53E-06 0.22 
2 2:12612540 rs10929814 MIR3681HG A G 0.5961 6.39E-06 0.74 
3 3:125847878 rs78299669 ALDH1L1 A T 0.0317 6.59E-06 2.95 
3 3:3977058 rs116727036 Intergenic A T 0.0484 7.89E-06 1.91 
3 3:3967931 rs75364484 Intergenic T G 0.0505 7.77E-06 1.89 
3 3:174808476 rs9866900 NAALADL2 A T 0.1713 1.97E-06 1.44 
3 3:23146682 rs6783710 Intergenic T C 0.4196 6.88E-06 1.30 
3 3:3995440 rs113610982 Intergenic A C 0.949 9.37E-06 0.54 
3 3:3964094 rs79094344 Intergenic A G 0.9491 1.94E-06 0.51 
4 4:98587845 rs17026853 STPG2 A G 0.0932 8.73E-06 1.54 
4 4:98654023 rs74807654 STPG2 A G 0.8939 7.45E-06 0.66 
5 5:71421903 rs115247276 MAP1B T G 0.9634 8.95E-06 0.37 
6 6:42211424 rs9394890 TRERF1 T C 0.9567 8.86E-06 0.37 
7 7:5491335 rs56017129 Intergenic A G 0.0674 1.00E-06 2.00 
7 7:6328946 rs73337298 Intergenic A G 0.1071 1.58E-06 1.58 
7 7:12764983 rs4719329 Intergenic T C 0.5982 9.10E-06 1.31 
8 8:5501607 rs2189887 Intergenic T G 0.0777 1.31E-06 1.75 
9 9:1488655 rs10961710 Intergenic A C 0.0753 9.63E-06 0.57 
9 9:73183023 rs12351121 KLF9-DT/TRPM3 T C 0.8272 5.05E-06 1.43 
11 11:114323972 rs548236 Intergenic A T 0.5487 5.73E-06 0.77 
11 11:24100122 rs59465145 Intergenic A T 0.9304 1.79E-06 0.55 
12 12:124202498 rs112325438 ATP6V0A2 A G 0.0392 2.56E-06 2.28 
12 12:57354514 rs11524050 RDH16 T C 0.0478 8.17E-06 1.90 
15 15:79630253 rs16954017 TMED3 A T 0.6133 8.21E-06 1.30 
16 16:7744600 rs2191133 RBFOX1 A G 0.7628 6.48E-06 0.74 
17 17:29010103 rs11653547 LOC105371723 T C 0.6169 6.99E-06 0.76 
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Table 11. Hispanic Ancestry Interaction Effect Common Variants 
 

Hispanic Ancestry Interaction Effect: Genome-Wide Suggestive & Common Variants 
CHR Position SNP Gene EA NEA Freq P-value OR 

7 7:33430008 rs3779241 BBS9 T C 0.0889 1.24E-07 19.75 

7 7:101358045 rs56195308 Intergenic T G 0.9266 3.38E-07 3.02 
8 8:11374228 rs73209286 BLK A C 0.0445 6.14E-06 4.51 

13 13:67823434 rs115242679 Intergenic A G 0.0524 8.49E-06 7.38 
14 14:65687536 rs10144720 LINC02324 A G 0.2268 2.08E-07 0.15 

 
Table 12. Hispanic Ancestry Main Effect Common Variants 
 

Hispanic Ancestry Main Effect: Genome-Wide Suggestive & Common Variants 
CHR Position SNP Gene EA NEA Freq P-value OR 

1 1:156104375 rs11264442 LMNA A G 0.0357 6.12E-06 2.54 
2 2:29497921 rs149039367 ALK T C 0.0228 1.67E-06 3.15 
2 2:164851254 rs113240724 Intergenic T C 0.9679 2.25E-06 0.34 
2 2:168774587 rs112814375 B3GALT1-AS1 A G 0.9745 2.09E-06 0.24 
3 3:14411415 rs13074307 Intergenic A G 0.0659 7.17E-06 1.77 
4 4:122658940 rs17051397 Intergenic C G 0.9644 8.83E-06 0.42 
4 4:154394813 rs144751590 TMEM131L T G 0.9741 5.98E-06 0.36 
4 4:132408019 rs11935040 Intergenic T C 0.9816 8.61E-07 0.29 
6 6:52108777 rs2294835 IL17F T C 0.4957 7.13E-06 1.35 
6 6:18921885 rs10807636 Intergenic T C 0.653 7.89E-06 0.73 
6 6:161181133 rs116480834 Intergenic A C 0.9587 4.80E-06 0.44 
7 7:14003327 rs149210567 ETV1 A G 0.0215 4.70E-06 3.28 
8 8:12610570 rs146382316 LONRF1 A C 0.0753 6.48E-07 1.83 
8 8:32515469 rs2439326 NRG1 T G 0.0885 2.92E-06 1.69 
8 8:12645580 rs3935195 LOC340357 A G 0.4057 9.39E-06 1.37 
8 8:12623103 rs151087974 LOC340357 T C 0.9416 1.03E-06 0.50 
8 8:98870322 rs114784956 Intergenic T G 0.9511 3.04E-06 0.52 
9 9:122590178 rs2416722 Intergenic A T 0.0991 1.97E-06 1.75 
10 10:122470170 rs147766911 LOC105378516 T C 0.0269 2.27E-06 3.01 
12 12:24294258 rs10734733 SOX5 A G 0.3389 5.35E-06 1.38 
12 12:64000369 rs11533673 DPY19L2 A C 0.3802 7.91E-07 0.69 
13 13:75086836 rs75501548 Intergenic T C 0.0619 4.43E-06 1.85 
15 15:70098557 rs433460 Intergenic C G 0.1867 1.81E-06 0.63 
15 15:98768093 rs1442802 Intergenic A G 0.3848 7.86E-06 1.36 
17 17:38101719 rs117381273 LRRC3C A C 0.0833 1.45E-06 1.74 
18 18:6130594 rs34650640 L3MBTL4 T C 0.9748 4.95E-07 0.29 
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Table 13. Asian Ancestry Interaction Effect Common Variants 
 

Asian Ancestry Interaction Effect: Genome-Wide Significant & Common Variants   
CHR Position SNP Gene EA NEA Freq P-value OR 

2 2:108747865 rs9917181 Intergenic T C 0.6197 2.67E-38 26.47 
2 2:138093273 rs1463279 THSD7B T C 0.7018 1.08E-11 0.18 
3 3:194772806 rs4677798 Intergenic A G 0.7266 7.27E-30 21.04 
8 8:12515242 rs62488764 LOC729732 T C 0.5243 1.01E-12 0.07 
8 8:21562155 rs7826525 GFRA2 A G 0.5542 9.51E-188 0.01 
13 13:69233302 rs12871979 Intergenic A G 0.7464 1.03E-36 0.06 

 

Table 14. Asian Ancestry Main Effect Common Variants 
 

Asian Ancestry Main Effect: Genome-Wide Suggestive & Common Variants   
CHR Position SNP Gene EA NEA Freq P-value OR 

1 1:214316775 rs145984379 Intergenic T C 0.0148 8.10E-06 3.16 
1 1:31011987 rs422927 Intergenic T C 0.6513 6.83E-06 1.40 
2 2:134090939 rs80236647 NCKAP5 C G 0.0213 4.28E-06 3.41 
3 3:67861633 rs62254903 SUCLG2-AS1 T C 0.9155 4.05E-06 0.56 
4 4:159063054 rs571859818 GASK1B C G 0.9858 4.59E-07 0.27 
5 5:15612315 rs2964270 FBXL7 T C 0.5781 5.54E-07 1.43 
5 5:40384153 rs147171514 Intergenic T G 0.9847 7.96E-06 0.32 
6 6:140386532 rs78948484 LOC100507477 C G 0.0157 6.75E-06 3.30 
6 6:162736476 rs7760647 PRKN A G 0.2755 9.71E-06 1.41 
6 6:89593312 rs141960395 RNGTT A G 0.9727 5.76E-06 0.37 
6 6:141310398 rs147077736 Intergenic A G 0.9834 9.36E-06 0.31 
7 7:78440709 rs73369413 MAGI2 A G 0.0239 4.93E-07 2.84 
7 7:78442847 rs246461 MAGI2 A G 0.0677 6.12E-07 2.32 
7 7:152640 rs12718117 LOC100507642 T C 0.4449 9.53E-06 0.62 
8 8:23875440 rs73559223 LOC107986931 A G 0.1489 9.80E-06 1.53 
8 8:13222219 rs1671407 DLC1 A T 0.2374 8.59E-06 1.43 
9 9:7686600 rs78355386 Intergenic A T 0.9615 6.23E-06 0.35 
10 10:82693296 rs56772124 Intergenic T C 0.8832 8.22E-06 0.64 
11 11:71241268 rs80183776 Intergenic A G 0.0573 6.56E-06 1.89 
11 11:134723650 rs74398592 Intergenic A G 0.9711 1.79E-06 0.40 
13 13:50795587 rs118080265 DLEU1 A G 0.0532 3.68E-06 2.04 
13 13:105127442 rs117293597 Intergenic A G 0.1275 2.78E-06 1.56 
14 14:95029852 rs5508 SERPINA4 T G 0.1546 9.16E-06 1.48 
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Table 15. Cross Ancestry Significant SNPs: Interaction Effect 
 

Gene & Position Interaction Effect P-value 

GENE POS EA AA HW AS 

Intergenic 1:5026921 5.06E-06 9.92E-01 2.44E-01 1.81E-02 
Intergenic 4:158480125 1.46E-06 6.51E-02 3.92E-01 4.54E-02 

LOC101929710 5:95902989 2.57E-06 2.29E-02 5.16E-02 3.99E-01 
ST6GAL1 3:186653218 3.39E-01 6.45E-06 5.65E-01 2.26E-02 

BLK 8:11374228 1.40E-02 7.49E-02 6.14E-06 9.20E-01 

Abbreviations: POS: genomic position, AA: African American ancestry, AS: Asian 
ancestry, EA: European ancestry, HW: Hispanic ancestry. 
 
 
 
Table 16. Cross Ancestry Significant SNPs: Main Effect 
 

Gene & Position Main Effect P-value 

GENE POS EA AA HW AS 

*TCF7L2 *10:114758349 9.59E-33 3.16E-03 1.25E-02 9.89E-01 
NAALADL2 3:174808476 2.30E-01 1.97E-06 2.25E-02 1.54E-02 

Intergenic 7:6328946 2.85E-01 1.58E-06 4.93E-02 9.89E-01 
TMED3 15:79630253 5.42E-01 8.21E-06 1.04E-01 3.73E-03 
LMNA 1:156104375 4.06E-02 4.52E-01 6.12E-06   

Intergenic 2:164851254 1.62E-02 6.02E-02 2.25E-06 6.47E-01 
Intergenic 9:122590178 5.81E-01 3.44E-02 1.97E-06 1.82E-01 

DLC1 8:13222219 5.25E-01 1.41E-01 4.55E-02 8.59E-06 
Intergenic 9:7686600 9.27E-02 7.49E-01 4.29E-02 6.23E-06 

*Genomic position is genome-wide significant.  
Abbreviations: POS: genomic position, AA: African American ancestry, AS: 
Asian ancestry, EA: European ancestry, HW: Hispanic ancestry. 
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Table 17. Breakdown of Cross-Ancestry Significant SNPs: Interaction Effect 
 

Cross-Ancestry SNPs: Interaction Effect 
Position Gene Race Freq Beta StdErr P-value HetPVal 

5:95902989 LOC101929710 

EA 0.607 0.140 0.030 2.57E-06 1.14E-01 
AA 0.759 -0.261 0.115 2.29E-02 7.68E-01 
HW 0.736 0.417 0.214 5.16E-02 6.08E-01 
AS 0.852 0.321 0.381 3.99E-01 6.95E-01 

3:186653218 ST6GAL1 

EA 0.192 -0.036 0.037 3.39E-01 3.12E-01 
AA 0.434 0.473 0.105 6.45E-06 8.24E-03 
HW 0.233 -0.124 0.216 5.65E-01 7.90E-01 
AS 0.388 0.699 0.307 2.26E-02 2.51E-01 

8:11374228 BLK 

EA 0.128 0.107 0.044 1.40E-02 7.52E-01 
AA 0.081 0.355 0.199 7.49E-02 2.29E-01 
HW 0.089 1.507 0.333 6.14E-06 5.89E-01 
AS 0.264 0.028 0.277 9.20E-01 9.97E-01 

*Abbreviations: Freq: Frequency, StdErr: Standard Error, HetPVal: heterogeneity 
p-value. 
 
Table 18. Breakdown of Cross-Ancestry Significant SNPs: Main Effect 
 

Cross-Ancestry SNPs: Main Effect 
Position Gene Race Freq Beta StdErr P-value HetPVal 

10:114758349 TCF7L2 

EA 0.293 0.252 0.021 9.59E-33 2.24E-02 
AA 0.301 0.189 0.064 3.16E-03 7.72E-02 
HW 0.265 0.185 0.074 1.25E-02 1.61E-01 
AS 0.073 -0.003 0.184 9.89E-01 2.93E-01 

3:174808476 NAALADL2 

EA 0.170 0.020 0.017 2.30E-01 6.03E-01 
AA 0.171 0.365 0.077 1.97E-06 1.32E-01 
HW 0.200 0.185 0.081 2.25E-02 5.63E-01 
AS 0.330 0.176 0.073 1.54E-02 6.39E-01 

15:79630253 TMED3 

EA 0.731 -0.009 0.015 5.42E-01 6.89E-03 
AA 0.613 0.262 0.059 8.21E-06 7.98E-01 
HW 0.748 -0.122 0.075 1.04E-01 7.00E-02 
AS 0.841 -0.262 0.090 3.73E-03 9.59E-02 

1:156104375 LMNA 
EA 0.023 -0.097 0.048 4.06E-02 8.15E-01 
AA 0.176 -0.057 0.075 4.52E-01 1.69E-01 
HW 0.036 0.931 0.206 6.12E-06 6.23E-01 

8:13222219 DLC1 

EA 0.615 0.008 0.013 5.25E-01 6.25E-01 
AA 0.337 -0.089 0.061 1.41E-01 2.87E-01 
HW 0.510 0.134 0.067 4.55E-02 7.49E-01 
AS 0.237 0.359 0.081 8.59E-06 7.70E-01 

*Abbreviations: Freq: Frequency, StdErr: Standard Error, HetPVal: heterogeneity 
p-value. 
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Chapter IV: 

Discussion 
 
 

We completed a large-scale genome-wide gene by environment study of in four 

racial/ethnic groups. The gene by smoking interaction on T2D analyses identified the 

involvement of 20 SNPs. The most significant main effect SNP was identified in European 

ancestry analyses, the TCF7L2 gene, is encouraging of accuracy of phenotype definitions and 

meta-analysis, as it is one of the most commonly replicated gene with T2D. 

 

Study Rationale 

 The motivation to conduct this study stems from the gap in literature on the joint 

influences of environment (smoking) and genetics on T2D susceptibility. While it has been 

established that smoking is a causal risk factor for T2D, the biological and genetic mechanisms 

of this relationship is largely unknown. Smoking is hypothesized to modulate the effect genetic 

variation on T2D. Thus, conducting gene by environment interaction studies to analyze the 

influence of genes and environment on disease development provides insight into the biological 

mechanisms at play.  

 

European Ancestry Findings 

 Results from the European ancestry interaction effect meta-analysis yielded genome-wide 

suggestive SNPs and results from the main effect meta-analysis found genome-wide significant 

SNPs. After SNPs were filtered by minor allele frequency for common variants, the interaction 

effect consisted 43 SNPs and the main effect consisted of only one SNP. Since the interaction 

results were genome-wide suggestive, another filter was applied for SNPs to have nominal 
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significance (p-value <0.05) in another racial ancestry, which resulted in three SNPs. Of the 

three SNPs from the interaction results, two were on an intergenic region, and one was the 

LOC101929710 gene. The significant output of the TCF7L2 gene from the main effect results 

provided confirmation of accuracy in the analysis as it is an established gene strongly associated 

in the pathophysiology of T2D.  

 

African Ancestry Findings 

Meta-analysis results for individuals of African ancestry produced genome-wide 

suggestive results for both the interaction effect and the main effect. The suggestive level genes 

for both the interaction and main effect were filtered based on allele frequency and significance 

in at least two racial cohorts. There were three top SNPs from the main effect, which included 

one intergenic gene, the NAALADL2 gene, and the TMED3 gene. Mutations in the NAALADL2 

gene has been previously reported to be associated to visceral fat and insulin responsiveness in 

the metabolic syndrome association study.71 While the TMED3 gene was found to show 

differences in mRNA expression between high glucose treated pancreatic islets and control 

islets.74 In the interaction effect, there was one top SNP after filtering, the ST6GAL1 gene. As 

noted previously, the ST6GAL1 gene is a novel candidate risk gene for T2D from GWAS of 

European and South Asian ancestry.69 In this study it was found to be a genome-wide suggestive 

SNP in the relationship between the ST6GAL1 gene and smoking on the outcome of T2D. 

 

Hispanic Ancestry Findings  

 The meta-analyzed GWAS on individuals of Hispanic ancestry yielded genome-wide 

suggestive results for both the interaction and main effect. Once the results were filtered based 
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on allele frequency and referenced across the racial ancestries, two SNPs remained for the 

interaction effect and two for the main effect. The top SNPs from the interaction effect include a 

SNP on an intergenic region, and the BLK gene. Mutations in the BLK gene have been associated 

with mature onset diabetes of the young.76 The top SNPs for the main effect included two genes, 

one on an intergenic region, and the LMNA gene. LMNA gene mutations have previously been 

shown to increase risk of T2D.78  

 

Asian Ancestry Findings 

Meta-analyzed GWAS results for Asian ancestry produced genome-wide significant 

results for the interaction effect, and genome-wide suggestive results for the main effect. Both 

the main effect and interaction effect were filtered based on allele frequency. The main effect 

SNPs were also filtered by having nominal significance in at least two studies. The 6 genome-

wide significant SNPs from the interaction effect meta-analysis GWAS were primarily driven by 

two  of the sub-studies, including in the meta-analysis, and are most likely false-positive results 

as the sample size for these cohorts is small (5,956 individuals with only 1,047 diabetic 

individuals, and only 200 current smokers). The QC protocol of the GWAS summary statistics 

needs to be modified to implement a thorough check of the QQ plots for each individual sub-

study in the meta-analysis, implement a sample size filter (n>500) and consider alternative 

approaches (e.g. interaction analysis approximation via analysis stratify by smoking status).  

 

Results Comparison 

 Results across the different racial ancestries were compared to locate important SNPs 

present in each of these analyses. Performing a cross-ancestry search of SNPs is essential to 
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discover genes involved in influencing disease susceptibility across various racial or ethnic 

backgrounds. This process also helped provide additional filter for the genome-wide suggestive 

SNPs, since they hold a less significant p-value than genome-wide significant SNPs. Regardless, 

both genome-wide significant and genome-wide suggestive results were investigated across the 

individual GWAS racial groups. As a result, the significant cross-ancestry results included 1 

SNP from the genome-wide significant results (TCF7L2 gene) and 12 SNPs from the genome-

wide suggestive results. A SNP from the genome-wide suggestive results, the NAALADL2 gene, 

was significant in three ancestry results, and the LMNA and BLK genes were significant in the 

European ancestry results.  

 

Conclusion 

This work makes important contributions to understanding the interplay of smoking and 

genetic variants on risk of T2D. An important limitation of this project is the relatively small 

sample size for certain racial-ethnic groups, such as the Asian and Hispanic ancestries. 

Furthermore, the meta-analysis GWAS conducted for the Asian ancestry resulted in implausibly 

significant p-values that were driven by two of the individual studies contributing to the meta-

analysis. Finally, the analysis conducted in SNPTEST did not allow the joint meta-analysis of 

main and interaction effect simultaneously. We identified the involvement of 20 SNPs in a 

GWAS study that places emphasis on a gene by environment analysis and interaction on the 

development of T2D. The results provided genomic markers (SNPs) involved in the relationship 

of gene by smoking interaction as the exposure, on Type II Diabetes development. The most 

significant SNP was identified in European ancestry analyses, the TCF7L2 gene, is encouraging 

of accuracy of phenotype definitions and meta-analysis, as it is one of the most commonly 
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replicated gene with T2D. Variations in allele frequency levels of the European results and 

extremely significant markers affirmed the need for a larger sample size. The Hispanic Ancestry 

results displayed several SNPs that were quite close to the genome-wide significant threshold. 

Furthermore, Asian ancestry analysis produced error resulting in unreliable results. Results from 

all ancestral analyses indicate that maximization of sample size would be beneficial to increase 

significance threshold in Hispanic and African ancestry results, while also providing more stable 

results for the Asian ancestry analysis.  

 

Future Directions 

This study findings provide insights into the relationship between the genetic variation 

and smoking on susceptibility to T2D, as it is one of the first GWAS’s to examine this 

relationship. The results of this study suggest the need for several future directions. It is essential 

increased sample size and thereby the power of GWAS studies, particularly for non-European 

ancestry samples in the final meta-analysis. This entails maximization of sample size, 

improvement of power and accuracy of results, helping to identify truly associated variants 

amongst the list of genome-wide suggestive variants. Moreover, increasing sample size will 

improve the reliability of the findings, particularly in the non-European groups. Additionally, 

studies with detailed longitudinal follow-up data could be leveraged to consider temporal timing 

(e.g. latency period) of smoking by gene interactions on T2D.  Finally, sensitivity analyses 

should be conducted to assess different smoking statuses (e.g. former smoker and ever smokers) 

and T2D susceptibility; this would shed light on the temporal relationship between smoking and 

genetic susceptibility on T2D development as we only included current smokers in this study. It 
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would also maximize the study sample as former smokers account for a large portion of smokers 

in several of the studies that data was derived from.  
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