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Abstract

Categories can be represented at different levels of abstrac-
tion, from prototypes focused on the most typical members to
remembering all observed exemplars of the category. These
representations have been explored in the context of super-
vised learning, where stimuli are presented with known cat-
egory labels. We examine the benefits of prototype-based rep-
resentations in a less-studied domain: semi-supervised learn-
ing, where agents must form unsupervised representations of
stimuli before receiving category labels. We study this prob-
lem in a Bayesian unsupervised learning model called a vari-
ational auto-encoder, and we draw on recent advances in ma-
chine learning to implement a prior that encourages the model
to use abstract prototypes to represent data. We apply this ap-
proach to image datasets and show that forming prototypes can
improve semi-supervised category learning. Additionally, we
study the latent embeddings of the models and show that these
prototypes allow the models to form clustered representations
without supervision, contributing to their success in down-
stream categorization performance.
Keywords: Prototype Theory, Variational Auto-Encoders,
Learned Priors

Introduction
A basic question in cognitive science is when it makes sense
to use discrete abstractions to represent a continuous world.
Such abstractions have their advantages – for example, they
reduce demands on memory – but they also potentially dis-
card important information about the original stimulus. One
manifestation of the tension between abstraction and faithful-
ness to the stimulus is in the categorization literature, where
prototype models assume that people find abstract representa-
tions of categories while exemplar models assume that those
categories are represented by remembering labeled examples
of the category members themselves.

The literature on human category learning has extensively
explored the circumstances where prototype and exemplar
representations make theoretical sense to use and the circum-
stances under which human learners seem to use them. How-
ever, this literature has focused on supervised category learn-
ing tasks, where examples are explicitly labeled according to
their category membership (although see Fried & Holyoak,
1984). Empirical evaluation of these models has also tended
to focus on simplified laboratory stimuli (with some no-
table exceptions, e.g. Battleday, Peterson, & Griffiths, 2020;
Sanders & Nosofsky, 2020).

In this paper, we draw on recent advances in machine learn-
ing to explore the benefits of prototype representations for
semi-supervised category learning with naturalistic images.
Our approach is one of rational analysis (Anderson, 1990,
1991), where we consider the abstract computational problem
that human minds have to solve and then evaluate different
strategies for solving that problem. We formulate the semi-
supervised category learning problem in terms of a learner
seeking to find a representation of a set of stimuli that sup-
ports subsequent categorization when category labels become
available. In this setting, we can define probabilistic models
that make different assumptions about the nature of this rep-
resentation. By evaluating the consequences of these assump-
tions for the categorization of naturalistic images, we can as-
sess whether the kind of abstraction assumed in a prototype
model helps to support semi-supervised category learning.

Our results show that merely making the assumption that
the world is made up of discrete prototypes increases the
quality of representations produced by rational agents, and
can improve their performance in later categorization tasks.
These results complement previous findings on supervised
category learning, helping to create a more complete picture
of the settings where abstraction may be beneficial. In partic-
ular, our experiments suggest that prototypes improve model
categorization by forming clustered representations; the de-
gree to which these representations improve performance de-
pends on the complexity of the dataset’s class boundaries.

Models of Categorization
Prototype Theory
Prototype models are a classic model of categorization, in-
spired in part by the results of Posner and Keele (1968) and
Rosch (1973). The prototype of a category is a summary
representation with the same structure as a category mem-
ber, having features that are frequent, average, or otherwise
representative Murphy (2002). New stimuli are then assigned
to the category with the closest prototype (Reed, 1972).

Exemplar Models
Exemplar models offer an alternative account of how humans
categorize. Rather than abstract prototypes, they represent a
category simply in terms of the labeled examples of category
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members (Medin & Schaffer, 1978; Nosofsky, 1986). Cate-
gorization of a new example is then performed by comparing
that example with examples retrieved from memory, where
the weight assigned to the category label of each exemplar de-
pends on its similarities to the example under consideration.
This approach has proven extremely effective in explaining
category learning behavior in laboratory experiments.

Rational Analysis
Rational analysis provides a way to understand human behav-
ior by considering the computational problems that human
minds solve. In categorization, the problem can be formu-
lated as one of deciding which category c an observation xxx
belongs to. This problem can be solved through Bayesian
inference, calculating the posterior probability distribution
p(c|xxx) ∝ p(xxx|c)p(c). The key to this calculation is the prob-
ability density p(xxx|c), which indicates how likely it is that an
observed example would be generated from category c. From
this perspective, learning a category becomes a matter of es-
timating this probability density.

Viewing categorization as probability density estimation
gives us a different way to understand prototype and exemplar
models (Ashby & Alfonso-Reese, 1995). Prototype models
correspond to parametric density estimation, with the pro-
totype being the parameter of a distribution of a fixed form
(such as the mean of a Gaussian). Exemplar models corre-
spond to nonparametric density estimation, with close con-
nections to methods such as kernel density estimation. It is
also possible to define models that interpolate between these
extremes, such as mixture models which represent each cate-
gory as the weighted sum of a set of parametric distributions
(Griffiths, Sanborn, Canini, Navarro, & Tenenbaum, 2011).
This perspective also clarifies the tradeoffs implicit in differ-
ent categorization strategies and provides insight into the set-
tings people apply them to (e.g., Smith & Minda, 1998).

Analyzing Semi-Supervised Category Learning
Our goal in this paper is to explore the benefits of abstraction
in the context of semi-supervised category learning. In this
setting, the learner has an opportunity to observe and model
the world without supervision, before being given labeled ex-
amples that provide information about category membership.
Semi-supervised learning has not been extensively studied in
the literature on human category learning (although see Fried
& Holyoak, 1984). However, it is a common paradigm in
machine learning where unlabeled examples are typically far
easier to obtain than labeled examples.

Following the approach taken in the machine learning lit-
erature, we will analyze semi-supervised category learning as
a representation learning problem. Under this approach, the
learner given a stimulus xxx seeks to form a representation zzz that
is useful for solving downstream tasks such as categorization.
The categorization problem will ultimately be solved by ap-
plying a categorization strategy to the representation zzz rather
than the raw stimulus xxx. The question thus becomes one of
how we can find effective representations for a given domain.

As for categorization, the problem of inferring a represen-
tation for a stimulus can be formulated as one of Bayesian
inference. Given xxx we can apply Bayes’ rule to calculate a
posterior distribution over representations zzz, with p(zzz|xxx) ∝

p(xxx|zzz)p(zzz). This provides an opportunity to explore the im-
pact of abstraction – and specifically the use of prototypes –
in the way that we define the prior on representations, p(zzz).
By taking a mixture model for this prior distribution, we can
implicitly assume that the world is made up of discrete clus-
ters that might be characterized by a prototype. Our question
of how beneficial prototypes are in semi-supervised learning
thus becomes one of assessing the impact of such a prior.

One advantage of expressing this problem in a form that
aligns with recent work in machine learning is that we can
draw on that work to explore this question with naturalis-
tic stimuli. In particular, this formulation of the problem
aligns with the structure of variational auto-encoders, a class
of probabilistic models for representation learning that can
be applied to images. In the remainder of this section, we de-
scribe these models in detail, including how we can explore
the use of different prior distributions.

Variational Auto-Encoders
The variational auto-encoder (VAE; Kingma & Welling,
2014; Rezende, Mohamed, & Wierstra, 2014) is a class of
probabilistic generative models capable of modeling high di-
mensional data. Given data xxx, it learns a latent space zzz that
generates data xxx from a likelihood model pθ(xxx|zzz), also called
the decoder. The likelihood pθ(xxx|zzz) is parameterized by neu-
ral networks whose trainable parameters are denoted θ. While
a direct goal is to maximize the marginal likelihood p(xxx), it
is difficult to do so in complex parameterizations due to the
curse of dimensionality. Therefore, VAEs apply variational
inference to maximize a lower bound,

log p(xxx)≥ Eqφ(zzz|xxx)[log pθ(xxx|zzz)+ log p(zzz)− logqφ(zzz|xxx)] (1)

where qφ(zzz|xxx) is the variational posterior of latents zzz given
xxx and is also called the decoder. It is parameterized by a
neural network with trainable parameters φ. p(xxx) is the prior
distribution of latents zzz and is typically a diagonal Gaussian.
The objective can additionally be interpreted as maximizing
the power of reconstruction via log pθ(xxx|zzz), while regulariz-
ing the model with log p(zzz)− logqφ(zzz|xxx), which encourages
q to be close to the prior.

Putting Prototypes in the Prior
A number of variants on VAEs have been explored in the ma-
chine learning literature, including a variant that makes the
assumption we want to test here: that the prior p(zzz) encodes
an expectation that stimuli can be represented in terms of a
set of discrete prototypes. This can be done by defining this
prior to be a mixture distribution, with

pλ(zzz) =
1
K

K

∑
k=1

qφ(zzz|uuuk), (2)
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where K is arbitrarily chosen (but smaller than the number of
training datapoints), and uuuk is a prototype. It has the same
shape as a training datapoint, but is randomly initialized and
is trainable. We use pλ(zzz) to indicate that the prior distribu-
tion is now parameterized and learned during training.

Equation 2 was used in a variant of the VAE that uses a
“variational mixture of posteriors prior,” also known as the
VampPrior (Tomczak & Welling, 2018), referring to the pro-
totypes as “pseudo-inputs.” The VampPrior VAE objective
simply switches the prior distribution in the VAE objective,

log p(xxx)≥ Eqφ(zzz|xxx)[log pθ(xxx|zzz)+ log pλ(zzz)− logqφ(zzz|xxx)] (3)

Empirically, the VampPrior VAE achieves a higher marginal
log-likelihood lower bound than the vanilla VAE (Tomczak &
Welling, 2018). These models make no use of category labels
for training or inference.

Summary
Formalizing the problem of semi-supervised category learn-
ing in terms of representation learning provides a natural way
to explore the benefits of a prototype-based representation. In
this formalization, our question reduces to exploring the im-
pact of using a mixture model to define a prior on the latent
representation of a set of stimuli. This question can be an-
swered empirically by comparing the representations that are
produced by variational autoencoders that make different as-
sumptions about the prior distribution applied to their latent
space. In the remainder of the paper, we empirically evaluate
the impact of this assumption for naturalistic images.

Evaluating the Benefits of Prototypes
We answer two questions: 1) whether a model that forms pro-
totypes categorizes better, and 2) how this categorization abil-
ity is related to latent representations and human class labels.
We expect components of the mixture distribution (Eq. 2)
to regularize the model by clustering data around the pro-
totypes in the latent space, supporting better categorization.
We additionally test the hypothesis that prototypes have an
increased advantage on datasets with simpler category bound-
aries, as established for supervised categorization (Ashby &
Alfonso-Reese, 1995; Martı́nez, 2024). In addition, we high-
light a phenomenon unique to the semi-supervised case where
a model learns unsupervised abstractions, but they differ from
the human-labeled classes.

Datasets
We trained VAEs making different assumptions about cat-
egory structure on two image datasets: MNIST (LeCun &
Cortes, 1998) and CIFAR-10 (Krizhevsky & Hinton, 2009).
Each dataset contains 10 categories. MNIST consists of
handwritten digits and provides a setting where categories are
relatively well-clustered with simple boundaries. CIFAR-10
consists of naturalistic images that should pose a challenge
for unsupervised models learning category boundaries. We
then test the models on perturbed versions of both datasets to
establish where prototypes are at an advantage.

Downstream Categorization
In these methods, we acquire an embedding, or representa-
tion, for each datapoint from each model by passing all test
datapoints xxx to the model’s encoder: zzz ∼ qλ(zzz|xxx), generating
an equivalent number of embeddings zzz.

K-nearest neighbor (KNN). First, we classify a datapoint
by comparing its embedding to those of its nearest neighbors
with known labels. For each VAE, we fit a KNN model on the
representations of training datapoints, and make class predic-
tions on the representations of test datapoints.

Classification using prototypes. We additionally investi-
gate how well the model’s learned representations support
categorization by using the components in a way as proto-
types are typically used to categorize. Specifically, for each
datapoint in the embedding space, we find the nearest com-
ponent based on sum of squares distance, and classify this
datapoint based on the class it corresponds to, i.e., for which
it is prototypical. In other words, for the MNIST dataset, if
pseudo-input uuui is a vague representation of digit ‘6’ and is
closer to the current datapoint in the latent space than all the
other prototypes are, then we classify this datapoint as ‘6’.

However, these prototypes may not perfectly represent a
class. Even if they do, a well-trained VampPrior VAE could
use 500 prototypes on a 60000-large MNIST dataset, and it
would be laborious to manually assign a label to each one. To
bridge this gap, we first train a separate neural network clas-
sifier to attain near-perfect accuracy on the dataset. Then, we
use the VAE decoder to generate an image from each proto-
type, and predict the class of this image using the classifier.
This class is a surrogate for the class label corresponding to
each prototype. In summary, the approach is,

1. Train a neural network classifier f on data xxx.

2. For each component uuuk,

(a) Generate latent zzzk ∼ qφ(zzz|uuuk).
(b) Generate xxxk ∼ pθ(xxx|zzzk)).

3. Get labels yyy = f (XXXK), where XXXK = {xxxk}1≤k≤K .

4. For each datapoint xxxi,

(a) Get its embedding with zzzi ∼ qφ(zzz|xxxi).
(b) Find the nearest component uuuk, where k =

argmink∈1:K∥zzzk − zzzi∥.
(c) Classify xxxi with class yyyk.

Dataset Perturbations
To evaluate hypotheses that related the prototype advantage
with the simplicity of categorization boundaries, we perturb
our datasets to alter the complexity of these boundaries.
Adding noise. For datasets with relatively simple category
boundaries (e.g., images of handwritten digits), prototypes
are predicted to have an advantage. We then perturb the data
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(a) Prototypes (pseudo-inputs). (b) Generations from prior. (c) Actual data.

Figure 1: Reproduced results from VampPrior VAE with K = 500. On the left are the first 25 pseudo-inputs, which are vague
versions of real digits. On the middle are generations from these pseudo-inputs (each generated by one pseudo-input). On the
right is a random sample of the actual data. The classifier f predicts generated images in the middle as: 2, 3, 5, 9, 7 — 3, 3, 4,
1, 4 — 5, 5, 5, 5, 4 — 9, 6, 3, 2, 3 — 9, 3, 3, 8, 8; the predictions are reasonable even though the generations may be different
from the actual data that classifier f was trained on.

in a way that lessens this advantage and simulates more com-
plex boundaries. To do this, we smooth the boundaries be-
tween the distributions for each category. This requires we
calculate the distribution over binary pixel inputs for each cat-
egory. Then, each datapoint receives noise from a different,
randomly chosen category. To add the noise, the probability
of each pixel’s value flipping is proportional to how proba-
ble that pixel is to be a different value in the other category.
Lastly, a parameter ε weights the flip probabilities to control
the amount of smoothing between categories.
Removing high-entropy categories. For datasets with over-
lapping, complex category boundaries (e.g., naturalistic im-
ages), prototype-like representations should be at less of an
advantage. Additionally, any unsupervised model, with or
without prototype-learning, can learn category boundaries
that are defined differently from the humans who labelled the
dataset. For example, as opposed to modeling the nuanced
differences between deer and horses, it may focus instead on
separating images with blue vs. green backgrounds. For both
these reasons, we examine removing categories with the most
overlapping nature prior to training either model.

To identify complex category boundaries, we use hu-
man classification judgments (CIFAR-10H; Battleday et al.,
2020). People’s confusion between categories gives a proxy
for the natural complexity and overlap of these categories.
The distributions of human responses to each image yields
a measure of entropy for each image, and we calculated the
categories with the highest entropy. We then train the models
after removing these high-entropy categories, allowing us to
apply our models to an inherently complex dataset but with
simpler categorization boundaries.

Implementation Details
To train VAEs on MNIST, we use the original implementation
from Tomczak and Welling (2018) with a two-level VAE us-
ing the PixelCNN architecture in encoder and decoder1. Each

1Code is available at github.com/zhang-liyi/vampprior-prototype

layer embedding is of size 40. To train them on CIFAR-
10, we use a one-level DCGAN architecture in the VAEs
(Radford, Metz, & Chintala, 2016). The layer embedding is
of size 200. In all runs, we use learning rate = 0.0005 and
batch size = 100. The t-SNE algorithm (van der Maaten &
Hinton, 2008) maps embeddings to dimension of size 2 us-
ing perplexity = 30 and number of iterations = 500. We use
a two-layer convolutional neural network with a final linear
layer as the separate classifier to assign labels to MNIST pro-
totypes, and it attains over 99% accuracy. All optimization
procedures use the Adam optimizer (Kingma & Ba, 2015).

Results
Reproducing and Understanding VampPrior VAE
We first illustrate the representations from VampPrior VAE
by reproducing a version with K = 500 on the 60000-large
MNIST dataset (Figure 1). Prototypes from Figure 1a are
themselves blurrier versions of the original data. Generations
from these prototypes by applying zzz ∼ qφ(zzz|uuuk) have recog-
nizable relations with these prototypes (Figure 1b).

Clustered Representations in VAE Embeddings
We illustrate the latent embeddings that are learned by dif-
ferent VAEs, and show that VAEs that learn prototypes form
clustered embeddings.

MNIST. We visualize the test datapoint embeddings
learned by VampPrior VAEs with K = 20 and 500, as well
as those from the vanilla VAE (Figure 2), where embeddings
are dimension-reduced by t-SNE and colored by true digit
class. Prototypes are additionally plotted on top of datapoint
embeddings. We find that prototypes occupy centric locations
among clusters of datapoints. When K = 20 (Figure 2a), each
of the 10 classes gets at least one prototype, and in each class,
prototypes are evenly spaced. Even with K = 500 (Figure 2b),
prototypes fall within datapoint clusters. For example, digit
1 (orange) is embedded in two close areas, and prototypes
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(a) VampPrior VAE with 20 pseudo-inputs.
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(b) VampPrior VAE with 500 pseudo-inputs.
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(c) Vanilla VAE.

Figure 2: t-SNE mapping of test datapoint embeddings for three VAE models. Each colored circle represents a datapoint, and
circles are colored by real labels. Black squares are embeddings of pseudo-inputs (prototypes). VampPrior VAE with 20 or 500
pseudo-inputs show stronger demarcation between classes than vanilla VAE, even though no label was present in training.

evenly fill out the areas, with no prototype falling in between
these two areas. Since prototypes are summary representa-
tions of categories, these results support the interpretation of
VampPrior pseudo-inputs as prototype-based representations.

VampPrior VAE shows clear demarcation between classes,
even though the objective function does not lead it to learn
classes or clusters. This phenomenon is similar between
K = 20 and K = 500, but is much weaker for the vanilla VAE
(Figure 2c). In other words, having the prior p(zzz) assume a
discrete, prototypical structure of the data allows the model to
form understanding of categories in an unsupervised manner.

CIFAR10. CIFAR10 classes are easily confused for an un-
supervised model, so we provide a quantitative measure of
the degree of clustering in the embeddings learned by Vamp-
Prior and standard VAE. We use the k-means clustering algo-
rithm on the test datapoint embeddings from the two VAEs,
scaled by their standard deviations. Then, we use the cluster-
ing loss as a measure of how clustered these embeddings are.
Figure 3 shows that VampPrior VAE embeddings are consis-
tently more clustered than the standard VAE embeddings.

These studies on VAE embeddings suggest that learning
prototypes encourages representations to form clusters in the
vector space without supervision.

Classification Results
Classification using prototypes as reference-points. So
far we have studied the patterns that appear in VAE embed-
dings without making use of real class labels (aside from the
colors in the MNIST visualization). Now we examine how
the cluster pattern in the embeddings relates to downstream
classification performance. We abide by prototype theory:
classifying a new datapoint by finding its closest pseudo-
input (prototype), and using the prototype’s class to predict
the class of this datapoint.

5 10 15 20 25 30 35 40
0.7

0.8

0.9

1.0

1.1

1e6
standard
vampprior

Figure 3: Squared loss from k-means clustering on two
VAEs’ embeddings, versus the number of clusters used by
k-means. Lower value means more clustered embeddings.

Results are shown in Table 1 with VampPrior VAEs with
K = 500,100,20,10. Accuracy remains high for K ≥ 20. The
lower bound objective decreases as K decreases down from
500, whereas classification accuracy drops from K = 500 but
remains similar for K = 100 and 20. This result suggests that
an unsupervised learning model implicitly encodes classifica-
tion capability, and this capability can be recovered from its
prototypes. In the extreme case of K = 10, the 10 prototypes
represent only 8 out of the 10 digits, with 2 digits each get-
ting 2 prototypes. Therefore, performance is upper-bounded
by 80% accuracy. The generally high accuracy suggests that
prototypes help the model differentiate the categories.

Nearest-neighbor classification performance. Here we
quantitatively measure how the different VAEs’ representa-
tions support categorization by using KNN on these represen-
tations (Table 2). VampPrior VAE consistently outperforms
the vanilla VAE on both MNIST and CIFAR-10. Both Vamp-
Prior and vanilla VAEs provide accurate representations for
MNIST, but the demarcation in VampPrior’s higher perfor-
mance (K = 20 vs. 10) corresponds to the place where every
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Table 1: Classification accuracy on MNIST by finding the
nearest prototype for each datapoint. Closeness is measured
by sum of squared distance on the VAE embedding space.

K Training Acc Test Acc
500 93.2% 92.5%
100 85.1% 85.7%
20 87% 86.6%
10 67.4% 68%

digit at least gets one prototype, suggesting prototype’s role
in boosting the separation of category boundaries. CIFAR-10
results show that higher numbers of prototypes (K ≥ 100) are
able to gain an edge in performance vs. non-prototype mod-
els on this dataset. Given the small edge in performance and
the inherent challenge in learning categories for naturalistic
images, we study whether the performance gap increases if
the most overlapping classes are removed (Table 4).

Table 2: Classification accuracy based on the K-nearest-
neighbor algorithm (KNN). K refers to the number of pro-
totypes, and K = 0 refers to the case of the original VAE.

K Test Acc
15000 97.8%
10000 98%
500 98.1%
100 97.3%
20 97.8%
10 94.8%
0 94.2%

(a) MNIST.

K Test Acc
2000 42.2%
1000 41.7%
500 41.6%
100 42%
20 41.1%
10 40.6%
0 41.3%

(b) CIFAR-10.

Classification performance and noise levels. The MNIST
dataset has relatively well-clustered and simple category
boundaries, so we consider a case where prototypes are ex-
pected to be at less of an advantage. To do this, we apply our
method of smoothing the categories together by adding noise.
These results are shown in Table 3. These results show that
the prototype models’ performances decrease and converge
towards vanilla VAE as smoothing is increased. This is par-
ticularly emphasized for lower values of K, which have less
flexibility due to their fewer prototypes.

Table 3: Classification accuracy on MNIST smoothing pa-
rameter ε. ε = 0 refers to no smoothing between categories
(so these are the same values from Table 2). K refers to the
number of prototypes, and K = 0 refers to the original VAE.

K ε = 0 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6
500 98.1% 97.6% 96.3% 93.1% 82% 67.9%
100 97.3% 97% 95.8% 92.6% 80% 65.4%
20 97.8% 96.2% 93.5% 89.1% 68.1% 59.8%
10 94.8% 94.5% 90% 87% 65.4% 62.3%
0 94.2% 92.4% 91.8% 86.8% 80.3% 65.4%

The CIFAR-10 dataset has more complex boundaries for
some of its naturalistic images; humans and an unsupervised
learning model may not agree on the way to label this dataset.

We removed high-entropy categories based on the mean en-
tropy of responses in human classification performance for
each category. Specifically, we conducted two sets of experi-
ments where the top-2 and top-4 most challenging categories
are removed. The models are then trained and evaluated on
the reduced datasets. The top-4 challenging categories are:
deer, cat, bird, and airplane. KNN-based results are shown
in Table 4. Random-guess performance would increase from
the original 10% to 12.5% (top-2 removed) and 16.7% (top-
4 removed). Here, both VAEs demonstrate performance in-
creases, but the outperformance from VampPrior becomes ev-
ident as more categories are removed.

Table 4: Classification accuracy on CIFAR-10 with removal
of high entropy categories. Classification is based on the K-
nearest-neighbor algorithm (KNN). K refers to the number of
prototypes, and K = 0 refers to the case of the original VAE.

K Original 2 Removed 4 Removed
2000 42.2% 49.2% 55.8%
1000 41.7% 49.9% 56.3%
500 41.6% 49.4% 55.5%
100 42% 48.9% 56.7%
20 41.1% 48.9% 55.8%
10 40.6% 49.1% 55.3%
0 41.3% 45.9% 51.7%

Discussion

How people leverage different kinds of representations, with
different levels of abstraction, has been extensively explored
in the context of supervised categorization. We show the ben-
efits of prototypes in a semi-supervised setting, where a bias
for abstraction in an unsupervised model can enhance its later
ability to support categorization.

In line with the supervised categorization literature, our re-
sults show that prototypes are beneficial when the category
boundaries are simple. This kind of finding is traditionally
attributed to prototypes lacking flexibility, but our analyses
of the models’ latent space suggest a novel factor for semi-
supervised learners: an unsupervised learner may form ab-
stractions that differ from those corresponding to human la-
bels. The VampPrior model consistently formed more clus-
tered representations, even on the complex boundaries of the
CIFAR-10 dataset. Notably, this clustering behavior is also
what drives later improvements in classification.

The results we have presented extend our understanding
of the circumstances under which abstract prototype repre-
sentations are beneficial. Our approach also illustrates how
cognitive models of categorization can be implemented in un-
supervised and semi-supervised contexts, extending previous
work using deep learning to model categorization in natural-
istic settings.

Acknowledgments. This work was supported by grant num-
ber N00014-23-1-2510 from the Office of Naval Research.
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