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Abstract
The success of eScience research depends not only upon effective collaboration between scientists 
and technologists but also upon the active involvement of data archivists. Archivists rarely receive 
scientific data until findings are published, by which time important information about their origins, 
context, and provenance may be lost. Research reported here addresses the life cycle of data from 
collaborative  ecological  research  with  embedded  networked  sensing  technologies.  A  better 
understanding of these processes will enable archivists to participate in earlier stages of the life 
cycle and to improve curation of these types of scientific data. Evidence from our interview study 
and field research yields a nine-stage life cycle. Among the findings are the cumulative effect of 
decisions made at each stage of the life cycle; the balance of decision-making between scientific and 
technology research partners; and the loss of certain types of data that may be essential to later 
interpretation.
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Introduction
The success of eScience research depends upon effective collaboration between 

scientists and technologists. Partners must often learn how to produce data that are 
meaningful to participants from multiple disciplines. Many decisions are made about 
data at each stage in their life cycle. Curation of these data and their value for reuse 
depends heavily on how much is known about their origins, derivation, and 
provenance. 

Archivists typically receive scientific data only after the findings of a study are 
published or after a researcher retires. Neither of these archival outcomes provides 
access to scientific data in a timely manner. More importantly, by the time that 
archivists receive data, much of the information necessary for future interpretation may 
have been lost. Shifting the practices of archiving such as appraisal, curation, and 
tracking provenance into earlier stages of a given material’s life cycle can increase the 
likelihood of capturing reliable, valid, and interpretable data (Esanu, Davidson, Ross & 
Anderson, 2004) and thus improve both short- and long-term access and interpretation.

To determine how early these archiving processes might begin, it is necessary to 
identify the life cycle of a given type of data. eScience partners often have different 
responsibilities at each stage of a life cycle. Individual researchers may be 
insufficiently aware of how others have acted upon the data, or how others may use or 
interpret the data further down the line. Making the entire life cycle of data more 
transparent and self-documenting has the potential to simplify data capture, 
management, interpretation, and curation for all parties involved (Beagrie, 2006; 
Beagrie & Greenstein, 1998). Some stages can be augmented by technical means, such 
as the application of automated tools to identify potential instrumentation errors as 
they occur. Other stages can be made more transparent by identifying and 
documenting scholarly practices associated with the data.

The life cycle of business and government documents is characterized by each 
stage being handled by a different party. The life cycle of data from little science – that 
is, science performed by an individual or small research group – is characterized by all 
of the phases being handled by one or a few persons with similar domain knowledge 
and training. The life cycle of data from big science – that is, science performed by a 
large number of researchers, such as high-energy physics – is characterized by many 
researchers participating in each stage of the life cycle. These researchers all have 
similar domain knowledge and training. In the research reported here, researchers from 
multiple disciplines play complementary (and sometimes conflicting) roles in data 
handling.

In keeping with the scientific data research agenda for the next decade set by the 
Warwick Workshop (Digital Curation Centre [DCC], 2005), our goals are to develop:

1.more detailed data models for each domain, including intra-domain and 
inter-domain commonalities; 
2.automatic processes for data and metadata capture, and;
3.consistent methods of data description in this scientific and technical 
environment. 
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Our exploration of the life cycle of scientific data identifies the stakes and 
stakeholders at each phase to develop a “digital curation infrastructure” (Lord & 
Macdonald, 2003) that will support the use, reuse, access, and interpretation of 
ecological sensing data. In this context, we need to understand the processes that lead 
to the creation, analysis, and publishing of said data for metadata capture, and when 
major changes occur to data so that we can build appropriate provenance tracking 
measures. Born-digital objects leave no physical residue that can be referenced later; 
too often, useful information is discarded before being properly assessed for archival 
value (Day, 1999).

Background
Research reported here is affiliated with the Center for Embedded Networked 

Sensing (CENS)1, a National Science Foundation Science and Technology Center 
established in 2002. CENS supports multi-disciplinary collaborations among faculty, 
students, and staff of five partner universities across disciplines ranging from computer 
science to biology. The Center’s goals are to develop and implement wireless sensing 
systems, and to apply this technology to address questions in four scientific areas: 
habitat ecology, marine microbiology, environmental contaminant transport, and 
seismology. Application of this technology already has been shown to reveal patterns 
and phenomena that were not previously observable.

Our data management research group has been part of CENS since its inception. 
While few scientific data were generated in the early years, we were planting the seeds 
of archival practice and preservation. Once data captured by CENS’ instrumentation 
became relevant to our application scientists, we took a more active role in building 
the necessary infrastructure for long-term access. Our initial research focused on 
defining what were “data” in this environment. Now that we understand better what 
are data to whom and when, we are addressing larger data life cycle issues. 

Deployment Scenario
An example of a CENS embedded networked sensing system deployment will 

provide context for the life cycle of CENS data.

CENS researchers utilize several deployment models. Along with static 
deployments typical of observatories such as GEON2 or NEON3, CENS researchers 
regularly go on short-term deployments, or “campaigns,” where sensing systems are 
deployed in the field for a few days. Among the benefits of this approach for 
exploratory research are: compatibility with the data collection practices of application 
science researchers (most are in biology or environmental sciences); the ability to 
field-test delicate and expensive experimental equipment; and the opportunity for 
science and engineering researchers to work together in the field to trouble-shoot 
technical problems and improve the overall quality of data.

An example of a CENS deployment is the study of biological processes associated 
with harmful algal blooms. In designing a deployment, the application science 
researchers (biologists in this example) identify a viable research site, in this case a 
lake known for summer blooms. Available background information about the lake 
1 Center for Embedded Networked Sensing (CENS) http://research.cens.ucla.edu/ 
2 Geosciences Network (GEON) http://www.geongrid.org/ 
3 National Ecological Observatory Network (NEON) http://www.neoninc.org/ 
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includes peak months for algae, a topology of the lakebed, local species of phyto- and 
zooplankton, and nutrient presence and concentration. The engineering researchers 
determine which equipment are most appropriate for capturing the data desired by the 
scientists.

Prior to going into the field, the team calibrates equipment in the laboratory based 
on knowledge of the types of organisms likely to be present in the water. Because of 
the natural variation of water organisms, calibrations will be augmented with physical 
water samples taken adjacent to sensors. A “wet lab” will be set up on site to process 
water samples. Once on site, the team deploys sensors in the lake using static buoys 
that house a power source, data logger, and wireless communication system. They 
document GPS coordinates of each buoy, times of placement, and serial numbers of 
each sensor in a laboratory notebook.

The data collection process is a combination of pre-planned activities and in-field 
decisions. Because the aquatic phenomena of interest vary on diel or 24-hour cycle, 
scientists take data for a full 24 hours. Once sensors begin to report data, researchers 
begin observing interesting phenomena, such as that the water flows more quickly at 
one end of the lake, and that the water is greener and at a higher temperature where a 
rock slows the flow. Based on such information, the team may change the data 
collection strategy, altering plans for sensor placement or for hand collection of water 
samples. At the end of a deployment, equipment is removed and returned to the lab. 
Water samples are processed for organism identification and concentration and for 
nutrient concentrations. Sensor data are compared to the in-lab and in-field calibration 
curves and to other trusted data sources. Only then are water sample data and sensor 
data integrated for analysis. After data analysis is complete and papers are published, 
numerical data are burned to DVDs and shelved with other data. Any remaining water 
samples are put in cold storage.

Figure 1. CENS data variation organized by collection method and use.
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CENS Data, Users, and Uses
As shown above in Figure 1, data from CENS’ dynamic field deployments can be 

grouped into four types. Sensors are used to collect data on:
1.the scientific application;
2.the performance of the sensors themselves;
3.proprioceptive data to use in navigation for robotic sensor technology;
4.hand-collected data for the scientific application, such as the water samples 
described above in the deployment scenario. 

Each of the four data types has multiple variables; these are examples from a 
longer list. Some data serve only one purpose, but most serve multiple purposes as 
illustrated by the intersecting sets in Figure 1. When we asked our subjects about 
capturing, using, sharing, and preserving data from deployments, and about 
capabilities they desired in archives to support their data, the primary (if not sole) 
interest was in the scientific data. Computer science and engineering researchers were 
as concerned about the quality and accessibility of scientific data as were the domain 
scientists. Conversely, the computer science and engineering researchers took little 
interest in maintaining access to sensor performance data or proprioceptive data that 
are essential to their own research. These forms of data appear to serve transient 
purposes for the latter researchers, with minimal archival value. However they may be 
essential for reuse of the application science data by others.

Methods
Our research questions address the initial stages of the data life cycle in which 

data are captured and subsequent stages in which the data are cleaned, analyzed, 
published, curated, and made accessible. The interview questions were divided into 
four categories: data characteristics, data sharing, data policy, and data architecture. 
This paper reports our results on our understanding of the scientific data life cycle 
based on responses to questions about data characteristics and architecture. Findings 
on other questions are reported elsewhere (Borgman, Wallis, & Enyedy, 2006, in 
press; Borgman, Wallis, Mayernik, & Pepe, 2007; Mayernik, Wallis, & Borgman, in 
press; Pepe, Borgman, Wallis, & Mayernik, 2007; Wallis et al, in press).

The findings reported here are drawn from an interview study of five 
environmental science projects and subsequent field observations. For each project, we 
interviewed a complementary set of science and technology participants, including 
faculty, post-doctoral fellows, graduate students, and research staff. CENS is 
comprised of about 70 faculty and other researchers, about 120 student researchers, 
and some full-time research staff who are affiliated with the five participating 
universities. Our pilot ethnographic study consisted of in-depth interviews with two 
participants, each two to three hours over two to three sessions. The intensive 
interview study consisted of 22 participants working on the five ecology projects. 
Interviews were 45 minutes to two hours in length, averaging roughly 60 minutes.

The interviews were audio-taped, transcribed, and complemented by the 
interviewers’ memos on topics and themes. Transcription totaled 312 pages. Analysis 
proceeded to identify emergent themes. We developed a full coding process using 
NVivo 2, which was used to test and refine themes in coding of subsequent interviews. 
This study used the methods of grounded theory (Glaser & Strauss, 1967) to identify 
themes and to test them in the full corpus of interview transcripts and notes.

The International Journal of Digital Curation
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User scenarios for how data were captured, processed, and published were 
extracted from the interview data. These scenarios were used to construct a data flow 
model, including the data sources, level of derivation, and any computer programs or 
scripts that were used to transform the data. From the combined flows we were able to 
extract common procedures and generalize them across our participants. We then 
verified this life cycle model during our interactions with researchers after the 
interviews, or against observations of their data collection efforts.

Results
We have identified nine stages that appear to be common to the CENS 

deployments studied, the researchers, and to the resulting data, as shown in Figure 2 
below. The order of the steps is not absolute, as some stages are iterative while others 
may occur in parallel. Actions taken at each stage of the life cycle influence how the 
resulting data can be interpreted, hence it is important that these stages be documented 
and associated with the resulting dataset.

Stage 1: Experimental Design
The beginning of the data life cycle is the design of new experiments. CENS 

researchers design new experiments by reusing data from prior research. Application 
science researchers identify interesting locations, time periods, and variables for data 
collection. Technology researchers examine performance data from previous 
experiments to identify new ways of testing the equipment. Researchers tend to use 
their own data for these purposes, with the intention of comparing or combining new 
data with prior data. Data from other sources, such as monitoring data from 
government agencies, is occasionally used.

The back-and-forth between application science and technology researchers has 
evolved over the five years of CENS. The early years were driven by technology 
researchers asking application scientists, “We have this equipment; can you do any 
science with it?” Now this interaction is driven by application researchers asking, “I 
need to do this science; what equipment can you give me?”  Compromises are reached 
that give both parties something to test. This stage includes selecting sensors that will 
satisfy the needs of both parties, as each sensor collects specific parameters (e.g., 
temperature, salinity, nitrate concentration, network connectivity, etc.).

Figure 2. Life cycle of CENS data.
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Stage 2: Calibration and Ground-Truthing
Before sensors are deployed, they are calibrated to known solutions or values to 

identify the offset between the actual measurement and the expected measurement. For 
our application science researchers, “calibration” refers to establishing offsets in the 
lab. As equipment is being deployed in the field, it may need to be “ground-truthed” or 
calibrated again to make sure that the offsets have not changed during the trip from the 
lab to the field site (Wallis et al, in press).

Calibration information can be described as a function with a slope and y-
intercept. A certain amount of calibration drift occurs when equipment is deployed, 
which is described as another function using the calibration information from before 
and after deployment. Researchers usually assume that this drift function is either 
linear or logarithmic in nature. It is impossible to add intermediate calibration points, 
as removing equipment once it has been deployed can disturb the environment and 
phenomena being measured, and create gaps in the data stream. To compensate, 
physical samples are collected to verify data captured from the sensors.

Robotic equipment that houses sensing equipment also requires calibration, as 
robots must literally get their bearings. Robots that run along a tether or a static line 
must first establish the horizontal length of the tether, adjust for vertical sag, and 
program in depth parameters for how far the sensing payload may drop before it will 
hit the ground. Similarly, untethered robots must learn boundary and obstacle 
locations, lest they run aground or into some other sensing equipment.

Application science and technology researchers each have stakes in how 
equipment is calibrated and ground-truthed, although groups may have different 
tolerances. Earlier in CENS, technology researchers were more concerned with 
capturing any data than with capturing good data. Visualization tools now enable 
application scientists to identify data that are problematic from an ecological 
standpoint. Data quality concerns are now more balanced between application science 
and technology partners.

Stage 3: Data Capture
Once sensors have been deployed successfully in the field, researchers begin to 

collect observations of physical phenomena. Some sensor measurements are direct 
(e.g., temperature, wind speed) and others are indirect (e.g., measure of fluorescence as 
an indicator of chlorophyll activity). Some data are collected less for scientific value 
than for adjusting sensor readings or placing readings in appropriate contexts. These 
include sensor, network, and system health data, which might indicate the reliability of 
each measure; and proprioceptive data that indicate changes in location for a sensor 
through time; and other variables such as temperature or turbidity that may affect 
sensor performance. Application science researchers collect additional observations by 
traditional field research methods. Physical samples, such as water or soil samples are 
collected and processed on site to minimize contamination or organism breakdown. 
Some of these samples will be used later to double-check instrument calibrations.

Both technology and application science researchers sample observations in real-
time to check for data integrity, sensor reliability, variability, and other factors. 
Because the data have not yet been cleaned using the calibration information, 
researchers cannot compare readings of different sensors. Instead they look for 
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relational trends in the data such as common rates of change. Application science 
researchers will check sensing data against their models of how the ecological system 
should work, just as the technology researchers will check against their model of how 
the technology should work. If results differ from expectations, equipment setups will 
be investigated or experiments will be adjusted. Sensors may be moved from other 
locations to increase the sensor density, thus gaining a higher resolution of data about a 
phenomenon of interest. Some equipment will be restarted, repaired, or removed if not 
behaving adequately. This feedback loop continues until the end of the deployment. 
Careful records must be kept of where sensors were placed, and when, where, and why 
they were moved, if the data are to be interpreted adequately later.

Because technology used by CENS researchers is highly experimental, rather than 
hardened, off-the-shelf equipment, it is imperative that technology researchers 
participate in data collection. Researchers involved in equipment development are 
better able to debug problems in the field. In some cases the technology is so nascent 
that only the technology researchers know how to deploy it. While the emphasis may 
be on the collection of scientific data, the experiments run within the context of CENS 
operations are as much technological experiments as they are scientific ones.

Stage 4: Cleaning Data
After data have been captured, calibration and ground-truthing information need 

to be applied to the data to normalize any calibration offsets from the sensing 
equipment. Technology researchers mainly perform this task, as they are the most 
familiar with handling the data in the extremely raw form that streams from the 
sensors.

Outliers must be identified and flagged or removed. This process can be 
contentious, as “sensor artifacts” are often introduced into the data. Some faults have 
characteristic signatures, such as the “stuck-at fault,” where a sensor will get hung up 
on a value and continue to read the same value until it is “un-stuck”. Other faults are 
not so easy to identify, and lead to debate between application and technology partners 
about whether the data reflect a true phenomenon or are merely a sensor fault. CENS 
technology researchers are developing methods to improve data integrity by 
identifying and correcting such errors, but these methods have not yet been 
implemented widely.

Future integration of data from multiple sensors relies heavily on the ability to 
synchronize timestamps. Sensor clocks often drift and power interruptions or other 
faults can cause equipment to reboot and reset timestamps. The timestamp 
synchronization is performed using scripts and is at best an imperfect process. 
Technology researchers usually perform these tasks because of their familiarity with 
raw sensor data and writing transfer scripts.

This stage in the data life cycle significantly affects the future interpretation of the 
data. Mistakes in data cleaning may undermine later conclusions. Application science 
researchers must allow and trust the technology researchers to perform cleaning tasks 
that would otherwise fall to scientific partners. Discomfort can arise because 
technology researchers have a significantly different set of practices to establish data 
validity and reliability. Several application scientists interviewed were unsure about 
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how well these tasks are performed in comparison to their own well-established set of 
practices for data verification and validation. Even when unsure about the specifics of 
their partners’ practices, they expressed confidence in their research partners, however.

Stage 5: Deriving Numerical Data
Few of the observations and samples collected in the field can be interpreted 

without derivation into more meaningful data points. Researchers using nascent 
sensing equipment typically collect data at a very high frequency, using a deliberate 
over-sampling technique to minimize the contribution of equipment errors. Data 
typically must be averaged into composite points before they can be used in analysis. 
Data from those sensors that capture indirect measures, using one variable as an 
indicator for another, need to be processed through models that express the 
relationship between the sensed variable and the indirect variable. Similarly, data from 
sensors that are affected by external variables, such as temperature, need to be adjusted 
accordingly.

Physical samples such as water or soil core samples need to be processed by 
application scientists. Water or soil samples may yield useful data only after being 
separated in a centrifuge and then cultured in the lab for hours or days. To measure 
biomass, samples are counted by hand using grids and microscopes or incinerated in a 
calorimeter to yield a volume number.

Stage 6: Integrating Data from Multiple Sources
The CENS motto is “the network is the sensor.” Relationships among 

observations from individual sensors are the real value from embedded networked 
sensors, not the individual observations. Researchers are looking for trends over time 
and across spatial locations. They want to know what happened when and where, in 
combination with what other events, and what preceded and followed interesting 
events. Datasets each given deployment are integrated by multiple researchers, for 
multiple reasons, and in multiple combinations. Application science and technology 
researchers each integrate the deployment data with respect to their own hypotheses 
and models.

Integration of sensor data depends on the accuracy of records about changes in 
sensor placement during the deployment. Sensor data must be integrated with hand-
collected sample data. Water samples might be hand-collected four times in 24 hours, 
whereas water sensors may capture four data points per minute, resulting in 
incommensurate scales. Digitization and integration of hand-recorded data in field 
notebooks is a time-consuming task that does not fit within the current workflow of 
data interpretation.

Stage 7: Data Analysis
Data verification occurs throughout the data life cycle, and especially during the 

calibration and capture stages. Data analysis occurs after data are cleaned, derived, and 
integrated. Researchers use statistical, modeling, and visualization tools that vary by 
research specialty and individual preference. They test and generate hypotheses and 
draw conclusions about data obtained from the deployments.

The International Journal of Digital Curation
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Technology researchers combine scientific, proprioceptive, and network, system, 
and sensor health data to evaluate the performance of their technologies. Application 
scientists focus on understanding biological or chemical phenomena. Therefore, 
measures of biological or chemical behaviors, both sensor data and hand-collected 
data, are key to supporting or negating their hypotheses. Other sensor-collected 
parameters, such as temperature and humidity, are also important for background 
context. Proprioceptive and network/system/sensor health data are peripheral to 
science hypotheses, but testify to the trustworthiness of the instrumentation.

Stage 8: Publication
Data collected during embedded network sensor deployments culminate in 

scholarly publications such as journal articles, conference papers, posters, and 
technical reports. Publishable products vary between the application science and 
technology communities. For robotics researchers, the navigation algorithm might be 
the product. For others it might be the system or the program or the piece of 
equipment. For technology researchers, scientific data help to interpret and evaluate 
the functioning of their product, but play only a minimal role in publications. For 
application science researchers, the product is the tested hypothesis or the proven 
theory.

Publications serve as records of the methods used to capture, calibrate, clean, 
derive, integrate, and analyze the data, although rarely is enough detail provided to 
replicate the study. We did not find a one-to-one mapping between deployments and 
publications. One deployment may yield multiple papers, and one paper may draw on 
data from multiple deployments. Rarely are the data themselves published except as 
tables and figures. Some CENS researchers post their data on their team website or the 
CENS website after the publication appears; some will make data available on request.

Stage 9: Storage and Preservation
Few, if any, of the CENS researchers interviewed had data preservation strategies 

commensurate with those of the archival community. It is more accurate to say that 
they back up their data. Some files remain on laboratory servers and may or may not 
be accessible to others outside the team. Some data are being contributed to a new 
CENS data repository, SensorBase.org. Scripts, programs, and systems are treated 
similarly to the data, languishing in folder structures and often lacking the 
documentation necessary to identify, access, or reuse them. Volatile hand-collected 
samples are either stored in refrigerator units until researchers run out of room, or are 
immediately discarded.

Unfortunately this stage of the data life cycle belies the lack of emphasis on 
proper archival practices on the part of researchers. That said, the data that researchers 
use most when they initiate research is their own data and typically the most recently 
collected. Only those application science researchers who compile multi-year datasets 
from single locations have established archival practices for maintaining their data. 
Previously these researchers compiled paper copies of data. Newer data from these 
longitudinal studies are kept in databases and backed up on CDs and DVDs.
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Discussion and Conclusions
The success of eScience depends upon successful collaboration between 

application scientists and their partners in computer science and engineering. Data 
resulting from such collaborations are expected to be extremely valuable for reuse by 
others. However, the value of data for reuse depends upon the quality of those data, 
which in turn depends on the ability to interpret the origins, provenance, and context of 
the data. Surprisingly little is known about how data arises from eScience 
collaborations. Our case study of ecological research in the Center for Embedded 
Networked Sensing sheds light on the life cycle of eScience data; including how they 
are handled and by whom at each stage. Evidence from our interview study and field 
research yields a nine-stage life cycle for these data.

Several findings are of particular import for data curation. One is the cumulative 
effect of decisions made at each stage of the life cycle. Decisions made in the 
experimental design stage determine what data exist for analysis. Calibration decisions 
are essential to interpreting the data. Calibration is notoriously difficult, as sensor 
measurements drift, and experimental sensors are balky in field conditions in 
unpredictable ways. The effect of calibration decisions may be magnified in the data 
cleaning process (which is one reason that researchers are attempting to push these 
decisions further upstream). A spike in data may be an interesting phenomenon or it 
may be an electrical error. Decisions about keeping or removing outliers affect later 
analysis. As the data are reduced to numerical values and as those values are 
integrated, the reliability and validity of each data stream may be obscured. Thus the 
more that can be known about decisions made at each stage, the more likely that others 
can interpret data in the future. Documenting these detailed decisions is difficult, of 
course. We are seeking ways to capture as many of them automatically as possible.

Another finding of interest to data archivists is the balance of decision making 
between scientific and technology research partners. In traditional field research, 
biologists and ecologists are accustomed to being in relatively complete control of 
their data collection methods and their data. In these partnering conditions, they must 
depend upon decisions made by their computer science and engineering partners about 
what data can be collected, and about the reliability of those data. Many computer 
science and engineering researchers are accustomed to using artificial datasets to build 
their models and test their equipment. Often they see having “real data” from their 
scientific partners as an advantage, although the reality of these data also introduces 
uncertainty into their own metrics.

Thirdly, the engineering data may be essential to later interpretation, at least for 
some uses. Engineering research practice is much less oriented toward data retention or 
sharing than is biology research practice in this community. How much of the 
engineering metric data need to be preserved for use in interpreting the scientific data 
is an open question.

CENS provides a rare opportunity for long-term, in-depth studies of the 
emergence of eScience practices in scholarly research (Borgman, 2007). Our system 
development efforts focus on instantiating the value chain of these data by linking the 
datasets directly with the documentation of associated field deployments and 
publications (Pepe et al., 2007). Other work in progress is comparisons between CENS 
and other eScience collaborations. Our future research will continue to explore and 
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refine the data life cycle identified here, and to build systems to support it. At present, 
much of the sensing technology is experimental, but commercial off-the-shelf sensors 
are also in use. Research questions about data provenance will evolve as the 
technology stabilizes and the scientific research questions broaden.
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