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ABSTRACT OF THE DISSERTATION

Bayesian Analysis of MTD/BMTD Models

by

Huiming Song

Doctor of Philosophy, Graduate Program in Applied Statistics

University of California, Riverside, December 2011

Dr. Keh-shin Lii , Chairperson

In reality many time series are non-linear and non-Gaussian. They show the

characters such as flat stretches, bursts of activity and outliers. Univariate and bivariate

mixture transition distribution models were introduced to study these time series data.

EM algorithm was used for point estimations of parameters. However as is known,

for many mixture models, the likelihoods couldn’t be maximized since they will go to

infinity. The number of mixtures should be prefixed in this way but in many realities

it is unknown.

In our research, Bayesian methods are used to solve these problems. When

the posterior is obtained, EM algorithm is used to maximize the posterior. Under some

conditions these estimates are proved to be consistent. The second method is using

MCMC to sample from the posterior and now the number of mixtures itself can be

treated as a random variable. Two methods for MCMC sampling are used. The first is

Birth-Death process: if a birth happens, a new mixture component is added; if a death

vi



happens, an existing mixture will be removed. The second is Dirichlet process mixtures

where we choose Dirichlet process priors for the parameters. When using MCMC, not

only point estimations but also interval estimations can be constructed. For all these

methods we do simulations to compare Bayesian methods with Non-Bayesian methods

and to show the advantages of Bayesian methods.
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Chapter 1

Introduction

1.1 History of Mixture Models

Mixture Transition Distribution (MTD) model was introduced by Le, Martin

and Raftery in 1996 to model non-Gaussian time series data with features such as flat

stretches, bursts of activity, outliers and change points. MTD can model these behaviors

explicitly. This model is simple and easy to study. The MTD model can capture the

autoregressive component of the time series, it can also capture other features of the

data. For example, occasional outliers may be captured by a mixture component with

large variance and small proportion. the flat stretches can be captured by a mixture

component with small variance.

Bivariate Mixture Transition Distribution (BMTD) model was introduced by

Hassan and Lii in 2006 to model bivariate time series data in general and marked point

processes in particular. They extend the MTD model to bivariate model. The BMTD
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model can not only be used to model time series data but also marked point process

data. They introduced a class of bivariate distributions which makes the components

of BMTD models having nice marginal densities and conditional densities which are

easy to simulate and estimate. The BMTD model can be used in a wide range of

applications, such as financial transactions, real-time stock market data, and accidents

and events that occur irregularly.

In both just mentioned papers EM algorithm is used for parameter estima-

tion. The mixture model can be treated as missing data problem. Assume each data

point comes from one of the k groups (here we think k is fixed and known) with the

distribution we selected to model the data. But we don’t know which group it comes

from. Suppose there is an unobservable variable indicating which group the data is

generated. Then it becomes the missing data problem. Our job is to find the value of

the parameters (Θ) in the distributions as well as the weight (π) of each group.

EM algorithm is usually used to estimate parameters for the mixture mod-

els. The idea of EM algorithm is easy to understand. It’s easy to compute with EM

algorithm. Usually AIC or BIC is used to select the correct model and they are easy

to calculate. However, it also has some problems: The number of mixtures must be

pre-fixed. Most of the time, it finds the local maximum. For many mixture densities,

their likelihood will diverge to infinity. Usually BIC is used for exponential family dis-

tribution but the mixture model is not in the exponential family in general. For some

complicated models, BIC doesn’t perform well in model selection.

Let’s look at more detailed about the problem of singularity in EM algorithm
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for mixture models. We want to find the global maximum point of the likelihood func-

tion in the EM algorithm. As is known, if we want to use EM algorithm to estimate the

parameters, the likelihood cannot be maximized if the parameters in the denominator

become zero. For example, the likelihood will be infinity in the normal mixture model,

if one of σj converges to zero and µj comes to one of data point xt while the correspond-

ing weight πj is not zero. Under this situation, the likelihood could not be maximized,

that is, MLE doesn’t exist here. So we need to solve the problem of singularity.

1.1.1 Methods of Parameter Estimation for Mixture Models

We can solve this singularity problem with Bayesian methods. There are two

methods can be used here.

Method One and Pros of Bayesian EM

The first is Bayesian EM algorithm. For a fixed k, we choose proper priors

for the parameters in the distribution and then get the posterior. Then we will use

EM algorithm to maximize the posterior (here the posterior is treated as a function of

the parameters and we try to maximize it). Usually the singularity appears because

the parameter in the denominator goes to zero in the density. However if we choose a

proper prior such as inverse gamma for the parameter σj above, the posterior will go

to zero rather than infinity when σj converges to zero. At last, BIC is used to choose

the number of components k. In this way, the priors work like a penalized function for

the parameters.

Another pros of this method is that the estimations are consistent. When
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using EM algorithm without the priors, the MLE does not exist since the likelihood

could not be maximized. After using priors to prevent the posterior from being infinity,

we can prove the estimations which maximize the posterior are consistent.

Bayesian estimation here is an amend of the non-Bayesian estimation. From

theoretical calculation, we can see if we choose non-informative priors for one parameter,

then the estimation of this parameter is the same as non-Bayesian method. That is,

we can treat the estimations of (Le, Martin, and Raftery, 1996) and (Hassan and Lii,

2006) as special examples in Bayesian frame where uniform priors are used.

Method Two and Pros of MCMC

The alternative method is Markov chain Monte Carlo (MCMC) sampling from

the posterior. Birth-Death process method, Dirichlet process method are used here.

Using this method, we can both get point estimations as well as interval estimations.

Here we are concerned with the analysis of mixture transition models with unknown

number of k, and sometimes this k may be of interested itself. Unlike EM algorithm

which needs to fix k, MCMC method can simultaneously estimate the parameters in

the distribution and the number of components. For this method, after we get the

posterior distribution of the parameters, we will try to sample the value of parameters

from the posterior.

Usually EM algorithm only gives point estimation of the parameters in the

model. However, with MCMC method, after we get the samples of the parameters from

the posterior, we can construct confidence intervals for the parameters.
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1.2 Summary of My Research

First we introduce the problem of singularity in mixture models in Chapter

2. Since MTD/BMTD models are from mixture models, they also have the problem of

singularity and other problems when EM algorithm is used for parameter estimation.

In my research, we use Bayesian approach to study MTD and BMTD models. By

assigning proper priors to the parameters in the model, the problem of singularities of

the posterior can be avoided.

The first method we use is Bayesian approach with EM algorithm. That is,

we use EM algorithm to maximize the posterior distribution. Firstly, the number of

mixture components k is pre-fixed. Then for this fixed k, EM algorithm is used to

maximize the posterior to get the estimations. Then for different k, BIC is used to

select the correct model. Because of Bayesian approach, we can solve the problem of

singularity and therefore it’s possible to maximize the posterior (See Chapter 3 and 4).

EM algorithm is easy to understand and requires small amount of computation. Also,

we prove that the estimation this way is consistent (Chapter 5).

The second method we use is MCMC. After we get the posterior, we sample

from the posterior and then estimate the parameters through the samples. There are

two methods we used here to sample.

The first one is called Birth-Death process. It was introduced by Matthew

Stephens in 2000. Rather than fixing the value of k, we treat k as a random variable

and assign a prior for this k. Birth and Death occur as independent poisson process.

When a birth happens, the number of mixture components k will be increased by one.
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Conversely, if a death occur, the number of mixture components k will be decreased

by one. After we get the samples of k and the parameters, the most appeared number

of k (e.g., k0) will be set as the estimation of true number of mixtures. Then we select

all the samples with k equaling to this k0, and estimate the parameters by the mean of

these samples with k equal to k0. Also, we can construct the interval estimation easily

since we have the samples. More detailed information about this method can be found

on Chapter 6.

The second mthod is called Dirichlet process mixtures. Sometimes when we

get the data, we don’t know whether the data is from a mixture model or how many

mixtures are there in the model. For each observation data, we assume there is a

parameter vector together with that data. Then we group the data by grouping the

parameters. The number of unique value of parameters is the estimation of the number

of mixtures. One problem is that the parameters are usually continuous, so the prob-

ability of two parameter samples equaling to each other is zero. To solve this problem

we try to assign a discrete prior for the parameters. We assign a Dirichlet process prior

to the parameters. Because of the property of Dirichlet process, the conditional poste-

rior has the clustering feature. It will cluster all of the data through the clustering of

parameters. This model gives us the flexibility to choose the random lag order rather

than being assigned through the re-parametrization. We discuss the details about this

in Chapter 8.
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Chapter 2

Singularities of Mixture Models

Finite Mixture Model is widely used in machine learning (Bishop, 2006), clus-

ter analysis (McLachlan, 2000), neural networks (Xu and Jordan, 1996), density estima-

tion and other model constructions. In mixture model context the data are viewed as

coming from a mixture of probability distributions, each represents a different cluster.

In addition to clustering purposes, finite mixtures of distributions have been applied

to a wide variety of statistical problems such as discriminant analysis, image analysis

(Jordan, 2006) and survival analysis (Farewell, 1982). To this extent finite mixture

models have continued to receive increasing attention from both theoretical and prac-

tical points of view.

Because of their flexibility, mixture models are being increasingly exploited as

a convenient way to model unknown distribution shapes. For example, Priebe (1994)

showed that with n = 10, 000 observations, a log normal density can be well approx-

imated by a mixture of about 30 normals. A mixture model is able to model quite
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complex distributions through an appropriate choice of its components to represent

accurately the local area of the true distribution. It can thus handle situations where

a single parametric family is unable to provide a satisfactory model for local variations

in the observed data.

In this section we will study about finite mixture model and its related prob-

lems, as well as how to fix these problems. Later we will study infinite mixture models.

2.1 Introduction of Finite Mixture Models

Let X1, X2, · · · , Xn denote a random sample of size n. We suppose the density

of Xi can be written in the form

f(xi|ϕ) =
k∑
j=1

πjfj(xi|ϕj) (2.1)

where the fj(xi|ϕj) (usually ϕj is a vector, here we write it as a scalar) are densities

and the πj are positive quantities that sum to one. The quantities π1, π2, · · · , πk are

called the mixing proportions or weights. As the functions f1(xi|ϕ1), · · · , fk(xi|ϕk) are

densities, it is obvious that (2.1) defines a density. These fj(xi|ϕj) are called the com-

ponent densities of the mixture. We shall refer to the density (2.1) as a k−component

finite finite mixture density. In this formulation of the mixture model, the number of

components k is considered fixed. But of course in many applications, the value of

k is unknown and has to be inferred from the available data, along with the mixing

proportions and the parameters in the specified forms of the component densities.
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2.1.1 EM Algorithm for Finite Mixture Models

It’s common to think mixture models as missing data problems. One way of

thinking this is that the data points are coming from the the distribution components

we used to model the data. We don’t know which component the data comes from.

Our objective is to estimate the parameters in each component and the probability of

the corresponding component from which the data is generated.

A variety of approaches to the problem of mixture decomposition have been

proposed, many of which focus on maximum likelihood methods such as Expectation

Maximization (EM) algorithm. Here we briefly consider the EM algorithm.

Assuming Z1, · · · ,Zn are the hidden random variables where Zi = (Zi1, · · · , Zik)

indicates which component that data comes from. For example, Zip = 1, Zij = 0 j ̸= p

means data Xi coming from the pth component. We also assume all Z are independent

and are independent of the data X. Now we can write the likelihood function as

L =
n∏
i=1

k∏
j=1

(πjfj(xi|ϕj))Zij . (2.2)

EM algorithm is to maximize (2.2) in the following two steps:

1: Expectation Step:

With initial value of the parameters ϕ
(0)
j , Z is estimated by its conditional expectation

as below (McLachlan and Peel, 2000)

z̃tj =
πjfj

(
xt|ϕ(0)j

)
∑k

j=1 πjfj

(
xt|ϕ(0)j

) , j = 1 · · · k.

2: Maximization Step:

In this step we need to maximize the likelihood function to get the estimations of the

9



parameters. A common way is to take partial differential of long-likelihood function to

parameter ϕj like

∂ ln(L)

∂ϕj
= 0.

Solving this equation leads us to the estimation of ϕ̂j .

2.1.2 Singularities in Finite Mixture Models

In this section we will discuss the singularity problems of mixture model.

As shown before, we need to maximize the likelihood function to get parameter

estimation for mixture models. However, for most of the mixture models, there is the

problem called singularity.

Consider the general form of mixture model (2.1)

f(xi|ϕ) =
k∑
j=1

πjfj(xi|ϕj). (2.3)

If one of πj ̸= 0 and the corresponding density function diverges to infinity as the

parameter ϕj converges to a special point, say ϕ̃j , which is usually at the boundary of

the parameter space. That is, if for one of j there is

lim
ϕj→ϕ̃j

fj(xi|ϕj) = ∞, (2.4)

then the density function

f(xi|ϕ) =
k∑
j=1

πjfj(xi|ϕj) | ϕj→ϕ̃j
= ∞. (2.5)

That is, the density function will be infinity at some special points.

Let’s look at some detailed examples.
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1. Finite Normal Mixture Model

This model is widely used in many areas and can be expressed as

f(xi|µ, σ) =
k∑
j=1

πjf(xi|µj , σ2j )

=

k∑
j=1

πj
1√
2πσj

exp

{
−(xi − µj)

2

2σ2j

}
.

If one of µj = xi and the corresponding σ2j → 0 we will have

1√
2πσj

exp

{
−(xi − µj)

2

2σ2j

}∣∣∣∣∣
µj=xi, σ2

j→0

−→ ∞.

Then the density function

f(xi|µ, σ) =
k∑
j=1

πj
1√
2πσj

exp

{
−(xi − µj)

2

2σ2j

}∣∣∣∣∣∣
µj=xi, σ2

j→0

−→ ∞.

2. Finite Log Normal Mixture Model

The mixture density can be expressed as

f(xi|µ, σ) =

k∑
j=1

πjf(xi|µj , σ2j )

=
k∑
j=1

πj
1√

2πσjxi
exp

{
−(lnxi − µj)

2

2σ2j

}
.

If one of the µj = lnxi and σ
2
j converges to zero, we will have

1√
2πσjxi

exp

{
−(lnxi − µj)

2

2σ2j

}∣∣∣∣∣
µj=lnxi, σ2

j→0

−→ ∞.

Then the density function

f(xi|µ, σ) =
k∑
j=1

πj
1√

2πσjxi
exp

{
−(lnxi − µj)

2

2σ2j

}∣∣∣∣∣∣
µj=lnxi, σ2

j→0

−→ ∞.

11



2.2 Simulations

In the above we have discussed the problem of singularity of mixture models

of parameter estimation. In the following we will show some simulation examples to

demonstrate this.

Suppose the data X1, X2, · · · , Xn are from the following normal mixture

model

f(xi|µ, σ) =
k∑
j=1

πj
1√
2πσj

exp

{
−(xi − µj)

2

2σ2j

}

where πj is the weight that xi coming from the jth component, for j = 1, 2, · · · , k, and

µj , σ
2
j are parameters for the jth component. Previously we have theoretically discussed

the problem of singularity in this model. Now we will show when EM algorithm is used

for parameter estimation, there does exist the condition that the variance σ2j converges

to zero.

It’s natural to think the mixture model as the missing data problem. That is,

suppose there exist the hidden variable Zt = (Zt1, Zt2, · · · , Ztk) which indicates the

component that Xt coming from. That is, if Ztj = 1, Zts = 0 s ̸= j that means the data

point Xt comes from the jth component. Now we can write the likelihood function for

the data

L =
n∏
t=1

k∏
j=1

(
πj

1√
2πσj

exp

{
−(xt − µj)

2

2σ2j

})Ztj

.

EM algorithm has the following two steps.

First is the E step. We need to estimate the missing quantities. Suppose

the parameters k, (π1, π2, · · · , πk), (µ1, µ2, · · · , µk) and (σ21, σ
2
2, · · · , σ2k) are

12



known, then the missing quantities Zt are replaced by its conditional expectations,

conditional on the parameters and the observations. The conditional expectation of the

jth component of Zt is just the conditional probability that the observation Xt comes

from the jth component of the mixture distribution. Let the conditional expectation

of the jth component of Zt be z̃tj , then we will have

z̃tj =
πjfj(xt|µj , σ2j )∑k
j=1 πjfj(xt|µj , σ2j )

.

Next is the M step. In this step, suppose the estimation of Zt is given, we need

to maximize the likelihood to get estimation of (π1, π2, · · · , πk), (µ1, µ2, · · · , µk) and

(σ21, σ
2
2, · · · , σ2k). The simple way is to take partial differential of the log-likelihood

function with respect to the parameters

∂ll

∂πj
= 0

∂ll

∂µj
= 0

∂ll

∂σ2j
= 0.

(2.6)

where ll is the log-likelihood equals to ln(L)

ll = ln(L)

=
n∑
t=1

k∑
j=1

ztj lnπj −
n∑
t=1

k∑
j=1

ztj

(
1

2
lnσ2j +

(xt − µj)
2

2σ2j

)
. (2.7)

Based on this, we can get the estimators expressed as (proof is at the end of

13



this chapter)

π̃j =

∑n
t=1 z̃tj∑n

t=1

∑k
j=1 z̃tj

,

µ̃j =

∑n
t=1 z̃tjxt∑n
t=1 z̃tj

,

σ̃2j =

∑n
t=1 z̃tj(xt − µ̃j)

2∑n
t=1 z̃tj

.

(2.8)

In the following there are the numerical simulations of the Normal mixture

models. We will study the singularities for different kind of conditions and compare

them for different sample sizes and different numbers of components. First, consider two

normal mixture model, and sample size is n = 40. For one component, let its variance

be much smaller than the other component. After some iteration, the variance of one

component goes to 0 which makes the likelihood approaching infinity. Next we increase

the sample size n from 40 to 200 while keeping two components. Now most of the

time the algorithm will converge. An average of 15 simulations result is shown below.

Finally we increase the mixture components number k from 2 to 5. We can see as the

number of components increase, it’s more likely there will be singularities. Details are

shown below.
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2.2.1 Example of Singularity

Consider the normal mixture distribution with 2 components where

π = (π1, π2) = (.8, .2),

µ = (µ1, µ2) = (1, 9),

σ = (σ1, σ2) = (5, .01),

f(xt) =

2∑
j=1

πj
1√
2πσj

e−(xt−µj)2/(2σ2
j ).

First, we will sample 40 samples from the above distribution. For this model,

choose the initial values of the parameters as

π0 = (π1, π2) = (.7, .3),

µ0 = (µ1, µ2) = (1.9, 8),

σ0 = (σ1, σ2) = (4, .1).

Using EM algorithm for this data, we can see the variance for the second

component goes to zero as iterations go on.

Table 1: Iterations of sigma in the normal distribution, n=40

iteration σ1 σ2

1 5.518 0.191
2 5.475 0.194
...

...
...

50 5.426 0.024
51 5.430 1.15e-29
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2.2.2 Increasing Sample Size

Next let the sample size increase from 40 to 200 while keeping other parameters

staying the same. The result is

• Repeated the simulation 15 times. Of these 15 simulations, there is once one of

the variance converges to zero while other 14 times do not. The following result

in Table 2 is from the 14 non-singularity estimation. Take their average as the

estimation of the parameters.

• The average result of the 14 simulations are

Table 2: Parameters estimation when n=200

True π Estimated π True µ Estimated µ True σ Estimated σ

.800 .952 1.00 2.30 5.00 5.37

.200 .048 9.00 8.01 .01 .02

2.2.3 Increasing the Component Number

Next we let the number of components increase from 2 to 5 and true values

of parameters be

π = (.4, .4, .1, .05, .05),

µ = (1, 9, 5, 3, 12),

σ = (5, .01, 10, .1, 1).
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We use the following initial values for the parameters

π0 = (.43, .35, .12, .06, .04),

µ0 = (1.9, 8, 4.5, 4, 10),

σ0 = (4, .09, 8, .16, 1.3).

Figure 2.1 shows the result of the last three loops of the EM algorithm, from

which we can see the variance of the second component goes to zero as the iterations

go on. The five rows mean five components of the mixture model. Column 1 stands for

the parameter π. column two is the estimation of parameter µ and column three is the

standard deviation σ. We can see in column three, for the second row, the standard

deviation goes down from 0.0759 to 0.0050 and to 0.0000 at last. That is, the variance

of the second component converges to zero. We repeat the simulation 15 times, and all

15 times the singularities happened. That is, if the mixture components increase, it’s

very likely the singularities occur in the EM algorithm.

2.3 Summary

In this section we reviewed the basics of the mixture model. Also, from the-

oretical aspect we discussed the problems with mixture models when EM algorithm is

used to get the parameter estimation. Singularity is a common problem in the mixture

models. Also we did simulations to study the relation between singularity and sample

size n as well as mixture component number k. The summary conclusions are given
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R Console Page 1

             [,1]       [,2]       [,3]
[1,] 4.023833e-01  1.6404747 6.09149708
[2,] 1.059568e-06  8.0643508 0.07596555
[3,] 1.444717e-01 -0.3839188 8.01371130
[4,] 6.666396e-02  3.0949913 0.24531122
[5,] 3.864800e-01  8.9993115 0.01056183
             [,1]       [,2]        [,3]
[1,] 4.034758e-01  1.6452441 6.090156298
[2,] 1.407745e-06  8.0828652 0.005003526
[3,] 1.437042e-01 -0.4033104 8.017472058
[4,] 6.634172e-02  3.0919563 0.242681454
[5,] 3.864768e-01  8.9993117 0.010561438
             [,1]       [,2]       [,3]
[1,] 4.045353e-01  1.6493060 6.08890403
[2,] 2.905573e-05  8.0829413 0.00000000
[3,] 1.429184e-01 -0.4228629 8.02158809
[4,] 6.604338e-02  3.0891821 0.24030660
[5,] 3.864739e-01  8.9993119 0.01056108

Figure 2.1: Three iteration results for k=5, n=200

below.

• We first let component number be k=2 and sample size be n=40. Let the variance

for one component be pretty small which makes this component go to data points

simulated from it. Now we see variance for one component goes to zero. That is,

For small sample size, singularities are likely to occur.

• Secondly, we increase sample size n from 40 to 200. This time we can see that

most of the time the EM algorithm will converge and the simulation result is listed

on Table 2. That is, as the sample size increases, it’s less likely that singularities

occur.

• Last, we increase the component number k from 2 to 5, keeping sample size to

200. However, in this case almost every time there is one variance in a component

goes to zero thus the likelihood diverges to infinity. Of the 15 replications of the
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simulation, there are 14 times the result diverges while only once it converges.

An example of the divergence is shown in Figure 2.1.
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Chapter 3

MTD Normal Model with

Bayesian EM Algorithm

3.1 Literature Review

The mixture transition distribution model (MTD) was introduced in 1985 by

Raftery for the modeling of high-order Markov chains with a finite state space. Since

then it has been generalized and successfully applied to a range of situations, including

the analysis of wind directions, DNA sequences and social behavior (Berchtold and

Raftery 2002). Mixture Transition Distribution time series model was introduced by

LE., Martin and Raftery (1996). It is an extension of general non-Gaussian time series

in which the conditional distribution of current observation depending on the previous

observations is a mixture of conditional distributions. It can capture non-Gaussian and

nonlinear features such as flat stretches , bursts of activity, outliers and change points
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in a single unified model class. It also performs well in the usual case of Gaussian time

series without obvious nonstandard observations. This model is easy to understand,

to simulate and it is pretty easy to obtain parameter estimation. When taking into

account of prediction, this model is able to obtain a full predictive distribution that

can consider the future flat stretches, bursts and outliers.

Since the MTD model is an extension of general mixture model, they use EM

algorithm to obtain parameter estimation for the mixture model. When using EM

algorithm, firstly the number of mixture components is assumed to be known. That

is, the mixture number k is assumed to be known. Then for each observation Yi it

is assumed that there is a hidden vector Zi which indicates the mixture component

that Yi is coming from. With these assumptions, they can write out the conditional

likelihood function L. Then EM algorithm can be applied to maximize the conditional

likelihood function to get the parameter estimation. For different k, different models

will be constructed. Bayesian Information Criteria (BIC) is used to determine the

number of mixture components k.

There are other papers about the MTD models, including extending the uni-

variate normal mixtures to multivariate mixture models (Baudry, Raftery and Celeux

2000). Most of these papers use EM algorithm to estimate the parameters and use BIC

to determine the number of mixture components.

However, as is known in normal mixture models, there is a problem in maxi-

mizing the likelihood function of mixture models because of singularity. Another prob-

lem with EM algorithm is that it needs to predetermine the number of mixture compo-
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nents and then use BIC to determine the number of mixtures. However, most of time,

we have no idea how many components are there for the data or maybe even there is

no actual mixtures, so usually it’s not easy to predetermine what k should be used.

The third problem is that BIC is usually used for exponential family model selection.

But the mixture model does not belong to exponential family in general. Some other

people, such as Wong and Li (2000) suggest other criteria called BIC∗ for their model.

So, most of time there is no universal criteria for model selection here.

Ridolfi and Idier (2000) used penalized maximum likelihood estimation for

normal mixture distributions to solve the problem of singularity. In this paper, they

studied normal mixture model and used penalized function to avoid the singularities.

Since the likelihood function is not bounded because of singularities at the boundary

of the parameter domain, MLE for the mixture model has a problem of singularities.

They assigned penalized functions for the possible singular parameters. In their paper

for normal mixtures, penalized function is used for the parameter σ2. By using EM

algorithm, the M-Step is to maximize the likelihood function × penalized function. In

this way, singularities can be avoided duo to the penalized function. In this example,

they compared the penalized function method with Hathaway’s (1985) constrained

method (that is, make restriction with the parameter σ1, σ2, i.e. σ1/σ2 ≥ c > 0).

In this section, we will present the Bayesian method for the MTD models.

Under the Bayesian framework, we can avoid the singularity. The penalized function

method can be treated as a special case of Bayesian method where the priors are non-

informative for parameters unrelated with singularities. In this section we first choose
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proper priors for the parameters in the MTD model. After we get the posterior we

use EM algorithm to maximize the corresponding posterior distribution. At last we

use BIC to select k. This method solves the problem of singularity but it still has the

shortcomings of EM algorithm, such as converging to a local maximum, or the problem

that BIC is not suitable. We can show mathematically there is no singularity problem

using EM algorithm here.

3.2 Introduction of MTD Model and Problems in EM Al-

gorithm

3.2.1 Introduction of MTD Model

Mixture Transition Distribution (MTD) time series model was introduced by

LE., Martin and Raftery (1996). Here we will study the mixture transition distribution

of normal models. Suppose we have data x1, x2, · · · , xn, the conditional distribution of

xt current given the previous information xt−1 = (xt−1, xt−2, · · · , x1), can be expressed

as

f(xt|xt−1, ϕ) =

k∑
j=1

πjfj(xt|xt−1, θj , σ
2
j )

=

k∑
j=1

πj√
2πσj

exp

{
−(xt − θjxt−j)

2

2σ2j

}
, t = k + 1, · · · , n. (3.1)

ϕ = (ϕ1, · · · , ϕk) (ϕj = {πj , θj , σ2j }) are the parameters in the MTD density.

This is a mixture distribution of k components. For the jth component, the

density depends of the jth lag information with mean µj equaling to θjxt−j and variance
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σ2j . The parameter space is denoted as Φ. We have

Φ = {ϕj = {πj , θj , σ2j }| πj ∈ R+,

k∑
j=1

πj = 1,

θj ∈ R; σ2j ∈ R+/{0}, for j = 1, 2, · · · , k}.

Given the data X, the maximum likelihood estimation of the mixture param-

eters is defined as

ϕ̂T |f(x, ϕ̂T ) = sup
ϕ∈Φ

f(x, ϕ)

where f(x, ϕ) is the likelihood function

f(x, ϕ) =

n∏
t=k+1

f(xt|xt−1, ϕ) =

n∏
t=k+1

k∑
j=1

πjfj(xt|xt−1, θj , σ
2
j ). (3.2)

3.2.2 Degeneracy of Likelihood Function

For most of the mixture models, there is a well-known problem of likelihood

function degeneracy. Let us consider an easy condition of the previous model (3.1):

suppose there are only two mixtures, then we will rewrite the likelihood function as

f(x, ϕ) =

n∏
t=3

(
π1√
2πσ1

exp

{
−(xt − θ1xt−1)

2

2σ21

}
+

π2√
2πσ2

exp

{
−(xt − θ2xt−2)

2

2σ22

})
. (3.3)

By intuition, we can find the degeneracy is due to the variance parameter converg-

ing to zero in the denominator. In fact, some estimators such as {π2 ̸= 0, θ2 =

xt/xt−2 and σ22 = 0} will yield singularities in the sense that the likelihood function f

goes to infinity. In fact, when we consider the parameters values on the boundary of
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the parameter space Φ, denoted as ∂Φ, we can get the singularities if the parameters

ϕ approaching one of the corresponding values on the boundary of Φ.

Property 1. Let us consider the likelihood function (3.2), then

∀x ∈ R,∃ϕ0 ∈ ∂Φ, such that lim
ϕ→ϕ0

f(x, ϕ) = +∞

where Φ is the parameter space, ∂Φ is the boundary of parameter space, ϕ0 = {πj ̸=

0; θj = xt/xt−j ; σ
2
j = 0} ∈ ∂Φ is a point on the boundary of the parameter space.

3.2.3 Bayesian Method and Its Pros

From above we have shown if we want to maximize the likelihood function,

we will have to face the problem of singularity and therefore it’s difficult to get MLE

for the MTD model.

Now we will go to Bayesian framework and we will show under Bayesian

framework, we can avoid the problem of singularity.

For the MTD model (3.1), because the degeneracy comes from σ2j on the

denominator, we will choose proper conjugate priors for the variance σ2j . With this

proper conjugate priors, not only the posterior becomes easy to calculate, but also the

posterior will never go to infinity.

Here we choose Inverse Gamma IG(αj , βj) as the conjugate priors for σ2j

IG(σ2j |αj , βj) ∝

(
1

σ2j

)αj

exp

{
−βj
σ2j

}
. (3.4)
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So, now the posterior becomes

posterior = likelihood× priors

= f(x, ϕ)×
k∏
j=1

IG(σ2j |αj , βj)

=

n∏
t=k+1

f(xt|xt−1, ϕ)IG(σ2j |αj , βj)

=

n∏
t=k+1

k∑
j=1

πjfj(xt|xt−1, θj , σ
2
j )×

k∏
j=1

β
αj

j

Γ(αj)

(
1

σ2j

)αj

exp

{
−βj
σ2j

}

=
n∏

t=k+1

k∑
j=1

πj√
2πσj

exp

{
−(xt − θjxt−j)

2

2σ2j

}

×
k∏
j=1

β
αj

j

Γ(αj)

(
1

σ2j

)αj

exp

{
−βj
σ2j

}
.

(3.5)

Now we can see if one of σ2j goes to zero, although the likelihood part will go to infinity

with linear speed, the prior part will go to zero with exponential speed. Combined

together, we will have the following conclusion.

Property 2. In maximizing the posterior distribution (3.5), then even if the parameter

ϕ is on the boundary, such as σj approaching zero, the posterior will not approach

infinity.

Proof: See appendix of proof of this chapter.

From Property 2, we know that the posterior will all the time be finite. This

gives us the possibility to maximize the posterior distribution to get the parameter

estimation. In the next section we will use EM algorithm to maximize the posterior

and use BIC for model selection.
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3.3 Bayesian Method with EM Algorithm for MTD Mod-

els

In this section we will restudy the MTD model with Bayesian method. Under

Bayesian framework, we first assign priors for the parameters in the MTD models. In

order to calculate the posterior easily and conveniently, we will assign conjugate priors

for the parameters. Combined with the observational data, we can get the posterior and

then EM algorithm is used to get parameter estimation by maximizing the posterior

distribution.

Assuming Z1, · · · ,Zn are the hidden random variables where Zi = (Zi1, · · · , Zik)

indicates which the component that data comes from. For example, Zip = 1, Zij = 0 j ̸=

p means data Xi coming from the pth component. We also assume all Z′
is are indepen-

dent and are independent of the data X. Now we can write the (conditional) likelihood

function as

L =
n∏

t=k+1

k∏
j=1

(
πj√
2πσj

exp

{
−(xt − θjxt−j)

2

2σ2j

})ztj
. (3.6)

The prior for π and θ is chosen as non-informative prior. The prior for σ2j is

chosen as (3.4). Based on this, the posterior distribution becomes

P ∝
n∏

t=k+1

k∏
j=1

(
πj√
2πσj

exp

{
−(xt − θjxt−j)

2

2σ2j

})ztj
×

k∏
j=1

β
αj

j

Γ(αj)

(
1

σ2j

)αj

exp

{
−βj
σ2j

}
.
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So, the logarithm of the posterior distribution is

ll = log(posterior)

=

n∑
t=k+1

k∑
j=1

ztj log πj +

n∑
t=k+1

k∑
j=1

ztj log fj(xt|x(t−1), θj , σ
2
j )

+
k∑
j=1

log IG(σ2j |αj , βj)

=

n∑
t=k+1

k∑
j=1

ztj log πj +

n∑
t=k+1

k∑
j=1

ztj

(
− log

√
2πσj −

(xt − θjxt−j)
2

2σ2j

)

+
k∑
j=1

(
αj log βj − log(Γ(αj))− αj log σ

2
j −

βj
σ2j

)
.

(3.7)

Next we will use EM algorithm to get parameter estimation.

First is the E step we need to estimate the missing quantities. Suppose the

parameters (θ1, · · · , θk) and (σ21, · · · , σ2k) are known, then the missing quantities of Zt

are replaced by their conditional expectations, conditional on the parameters and the

observations. The conditional expectation of the jth component of Zt is just the condi-

tional probability that the observation Xt comes from the jth component of the mixture

distribution, conditional on the parameters and observations. Let the conditional ex-

pectation of the jth component of Zt be z̃tj , then we will have

z̃tj =
πjfj(xt|x(t−1))∑k
j=1 πjfj(xt|x(t−1))

(3.8)

for j = 1, 2, · · · , k.

Next is the M step. Now suppose we know the value of Zt, what we need to

do is to maximize the posterior distribution to get the estimation of the parameters of

(θ1, · · · , θk) and (σ21, · · · , σ2k). To maximize it, we know the estimations of parameters

should satisfy these equations
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

∂ll

∂πj
= 0,

∂ll

∂θj
= 0,

∂ll

∂σ2j
= 0.

(3.9)

Take partial difference to πj , θj and σ
2
j , for j = 1, 2, · · · , k, we will get

∂ll

∂πj
= 0 =⇒ π̂j =

∑n
t=k+1 z̃tj∑n

t=k+1

∑
j=1k z̃tj

, (3.10)

∂ll

∂θj
= 0 =⇒ θ̂j =

∑n
t=1 z̃tjxtxt−j∑n
t=1 z̃tjx

2
t−j

. (3.11)

This Bayesian estimator of θ̂j is the same as non-Bayesian method estimation of θ̂j .

∂ll

∂σ2j
= 0 =⇒ σ̂2j =

∑n
t=1 z̃tj(xt − θ̂jxt−j)

2 + 2βj∑n
t=1 z̃tj + 2αj

=
2βj∑n

t=1 z̃tj + 2αj
+

∑n
t=1 Ztj(xt − θ̂jxt−j)

2∑n
t=1 z̃tj + 2αj

. (3.12)

If we don’t use Bayesian method, the estimator is

σ̂2j =

∑n
t=1 z̃tj(xt − θjxt−j)

2∑n
t=1 z̃tj

. (3.13)

Calculation of (3.10), (3.11) and (3.12) will be shown on last section of this Chapter.

If we pay more attention to (3.12) and (3.13), we see that in (3.12), as the

sample size n increase,
∑n

t=1 z̃tj will also increase consequently. If we get a large
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sample size n, the
∑n

t=1 z̃tj + 2αj will be close to
∑n

t=1 z̃tj .
2βj∑n

t=1 z̃tj+2αj
will be close

to zero since
∑n

t=1 z̃tj in the denominator is very large compared to the fixed βj in

the numerator. And
∑n

t=1 Ztj(xt−θjxt−j)
2∑n

t=1 z̃tj+2αj
will go to

∑n
t=1 Ztj(xt−θjxt−j)

2∑n
t=1 z̃tj

. That is, (3.12)

will approach to (3.13) as sample size n increase. That is, if we increase the sample

size, there will be of little difference between Bayesian and non-Bayesian method in

the estimation when there is no singularity appears. However, as is shown, Bayesian

estimator will always exclude the condition of variances approaching zero while non-

Bayesian method cannot guarantee this. This is the superiority of Bayesian method.

3.4 Simulation Result for MTD Normal Model

3.4.1 Simulation Results

In the simulation, we set the true number of mixture components k = 3.

Sample size is n = 200. The simulation is repeated for 100 times. The true model is

f(xt, ϕ) =
.1√

2π × .1
exp

{
−(xt − .2xt−1)

2

2× .12

}
+

.7√
2π × 1

exp

{
−(xt − .3xt−2)

2

2× 12

}
+

.2√
2π × 5

exp

{
−(xt + 2.5xt−3)

2

2× 52

}
.

The simulation result is given as below.

k=3 n=200 Non-Bayesian Method

Of all 100 simulations, there is 5 times singularity will happen and other 95

times there is no singularity. The simulation result is shown below (in the brackets is

the true value of the model).
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Estimation of the parameters

k π θ σ

1 0.133031 (.1) 0.166431 (.2) 0.120865 (.1)

2 0.671288 (.7) 0.281730 (.3) 0.966687 (1)

3 0.195679 (.2) -2.311235 (-2.5) 5.064729 (5)

standard errors of the Estimation

k π θ σ

1 0.056418 0.100086 0.105686

2 0.165906 0.069373 0.248471

3 0.060096 0.686751 2.019126

k=3 n=200 Bayesian Method

Next are the simulation of the same true model and the same initial value

of the parameters as the simulation above. Using Bayesian method, we can avoid the

appearance of singularity in the simulation. Also, we see here the Bayesian method

estimation is better than non-Bayesian method. The simulation result is:

Estimation of the parameters

k π θ σ

1 0.107921 (.1) 0.194684 (.2) 0.113812 (.1)

2 0.693693 (.7) 0.303651 (.3) 1.010320 (1)

3 0.200126 (.2) -2.440371 (-2.5) 5.031268 (5)

standard errors of the Estimation

k π θ σ

1 0.053266 0.089513 0.050552

2 0.052318 0.026148 0.083693

3 0.032019 0.406630 0.775302

From the simulation we can see two advantages of Bayesian method. First,

there is no singularity in Bayesian method. Second, estimations from Bayesian method

is better than non-Bayesian method; standard errors of estimations from Bayesian

method is smaller then non-Bayesian method.
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3.4.2 Comparison Study

In this section we will restudy the example Le, Martin and Raftery used

in their paper (1996). It’s a normal MTD model with 3 mixture components. We

will compare their result with the result of Bayesian method here. Also, for the EM

algorithm, we will compare the result using good initial values (close to our true value)

with the result using bad initial values (values far from the true value and the initial

value of standard errors is close to zero). True model is

f(xt, ϕ) =
.4√

2π × 1
exp

{
−(xt − .3xt−1)

2

2× 12

}
+

.4√
2π × 1

exp

{
−(xt − .3xt−2)

2

2× 12

}
+

.2√
2π × 5

exp

{
−(xt + 2.5xt−3)

2

2× 52

}
.

Good Initial Value Simulation Comparison

First we set the initial values with all σj far away from zero. Specifically they

are chosen as

Good Initial Value

k π θ σ

1 .32 .1 .5

2 .50 .5 .5

3 .18 -2.0 3.5

The simulation result is list below.

Non-Bayesian with Good initial value

Of 100 replications, there is one time the variance goes to zero. Other 99

times singularity doesn’t appear. This result is close to the result as they got in their

paper.
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Estimation of the parameters

k π θ σ

1 0.3936652 0.2850216 0.9603959

2 0.3946651 0.3028768 0.9377454

3 0.1916697 -2.3269386 4.7824925

standard errors of the Estimation

k π θ σ

1 0.11204791 0.07550024 0.2448749

2 0.11196956 0.07025475 0.2391312

3 0.05069433 0.64051946 0.9448469

Bayesian with Good initial value

Of 100 replications, there is no problem of singularity.

Estimation of the parameters

k π θ σ

1 0.3947873 0.2871532 0.9256657

2 0.4020719 0.3107894 0.9375738

3 0.2031407 -2.4941271 4.8240909

standard errors of the Estimation

k π θ σ

1 0.11007369 0.08452048 0.1983980

2 0.10772111 0.05979850 0.1976612

3 0.03703981 0.39752495 0.7395327

We can see here for Bayesian method with good initial values, of all 9 estimations,

7 estimations with Bayesian method are better then estimators with non-Bayesian

method. For the standard errors, there are 8 of with in Bayesian method smaller then

non-Bayesian method.

Bad Initial Value Simulation Compare

Next we use the initial value with some for σj close to zero. The initial values

are given below.
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Bad Initial Value

k π θ σ

1 .32 .1 .05

2 .50 .5 .5

3 .18 -2.0 3.5

Non-Bayesian with Bad initial value

Of 100 replications, there are 5 times the variance will go to zero. Because

the initial value is poor, the simulation is far away from the true value.

Estimation of the parameters

k π θ σ

1 0.1705309 0.1663157 0.3764691

2 0.5781841 0.2465586 1.1286935

3 0.2012851 -2.2513687 5.0595137

standard errors of the Estimation

k π θ σ

1 0.2019159 0.10032554 0.4332319

2 0.2339350 0.08407647 0.5985411

3 0.0648519 0.63069761 2.0129913

Bayesian with Bad initial value

Of 100 replications, no time the variance will go to zero.

Estimation of the parameters

k π θ σ

1 0.2286117 0.1928289 0.5429712

2 0.5517805 0.2617159 1.1445907

3 0.2196078 -2.4058028 5.1568373

standard errors of the Estimation

k π θ σ

1 0.16505776 0.11691836 0.2835764

2 0.16518295 0.07399314 0.2279577

3 0.04167456 0.30918145 1.7339096

From this simulation, it shows if the simulation starts with poor initial valurs, estima-

tors from both Bayesian and non-Bayesian method are poor. This suggest us to be

careful when choosing initial values for EM algorithm. If we begin from some bad ini-
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tial values, the estimations might be poor. However it seems that the Bayesian method

gives better estimates than those of non-Bayesian method.

3.5 Summary

In this chapter, we use Bayesian method for MTDmodels. For fixed k (number

of components), we choose proper priors for parameters, then use EM to maximize the

posterior to obtain parameter estimation.

The advantages of using Bayesian EM algorithm are:

• It can eliminate the problem of singularities.

• The estimation is consistent under some restrictions for the parameters’ prior (we

will prove this in Chapter 5).

• With proper prior, Bayesian estimation performs better than non-Bayesian method

if the sample size is not too small.

• As n (sample size) increases, Bayesian method is close to non-Bayesian method

but without singularity problem.
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3.6 Proofs

3.6.1 Proof of Property (2)

From (3.5) we know the posterior

=
n∏

t=k+1

k∑
j=1

πj√
2πσj

exp

{
−(xt − θjxt−j)

2

2σ2j

}

×
k∏
j=1

β
αj

j

Γ(αj)

(
1

σ2j

)αj

exp

{
−βj
σ2j

}

≤
n∏

t=k+1

 k∑
j=1

πj√
2πσj

 ×
k∏
j=1

β
αj

j

Γ(αj)

(
1

σ2j

)αj

exp

{
−βj
σ2j

}

=
n∏

t=k+1

 k∑
j=1

(
1

σ2j

)1/2
 ×

k∏
j=1

(
1

σ2j

)αj

exp

{
−βj
σ2j

}
×

k∏
j=1

β
αj

j

Γ(αj)

=d0 ×
n∏

t=k+1

 k∑
j=1

(
1

σ2j

)1/2
 ×

k∏
j=1

(
1

σ2j

)αj

exp

{
−βj
σ2j

}

=d0 ×
n∏

t=k+1

 k∑
j=1

(
1

σ2j

)1/2

×
k∏
j=1

(
1

σ2j

)αj
k+1
nk

exp

{
−βj
σ2j

k + 1

nk

}
=d0 ×

n∏
t=k+1

 k∑
j=1

 1

σ2j
×

k∏
j=1

(
1

σ2j

)2αj
k+1
nk

exp

{
−2βj
σ2j

k + 1

nk

}1/2


=d0 ×
n∏

t=k+1

 k∑
j=1

 k∏
j=1

(
1

σ2j

)2αj
k+1
nk

+ 1
k

exp

{
−2βj
σ2j

k + 1

nk

}1/2
 .

(3.14)

The first ≤ sign in the above is duo to exp

{
− (xt−θjxt−j)

2

2σ2
j

}
≤ 1. And we denote

d0 =
∏k
j=1

β
αj
j

Γ(αj)
. Because

(
1

σ2j

)2αj
k+1
nk

+ 1
k

exp

{
−2βj(k + 1)

nk

1

σ2j

}
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is finite for any σ2j even if σ2j is approaching its boundary at zero. So, for all σ2j , (3.14)

is boundary. That is, when using Bayesian method, the posterior will be boundary for

any σ2j .

3.6.2 Calculations for (3.10), (3.11), (3.12)

From (3.7) we know the log-posterior is

ll =
n∑

t=k+1

k∑
j=1

ztj log πj +
n∑

t=k+1

k∑
j=1

ztj

(
− log(

√
2πσj)−

(xt − θjxt−j)
2

2σ2j

)
k∑
j=1

(
αj log βj − log(Γ(αj))− αj log σ

2
j −

βj
σ2j

)

=
n∑

t=k+1

k∑
j=1

ztj log πj −
n∑

t=k+1

k∑
j=1

ztj

(
(xt − θjxt−j)

2

2σ2j

)

− 1

2

n∑
t=k+1

k∑
j=1

ztj log(σ
2
j )−

k∑
j=1

(
αj log σ

2
j

)
−

k∑
j=1

(
βj
σ2j

)

−
k∑
j=1

log
√
2π +

k∑
j=1

αj log βj −
k∑
j=1

log(Γ(αj)).

Take partial difference of ll with respect to πj , θj , σ
2
j , by setting ∂ll

∂πj
= 0, j =

1, 2, · · · , k − 1, we obtain
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n∑
t=k+1

ztj/πj −
n∑

t=k+1

ztk/(1− π1 − · · · − πk−1) = 0,

n∑
t=k+1

ztj/πj −
n∑

t=k+1

ztk/πk = 0,

n∑
t=k+1

ztjπk =

n∑
t=k+1

ztkπj ,

πj
πk

=

∑n
t=k+1 ztj∑n
t=k+1 ztk

, for j = 1, 2, · · · , k − 1,

π̂j =

∑n
t=k+1 ztj∑n

t=k+1

∑
j=1k ztj

.

(3.15)

By setting
∂ll

∂θj
= 0, we obtain

n∑
t=k+1

ztj
1

σ2j
(xt − θjxt−j)xt−j = 0,

n∑
t=k+1

ztjxtxt−j − θj

n∑
t=k+1

ztj(xt−j)
2 = 0,

θ̂j =

∑n
t=1 ztjxtxt−j∑n
t=1 ztjx

2
t−j

.

(3.16)

By setting
∂ll

∂σ2j
= 0, we obtain

n∑
t=k+1

ztj

(
(xt − θjxt−j)

2

2(σ2j )
2

)
− 1

2

n∑
t=k+1

ztj
1

σ2j
+
αj
σ2j

+
βj

(σ2j )
2
= 0,(

n∑
t=k+1

ztj(xt − θjxt−j)
2 + 2βj

)
−

(
n∑

t=k+1

ztj + 2αj

)
σ2j = 0,

σ̂2j =

∑n
t=1 Ztj(xt − θjxt−j)

2 + 2βj∑n
t=1 ztj + 2αj

=
2βj∑n

t=1 ztj + 2αj
+

∑n
t=1 ztj(xt − θjxt−j)

2∑n
t=1 ztj + 2αj

.

38



Chapter 4

BMTD Model with Bayesian EM

Algorithm

4.1 Introduction of BMTD Model

Hassan and Lii (2006) introduced Bivariate Mixture Transition Distribution

(BMTD) model. It can be used in many different areas such as time series and marked

point processes. For marked point processes, usually people will assume the interval

times and marks mutually independently distributed. There is no such restriction in

the BMTD model. The BMTD model has a wide range of applications, including

financial transactions, real time stock market data and accidents and events that occur

irregularly with associated ”marks”.

Let us denote the data as (xt, yt), t = 1, 2, · · · , N . (Xt, Yt) is said to be

generated from BMTD model if the conditional distribution of (Xt, Yt) given the past
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can be written as

F
(
xt, yt|xt−1, yt−1

)
=

k∑
j=1

πjFj
(
xt, yt|xt−1, yt−1

)
,

k∑
j=1

πj = 1, πj > 0, j = 1, 2, · · · , k.

Here Fj(xt, yt|xt−1, yt−1) is the joint distribution of (Xt, Yt) conditional on (Xt−1, Y t−1) =

(xt−1, yt−1) = ((xt−1, yt−1), (xt−2, yt−2), · · · , (x1, y1)) which represent the past informa-

tion until time t− 1; F ′
js are in a class of bivariate joint distributions.

Hassan and Lii introduced a general form of bivariate joint distribution for

variable (X,Y ). The joint density function for (X,Y ) they defined has the following

form

fX,Y (x, y) = Cxδ+γ+1/ϕ−1

∣∣∣∣y − µ

β

∣∣∣∣δ e−xα(λ+|y−µ|ϕ/βϕ), x > 0, −∞ < y <∞ (4.1)

where α, ϕ, δ and γ are all positive shape parameters; β and λ are positive scale pa-

rameters; and µ is a location parameter. The normalizing constant C is given by

C =
1

2β

αϕλδ/α+γ/α−δ/ϕ+1/(αϕ) − 1/ϕ

Γ
(
δ+1
ϕ

)
Γ
(
δ
α + γ

α − δ
ϕ + 1

αϕ − 1
ϕ

) .
Restrict the ranges of x and y to x > 0 and y > 0 in (4.1) and put µ = 0, the

joint density function for (X,Y ) they defined has the following form

fX,Y (x, y) = Cxδ+γ+1/ϕ−1yδe−x
α(λ+yϕ/βϕ) x > 0, y > 0. (4.2)

where C is a constant which makes (4.2) a density function and C equals to

C =
αϕλδ/α+γ/α−δ/ϕ+1/(αϕ)−1/ϕ

βδ+1Γ( δ+1
ϕ )Γ( δα + γ

α − δ
ϕ + 1

αϕ − 1
ϕ)
.
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For different value of α, ϕ, δ, it generates different kinds of bivariate joint

distributions. For example,

1. Let α = ϕ = 1, δ = 0, we will get Gamma-Pareto distribution like

f(x, y) =
λγxγe−x(λ+y/β)

Γ(γ)β
. (4.3)

2. Let δ = 0, ϕ = 2, and α = 1, then the joint density is exponential-Cauchy type

f(x, y) =
λγxγ−1/2e−x(λ+(y−µ)2/β2)

Γ(γ)
√
πβ

. (4.4)

Based on the joint distribution above, Hassan and Lii (2006) introduced the

BMTD model which is the mixture of the joint distribution above and includes lag

information. For example, for model (4.3), the mixture distribution is

f(xt, yt|xt−1, yt−1) =

k∑
j=1

πj
λγj x

γ
t e

−xt(λj+yt/βj)

Γ(γ)βj
(4.5)

and the corresponding re-parameterize of the parameters are

λj =
1

θjxt−je−yt−j
.

For model (4.4), the mixture distribution is

f(xt, yt|xt−1, yt−1) =

k∑
j=1

πj
λγj x

γ−1/2
t e−xt(λj+(yt−µj)2/β2

j )

Γ(γ)
√
πβj

. (4.6)

Re-parametrization of the parameters can be taken as

λj =
1

δj(1 + xt−j)
,

µj = ψjyt−j .
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4.2 Parameters Estimation with EM Algorithm

Hassan and Lii (2006) introduced EM algorithm for the BMTD model. It

includes these steps

1. First set the number of component k as a fixed number;

2. Assign hidden variable Z as the indicator of the component that the observed

data comes from;

3. E-step is to estimate the expectation value of Z;

4. M-step is to maximize the conditional likelihood function;

5. For different k, they get different models, then calculate BIC for these models;

6. The correct model is chosen as the one which maximized the BIC.

For example, look at the Gamma-Pareto distribution example, the joint dis-

tribution for this BMTD models is

f(xt, yt|xt−1, yt−1) =
k∑
j=1

πjfj =
k∑
j=1

πj
λγj x

γ−1/2
t e−xt(λj+(yt−µj)2/β2

j )

Γ(γ)
√
πβj

where

λj =
1

δj(1 + xt−j)
,

µj = ψjyt−j .

Suppose the observations of (X,Y ) are represented by n observations given

by
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(x1, y1), · · · , (xn, yn). Let Z = (Z1, · · · , Zn) be the hidden variable where Zt is a k-

dimension indication vector and Zt = (Zt1, · · · , Ztk), where Ztj is unity if observation

(xt, yt) comes from component j and 0 otherwise. Also assume Z ′s are independent of

(X,Y ) and Z ′
ts are independent of each other. The conditional log-likelihood function

can be written as

ll =

n∑
t=k+1

k∑
j=1

ztj log πj +

n∑
t=k+1

k∑
j=1

ztj log fj .

• E-Step: Suppose the parameters are known. The conditional expectation of z̃tj

equals to

z̃tj =
πjfj(xt, yt|xt−j , yt−j)∑k
j=1 πjfj(xt, yt|xt−j , yt−j)

.

• M-Step: Suppose z′ts are known. Take partial derivatives with respect to the

parameters, we have ∂ll
βj

= 0, ∂llθj = 0, ∂llπj = 0 for j = 1, · · · , k. The estimates of

parameters are

α̂j =

∑n
t=k+1 z̃tj∑n

t=k+1

∑k
j=1 z̃tj

,

θ̂j =

∑n
t=k+1 z̃tjxte

−yt−j

γ
∑n

t=k+1 z̃tj
,

β̂j =

∑n
t=k+1 z̃tjxtyt∑n
t=k+1 z̃tj

.

After they got the estimation of the parameters, they plugged them into the

likelihood function to calculate BIC. Finally the model is selected by which maximized

the BIC.
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4.3 Degeneracy of BMTD Models and Its Solution

To avoid confusing with parameter βj in the inverse Gamma prior, we denote

the β2j in the mixture distribution as σ2j . From the general model of Bivariate distri-

bution of (4.1) we see that if µ = y and σ → 0 then the distribution will go to infinity

since there is σ in the denominator in the constant C.

For more details, let’s look at the exponential-Cauchy BMTD model (4.6).

The exponential part is exp
{
−xt

(
1

δj(1+xt−j)
+ (yt − ψjyt−j)

2/σ2j

)}
. We can

see that if one of ψj = yt/yt−j and σj → 0, then the exponential part will be equal to

a finite value exp
{
− xt
δj(1+xt−j)

}
.Therefore, if σj → 0 in the denominator, the product

tends to be infinity. Under this condition we see that the joint density function will go

to infinity.

As we have done in the previous section, we will use Bayesian method to solve

this singularity problem.

If we assign a suitable prior for σj , such as Inverse Gamma, IG(αj , βj), then

we can see the constant part containing σj is proportional to

λγj x
γ−1/2
t e−xt(λj+(yt−ψjyt−j)

2/σ2
j )

Γ(γ)
√
πσj

×

(
1

σ2j

)aj
exp

{
− bj
σ2j

}

∝
λγj x

γ−1/2
t

Γ(γ)
√
π

1

σj
exp

{
−xt

(
λj +

(yt − ψjyt−j)
2

σ2j

)}
×

(
1

σ2j

)aj
exp

{
− bj
σ2j

}

∝
λγj x

γ−1/2
t

Γ(γ)
√
π

exp

{
−xt

(
λj +

(yt − ψjyt−j)
2

σ2j

)}
×

(
1

σ2j

)aj+1/2

exp

{
− bj
σ2j

}
.

Now from above we can see as ψj = yt/yt−j and σ2j → 0, the part
λγj x

γ−1/2
t

Γ(γ)
√
π

is a finite

part. exp

{
−xt

(
λj +

(yt−ψjyt−j)
2

σ2
j

)}
will be zero since ψj = yt/yt−j . But the last part
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(
1
σ2
j

)aj+1/2

exp

{
− bj
σ2
j

}
will be zero when σ2j → 0 because exp

{
− bj
σ2
j

}
will go to zero

in exponential speed. So, totally the entire posterior will go to zero on the boundary of

the parameter space. This helps to explain why Bayesian method can solve the problem

of singularity.

In fact, we can find a general rule for the question of singularity. In the

density function, if the exponential part containing random variable has a parameter

in the denominator, and the normalizing constant part also contains that parameter in

the denominator, then usually singularities will exist for this kind of density functions.

The reason is if the parameter in the denominator (σj) goes to zero and the numerator

in the exponential part goes to zero (µj → xi) then the whole exponential part will go

to a finite constant but the normalizing constant will be infinity since the parameter

(σj) can converge to positive zero in the denominator.

4.4 Bayesian Method Study of BMTD Model

In this section, we will re-study the example that Lii and Hassan (2006) used

in their paper under Bayesian framework. Here we will use the exponential-Cauchy

Distribution model (4.6) as an example to study and compare the Bayesian and non-

Bayesian methods in the simulation and parameter estimation.

Denote the data as (xt, yt), t = 1, 2, · · · , N . (Xt, Yt) is said to be generated

from BMTD model with exponential-Cauchy distribution if the conditional density of

(Xt, Yt) given the past can be written as (to avoid confusing with parameter βj in the

45



inverse Gamma prior, we denote the β2j in the mixture distribution (4.6) as σ2j )

f(xt, yt|xt−1, yt−1) =

k∑
j=1

πj
λγj x

γ−1/2
t e−xt(λj+(yt−µj)2/σ2

j )

Γ(γ)
√
πσj

. (4.7)

With the following re-parameterization to incorporate the lag information

λj =
1

δi(1 + xt−j)
,

µj = θjyt−j .

Based on this, we can write the distribution of (Xt, Yt) given the previous information

(Xt−1, Y t−1) = (X1, · · · , Xt−1, Y1, · · · , Yt−1) as follows

f(xt, yt|xt−1, yt−1) =

k∑
j=1

πj
x
1/2
t e

−xt

(
1

δj(1+xt−j)
+

(yt−θjyt−j)
2

2σ2
j

)

δj(1 + xt−j)
√
2πσj

=
k∑
j=1

πj
x
1/2
t e

−xt
δj(1+xt−j) e

−xt
(yt−θjyt−j)

2

2σ2
j

δj(1 + xt−j)
√
2πσj

. (4.8)

Suppose Z1, · · · ,Zn are the hidden random variables where Zt = (Zt1, · · · , Ztk)

indicates the component that data comes from as discussed before. We also assume all

Z′s are independent of the data (X,Y ). Now we can write the (conditional) likelihood

function of (xt, Yt) given the past as

L ∝
n∏

t=k+1

k∏
j=1

(
πjf(xt, yt|xt−1, yt−1)

)Ztj

∝
n∏

t=k+1

k∏
j=1

πj x
1/2
t exp

{
−xt

δj(1+xt−j)

}
exp

{
−xt (yt−θjyt−j)

2

2σ2
j

}
δj(1 + xt−j)

√
2πσj


Ztj

.
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Since the singularity in the exponential-Cauchy model is caused by the σj , we

choose non-informative prior distribution for the parameters δj and θj . We will choose

Inverse Gamma IG(αj , βj) as the prior for σ2j . That is, the prior of 1
σ2
j
is

f

(
1

σ2j
|αj , βj

)
∝

(
1

σ2j

)αj

exp

{
−βj

1

σ2j

}
. (4.9)

Based on this, the (conditional) posterior distribution becomes

posterior ∝
n∏

t=k+1

k∏
j=1

πj x
1/2
t exp

{
−xt

δj(1+xt−j)

}
exp

{
−xt (yt−θjyt−j)

2

2σ2
j

}
δj(1 + xt−j)

√
2πσj


Ztj

×
k∏
j=1

β
αj

j

Γ(αj)

(
1

σ2j

)αj

exp

{
−βj
σ2j

}
.

Take log over the (conditional) posterior density, we get

ll = log(posterior)

∝
n∑

t=k+1

k∑
j=1

ztj log πj +
n∑

t=k+1

k∑
j=1

ztj log fj
(
xt, yt|xt−1, yt−1

)
+

k∑
j=1

log IG(σ2j |αj , βj)

∝
n∑

t=k+1

k∑
j=1

Ztj

(
log πj −

xt
δj(1 + xt−j)

− xt
(yt − θjyt−j)

2

2σ2j
− log δj

−1

2
log σ2j

)
+

k∑
j=1

(
−αj log σ2j −

βj
σ2j

)
.

(4.10)

Next we use EM algorithm to get parameter estimation.

Use the same procedure as before we obtain

z̃tj =
πjfj

(
xt, yt|xt−1, yt−1

)∑k
j=1 πjfj (xt, yt|xt−1, yt−1)

(4.11)
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for j = 1, 2, · · · , k.

π̂j =

∑n
t=k+1 z̃tj∑n

t=k+1

∑k
j=1 z̃tj

, (4.12)

δ̂j =

∑n
t=k+1

xt
1+xt−j

z̃tj∑n
t=k+1 z̃tj

. (4.13)

θ̂j =

∑n
t=k+1 z̃tjxtytyt−j∑n
t=k+1 z̃tjxty

2
t−j

. (4.14)

σ̂2j =

∑n
t=k+1 z̃tjxt(yt − θ̂jyt−j)

2 + 2βj∑n
t=k+1 z̃tj + 2αj

=

∑n
t=k+1 z̃tjxt(yt − θ̂jyt−j)

2∑n
t=k+1 z̃tj + 2αj

+
2βj∑n

t=k+1 z̃tj + 2αj
. (4.15)

The proof of (4.12), (4.13), (4.14) and (4.15) is in last section of this chapter.

From (4.13), (4.14) and (4.15) we see that the estimations of δj , θj , j = 1, · · · , k

in Bayesian method is the same as they are by non-Bayesian method since we choose

the non-informative prior for these parameters.

Now look at the estimation of σ2j in Bayesian method. We see that as the

sample size n increase, the summation of
∑n

t=1 z̃tj will also increase. If we get a large

sample size n, the part
∑n

t=1 z̃tj + 2αj will be close to
∑n

t=1 z̃tj and
2βj∑n

t=1 z̃tj+2αj
will

be close to zero since
∑n

t=1 z̃tj in the denominator is very large compared to the fixed

βj in the numerator. Also
∑n

t=k+1 z̃tjxt(yt−θ̂jyt−j)
2∑n

t=k+1 z̃tj+2αj
will converge to

∑n
t=k+1 z̃tjxt(yt−θ̂jyt−j)

2∑n
t=k+1 z̃tj

which is the non-Bayesian estimator. That means, if we increase the sample size n,

Bayesian estimator and non-Bayesian estimator will have less and less differences. But

Bayesian method will assure that the estimator will not go to the boundary of parameter

space which guarantees that a proper maximum of the posterior can be reached.
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4.5 Simulation

Previously we have shown the superiorities of Bayesian method in the BMTD

models. Now we will use simulations to compare them and verify the superiorities

of Bayesian method. We use BMTD of exponential-Cauchy distribution with k = 3

mixture components. From the true model we sample n = 200 data points as our data.

For the simulation, we first set the value of the number of components k to a fixed

value. After we obtained the estimation of the parameters, we then select the model by

comparing the different value of BIC corresponding to different values of k. For both

methods, we repeat the simulation 100 times independently. The final estimation is

the average of the repeats.

The true values of the parameters in the exponential-Cauchy BMTD model

(4.8) are given below.

True Value

π δ θ σ

0.1 0.4 0.3 0.1

0.7 0.7 0.3 1.0

0.2 0.9 -2.5 5.0

And the initial value of the EM algorithm are given below.

Initial Values

π δ θ σ

0.15 0.30 0.2 0.3

0.60 0.78 0.4 0.5

0.25 0.80 -2.0 4.0
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4.5.1 k=3 n=200 Non-Bayesian Method

First look at the non-Bayesian method. Of all 100 replications, there are 3

times the singularities occured. For the other simulations without the appearance of

singularity, we take average of the 97 independent estimations. The results are given

below.

Non-Bayesian Method Simulation Result

π δ θ σ

0.1045049 (.1) 0.3886475 (.4) 0.2578528 (.3) 0.1273875 (.1)

0.6973006 (.7) 0.6517466 (.7) 0.2778409 (.3) 0.9172626 (1)

0.1981944 (.2) 0.8152921 (.9) -2.3325705 (-2.5) 4.6463886 (5)

STD error of Non-Bayesian Method Simulation

π δ θ σ

0.03378788 0.19998170 0.05456871 0.10639560

0.04503336 0.06966322 0.01192587 0.08676654

0.03234068 0.15417010 0.14134460 0.75175000

4.5.2 k=3 n=200 Bayesian Method

Next is the result of Bayesian simulation. As stated above, we choose non-

informative priors for the parameters δj , θj , j = 1, · · · , k. And the priors for σ2j are

Inverse Gamma ( 4.9) IG(1, 1) distribution. Of all 100 replications of simulation, there

are no singularity for the Bayesian Method. The simulation results are given below.

Bayesian Method Simulation Result

π δ θ σ

0.1097807 (.1) 0.3980461 (.4) 0.2703176 (.3) 0.117084 (.1)

0.7025879 (.7) 0.6790021 (.7) 0.2920027 (.3) 1.099523 (1)

0.1876315 (.2) 0.8992515 (.9) -2.4013305 (-2.5) 4.914751 (5)

STD error of Bayesian Method Simulation

π δ θ σ

0.03634200 0.14550780 0.04588224 0.06939043

0.03975061 0.07648589 0.01161006 0.06493199

0.03315683 0.15114260 0.17736150 0.59700200

50



Comparing the Bayesian and non-Bayesian simulations above, we see that for

all 12 parameters estimation, Bayesian method has 9 of the 12 estimations closer to

the true value than the non-Bayesian method. Also, look at the standard error of the

12 estimations, there are 8 out of 12 Bayesian method estimations perform better than

the non-Bayesian method.

Another superiority of Bayesian method here is its flexibility. In the model,

if we want to let the estimations throw more weight on the data rather than on the

prior information, we can choose some suitable values in the priors. For example, if we

choose small value for αj , j = 1, · · · , k and βj , j = 1, · · · , k, then Bayesian method

estimator will be very close to non-Bayesian method. If we have strong information of

the prior, then we can choose large value of αj and βj , j = 1, · · · , k to let the priors

have more influence in the estimations.
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4.6 Proof of (4.12) - (4.15)

From (4.10) we know the log posterior is

ll = log(posterior)

∝
n∑

t=k+1

k∑
j=1

ztj log πj +

n∑
t=k+1

k∑
j=1

ztj log fj
(
xt, yt|xt−1, yt−1

)
+

k∑
j=1

log IG(σ2j |αj , βj)

∝
n∑

t=k+1

k∑
j=1

Ztj

(
log πj −

xt
δj(1 + xt−j)

− xt
(yt − θjyt−j)

2

2σ2j
− log δj

−1

2
log σ2j

)
+

k∑
j=1

(
−αj log σ2j −

βj
σ2j

)

∝
n∑

t=k+1

k∑
j=1

Ztj log πj −
n∑

t=k+1

k∑
j=1

Ztj

(
xt

δj(1 + xt−j)
+ log δj

)

−
n∑

t=k+1

k∑
j=1

Ztjxt
(yt − θjyt−j)

2

2σ2j
− 1

2

n∑
t=k+1

k∑
j=1

Ztj log σ
2
j

+

k∑
j=1

(
−αj log σ2j −

βj
σ2j

)
.
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Take partial difference of ll with respect to πj , δj , θj , σ
2
j .

By setting
∂ll

∂πj
= 0, for j = 1, 2, · · · , k − 1, we obtain

n∑
t=k+1

ztj/πj −
n∑

t=k+1

ztk/πk = 0,

n∑
t=k+1

ztjπk =

n∑
t=k+1

ztkπj ,

πj
πk

=

∑n
t=k+1 ztj∑n
t=k+1 ztk

, for j = 1, 2, · · · , k − 1,

π̂j =

∑n
t=k+1 ztj∑n

t=k+1

∑
j=1k ztj

.

By setting
∂ll

∂δj
= 0, we obtain

n∑
t=k+1

ztj

(
xt

1 + xt−j

1

δ2j
− 1

δj

)
= 0,

n∑
t=k+1

ztj
xt

1 + xt−j

1

δ2j
−

n∑
t=k+1

ztj
1

δj
= 0,

n∑
t=k+1

ztj
xt

1 + xt−j

1

δj
−

n∑
t=k+1

ztj = 0,

δ̂j =

∑n
t=k+1

xt
1+xt−j

ztj∑n
t=k+1 ztj

.

By setting
∂ll

∂θj
= 0, we obtain

n∑
t=k+1

ztj
xt
2σ2j

2(yt − θjyt−j)yt−j = 0,

n∑
t=k+1

ztjxt(yt − θjyt−j)yt−j = 0,

n∑
t=k+1

ztjxtytyt−j − θj

n∑
t=k+1

ztjyt−jyt−j = 0,

θ̂j =

∑n
t=k+1 ztjxtytyt−j∑n
t=k+1 ztjy

2
t−j

.
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By setting
∂ll

∂σ2j
= 0, we obtain

n∑
t=k+1

ztj

xt(yt − θjyt−j)
2

2

(
1

σ2j

)2

− 1

2

1

σ2j

− αj
1

σ2j
+ βj

(
1

σ2j

)2

= 0,

n∑
t=k+1

ztj
(
xt(yt − θjyt−j)

2 − σ2j
)
− 2αjσ

2
j + 2βj = 0,

n∑
t=k+1

ztjxt(yt − θjyt−j)
2 + 2βj − σ2j

(
n∑

t=k+1

ztj + 2αj

)
= 0,

σ̂2j =

∑n
t=k+1 ztjxt(yt − θ̂jyt−j)

2 + 2βj∑n
t=k+1 ztj + 2αj

=

∑n
t=k+1 ztjxt(yt − θ̂jyt−j)

2∑n
t=k+1 ztj + 2αj

+
2βj∑n

t=k+1 ztj + 2αj
.

We finished the proof.
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Chapter 5

Consistency of Bayesian EM

Parameter Estimation

5.1 Background of Consistency Study

In the previous two chapters we have shown for many MTD and BMTD mod-

els, the likelihood may not be bounded. Therefore maximum of likelihood estimation

doesn’t exist since the likelihood will go to infinity. Render and Walker (1984) showed

the unboundedness of likelihood caused the failure of convergence of EM algorithm.

Wald (1949) and Chanda (1954) studied the consistency of maximum likeli-

hood estimator. Most papers about consistency study use ideas from Wald’s paper in

1949. Here we will briefly review Wald’s work in consistency study.

Suppose F (x, θ) is the distribution for samples X, it’s either discrete for all θ

or is absolutely continuous for all θ. For any θ and for any positive value ρ let f(x, θ, ρ)
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be the supreme of f(x, θ
′
) with respect to θ

′
when |θ − θ

′ | ≤ ρ. For any positive r,

let φ(x, r) be the supreme of f(x, θ) with respect to θ when |θ| > r. Furthermore, let

f∗(x, θ, ρ) = f(x, θ, ρ) when f(x, θ, ρ) > 1 and = 1 otherwise. Similarly φ∗(x, r) =

φ(x, r) when φ(x, r) > 1 and = 1 otherwise. By default, all the expectations in this

chapter are with respect to X. The density should follow this assumption.

Assumption 1. For sufficiently small ρ and for sufficiently large r the expected values

of log f∗(x, θ, ρ) (with respect to X)
∫∞
−∞ log f∗(x, θ, ρ)dF (x, θ0) and

∫∞
−∞ logφ∗(x, r)dF (x, θ0)

are finite where θ0 denote the true parameter.

Another assumption is that the integral of the absolute of log likelihood at

the true parameter should exist, that is:

Assumption 2. For the true parameter θ0 we have∫ ∞

−∞
| log f(x, θ0)|dF (x, θ0) <∞ (5.1)

Based on these assumptions, Wald (1949) gave these two theorems:

Theorem 1. For any compact subset S of the parameter space Ω and true parameter

θ0 /∈ S, then P

(
lim
n→∞

sup
θ∈S

L(X,θ)
L(X,θ0)

= 0

)
= 1.

From the theorem, if true parameter is not in that compact set, then the

supreme of the ratio of likelihood in the set to the likelihood at the true parameter is

almost surely zero.

Theorem 2. If θ̄(X) makes L(X,θ̄(X))
L(X,θ0)

≥ c > 0, then P
(
lim
n→∞

θ̄(X) → θ0

)
= 1.

Since MLE maximize the likelihood, the likelihood ratio is at least 1. That is,

if c = 1, the consistency of θ̄(X) is obtained.
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5.2 Consistency Study of MTD/BMTD Models

In this section we study the consistency of estimators for MTD and BMTD

models with Bayesian method.

Gabriela Ciuperca, Andrea Ridolfi, Jerome Idier (2000) studied the consis-

tency of penalized maximum likelihood estimator of normal mixtures. In their paper,

they divide the area of σ ∈ (0,∞) into two parts: σ ∈ (0, η) and σ ∈ [η,∞). Then prove

separately for these two intervals. Here we extend the penalized estimators to Bayesian

framework (penalized function can be treated as a special prior in Bayesian framework).

Different from mixture models in their study, we consider the consistency of estima-

tors for MTD/BMTD models. Then we use similar ideas to prove the consistency of

estimators that maximize the posterior.

From previous sections we see that singularity is caused by σj which is a

parameter of the denominator of the density. Here we mainly focus on this condition.

We use Bayesian method and assign proper priors for the parameters which cause

singularity. Here we will further prove such estimator is consistent.

Suppose the MTD/BMTD density for xt has the following form

f(xt|xt−1, θ) =

k∑
j=1

πjfj(xt|xt−1, θj).

Here fj is the density function and πj is the weight of jth component. θj = (ξj , σj) is

the parameters of the jth component. σj is the parameter in the jth component that

may cause degeneracy of the density. ξj is other general parameters non-related to

singularity. Θ = {θ = (ξ, σ), k, ξ1, · · · , ξk;σ1, · · · , σk, k ≥ 1, σj > 0} is the parameter
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space.

Then the likelihood function is

L = fn(xn, · · · , xk+1, θ|xk) =
n∏

t=k+1

f(xt|xt−1, θ) =
n∏

t=k+1

k∑
j=1

πjfj(xt|xt−1, θj).

Suppose the prior for σ2j is g(σj). It satisfies these following four conditions:

1. limσ→0
1
σn g(σ) = 0 for any n.

2. g(σ) is a many-to-one mapping from (0,∞) to (0, G], where G = sup g(σ).

3. g is increasing in an open interval (0, s].

4. g is continuous differentiable on (0,∞).

So, the prior is g(σ) =
∏k
j=1 g(σj). Then the posterior is

hn = L× g(σ) =

n∏
t=k+1

k∑
j=1

πjfj(xt|xt−1, θj)

k∏
j=1

g(σj).

For consistency, we extend the definition of hn above as

hn

(
xn, · · · , xk+1, θ|xk

)
=


0, if ∃j, σj = 0,

fn(xn, · · · , xk+1, θ|xk)
∏k
j=1 g(σj), if σj > 0,∀j

(5.2)

Besides the assumptions on the prior function g, we need more assumptions

for the density function as below:

Assumption 3. We assume that the expectation of the absolute of the log of the density

f(xt|xt−1, θ) with respect to Xt exists for all t, that is

E
∣∣log f(xt|xt−1, θ)

∣∣ <∞. (5.3)
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Assumption 4. We also assume the expectation of the absolute of log of the posterior

exists with respect to Xk+1 exists, that is

E
(∣∣∣log hk+1

(
Xk+1, θ|xk

)∣∣∣) <∞. (5.4)

Here hk+1

(
Xk+1, θ|xk

)
is the function h in (5.2) with n = k + 1.

To prove consistency, first we will prove some lemmas. Let us denote the true

parameter as {θ0 = (k, ξ0, σ0) = (ξ01, · · · , ξ0k;σ01, · · · , σ0k)} ∈ Θ.

Lemma 1. There exist η > 0 such that η < σ0j , j = 1 · · · k such that

E
(
log hk+1

(
X, θ|xk

))
< E

(
log hk+1

(
X, θ0|xk

))
(5.5)

for any θ ∈ Θ̄ with min
j=1···k

σj ∈ [0, η). Here Θ̄ means Θ and its boundary ∂Θ.

Proof. For any θ ∈ Θ̄ we define

ν = log hk+1(xk+1, θ|xk)− log hk+1(xk+1, θ0|xk). (5.6)

We will prove E(ν) < 0. Given θ ∈ Θ we can write

E(eν) = Exk+1|xk

(
hk+1(xk+1, θ|xk)
hk+1(xk+1, θ0|xk)

)
=

∫
R
hk+1(xk+1, θ|xk)

∏k
j=1 g(σj)∏k
j=1 g(σ0j)

dxk+1

=

∏k
j=1 g(σj)∏k
j=1 g(σ0j)

. (5.7)

We define function ω : (0,∞) → (0, 12 ], i.e. ω(δ) =
g(δ)
2G , then

E(eν) =
k∏
j=1

ω(σj)

ω(σ0j)
. (5.8)
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We take δ such that ω(δ) =
∏k
j=1 ω(σ0j). The existence of δ ∈ (0,∞) is

granted by the many to one character of the function ω. In order to define η and to

prove the inequality of (5.5), we have to consider two cases:

1. δ < s then we set η = δ;

2. δ > s then if ω(δ) < ω(s), from one-to-one character of the function ω over (0, s),

there exists η ∈ (0, s] s.t. ω(η) = ω(δ) else if ω(δ) > ω(s) we take η = s.

In both cases, because

ω(η) ≤ ω(δ) =
k∏
j=1

ω(σ0j) < ω(σ0j), for j = 1, · · · , k,

we have

ω(η) ≤ ω(σ0j),∀j = 1, · · · , k. (5.9)

When σ0j > s, j = 1, · · · , k we straightly have η < σ0j ,∀j. Otherwise when

min
j=1,··· ,k

σ0j < s from (5.9) we have η < σ0j ,∀j (Because ω(·) is monotonicly increasing

in (0, s)).

So, in both cases, we have η < σ0j ,∀j = 1, · · · , k.

If min
j=1,··· ,k

σj ∈ (0, η), by taking the definition of ω(·) and assumption (3) on

g(·) into account, we have

E(eν) =

∏
j ω(σj)

ω(δ)
≤
∏
j ω(σj)

ω(η)
<

ω

(
min

j=1,··· ,k
σj

)
ω(η)

≤ 1.

If we consider the definition by extension of Θ (including the condition σj = 0,

and for σj = 0, ν = −∞), we have E(eν) < 1,∀θ ∈ Θ| min
j=1,··· ,k

σj ∈ (0, η).
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Since E(ν) < E(eν) < 1, the proof is done.

For θ ∈ Θ, we define the following function

ωk+1(x, θ, ρ|xk) = sup
θ′:|θ′−θ|<ρ

hk+1(xk+1, θ
′|xk), ρ > 0,

ωn(xn, · · · , xk+1, θ, ρ|xk) = sup
θ′:|θ′−θ|<ρ

hn(xn, · · · , xk+1, θ
′|xk), ρ > 0.

Theorem 3. Let S be a compact (closed) subset of Θ̄ such that

S =
{
θ ∈ Θ̄ | ∃j ∈ {1, · · · , k} suchthat σj ∈ [0, η)

}
and s.t. θ0 /∈ S, then

P

(
lim
n→∞

sup
θ∈S

hn
(
xn, · · · , xk+1; θ|xk

)
hn (xn, · · · , xk+1; θ0|xk)

= 0

)
= 1.

Proof. If we take the definition of hn for σk = 0 into account, we may consider only

the case minσj > 0. By Lemma 1, for each point θ ∈ S, we can associate a positive

value ρθ such that

E
(
logωk+1

(
xk+1, θ, ρθ|xk

))
< E

(
log hk+1

(
xk+1, θ0|xk

))
.

(This is because E
(
logωk+1

(
xk+1, θ, ρθ|xk

))
= E

(
log hk+1

(
xk+1, θ|xk

))
< E

(
log hk+1

(
xk+1, θ0|xk

))
).

Since S is compact, it can be covered by a finite number of open balls. Here,

the theorem is proved if we can show that

P
(
lim
n→∞

log hn

(
xn, · · · , xk+1; θ|xk

)
− log hn

(
xn, · · · , xk+1; θ0|xk

)
= −∞

)
= 1.

Let S(θ, ρθ) be the ball centered at θ with radius ρθ. Denote S̄(θ, ρθ) as S(θ, ρθ) and

its boundary.
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Given n, there exists θ̃(n) ∈ S̄(θ, ρθ) such that

log
ωn
(
xn, · · · , xk+1; θ, ρθ|xk

)
hn (xn, · · · , xk+1; θ0|xk)

= log
hn

(
xn, · · · , xk+1; θ̃

(n)|xk
)

hn (xn, · · · , xk+1; θ0|xk)
. (5.10)

(if without prior g(σ), θ̃(n) doesn’t exist since maxhn doesn’t exist.)

For θ̃(n) such that ∃j = 1, · · · , k with σ̃j
(n) = 0, then

log
ωn
(
xn, · · · , xk+1; θ, ρθ|xk

)
hn (xn, · · · , xk+1; θ0|xk)

= −∞. (5.11)

If σ̃j
(n) > 0,∀j = 1, · · · , k, we have

log
hn

(
xn, · · · , xk+1; θ̃

(n)|xk
)

hn (xn, · · · , xk+1; θ0|xk)
=

n∑
t=k+2

log
f
(
xt, θ̃

(n)|xt−1
)

f (xt, θ0|xt−1)
+ log

hk+1

(
xk+1, θ̃

(n)|xk
)

hk+1 (xk+1, θ0|xk)
.

Let’s analyze the two right terms of the previous equation separately.

Since hn is continuous with respect to θ ∈ Θ̄, if θ̃(n) contains σ̃j
(n) → 0, then

from (5.11) we have

log
ωn

(
xn, · · · , xk+1; θ̃

(n)|xk
)

hn (xn, · · · , xk+1; θ0|xk)
= −∞ as n→ ∞. (5.12)

In our notation θ̃(n) is a vector and it contains σ̃j
(n). If this σ̃j

(n) ≥ σj > 0,∀j =

1, · · · , k, for any sample size n ≥ k + 1. we define

Zt

(
θ̃(n)

)
=
f
(
xt; θ̃

(n)|xt−1
)

f (xt; θ0|xt−1)
, t ≥ k + 2.

Since function f is continuous with respect to θ, we have

Zt

(
θ̃(n)

)
≤ Zt =

f
(
xt, θ

S(t)|xt−1
)

f (xt, θ0|xt−1)
,

with

θS(t) = arg sup
θ
′∈S̄(θ,ρθ)

f
(
xt, θ

′ |xt−1
)
.
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Since Zt = Zt =
f(xt,θS(t)|xt−1)
f(xt,θ0|xt−1)

, then the expectation of Zt with respect to Xt is

E(Zt) =

∫
R

f
(
xt, θ

S(t)|xt−1
)

f (xt, θ0|xt−1)
f
(
xt, θ0|xt−1

)
dxt = 1,

and we know E(logZt) < logE(Zt) = 0, so

E(logZt) < 0,∀ t = k + 2, · · · , n.

By strong law of large numbers, we have

n∑
t=k+2

logZt → −∞ a.s. (5.13)

Let

Y = log
hk+1

(
xk+1; θ̃

(n)|xk
)

hk+1 (xk+1, θ0|xk)
,

since σ̃j
(n) ∈ (0, η), so use Lemma 1 we have E(Y ) < 0. And E(Y ) < 0 means

P (Y = +∞) = 0. So from (5.13) and P (Y = +∞) = 0, we have

log
ωn
(
xn, · · · , xk+1; θ, ρθ|xk

)
hn (xn, · · · , xk+1; θ0|xk)

a.s.−−−→
n→∞

−∞, (5.14)

From (5.10), (5.11), (5.12) and (5.14)

P

(
lim
n→∞

sup
θ∈S

hn
(
xn, · · · , xk+1; θ|xk

)
hn (xn, · · · , xk+1; θ0|xk)

= 0

)
= 1.

Theorem is proved.

Theorem 4. Let S be a compact (closed) subset of Θ̄ such that

S =
{
θ ∈ Θ̄ | ∃j ∈ {1, · · · , k} suchthat σj ∈ [η,+∞)

}
and such that θ0 /∈ S, then

P

(
lim
n→∞

sup
θ∈S

hn
(
xn, · · · , xk+1; θ|xk

)
hn (xn, · · · , xk+1; θ0|xk)

= 0

)
= 1. (5.15)
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Proof. If hn(·) in equation (5.15) is likelihood function, Render (1981, Theorem 3)

proved if the expectation of the absolute value of log likelihood with respect to X

existed, then (5.15) was correct. We just need to verify that the posterior here meets

the requirements (the expectation of the absolute value of log posterior with respect to

X existed) of Render (1981).

Under the assumption that the expectation of the absolute of the density

f(xt|xt−1, θ) with respect to X exists, that is:

E
∣∣log f(xt|xt−1, θ)

∣∣ <∞.

Also, under the assumption that g(σ) < G, we know that
∏k
j=1 g(σj) <∞. So

E

∣∣∣∣∣∣log(f(xt|xt−1, θ)

k∏
j=1

g(σj))

∣∣∣∣∣∣
= E

∣∣log(f(xt|xt−1, θ))
∣∣ k∏
j=1

g(σj) <∞. (5.16)

So our posterior here satisfies the assumption of Render (1981). Therefore the theorem

is proved.

Theorem 5. Let θ̄n = θ̄n(x1, · · · , xn) ∈ Θ̄ be a function of x1, · · · , xn such that

hn
(
xn, · · · , xk+1; θ̄n|xk

)
hn (xn, · · · , xk+1; θ0|xk)

≥ ρ > 0, ∀x1, · · · , xn, ∀n, (5.17)

then

P
(
lim
n→∞

θ̄n = θ0

)
= 1.

Proof. It’s sufficient to prove that for any fixed ϵ > 0, we have

P
(
lim
n→∞

θ̄n = θ̄ | ∥ θ̄ − θ0 ∥≤ ϵ
)
= 1.
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From Render (1981, Theorem 5), the estimator is strongly consistent over [η,∞), the

only condition that needs consideration is minσj ∈ [0, η).

If ∥ θ̄ − θ0 ∥≥ ϵ, then θ̄ ∈ {θ :∥ θ − θ0 ∥≥ ϵ}. Denote the supremum of

hn
(
xn, · · · , xk+1; θ|xk

)
on {θ :∥ θ − θ0 ∥≥ ϵ} with respect to θ by

sup
∥θ−θ0∥≥ϵ

hn
(
xn, · · · , xk+1; θ|xk

)
. So we have

sup
∥θ−θ0∥≥ϵ

hn

(
xn, · · · , xk+1; θ|xk

)
≥ hn

(
xn, · · · , xk+1; θ̄|xk

)
.

Because limn→∞ θ̄n = θ̄, from continuity of function hn
(
xn, · · · , xk+1; θ|xk

)
, we have

hn

(
xn, · · · , xk+1; θ̄|xk

)
= hn

(
xn, · · · , xk+1; θ̄n|xk

)
for sufficiently large n.

So, if ∥ θ̄ − θ0 ∥≥ ϵ, we would have

sup
∥θ−θ0∥≥ϵ

hn

(
xn, · · · , xk+1; θ|xk

)
≥ hn

(
xn, · · · , xk+1; θ̄n|xk

)
. (5.18)

Because of (5.17) and (5.18) we have

sup
∥θ−θ0∥≥ϵ

hn
(
xn, · · · , xk+1; θ|xk

)
hn (xn, · · · , xk+1; θ0|xk)

≥ ρ > 0, for all n ≥ k + 1. (5.19)

However, according to Theorem 3, this is an event with probability zero. That

is, it’s probability one that all limit points θ̄ of θ̄n satisfy the inequality ∥ θ̄−θ0 ∥≤ ϵ.

Since θ̄n maximizes the posterior density, if we set ρ = 1, the condition (5.17)

is satisfied. So we get the consistency of θ̄n.

65



Chapter 6

Birth-Death Process Method for

MTD Normal

In Chapter 3 and Chapter 4 we have shown how to use EM algorithm to

maximize the posterior. Under this framework, we first fix k then use BIC for model

selection. Now in this chapter we will show another method in which k is also treated

as a (discrete) random variable. We assign a prior for k and other parameters in

the density. Rather than using EM algorithm to maximize the posterior, here we use

Markov Chain Monte Carlo (MCMC) to sample from the posterior. The estimation of

parameters is based on these samples from MCMC. The method of MCMC sampling

here is called Birth-Death process which was introduced by Matthew Stephens (2000).

He used this method to study normal mixture models. Here we will extend this method

to Normal Mixture Transitions Distributions in which the re-parameterization contains

build-in lag information.
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6.1 Background Introduction

Richardson and Green (1997) present a method of performing a Bayesian anal-

ysis of data from a finite mixture distribution with an unknown number of components.

Their method is an MCMC approach which makes use of the reversible jump method

described by Green (1995). Matthew Stephens (2000) gave another approach to study

the mixture model using Bayesian method. After getting the posterior distribution,

a Markov Birth-Death process with Gibbs sampler was created to sample from the

posterior distribution. This method is easier to implement than the reversible jump

method (Stephens 2000) and it can be used if the data is more than one dimension.

All the parameters including number of components are assigned priors and we sample

from the posterior distribution. So this method is also called fully Bayesian method.

Stephens (2000) introduced a method of constructing an ergodic Markov chain

with appropriate stationary distribution, when the number of components k is consid-

ered unknown. The method is based on the construction of a continuous time Markov

Birth-Death process as described by Preston (1976) with the appropriate stationary

distribution. In order to apply these MCMC methods to the mixture model context,

they view the parameters of the model as a marked point process, with the point

representing a component of the mixture. The MCMC scheme allows the number of

components to vary by allowing new components to be born and existing components

to die. These Births and Deaths occur in continuous time, and the relative rates at

which they occur determine the stationary distribution of the process. They use this

Birth-Death scheme to construct an easily simulated process, in which Births occur at
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a constant rate from the prior, and Deaths occur at a rate which is very low for com-

ponents which are critical in explaining the data, and very high for components which

do not help to explain the data. The accept-reject mechanism allows both good and

bad Births to occur, but reverses bad Births very quickly through very quick Deaths.

6.2 MCMC Method and Gibbs Sampling

A Markov Chain in discrete time and general state space E is a sequence of

random variables (Θ0,Θ1, · · · ) with Θt ∈ E, which obeys Markov Property in time.

That is, given the current state Θt(t ≥ 0) the distribution of the next state Θt+1 is

independent of the previous history of the chain, (Θ0,Θ1, · · · ,Θt−1).

A Markov chain is said to be stationary (invariant) with stationary distribu-

tion π if Θt ∼ π then Θt+1 ∼ π also.

MCMC methods rely on the construction of stationary Markov chain and

construction of such a chain is often straightforward. An algorithm which has found

wide application and is particularly suited to the mixture model is the Gibbs sampler.

Gibbs Sampler: The Gibbs sampler (Geman 1984) is a special MCMC scheme.

It gives a method of constructing a Markov chain with a given stationary distribution

π(θ|xn) which is the posterior of θ given data xn = (x1, · · · , xn). Suppose the random

variable Θ can be decomposed into d components, Θ = (Θ1, · · · ,Θd). Suppose we

cannot sample directly from π(θ|xn) = π((θ1, · · · , θd)|xn) but can sample directly from
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the full conditional distributions

π(θ1|θ2, · · · , θd, xn), · · · , π(θd|θ1, · · · , θd−1, x
n).

Here we describe a type of Gibbs Sampler strategy that is widely used in practice.

Systematic-Scan Gibbs Sampler. Let θ(t) = (θ
(t)
1 , · · · , θ(t)d ) for iteration t, then to

simulate a value for θ(t+1) in the following d steps:

• Step 1: Sample θt+1
1 from π(θ1|θ(t)2 , · · · , θ(t)d , xn);

• Step 2: Sample θt+1
2 from π(θ2|θ(t+1)

1 , θ
(t)
3 , · · · , θ(t)d , xn);

· · ·

• Step d: Sample θt+1
d from π(θd|θ

(t+1)
1 , · · · , θ(t+1)

d−1 , xn);

Later we will use this Gibbs sampler to sample the parameters from the posterior.

6.3 Hierarchical Model Expression of MTD Model

Here we consider the MCMC method for the normal mixture transition distri-

bution (MTD) model which was introduced by Le, Martin and Raftery (1996). First,

consider the normal mixture transition distribution model:

f
(
xt|xt−1

)
=

k∑
j=1

πj
1√
2πσj

e
−(

xt−θjxt−j)
2

2σ2
j .

Suppose the prior distribution for parameters (k,π,ϕ) given parameters η is

r
(
k, (π1, · · · , πk), (ϕ1 = (θ1, σ

2
1), · · · , ϕk = (θk, σ

2
k))|η

)
and it is exchangeable. That is

r (k, (π1, · · · , πk), (ϕ1, · · · , ϕk)) = r (k, (πp1 , · · · , πpk), (ϕp1 , · · · , ϕpk))
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for all permutations of p of (p1, · · · , pk). Let U k−1 denote the uniform distribution on

the simplex

Sk−1 = {(π1, · · · , πk−1) : π1, · · · , πk−1 ≥ 0 and π1 + · · ·+ πk−1 ≤ 1}.

Let Φ denote the parameter space for ϕi (that is, ϕi ∈ Φ); let ν be the measure

on Φ. As a simple example of the prior, suppose given k, η, π and ϕ are conditionally

independent, and ϕ1, · · · , ϕk are also independently identically distributed with density

function p(ϕi|η) for ϕi. π has uniform distribution on the simplex U k−1. Now the prior

becomes

r(k,π,ϕ) = p(k|η)p(ϕ1|η) · · · p(ϕk|η). (6.1)

Here η is a known constant vector for the priors. The conditional likelihood function is

L(k,π,ϕ) = p(xn|k,π,ϕ)

=
n∏

i=k+1

 k∑
j=1

πjf(xi|ϕj , xi−1, yi−1)

 . (6.2)

From (6.1) and (6.2), it’s easy to get the posterior distribution

p(k,π,ϕ|xnη) ∝ L(k,π,ϕ)r(k,π,ϕ). (6.3)

What we need to do next is to sample from the posterior above. We can consider any

set of k parameter values {(π1, ϕ1), · · · , (πk, ϕk)} as a set of k points in [0, 1]×Φ, with

the constraint that π1 + · · · + πk = 1. Thus the posterior distribution p(k,π,ϕ|xn, η)

can be treated as a suitably constrained distribution of points in [0, 1] × Φ. Stephens

(2000) stated that these points from the posterior distribution could be treated as a
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point process on [0, 1] × Φ, in other words, a marked point process on Φ with each

ϕi having an associated marks πi with the constraint that the sum of marks is unity.

Based on this, Ripley (1977) and Stephens (2000) stated that a Markov Birth-Death

process could be constructed from the stationary posterior distribution. Next we will

describe in detailed about the Birth-Death process.

6.4 Birth-Death Process

Ripley (1977), Stephens (2000) construct a continuous time Markov Birth-

Death process with stationary distribution p(k,π,ϕ|xn, η). In the similar way, we can

construct a continuous time Markov Birth-Death process with stationary distribution

p(k,π,ϕ|xn, η) with η kept fixed.

Birth-Death for the components of a mixture model Let Ωk denote the pa-

rameter space of the mixture model with k components and Ω = ∪k>1Ωk. Writing

ω = {(π1, ϕ1), · · · , (πk, ϕk)} ∈ Ωk to represent the parameters of the model.

Birth: If at time t the process is at ω = {(π1, ϕ1), · · · , (πk, ϕk)} ∈ Ωk and if a

Birth occur at (π, ϕ) ∈ [0, 1]× Φ, then the process jumps to

ω ∪ (π, ϕ) := {(π1(1− π), ϕ1), · · · , (πk(1− π), ϕk), (π, ϕ)} ∈ Ωk+1.

Death: If at time t the process is at ω = {(π1, ϕ1), · · · , (πk, ϕk)} ∈ Ωk and if a

Death occur at (πk, ϕk) ∈ ω, then the process jumps to

ω\(π, ϕ) :=
{(

π1
1− πk

, ϕ1

)
, · · · ,

(
πk−1

1− πk
, ϕk−1

)}
.
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Thus a Birth increases the number of components by one, while a Death decreases the

number of components by one. These definitions have been chosen so that Birth and

Death are inverse operations to each other and the constraint π1+ · · ·+πk = 1 remains

satisfied after Birth and Death.

More details, when the process is at ω = {(π1,ϕ1), · · · , (πk,ϕk)} ∈ Ωk, let

Birth and Death occur as independent Poisson process as follows:

• Birth:

– Currently the process is at ω = {(π1,ϕ1), · · · , (πk,ϕk)};

– Birth occurs at rate β(ω);

– If a Birth occurs, then the new parameters are

ω′ = {(π1(1− π),ϕ1), · · · , (πk(1− π),ϕk), (π,ϕ)} ∈ Ωk+1;

– New parameter (π,ϕ) is sampled from density function b(ω; (π,ϕ)).

• Death:

– Currently the process is at ω = {(π1,ϕ1), · · · , (πk,ϕk)};

– Death happens with rate δ(ω) = d (ω\(πk,ϕk); (πk,ϕk)); Here ω\(πk,ϕk)

means ω excludes (πk,ϕk);

– If a Death happens, the last point (πk,ϕk) dies and the new parameters are

{(
π1

1− πk
,ϕ1

)
, · · · ,

(
πk−1

1− πk
,ϕk−1

)}
∈ Ωk−1. (6.4)
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Since Birth and Death occur as independent Poisson process. We know the

combined rate for Poisson process is the sum of rate for Birth and Death. The cor-

responding waiting time for a jump follows exponential distribution with mean equal

to the inverse of the combined rate. So the time to the next Birth/Death event is

then exponentially distributed, with mean 1/(β(ω) + δ(ω)), and it will be a Birth with

probability β(ω)/(β(ω) + δ(ω)), and a Death with probability δ(ω)/(β(ω) + δ(ω)).

The following theorem gives sufficient conditions on b and d to make the Birth-

Death process having stationary distribution p(k,π,ϕ|xn,η). (Stephens, 2000).

Theorem 6. Assuming the general prior on (k,π,ϕ) given in (6.1) and the corre-

sponding posterior is given in (6.3), the Birth-Death process defined above has station-

ary distribution p(k,π,ϕ|xn,η), provided b and d satisfy

(k + 1)d(ω; (π,ϕ))r(ω ∪ (π,ϕ)|η)L(ω ∪ (π,ϕ))k(1− π)k−1

= β(ω)b(ω; (π,ϕ))r(ω|η)L(ω) (6.5)

for all ω ∈ Ωk and (π, ϕ) ∈ [0, 1]× Φ.

We can explain (6.5) in this way: for any k, the left part of equation (6.5)

is like the death rate from k + 1 mixtures to k mixtures times the likelihood of k + 1

components mixture. We roughly treat it as the total rate from k + 1 mixtures to k

mixtures. The right part is the birth rate from k mixtures to k + 1 mixtures times

the likelihood of k mixture components, which can be roughly treated as the total rate

from k mixtures to k + 1 mixtures. The equation means that the rate from k + 1 to k

equal to the rate from k to k + 1.
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From this theorem, we choose b(ω; (π,ϕ)) and d (ω\(πk,ϕk); (πk,ϕk)) as

b(ω; (π,ϕ)) = k(1− π)k−1p(ϕ|η), (6.6)

d (ω\(πk,ϕk); (πk,ϕk)) = β(ω)
L(ω\(πk,ϕk))

L(ω)

p(k − 1|λ)
kp(k|λ)

(6.7)

to make the process from the posterior distribution stationary.

6.5 General Introduction of Birth-Death Process Algo-

rithm

For the mixture model, k is the number of mixture components (mixtures) in

the model.

At time t, number of mixtures is k; the corresponding parameters are

(π, ϕ)(t) = ((π1, · · · , πk), (θ1, · · · , θk), (σ21, · · · , σ2k))(t).

When a jump (a birth or a death) happens at time t + 1, a new component

may be born or an existing component may die. This restricts our sample because the

number of mixtures is restraint to change by 1 every time. This is not efficient since

every time we can only increase or decrease the mixture component by one. To avoid

this problem, we will let the Birth-Death run a given time t0, if the cumulative running

time is less than t0, we will not record the jump result. If the cumulative running time

is greater than t0, we will record the result. Suppose this Birth-Death process runs t0

time, then we get a new combination of the mixtures with k′ components, denote as

(π, ϕ)(t+1) = ((π1, · · · , πk′), (θ1, · · · , θk′), (σ21, · · · , σ2k′))(t+1). (6.8)

74



Based on this, we can give the following algorithm.

Algorithm 1. Beginning from ω(0) = (k, π, ϕ)(0) from the prior. The state from

ω(t) = (k, π, ϕ)(t) to ω
(t+1) = (k, π, ϕ)(t+1) is as follows:

1. First we fix the η for the priors. Let the Birth rate β(ω) = λ; calculate Death

rate δ(ω) = d (ω\(πk,ϕk); (πk,ϕk)) from (6.7);

2. Simulate the waiting time to next jump from exponential distribution with mean

1/(β(ω) + δ(ω));

3. Simulate the type of jump: Birth or Death with respective probabilities

Pr(Birth) =
β(ω)

β(ω) + δ(ω)
, P r(Death) =

δ(ω)

β(ω) + δ(ω)
.

4. Update ω to reflect the Birth or Death as introduced before;

5. If waiting time < t0, return to step 1 until the cumulative waiting time > t0.

Record updated (k,π,ϕ) as (k(t)
′
, π(t)

′
, ϕ(t)

′
). Set k(t+1) = k(t)

′
.

6. Sample Z
(t+1)
ij from the posterior distribution of

P
(
Z

(t+1)
ij = 1|k(t+1), π(t)

′
,ϕ(t)′ ,η(t), xn

)
, here j = 1, · · · , k(t+1);

7. Sample η(t+1) from the posterior f
(
η|k(t+1), π(t)

′
,ϕ(t)′ , (z)(t+1), xn

)
;

8. Sample π(t+1) from p
(
π1, · · · , πk(t+1) |k(t+1),ϕ(t)′ ,η(t+1), (z)(t+1), xn

)
;

9. Sample θ
(t+1)
j , (σ2j )

(t+1) from their posterior distribution conditional on the up-

dated k(t+1), π(t+1),η(t+1), z(t+1), xn.
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note: here z(t+1) gives the partition of data xn; the jth partition is C
(t+1)
j and

the size of C
(t+1)
j is n

(t+1)
j with n

(t+1)
j = #

{
i : xi ∈ C

(t+1)
j

}
, i = 1, · · · , n, j =

1, · · · , k(t+1).

Now we get the updated

ω(t+1) = (k, π, ϕ)(t+1) =
(
k(t+1), π(t+1),ϕ(t+1)

)
.

If necessary, we can also assign priors for other parameters in the model, for

example, we can assign priors for µ0, σ
2
0 in the priors for θ.

The algorithm above requires to specify the value of a Birth-rate λb and the

value of time t0. From equation (6.5) we can see if we double λb, then the death rate

will also be doubled; so we are free to set t0 = 1 and only need to fix λb. In our

examples we set λb = λ (the parameter of the Poisson prior), which gives a convenient

form of the Death rates as a likelihood ratio which does not depend on λ.

6.5.1 Parameter Estimation

We run the Birth-Death process forM+N times, we can get the parameter set:

ω1, · · · , ωM , ωM+1, · · · , ωM+N , (here ωi = ((π1, ϕ1), · · · , (πki , ϕki)) has ki components);

Throwing away the initial M points as the burning-in, the rest ω(M+1), · · · , ω(M+N)

are used as the sample. Then we can estimate the probability of number of components
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by an appropriate sample path average. That is

Pr(k = i|xn) = E(I(k = i)|xn)

≈ 1

N

M+N∑
j=M+1

I(kj = i)

=
1

N
#{j : kj = i}. (6.9)

Suppose the estimated number of components k = k0. A set that collects

all indices of partition with kj = k0 is defined as N = {j : kj = k0}. Parameter

estimation could be defined as the average of the parameters over the set N . That is,

ω = 1
N0

∑
j∈N ωj where N0 is the size of N .

6.6 Posterior Density of MTD Normal

Consider our MTD normal model

f
(
xt|xt−1

)
=

k∑
j=1

πj
1√
2πσj

e
−(

xt−θjxt−j)
2

2σ2
j .

As before, we introduce the hidden variable ztj ; ztj = 1 if xt is from component

j and ztj = 0 if xt is from other component. That is

F (xt|ztj = 1) = N(θjxt−j , σ
2
j ),

P (Ztj = 1| · · · ) = πj , j = 1 · · · k, t = 1, · · · , n. (6.10)

With this Z, the (conditional) likelihood function is

L =
n∏

t=k+1

k∏
j=1

[
πj

1√
2πσj

exp

{
1

2σ2j
(xt − θjxt−j)

2

}]ztj
. (6.11)
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We assign the following priors for the parameters as below

p(k) ∝ λk

k!
,

(π1, · · · , πk), (π1, · · · , πk) ∼ Dirichlet(λ),

(θ1, · · · , θk), θj ∼ Normal(µ0, σ
2
0), j = 1, · · · , k, (6.12)

(σ21, · · · , σ2k),
1

σ2j
∼ Gamma(α, β), j = 1, · · · , k,

β ∼ Gamma(h1, h2).

Since Z is indicator, it can be estimated as in previous chapters. The posterior

for ztj is

P (ztj = 1| · · · ) =
πjN(θjxt−j , σ

2
j )∑k

j=1 πjN(θjxt−j , σ2j )
=

πj
1√
2πσj

exp

{
(xt−θjxt−j)

2

2σ2
j

}
∑k

j=1 πj
1√
2πσj

exp

{
(xt−θjxt−j)2

2σ2
j

} . (6.13)
Let Cj denote component j and nj denote size of component Cj , for j =

1, · · · , k. That is nj = #{t : xt ∈ Cj , t = k + 1, · · · , n}.

Next we will calculate the conditional posterior distribution for the weights

(π1, · · · , πk),

f(π1, · · · , πk| · · · ) ∼
n∏

t=k+1

k∏
j=1

π
Ztj

j πγ−1
1 · · ·πγ−1

k−1(1− π1 − · · · − πk−1)
γ−1

∼ πn1
1 · · ·πnk

k πγ−1
1 · · ·πγ−1

k−1(1− π1 − · · · − πk−1)
γ−1

∼ πγ+n1−1
1 · · ·πγ+nk−1

k .

So the posterior for (π1, · · · , πk) is

f(π1, · · · , πk| · · · ) = Dirichlet(γ + n1, · · · , γ + nk), here n1 + · · ·+ nk = n− k.
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Now calculate the the posterior for θj | · · ·

f(θj | · · · ) ∼
∏
t∈Cj

1√
2πσj

exp

{
−(xt − θjxt−j)

2

2σ2j

}
× 1√

2πσ0
exp

{
−(θj − µ0)

2

2σ20

}

∼
∏
t∈Cj

exp

{
−
x2t−jθ

2
j − 2xt−jxtθj + x2t

2σ2j

}
× exp

{
−
θ2j − 2µ0θj + µ20

2σ20

}

∼ exp

−

∑
t∈Cj

x2t−jθ
2
j − 2

∑
t∈Cj

xt−jxtθj

2σ2j
−

× exp

{
−
θ2j − 2µ0θj

2σ20

}

∼ exp

−
σ20
∑
t∈Cj

x2t−jθ
2
j − 2σ20

∑
t∈Cj

xt−jxtθj + σ2j θ
2
j − 2µ0σ

2
j θj

2σ20σ
2
j


∼ exp

−

(
σ20
∑
t∈Cj

x2t−j + σ2j

)
θ2j − 2

(
σ20
∑
t∈Cj

xt−jxt + µ0σ
2
j

)
θj

2σ20σ
2
j


∼ exp

−

(
1
σ2
j

∑
t∈Cj

x2t−j +
1
σ2
0

)
θ2j − 2

(
1
σ2
j

∑
t∈Cj

xt−jxt + µ0
1
σ2
0

)
θj

2



∼ exp


−
θ2j − 2

(
1
σ2
j

∑
t∈Cj

xt−jxt + µ0
1
σ2
0

)(
1
σ2
j

∑
t∈Cj

x2t−j +
1
σ2
0

)−1

θj

2

(
1
σ2
j

∑
t∈Cj

x2t−j +
1
σ2
0

)−1


.

(6.14)

It’s easy to see that (6.14) is the kernel of normal density. So

f(θj | · · · ) = N

 1

σ2j

∑
t∈Cj ,t≥k+1

xt−jxt + µ0
1

σ20

 1

σ2j

∑
t∈Cj ,t≥k+1

x2t−j +
1

σ20

−1

,

 1

σ2j

∑
t∈Cj

x2t−j +
1

σ20

−1 .
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Next is to calculate the posterior for σ2j , j = 1, · · · , k.

f(σ2j | · · · )

∼
∏
t∈Cj

1√
2π

(σ2j )
− 1

2 exp

{
−(xt − θjxt−j)

2

2σ2j

}
× βα

Γ(α)

(
1

σ2j

)α−1

exp

{
−beta 1

σ2j

}

∼

(
1

σ2j

)nj
2

exp

−
∑
t∈Cj

(xt − θjxt−j)
2

2

1

σ2j

×

(
1

σ2j

)α−1

exp

{
−β 1

σ2j

}

∼

(
1

σ2j

)nj
2
+α−1

exp

−

∑
t∈Cj

(xt − θjxt−j)
2

2
+ β

 1

σ2j

 . (6.15)

(6.15) is the kernel of Gamma density. So the posterior for σ2j | · · · is

f

(
1

σ2j
| · · ·

)
= Γ

nj
2

+ α,
∑
t∈Cj

(xt − θjxt−j)
2

2
+ β

 .

For the posterior of β| · · · ,

f(β| · · · ) ∼

 k∏
j=1

βα

Γ(α)

(
1

σ2j

)α−1

e
−β 1

σ2
j

× hh12
Γ(h1)

βh1−1e−h2β

∼ βkα exp

−
k∑
j=1

1

σ2j
β

βh1−1e−h2β

∼ β(kα+h1)−1 exp

−

 k∑
j=1

1

σ2j
+ h2

β

 .

So

f(β| · · · ) = Γ

kα+ h1,
k∑
j=1

1

σ2j
+ h2

 . (6.16)
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6.7 Simulation Result

Here is the simulation result for the MTD normal example above. The true

model has three mixture components. The model is

f(xt|xt−1) =

3∑
j=1

πj
1√
2πσ2j

exp

{
−(xt − θjxt−j)

2

2σ2j

}
. (6.17)

With the true values of the model given by

True value

j π θ σ

1 .4 1.5 2

2 .3 .9 1

3 .3 .3 .1

We will use both EM algorithm and MCMC Birth-Death process to study this

model and compare the simulation results of these two methods. From the simulation

we find that when using EM algorithm there are singularities for this model.

6.7.1 EM Algorithm Method

Choosing the initial value of EM algorithm as follows

Initial Value

j π θ σ

1 .45 1.8 2.5

2 .33 1 1.2

3 .22 .8 .9

Repeat the EM algorithm 100 times. Of all 100 repeats there are 5 times

the singularities happen. We discard these 5 repeats, using the average of the rest

95 repeats as our estimations. The result is given below(in the parenthesis are bias

between true values and the estimates).

81



Simulation results for EM algorithm

j π θ σ

1 0.3691 (-.0309) 1.4129 (-.0871) 2.0935 (.0935)

2 0.3114 (.0114) 0.8531 (-.0469) 0.9506 (-.0506)

3 0.3195 (.0195) 0.2913 (-.0087) 0.1055 (.0055)

6.7.2 MCMC Birth-Death Process Method

First we want to study whether the result of choosing number of mixtures k

is significantly effected or not by choosing different values of λ . Here we set λ to be

different values such as λ = 2, 5, 10, 20. For each λ, we run MCMC 10000 times;

Discard the first 5000 times as burning-in, and the rest 5000 is used for our analysis.

Results using Birth-Death Process

λ k = 2 k = 3 k = 4 k = 5 k ≥ 6

2 786 3361 593 189 71

5 703 3209 626 238 224

10 620 3138 605 355 282

20 589 3156 933 186 136

From the table above, we see that for different value of λ, the simulation

results of k are the same: k = 3 appears much more often than any other values.

From this simulation we can conclude that different values of λ are not significant for

Birth-Death process method.

Next is to estimate parameters in the model. We will run the Birth-Death

process for 6500 times. Throwing away the first 2500 as burning-in, we use the rest

4000 to get our estimation. Of these 4000 jumps, there are 2289 times k = 3. Based

on this, we can get the estimation of the parameters using the sample mean (in the

parenthesis are bias).
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Simulation Results for MCMC Method

j π θ σ

1 0.4040 (.0040) 1.5343 (.0343) 2.0435 (.0435)

2 0.3073 (.0073) 0.9139 (.0139) 0.9382 (-.0618)

3 0.2887 (-.0113) 0.2940 (-.0060) 0.1091 (.0091)

From this comparison, we can see superiorities of MCMC methods. First,

EM algorithm here has singularity problem but MCMC does not. Second, for all 9

parameters estimations, 7 estimations from MCMC are more accurate than that from

EM algorithm (there are 7 bias with MCMC method smaller than the bias with EM

algorithm method). Thirdly, for MCMC, estimation of the parameters is from the same

data, so we can construct the Confidence Intervals for all the parameters.

Based on the results of MCMC, we can construct the 95% confidence interval

for the parameters.

95% Confidence Interval

π1 ∈ (0.348, 0.458) θ1 ∈ (1.457, 1.612) σ1 ∈ (1.593, 2.692)

π2 ∈ (0.252, 0.363) θ2 ∈ (0.892, 0.935) σ2 ∈ (0.551, 1.151)

π3 ∈ (0.259, 0.317) θ3 ∈ (0.287, 0.295) σ3 ∈ (0.090, 0.132)

From above of the 95% confidence intervals, we can see for almost all param-

eters except θ3, the 95% confidence intervals will cover the true value. The confidence

intervals help to verify the excellent performance of Birth-Death process method.

6.7.3 Summary

MCMC method is another way of doing parameter estimation and model

selection for the MTD/BMTD models. Different from EM method of finding the point

estimations that (locally) maximize the posterior (likelihood), MCMC method samples
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the value of the parameters (k,π,ϕ) from the posterior distribution. After getting the

samples, model selection of k is given by the mode of the samples of k. After we set

up k, other parameters (π,ϕ) are estimated by the average of the samples having the

corresponding k.

How to choose a suitable prior? Sometimes we may have strong prior infor-

mation about the parameters in the model. For example, if we have a training data, we

can get vague knowledge about how many mixture components are there in the model,

and we can get a more accurate value of the parameters in the prior distribution.

For other times we may have little information about the parameters and the

number of components in the MTDmodel. Under this condition people (Rubin, Andrew

2003) usually suggest non-informative prior distributions which present ignorance or

lack of information about the parameters in the model. An example is Jeffery prior.

In our example, we select non-informative prior for the parameters which have nothing

to do with singularities. Another widely used method is to use the conjugate priors for

the parameters. With conjugate priors, the posterior is easy to be calculated. In our

example, we choose conjugate priors for σ2j . It brings us two facilities: first it’s easy to

get the posterior; second it guarantees that the posterior will never be infinity for any

value of the parameters.
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Chapter 7

Dirichlet Process and Its

Application in Mixture Model

In Chapter 3 and Chapter 4 we pre-fix number of mixtures k and assign

priors for other parameters in the model, then we use EM algorithm to maximize the

posterior. Compared to non-Bayesian method, the proposed Bayesian method can solve

the problem of singularity and the estimators are consistent as proved in Chapter 5.

In Chapter 6 we treat k as random and also assign a discrete prior for k. Then we use

MCMC to sample from the posterior. k is estimated by the mode from its samples.

However, in reality when we get the data, we don’t know whether the data

comes from a mixture model or not; or if it comes from a mixture model, we don’t know

how many mixtures there are in the model. Rather than being explicitly expressed in

the mixture model, each observation within the data sets can be associated with a (set

of) parameter. We assume the observations with the same parameters coming from
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the same mixture component. Because most of the time the parameters are continuous

on their support, the probability of two parameters being equal is zero. To solve this

problem, Neal (2000) introduced a discrete type of prior for the parameters. Then

for the posterior, there is a positive probability that two parameters are equal to each

other. This discrete type of prior we used here is called Dirichlet process(Ferguson,

1973; Neal 2000). In this chapter we will first give an introduction of Dirichlet process

mixtures. Next we will introduce its background and explain in detail how to use

Dirichlet process prior in our mixture models.

7.1 Dirichlet Process and Chinese Restaurant Method

Modeling a distribution as a mixture of simpler distributions is useful both as

a nonparametric density estimation method and as a way of identifying latent classes

that can explain the dependencies observed between variables. Mixtures with a count-

ably infinite number of components can reasonably be handled in a Bayesian framework

by employing a prior distribution for mixing proportions, such as a Dirichlet process.

Dirichlet process mixture models has become computationally feasible with the devel-

opment of Markov chain methods for sampling from the posterior distribution of the

parameters of the component distributions. Methods based on Gibbs sampling can

easily be implemented for models based on conjugate prior distributions.

Bayesian nonparametric studies were initially introduced by Ferguson (1973)

when he introduced Dirichlet processes for modeling random distributions. With a

Dirichlet process prior, Blackwell and MacQueen (1973) showed that the marginal dis-
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tribution of the missing values or latent variables had a Polya structure. This result

had inspired many researchers to work on computational procedures for Bayesian non-

parametric methods. Lo et al. (1996) introduced a sampling method for sampling

partitions. Instead of generating missing values, they evaluated the posterior expec-

tation by sampling partitions that are sufficient statistics of the missing values. Y.W.

Teh, M.I. Jordan, M.J. Beal and D.M. Blei (2006) introduced the hierarchical Dirichlet

process for mixture models and cluster analysis. This model has more flexibility in

modeling data with mixture characters.

Next we will brifly introduce how Dirichlet process is used in the mixture

models.

7.2 Dirichlet Distribution

The Dirichlet Distribution is a multi-parameter extension of Beta Distribu-

tion. It defines a distribution over distributions on the discrete probability space.

Let π = {π1, π2, · · · , πn} be a probability distribution on the discrete space X =

{X1,X2, · · · ,Xn} such that P (X = Xi) = πi. The Dirichlet distribution over π is

given by

P (π|α,H) =
Γ(α)∏n

i=1 Γ(αhi)

n∏
i=1

παhi−1
i

where H = {h1, h2, · · · , hn; hi > 0} is the base measure defined on X and is also the

mean value of π. α is a strength parameter that says how concentrated the distribution

is around H. Both π and H are discrete probability distributions and their sum is to
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unity.

7.3 Dirichlet Process (DP)

For a random distribution G to be distributed according to a DP, its marginal

distribution has to be Dirichlet distributed. Specifically, let H be a distribution over Θ

and α be a positive real number. Then for any finite measurable partition A1, · · · , Ar

of Θ, the vector (G(A1), · · · , G(Ar)) is random since G is random.

Ferguson (1973) gave the definition of Dirichlet process as below: A random

distribution G is Dirichlet process distributed with base distribution H and concentra-

tion parameter α, written as G ∼ DP (α,H) if

(G(A1), · · · , G(Ar)) ∼ Dir(αH(A1), · · · , αH(Ar))

for every finite measurable partition A1, · · · , Ar of Θ.

Ferguson also showed that the expectation and variance of G are

E(G(A)) = H(A),

V (G(A)) = H(A)(1−H(A))/(1 + α).

So, as α→ +∞, G looks more like H.
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7.4 Posterior Distribution

Let Θ be a space and A is the subspace of Θ, that is A ⊂ Θ. Let

θ|G ∼ G(θ), i.e. P (θ ∈ A ⊂ Θ|G) = G(A),

G ∼ DP (α,H). (7.1)

Since G is a random distribution, we can draw samples from G.

Let θ1, · · · , θn be a sequence of independent draws from G. Note that these

θ′is take values in Θ since G is a distribution over Θ. We want to calculate the posterior

of G|θ1, · · · , θn.

Let A1, · · · , Ar be a finite partition of Θ, and nk = #{i : θi ∈ Ak}. After

some calculations (See Appendix in this chapter), we have

(G(A1), · · · , G(Ar))|θ1, · · · , θn ∼ Dir(αH(A1) + n1, · · · , αH(Ar) + nr).

Since it’s true for all finite partition, from definition of DP, we know G|θ1, · · · , θn is a

DP.

After calculations (See calculation in appendix), we get

G|θ1, · · · , θn ∼ DP

(
α+ n,

αH

α+ n
+

∑n
i=1 δθi
α+ n

)
. (7.2)

Note 1. Priors weight base on α, and empirical distribution has weight on n. i.e., as

the number of observations grows and n >> α, the posterior is dominated by empirical

distribution.
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7.5 Representation of Dirichlet Process

7.5.1 Blackwell-MacQueen Urn Representation

Let θ1, θ2, · · · be samples from distribution G. Consider the conditional dis-

tribution of θn+1|θ1, · · · , θn with G integrated out. We know θn+1|G, θ1, · · · , θn ∼ G

for A ⊂ Θ.

P (θn+1 ∈ A|θ1, · · · , θn) = E(G(A)|θ1, · · · , θn)

=
αH(A)

α+ n
+

∑n
i=1 δθi(A)

α+ n
. (7.3)

Thus, θn+1|θ1, · · · , θn ∼ αH
α+n +

∑n
i=1 δθi
α+n , which is the posterior base distribution given

θ1, · · · , θn.

This model can be explained by the Polya Urn scheme.

There are α balls in an urn, of which αH(A1) in 1st color, and αH(A2) in 2nd

color, · · · , αH(Ar) in rth color. Now draw a ball from the urn and replace it by two

balls of the same color as the one drawn.

So,

P (θ1 ∈ Ai) =
αH(Ai)∑r
i=1 αH(Ai)

=
αH(Ai)

α
= H(Ai),

P (θ2 ∈ Ai|θ1) =
αH(Ai) + δ(θ1 ∈ Ai)

α+ 1
=
αH(Ai) + δθ1(Ai)

α+ 1
,

...

P (θn+1 ∈ Ai|θ1, · · · , θn) =
αH(Ai)

α+ n
+

∑n
j=1 δθj (Ai)

α+ n
.

So

θn+1|θ1, · · · , θn ∼ αH

α+ n
+

n

α+ n

∑n
i=1 δθi
n

. (7.4)
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That is, θn+1 with probability proportional to α
α+n comes from H, and with proba-

bility proportional to n
α+n equals to one of existing θi, i = 1 to n. This is Blackwell-

MacQueen representation of Dirichlet process.

In section 7.6 we will show how to use this representation to study mixture

models.

7.5.2 Chinese Restaurant Representation

From the previous representation of Dirichlet process, we can see given θ1,

the new sample θ2 may equal to θ1 or it may be a new value different from θ1; Given

θ1 θ2, a new sample θ3 may equal to θ1, θ2 or a new different value. So, if we continue

to sample θ1, · · · , θn in this way, some of them will take the same value.

Denote the unique values among θ1, · · · , θn as θ∗1, · · · , θ∗m; nk is the number

of repeats of θ∗k; that is nk = #{i : θi = θ∗k}, k = 1 to m; The predictive distribution

(7.4) can be rewritten as

θn+1|θ1, · · · , θn ∼ αH

α+ n
+

∑m
k=1 nkδθ∗k
α+ n

(7.5)

From (7.5) we can see the unique value of θ1, · · · , θn induces a partition {T1, · · · , Tm}

of these θ′s with Tk={θi : θi = θ∗k, i = 1 to n}; On each Tk , θ′is all take the same value

θ∗k.

• We assign labels for {θ1, θ2, · · · , θn} as {c1, c2, · · · , cn};

• If ci = j means θi = θ∗j , i = 1, · · · , n, j = 1, · · · ,m, and we say customer i

(θi and the corresponding xi) is on table Tj ;
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• The sampling above is equivalent to

– First sample these {c1, c2, · · · , cn} to get the partition {T1, · · · , Tm};
P (ci+1 = c|c1, · · · , ci) ∝

nc
i+ α

, c ∈ {c1, c2, · · · , ci},

P (ci+1 ̸= cj , for all j = 1, · · · , i|c1, · · · , ci) ∝
α

i+ α
,

with nc = #{j : cj = c, j = 1, · · · , i}

– Then sample the parameters θ∗j on table Tj from the distribution H.

So we show how to use these Dirichlet representations to study mixture model.

7.6 Mixture Model Expressed via Dirichlet Process

Neal (2000) gave the brief introduction of Dirichlet process in the Mixture

Normal distributions.

The mixture model can be expressed in Dirichlet process model

xi|θi ∼ F (θi)

θi|G ∼ G (7.6)

G ∼ DP (α,H)

Let θ−i denote all the θ′js for j ̸= i and x1, · · · , xn be the data.

From previous we know the prior for θi can be obtained from

P (θi|θ−i) =
1

n− 1 + α

∑
j ̸=i

δ(θj) +
α

n− 1 + α
H(θi).
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Combined with the likelihood, it yields the following conditional distribution for use in

Gibbs sampling

θi|θ−i, xi ∼ b · α ·H(θi)F (xi; θi) + b
n∑
j ̸=i

δ(θj)F (xi; θj), (7.7)

here

b =

α · q0(xi) +
n∑

j=1;j ̸=i
F (xi; θj)

−1

,

q0(xi) =

∫
θ
F (xi; θ)dH(θ). (7.8)

It can be observed that q0(xi) is actually the marginal distribution of xi. Let’s denote

h(θi|xi) = H(θi)F (xi;θi)∫
θ F (xi;θ)dH(θ)

and (7.7) can be rewritten as

θi|θ−i, xi ∼ b · α · q0(xi) · h(θi|xi) + b
∑
j ̸=i

δ(θj)F (xi; θj). (7.9)

This can be written in a form that demonstrates the mixture nature of the

marginal posterior on θi and also give a simple algorithm for sampling from θi|θ−i, xi

θi|θ−i, xi


= θj , with probability b · F (xi; θj),

∼ h(θ|xi) with probability b · α · q0(xi).
(7.10)

A Gibbs sampling algorithm using (7.10) can be designed to perform sampling on the

space of θs.

In a conjugate model, the distributions F and H are being conjugated and

the integration in the calculation of q0 can be performed explicitly.
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7.6.1 A Normal Mixture Example

A normal mixture is used as an example. As an example of (7.6), we take F

as normal ddistribution N(µi, 1). Then (7.6) is rewritten as

xi|µi ∼ N(µi, 1)

µi ∼ G(µ) (7.11)

G ∼ DP (α,H)

H ∼ N(0, 1)

Using the formulas in (7.8) we get

q0(xi) =
1

2
√
π
exp

{
−x2i
4

}
,

h(µ|xi) =
1√
2π

exp
{
−(µ− xi/2)

2
}
. (7.12)

So the Gibbs sampler becomes

µi|µ−i, xi


= µj , with probability proportional to F (xi;µj),

∼ h(µ|xi), with probability proportional to αq0(xi).

(7.13)

That is, µi|µ−i, xi equals to one of the existed µ′js with probability proportional to

F (xi;µj). µi|µ−i, xi equals to a new value sampled from density h(µ|xi) with probability

proportional to αq0(xi).

Algorithm 1. Initializing the value of µ(0), we can sample the µ(j) in the following
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way

Sample µ
(j)
1 from µ1|µ2 = µ

(j−1)
2 , µ3 = µ

(j−1)
3 , · · · , µn = µ(j−1)

n ,

Sample µ
(j)
2 from µ2|µ1 = µ

(j)
2 , µ3 = µ

(j−1)
3 , · · · , µn = µ(j−1)

n ,

...

Sample µ(j)n from µn|µ1 = µ
(j)
1 , µ2 = µ

(j)
2 , · · · , µn−1 = µ

(j)
n−1.

After we get µ(1), · · · ,µ(M),µ(M+1), · · · ,µ(M+N). The first M samples will

be dropped as burning-in. For the rest N samples, denote the number of unique values

in each µi, i = 1 · · ·N as k1, · · · , kN . Number of mixtures is estimated by mode of

k1, · · · , kN , denoted as k0. Select those µi, i = 1 · · ·N whose ki = k0 and their mean is

the estimation of µ.

7.7 Mixture Model with DP Chinese Restaurant Repre-

sentation

Algorithm 1 is easy and straightforward to understand. One problem with

Algorithm 1 is that the convergence rate is slow. The problem is that there are often

groups of observations with high probability that are associated with the same θ. But

this algorithm cannot change the θ for more than one observation simultaneously.

If we use Chinese Restaurant process representation of Dirichlet process, it
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can help to speed up the convergence speed. we can rewrite the model as

xi|(θ, ci) ∼ F (θci)

θci ∼ H
P (ci = cj |c−i) ∝

nj,−i
n− 1 + α

, cj ∈ c−i = {cs, s ̸= i, s = 1 to n}

P (ci ̸= cj , for all j ̸= i|c−i) ∝
α

n− 1 + α
,

where nj,−i = #{ of cs = cj , s ̸= i, s = 1 to n}.

These {c1, · · · , cn} give a partition of {x1, · · · , xn}. The partition is denoted

as P = {T1, · · · , Tp}, which looks like p tables; Observations on the same table have

the same parameter θ; Different partition P gives different mixture model.

The posterior of ci given xi, cj (j ̸= i), i = 1 to n, is

P (ci = cj |c−i, xi, θ) = b
nj,−i

n−1+αF (xi, θcj ), j ̸= i

P (ci ̸= cj , for all j ̸= i|c−i, xi, θ) = b α
n−1+α

∫
F (xi, θ)H(θ)dθ,

(7.14)

where

b =

αq0(xi) + n∑
j=1;j ̸=i

F (xi; θj)

−1

,

q0(xi) =

∫
θ
F (xi; θ)H(θ)dθ.

Algorithm 2. Assume the current state of Markov Chain consist of (c1, · · · , cn) and

θ⃗ = (θc : c ∈ {c1, · · · , cn}). The current partition is P(s). Repeatedly sample as follows

to get the new partition P(s+1):

1. For i = 1, · · · , n: if the present table that ci is on has no other observation, that

is, n−i,ci = 0, remove θci from the state. Draw a new value for ci from ci|c−i, xi, θ⃗
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as defined by equation (7.14). If the new ci is not on the existing table, we get a

new table; Otherwise, if the new ci is on existing table, we update the cardinality

of that table.

If the new ci is not associated with any observation, draw a value for θci from the

posterior:

P (θ|xi) ∝ F (xi, θ) ∗H(θ).

2. Now suppose we got the updated value of (c1, · · · , cn). Denote the partition as

P(s+1) = {T1, · · · , Tp} ;

3. For each Tj ∈ P(s+1): Draw a new value for θ(s+1) on Tj from the posterior

distribution based on the prior H and all the data points on Tj, that is:

P (θ|y) ∝
∏
i∈Tj

F (xi, θ) ∗H(θ).

After we get the samples, the parameters in the model is estimated in the

following way.

7.7.1 Determine the Number of Components

We will let the MCMC run M +N times, and regard the first M times as a

burning in. The rest of the data points from M +1 to M +N will be left for our study.

In the Dirichlet process, for each iteration, we get the partition P(i), i ∈

{M + 1, · · · ,M + N}. Each partition P(i) gives the number of tables n(P(i)), which

is essentially the number of components in iteration i. It’s natural to determine the
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number of components as the posterior mode of n(P). With the MCMC iterates of

n(P(i)), we can estimate the number of components or the posterior mode by selecting

k which maximizes 1
N

∑M+N
i=M+1 I(n(P(i)) = k), the sample proportion of n(P) = k.

7.7.2 Parameter Estimation

After getting the number of components k = k0. A set that collects all indices

of partition with n(P(j)) = k0 is defined as N = {j : n(P(j)) = k0}. Parameter

estimation could be defined as the average of the parameters over the set N . That is,

θ = 1
N0

∑
j∈N θj where N0 is the size of N .

7.7.3 A Simple Example to Explain Algorithm 2

Here a simple explanation of the second algorithm is shown below.

Suppose we have data x1, x2, · · · , x10; Current status the label ci and corre-

sponding θci is

Table1: data, tables, and parameters

xi x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
ci 2 3 2 1 2 3 2 3 3 2

parm θ2 θ3 θ2 θ1 θ2 θ3 θ2 θ3 θ3 θ2

From the above table, we can write down the current partition of subscript

as: Pt = {T1 = {1, 3, 5, 7, 10 | θ2}, T2 = {2, 6, 8, 9 | θ3}, T3 = {4 | θ1}}.

With Algorithm 2, a detailed explanation of transfer from current status Pt

to next status Pt+1 is given as below:

• Remove c1 and get new partition P−1 = {T1 = {3, 5, 7, 10 | θ2}, T2 = {2, 6, 8, 9 | θ3}, T3 =
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{4 | θ1}};

• Reseat c1 by the given probability; Suppose c1 is still on T1; Now P = {T1 =

{1, 3, 5, 7, 10 | θ2}, T2 = {2, 6, 8, 9 | θ3}, T3 = {4 | θ1}};

• Remove c2 and get new partition P−2 = {{1, 3, 5, 7, 10 | θ2}, {6, 8, 9 | θ3}, {4 | θ1}};

• Reseat c2 by the given probability; Suppose 2 is on new table rather than existing

table; now P = {T1 = {1, 3, 5, 7, 10 | θ2}, T2 = {6, 8, 9 | θ3}, T3 = {4 | θ1}, T4 =

{2 | θ4}} by sampling θ4 from F (x2, θ) ∗H(θ);

• Remove c3 and do the same thing; Suppose it’s on T1; now P = {T1 = {1, 3, 5, 7, 10 | θ2}, T2 =

{6, 8, 9 | θ3}, T3 = {4 | θ1}, T4 = {2 | θ4}};

• Remove c4; Since T4 has only 4; We remove the corresponding θ = θ1; P−4 =

{T1 = {1, 3, 5, 7, 10 | θ2}, T2 = {6, 8, 9 | θ3}, T4 = {2 | θ4}};

• Reseat c4. Suppose it’s on T4, now we have P = {T1 = {1, 3, 5, 7, 10 | θ2}, T2 =

{6, 8, 9 | θ3}, T4 = {2, 4 | θ4}};

• For c5, · · · , c10 we do the same thing. Then we get the updated partition Pt+1 is

Pt+1 = {T1 = {1, 3, 5, 7}, T2 = {6, 8, 9, 10}, T3 = {2, 4}};

• Updated parameter θ on each Tj ∈ Pt+1 is

P (θ|x) ∝
∏
i∈Tj

F (xi, θ) ∗H(θ).

The updated partition Pt+1 is:
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Table2: Updated

xi x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
ci 2 1 2 1 2 3 2 3 3 3

parm θ2 θ1 θ2 θ1 θ2 θ3 θ2 θ3 θ3 θ3

7.8 Simulation Result

7.8.1 An Easy Example

There are many examples of simulation for Dirichlet process approach in nor-

mal mixture models (see Neal (2000)). Here we show a simple example of normal

mixture where the variance is set to 1 and the number of mixture component is set

to 2. The more complicated examples are shown in Chapter 8. The normal mixture

density is

f(xt) =

k∑
j=1

πj
1√
2π
e−

(xt−θj)
2

2 .

For the simulation, we will choose k = 3, that is, there are three components

of the normal mixture model. The true value is given by

True Parameters

π1 π2 π3 θ1 θ2 θ3

.3 .45 .25 1.2 2.5 -2.4

The simulation result is (sample size n = 200)

Estimation

π1 π2 π3 θ1 θ2 θ3

.3016 .4483 .2501 1.1906 2.4669 -2.4010

From the simulation it is seen that Dirichlet process approach works well in

the mixture models. Next we will show some comparison of Dirichlet process approach

with EM algorithm and different sample size n.
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7.8.2 Parameter Estimation and Comparison

In the second simulation, we will let k = 2, n = 60 (here use k = 2 as an

example, in next chapter we use k = 4 as an example to compare). The true values of

parameters are

True Value of parameters

parameter π1 π2 θ1 θ2
estimation .3 .7 1 -1

Now we will use EM algorithm. Repeat the simulation 20 times for both

methods. The simulation result of the average of 20 repeats is shown below

Simulation Results for EM algorithm

parameter π1 π2 θ1 θ2
estimation .2939 .7061 0.9704 -1.0816

Using the same model for Dirichlet process mixture models, using Algorithm

2, the result is

Simulation for DP, n=60 rep=20

parameter π1 π2 θ1 θ2
estimation .2995 .7005 0.9953 -0.9434

Compared with these two methods, we find both methods yield very good

estimations for the parameters and that the difference of parameter estimation between

these two methods is not great. That’s probably because the true model is pretty well

organized.

For the same model, using Dirichlet process mixture models, the sample size

increased from 60 to 200, and the replication increased to 100, the result is

Simulation for DP, n=200 rep=100

parameter π1 π2 θ1 θ2
estimation .2996 .7004 1.0071 -0.9721

It looks like the improvement is not significant when we increase the sample

size and the iterations because the estimation from the small sample size is already
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good enough.

Here in the simulation we use algorithm 2 rather than algorithm 1 because

algorithm 2 will converge faster than algorithm 1 (Neal 2000).

7.9 Proofs

Calculation of posterior of Dirichlet Process G

First let’s have a look at the conjugate relation between Dirichlet Distribution

and Multinomial distribution.

(π1, π2, · · · , πr) ∼ Dir(α1, α2, · · · , αr),

z|(π1, π2, · · · , πr) ∼ Discrete(π1, π2, · · · , πr).

Where z is a multinomial random variable, taking values on i ∈ {1, 2, · · · , r} with

probability πi. Then we get

P (z = j) = E(I(z = j)) = E(πj) =
αj
r∑
i=1

αi

(7.15)
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and

(π1, π2, · · · , πr)|z = j =
f(π1, π2, · · · , πr)× P (z = j|(π1, π2, · · · , πr))

P (z = j)

=

Γ

(
r∑

i=1
αi

)
r∏

i=1
Γ(αi)

∏r
i=1 π

αi−1
i × πj

αj
r∑

i=1
αi

=

Γ

(
r∑
i=1

(αi + δj(z))

)
r∏
i=1

Γ(αi + δj(z))

r∏
i=1

π
αi+δj(z)−1
i .

So

P (z = j) =
αj
r∑
i=1

αi

,

(π1, π2, · · · , πr)|z = j ∼ Dir(α1 + δj(z), · · · , αr + δj(z)). (7.16)

Now let’s turn to Dirichlet process.

(G(A1), · · · , G(Ar)) ∼ Dir(αH(A1), · · · , αH(Ar)),

P (θ ∈ Ai|G) = G(Ai).

From above, we have:

P (θ ∈ Ai) = H(Ai),

(G(A1), · · · , G(Ar))|θ ∼ Dir(αH(A1) + δθ(A1), · · · , αH(Ar) + δθ(Ar)).(7.17)

Since (7.17) is correct for any partition (A1, A2, · · · ), so we have that the posterior of

G|θ is Dirichlet process DP
(
α+ 1, αH+δθ

α+1

)
.

Generally, we have:

G|θ1, · · · , θn ∼ DP

(
α+ n,

α

α+ n
H +

n

α+ n

∑n
i=1 δθi
n

)
. (7.18)
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Chapter 8

BMTD Models and Its Dirichlet

Process Expression

In this section, we will introduce a new method called Dirichlet process (DP)

mixtures to study the BMTD model based on the mixture of bivariate distributions

discussed before. To make the posterior easier to calculate, we will assign conjugate

priors for the parameters. In order to get the conjugate priors, we need to add some

restrictions for the re-parameterizations of the original parameters. For the general

model (4.2), we will prove that the following general parameterization of λ and β given

below will satisfy our requirements

λ = θ1 · g1
(
xt−1, yt−1

)
,

β = (θ2)
1/ϕ · g2

(
xt−1, yt−1

)
(8.1)

where g1 and g2 are general functions, and (xt−1, yt−1) = (xt−1, · · · , x1; yt−1, · · · , y1).
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From (4.2), the corresponding BMTD model is

f(xt, yt|xt−1, yt−1) =
k∑
j=1

πjCjx
δ+γ+1/ϕ−1
t yδt e

−xαt (λj+y
ϕ
t /β

ϕ
j ), xt > 0, yt > 0. (8.2)

Re-parametrizations of λj and βj are

λj = θj,1 · g1
(
xt−1, yt−1

)
,

βj = (θj,2)
1/ϕ · g2

(
xt−1, yt−1

)
. (8.3)

This re-parameterizations will cover the examples by Hassan and Lii (2006). For exam-

ple, if let θj,1 = θj , θj,2 = 1/βj , g1
(
xt−1, yt−1

)
= 1

xt−je
−yt−j

and g2
(
xt−1, yt−1

)
== 1,

we will get λj =
θj

xt−je
−yt−j

and βj =
1
βj
, that is the first example in their paper; If we

set θj,1 = δj and g1
(
xt−1, yt−1

)
= 1 + xt−j we will get λj = δj(1 + xt−j), this is the

second example in their paper.

In the following we will show how to use Dirichlet process to study the BMTD

model with re-parameterizations as shown in (8.3).

8.1 Gamma-Pareto Distribution

Here we will show a specific example of the general model above. This model

is called Gamma-Pareto distribution. In model (8.2), if let α = ϕ = 1, δ = 0 , we will

get k mixture of the Gamma-Pareto distribution with lag information

fx,y(x, y) =

k∑
j=1

πj ·
xγλγj e

−x
(
λj+

y
βj

)
Γ(γ)βj

.

As discussed before, let λj =
θj

xt−je
−yt−j

and βj =
1
βj
, we have the re-parameterizations
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that Hassan and Lii (2006) used in their paper. Thus the BMTD model can be ex-

pressed as finite k mixtures as following

f(xt, yt|xt−1, yt−1) =
k∑
j=1

πj ·
xγt · exp

(
−xt

(
θj

xt−je
−yt−j

+ βjyt

))
(

1
θj
xt−je−yt−j

)γ
Γ(γ) 1

βj

. (8.4)

More generally, the model can be extended in the integral form as

f(xt, yt|xt−1, yt−1)

=

∫
U

xγt · exp
(
−xt

(
θp

xt−pe
−yt−p

+ βpyt

))
(

1
θp
xt−pe−yt−p

)γ
Γ(γ) 1

βp

G(dp, dθp, dβp)

,
∫
U
k(zt|zt−1, µt)G(dµt). (8.5)

Here zt = (xt, yt), z
t−1 = (xt−1, yt−1) = (xt−1, · · · , x1; yt−1, · · · , y1); k(zt|zt−1, µt) is

the density function and µt = (p, θp, βp) is the parameters defined on the parameter

space

U = {(p, θp, βp) : p ∈ {1, 2, · · · ,K},K ≥ 1 is a fixed integer, θp, βp ∈ R}.

K is the fixed constant which is the maximum of possible lag order.

This model (8.5) is an extension of the original model (8.4) by Hassan and

Lii (2006). First, in model (8.4), the lag order in jth component is j, which is fixed.

However, in model (8.5), there is no such restriction, that means the lag order j now is

a random variable and has no relation with the component order. Second, model (8.5)

is an infinite mixtures rather than finite mixtures of model (8.4); This extension frees

us from the need to pre-determine the number of mixtures k in (8.4).
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8.2 Bayesian Analysis and Chinese Restaurant Process

In this example, the prior distribution of G is designed to be a Ferguson (1973)

Dirichlet process D(dG|α,H). Here α is a positive constant, H is a probability measure

defined on (U , σ(U)). From the definition of Dirichlet process, for each measurable par-

tition (Θ1, · · · ,ΘM ) of U , the vector (G(Θ1), · · · , G(ΘM )) is distributed as a Dirichlet

distribution with parameters (αH(Θ1), · · · , αH(ΘM )). Under the prior D, the hierar-

chical form of a Bayesian infinite mixture of Gamma-Pareto distribution can be written

as

zt|zt−1, µt ∼ k(zt|zt−1, µt), for t = 1, · · · , n,

µt|G
iid∼ G(dµt),

G ∼ D(dG|α,H).

with k(zt|zt−1, µt) is the density function in (8.5).

8.2.1 Priors

To facilitate the calculation of posterior distribution, we will choose H with

the following form: H has the called Discrete-Gamma-Gamma (ρ0, a0, b0, λ0, r0) dis-

tribution if ρ0 = (ρ0,1, · · · , ρ0,K) are the probabilities for the lag order p to take the

possible values of 1 to K, i.e., P (p = k) = ρ0,k. The priors for θp (p = 1, · · · ,K) are

the Gamma distributions with shape parameters (a0,1, · · · , a0,K) and scale parameters

(b0,1, · · · , b0,K) respectively for all possible K orders. Given p, the prior distributions

of βp (p = 1, · · · ,K) are Gamma distributions with scale parameters (λ0,1, · · · , λ0,K)
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and shape parameters (r0,1, · · · , r0,K) respectively. In summary, the priors will be set

in the following forms

p ∼ Discrete(ρ0,1, · · · , ρ0,K) p = 1, · · · ,K,

θp|p ∼ Γ(a0,p, b0,p),

βp|p ∼ Γ(r0,p, λ0,p).

So the joint distribution H is called Discrete-Gamma-Gamma distribution.

8.2.2 Posteriors

The Gibbs sampling scheme of Chinese Restaurant is used to generate parti-

tions and samples from the posterior distribution.

Let P = {T1, · · · , Tn(p)} be an arbitrary partition of {1, 2, · · · , n} with size

n(p). Let ej be the cardinality of each Tj for j = 1, 2, · · · , n(p). Denote the parameters

µ in Tj by (pj , θpj , βpj ). In other words, for all the data in a subgroup Tj , the lag order

is pj , with the parameters θpj and βpj .

Given table Tj , we can calculate the posterior distribution

pj |Tj ∼ Discrete(ρj,1, ρj,2, · · · , ρj,K)

θpj |pj , Tj ∼ Γ

ejγ + a0,pj ,
∑
t∈Tj

xt

xt−pje
−yt−pj

+ b0,pj


βpj |pj , Tj ∼ Γ

ej + r0,pj ,
∑
t∈Tj

xtyt + λ0,pj

 (8.6)
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here

ρj,k =
ξj,k∑K
k=1 ξj,k

ξj,k =ρ0,k ·
∏
t∈Tj

(
xt

xt−ke−yt−k

)γ
·
(

1

Γ(γ)

)ej Γ(ejγ + a0,k)

Γ(a0,k)

Γ(ej + r0,k)

Γ(r0,k)

·
(b0,k)

a0,k(∑
t∈Tj

xt
xt−ke

−yt−k
+ b0,k

)ejγ+a0,k ·
(λ0,k)

r0,k(∑
t∈Tj

xtyt + λ0,k

)ej+r0,k .

See the appendix 8.7.2 for the proof of Equation (8.6).

8.3 Chinese Restaurant Partition Rules

Let z = (x, y). Given the initial partition of {1, 2, · · · , n} as P(0), one performs

a cycle step from P(i) to the next step P(i+1) as follows: for each t = 1, · · · , n, remove t

from P(i) to get a skip-t partition of {1, 2, · · · , n}−{t} denoted as P(i)
−t. Since customer

t is removed, the new tables on skip-t partition P(i)
−t is denoted as {T1,−t, T2,−t, · · · }

Then reseat the customer t (zt = (xt, yt)) on a new table or on an occupied table Tj,−t

of P(i)
−t according to a specific probability: customer t is assigned to a new table with a

probability proportional to

α

α+ n− 1

∫
U
k
(
zt|zt−1, µ

)
G0(dµ) =

α

α+ n− 1

K∑
k=1

ζ0,k, (8.7)

or to the table Tj,−t with probability proportional to

ej,−t
α+ n− 1

∫
U
k
(
zt|zt−1, µ

)
π(dµ|Tj,−t) =

ej,−t
α+ n− 1

K∑
k=1

ωj,k

K∑
k=1

ξj,k

(8.8)
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where

ej,−t is the number of data points (observations) on table Tj,−t,

ζ0,k =ρ0,k

(
xt

xt−ke−yt−k

)γ 1

Γ(γ)

(b0,k)
a0,k

Γ(a0,k)

(λ0,k)
r0,k

Γ(r0,k)

·
Γ(γ + a0,k)(

xt
xt−ke

−yt−k
+ b0,k

)γ+a0,k ·
Γ(1 + r0,k)

(xtyt + λ0,k)
1+r0,k

,

ωj,k =ρ0,k ·
(

x0
x0−ke−y0−k

)γ ( 1

Γ(γ)

)ej+1

·
∏
t∈Tj

(
xt

xt−ke−yt−k

)γ
·
(b0,k)

a0,k

Γ(a0,k)

(λ0,k)
r0,k

Γ(r0,k)

·
Γ(ej + r0,k + 1)(

x0y0 +
∑
t∈Tj

xtyt + λ0,k

)ej+r0,k+1

·
Γ(ejγ + a0,k + γ)(

x0
x0−ke

−y0−k
+
∑
t∈Tj

xt
xt−ke

−yt−k
+ b0,k

)ejγ+a0,k+γ ,

ξj,k =ρ0,k ·
∏
t∈Tj

(
xt

xt−ke−yt−k

)γ
·
(

1

Γ(γ)

)ej Γ(ejγ + a0,k)

Γ(a0,k)

Γ(ej + r0,k)

Γ(r0,k)

·
(b0,k)

a0,k(∑
t∈Tj

xt
xt−ke

−yt−k
+ b0,k

)ejγ+a0,k ·
(λ0,k)

r0,k(∑
t∈Tj

xtyt + λ0,k

)ej+r0,k .

The calculation of (8.7) and (8.8) is on appendix 8.7.3 and 8.7.4.

Based on this partition rules, we re-seat data t zt = (xt, yt) (t = 1 · · ·n) (or

we call it customer t) in the following way: first remove zt from its current table, then

it can sit on one of existing table with probability proportional to (8.8) or it may sit

on a new table with probability proportional to (8.7). After we re-seat from t = 1 to

t = n, we get a new partition P. Then we calculate the posterior from 8.2.2 and sample
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the parameters from their posterior.

8.4 Algorithm

Now we can give the algorithm of Chinese Restaurant for the BMTD model

(8.4). This algorithm tells us how to sample the parameters from their posterior distri-

bution. As introduced before, after we get the samples, we can estimate the parameters

from these samples.

Given the initial partition of {1, 2, · · · , n} denoted as P(0), the algorithm gives

iterations from partition P(i) to partition P(i+1).

• Sample µ(i) (here µ is a vector, not a scalar) from the posterior distribution (8.6);

• For each t = 1, 2, · · · , n, using (8.8) and (8.7) to determine the new table that

customer t should sit;

• Implemented this for all n data points, then we will get the new partition P(i+1);

Repeat these steps M +N times. The first M data is treated as burning-in. The rest

N sample data is used to estimate parameters.

From these N data points, denote the size of P(i) as ki and the corresponding

parameters as µ(i), i = 1, · · · , N . Number of mixture components is estimated by the

mode of k′is. Suppose it is k0, then we select all those µ(i) that has k0 components.

The parameter vector µ is estimated by the average of these µ(i)′s.
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8.5 Simulation Results

Here two simulations are given for the example (8.5). For these simulations, we

will study how well does Dirichlet process perform in the BMTD model. To minimize

the influence of the priors, we will let the prior parameters a0 = b0 = r0 = λ0 all equal

to 1. We will choose different value of α to study the influence of α. Also, the impact

of the sample size n is studied.

8.5.1 First Example

The true model is given by

f(xt, yt|xt−1, yt−1) =

.45×
x2.5t · exp

(
−xt

(
4.7

xt−1e
−yt−1

+ 3.8yt

))
(

1
4.7xt−1e−yt−1

)2.5
Γ(2.5) 1

3.8

+ .30×
x2.5t · exp

(
−xt

(
4.1

xt−2e
−yt−2

+ 3.3yt

))
(

1
4.1xt−2e−yt−2

)2.5
Γ(2.5) 1

3.3

+ .25×
x2.5t · exp

(
−xt

(
3.3

xt−3e
−yt−3

+ 2.8yt

))
(

1
3.3xt−3e−yt−3

)2.5
Γ(2.5) 1

2.8

For this example, we study the BMTD model in which the lag order is de-

termined by its mixture order; i.e., for the first component, the lag order is 1; for

the second component, the lag order is 2; and so on. There are three components for

the true model, that is, true k = 3. True value for the proportion of each compo-

nent is π1 = .45, π2 = .3, π3 = .25 and the corresponding lag orders are 1, 2 and

3 specifically. True value of θ1 = 4.7, θ2 = 4.1, θ3 = 3.3. True value of β1 = 3.8,

β2 = 3.3, β3 = 2.8. For each component, the maximum possible lag order K, is set to
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10. We choose a0 = b0 = r0 = λ0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1). The sample size n is set

to n = 100, 250 and 400 respectively. Repeat the simulation 100 times. For each of

these 100 replications, the MCMC is executed 20,000 times. The first 10,000 times are

burning-in and the rest 10,000 data are used to estimate the parameters.

Dirichlet process DP (α,H) has α as a parameter. For α set to 2, 5 and

10, it is shown the influence is not significant from the simulation. In fact, from the

simulation below we can almost ignore the influence of α. For the sample size n, we

find the simulation result will be better as the sample size increases. When sample size

is increased from 100 to 250 to 400, for 100 replications, the correct times of estimated

number of mixture components k equaling to the true k increased from 92 to 100, also

the correct times of lag order increase from 90 to 96 to 100. More details are given

below.

Influence of sample size n and alpha

n α = 2 α = 5 α = 10
correct k correct p correct k correct p correct k correct p

100 92 90 93 90 93 90

250 100 96 100 96 100 96

400 100 100 100 100 100 100
Here n is the number of mixture components, and p is the lag order

True Values Estimation of Parameters STD error of Estimation

π θ β π θ β π θ β

0.45 4.7 3.8 0.4468 4.7021 3.8363 0.0328 0.0087 0.0201

0.30 4.1 3.3 0.2976 4.0603 3.3103 0.0103 0.0106 0.0709

0.25 3.3 2.8 0.2556 3.1868 2.8632 0.0606 0.0019 0.1032

The above simulation result based on sample size n = 250 and α = 2. From

above for n = 250, of the 100 replications, there are 100 times getting the correct

number of k. Of these 100 correct k, furthermore there are 96 times we get correct lag

order p. The estimation of parameters θ and β is estimated based on the 96 correct
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estimations.

8.5.2 Second Example

The true model is given by

f(xt, yt|xt−1, yt−1) =

.32×
x2.5t · exp

(
−xt

(
4.5

xt−1e
−yt−1

+ 4.0yt

))
(

1
4.5xt−1e−yt−1

)2.5
Γ(2.5) 1

4.0

+ .23×
x2.5t · exp

(
−xt

(
3.8

xt−2e
−yt−2

+ 3.5yt

))
(

1
3.8xt−2e−yt−2

)2.5
Γ(2.5) 1

3.5

+ .30×
x2.5t · exp

(
−xt

(
3.3

xt−3e
−yt−3

+ 3.1yt

))
(

1
3.3xt−3e−yt−3

)2.5
Γ(2.5) 1

3.1

+ .15×
x2.5t · exp

(
−xt

(
2.7

xt−1e
−yt−1

+ 2.6yt

))
(

1
2.7xt−1e−yt−1

)2.5
Γ(2.5) 1

2.6

For this example, we study the extended BMTD model of which the lag order

has no relation with the mixture order; i.e., for the first component, the lag order may

be 1; for the second component, the lag order is 3; and for the third component, the lag

order may be 1 again; and so on. There are four components for the true model, that

is, true k = 4. True value for the proportion of each component is π1 = .32, π2 = .23,

π3 = .30 and π4 = .15 and the corresponding lag orders are 1, 2, 3 and 1. True value

of θ1 = 4.5, θ2 = 3.8, θ3 = 3.3 and θ4 = 2.7. True value of β1 = 4.0, β2 = 3.5, β3 = 3.1

and β4 = 2.6. For each component, the maximum possible lag order K, is set to 10.

The priors parameters are still chosen as a0 = b0 = r0 = λ0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

The sample size n is set to equal to 100, 250 and 400 respectively. We repeat each

simulation 100 times. For each of these 100 replications, the MCMC is executed 20,000
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times. The first 10,000 times are burning-in and the rest 10,000 will be used to estimate

the parameters.

Also, for different α equal to 2, 5 and 10, it is shown from the simulation their

influence is not significant. For the sample size n, we see the simulation result will be

better as the sample size increases. When sample size increases from 100 to 250 to 400,

for 100 replications, the correct times of estimated number of mixture components k

equaling to the true k increased from 86, 90 to 97 respectively, also the correct times

of lag order increase from 72, 88 to 96. More details are given as below.

Influence of sample size and alpha

n α = 2 α = 5 α = 10
correct k correct p correct k correct p correct k correct p

100 86 72 86 71 86 72

250 90 88 90 88 90 88

400 97 96 98 96 98 96

True Values Estimation of Parameters STD error of Estimation

π θ β π θ β π θ β

0.32 4.5 4.0 0.3125 4.5103 4.0169 0.0164 0.0305 0.0314

0.23 3.8 3.5 0.2329 3.7639 3.5062 0.0306 0.0384 0.0426

0.30 3.3 3.1 0.3029 3.3104 3.1230 0.0439 0.1561 0.0673

0.15 2.7 2.6 0.1517 2.6763 2.5853 0.1028 0.0765 0.1001

The above simulation result based on sample size n = 250 and α = 2. From

above for n = 250, of the 100 replications, there are 90 times getting the correct number

of k. Of these 90 times simulations with correct k, furthermore there are 88 times we get

correct lag order p. The estimation of parameters θ and β is estimated based on the 88

correct estimations. From the table above we can see the estimations of the parameters

are very close to the true parameters. This helps to prove that DP mixtures for BMTD

model are very good.
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8.6 Summary

From above it is shown that Dirichlet process is an effective way to study

Bivariate Mixture Transition Distribution models. It works effectively in finding the

true mixture numbers, the lag order and parameter estimation. Compared with EM

algorithm which requires pre-determined mixture number k, there is no such require-

ments here. Also, unlike EM algorithm which depends on the initial value to find the

maximum point, there is no initial value selection problem in Dirichlet process method.

If there are several local maximum points, EM algorithm may converge to one of these

local maximum point. In Dirichlet process method, we don’t care about this because

we sample from the posterior.

Another advantage of Dirichlet process method is that the mixture model ex-

pressed in this way is infinite mixtures rather than finite mixtures. Also, in this way,

the lag order is not restricted to the mixture component order. These two make Dirich-

let process more general than the EM algorithm method. Although Dirichlet process

needs more time than EM algorithm for calculation, it requires less restriction for the

models and it can deal with wider conditions than model (8.4) and the corresponding

EM algorithm.

For Dirichlet process we need to pre-determine the value of α. Although this

is an arbitrary job, it’s usually set to a small value, such as 2, 5 or 10 in our example.

It is shown from the simulation that the selected value of alpha doesn’t affect too

much. In fact, it is demonstrated that the value of alpha has little effect of our studies.

Another way of study the effect of alpha is set alpha as a random variable and set up
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a distribution for it. This is studied by Lau and So (2008). In their studies it’s also

shown the value of alpha is not significant.

8.7 Proof of Equations

8.7.1 Prove of Equation (8.3)

Let’s look at the jth component density function

fj(xt, yt) = Cjx
δj+γj+1/ϕj−1
t y

δj
t · e

−x
αj
t

(
λj+y

ϕj
t /β

ϕj
j

)
,

Cj =
αjϕjλ

δj/αj+γj/αj−δj/ϕj+1/(αjϕj)−1/ϕj
j

β
δj+1
j Γ(

δj+1
ϕj

)Γ(
δj
αj

+
γj
αj

− δj
ϕj

+ 1
αjϕj

− 1
ϕj
)
. (8.9)

We will rewrite the density function as

fj(xt, yt) = Cjx
δj+γj+1/ϕj−1
t y

δj
t · e−x

αj
t (λj+y

ϕj
t /β

ϕj
j )

= Cjx
δj+γj+1/ϕj−1
t y

δj
t · e−x

αj
t λj · ex

αj
t y

ϕj
t /β

ϕj
j .

If we use the re-parameterizations of (8.3)

λj = θj,1 · g1
(
xt−1, yt−1

)
βj = θj,2 · g2

(
xt−1, yt−1

)
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we will get

fj(xt, yt) = Cjx
δj+γj+1/ϕj−1
t y

δj
t · e−x

αj
t λj · ex

αj
t y

ϕj
t /β

ϕj
j

∝ λ
δj/αj+γj/αj−δj/ϕj+1/(αjϕj)−1/ϕj
j β

−(δj+1)
j · e−xαt λj · ex

α
t y

ϕ
t /β

ϕ
j

∝ θ
δj/αj+γj/αj−δj/ϕj+1/(αjϕj)−1/ϕj
j,1 θ

−(δj+1)
j,2

· exp
{
−xαj

t · θj,1 · g1
(
xt−1, yt−1

)}
· exp

{
x
αj

t y
ϕj
t

(
θj,2 · g2

(
xt−1, yt−1

))−ϕj}
∝ θ

δj/αj+γj/αj−δj/ϕj+1/(αjϕj)−1/ϕj
j,1 θ

−(δj+1)
j,2

· exp
{
−θj,1 · x

αj

t · g1
(
xt−1, yt−1

)}
· exp

{
θj,2 · x

αj

t y
ϕj
t

(
θj,2 · g2

(
xt−1, yt−1

))−ϕj}.
By looking at this equation, we see that the parameters θj,1 and θj,2 having

the exponentially-like construction. So, if we choose the Gamma Distribution priors

for θj,1 and θj,2, the posterior will still be exponential distribution. This explains why

re-parametrization in (8.3) helps to find conjugate priors.
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8.7.2 Proof of the Posterior Distribution (Equation (8.6))

Denote µ∗j = (pj , θpj , βpj ). Given the table Tj , the posterior distribution is

proportional to the product of the likelihood in Tj and the prior H

posterior of (pj , θpj , βpj |Tj)

∝
∏
t∈Tj

k
(
(xt, yt)|xt−1, yt−1, µ∗j

)
·H(dµ∗j )

=
∏
t∈Tj

xγt · exp
(
−xt

(
θpj

xt−pj e
−yt−pj

+ ytβpj

))
(

1
θpj
xt−pje

−yt−pj

)γ
Γ(γ) 1

βpj

· ρ0,pj ·
(b0,pj )

a0,pj

Γ(a0,pj )
θ
a0,pj−1
pj e−b0,pj θpj ·

(λ0,pj )
r0,pj

Γ(r0,pj )
β
r0,pj−1
pj e−λ0,pjβpj

=

∏
t∈Tj

xγt · exp

(
−θpj

∑
t∈Tj

xt

xt−pj e
−yt−pj

− βpj
∑
t∈Tj

xtyt

)
(

1
θpj

)ejγ
· (Γ(γ))ej ·

(
1
βpj

)ej
·
∏
t∈Tj

(
xt−pje

−yt−pj

)γ
· ρ0,pj ·

(b0,pj )
a0,pj

Γ(a0,pj )
θ
a0,pj−1
pj e−b0,pj θpj ·

(λ0,pj )
r0,pj

Γ(r0,pj )
β
r0,pj−1
pj e−λ0,pjβpj

=ρ0,pj ·
∏
t∈Tj

(
xt

xt−pje
−yt−pj

)γ
·
(

1

Γ(γ)

)ej (b0,pj )a0,pj
Γ(a0,pj )

(λ0,pj )
r0,pj

Γ(r0,pj )

· (θpj )
ejγ+a0,pj−1 · exp

−θpj

∑
t∈Tj

xt

xt−pje
−yt−pj

+ b0,pj


· (βpj )

ej+r0,pj−1 · exp

−βpj

∑
t∈Tj

xtyt + λ0,pj


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=ρ0,pj ·
∏
t∈Tj

(
xt

xt−pje
−yt−pj

)γ
·
(

1

Γ(γ)

)ej (b0,pj )a0,pj
Γ(a0,pj )

(λ0,pj )
r0,pj

Γ(r0,pj )

·
Γ(ejγ + a0,pj )(∑

t∈Tj

xt

xt−pj e
−yt−pj

+ b0,pj

)ejγ+a0,pj Γ(ej + r0,pj )(∑
t∈Tj

xtyt + λ0,pj

)ej+r0,pj
· f1(θpj ) · f1(βpj )

=ρ0,pj ·
∏
t∈Tj

(
xt

xt−pje
−yt−pj

)γ (
1

Γ(γ)

)ej Γ(ejγ + a0,pj )

Γ(a0,pj )

Γ(ej + r0,pj )

Γ(r0,pj )

·
(b0,pj )

a0,pj(∑
t∈Tj

xt

xt−pj e
−yt−pj

+ b0,pj

)ejγ+a0,pj ·
(λ0,pj )

r0,pj(∑
t∈Tj

xtyt + λ0,pj

)ej+r0,pj
· f1(θpj ) · f1(βpj )

, ξj,pj · f1(θpj ) · f1(βpj ) (8.10)

where

f1(θpj ) = Γ

ejγ + a0,pj ,
∑
t∈Tj

xt

xt−pje
−yt−pj

+ b0,pj


f1(βpj ) = Γ

ej + r0,pj ,
∑
t∈Tj

xtyt + λ0,pj

 .

We denote

ψj,pj = ρ0,pj ·
∏
t∈Tj

(
xt

xt−pje
−yt−pj

)γ
·
(

1

Γ(γ)

)ej (b0,pj )a0,pj
Γ(a0,pj )

(λ0,pj )
r0,pj

Γ(r0,pj )
.

From (8.10) it is easy to find that the posterior for p is discrete, the posterior

for θp and βp are Gamma, as expressed in (8.6).
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8.7.3 Probability of Sitting On An Existing Table (Equation (8.8))

To calculate the probability of sitting on an existing table (8.8), we need to

calculate
∫
U k
(
z0|zt−1, µ∗j

)
π(dµ∗j |Tj). Denote µ∗j = (pj , θpj , βpj ). From Lau and So

(2008) it is easy to get that

π(dµ∗j |Tj) =

∏
i∈Tj

k
(
(xi, yi)|x⃗i−1, y⃗i−1, µ

∗
j

)
H(dµ∗j )∫

U

∏
i∈Tj

k
(
(xi, yi)|xi−1, y⃗i−1, µ

∗
j

)
H(dµ∗j )

.

So the integral can be rewritten as∫
U
k
(
z0|zt−1, µ∗j

)
π(dµ∗j |Tj)

=

∫
U
k
(
(x0, y0)|xt−1, yt−1, µ∗j

) ∏
i∈Tj

k
(
(xi, yi)|xi−1, yi−1, µ∗j

)
H(dµ∗j )∫

U

∏
i∈Tj

k
(
(xi, yi)|xi−1, yi−1, µ∗j

)
H(dµ∗j )

, m(z0 ∪ Tj)
m(Tj)

. (8.11)

We will calculate the nominator and denominator separately.

First we will calculate the denominator m(Tj). Remember that from previous

calculation we know

∏
i∈Tj

k
(
(xi, yi)|xi−1, yi−1, µ∗j

)
H(dµ∗j ) = ξj,pj · f1(θpj ) · f1(βpj ).

So

m(Tj) =

∫
U

∏
i∈Tj

k
(
(xi, yi)|xi−1, yi−1, µ∗j

)
H(dµ∗j ) =

K∑
k=1

ξj,k. (8.12)

Next to calculate the nominator part m(z0 ∪ Tj).

m(z0 ∪ Tj) =
∫
U
k
(
(x0, y0)|xt−1, yt−1, µ∗j

) ∏
i∈Tj

k
(
(xi, yi)|xi−1, yi−1, µ∗j

)
H(dµ∗j ). (8.13)
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k
(
(x0, y0)|xt−1, yt−1, µ∗j

) ∏
i∈Tj

k
(
(xi, yi)|xi−1, yi−1, µ∗j

)
H(dµ∗j )

=

xγ0 · exp
(
−x0

(
θpj

x0−pj
e
−y0−pj

+ βpjy0

))
(

1
θpj
x0−pje

−y0−pj

)γ
Γ(γ) 1

βpj

ξj,pjf1(θpj )f1(βpj )

=

(
x0

x0−pje
−y0−pj

)γ
1

Γ(γ)

(
θpj
)γ · exp(−θpj x0

x0−pje
−y0−pj

)

· βpje
−βpjx0y0 · ψj,pj

· (θpj )
ejγ+a0,pj−1 · exp

−θpj

∑
i∈Tj

xi

xi−pje
−yi−pj

+ b0,pj


· (βpj )

ej+r0,pj−1 · exp

−βpj

∑
i∈ij

xiyi + λ0,pj


=

(
x0

x0−pje
−y0−pj

)γ
1

Γ(γ)
ψj,pj

· (θpj )
ejγ+a0,pj+γ−1 · exp

−θpj

 x0

x0−pje
−y0−pj

+
∑
i∈Tj

xi

xi−pje
−yi−pj

+ b0,pj


· (βpj )

ej+r0,pj+1−1 · exp

−βpj

x0y0 +∑
i∈Tj

xiyi + λ0,pj


=

(
x0

x0−pje
−y0−pj

)γ
1

Γ(γ)
ψj,pj

·
Γ(ejγ + a0,pj + γ)(

x0

x0−pj
e
−y0−pj

+
∑
i∈Tj

xi

xi−pj
e
−yi−pj

+ b0,pj

)ejγ+a0,pj+γ

·
Γ(ej + r0,pj + 1)(

x0y0 +
∑
i∈Tj

xiyi + λ0,pj

)ej+r0,pj+1

· f2(θpj )f2(βpj )

, ωj,pj · f2(θpj )f2(βpj ) (8.14)
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where

ωj,pj (8.15)

=

(
x0

x0−pje
−y0−pj

)γ
1

Γ(γ)
ψj,pj

·
Γ(ejγ + a0,pj + γ)(

x0

x0−pj
e
−y0−pj

+
∑
t∈Tj

xt

xt−pj e
−yt−pj

+ b0,pj

)ejγ+a0,pj+γ

·
Γ(ej + r0,pj + 1)(

x0y0 +
∑
t∈Tj

xtyt + λ0,pj

)ej+r0,pj+1

=ρ0,pj ·

(
x0

x0−pje
−y0−pj

)γ (
1

Γ(γ)

)ej+1 ∏
t∈Tj

(
xt

xt−pje
−yt−pj

)γ

·
(b0,pj )

a0,pj

Γ(a0,pj )

(λ0,pj )
r0,pj

Γ(r0,pj )

·
Γ(ej + r0,pj + 1)(

x0y0 +
∑
t∈Tj

xtyt + λ0,pj

)ej+r0,pj+1

·
Γ(ejγ + a0,pj + γ)(

x0

x0−pj
e
−y0−pj

+
∑
t∈Tj

xt

xt−pj e
−yt−pj

+ b0,pj

)ejγ+a0,pj+γ ,

f2(θpj ) = Γ

ejγ + a0,pj + γ,
x0

x0−pje
−y0−pj

+
∑
t∈Tj

xt

xt−pje
−yt−pj

+ b0,pj

 ,

f2(βpj ) = Γ

ej + r0,pj + 1, x0y0 +
∑
t∈Tj

xtyt + λ0,pj

 .
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So,

m(z0 ∪ Tj)

=

∫
U
k
(
(x0, y0)|xt−1, yt−1, µ∗j

) ∏
i∈Tj

k
(
(xi, yi)|xi−1, yi−1, µ∗j

)
H(dµ∗j )

=
K∑
k=1

ωj,k. (8.16)

Based on (8.12) and (8.16), we can get that the probability the data point

z0 = (x0, y0) sitting on an existing table Tj equals to

ej,−t
α+ n− 1

∫
U
k
(
z0|zt−1, µ∗j

)
π(dµ∗j |Tj) =

ej,−t
α+ n− 1

K∑
k=1

ωj,k

K∑
k=1

ξj,k

. (8.17)

8.7.4 Probability of Sitting On A New Table (Equation (8.7))

The probability of data point z0 = (x0, y0) sitting on a new table is∫
U k
(
z0|zt−1, µ

)
H(dµ).

k
(
z0|zt−1, µ

)
H(dµ)

=
xγ0 · exp

(
−x0

(
θp

x0−pe
−y0−p

+ βpy0

))
(

1
θp
x0−pe−y0−p

)γ
Γ(γ) 1

βp

· ρ0,p ·
(b0,p)

a0,p

Γ(a0,p)
θ
a0,p−1
p e−b0,pθp · (λ0,p)

r0,p

Γ(r0,p)
β
r0,p−1
p e−λ0,pβp

=

(
x0

x0−pe−y0−p

)γ 1

Γ(γ)
ρ0,p

(b0,p)
a0,p

Γ(a0,p)

(λ0,p)
r0,p

Γ(r0,p)

· Γ(γ + a0,p)(
x0

x0−pe
−y0−p

+ b0,p

)γ+a0,p · Γ(1 + r0,p)

(x0y0 + λ0,p)1+r0,p
· f3(θp)f3(βp)
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where

f3(θp) = Γ

(
x0

x0−pe−y0−p
+ b0,p, γ + a0,p

)
,

f3(βp) = Γ(x0y0 + λ0,p, 1 + r0,p).

Based on these we get

∫
U
k
(
zt|zt−1, µ

)
H(dµ)

=

K∑
i=1

ρ0,k

(
xt

xt−ke−yt−k

)γ 1

Γ(γ)

(b0,k)
a0,k

Γ(a0,k)

(λ0,k)
r0,k

Γ(r0,k)

·
Γ(γ + a0,k)(

xt
xt−ke

−yt−k
+ b0,k

)γ+a0,k ·
Γ(1 + r0,k)

(xtyt + λ0,k)
1+r0,k

=

K∑
k=1

ζ0,k. (8.18)
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Chapter 9

Conclusion

9.1 Summary of My Research

In this thesis we focus on the questions from MTD/BMTD models. We have

discussed the problem of singularity and the shortcomings of EM algorithm in Chapter

2. Then we discuss how to solve the problem of singularity under Bayesian framework.

Under Bayesian framework, we use two methods to estimate parameters after

we get the posterior density. The first method is EM algorithm (Chapter 3 and Chapter

4). Although this EM algorithm method has its shortcomings, it gives us consistent

estimates and we have proved the consistency in Chapter 5. The second method is to use

MCMC to sample from the posterior of the parameters. After we get the posterior, we

sample the values of parameters from their posterior and then estimate the parameters

through these samples. For MCMC method, we have discussed two sampling methods.

One is called Birth-Death process method (Chapter 6). In this method we treat the
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number of mixture components k as a random variable rather than a fixed number

in EM algorithm. Another method is called Dirichlet process method (Chapter 7 and

Chapter 8). This method is more flexible than EM algorithm and Birth-Death process.

In Dirithlet process method, we can treat the lag order in MTD/BMTD models as a

random variable. In each chapter we use simulations to demonstrate the advantages of

Bayesian methods.

9.2 Future Works

There are some problems that we may continue to plan to investigate. In this

thesis we use conjugate priors for the parameters in the models. However, we are not

restricted to use conjugate priors. Neal (2000) gave several methods to sample from the

posterior of normal mixture models when the conjugate priors were difficult to obtain.

He introduced one Gibbs sampling method by using a set of auxiliary parameters.

With his method, we can take non-conjugate priors for the Dirichlet process mixtures

of MTD/BMTD models. This gives us more flexibility to choose priors.

Another interesting work that we can use is hierarchical Dirichlet process

mixtures introduced by Y. W. Teh (2006). In Dirichlet process DP (α,H), H is called

base measure on the parameter space Θ. In our study we also choose this H having a

conjugate form (see 8.2.1) since this help us to get the posterior. Teh (2006) introduced

the hierarchical Dirichlet process where H is distributed according to another Dirichlet

process. If we use hierarchical Dirichlet process method, then H is not restricted to

conjugate form. This method also gives us more flexibility to study MTD/BMTD
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models.
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