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Abstract

Monitoring Particulate Matter with Commodity Hardware

by

David Holstius

Doctor of Philosophy in Environmental Health Sciences

University of California, Berkeley

Professor Kirk R. Smith, Co-chair

Associate Professor Edmund Seto, Co-chair

Health effects attributed to outdoor fine particulate matter (PM2.5) rank it among the risk
factors with the highest health burdens in the world, annually accounting for over 3.2 mil-
lion premature deaths and over 76 million lost disability-adjusted life years. Existing PM2.5

monitoring infrastructure cannot, however, be used to resolve variations in ambient PM2.5 con-
centrations with adequate spatial and temporal density, or with adequate coverage of human
time-activity patterns, such that the needs of modern exposure science and control can be met.
Small, inexpensive, and portable devices, relying on newly available off-the-shelf sensors, may
facilitate the creation of PM2.5 datasets with improved resolution and coverage, especially if
many such devices can be deployed concurrently with low system cost.

Datasets generated with such technology could be used to overcome many important
problems associated with exposure misclassification in air pollution epidemiology. Chapter 2
presents an epidemiological study of PM2.5 that used data from ambient monitoring stations
in the Los Angeles basin to observe a decrease of 6.1g (95% CI: 3.5, 8.7) in population mean
birthweight following in utero exposure to the Southern California wildfires of 2003, but was
otherwise limited by the sparsity of the empirical basis for exposure assessment. Chapter 3
demonstrates technical potential for remedying PM2.5 monitoring deficiencies, beginning with
the generation of low-cost yet useful estimates of hourly and daily PM2.5 concentrations at a
regulatory monitoring site. The context (an urban neighborhood proximate to a major goods-
movement corridor) and the method (an off-the-shelf sensor costing approximately USD $10,
combined with other low-cost, open-source, readily available hardware) were selected to have
special significance among researchers and practitioners affiliated with contemporary commu-
nities of practice in public health and citizen science. As operationalized by correlation with
1h data from a Federal Equivalent Method (FEM) β-attenuation data, prototype instruments
performed as well as commercially available equipment costing considerably more, and as well
as another reference instrument under similar conditions at the same timescale (R2 ≈ 0.6).
Correlations were stronger when 24 h integrating times were used instead (R2 = 0.72).
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Chapter 4 replicates and extends the results of Chapter 3, showing that similar calibrations
may be reasonably exchangeable between near-roadway and background monitoring sites.
Chapter 4 also employs triplicate sensors to obtain data consistent with near-field (<50 m)
observations of plumes from a major highway (I-880). At 1 minute timescales, maximum PM2.5

concentrations on the order of 100µgm−3 to 200µgm−3 were observed, commensurate with
the magnitude of plumes from wildfires on longer timescales, as well as the magnitude of
plumes that might be expected near other major highways on the same timescale. Finally,
Chapter 4 quantifies variance among calibration parameters for a large sample of the sensors,
as well as the error associated with the remote transfer of calibrations between two sufficiently
large sets (± 10% for n = 12). These findings suggest that datasets generated with similar
sensors could also improve upstream scientific understandings of fluxes resulting from indoor
and outdoor emissions, atmospheric transformations, and transport, and may also facilitate
timely and empirical verification of interventions to reduce emissions and exposures, in many
important contexts (e.g., the provision of improved cookstoves; congestion pricing; mitigation
policies attached to infill development; etc.). They also demonstrate that calibrations against
continuous reference monitoring equipment could be remotely transferred, within practical
tolerances, to reasonably sized and adequately resourced participatory monitoring campaigns,
with minimal risk of disruption to existing monitoring infrastructure (i.e., established monitor-
ing sites). Given a collaborator with a short window of access to a reference monitoring site,
this would overcome a nominally important barrier associated with non-gravimetric, in-situ
calibration of continuous PM2.5 monitors. Progressive and disruptive prospects linked to a pro-
liferation of comparable sensing technologies based on commodity hardware are discussed in
Chapter 5.
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Chapter 1

Introduction

1.1 Background

Health effects attributed to outdoor fine particulate matter (PM2.5) rank it among the risk
factors with the highest health burdens in the world, annually accounting for over 3.2 million
premature deaths and over 76 million lost disability-adjusted life years (Brauer et al., 2012;
Lim et al., 2012). Existing PM2.5 monitoring infrastructure cannot, however, be used to resolve
variations in ambient PM2.5 concentrations with adequate spatial and temporal density, or with
adequate coverage of human time-activity patterns, such that the needs of modern exposure
science and control can be met (McKone, Ryan, and Özkaynak, 2009; National Research Council,
2012). In studies of exposures and health effects, the resulting exposure misclassification may
attenuate or bias estimates of health effect relationships, and may also mask or prevent the
correct identification of non-PM related pathways plausibly backed by other lines of research
(Zou et al., 2009; Health Effects Institute, 2010; Baxter et al., 2013; Özkaynak et al., 2013).
Coarsely resolved monitoring data also hinders upstream scientific understandings of fluxes
resulting from indoor and outdoor emissions, atmospheric transformations, and transport;
downstream, it inhibits timely and empirical verification of interventions to reduce emissions
and exposures (e.g., the provision of improved cookstoves; congestion pricing; mitigation
policies attached to infill development; etc.).

In the absence of adequate empirical measurements, epidemiological studies focusing on
urban-scale datasets have relied upon models to downscale or interpolate available data from
satellites, regulatory monitors, land use databases, and emissions inventories (Brauer et al.,
2012; Jerrett et al., 2005; Özkaynak et al., 2013; Health Effects Institute, 2010). Epidemiolo-
gists have argued that, in principle, increased fixed-site monitoring could improve the coverage
and quality of ambient PM2.5 datasets, but that the expansion of regulatory networks with
current technology is hindered by resource constraints, as conventional techniques require
costly equipment (for an overview, see Wilson et al., 2002). More targeted exposure assess-
ments relying on labor-intensive or capital-intensive measurement techniques, such as those
that might be conducted within the purview of a cohort study, are forced to trade off between
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sampling designs that sacrifice precision in different ways (see McCracken et al., 2009). Some
community-engaged participatory research projects have attempted to expand local monitoring
coverages by deploying their own fixed-site monitors (Brugge et al., 2010; Hedges, 2002; Loh
et al., 2002) or surveying intra-urban variations in PM2.5 using portable nephelometers (Kinney
et al., 2000; Pastor Jr. Morello-Frosch, and Sadd, 2010). Based on these overlapping arguments
and activities, it seems reasonable to suppose that small, inexpensive, and portable devices,
relying on newly available off-the-shelf sensors, might improve the capacity of these actors to
create, and perhaps to publish or share, authoritative PM2.5 datasets with improved resolution
and coverage—especially if many such devices could be deployed concurrently with low system
cost (Snyder et al., 2013).

Thusly motivated, previous studies of lower-cost aerosol measurement techniques have
used observational and experimental methods to characterize instruments incorporating repur-
posed smoke-detector components (Chowdhury et al., 2007; Edwards et al., 2006; Litton et al.,
2004) and consumer-oriented, laser-based particle counters (Northcross et al., 2013; Smith,
2011). Previous studies have also characterized short-term responses of relatively inexpensive
optical instruments, both custom-built and commercially available, to particle-generating ac-
tivities in indoor environments (Budde, Busse, and Beigl, 2012; Nafis, 2012; Olivares, Longley,
and Coulson, 2012). A larger body of scientific work has compared commercially available
nephelometers, particle counters, and other light-scattering instruments to reference methods
(Burkart et al., 2010; Watson et al., 1998; Wilson et al., 2002). A peripheral subset has focused
on “citizen scientists” constructing and using their own low-cost air pollution instrumentation
(Demuth et al., 2013; Smith and Clark, 2013), as well as efforts to support this kind of inno-
vation and to integrate it with established pollutant monitoring infrastructures (CITI-SENSE,
2012; US EPA, 2013). Reciprocal relationships with research-engineers in atmospheric science
(Mead et al., 2013; Teige et al., 2011), networked sensor calibration (Hasenfratz, Saukh, and
Thiele, 2012; Balzano, 2007; Xiang et al., 2012) and mobile/participatory air quality sens-
ing (Aoki et al., 2009; DiSalvo et al., 2012; Dutta et al., 2009; Honicky et al., 2008; Jiang
et al., 2011; Mun et al., 2009; Nikzad et al., 2012; Paulos, Honicky, and Goodman, 2007; Wil-
lett et al., 2010) have generally reinforced visions of improved exposure science catalyzed by
technological and methodological advances in related fields.

1.2 Key contributions

The inadequacy of existing monitoring infrastructure is motivated and exemplified by Chapter
2, an epidemiological study that investigated a series of wildfires in Southern California. These
wildfires exposed large urban populations to elevated levels of PM over a timeframe of several
weeks. Although Los Angeles has one of the largest and densest urban air quality monitoring
networks in the world, from the available data and methods it was possible only to conclude
that pregnancy during the wildfires was associated with slightly reduced average birth weight
among infants exposed in utero (Holstius et al., 2012). A sensitivity analysis, in which mothers
were assigned by place of residence to the nearest PM monitoring site, did not reveal any
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differences between groups of “high” versus “low” PM exposure, given that operationaliza-
tion of exposure. Finer-grained metrics of exposure, including personal monitoring, were not
available; thus, it was not possible to construct quantitative estimates of dose-response, nor
to more specifically characterize the potentially conjoint contributions of PM exposure and
psychological stress. Although personal mobility can be an important component of exposure
variation in pregnant cohorts (Gilliland et al., 2005; Nethery et al., 2008; Woodruff et al.,
2009), it seems plausible that a more spatially and temporally dense fixed-site monitoring
network could have improved the retrospective assessment of exposure within the context of
this natural experiment, leading to more significant findings.

Chapter 3 begins to explore possibilities for the next wildfire, the next industrial release, or
the next study of the more mundane, yet much more costly, chronic PM exposures that occur
in the world today. It demonstrates the possibility of generating useful and accurate estimates
of hourly and daily PM2.5 concentrations at a regulatory monitoring site by combining a newly
available low-cost sensor with other low-cost, readily available hardware. Guided by the prior
work of Watson, Wilson, Chow and colleagues (Watson, 2002; Watson et al., 1998; Wilson et al.,
2002; Wilson et al., 2005; Wilson and Suh, 1997), who extensively analyzed and discussed
issues in the augmentation of the then-current Federal Reference Method (FRM) PM2.5 network
with continuous PM monitors, Chapter 3 concentrates first and foremost on demonstrating
a predictive relationship between (a) the output of the sensor and (b) regulatory monitoring
data that is widely relied upon in air quality regulation and epidemiology. (Given a predictive
relationship, further work is still required to establish equivalency with PM2.5 or any other
measures of concentrations or properties.) The intent of Chapter 3 is to demonstrate “proof
of concept” in a natural environment of interest, so that the findings and methodology can be
extended, critiqued, and replicated or refuted by independent researchers working with this
class of sensors. It is apparently the first published work to evaluate such a low-cost sensor
(approximately USD 10) under ambient conditions at a United States regulatory monitoring site,
and the first to calibrate it using 24h averages of PM2.5 from a reference instrument with Federal
Equivalent Method (FEM) status. As operationalized by correlation with an FEM instrument,
performance at 1 h scale was comparable to commercially available optical instruments costing
considerably more (Holstius et al., 2014).

Findings from Chapter 3 warranted further exploration of the circumstances under which
this class of aerosol sensors could profitably be deployed to generate improved PM2.5 datasets.
Chapter 4 demonstrates that, in addition to being viable components of instruments for ob-
serving variations in “background” aerosol concentrations at 1h to 24 h scale at an existing
monitoring site, the same sensors can also be used to observe plumes at a near-roadway site,
at scales of 1 min to 10min and 100µgm−3 to 200µgm−3. This strengthens the case that they
could be used to observe larger gradients in concentrations over longer durations. Still, further
work is required to characterize their upper limits of detection, as well as their sensitivity to
aerosols generated by other sources, such as biomass combustion. Collaborative possibilities
for this work are naturally of interest. Chapter 4 shows that the sensors in question have an
amenability to simple and stable cross-calibrations that could facilitate continuous calibration
against reference standards without the risk of interfering with regulatory monitoring, support-



CHAPTER 1. INTRODUCTION 4

ing prospects for broader participation in collaborative calibration and monitoring campaigns.
Independent confirmation or refutation of these findings, and better characterization of

the limitations of these sensors, will be required. However, given the accelerating speed of
sensor research and development, it is more important to consider the demonstrations supplied
in this thesis as contributions toward frameworks for rapid screening and evaluation of the
next generation of aerosol sensors, rather than attempts to fully characterize a specific sensor.
The development of new sensors is likely to outpace present capacity for resource-intensive,
laboratory-based calibration practices. Chapter 5 concludes this thesis with remarks on perti-
nent trends, and their relevance for exposure science and control in the near term, as well as a
more sociotechnically oriented appraisal of relevant conditions and factors.
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Chapter 2

Birth weight following pregnancy during
the 2003 Southern California wildfires

2.1 Background

In late October 2003, a series of wildfires burned > 750,000 acres of forest in Southern Cali-
fornia (Blackwell and Tuttle, 2003). Strong Santa Ana winds carried the resulting plumes of
smoke toward Los Angeles and Orange counties, where a large urban population was exposed
to elevated concentrations of air pollutants from the fires (Phuleria, Fine, and Zhu, 2005). An
in-depth exposure assessment study estimated the population-weighted PM10 (PM with aerody-
namic diameter dp ≤ 10µm) and PM2.5 (PM with dp ≤ 2.5µm) concentrations, respectively, at
190 and 90µg m−3 under heavy smoke conditions, and 125 and 75µg m−3 under light smoke
conditions, compared with baseline concentrations of 40 and 20µgm−3 in the same region
(Wu, Winer, and Delfino, 2006).

Using that exposure assessment, a study (Delfino et al., 2009) of cardiorespiratory health
effects estimated that elevated PM2.5 levels led to a 34 % increase in hospital admissions for
respiratory conditions 1–2 days later, with the largest associations observed among the very
young (0–4 years, 8.3% per 10µgm−3 increase in PM2.5) and very old (65–99 years, 10.1%
per 10µg m−3 increase in PM2.5); limited evidence supported a small increase in admissions for
cardiovascular conditions as well (Delfino et al., 2009). A separate study found that parental
recall of the smell of smoke during these fires was associated with increased medication usage,
eye and respiratory symptoms, and physician visits among their children (Künzli et al., 2006).

Particulate matter (PM) is possibly the most important health-related component of wildfire
events (Naeher et al., 2007). Wildfire-generated PM may be more toxic, on an equal-mass basis,
than ambient PM collected in the same region during non-fire periods (Wegesser, Pinkerton,
and Last, 2009), potentially due to the role of atmospheric photochemistry resulting in the
formation of secondary pollutants (Wegesser et al., 2010). Wildfires have been shown to
enhance PM2.5 levels in many parts of the western United States (Jaffe et al., 2008), and recent
studies have linked smoke exposure from wildfire events with spikes in morbidity in Canada
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(Henderson et al., 2011; Moore et al., 2006), Australia (Cameron et al., 2009; Chen, Verrall,
and Tong, 2006; Johnston et al., 2002; Johnston et al., 2002; Morgan et al., 2010; Tham et al.,
2009), Southeast Asia (Emmanuel, 2000; Mott et al., 2005; Sastry, 2002), Finland (Hänninen
et al., 2009) and California (Delfino et al., 2009; Künzli et al., 2006; Viswanathan et al., 2006);
for a review, see Dennekamp and Abramson (2011).

Air pollution may not be the sole mechanism through which wildfire events affect health.
For instance, wildfires threaten person and property; and news of an inherently unpredictable
force of nature in itself may induce psychosocial stress in the population (Kumagai, Carroll,
and Cohn, 2004). Although the main effect of wildfire events on birth weight is likely medi-
ated through their air pollution effects, distinguishing between these potential mechanisms is
methodologically challenging.

Objectives and study design

The objective of this study1 was to estimate the birth weight effects associated with in utero
exposure to a wildfire event. As of the time of writing, one abstract had been published con-
cerning the effects of wildfire smoke exposure on birth outcomes (Breton, Park, and Wu, 2011).
Although little is known regarding the health effects of acute maternal exposures to smoke from
wildfires, chronic maternal exposures to related hazards, including ambient particulate matter
and indoor biomass smoke, have been linked to adverse birth outcomes, including lower birth
weight. Many epidemiological studies have found associations between exposure to ambient
PM and preterm birth or birth weight; for reviews, see Bosetti et al. (2010) and Glinianaia et al.
(2004).

A recent meta-analysis of studies examining chronic maternal exposures to indoor air pol-
lution in developing countries, such as that generated by cooking or heating with solid fuels,
concluded that such exposures increase the risk of adverse pregnancy outcomes, including
percent low birth weight, stillbirth, and reduced mean birth weight (Pope et al., 2010).

The study of natural experiments can be a methodologically useful way to advance research
on air pollution and perinatal effects (Parker, Mendola, and Woodruff, 2008; Woodruff et al.,
2009). Time-series studies can reduce threats to validity posed by exposure misclassification
and confounding by variables that are associated with both ambient air pollution and perinatal
outcomes, such as social class (Parker, Mendola, and Woodruff, 2008); thus they are a useful
complement to observational studies of chronic exposures. Thus, this time-series study was
carried out to examine trimester-specific differences in mean birth weight among infants deliv-
ered to mothers residing in the South Coast Air Basin (SoCAB) before, during, and after the
Southern California wildfires of 2003.

1First published as Holstius et al. (2012).
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2.2 Methods

Study population

Birth records were obtained for infants delivered in the South Coast Air Basin (SoCAB) from 1
January 2001 through 31 December 2005 from the Non-Confidential Birth Statistical Master
File, provided by California’s Center for Health Statistics at the California Department of Health
Services (California Automated Vital Statistics System 2006, unpublished data). Preterm births
(< 37 weeks gestation), post-term births (> 42 weeks gestation), and births with a reported
birth weight < 1kg or > 6kg were excluded, yielding a total of 886,034 births for this analysis.
Gestational ages were based on the number of days since the mother’s reported last menstrual
period (LMP).
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observational studies of chronic exposures. 
With this in mind, we designed a time-series 
study to observe trimester-specific differences 
in mean birth weight among infants delivered 
to mothers residing in the South Coast Air 
Basin (SoCAB) before, during, and after the 
Southern California wildfires of 2003.

Methods
Study population. We obtained birth records 
for infants delivered in the SoCAB from 
1 January 2001 through 31 December 2005 
from the Non-Confidential Birth Statistical 
Master File, provided by California’s Center for 
Health Statistics at the California Department 
of Health Services (California Automated Vital 
Statistics System 2006, unpublished data). We 
excluded preterm births (< 37 weeks gestation), 
post-term births (> 42 weeks gestation), and 
births with a reported birth weight < 1 kg or 
> 6 kg, yielding a total of 886,034 births for 
our analysis. Gestational ages were based on 
the number of days since the mother’s reported 
last menstrual period (LMP).

The SoCAB, which forms the geographic 
basis for our study population, includes the 
entirety of Orange County as well as populous 
areas within Los Angeles, San Bernardino, and 
Riverside counties. This air basin was chosen 
as the boundary for the study on the basis 
of satellite images of the fires; it is partially 
bounded by mountains that trap air pollu-
tion in the absence of wind (Figure 1). The 
SoCAB does not contain Ventura and San 
Diego counties, which were also exposed to 
smoke during the 2003 wildfires.

Exposure assessment. On the basis of 
reports from the California Department of 
Forestry and Fire Protection (Blackwell and 
Tuttle 2003) and inspection of Moderate 
Resolution Imaging Spectroradiometer 
(MODIS) satellite imagery (NASA 2011), we 
defined the window of potential wildfire expo-
sure as 21 October–10 November 2003. Most 
births in our study population (n = 491,496) 
were delivered before 21 October 2003 and 
could not have been exposed in utero. An addi-
tional 256,094 births were assigned an LMP 
later than 10 November 2003, and were also 
classified as unexposed. All remaining births 
(n = 138,444) were classified as exposed on the 
basis of temporal overlap between the wildfire 
exposure window and gestational intervals.

Our primary analysis used this temporal 
contrast as the basis for exposure assessment. 
However, we also conducted a sensitivity 
analy sis in which we examined spatial con-
trasts based on proximity of maternal residence 
census tracts to air monitors. Tracts closer to 
monitors with average PM10 measures during 
the fires of < 40 µg/m3 were classified as low 
exposure, and tracts with average daily levels 
> 40 µg/m3 were classified as high exposure. 
This cut point split the PM10 monitors in the 

SoCAB in half, with 36% of births that ges-
tated during the fires occurring in high expo-
sure census tracts.

Covariates and primary model. We fit the 
data to a linear fixed-effects model (Equation 1) 
with birth weight (yi) as a continuous outcome 
and xij as an indicator of exposure for birth i in 
trimester j. For our primary analysis, we defined 
xi as a categorical variable with four levels: 
exposed in trimester 1; exposed in trimester 2; 
exposed in trimester 3; or unexposed (Figure 2). 
We defined the first trimester as weeks 1–16 

since LMP; the second as weeks 17–28; and the 
third as week 29 through the end of gestation. 
When the wildfire event overlapped with two 
trimesters, we assigned exposure to the trimester 
with the greater number of days of overlap. We 
controlled for maternal and birth characteristics 
(zi) associated with birth weight and included 
terms based on the date of the LMP (ti) to 
 control for seasonality and trend.

yi = β0
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+
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�  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Figure 1. Geographic extent of the SoCAB study area, outlined in yellow, overlaid on MODIS satellite image 
from 26 October 2003. Active fires were outlined in red by NASA (NASA 2011).
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Figure 2. Schematic illustrating exposure assignment. Exposure status was assigned based on the over-
lap between the wildfire event (yellow) and estimated gestational intervals (horizontal segments). For 
clarity, gestational intervals are shown ordered from top to bottom by the LMP, and only a 0.1% sample 
from 2002–2004 is shown. Dates on the x-axis correspond to the beginning of quarters used to adjust for 
seasonality.
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Fig. 2.1: Geographic extent of the SoCAB study area, outlined in yellow, overlaid on MODIS
satellite image from 26 October 2003. Active fires were outlined in red by NASA.

The SoCAB, which forms the geographic basis for the study population, includes the entirety
of Orange County as well as populous areas within Los Angeles, San Bernardino, and Riverside
counties. This air basin was chosen as the boundary for the study on the basis of satellite
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Fig. 2.2: Schematic illustrating exposure assignment. Exposure status was assigned based on
the overlap between the wildfire event (yellow) and estimated gestational intervals (horizontal
segments). For clarity, gestational intervals are shown ordered from top to bottom by the LMP,
and only a 0.1 % sample from 2002–2004 is shown. Dates on the x-axis correspond to the
beginning of quarters used to adjust for seasonality.

images of the fires; it is partially bounded by mountains that trap air pollution in the absence
of wind (Fig 2.1). The SoCAB does not contain Ventura and San Diego counties, which were
also exposed to smoke during the 2003 wildfires.

Exposure assessment

On the basis of reports from the California Department of Forestry and Fire Protection (Black-
well and Tuttle 2003) and inspection of Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite imagery, the window of potential wildfire exposure was defined as 21 Octo-
ber – 10 November 2003. Most births in the study population (n = 491,496) were delivered
before 21 October 2003 and could not have been exposed in utero. An additional 256,094
births were assigned a Last Menstrual Period (LMP) later than 10 November 2003, and were
also classified as unexposed. All remaining births (n= 138, 444) were classified as exposed on
the basis of temporal overlap between the wildfire exposure window and gestational intervals.

The primary analysis used this temporal contrast as the basis for exposure assessment.
However, a sensitivity analysis was also conducted, in which spatial contrasts were examined
based on proximity of maternal residence census tracts to air monitors. Tracts closer to monitors
with average PM10 measures during the fires of < 40µg m−3 were classified as low exposure,
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and tracts with average daily levels > 40µgm−3 were classified as high exposure. This cut
point split the PM10 monitors in the SoCAB in half, with 36 % of births that gestated during the
fires occurring in high exposure census tracts.

Covariates and primary model

Data were fit to a linear fixed-effects model (Equation 1) with birth weight (yi) as a continuous
outcome and x i j as an indicator of exposure for birth i in trimester j. For the primary analysis,
x i was defined as a categorical variable with four levels: exposed in trimester 1; exposed in
trimester 2; exposed in trimester 3; or unexposed (Fig 2.2). The first trimester was defined as
weeks 1–16 since LMP; the second as weeks 17–28; and the third as week 29 through the end
of gestation. When the wildfire event overlapped with two trimesters, exposure was assigned
to the trimester with the greater number of days of overlap. Maternal and birth characteristics
(zi) associated with birth weight, and terms based on the date of the LMP (t i), were included
as covariates to control for seasonality and trend.

yi = β0+ β1 x i1+ β2 x i2+ β3 x i3+η′zi + f (t i) + εi (2.1)

Analysis was limited by the availability of information on administrative birth records. From
among the variables included on these forms, several were selected to represent maternal
characteristics (age, educational attainment, parity, race/ethnicity) and characteristics of the
birth itself (infant’s sex, gestational age) known to have a substantial influence on birth weight.
These variables may have confounding potential, or play a role in explaining variation even in
the absence of a confounding effect. Parity of the mother was coded with three levels: first live
birth (reference), second live birth, or third or more live births. Gestational age (weeks since
LMP) was coded as 37 (reference), 38, 39, 40, 41, or 42 weeks. As a proxy for socioeconomic
status, maternal education was coded with four levels: less than a high school education;
completed high school or equivalent (reference); 1–3 years of postsecondary education; and ≥
4 years of postsecondary education. Maternal race/ethnicity was coded as non-Hispanic white
(reference); Hispanic of any race; non-Hispanic black; non-Hispanic Asian; and unknown/
multiple/other. Fetal sex was coded with male as the referent category.

To account for secular trend and seasonal effects, f (t i) was parameterized as a combination
of a linear secular trend based on the date of the last menstrual period for birth i (t i) and
categorical indicator terms for the season of birth (in quartiles): Q1 (January–March, reference),
Q2 (April–June), Q3 (July–September), or Q4 (October–December):

f (t i) = βt rend(t i) + βQ2IQ2+ βQ3IQ3+ βQ4IQ4 (2.2)

Sensitivity analyses

In addition to the primary analyses, three sensitivity analyses were conducted. In the first,
the population was dichotomized according to whether the maternal residence census tract



CHAPTER 2. REDUCED BIRTH WEIGHT FOLLOWING WILDFIRE 10

was closer to a PM10 monitor active during the fire period with an average PM10 measure >
40µgm−3, or closer to a PM10 monitor with a lower average PM10 during the fire period. In
the second, because of the association between season and trimester of exposure (Table 2.1,
Figure 2.2), f (t i) was instead parameterized as a smooth, periodic, sinusoidal function of time
known as the cosinor (Barnett and Dobson, 2010) (see Appendix B.1). In the third, because
accounts differ concerning the length of the wildfire event, the length of the modeled wildfire
event was reduced to peak exposure periods of 2 weeks or 1 week instead of 3 (keeping the
starting date unchanged), and exposures were reassigned accordingly.

Statistical software

R version 2.14.0 and the stats::lm() function were used for model fitting. To fit the cosinor-
based seasonal model, the season package, version 0.2–6 (R Project for Statistical Computing,
Vienna, Austria) was used.

2.3 Results

Of the 886,034 births in this analysis, 84.4% (n = 747,590) were unexposed in utero. Of
the 138,444 exposed, 28.0 % (n = 38,739) were exposed in the third trimester, 28.5% (n =
39, 435) were exposed in the second trimester, and 43.5 % (n= 60, 270) were exposed in the
first trimester (Table 2.1).

Most infants in the study were delivered to Hispanic mothers (60.5 %), followed by non-
Hispanic white (22.0%), non-Hispanic Asian or Pacific Islander (11.3 %), and non-Hispanic
black (5.9 %) mothers. Most infants were delivered to mothers 18–34 years of age (76.1%),
with 20.8 % delivered to mothers 35–50 years of age and 3.1 % delivered to mothers 15–
18 years of age. Approximately one-third of mothers had less than a high school education
(32.1 %), whereas 28.4 % had completed a high school degree or equivalent, 18.1% had 1–3
years of postsecondary education, and 21.4% had ≥ 4 years of post-secondary education.

No substantive differences were observed between the exposed and unexposed with respect
to measured covariates, except for season of birth (Table 2.1). Effect estimates for covariates
are reported in Table 2.3.

Estimated effects of wildfire exposure

Adjusted models revealed that mean birth weight was 6.1 g lower [95 % confidence interval
(CI): -8.7, -3.5] among infants exposed in utero during any trimester compared with unexposed
infants (Table 2.2). Among those exposed in the third trimester, a reduction of 7.0g (95 % CI:
-11.8, -2.2) was observed. The largest estimated effect was observed in the second trimester,
with a reduction of 9.7g (95 % CI: -14.5, -4.8). Among infants exposed in the first trimester, a
decline in mean birth weight was observed but it was not statistically significant (3.3 g; 95%
CI: -7.2, 0.6) (Table 2.2). Both unadjusted and adjusted estimates are reported in Table 2.2;
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Table 2.1: Maternal and infant characteristics (%), by wildfire event exposure status and
trimester of exposure (n= 886,034).

Trimester exposed

Unexposed First Second Third
Variable (n= 747, 590) (n= 60, 270) (n= 39,435) (n= 38,739)

Fetal sex
Male 51.0 51.0 50.7 50.9
Female 49.0 49.0 49.3 49.1

Gestational age (weeks)
37 4.8 4.7 5.0 3.9
38 10.9 10.6 11.1 9.7
39 23.0 22.6 22.9 21.9
40 29.2 29.9 29.5 29.5
41 22.6 22.6 21.9 24.1
42 9.4 9.6 9.6 10.9

Parity
1 38.1 38.7 38.8 39.5
2 31.8 31.8 31.5 31.3
3 or more 30.1 29.5 29.7 29.1

Maternal age (years)
Less than 18 3.1 3.0 3.0 3.0
18–34 76.1 75.8 76.0 76.4
35–50 20.8 21.2 21.0 20.5

Maternal education
Less than high school 32.3 31.0 31.7 31.9
Completed H.S. or equivalent 28.4 27.6 27.8 28.6
1–3 years postsecondary 18.1 18.5 17.8 17.9
≥ 4 years postsecondary 21.2 22.9 22.7 21.5

Maternal race/ethnicity
Hispanic 60.6 60.0 59.9 60.5
Non-Hispanic White 22.0 22.6 22.3 21.3
Non-Hispanic Asian 11.2 11.4 11.6 11.9
Non-Hispanic Black 5.9 5.7 5.9 6.0
Non-Hispanic other/unknown 0.3 0.3 0.3 0.3

Season
Q1 (January–March) 24.8 0.0 0.0 87.6
Q2 (April–June) 23.0 0.0 94.8 12.4
Q3 (July–September) 23.0 66.7 5.2 0.0
Q4 (October–December) 29.3 33.3 0.0 0.0
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Table 2.2: Estimated effects of wildfire event during gestation on birth weight.

Unadjusted model Adjusted model

Trimester of exposure Effect (g) 95% CI Effect (g) 95% CI

Third (≥ 29 weeks) -7.9 (-12.8, -3.1) -7.0 (-11.8, -2.2)
Second (17–28 weeks) -17.1 (-21.9, -12.3) -9.7 (-14.5, -4.8)
First (1–16 weeks) -3.9 (-7.8, 0.0) -3.3 (-7.2, 0.6)
Any trimester -8.8 (-11.5, -6.1) -6.1 (-8.7, -3.5)

subsequent discussion is restricted to the adjusted model. Sensitivity to the specification of
start and end dates for the wildfire event was assessed by specifying models with the wildfire
duration defined as 2 weeks or 1 week of peak intensity instead of 3 weeks to assess sensitivity.
Main effects were not substantively altered (data not shown).

Among births in census tracts proximal to monitors with higher average PM10 during
the wildfire event, the estimated decrement in birth weight associated with pregnancy (any
trimester) during the event was 6.6 g (95% CI: -11.0, -2.2). In tracts more proximal to moni-
tors with average PM10 levels < 40µg m−3, the estimated decrement in birth weight associated
with pregnancy during the event was 5.9g (95% CI: -9.2, -2.6). These estimates were not
discernibly different from each other (Table 2.5).

Seasonality and trend

Over the entire period, 2001–2005, there was a secular decline in mean birth weight of 6.9 g
per year (95 % CI: -7.6, -6.2) (Table 2.3). Those conceived in Q3 (July–September) had the
highest estimated mean weight at birth, 11.9g (95% CI: 9.0, 14.7) more than infants conceived
in Q1 (January–March), the referent time period. Infants conceived in Q1 weighed the least.

Using an alternate model with seasonal effects parameterized as a cosinor, the magnitude
of the seasonal effect was comparable (11.6g; 95 % CI: 7.7, 15.5), as was the relative timing
(i.e., phase) of highest birth weight, with the maximum occurring on 4 August (95% CI: 29
July, 7 August) (Table 2.4).

Goodness-of-fit and residuals

The adjusted R2 for the full model was 0.109. Residuals were plotted versus fitted values, and
a quantile probability plot was constructed to verify that the residual distribution was normal.
No heteroskedasticity of the residuals was apparent (data not shown).
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2.4 Discussion

A slight reduction in estimated mean birth weight was evident among term infants exposed
in utero to the 2003 California wildfires. The strongest estimated effect was observed for
second-trimester exposure, followed by third-trimester exposure.

Climate change scientists predict that wildfires will increase in frequency and magnitude
as global temperatures increase and rainfall patterns change (Westerling and Bryant, 2008;
Westerling et al., 2006). These increases in wildfire events are projected to add to atmospheric
pollution in the western United States under various climate change scenarios (Spracklen et al.,
2009). In California, smoke impacts are already a required consideration in the planning and
execution of preventive wildfire management activities, such as prescribed burns. For example,
forest management professionals are required to assess the likely direction of smoke plumes
and gauge their potential for impact on smoke sensitive areas (State of California 2001). Kochi
et al. (2010) make the case that optimal wildfire management policy should explicitly include
estimates of health-related and economic costs of wildfire smoke exposure.

Potential etiologic pathways

At least two categories of etiologic pathways plausibly link maternal wildfire exposure with
lower birth weight: biological (exposure to air pollution from the fires) and psychosocial (stress
caused by direct or indirect consequences of wildfires). A combination of the two is also
plausible. This study could not differentiate the contributions of these two pathways, because
daily air pollution exposures for each birth, and individual or ecological indicators of maternal
stress, could not be accurately quantified. Nevertheless, the results may reflect the potential
conjoint effect of these two pathways.

Among the biological mechanisms hypothesized as having a possible effect on intrauter-
ine growth rate are: hypoxia and/or oxidative stress resulting from exposure to woodsmoke
constituents, including carbon monoxide and PM (Siddiqui et al., 2008); alteration of maternal-
placental exchanges; endocrine disruption; and oxidative stress pathways leading to alteration
of maternal host-defense mechanisms and elevated infection risk (Slama et al., 2008). Reviews
have found limited applicable research from animal and toxicological studies to distinguish
these possible mechanisms (Ritz and Wilhelm, 2008; Slama et al., 2008; Woodruff et al.,
2009). Human studies of the acute effects of wildfire smoke exposure on firefighters have
demonstrated inflammatory responses and pulmonary function test declines (e.g. Swiston et
al., 2008). Human experiments in which healthy non-smokers were exposed to woodsmoke
under controlled conditions, with concentrations of PM2.5 > 240µg m−3 for up to 4 hr, resulted
in elevated levels of blood and urine biomarkers indicating oxidative stress and pulmonary
inflammation in the lower airways (Barregard et al., 2006; Barregard et al., 2008; Sällsten
et al., 2006). More recent experiments confirmed biomarkers of systemic and pulmonary in-
flammation in blood and lavage, but found no effect on pulmonary function or self-reported
symptoms, and minimal effects on indices of heart rate variability (Ghio et al., 2011).
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Psychosocial aspects of wildfire exposure may also contribute to adverse health outcomes,
although this is an understudied topic (Kumagai, Carroll, and Cohn, 2004). Several studies
have observed signs of fetal stress and adverse birth outcomes in the aftermath of disasters such
as earthquakes (Weissman et al., 1989), shipwrecks (Catalano and Hartig, 2001), and terrorist
attacks (Catalano et al., 2005). Plausible causes of stress in the wake of wildfires include loss of
property, shelter, money, and other basic individual resources; physical incapacitation or injury;
and disruption of sharing and support networks (Fowler, 2003).

Further analyses with methods that better characterize individual-level pollution exposures
and psychosocial stress would be required to distinguish the relative contribution of the two
pathways.

Exposure misclassification

This study captured temporal variation in wildfire exposure, but was limited in its ability to
account for spatial variation. The SoCAB includes areas that were likely not directly exposed
to heavy smoke plumes or to significant concentrations of diffused smoke. Because of its
reliance on administrative vital statistics records, this study could not assess whether mothers
resided within the air basin throughout their pregnancies, or determine how much time they
spent at their primary residence. Meteorology, time-activity patterns, and variations in the
built environment likely all contributed to variations in individual exposures, and therefore to
exposure misclassification. Because this study did not capture variations in exposure among the
exposed, it was not possible to quantify dose-response relationships. A relatively small number
of highly exposed mothers in this region may have been affected to a greater degree than the
marginal estimates would predict.

When a sensitivity analysis was conducted in an attempt to distinguish between births
located in higher versus lower PM10 tracts during the wildfire event, the decrease in birth weight
associated with gestational wildfire exposure was comparable between the two populations.
This result may be attributable to the fact that monitoring results could not adequately capture
differences in ambient PM10 levels. Improved analysis with PM10 as a continuous variable or
modeling of the PM exposure using satellite data or chemical transport models might reveal
a relationship between wildfire-related PM exposure and birth weight. Alternatively, it is also
possible that the associations with decreased birth weight were mediated not by air pollution
but by some other mechanism, such as stress.

Several factors could explain the finding of stronger associations with exposure during the
second and third trimesters, compared to exposure during the first trimester. First, there is the
issue of exposure misclassification. Given that the date of conception is less certain than the
date of delivery, it is possible that some infants were categorized as exposed in the first trimester,
when in fact their conception date occurred after the fire was over. This misclassification bias
is unlikely to affect exposure assessment in the third or second trimester, but may lead to an
underestimate of effects during the first trimester. Overestimation of the length of the wildfire
event would also have resulted in some unexposed births being misclassified as first-trimester
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exposures. However, reducing the length of the wildfire event did not substantively alter the
main effects.

Exposure could also have increased the risk of preterm birth or fetal loss. Because preterm
births and fetal losses were excluded by design, excess preterm delivery or fetal loss among
the first-trimester exposed could have differentially eliminated the most vulnerable from the
study population. When Breton, Park, and Wu (2011) examined prenatal exposure to high
PM2.5 levels from the same wildfires among eight counties in Southern California, using vital
statistics records for 2003–2004, they did not estimate a significant effect on preterm birth, but
they also did not assess fetal loss. The effects of wildfire exposure on birth weight could also
be stronger among those exposed in the second or third trimesters for reasons that are not yet
understood. Further examination of the effects of trimester-specific exposures in other studies
may help to resolve this question.

Seasonal confounding

Controlling for seasonal variation in time-series studies of air pollution can be a challenge
(Slama et al., 2008; Woodruff et al., 2009). For example, both temperature and ambient (non-
wildfire) air pollution exhibit seasonal patterns, and these patterns themselves vary geograph-
ically due to differences in regional characteristics. In this study, when quarterly indicators
were used to control for seasonality, 87.6 % of the infants exposed in the third trimester were
conceived in Q1 (January–March), and 94.8 % of those exposed in the second trimester were
conceived in Q2 (April–June) (Table 2.1, Figure 2.2). This raised the possibility of confounding
between trimester-specific wildfire exposure and conception in the first half of the year.

To address this, a sensitivity analysis was conducted, in which the seasonal component of
the model was instead parameterized as a smooth, continuous, and periodic function of time:
the cosinor (Barnett and Dobson, 2010). The general form of the cosinor is sinusoidal, like
many natural seasonal phenomena, and has only two degrees of freedom, amplitude and phase
(see Appendix B.1). As such, it is readily interpretable, and it has been widely applied to the
analysis of seasonal and circadian rhythms (Barnett and Dobson, 2010).

The cosinor-based analysis yielded effect estimates consistent with the pattern described by
the primary model, increasing confidence in the results. The peak-to-peak amplitude (11.6g,
Table 2.4) in seasonal variation was similar to the difference between the minimum and
maximum seasonal coefficients from the model using indicator terms (11.9 g, Table 2.3). The
phase was also consistent with the primary model’s seasons of lowest and highest average birth
weight [January–March (Q1) and July–September (Q3), respectively].

Other potential confounders

This study adjusted for several individual-level covariates known to be associated with birth
weight, but data on other potential confounders were not available. For example, maternal
smoking is not reported on most California birth records, and its inclusion in the study may
have changed the results. However, recent studies suggest that, although smoking during
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pregnancy has a large effect on birth weight, it does not significantly confound the association
between ambient air pollution exposure and adverse perinatal outcomes in studies of ambient
air pollution (Basu et al., 2003; Darrow, Woodruff, and Parker, 2006).

In previous research of wildfire health effects, few studies have attempted to separate the
fraction of smoke attributable to wildfire from that attributable to background air pollution
(for a review, see (Dennekamp and Abramson, 2011). In areas with significant sources of other
pollution, such as the SoCAB, apportionment can be a challenge. Observations from the nearest
monitor, which are often used to characterize background air pollution, can be missing during
a wildfire episode—sometimes due to the fire itself. To obtain ecologic or individual-level
estimates of smoke exposure, several methods can be employed: satellite imagery; dispersion
or chemical transport modeling; and/or spatiotemporal interpolation. However, each of these
has associated difficulties in implementation and interpretation, especially during a short time
window with such atypical meteorology as the Santa Ana winds that fanned the 2003 fires.

To the extent that variation in wildfire-attributable pollution and background pollution
are independent, including background pollution in the model could improve the precision of
effect estimates, but should not affect the central tendencies. On the other hand, insofar as
background concentrations are correlated in space or time with wildfire smoke concentrations
(e.g., to the extent that they are similarly determined by physical geography), including back-
ground pollution could induce confounding just as including seasonality can. Without access
to detailed measurements of both fractions, this study elected to consider a strictly temporal
contrast, reserving spatiotemporal refinements of exposure for future work.

Previous studies that have attempted to isolate the contribution of wildfire-generated smoke
have also compared health effects to a reference period (e.g. Delfino et al., 2009). However, in
any interrupted time-series study, there is always the possibility of an unmeasured confounder
with a similar temporal profile to that of the exposure. For example, if a foodborne illness
outbreak happened at the same time as the wildfires, and had a negative impact on birth
weight, it could conceivably explain part or all of the observed effect. The fact that unexposed
births were drawn from both before and after the exposure window, and from other years at
the same time of year, helps to reduce such threats to validity, but cannot eliminate them.

2.5 Conclusion

This study indicated that maternal exposure to wildfire events may result in modestly lower
infant birth weight. A small decline in birth weight is unlikely to have clinical relevance for
individual infants, and there is debate about whether a small shift in the population distribu-
tion of birth weight has broader health implications (e.g. Wilcox, 2001). Although the effects
estimated are much smaller than for many other exposures, such as smoking, the extent of
exposures during wildfire events and their increasing frequency suggests potentially important
implications for infant health and development. Finally, future research should also assess al-
ternative mechanistic pathways besides air pollution (such as stress) for understanding the
adverse health effects of wildfire events.
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Table 2.3: Binary (left) and trimester-specific (right) exposure classifications, with quarterly
terms for season.

Effect (g) 95 % CI Effect (g) 95 % CI

Exposure
All trimesters before/after (ref) (ref)
Wildfire during any trimester -6.1 (-8.7, -3.5)
Wildfire during first trimester -3.3 (-7.2, 0.6)
Wildfire during second trimester -9.7 (-14.5, -4.8)
Wildfire during third trimester -7.0 (-11.8, -2.2)

Fetal sex
Male (ref) (ref)
Female -119.0 (-120.8, -117.1) -119.0 (-120.8, -117.1)

Gestational age (weeks)
37 (ref) (ref)
38 143.3 (138.2, 148.4) 143.3 (138.2, 148.4)
39 273.3 (268.7, 278.0) 273.3 (268.7, 278.0)
40 368.9 (364.3, 373.5) 368.9 (364.3, 373.5)
41 441.9 (437.3, 446.6) 441.9 (437.3, 446.6)
42 460.0 (454.8, 465.3) 460.0 (454.8, 465.3)

Parity
1 (ref) (ref)
2 90.5 (88.3, 92.8) 90.5 (88.3, 92.8)
3 or more 131.7 (130.5, 133.0) 131.7 (130.5, 133.0)

Maternal age (years)
Less than 18 (ref) (ref)
18–34 46.4 (40.7, 52.0) 46.4 (40.7, 52.0)
35–50 71.8 (65.6, 77.9) 71.8 (65.6, 77.9)

Maternal education
Less than high school -19.3 (-21.9, -16.8) -19.3 (-21.9, -16.8)
Completed H.S. or equivalent (ref) (ref)
1–3 years postsecondary 23.6 (20.8, 26.5) 23.6 (20.8, 26.5)
≥ 4 years postsecondary 35.3 (32.3, 38.3) 35.3 (32.3, 38.3)

Maternal race/ethnicity
Hispanic -42.0 (-44.7, -39.3) -42.0 (-44.7, -39.3)
Non-Hispanic White (ref) (ref)
Non-Hispanic Black -175.9 (-179.3, -172.5) -175.9 (-179.3, -172.5)
Non-Hispanic Asian -166.8 (-171.2, -62.4) -166.8 (-171.2, -62.4)
Non-Hispanic other/unknown -31.2 (-47.9, -14.5) -31.2 (-47.9, -14.5)

Season conceived
Q1 (January–March) (ref) (ref)
Q2 (April–June) 3.4 (0.7, 6.1) 3.9 (1.0, 6.8)
Q3 (July–September) 12.5 (9.8, 15.2) 11.9 (9.0, 14.7)
Q4 (October–December) 3.1 (0.5, 5.7) 2.7 (0.0, 5.4)

Trend
Per year -6.9 (-7.6, -6.2) -6.9 (-7.6, -6.2)
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Table 2.4: Trimester-specific exposure classification, with cosinor terms for season.

Effect (g) 95% CI

Exposure
All trimesters before/after (ref)
Wildfire during first trimester -3.2 (-5.2, -1.1)
Wildfire during second trimester -11.6 (-14.0, -9.1)
Wildfire during third trimester -6.4 (-8.8, -3.9)

Fetal sex
Male (ref)
Female -118.9 (-119.9, -118.0)

Gestational age (weeks)
37 (ref)
38 143.3 (140.7, 145.9)
39 273.4 (271.0, 275.7)
40 368.9 (366.5, 371.2)
41 441.9 (439.6, 444.3)
42 460.0 (457.4, 462.7)

Parity
1 (ref)
2 90.5 (89.4, 91.7)
3 or more 131.7 (130.5, 133.0)

Maternal age (years)
Less than 18 (ref)
18–34 46.4 (43.5, 49.3)
35–50 71.8 (68.7, 74.9)

Maternal education
Less than high school -19.3 (-20.6, -18.1)
Completed H.S. or equivalent (ref)
1–3 years postsecondary 23.6 (22.2, 25.1)
≥ 4 years postsecondary 35.3 (33.8, 36.8)

Maternal race/ethnicity
Hispanic -42.0 (-43.4, -40.6)
Non-Hispanic White (ref)
Non-Hispanic Black -175.9 (-177.7, -174.2)
Non-Hispanic Asian -166.8 (-69.0, -164.6)
Non-Hispanic other/unknown -31.3 (-39.8, -22.7)

Seasonality (by date of conception)
Peak-to-peak amplitude 11.6 (7.7, 15.5)
Acrophase (date of maximum birthweight) Aug 4 (Jul 29, Aug 7)

Trend
Per year -6.8 (-7.2, -6.5)
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Table 2.5: Binary exposure classification, stratified by proximity to monitors reporting highest
PM10 during wildfire.

Effect (g) 95% CI Effect (g) 95% CI

Exposure
All trimesters before/after (ref) (ref)
Wildfire during any trimester -6.6 (-11.0, -2.2)

Fetal sex
Male (ref) (ref)
Female -118.2 (-121.3, -115.1) -119.4 (-121.7, -117.1)

Gestational age (weeks)
37 (ref) (ref)
38 149.4 (141.0, 157.9) 139.9 (133.5, 146.3)
39 273.5 (265.8, 281.3) 273.3 (267.5, 279.2)
40 367.1 (359.5, 374.7) 369.7 (363.9, 375.4)
41 436.0 (428.2, 443.8) 445.1 (439.2, 450.9)
42 448.4 (439.7, 457.0) 466.5 (460.0, 473.1)

Parity
1 (ref) (ref)
2 88.5 (84.7, 92.2) 91.8 (89.0, 94.6)
3 or more 126.6 (112.6, 130.7) 134.9 (131.8, 138.0)

Maternal age (years)
Less than 18 (ref) (ref)
18–34 48.0 (38.5, 57.5) 45.4 (38.4, 52.5)
35–50 72.1 (61.8, 82.4) 70.7 (63.1, 78.4)

Maternal education
Less than high school -14.5 (-18.7, -10.3) -22.4 (-25.6, -19.3)
Completed H.S. or equivalent (ref) (ref)
1–3 years postsecondary 25.8 (21.3, 30.3) 22.3 (18.7, 26.0)
≥ 4 years postsecondary 34.8 (30.0, 39.6) 33.8 (30.0, 37.5)

Maternal race/ethnicity
Hispanic -30.0 (-34.1, -25.9) -52.0 (-55.5, -48.4)
Non-Hispanic White (ref) (ref)
Non-Hispanic Black -167.4 (-173.3, -161.6) -184.0 (-188.2, -179.8)
Non-Hispanic Asian -159.2 (-166.8, -151.7) -175.2 (-180.6, -169.8)
Non-Hispanic other/unknown 7.1 (-19.5, 33.7) -57.7 (-79.2, -36.3)

Season conceived
Q1 (January–March) (ref) (ref)
Q2 (April–June) 3.7 (-0.8, 8.2) 3.2 (-0.2, 6.6)
Q3 (July–September) 11.7 (7.2, 16.1) 12.9 (9.5, 16.3)
Q4 (October–December) -0.8 (-5.1, 3.5) 5.2 (2.0, 8.5)

Trend
Per year -7.1 (-8.2, -6.0) -6.8 (-7.6, -5.9)
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Chapter 3

Field calibrations of a low-cost aerosol
sensor at a regulatory monitoring site in
California

3.1 Introduction

This chapter1 begins to explore possibilities for the next wildfire, the next industrial release, or
the next study of the more mundane, yet much more costly, chronic PM exposures that occur
in the world today. It demonstrates the possibility of generating useful and accurate estimates
of hourly and daily PM2.5 concentrations at a regulatory monitoring site by combining a newly
available low-cost sensor with other low-cost, readily available hardware, and by calibrating it
against the same continuous PM2.5 monitoring equipment that is widely relied upon in urban-
scale studies of PM2.5 health effects today.

Previous studies of lower-cost aerosol measurement techniques have used observational and
experimental methods to characterize instruments incorporating repurposed smoke-detector
components (Chowdhury et al., 2007; Edwards et al., 2006; Litton et al., 2004) and consumer-
oriented, laser-based particle counters (Northcross et al., 2013; Smith, 2011). Previous studies
have also characterized short-term responses of relatively inexpensive optical instruments, both
custom-built and commercially available, to particle-generating activities in indoor environ-
ments (Budde, Busse, and Beigl, 2012; Nafis, 2012; Olivares, Longley, and Coulson, 2012). A
larger body of scientific work has compared commercially available nephelometers, particle
counters, and other light-scattering instruments to reference methods (Burkart et al., 2010;
Watson et al., 1998; Wilson et al., 2002). A peripheral subset has focused on “citizen scientists”
constructing and using their own low-cost air pollution instrumentation (Demuth et al., 2013;
Smith and Clark, 2013), as well as efforts to support this kind of innovation and to integrate it
with established pollutant monitoring infrastructures (CITI-SENSE, 2012; US EPA, 2013).

Guided by the prior work of Watson, Wilson, Chow and colleagues (Watson, 2002; Watson
1First published as Holstius et al. (2014).
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Fig. 3.1: Elements and design of a PANDA prototype.

et al., 1998; Wilson et al., 2002; Wilson et al., 2005; Wilson and Suh, 1997), who exten-
sively analyzed and discussed issues in the augmentation of the then-current Federal Reference
Method (FRM) PM2.5 network with continuous PM monitors, this chapter concentrates first and
foremost on demonstrating a predictive relationship between (a) the output of the sensor and
(b) regulatory monitoring data that is widely relied upon in air quality regulation and epidemi-
ology. (Given a predictive relationship, further work is still required to establish equivalency
with PM2.5 or any other measures of concentrations or properties.) The intent is to demonstrate
“proof of concept” in a natural environment of interest, so that the findings and methodology
can be extended, critiqued, and replicated (or refuted) by independent researchers interested
in the utility of this class of sensors. It is apparently the first published work to evaluate such a
low-cost sensor (approximately USD 10) under ambient conditions at a United States regula-
tory monitoring site, and the first to calibrate it using 24 h averages of PM2.5 from a reference
instrument with Federal Equivalent Method (FEM) status.

3.2 Methods

The PANDA platform

To conduct field studies, a small, portable, and reconfigurable platform was designed around a
low-cost, off-the-shelf optical sensor: the Shinyei PPD42NS. (Shinyei Corp, 2010). Hereafter,
this platform is referred to as the PANDA (Portable and Affordable Nephelometric Data Acqui-
sition) system. Inspiration for the selection of the PPD42NS is credited to Nafis (2012), who
freely published figures on his personal website showing relationships between high-frequency
PPD42NS output and readings from a commercially available DylosTMparticle counter (see
Sec 3.2 and Appendix C.1).
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Part Description Approx cost ($USD)

Arduino Pro Mini 5V Microcontroller 10
DS3234 Real-time clock 20
SparkFun OpenLog MicroSD datalogger 25
2600 mAh battery Power system 25
Charging circuit Power system 20
OtterBox Enclosure 10

Shinyei PPD42NS Aerosol concentration 10
SHT15 Temperature and RH 40
TEMT6000 Ambient light 5
ADXL335 3-axis acceleration 25

Approx total cost: < 200 $USD

Table 3.1: Components of PANDA prototypes. Prices are indicative of June 2013 from popular
online electronics retailers, excluding taxes and shipping.

The Shinyei PPD42NS sensor has a partially enclosed chamber with a single light-emitting
diode, a plastic lens, and an optical receiver at a forward angle of approximately 45◦. A remov-
able cap makes it possible to swab residue off the lens. Air is drawn through the sensing volume
by means of a convection current established by a small 0.25 W resistor. The resulting absence
of noise from fans or pumps is an attractive feature for possible applications in household
settings, but the convective mechanism makes the airflow sensitive to orientation. The flow
rate and maximum size of lofted particles are not specified. Signals resulting from the detection
of scattered light are passed through filtering and amplification circuitry that are externally vis-
ible on the PPD42NS, resulting in 0V to 5 V pulses of approximately 10ms to 100 ms in length.
Documentation posted online by the manufacturer indicates that the 30s integrated duty cycle
of this PWM signal increases monotonically with “cigarette smoke”, with a zero intercept and
a slightly sub-linear response at higher concentrations (Shinyei Corp, 2010). Hereafter, the
uncalibrated 30s integrated duty cycle is referred to as “percent full scale” (% FS).

A microcontroller was programmed to measure % FS by sampling the PWM signal at approx-
imately 1 MHz, and to record the timestamped measurement to a microSD card with the aid
of a real-time clock. To investigate the effects of temperature, humidity, and ambient light on
the performance of the PPD42NS sensor, and to verify that instruments remained undisturbed,
upright, and unexposed to extreme conditions, auxiliary sensors for light, temperature, and rel-
ative humidity were added to the PANDAs described in this paper. All components were housed
in a 12× 9× 4 cm, 250 g polycarbonate case, along with a charging circuit and a 2600 mAh
lithium-polymer battery, which was charged continuously from a USB cable supplying 5 V
power. Manufacturer part identifiers and approximate costs for all components are listed in
Table 3.1; the physical design is shown in Fig 3.1. The components were easily procured from
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(a) Instrument chamber (b) West Oakland trailer

Fig. 3.2: Packaging and deployment.

online electronics retailers with a total materials cost under $200 (USD) per PANDA. A minimal
variant, relying on a host device (e.g., a computer or phone) for power and datalogging, could
be constructed for less than $25 (USD) in electronic parts.

Reference instruments

The primary standard used in this study was a Federal Equivalent Method (FEM) β -attenuation
monitor (BAM-1020, Met One Instruments) that the Bay Area Air Quality Management District
(AQMD) uses to monitor continuous PM2.5 mass concentrations. 1h FEM PM2.5 data reported
by this instrument were downloaded from the AQMD website. Commercially available optical
instruments were also deployed by the authors at the regulatory monitoring site: a 16-channel
particle sizer (GRIMM OPC, Model 1.108, GRIMM); a nephelometer (DustTrakTMII model 8530,
TSI) equipped with a 2.5µm impactor and programmed with the default correction factor
for ISO 12103-1 A1; and a consumer-oriented, laser-based optical particle counter (DC1700,
DylosTMCorp). These instruments are typical of those that would be used in a human exposure
study, though the number that could be deployed would be greatly constrained by the per-unit
cost. With the exception of the last, all of these instruments report data in µgm−3 after using
proprietary algorithms to filter and transform optical measurements into mass-concentration
equivalents. Only the BAM-1020 and DustTrak have a physical size cut mechanism.

Packaging and deployment

The Bay Area AQMD granted permission to co-locate equipment at their West Oakland regu-
latory monitoring site in Oakland, California. Instruments were placed in two 30 L chambers
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within 2 m of the inlet to the AQMD’s β-attenuation monitor, approximately 5m a.g.l., on the
roof of the Air District’s air-conditioned trailer in a parking lot, from 15 April 2013 to 23
April 2013 (Fig 3.2). Chambers were constructed from 30 L plastic containers, with 10cm di-
ameter holes cut into the front and rear. A 10cm 12 V DC fan flush with the rear (exhaust)
vent served to draw in ambient air. Zip-ties were used to secure five PANDAs devices, a Dylos
DC1700, a GRIMM v1.108, and a laptop inside the chamber, along with AC power supplies.
Due to space limitations, a second chamber was constructed to house a DustTrak II Aerosol
Monitor. Tubing (1/4 inch) was run from the first chamber to the DustTrak, which has an active
inlet and a 2.5µm impactor, and 120V AC power was run from an outlet on the trailer to a
surge protector in each chamber.

Study location

West Oakland has previously been the subject of targeted air pollution modeling, emission
inventories, mobile monitoring, saturation monitoring, and chemical speciation and source
apportionment studies (Fujita and Campbell, 2010; Pingkuan, 2008; Reid, 2007; Fujita et al.,
2013) as well as a locus for community-based participatory research concerning transportation-
related emissions (Gonzalez et al., 2011). The West Oakland site is close to the Port of Oakland,
the fourth largest container shipping port in the United States, and proximate to considerable
sources of truck and railroad diesel, as well as light-duty vehicle traffic on the Bay Bridge
toll plaza and the surrounding freeways. The previous monitoring, speciation, and apportion-
ment studies indicate that elemental carbon is concentrated near traffic routes, indicative of
the influence of diesel truck traffic to primary PM, while organic carbon and PM2.5 exhibit a
more uniform spatial distribution in the area, reflecting the importance of secondary aerosol
formation and nitrate and sulfate particles (Fujita and Campbell, 2010; Fujita et al., 2013).

Analytical methods

Pairwise plots of data collected from the different instruments were augmented with loess
smoothers and examined for linearity. Coefficients of determination (R2) from ordinary least-
squares (OLS) regression models fit to each pairwise dataset were used to quantify and compare
the strengths of correlations. To provide perspective on the range of R2 values expected with
1h integration times, empirical and simulated R2 values were calculated for two colocated
BAM-1020s. Root mean squared errors (RMSE) were used to assess the accuracy of linear cali-
brations. Sensitivity analyses, designed to assess the effects of temperature, relative humidity,
and ambient light on instrument performance, were also conducted.



CHAPTER 3. FIELD CALIBRATIONS OF A LOW-COST AEROSOL SENSOR 25

Figure: Top: 1-hour data from regulatory PM2.5 monitor and research-grade optical instruments. 
Bottom: three PANDAs sensors. In: Holstius D, Pillarisetti A, Smith K, Seto E. Validation of a low-
cost PM instrument at a regulatory monitoring site. Submitted to ES&T.
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Fig. 3.3: Hourly data collected between 15 April 2013 and 23 April 2013 at the West Oakland
regulatory monitoring site. Top: PM2.5 measurements reported by BAM-1020, DustTrak, and
GRIMM. Bottom: output (% full scale) from three Shinyei PPD42NS sensors (see Table S1 and
Figs. S1, S2, and S3, Supplement, for configuration details).

3.3 Results

Time series at 1 h scale

Hourly PM concentrations

Figure 3.3 shows time-series data from a range of instruments deployed during the 8 day in-
terval in April 2013. Nighttime PM2.5 concentrations were higher than daytime concentrations,
consistent with a nighttime descent of the boundary layer. Smaller ranges and means were
seen in the first 48h. Concentrations reported by the DustTrak were consistently higher than
β-attenuation measurements, which may be accounted for by the use of the default DustTrak
correction factor. (This does not affect the primary statistic of interest, R2.) Mass concentrations
were also reported by the GRIMM OPC in size ranges from 0.3µm to 30µm. Since the GRIMM
OPC does not report data corresponding exactly to 0< dp <2.5µm (i.e. PM2.5), Fig 3.3 instead
shows data for both 0.3 < dp <3.0µm and 0.3 < dp < 2.0µm. Number concentrations, as
reported by the Dylos for “small” particles (approximately 0.3 < dp <2.5µm), also followed
the same diurnal and synoptic patterns as the other instruments (Fig 3.3).

Hourly temperature, relative humidity, and ambient light

Fig 3.5 charts temperature, relative humidity, and ambient light inside the chamber. The intake
for the chamber was located within 2 m of the BAM-1020 intake. However, the electronics
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Fig. 3.4: Intercomparisons between hourly data from all instruments deployed at the West
Oakland site from 15 April 2013 to 23 April 2013. Upper-right set of panels: R2 and RMSE for
linear models fit using ordinary least squares (OLS). Lower-left set of panels: loess smoothers
superimposed on pairwise plots of the hourly data.
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Fig. 3.5: Inside the chamber, relative humidity varied between 20% to 60 %. Temperature was
elevated relative to ambient temperature, presumably due to heat generated by the electronics.
Ambient light was consistent across the study, save during the 1 h spot check when the lid of the
chamber was removed to evaluate the operational status of equipment.

housed in the chamber contributed a small amount of excess heat, raising the temperature
and lowering the relative humidity. Mean daily temperatures trended from approximately
20 ◦C to 30 ◦C, with diurnal variations of approximately 8 ◦C. Except for the 1 h period when
the chamber lid was removed to conduct a spot check, Ambient light remained below 1×101 lux.
Relative humidity in the chamber ranged between 10–60% over the course of each day, well
within the operating range of the PPD42NS and well under the 80% level at which light-
scattering efficiency begins to substantially affect the quality of nephelometric measurements
(Chow et al., 2002).

Correlations at 1 h scale

Correlations between PANDAs and other optical instruments

Figure 3.4 shows statistical and graphical summaries of pairwise correlations between 1h
data from all instruments. High correlations were found between individual PANDAs (R2 =
0.91–0.92) and between PANDAs and the Dylos (R2 = 0.87–0.92). These data are consistent
with previous pilot data from a 6 week experiment testing the longer-term stability and inter-
device variability of PPD42NS sensors (see Appendix C.1, Figs C.1 and C.2). Correlations
between PANDAs and GRIMM PM2.0 and PM3.0 were high as well (R2 = 0.90–0.93 and 0.92–
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0.94, respectively). Correlations of the DustTrak with the other optical instruments were more
moderate (R2 = 0.64–0.80).

Correlations of PANDAs and other optical instruments with the reference instrument
(regulatory β-attenuation monitor)

Using 1 h β-attenuation data as a reference, coefficients of determination (R2) calculated for
1h PANDAs, GRIMM PM2.0 and PM3.0, Dylos, and DustTrak data were 0.55–0.60; 0.59 and
0.58; 0.58; and 0.49, respectively (Fig 3.4). The accuracies of linear models based on each
device were essentially equal (RMSE = 3.4–3.6; 3.4 and 3.5; 3.5; and 3.5µgm−3, respectively).
A slight non-linearity, common to all except the DustTrak, is suggested by the loess smoother
superimposed on the lowest row of panels in Fig 3.4.

At first glance, an R2 of 0.55–0.60 may seem low, but it can be explained by the measurement
error inherent in the reference instrument, which is specified as σ = 2.0µgm−3 to 2.4µgm−3

for a 1h integration time (Met One Instruments, n.d.). This σ was used to simulate paired
observations of a “true” PM2.5 distribution with independent Gaussian errors, resulting in a
range of expected R2 estimates centered at 0.59 (95% CI 0.50–0.67) (Fig. S7, Supplement).
In other words, this is as correlated as one would expect 1h measurements from two such
reference instruments to be. Empirical data corroborated this expectation; although only one
BAM-1020 is in operation at the West Oakland site, Fig 3.6 shows 3 weeks of contemporaneous
1h data from a pair of colocated BAM-1020s at a nearby Air District site in Vallejo, 40km away.
The R2 for these 1h β-attenuation measurements (R2 = 0.58) differs negligibly from (a) the
simulated expectation, as well as the empirical R2 between the BAM-1020 at West Oakland
and (b) each of the three PANDAs, (c) the GRIMM, and (d) the Dylos. (The DustTrak exhibited
slightly less agreement, R2 = 0.49.)

Effects of ambient light, temperature, and humidity

No convincing associations with light (L), temperature (T), or relative humidity (RH) were
observed. Tables 3.2a and 3.2b show that neither 1 h data from the BAM nor 1 h data from
the PANDAs could be explained by L or T . Though 1 h RH measurements had some ability
to predict 1 h BAM responses (R2 = 0.24), 24h averages did not (R2 = 0.02). This can be
explained as a simple case of confounding at the 1 h timescale, rather than a causal association.
Both PM2.5 and RH were elevated at night; moreover, since the intake air for the BAM-1020
is actively dried by heating, there is no mechanistic explanation for the observed association
between 1 h RH and 1h BAM responses. Correlations of RH with PANDA responses at 1 h and
24h timescales were not appreciably different (R2 = 0.27 and 0.01, respectively). Accordingly,
L, T , and RH were omitted from subsequent models.
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PANDA

Model #103 #105 #108 Combined

BAM= B0+ B1 · L 0.06 0.03 0.03 0.04
BAM= B0+ B1 · T 0.02 0.02 0.03 0.02
BAM= B0+ B1 ·RH 0.23 0.23 0.26 0.24

(a) BAM vs covariates

PANDA

Model #103 #105 #108 Combined

PPD42NS= B0+ B1 · L 0.02 0.01 0.00 0.01
PPD42NS= B0+ B1 · T 0.01 0.01 0.02 0.01
PPD42NS= B0+ B1 ·RH 0.25 0.25 0.28 0.27

(b) PPD42NS vs covariates

PANDA

Model #103 #105 #108 Combined

BAM= B0+ B1 · PPD42NS 0.54 0.60 0.56 0.58
BAM= B0+ B1 · PPD42NS+ B2 ·RH 0.56 0.61 0.58 0.59

(c) BAM vs PPD42NS

Table 3.2: Adjusted R2 for linear regressions including combinations of BAM (PM2.5 µm),
PPD42NS, and covariates L = light (lux), T = temperature (Celsius), RH= relative humidity
(%). Each PANDA has its own RH/T sensor. R2 statistics were calculated on a per-PANDA basis
(columns 2–4) as well as for a “combined” model (column 5). Note: The “combined” R2 values
are not the means of R2 in columns 2–4, but were obtained by fitting the specified model form
to the means of the regressands (L, RH, or T) averaged across all 3 PANDAs at each point in
time.
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Fig. 3.6: Left: 1h data collected between 15–23 April 2013 from three PANDAs and a reference
(β-attenuation) PM2.5 instrument at the regulatory monitoring site in Oakland. Right: approx-
imately the same level of agreement (R2 ≈ 0.6) was found between 1h data from a pair of
β-attenuation instruments at a nearby regulatory monitoring site in Vallejo, California (40 km
away), 7–30 April 2013. The original 1 h BAM data were available only at 1µg m−3 resolution;
points are jittered to reduce overplotting. Superimposed lines represent linear regressions of
unjittered 1h data.

Correlations at 24 h scale

Following initial observations with 1h data, a longer-term deployment was conducted to exam-
ine 24 h averages (arithmetic means) from a single sensor at the same site from 1 August 2013
through 15 November 2013. Figure 3.7 shows a scatterplot of these 24 h data, superimposed
by a linear regression fit by ordinary least squares. This linear model yielded an R2 of 0.72, an
improvement compared to the R2 of 0.60 found with 1h data from the previous study (Sec 3.3).

3.4 Discussion

Findings

The overall objective of this study was to determine whether a low-cost aerosol sensor like
the PPD42NS could be used to generate adequately resolved measurements of urban PM2.5.
The first specific aim was to assess the utility of the PPD42NS by custom-building portable
instruments (the PANDAs platform) and comparing them to commercially available optical
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Fig. 3.7: 24 h arithmetic means of 1h data collected between 1 August 2013 and 15 Novem-
ber 2013 at the West Oakland site. The superimposed line and shading represents a linear
regression, fit by ordinary least squares (R2 = 0.72), along with its 95% pointwise confidence
intervals.
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instruments. Given the substantial differences in cost (material vs. retail), the agreement
observed between PANDAs and commercially available instruments was remarkably good (Figs
3.3 and 3.4). In addition, PANDAs essentially matched the precision and accuracy (R2 and
RMSE, respectively) of these more expensive instruments in predicting hourly PM2.5 from
the reference instrument, a β-attenuation monitor (Fig 3.4). While commercially available
instruments may perform better in more extreme or varied environments, or in measuring
other aerosols, or when faster response times are desired, within the context of this 1 h dataset
there was little, if any, practical difference.

Conditional on the success of the first aim, the second aim was to use 24 h PM2.5 data from
the reference instrument (the Met One BAM-1020) to conduct a calibration over a longer period
of time, on health-relevant scales. During the 3 month deployment, 24h averages of reference
measurements at the West Oakland site ranged from approximately 2µg m−3 to 21µg m−3

PM2.5, with a substantial amount of variability explained by a simple linear correction to the
sensor data (R2 = 0.72). Obtaining this level of agreement with such a low-cost sensor suggests
that, at least in urban areas with similar aerosols and concentrations, additional deployments
and calibrations may help to usefully enhance the resolution of PM2.5 datasets. Moreover, the
sensor’s apparent effectiveness at resolving differences between relatively low 24 h concentra-
tions suggests that it may be useful in more polluted regions, if can be shown to resist saturation
and wear. For reference, the 24 h ambient PM2.5 concentration standard has been set by the US
EPA (US EPA, 2012) at 35µgm−3, while the World Health Organization has established a 24h
guideline (World Health Organization, 2005) of 25µg m−3. Annual standards/guidelines set
by the US EPA, WHO, and EU are now 12, 10, and 25µgm−3, respectively (European Union,
2008; US EPA, 2012; World Health Organization, 2005). Exceedances of these health-related
benchmarks frequently occur in many populous cities and regions worldwide (Brauer et al.,
2012).

Limitations and tradeoffs

Two major limitations are relevant to the aim of this work, i.e. increasing the availability of
PM2.5 data through the use of lower-cost sensors. The first has to do with calibration require-
ments. In the United States, the reference instrument selected for calibration carries FEM
(Federal Equivalent Method) status for 24h measurements of PM2.5 (though not for 1 h mea-
surements). Observational calibration, of the kind we employed, requires access to a site that
is sufficiently close to such an instrument for a sufficient length of time; these parameters
are conditional on the desired quality of the calibration, which is in turn conditional on the
evidentiary standards that the resulting data need to meet. This kind of calibration has partic-
ular importance in the domain of PM2.5 measurement. While bottled standards are available
to calibrate many gas instruments, the creation and circulation of PM2.5 transfer standards is
problematic. The composition of PM2.5 is not universal, and it is impractical to create stable at-
mospheric suspensions of the PM2.5 mixtures to which urban populations are actually exposed.
At the same time, the key parameters for calibration by co-location (closeness and duration) are
bounded by serious practical and logistical constraints, including scarcities of time and trusted
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personnel. Working out these boundaries and relationships is an interesting and important
task that is beyond the scope of this paper. For practical purposes, it seems possible that at
least some professional air quality managers, urban planners, community-based organizations,
and academics could coordinate co-location campaigns with relatively few resources, thereby
developing calibration curves specific to neighborhoods and aerosols of interest.

The second limitation is intrinsic to the use of optical techniques as proxies for gravimet-
ric measurements. When a difference in measured values is observed, one cannot be cer-
tain whether it is attributable to a difference in the total mass, size distribution, or optical
properties—or some combination of all three—of the measured aerosols (Watson et al., 1998;
Wilson et al., 2002). Conversely, a lack of difference can obscure real differences in sub-micron
or ultrafine particle concentrations, or in other aerosol properties, such as composition or size
distribution, that may have real toxicological significance (Lighty, Veranth, and Sarofim, 2000;
Wilson and Suh, 1997). Ambient aerosols typically have a trimodal size distribution, with a
certain proportion of the respirable mass, and a much higher proportion of the total count,
distributed in such sub-micron or “accumulation-mode” particles (John, 2011; Whitby, 1978).
In urban atmospheres, these particles can generally be traced to emissions from internal com-
bustion engines. They are more likely to deposit in the deep lungs or be absorbed through the
nasal cavity, and are thus of considerable public health concern (Lighty, Veranth, and Sarofim,
2000). The error from these technical limitations can be approximately bounded, however, and
a rough 95 % bound on the uncertainty associated with nephelometric estimates of PM2.5 has
been estimated (Molenar, 2003) as ± 40 %, close to that associated with replicate gravimetric
analyses (Lighty, Veranth, and Sarofim, 2000).

Continuing work with more sensors under varying environmental and experimental condi-
tions will be needed to more precisely characterize the influence of variations between low-cost
optical aerosol sensors, aerosols, and operating conditions. However, it is instructive to compare
the expected magnitude cited above (±40 %) with the specified variance of the β -attenuation
method (2σ = 4.0µgm−3 to 4.8µgm−3 for 1 h integration times) and the accuracy of pre-
dictive PM2.5 models (RMSE = 3.4µg m−3 to 3.6µg m−3, again for 1h estimates). When true
concentrations are in the range of 2µg m−3 to 25µg m−3, then in absolute terms these errors
are roughly comparable. More importantly, measurement error of 1µg m−3 to 10µg m−3 may
be much less than the error associated with interpolations of sparse data from a few expensive
instruments. This leads to the consideration of tradeoffs in methodology—or, from a comple-
mentary perspective, to the optimal design of hybrid approaches (National Research Council,
2012).

For exposure scientists, a larger number of less precise instruments may be especially useful
in studies where both intra-subject and between-subject variability cannot be adequately sam-
pled with a smaller number of higher-quality monitors, for example in monitoring household
kitchens burning solid fuels (McCracken et al., 2009). In community monitoring or near-
roadway contexts, a dense network or gradient with deliberate oversampling could provide
high-quality estimates of spatiotemporally resolved concentrations. More flexible saturation
monitoring, based on less expensive and more portable instruments, could also respond more
readily to changing land use, enable more timely empirical verifications of emission-reduction
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policies, facilitate rapid responses to natural or accidental releases of observed aerosols, and
support more efficient screening campaigns for urban “hot spots”, with follow-up measurements
made by reference techniques.

3.5 Conclusion

The next steps of this work involve the continuing deployment of a larger number of aerosol
sensors within the context of an established neighborhood-scale multi-pollutant network in the
Bay Area (Teige et al., 2011), the coverage of which overlaps with neighborhoods identified by
the Bay Area AQMD over the past decade as having high levels of air pollution and vulnerable
populations (Martien, 2014). It complements efforts by other scientists to develop and refine
emission inventories, screening methods, and exposure assessments. It is also germane to the
relatively new phenomenon of “citizen scientists” constructing and using their own low-cost
air pollution instrumentation (Demuth et al., 2013; Smith and Clark, 2013) as well as to re-
cent efforts to support this kind of innovation and to integrate it with established pollutant
monitoring infrastructures (CITI-SENSE, 2012; US EPA, 2013). It is informed by the work of
research-engineers in related fields, including atmospheric science (Mead et al., 2013; Teige et
al., 2011), networked sensor calibration (Hasenfratz, Saukh, and Thiele, 2012; Balzano, 2007;
Xiang et al., 2012) and mobile/participatory air quality sensing (Aoki et al., 2009; DiSalvo
et al., 2012; Dutta et al., 2009; Honicky et al., 2008; Jiang et al., 2011; Mun et al., 2009;
Nikzad et al., 2012; Paulos, Honicky, and Goodman, 2007; Willett et al., 2010). Finally, it sug-
gests new prospects for collaborative environmental health research with community residents.
Community-engaged participatory research projects have deployed fixed-site monitors (Brugge
et al., 2010; Hedges, 2002; Loh et al., 2002) and surveyed intra-urban variations in PM2.5

using portable nephelometers (Kinney et al., 2000; Pastor Jr. Morello-Frosch, and Sadd, 2010).
This study indicates that device-specific and site-specific calibrations may help low-cost sensors
yield data of comparable quality. To increase the value of collected data, protocols for calibra-
tion might be profitably incorporated into research on user interfaces and scaffolding (Willett
et al., 2010, see) for non-professional users and groups interested in gathering, organizing, and
collectively interpreting localized air quality measurements.

Despite their limitations, trends in the development and deployment of low-cost air pol-
lution monitoring technologies are likely to continue (Snyder et al., 2013). A significant but
little-explored vein of research concerns the impacts that a proliferation of low-cost air qual-
ity instrumentation will have on structures of participation in air pollution monitoring and air
quality management (cf Harrison, 2011; Ottinger, 2009). Although collaborations between new
and established stakeholders may improve mutual awareness and engagement, the manner in
which new monitoring data generated from low-cost instrumentation should be incorporated
into regulatory decision-making remains an important open question.
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Chapter 4

Observing urban plumes

4.1 Introduction

Exposures are characterized by two dimensions: intensity and time. In outdoor urban settings,
at timescales on the order of 0.01h to 1 h, substantial variation can be observed in measure-
ments of ambient PM concentrations to which appropriately sensitive instruments are exposed.
Variation on these scales can be found in the presence of plumes from important urban sources,
such as highways, as well as in the presence of an accidental release or natural disaster. The
mobility of receptors can contribute to observed variation, but variation on these scales can
also be observed at fixed locations under the influence of shifting winds, as well as transient
increases or decreases in emission intensities.

Empirical observations of such variation stand to improve practical and theoretical under-
standings of relevant sources and transport mechanisms, thereby improving exposure science
and control. Such observations can, for example, be used to improve constraints on mobile-
source emission inventories. In turn, these improved inventories can benefit exposure estimates
derived from forward modeling. Micro-scale and neighborhood-scale observations can also aid
in identifying and characterizing uninventoried sources (“ground truthing”). Finally, when cou-
pled with appropriate disease-process models and epidemiological cohorts (e.g. acute reversible
effects on sub-hourly timescales in a school-based study), such observations can be used to
support epidemiological analyses. But, variation on these scales is not adequately captured by
existing monitoring infrastructure.

In this chapter, a larger sample (n = 48) of the low-cost sensors described in Chapter 3
is used to estimate an appropriate lower bound on integration time T , and then to explore
features revealed in the sub-hourly data. This chapter also replicates previous 24h and 1h
calibrations (against FEM PM2.5; see Chapter 3) at new sites, addressing the question of whether
calibrations at a regulatory monitoring site might generalize to different locations. Finally, this
chapter quantifies and compares distributions of calibration parameters among sub-samples of
the sensors, culminating in a demonstration of the viability of a statistical approach to remotely
transferring calibrations. This approach can remove a nominal barrier to broader participation
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in neighborhood-scale PM monitoring campaigns.

4.2 Methods

Study locations

Measurements for this study were produced at three routine air quality monitoring sites in
western Alameda County, CA, during a 10 week interval from Jan 14 to Mar 26, 2014. Meteo-
rological records were obtained from a fourth location, the Oakland Sewage Treatment Plant
(“Oakland STP”), approximately 1.5km NW of the Oakland West monitoring site. Site char-
acteristics for Oakland West were described in Chapter 3. Oakland East is similarly situated,
approximately 12.5 km SE of Oakland West and 2km NE of the heavily trafficked I-880 corridor
(downwind). The third site, Laney College, is located less than 100 m from the downwind edge
of I-880, approximately 3 km SE of Oakland West and 10 km NW of Oakland East. Laney Col-
lege is a newly established routine monitoring site, intended to capture “near-roadway” rather
than traditionally monitored “background” concentrations.

Reference data

Reference data for wind speed, direction, ambient temperature and humidity, and FEM PM2.5,
as well as co-pollutants (CO, NO, NO2, NOX, O3, and black carbon) were obtained from the
Bay Area Air Quality Management District (AQMD) Data Management System (DMS) at 1h
resolution for all three routine monitoring sites. Not all co-pollutants were monitored at all
sites. For example, black carbon (BC) was not monitored at Oakland East during the course of
our study, and ultrafine particles (UFP) were only monitored at Laney College. Table 4.1 lists
the reference instruments producing 1h reference data at each site.1

Parameter(s) Instrument(s) Site(s)

PM2.5 Met One BAM-1020 (FEM) (all)
CO Thermo 48i, API300 (all)
NO, NO2, NOX Thermo 42i (all)
O3 Thermo 49i Oakland East, Oakland West
BCUV, BC6 Aethalometer Laney College
UFP TSI 3783 Laney College

Table 4.1: Reference instruments and sites producing 1h reference data.

1Because the Laney College site was established in 2014, reference data from that location were only available
from Jan 26 onward. Some analyses and figures are therefore restricted to the common timeframe of Jan 26 to
Mar 26 (e.g. Fig 4.5).
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A composite meteorological profile was computed from 1 h data from the Oakland STP
meteorological site (Fig 4.3). All metrics except wind speed and direction were aggregated
using arithmetic means. Resultant vectors for wind speed and direction were calculated at
supra-hourly scales to support the identification of sources to which the experimental apparatus
might be more or less sensitive (Figs 4.5 and 4.4; for the analysis of residuals, see Sections 4.3
and D.1). For the same reason, since urban sources and prevailing winds are known to vary by
time of day, diurnal profiles of air quality and meteorology were also constructed.

Apparatus

This study required the construction of new instrumentation, consisting primarily of 12 repli-
cates of an enhanced version of the PANDAs described in Chapter 3. The new instruments
featured the same models of temperature, relative humidity, and light sensors described in
Chapter 3. They were also equipped with GPS. During this study, GPS location data were not
used, but GPS timestamps were used as an absolute time reference. Elapsed time was tracked
by the integrated Arduino microprocessor at high resolution and logged with every sensor
reading, while GPS timestamps were interleaved with the logs approximately every 5 min.

The enhanced versions were equipped with three PPD42NS sensors, rather than one, that
were sampled continuously and in parallel at approximately 1 MHz by new firmware.2 Sampling
sensors in triplicate increased the odds of detecting and mitigating individual sensor failures;
the failure rates and failure modes of these sensors had not previously been characterized. It
was also envisioned that this approach would provide the potential to increase signal-to-noise in
the absence of failures. Timeseries resulting from parallel sampling by a single microprocessor
did not need to be resampled (to align sampling intervals) before aggregation.

Groups of four instruments each were connected to four Raspberry Pis (small Linux-based
computers retailing for approximately USD $35). The Raspberry Pis mirrored captured data
on their own SD cards and independently timestamped the captured data with high-resolution
hardware clocks. The redundant records and timestamping were found to be in excellent
agreement, with all interpolated clock times differing by 1 s or less.

The material cost per unpackaged instrument was approximately $150 (USD). The marginal
cost, per instrument, for triplicate PPD42NS sensors was approximately USD $20.

Packaging and deployment

Four 30 L plastic containers having the same dimensions, flow-through design, and fan de-
scribed in Chapter 2 were constructed to serve as “hosts” to four instruments apiece. Hence,
each host contained 12 PPD42NS sensors, 4 SHT15 sensors, 4 GPS modules, and one Rasp-
berry Pi. A 10cm, 12V DC fan, flush with the rear exhaust vent, served to draw in ambient air.
Figure 4.1 shows the physical configuration of apparatus within a host, while Fig 4.2 shows a
schematic of host deployments. Two hosts, “springer” and “ironhide”, were deployed at West

2The source code is freely available for inspection or reuse: http://github.com/holstius/PANDAs

http://github.com/holstius/PANDAs
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Fig. 4.1: Physical packaging of apparatus inside a host chamber. Each chamber contained 12
PPD42NS sensors, 4 SHT15 sensors, 4 GPS modules, and one Raspberry Pi. A 10cm, 12 V DC
fan, flush with the rear exhaust vent, served to draw in ambient air.

Fig. 4.2: Schematic depicting deployment and subsequent rotation between sites. Two hosts,
“springer” and “ironhide”, were deployed at West Oakland on Jan 14 2014. On Jan 23, two
additional hosts, “sunstreaker” and “wheelie”, were deployed at Oakland East. On Feb 14 – 15,
“wheelie” was rotated from Oakland East to Oakland West, and “ironhide” was rotated from
West Oakland to Laney College.
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Oakland on Jan 14 2014. On Jan 23, the remaining two hosts, “sunstreaker” and “wheelie”,
were deployed at Oakland East. On Feb 14 – 15, “wheelie” was rotated from Oakland East to
Oakland West, and “ironhide” was rotated from West Oakland to Laney College.

Cross-calibration

Prior to calibrations against other instruments, the 48 PPD42NS sensors were cross-calibrated
against each other. Three weeks near the midpoint of the study were selected to serve as
the basis for cross-calibration (Feb 17 to Mar 10). Pairwise scatterplots of unadjusted 30-
second PPD42NS data (Fig 4.6) revealed strong correlations between all pairs of sensors, so
Principal Components Analysis (PCA) was used to construct a sparse linear representation of
these correlations that appropriately minimized orthogonal error. One sensor per host was
nominated as a reference, thereby defining its offset as zero and gain as unity. This was the
sensor for which the median of the geometric means of the estimated gains for other sensors
was closest to unity. The offsets and gains for the other sensors were then fully determined.

First-order calibrations

Cross-calibrated 30-second data were binned and aggregated at 24 h, 12 h, 8 h, 6 h, 4 h, 3 h,
2 h, 1 h, 30 min, 10 min, 3 min, and 1 min scales using arithmetic means. Reference data
were also binned and aggregated at timescales from 24h to 1 h. The same three weeks used
for cross-calibration (Feb 17 to Mar 10) were used for calibrations against reference data.

To assess the influence of different timescales and estimators, calibrations against reference
equipment were generated at 24h to 1 h timescales using (a) ordinary least squares (OLS) with
a forced intercept through the origin, as well as L1 minimizations of (b) mean absolute error
(MAE) and (c) mean absolute relative error (MARE). In all cases, the primary regression model
had a linear form, with i indexing the sensors, and β0 forced to zero:

Yi,t = β0+ β1X i,t + ε (4.1)

Residuals from the OLS calibrations at 3 h scale were subsequently examined with respect
to available covariates, including co-pollutants and meteorological parameters.

For commensurability with the site- and host-specific calibration at 24 h scale reported in
Chapter 3, an intercept term was re-introduced to the OLS regressions. These models had the
following form, allowing for deployment-specific intercepts and slopes (defined by appropriate
pairings of host h and site s):

Yh,s,t = β0,h,s + β1,h,sXh,s,t + ε (4.2)

Sub-hourly analyses

To estimate an approximate lower bound for the effective temporal resolution of the PPD42NS
sensor, binned and aggregated timeseries XXX i from sensors i = {1, 2, . . . 48} were examined with
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integration times T from 0.05h to 0.5 h (3 min to 30min). Given a series of regular intervals
ttt = {0, T, 2T, . . . } over which to integrate, when T was small it was more common to observe
time-integrated values within XXX = {x i t1

, x i t2
, . . . }= 1

T
{
∑T

j=1 x i j,
∑2T

j=T+1 x i j, . . . } that were equal

to exactly zero. These distorted the overall distribution of XXX . From inspection of the proportion
P(XXX = 0) as a function of T (Fig D.2, Appendix D), it became evident that integration times of
5min or longer consistently produced P(XXX = 0)< 0.01. This was taken as a reasonable lower
limit on T for individual sensors under the observed field conditions.

Aggregation across triplets of sensors j = {(1, 2, 3), (4, 5, 6), . . . (46, 47, 48)} reduced P(XXX =
0) by a factor of approximately

p
3, equivalent to increasing T by a factor of 3 (data not shown).

Thus, for triplets of sensors, a reasonable lower limit for T was taken to be 1min to 2 min.
Having established approximate lower limits for T , calibration coefficients were examined

at 1h to 24 h scale (Table 4.3). No evidence of scale dependence was found, so calibrations
from 1h data were applied to sub-hourly data. An exploratory analysis of this calibrated sub-
hourly data focused on features evident at the near-roadway site (Laney College) that were
absent or attenuated at corresponding background sites (Oakland West and Oakland East).

4.3 Results

Meteorology and pollutant concentrations

Figure 4.3 depicts temperatures and resultant wind vectors at Oakland STP throughout the
course of the study. Although the week-to-week variation in Fig 4.3 is considerable, aggregating
these parameters on a diurnal scale suggested that morning winds were generally from the SE,
with warmer afternoon and evening winds from the WSW (Fig 4.4).

Figure 4.5 summarizes the diurnal patterns of pollutant concentrations observed during Jan
26 to Mar 26, during which data were available from all three air quality monitoring sites. At the
near-roadway site (Laney College), BC concentrations tended to peak at approximately 0900h
LST, and were mirrored by a similar pattern in UFP concentrations. Elevated NO concentrations,
relative to the nearest background site (Oakland West), were also evident. O3 data were not
available at Laney College. These observations are consistent with an expected deficit of O3

and elevation of other primary and secondary mobile source emissions (PM2.5, NOX, BC, UFP)
less than 100 m downwind of a major goods movement corridor (I-880).

Federal Equivalent Method (FEM) PM2.5 measurements were highest at Oakland West dur-
ing the first 10 days, with a 95th percentile of 40µg m−3. In contrast, the 95th percentile was
17µgm−3 during the remainder of the study.
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Fig. 4.3: Resultant wind vectors and ambient temperature at Oakland STP during the study (3 h scale).
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id gain offset

01 1.00 0.00
02 1.06 −0.05
03 0.98 −0.02
04 1.26 0.03
05 1.04 0.01
06 0.80 0.01
07 1.06 −0.04
08 1.19 −0.01
09 1.31 −0.01
10 0.86 0.02
11 0.95 0.02
12 0.84 0.01

(a) springer

id gain offset

13 0.80 0.02
14 1.21 0.01
15 1.00 0.00
16 1.28 0.02
17 1.28 −0.01
18 0.89 0.02
19 0.93 −0.01
20 0.74 −0.03
21 0.91 −0.02
22 1.12 0.02
23 0.83 0.02
24 1.07 0.02

(b) ironhide

id gain offset

25 1.18 0.00
26 1.13 0.02
27 0.85 0.05
28 0.90 0.00
29 0.87 −0.02
30 0.77 −0.01
31 1.13 0.00
32 0.83 0.00
33 1.04 0.01
34 1.07 0.02
35 1.02 0.00
36 1.00 0.00

(c) sunstreaker

id gain offset

37 1.09 0.00
38 1.00 0.00
39 1.06 0.00
40 1.09 −0.02
41 1.12 −0.02
42 1.18 0.00
43 1.11 −0.02
44 1.04 −0.02
45 0.82 −0.01
46 0.93 −0.02
47 0.73 −0.01
48 0.82 0.01

(d) wheelie

Table 4.2: Linear cross-calibration coefficients estimated using Principal Components Analysis
(PCA). Offsets (% FS) and gains were estimated separately for groups of sensors in each host
(“springer”, “ironhide”, “sunstreaker”, and “wheelie”). For reference, an offset of 0.01 % FS is
approximately equivalent to 0.1µg m−3 after applying calibrations from Sec 4.3.
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Fig. 4.4: Diurnal profile of wind and temperature at Oakland STP during the study.

Cross-calibration

Figure 4.6 illustrates the expected correlation between data from pairs of sensors. From inspec-
tion, it was evident that inter-sensor agreement would be improved by simple linear corrections.
Principal Components Analysis (PCA) was used to estimate linear (additive and multiplicative)
cross-calibration coefficients for all sensors, using data from Feb 17 to Mar 10 at 24h as a basis.

Cross-calibration coefficients obtained with PCA are reported in Table 4.2. Hereafter, the
additive coefficients are referred to as “offsets”, and the multiplicative coefficients as “gains”.
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Fig. 4.5: Diurnal profiles of 1 h air quality data during the study.

(These may be regarded as equivalent to β0 and β1 in a typical linear regression.) Estimated
offsets ranged from −0.05 to 0.05 % FS, equivalent to 2.9% of the full range of uncalibrated
data, or less than ± 1µg m−3 after applying the calibrations described in Sec 4.3. These offsets
were considered negligible; only the gains were used in subsequent corrections. 95% (n=46)
of estimated gains were between 0.7 and 1.3, and 50% (n=24) were between 0.9 and 1.1.

First-order calibrations

Figures 4.8–4.10 illustrate the results from an ordinary least squares (OLS; equivalently, MSE)
calibration based on 1h cross-calibrated data from Feb 17 to Mar 10. From Figs 4.8 and 4.9,
it is evident that the 48 sensors tracked very well with each other over the course of the study.
No examples of sensor failure or drift are observable at a glance. Figures 4.8 and 4.10 also
show that most of the 24 h means were within a factor of 2 of the 24h average indicated by
the reference instrument (a Met One BAM-1020). Finally, good agreement is shown between
pairs of hosts colocated at the same site. (This last point will be revisited in Sec 4.4.)
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Fig. 4.6: Unadjusted 3 h data from PPD42NS sensors, illustrating differences in sensitivity. For
clarity, only data from the calibration timeframe are shown. Superimposed lines represent linear
regressions (OLS). The number in the upper left of each panel is the unique ID of the sensor
whose data are plotted as the dependent variable (y-axis) in that panel. The x-axis in all panels
corresponds to a reference sensor chosen at random for this figure (ID 47).
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Fig. 4.7: Distributions of multiplicative correction factors (“gains”) estimated by cross-
calibrating the sensors within each host. Hinges are 1st and 3rd quartiles.
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Simplified models, omitting the intercept, produced consistent results when applied to
within-sample and out-of-sample data at different sites and times. Table 4.3 presents estimates
for the parameter β1 when β0 was forced to zero, conditional on (a) the timescale T used for
aggregation and (b) minimizations of selected L1 and L2 measures of error (see Appendix A
for definitions). Results did not suggest substantial dependencies on T or on the choice of loss
function, except for a single anomaly (MAE with T of 3h to 4 h). The reason for this anomaly
is not known.

No substantial differences were observed between within-sample and out-of-sample per-
formance of calibrations from the selected calibration timeframe. For example, sensors inside
hosts “sunstreaker” and “springer”, which remained at Oakland East and Oakland West for the
duration of the study, yielded reasonable predictions at their respective sites both before and
after the calibration window (Fig 4.8, blue and green lines). Similary, calibrations for sensors
in host “wheelie” (Fig 4.8, purple line) appeared to yield consistent results before and after
the host was moved from Oakland West to Oakland East, and calibrations for sensors in host
“ironhide” (Fig 4.8, red line) yielded consistent results before and after the host was moved
from Oakland West to Laney College.

As operationalized by correlations with reference instruments (R2) at 24h and 1h scale, this
study observed nearly the same performance reported in Chapter 3. OLS regressions were run
at 24h and 1h scale, as described in Section 4.2. The respective coefficients of determination
(R2) were 0.68 and 0.53. For reference, the 24h and 1h R2 values from the previous deployment
(Chapter 3) were 0.72 and 0.55–0.60, respectively.

Table 4.3: L1 and L2 minimizations of B1 given T .

T MSE MARE MAE

24h 1192 1210 1321
12h 1160 1162 1330
8h 1145 1171 1340
6h 1147 1177 1325
4h 1134 1166 1601
3h 1140 1155 1098
2h 1138 1150 1444
1h 1149 1159 1448



C
H

A
PTER

4.
O

B
SERV

IN
G

U
R

B
A

N
PLU

M
ES

46

calibration timeframe

OakEast

OakWest

Laney

0

20

40

0

20

40

0

20

40

Mon Jan 13 Mon Jan 20 Mon Jan 27 Mon Feb 03 Mon Feb 10 Mon Feb 17 Mon Feb 24 Mon Mar 03 Mon Mar 10 Mon Mar 17 Mon Mar 24

Mon Jan 13 Mon Jan 20 Mon Jan 27 Mon Feb 03 Mon Feb 10 Mon Feb 17 Mon Feb 24 Mon Mar 03 Mon Mar 10 Mon Mar 17 Mon Mar 24

Mon Jan 13 Mon Jan 20 Mon Jan 27 Mon Feb 03 Mon Feb 10 Mon Feb 17 Mon Feb 24 Mon Mar 03 Mon Mar 10 Mon Mar 17 Mon Mar 24

3h
 m

ea
ns

 (
ug

/m
3)

host ironhide springer sunstreaker wheelie
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Fig. 4.11: Residuals vs time (3 h scale).
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Residuals

Figure 4.11 shows that residuals were serially correlated, and at scales considerably longer than
the characteristic response time of the PPD42NS. This suggests that the first-order regressions
were failing to capture the influence of some environmental parameter(s) varying on scales
from hours to days. Applying first-order calibrations from the chosen calibration timeframe to
data from the first 10 days resulted in the largest residuals (more than 50% underprediction).
During this time, reported PM2.5 concentrations were also considerably higher than during the
rest of the study. Sensors had yet to be deployed at sites other than Oakland West, so it was
not possible to determine if this underprediction was due to a site-specific or regional factor.

On occasion, the magnitude and direction of error exhibited remarkably similar patterns
at multiple sites. For example, during Feb 2–3 and 6–7, sensors at Oakland East and Oakland
West under-predicted similar rises and falls in reference PM2.5 at both sites. A regional-scale
difference in aerosol composition, rather than a site-specific factor, may have a role in explaining
these anomalies.

More localized environmental factors may also have a role in explaining anomalies. For
example, the latter half of the residuals from Oakland East appear to exhibit a periodic com-
ponent not captured by the calibration—roughly on a 24h cycle—that does not appear to be
as pronounced at Oakland West or Laney College. This is corroborated by a plot of diurnal
residuals (Fig D.3), in which time-of-day effects are apparent in the panel corresponding to the
deployment of “sunstreaker” at Oakland East, but not in panels corresponding to other hosts
or other sites.

A search for missing variables was conducted with the aid of graphical summaries. Data
from the first and last 2 weeks were held out as test sets, in case potential explanatory factors
were identified. Residuals were plotted against functions of time (calendar time, day-of-week,
and hour-of-day), as well as metrics routinely reported at the colocation sites and neighboring
weather station. Concentrations of co-pollutants (CO, NO, NOX, and BC) were first divided by
the reported concentration of PM2.5. This analysis did not result in the confirmed identification
of any explanatory factors from among the candidates, though weak inverse associations were
noted between the magnitude of residuals and BC / PM2.5 ratios, and larger residuals were
generally observed at relative humidities above 75%. Appendix D.1 presents the graphical
summaries that were used.

Sub-hourly analyses

Reference PM2.5 estimates were not available at timescales below 1 h. However, 1h calibrations
were applied to averages of data from triplicate sensors on scales from 3min to 30 min, on the
following grounds:

1. As shown in Table 4.3, estimates of β1 were reasonably invariant to the timescale T for
1≤ T ≤ 24 h (Table 4.3).
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2. Within the context of this dataset, a reasonable lower limit to the effective temporal
resolution of a single PPD42NS sensor was approximately 5 min (Fig D.2, Appendix D).
Integrating across three PPD42NS sensors had the same effect as increasing T by a factor
of three (data not shown).

3. Instruments were designed to sample three sensors in parallel, and no sensors exhibited
failures.

Figures 4.12 and 4.13 show that important structure was revealed in sub-hourly data. At
scales of 3min to 30 min, consistent responses were observed from replicate instruments at
the near-roadway site (Laney College), while similar responses were not observed at a nearby
background site (Oakland West). Using a 1 h calibration, the amplitudes of these localized
features were estimated to reach 100µg m−3 to 200µg m−3. Given their intermittent character,
the total time-integrated exposure during a 1 h interval containing several such features would
be lower, consistent with the levels indicated by the 1 h reference PM2.5 data (black stepped
line).

4.4 Discussion

Cross-calibration, first-order calibrations, and residuals

Cross-calibrations (Table 4.2) demonstrated that sensor-to-sensor variability was manageable,
and that a substantial component of this variability could be removed through the application
of a multiplicative correction factor. Additive corrections were negligible (less than ±1µgm−3)
These findings have practical implications for future calibrations and fieldwork with these
instruments.

Compared to previous results reported in Chapter 3, the deployments reported here exhib-
ited nearly the same level of agreement with FEM PM2.5 at 24 h and 1h scale (as measured by
R2). Good agreement was also found using a simplified model with a forced intercept through
the origin. Moreover, host-specific calibrations appeared to be exchangeable between sites—
even between a background site and a near-roadway site. This warrants further investigation.
If independently confirmed, it would imply that the association between the PPD42NS’s mea-
surand and the BAM-1020’s measurand (nominally PM2.5) did not differ radically between
near-road and background monitoring sites.

Residuals were serially correlated at scales considerably longer than the characteristic
response time of the PPD42NS (Fig 4.11). Moreover, consistent errors were exhibited by sets
of sensors at the same site, and (on occasion) by sets of sensors at different sites. These data
are consistent with two interpretations:

• Some “nuisance” environmental parameter(s) influenced the PPD42NS; and/or

• The PPD42NS and the reference PM2.5 instrument measured two related but distinct
properties of urban aerosol.
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Fig. 4.12: Data aggregated to 30, 10, and 3 min scales. Substantial variation is evident at the
near-roadway site (Laney College) and absent from background sites (Oakland West and East).
Colored lines are data from triplicate PPD42NS sensors. Stepped lines are 1 h FEM PM2.5.
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Fig. 4.13: Data aggregated to 1 min scale. Top: same timeframe depicted in the previous figures
(4am–7pm LST, Feb 18 2014). Bottom: detail, noon–4pm LST, Feb 18 2014. Note the magnitudes,
durations, and localized character of peaks evident in data at this scale. Since PM2.5 reference
data were not available at timescales below 1h, the calibration applied to sensor output was
obtained from 1h data.
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These interpretations are mutually compatible. It may be, for example, that the composi-
tion of the particles could explain some of the residuals, while an unmeasured or improperly
modeled environmental parameter could also have altered the sensitivity of the PPD42NS.

Although no missing variables were identified from inspection of the residuals, a large
set of data has been obtained that can be investigated with additional resources, including
speciation data and predictions from air quality models. A weak time-of-day effect was apparent
at Oakland East, but was not apparent at other sites. A weak inverse association was observed
between BC / PM2.5 ratios and the magnitudes of residuals. More sophisticated statistical
techniques (e.g., G-computation, clustering, lasso, ridge regression) might also be brought to
bear on the identification and parameterization of a calibration model with additional terms.

Sub-hourly analyses

Applying a 1 h calibration to data on scales of 0.05h to 0.5 h (3min to 30 min) revealed physi-
cally plausible structure on relevant scales (2µg m−3 to 200µg m−3). These observations should
be compared to predictions from simple physical models, perhaps by using appropriate rescal-
ings of existing emission inventories as a starting point. Such fine-scale obervations stand to
improve the empirical foundation of our understanding of relevant sources (e.g. highways),
as well as to aid in identifying and characterizing uninventoried sources (“ground truthing”).
There are many practical consequences; for example, improving constraints on inventories of
urban combustion stands to improve exposure science, atmospheric modeling, and account-
ability studies of policy implementations.

Traditional practice in air pollution exposure epidemiology is to use steady-state dispersion
models to predict average concentrations at scales of weeks, months, or years. As researchers
and regulators develop new knowledge and guidance concerning the health effects of urban
pollutants at finer spatial and temporal scales, modelers must meet the challenge of forecasting
and diagnosing micro-scale data. Although strong consensus on best practices at these scales
has yet to emerge, it is technically possible for relatively simple gridded advection-dispersion
models to be applied to this dataset on scales of 0.1 h to 1h. Such an analysis is outside the
scope of the present work.

Remotely transferring calibrations

In this study, hosts “sunstreaker” and “springer” remained at Oakland East and Oakland West,
respectively, for the duration of the study. During the time that “wheelie” was colocated with
“sunstreaker”, the MARE between the 3h averages (arithmetic means) of uncalibrated output
from the 12 sensors in each host was 10%, with an RMSE of 2× 10−3 % FS, or approximately
2µgm−3. Had “wheelie” been observing a comparable environment elsewhere, it would there-
fore have been quite reasonable to transform its sensor outputs to µg m−3 merely by multiplying
the uncalibrated data by (a) an estimate of β1 obtained for “sunstreaker”, along with (b) the
relative correction factors for “sunstreaker” obtained using PCA. Judging by the MARE reported
above, this would have increased the expected multiplicative error by approximately ± 10%
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beyond a direct calibration against reference equipment. Had this been acceptable, and had
a collaborator been operating and reporting the β1 for “sunstreaker”, there would not have
been a need to install “wheelie” at Oakland East, nor at any other regulatory site. The expected
agreement between measures of central tendency will increase with the number of sensors
n, so if a figure of 10 % were unacceptable, n might be increased until practical tolerance
requirements were met.

In essence, this demonstrates the viability of a statistical approach to remotely transferring
calibrations between two sets of low-cost sensors. Arguments in favor of mass deployments of
lower-cost sensors typically focus on other advantages, such as increased coverage or density.
In general, for two sets of timeseries XXX 1,XXX 2, . . .XXX n and XXX ?1,XXX ?2, . . .XXX ?m, with each timeseries X iX iX i

having k observations {x i1, x i2, . . . x ik}, it is possible to use the same three-part decomposition:
cross-calibrations γγγ= γ1,γ2, . . .γn among the first set; cross-calibrations γγγ? among the second
set; and a mapping βββ from E[XXX ] to the reference standard YYY . With a suitable estimator θ
for E[XXX ], such as the mean, median, or geometric mean3, the Law of Large Numbers entails
that θ(XXX ) = {θ(x11, x12, . . . x1k),θ(x21, x22, . . . x2k), . . .θ(xn1, xn2, . . . xnk)} will approach θ(XXX ?)
as n and m grow sufficiently large. Only a small number of sensors may be necessary; here,
n= m= 12.

This opens up interesting possibilities for collaboration. If the first set of n cross-calibrated
sensors can be colocated with reference equipment (perhaps even managed by the operators of
the reference monitoring site), the calibration βββ can be transferred remotely, at any time, to a
second set of m cross-calibrated sensors. To the extent that the surplus error from the expected
difference between θ(XXX ) and θ(XXX ?) falls within stable and practical tolerances (above, it was
± 10%) in the context of the sensors’ calibration model, there is in principle no need for
collaborators to collocate a secondary set, or set(s), with any reference equipment at all.

This approach still depends on having good faith collaborators with physical access to ref-
erence equipment. It does not mitigate the threats to validity associated with extrapolation
(or interpolation) of calibration parameters to conditions beyond those observed during cali-
bration. But, as remarked in Chapter 3, scarcities of time and trusted personnel may be some
of the most significant barriers to calibration of low-cost PM instruments. Therefore, reducing
or eliminating the need for physical colocations in this manner could help to support broader
participation in the production of valuable observational data in two ways. First, it could
reduce the labor required to transport and set up instrumentation. Second, it could reduce
certain liabilities—for example, the risk of accidental interference with reference equipment.
In the United States, access to routine PM monitoring sites is heavily restricted, at least in part
because of such risks.

Limitations

The design of this study could not address the generalizability of calibrations beyond the varia-
tion represented by the three selected sites. Due to its observational nature, this study was also

3More robust statistics than the mean might be preferred.
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limited in its ability to identify and/or quantify the influence of environmental variables that
might influence the sensitivity of PPD42NS sensors or the instruments constructed with them.
Chapter 3 contained a discussion of several general caveats along these lines, but additional
examples may serve to underscore the point:

• It is reasonable to expect that temperatures outside of the ranges observed would have
an influence on the supporting electronics, and possibly on the airflow induced by the
resistive heating element inside the PPD42NS module.

• The influence of temperature (or another variable) within observed ranges may have
been masked by covariation with other uncontrolled variables.

• It is also reasonable to anticipate typical “cross-sensitivities” associated with optical instru-
ments (e.g. relative humidity), as well as differential sensitivity to aerosols with different
compositions and size distributions, especially under circumstances more extreme than
investigated here.

4.5 Conclusion

The 24 h and 1h calibrations of Chapter 3 conducted at West Oakland in 2013 were generally
commensurate with calibrations at the same site during Spring 2014, and with calibrations at
Oakland East, a regulatory site approximately 15km away. Calibrations at a near-roadway site
(Laney College) appeared to be applicable to data collected earlier at Oakland West. This war-
rants further investigation. Analysis of residuals did not reveal clear, consistent, and substantial
associations between the residuals and any single variable examined within the scope of this
study. However, this does not constitute strong proof, only a lack of disproof. Weak inverse
associations were noted between the magnitude of residuals and BC / PM2.5 ratios, and larger
residuals were generally observed at relative humidities above 75%. An experimental design,
in addition to or instead of the application of more sophisticated statistical methods, could
establish and quantify the importance of one or more missing variables. This work would be
strongest if conducted independently.

Variation in sensitivity among a large sample of low-cost aerosol sensors (n = 48), as
modeled by PCA, was almost entirely captured by a single, stable, sensor-specific correction
factor (multiplicative gain). Relative offsets were less than ± 1µg m−3, based on calibrations
against reference equipment. 95 % of relative gains were within 30% of unity, and 50 % were
within a factor of 10 % (see Sec 4.3). The MARE between the 3 h averages (arithmetic means) of
uncalibrated output from n= 12 sensors in two hosts was 10 %, with an RMSE of 2×10−3 % FS,
or approximately 2µg m−3. Had this surplus error been acceptable, and had a collaborator
been operating and reporting the β1 for the first host, there would not have been a need to
colocate the second host with any reference instrumentation (neither the first host nor any
regulatory monitors). The expected MARE (and MSE, etc.) between samples will decrease with
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the number of sensors n, so if a figure of 10% were unacceptable, n might be increased until
practical tolerance requirements were met.

In the context of this dataset, a practical lower limit to the effective temporal resolution was
on the order of 1 min to 5min. This limit could be relaxed when examining averages of data
from multiple sensors and/or higher PM concentrations. Simple averaging of triplicate sensors
yielded 1 min data consistent with intermittent observations of localized plumes at the near-
roadway site. Although the composition and character of such plumes would be expected to
differ from the composition of emissions from the 2003 wildfires in Southern California (Chap-
ter 2), time-weighted average concentrations at sub-hourly scales were roughly commensurate
with the 1 h intensities observed during the wildfires (100µgm−3 to 200µg m−3). A reference
instrument capable of supplying sub-hourly reference data would be useful in confirming or
refuting the accuracy of these estimates.
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Chapter 5

Discussion

5.1 Overview

The central argument of this thesis has proceeded in two parts. Chapters 1 and 2 discussed
and demonstrated the inadequacy of existing PM monitoring infrastructure for modern air
pollution exposure assessment and epidemiology. Chapters 3 and 4 demonstrated the possi-
bility of generating useful and accurate estimates of hourly and daily PM2.5 concentrations
in carefully chosen contemporary contexts (regulatory monitoring sites within selected urban
neighborhoods) by combining a newly available low-cost sensor with other low-cost, readily
available hardware. In so doing, this thesis raises, but cannot fully address, several lines of
potential sociotechnical development that could be variously characterized as “progressive” or
“disruptive”. The unique contribution of this chapter is to discuss selected examples of such
prospects, drawing out the ways in which they are connected to the methods and results of the
previous four.

5.2 Progressive prospects

In the canonical model of environmental health, formal knowledge is established through re-
search and risk assessments conducted by trained professionals. In turn, the products of these
professionally guided activities influence action primarily through the mechanisms of social
policy. Improvements to technical practices that establish the credibility, relevance, and useful-
ness of sensor systems stand to benefit these existing stakeholders in certain ways, notably by
increasing the reach and efficiency of exposure science and related disciplines. (See Chapter 1.)
Hereafter, prospects linked to such improvements are termed “progressive”.

One progressive prospect was alluded to by the selection of a near-roadway site in Chapter 4.
New EPA monitoring requirements are creating challenges for state and local air monitoring
agencies, who are now required to operate monitoring stations near roadways in addition to
regionally representative stations. Low-cost sensors like those employed in this project could
form the basis of some near-roadway monitoring as well as future personal exposure instru-
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mentation. Understanding their performance in short-term field deployments can serve as a
stepping stone to wider use in ambient monitoring and personal exposure assessment studies.
They can also be used to validate models and constrain emission inventories. New tools based
on EPA-approved dispersion models and emission inventories are emerging to assist urban plan-
ners and policymakers in estimating near-roadway exposures at regional scale (Samaranayake
et al., 2014; Holstius et al., 2013; Rioux et al., 2010). However, these tools require validation
in contemporary urban contexts, as the vast majority of empirical observations historically used
to validate the underlying dispersion models have been collected under conditions (i.e., terrain,
meteorology, and emission intensities) insufficiently representative of contemporary usage.

A second progressive prospect concerns the scarcity of data from a more global perspective.
Scientifically speaking, the bulk of the evidence base for the health effects of PM rests on
studies of high doses (primarily from studies of tobacco smoking) and low doses (from ambient
monitoring in wealthier countries). The middle regions of the integrated exposure-response
(IER) curves that have been developed for relevant health outcomes are supported by relatively
few observations (Burnett et al., 2014). These regions coincide with the bulk of exposures and
health burdens borne by the world’s poor, who largely rely on biomass burning or other high-
emission combustion sources for cooking and heating. Solidifying the evidence base in these
regions is important so that the shape of pertinent integrated exposure-response curves can be
more firmly established. These curves in turn shape estimates of global burdens of disease, and
can potentially guide policy-driven allocations of resources for mitigation and prevention.

5.3 Disruptive prospects

There are many more potential examples of how affordable PM2.5 monitoring equipment could
enable the collection of valuable data in poorly understood contexts. However, the ability to
effectively monitor particulate matter with commodity hardware may also lead to proliferations
of disruptive observations and claims.

If, as envisioned by many exposure scientists (National Research Council, 2012), it becomes
easier for individuals and groups with relatively limited technical training and resources to
produce trustworthy PM2.5 measurements more-or-less autonomously, it is hard to see how this
would not begin to play out in sparsely monitored yet highly contested spaces, such as near
roadways or on the fencelines of industrial facilities. It is unclear how regulatory agencies and
other established interests can, will, or should respond. Current regulatory practice generally
observes certain cadastral boundaries, at least in the domain of air pollution; for example,
central-site monitors may be more or less considered “representative” of cities, counties, re-
gions, and states. With some exceptions, these geographies map fairly well to political units or
aggregations thereof. The result is that constituents of counties and states are represented by
elected officials and appointees in the political arenas where funding is allocated to mitigate
air pollution problems. The possibilities afforded by low-cost instrumentation push attention
in the direction of problems with different geographies. As an EPA representative expressed
(personal communication, Chicago Air Quality Egg workshop, June 2013), “Suppose these
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[new] near-roadway NO2 monitors show high values. What is out of attainment? The entire
highway?” Presently, no one speaks in the same arenas for constituents living near roadways,
at least not in the same manner or from positions of comparable authority and power.

As low-cost sensors and open hardware become increasingly affordable and accessible, and
as requisite skills and motivation grow and circulate among “expert amateurs” (Kuznetsov and
Paulos, 2010), participation in the design of exposure assessment instrumentation, as well as
its operation, stands to increase (Holstius and Seto, 2011). The methods and materials used in
Chapters 3 and 4 were sourced from websites and vendors representative of those frequented
by members of “expert amateur” communities, and are thus representative of the quality of
measurements that one might expect from carefully executed campaigns conducted by persons
or teams equipped with comparable technology and know-how. In most real-world contexts, it is
unreasonable to expect any two commercially available environmental monitoring instruments
to agree perfectly. How much more so, then, with fully customizable instrumentation? With a
proliferating variety, as well as number, of instruments and techniques becoming possible, it is
reasonable to expect interested parties to go “measurement shopping”, selecting the techniques
and instruments that produce the data that best support their interests. Studies of metrology
have extensively documented the laborious practices required to “compare, standardize, and
settle agreement” (Mallard, 1998) amongst the creators and users of one-of-a-kind or limited-
run instrumentation, but so far these practices have been restricted to a fairly small number
of mutually familiar experts. (By analogy, in the domain of computer modeling, a scarcity of
officially sanctioned models, as well as a scarcity of resources needed to run them, somewhat
mitigates the problem.)

Limiting the sheer volume of attention-worthy claims, which is in effect accomplished
by limiting access to the means of producing them, has the side effect of limiting demands
on regulatory agencies and regulated industries. Removing these barriers could result in an
influx of claims that bureaucracies would have a vested interest in dismissing. Thus, although
absences of adequate data have been rhetorically linked to the sticker prices of instruments
accepted within certain communities of practice, there are reasons to suspect that causality
may not flow solely in that direction. And, there is as yet no convincing evidence that the
existence of comparable instruments at a substantially lower price point would be sufficient to
promote envisioned changes.

Two other categories of disruptive prospects could follow from the commodification of per-
sonal monitoring technologies. First, when accurate individual-level or small-group exposure
data are readily available, the responsibility for remediating problems, as well as perceptions
of agency and blame, can shift to individuals—a process termed “responsibilization” (cf Rous
and Hunt, 2004; LeBesco, 2011). The pooling of risk, in contrast, brings economies of scale to
insurance and mitigation activities, and simplifies or obviates questions about equitable distri-
butions of risks. Second, the easy availability of personal monitoring technologies with effective
personal-feedback components is envisioned by many researchers to be a natural outcome of
a proliferation of accurate and low-cost personal monitoring technologies. Insofar as study
participants would alter their exposures based on the data available from such instruments,
their provision or withholding constitutes an intervention. Inferences generalized from study
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populations where the allocation of such instruments is not randomized or otherwise controlled
may be biased. Statistical control would require unbiased estimates of the effect, and blinding
research participants to real-time information that (it is claimed) would otherwise have the
effect of reducing their exposures would be akin to withholding a beneficent treatment, which
would require justification and, if possible, mitigation or compensation.

5.4 Summary and conclusion

This thesis has discussed and demonstrated the inadequacy of existing PM monitoring infras-
tructure for modern air pollution exposure assessment and epidemiology, and has demonstrated
the possibility of generating useful estimates of daily, hourly, and sub-hourly estimates of PM2.5

concentrations with a low-cost sensor and other commodity hardware in contexts of interest.
Independent confirmation or refutation of these findings is warranted, and better character-
ization of the limitations of these sensors will be required if claims in other contexts are to
be supported as well. Skepticism is warranted. It is reasonable to start from the premise that
the calibrations reported in Chapters 3 and 4 will not generalize, and then to challenge that
hypothesis by probing additional contexts to discover where and when they might.

Given the accelerating speed of sensor research and development, it is important to con-
sider the demonstrations supplied in this thesis as contributions toward frameworks for rapid
screening and evaluation of the next generation of aerosol sensors, rather than attempts to
fully characterize this specific sensor. The development of a plethora of new sensors is likely
to outpace present capacity for independent, resource-intensive, laboratory-based calibration
practices. The invention and support of sustainable practices for collaborative calibrations and
intercomparisons is naturally of interest. Chapter 4 showed how a single-parameter calibration
could be remotely transferred between two sufficiently large sets of sensors, and quantified
the surplus error in the case of the particular sensor and context considered here. Whether the
technique is extensible and applicable to the needs of participants in real-world monitoring
campaigns remains to be seen.

When data are missing, it is important to understand why. Absences of data, like absences
of knowledge (Frickel et al., 2010), may signal the presence of countervailing causal factors.
Previous scholarship has demonstrated that technological possibilities do not solely determine
whether, or for whom, environmental monitoring instruments become trusted sources of data
(Mallard, 2001; O’Rourke and Macey, 2003; Harrison, 2011; Ottinger, 2009; Shilton, 2011).
It will be interesting to observe, and perhaps to influence, the dynamic interplays between
publics and technologies that will shape the provenance and coverage of tomorrow’s data.
Establishing the relevance and credibility of newly affordable modes of participation in the
production of that data is an obvious challenge for many stakeholders, and an area that future
research should explore.
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Appendix A

Abbreviations and definitions

AQMD Air quality management district

BC Black carbon

BEACON BErkeley Atmospheric CO2 Network

CITRIS Center for Information Technology Research in the Interest of Society

CO Carbon monoxide

DMS Data management system

FEM Federal equivalent method

FRM Federal reference method

GPS Global positioning system

IUGR Intrauterine growth restriction

LBW Low birth weight; less than 2500g

LMP Last menstrual period

LST Local standard time

MAE Mean absolute error 1
n

∑n
i=1

�

�Yi − Ŷi

�

�

MODIS Moderate Resolution Imaging Spectroradiometer

MARE Mean absolute relative error 1
n

∑n
i=1
|Yi−Ŷi|
Yi+Ŷi

MSE Mean squared error 1
n

∑n
i=1(Yi − Ŷi)2
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PANDAs Portable and Affordable Nephelometric Data Acquisition [system]

PCA Principal components analysis

PM Particulate matter

PM2.5 PM with aerodynamic diameter dp < 2.5µm; also known as fine PM

PM10 PM with aerodynamic diameter dp < 10µm

NO Nitric oxide

NO2 Nitrogen dioxide

NOX Nitrogen oxides (NO + NO2 = NOX)

OLS Ordinary least squares

RMSE Root mean square error
Æ

1
n

∑n
i=1(Yi − Ŷi)2

SoCAB South Coast Air Basin

SES Socioeconomic status

SGA Small for gestational age

TLS Total least squares

USD United States Dollars
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Appendix B

Supplement to Chapter 2

B.1 Modeling seasonality with a cosinor

The temporal term f (t i) is constructed from a modified cosine function having phase P, fre-
quency ω, and amplitude A:

f (t i) = α0 t i + Acos(ωt i − P) (B.1)

The additive term α0 t i models the secular trend, since t i represents the last LMP for birth i.
The frequency ω is chosen according to the length of the modeled cycle; in this case, we are
interested in modeling an annual cycle, so ω= (2π/365.14) days.

The following expression is equivalent to Eq B.1, but is linear in t i, and so can be fit using
standard techniques such as least squares:

f (t i) = α0 t i + c cos(ωt i) + s sin(ωt i) (B.2)

In terms of the coefficients c and s, the amplitude A then corresponds to:

A=
p

c2+ s2 (B.3)

While the phase P (in radians) corresponds to:

P =







arctan(s/c), if c ≥ 0

arctan(s/c) +π, if c < 0 and s ≥ 0

arctan(s/c)−π, if c < 0 and s < 0
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Appendix C

Supplement to Chapter 3

C.1 Pilot study

As a pilot study, 5 Shinyei PPD42NS sensors were colocated in a 70m3 office environment,
located on the 5th floor of a building in downtown Berkeley, CA, for 6 weeks (Jul 16 – Aug 30
2012). All windows were left open to promote extensive infiltration of outside air. Aims for the
pilot study were: (a) to assess whether previously reported high-frequency (1 min) correlations
between a PPD42NS and a consumer-grade optical counter (OPC) could be reproduced with
a longer integration time (1 h) at the much lower concentrations characteristic of ambient
urban aerosol; and (b) to assess variations in response among a sample of PPD42NS sensors.
Reference data at 1min scale were collected from a consumer-grade OPC (Dylos DC1700)
positioned within 30 cm of the sensors. All data were subsequently binned and analyzed using
1h arithmetic means.

During our pilot study, we observed very high pairwise correlations (R2) of 0.98–0.99 be-
tween all sensors (Figure C.2). The data were left-skewed, with 99% of observations between
0.013–1.623 and 95% between 0.023–1.362 (% FS; see Methods for an explanation of the
metric). The mean and median were 0.366 and 0.215 % FS, respectively. The overall correla-
tion between PANDAs and the OPC was slightly lower but still high, with R2 = 0.85–0.87. We
did not observe any obvious signs of an upper or lower detection limit in either PANDAs or
OPC data (Fig C.1).
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Fig. C.1: Temporal patterns (pilot study). Top: number concentration (dp < 2.5µm) from
optical particle counter (Dylos DC1700). Bottom: 5 colocated PPD42NS sensors (sensor used in
PANDAs). .
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Fig. C.2: Pairwise associations between 1 Dylos DC1700 and 5 PPD42NS sensors deployed
in a pilot study. Lower panels: 1-hour data smoothed by loess (red lines). Top panels: coeffi-
cient of determination (R2) and root mean squared error (RMSE) for linear models fit to the
corresponding pairwise datasets.
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Appendix D

Supplement to Chapter 4
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D.1 Apparatus

Fig. D.1: Raw signals acquired from from P1 and P2 channels.

Figure D.1 shows the character of the pulse-width modulated digital signal1 coming from
two channels of the PPD42NS, P1 and P2. Relatively long stretches of time can go by without
the signal being pulled low. This can distort the distribution of the statistic of interest, which
is taken to be the time-integrated average. When the signal is time-integrated, these stretches
are transformed into exact zeros, while the remaining data approximate a continuous, positive,
and (typically) long-tailed distribution.

Figure D.2 shows that, as the integration time T was increased, the proportion of aggregated
data exactly equal to zero decreased, as expected. Because the number of averaged intervals
per unit time is inversely proportional to T , the rate (per unit time) of exact zeros diminishes
less quickly than the proportion (but still quickly). With T = 3 minutes, the proportion is about
1.0%; hence, the rate is about 0.1 h−1.

Source code for the firmware is available at http://github.com/holstius/PANDAs.

1Acquired with a Salae Logic digital probe.

http://github.com/holstius/PANDAs
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Fig. D.2: Proportion and rate of “exact zeros” in time-integrated signals from the P1 channel of
PPD42NS sensors as functions of integration time T .
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D.2 Residuals

The following figures depict residuals, at 3 h scale, from the first-order calibration reported in
Section 4.3. The first and last two weeks of the study were held out as test sets, in case the
analysis of residuals yielded candidates for additional explanatory factors.
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Fig. D.3: Residuals vs hour of day. Panels are conditioned by host (left to right) and host (top
to bottom). Light and dark colored ribbons indicate middle 90 % and 50% of residuals; lines
represent the medians.
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Fig. D.4: Residuals vs weekend/weekday. Panels are conditioned by host (top to bottom) and
biweekly intervals (left to right).
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Fig. D.5: Residuals vs solar day/night. Panels are conditioned by host (top to bottom) and
biweekly intervals (left to right).
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Fig. D.6: Residuals vs wind direction (0 = North). Panels are conditioned by site (top to bottom)
and biweekly intervals (left to right).
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Fig. D.7: Residuals vs wind speed (m/s). Panels are conditioned by site (top to bottom) and
biweekly intervals (left to right).
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Fig. D.8: Residuals vs ambient temperature. Panels are conditioned by site (top to bottom) and
biweekly intervals (left to right).
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Fig. D.9: Residuals vs dew point (KOAK). Panels are conditioned by site (top to bottom) and
biweekly intervals (left to right).
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Fig. D.10: Residuals vs chamber RH. Panels are conditioned by site (top to bottom) and biweekly
intervals (left to right).
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Fig. D.11: Residuals vs chamber T. Panels are conditioned by site (top to bottom) and biweekly
intervals (left to right).
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Fig. D.12: Residuals vs BCUV / PM2.5 ratio. Panels are conditioned by site (top to bottom) and
biweekly intervals (left to right).
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Fig. D.13: Residuals vs BC6 / PM2.5 ratio. Panels are conditioned by site (top to bottom) and
biweekly intervals (left to right).
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Fig. D.14: Residuals vs CO / PM2.5 ratio. Panels are conditioned by site (top to bottom) and
biweekly intervals (left to right).
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Fig. D.15: Residuals vs NO / PM2.5 ratio. Panels are conditioned by site (top to bottom) and
biweekly intervals (left to right).
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Fig. D.16: Residuals vs NO2 / PM2.5 ratio. Panels are conditioned by site (top to bottom) and
biweekly intervals (left to right).
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Fig. D.17: Residuals vs NOx / PM2.5 ratio. Panels are conditioned by site (top to bottom) and
biweekly intervals (left to right).
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D.3 Data

The following tables report 24h averages and diurnal profiles of reference data from the Oak-
land West, Oakland East, and Laney College monitoring sites, as well as meteorology observed
at the Oakland STP weather station, over the course of the study.
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Table D.1: 24 h data from Oakland West.

Date CO NO NO2 NOX O3 PM2.5 BCUV BC6

01/14/2014 7.31 33.439 32.43 65.86 5.01 14.79 3.283 1.991
01/15/2014 6.95 25.357 30.64 56.00 12.51 15.09 2.498 1.501
01/16/2014 8.72 57.852 40.99 98.83 5.33 22.25 5.491 3.663
01/17/2014 12.85 87.561 42.80 130.36 5.57 33.83 5.487 3.560
01/18/2014 12.77 74.165 34.73 108.90 6.63 23.46 4.684 2.462
01/19/2014 14.09 83.396 33.13 116.52 8.62 27.21 6.673 3.835
01/20/2014 13.14 85.239 37.90 123.15 4.66 25.50 6.308 3.289
01/21/2014 13.64 102.809 37.21 140.03 4.22 18.96 2.337 2.606
01/22/2014 10.81 69.435 35.31 104.75 3.88 17.46 4.998 3.061
01/23/2014 4.94 10.109 19.00 29.11 22.10 14.25 4.088 1.152
01/24/2014 10.05 39.817 40.50 80.31 7.75 30.92 8.884 3.311
01/25/2014 12.02 49.052 37.20 86.24 9.37 25.46 3.604 2.166
01/26/2014 8.80 28.491 25.74 54.23 14.64 17.79 2.480 1.420
01/27/2014 5.21 4.139 19.61 23.75 17.74 12.61 1.022 0.687
01/28/2014 5.49 9.917 21.64 31.56 9.26 7.79 1.030 0.833
01/29/2014 3.82 3.895 16.51 20.39 11.74 6.08 0.807 0.661
01/30/2014 2.96 2.895 11.72 14.62 26.46 7.00 0.594 0.477
01/31/2014 3.70 6.217 14.70 20.94 20.06 5.92 0.920 0.445
02/01/2014 4.05 5.900 15.28 21.18 22.20 5.21 0.920 0.435
02/02/2014 4.20 1.000 8.83 9.85 27.77 5.67 0.755 0.367
02/03/2014 4.86 9.113 17.69 26.80 18.96 7.00 1.314 0.617
02/04/2014 5.21 10.957 18.13 29.08 16.48 7.29 1.194 0.728
02/05/2014 6.02 14.552 19.74 34.29 17.22 5.42 1.137 0.532
02/06/2014 5.66 7.130 18.52 25.67 15.70 8.38 1.002 0.725
02/07/2014 5.63 3.778 15.10 18.88 20.17 6.83 0.746 0.517
02/08/2014 4.59 0.557 4.71 5.27 28.05 2.12 0.252 0.172
02/09/2014 4.61 0.461 4.02 4.50 28.16 1.54 0.312 0.166
02/10/2014 5.58 8.096 19.43 27.53 13.20 5.33 0.670 0.667
02/11/2014 5.85 7.900 18.94 26.84 13.78 8.17 0.569 0.753
02/12/2014 6.03 5.374 18.95 24.33 14.51 9.46 0.530 0.668
02/13/2014 6.42 11.678 19.64 31.32 10.17 9.38 0.775 0.904
02/14/2014 5.67 6.722 15.60 22.31 10.98 2.79 0.474 0.577
02/15/2014 6.10 6.200 10.90 17.08 13.32 5.46 0.390 0.504
02/16/2014 5.93 3.578 11.20 14.77 24.95 6.21 0.386 0.342
02/17/2014 7.65 17.283 14.73 32.00 18.37 7.71 1.826 0.623
02/18/2014 9.11 34.587 22.77 57.35 12.78 8.83 3.534 1.209
02/19/2014 6.26 3.648 15.26 18.90 22.95 6.62 1.180 0.521
02/20/2014 5.27 19.219 19.97 39.24 17.51 7.29 1.119 0.749
02/21/2014 6.11 42.018 25.86 67.89 14.59 10.29 4.226 1.835
02/22/2014 4.90 23.330 19.92 43.25 16.72 11.21 2.409 0.993
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Table D.1: (continued)

Date CO NO NO2 NOX O3 PM2.5 BCUV BC6

02/23/2014 2.96 4.617 11.91 16.53 21.98 8.58 1.236 0.486
02/24/2014 5.92 40.526 22.13 62.67 15.99 12.74 3.540 1.673
02/25/2014 3.14 3.217 17.35 20.58 30.32 11.62 1.662 0.743
02/26/2014 3.19 2.248 13.59 15.84 25.57 7.25 0.900 0.487
02/27/2014 2.55 1.578 12.64 14.23 34.23 5.62 0.892 0.323
02/28/2014 2.65 1.657 9.74 11.40 36.35 4.71 0.422 0.245
03/01/2014 3.55 3.116 12.58 15.70 29.80 4.71 0.705 0.265
03/02/2014 4.47 7.913 14.21 22.12 23.98 5.29 1.074 0.559
03/03/2014 4.21 5.304 17.98 23.29 18.43 6.00 0.602 0.536
03/04/2014 3.87 6.013 14.63 20.71 21.57 5.12 0.524 0.581
03/05/2014 4.42 10.600 16.30 26.89 14.63 8.33 0.878 0.929
03/06/2014 3.91 4.591 14.97 19.56 23.57 8.83 0.522 0.573
03/07/2014 4.34 5.152 17.70 22.86 18.80 9.25 0.588 0.583
03/08/2014 6.32 15.143 20.98 36.13 14.60 12.08 0.919 0.912
03/09/2014 4.71 5.548 17.81 23.37 18.29 10.29 0.918 0.936
03/10/2014 3.71 2.136 11.25 13.39 30.52 5.04 0.367 0.422
03/11/2014 3.44 2.932 8.32 11.23 36.51 3.26 0.352 0.346
03/12/2014 3.31 1.591 9.80 11.40 32.52 3.83 0.247 0.282
03/13/2014 5.34 15.109 22.12 37.23 17.39 8.50 1.087 1.120
03/14/2014 4.76 2.735 13.77 16.50 24.91 11.88 0.595 0.630
03/15/2014 6.98 14.957 17.38 32.34 17.14 10.38 0.893 0.872
03/16/2014 5.90 7.591 14.07 21.67 18.42 9.71 0.738 0.743
03/17/2014 4.71 4.217 12.19 16.30 28.90 7.57 0.502 0.520
03/18/2014 6.93 18.043 23.30 41.36 16.99 8.54 0.921 0.901
03/19/2014 7.74 29.352 24.80 54.04 16.81 10.96 1.228 1.280
03/20/2014 4.12 6.764 19.00 25.77 20.55 13.71 0.777 0.815
03/21/2014 2.57 1.974 10.89 12.85 30.68 15.25 0.423 0.490
03/22/2014 3.37 4.096 12.48 16.58 26.47 15.33 0.505 0.494
03/23/2014 3.22 1.043 9.89 10.93 32.67 12.42 0.510 0.499
03/24/2014 4.68 13.935 21.17 34.76 17.40 12.25 0.832 0.920
03/25/2014 3.52 5.474 15.26 20.76 26.74 7.96 0.530 0.573
03/26/2014 3.20 1.222 10.60 11.83 34.51 7.12 0.325 0.415
03/27/2014 3.15 0.932 8.68 9.62 36.60 6.87 0.398 0.410
03/28/2014 3.17 2.200 8.20 10.40 29.17 2.88 0.239 0.278
03/29/2014 3.52 0.609 6.49 7.10 31.08 1.67 0.253 0.241
03/30/2014 3.18 0.543 4.52 5.07 39.08 3.42 0.129 0.140
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Table D.2: 24 h data from Oakland East.

Date CO NO NO2 NOX O3 PM2.5

01/14/2014 6.02 23.718 26.57 50.30 12.26 9.29
01/15/2014 4.83 14.391 22.80 37.20 18.64 10.88
01/16/2014 5.22 20.750 23.49 44.23 19.54 10.75
01/17/2014 9.35 50.709 36.58 87.30 8.90 20.54
01/18/2014 8.15 33.932 34.84 68.76 7.70 18.00
01/19/2014 8.11 34.655 31.85 66.52 12.74 23.62
01/20/2014 8.71 44.441 38.41 82.85 5.71 21.67
01/21/2014 8.10 47.373 33.13 80.50 7.15 11.88
01/22/2014 6.51 35.105 33.19 68.29 7.30 12.38
01/23/2014 4.28 10.055 23.32 33.37 24.35 24.70
01/24/2014 7.12 23.787 36.65 60.43 8.36 37.62
01/25/2014 6.37 18.323 32.35 50.66 8.74 17.67
01/26/2014 4.66 11.277 24.27 35.55 14.99 14.21
01/27/2014 2.40 3.336 16.30 19.65 17.90 12.12
01/28/2014 2.72 5.909 17.55 23.45 9.50 9.08
01/29/2014 2.23 4.209 14.24 18.45 9.87 5.33
01/30/2014 2.14 3.982 10.14 14.12 23.51 4.54
01/31/2014 3.32 8.952 13.92 22.88 16.95 5.48
02/01/2014 3.16 6.627 15.27 21.91 15.27 5.46
02/02/2014 2.11 2.414 7.66 10.05 25.26 4.38
02/03/2014 3.55 11.405 15.08 26.50 17.48 7.58
02/04/2014 3.93 14.995 18.07 33.05 8.66 6.04
02/05/2014 2.66 7.441 12.32 19.77 18.31 4.79
02/06/2014 2.63 4.491 15.78 20.26 15.03 5.78
02/07/2014 3.24 7.026 17.17 24.20 15.49 6.25
02/08/2014 1.45 0.632 4.37 5.01 26.41 2.17
02/09/2014 1.39 0.541 4.21 4.77 25.18 2.00
02/10/2014 2.36 4.082 15.45 19.54 14.38 3.33
02/11/2014 2.85 5.491 15.97 21.46 13.87 7.00
02/12/2014 3.61 9.773 20.23 30.00 9.21 11.79
02/13/2014 4.40 18.823 20.88 39.71 4.33 10.67
02/14/2014 2.60 9.039 13.28 22.31 9.77 4.04
02/15/2014 2.50 9.677 8.80 18.48 10.21 4.29
02/16/2014 2.79 4.823 12.38 17.20 20.59 6.29
02/17/2014 3.22 10.577 14.89 25.47 13.66 6.29
02/18/2014 4.07 15.073 19.50 34.57 7.70 7.46
02/19/2014 2.67 5.650 16.27 21.91 16.81 5.54
02/20/2014 4.32 18.005 21.18 39.18 8.82 5.61
02/21/2014 3.73 13.857 19.10 32.97 10.33 7.17
02/22/2014 3.09 8.268 13.85 22.12 12.11 8.18
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Table D.2: (continued)

Date CO NO NO2 NOX O3 PM2.5

02/23/2014 3.19 6.364 13.02 19.39 13.11 9.79
02/24/2014 3.97 14.995 19.23 34.23 15.13 11.29
02/25/2014 2.89 3.300 15.38 18.69 23.38 11.27
02/26/2014 2.24 3.627 11.13 14.74 23.15 5.75
02/27/2014 1.60 1.396 7.45 8.86 35.10 3.33
02/28/2014 1.70 1.983 7.86 9.84 34.54 2.79
03/01/2014 1.07 6.074 6.24 12.29 26.35 3.52
03/02/2014 3.000 9.87 8.46 24.55 1.92
03/03/2014 3.35 8.861 20.21 19.85 12.11 5.61
03/04/2014 2.93 6.970 12.53 19.51 16.75 5.71
03/05/2014 2.90 7.757 11.62 19.39 12.98 8.00
03/06/2014 2.04 3.130 10.31 13.45 24.90 6.18
03/07/2014 3.26 9.422 14.93 24.35 13.66 6.38
03/08/2014 4.37 11.743 18.88 30.63 11.40 10.42
03/09/2014 3.30 5.009 17.31 22.30 18.22 9.33
03/10/2014 2.59 4.130 13.67 17.80 27.47 2.67
03/11/2014 2.53 7.565 9.77 17.34 32.06 2.96
03/12/2014 1.97 3.748 9.73 13.45 29.73 2.25
03/13/2014 3.02 12.887 17.83 30.71 19.32 5.71
03/14/2014 2.36 4.239 12.53 16.78 23.21 9.79
03/15/2014 3.13 5.643 15.58 21.22 16.66 8.33
03/16/2014 2.58 4.978 12.29 17.28 19.65 8.38
03/17/2014 1.95 2.817 11.71 14.52 25.34 6.21
03/18/2014 2.90 5.691 15.00 20.70 21.27 6.43
03/19/2014 2.93 4.882 18.01 21.34 23.01 5.57
03/20/2014 3.11 9.878 15.20 25.07 22.24 9.78
03/21/2014 1.85 2.009 10.07 12.08 28.30 12.58
03/22/2014 2.17 2.309 10.63 12.92 26.48 12.17
03/23/2014 2.10 1.657 9.62 11.28 32.23 12.25
03/24/2014 3.74 11.978 20.78 32.77 17.46 12.17
03/25/2014 2.33 5.765 11.50 17.27 25.88 5.08
03/26/2014 1.33 1.017 6.30 7.31 36.93 3.79
03/27/2014 1.82 3.448 9.73 13.16 32.17 7.62
03/28/2014 1.38 2.509 6.97 9.48 28.47 4.67
03/29/2014 1.60 1.370 7.67 9.04 27.38 3.17
03/30/2014 1.69 1.804 7.36 9.17 28.22 4.00
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Table D.3: 24 h data from Laney College.

Date CO NO NO2 NOX PM2.5 BCUV BC6 U F P

01/26/2014 6.71 57.46 65.89 123.4
01/27/2014 2.49 23.03 36.14 59.2 1.277 1.234 32.1
01/28/2014 2.97 23.23 22.69 45.9 7.45 1.245 1.235 34.5
01/29/2014 2.65 23.48 20.42 43.9 6.38 1.111 1.098 39.2
01/30/2014 2.02 10.56 15.71 26.2 6.71 1.284 1.248 28.7
01/31/2014 2.49 8.83 15.94 24.8 9.57 0.833 0.750 20.9
02/01/2014 3.74 16.48 20.15 36.6 5.17 1.065 0.915 22.2
02/02/2014 2.24 1.31 10.07 11.4 4.62 0.697 0.509 12.0
02/03/2014 3.71 16.44 21.54 38.0 7.00 1.251 1.093 23.4
02/04/2014 4.36 18.76 24.52 43.3 7.33 1.410 1.229 27.8
02/05/2014 4.53 19.02 24.51 43.5 6.04 1.339 1.180 31.0
02/06/2014 4.57 15.96 23.93 39.9 7.75 1.496 1.440 26.2
02/07/2014 4.51 16.36 20.89 37.3 8.12 1.639 1.438 30.8
02/08/2014 3.86 4.50 7.51 12.0 1.83 0.377 0.369 16.2
02/09/2014 4.23 4.08 7.11 11.2 3.50 0.472 0.448 12.6
02/10/2014 5.70 22.35 23.81 46.1 6.62 1.854 1.859 31.0
02/11/2014 5.88 26.36 24.59 50.9 9.29 1.601 1.574 29.3
02/12/2014 6.07 15.90 25.92 41.8 12.00 1.392 1.312 27.3
02/13/2014 4.88 26.98 27.04 54.0 9.32 1.966 1.913 28.9
02/14/2014 2.43 23.96 21.51 45.5 5.62 1.843 1.797 29.7
02/15/2014 2.67 18.61 14.19 32.8 6.38 1.174 1.045 16.8
02/16/2014 2.79 6.51 15.06 21.6 5.04 0.566 0.505 18.4
02/17/2014 2.85 11.45 17.25 28.7 5.50 0.867 0.723 16.2
02/18/2014 5.18 29.36 27.71 57.1 15.00 2.150 1.993 26.2
02/19/2014 4.35 13.45 22.61 36.1 6.54 1.328 1.295 24.7
02/20/2014 5.77 28.61 26.75 55.4 10.12 1.873 1.705 25.0
02/21/2014 6.88 41.05 28.46 69.5 10.21 2.445 2.269 36.4
02/22/2014 6.03 18.26 19.53 37.8 10.17 1.235 1.132 16.5
02/23/2014 5.39 7.10 12.17 19.3 8.54 0.728 0.647 10.6
02/24/2014 7.49 33.71 24.07 57.8 11.17 2.220 1.951
02/25/2014 5.41 8.77 19.37 28.1 11.71 1.210 1.175
02/26/2014 5.12 8.87 17.10 26.0 6.52 1.165 1.103
02/27/2014 5.22 9.32 15.99 25.3 5.71 0.997 1.002 31.7
02/28/2014 5.31 6.99 17.30 24.3 3.29 1.061 1.047 23.4
03/01/2014 5.54 2.02 11.24 13.2 2.96 0.431 0.345 11.0
03/02/2014 6.53 4.96 13.08 18.0 5.04 1.008 0.864 16.0
03/03/2014 5.98 19.38 26.38 45.8 6.12 1.917 1.834 34.5
03/04/2014 4.13 6.80 15.46 22.2 3.71 0.823 0.758 16.2
03/05/2014 5.13 25.31 17.57 42.9 9.71 2.158 2.058 32.1
03/06/2014 4.60 12.51 19.64 32.1 9.42 1.397 1.409 28.6
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Table D.3: (continued)

Date CO NO NO2 NOX PM2.5 BCUV BC6 U F P

03/07/2014 4.53 11.41 19.18 30.6 7.92 1.163 1.102 27.2
03/08/2014 6.25 13.70 22.56 36.3 10.21 1.358 1.165 24.0
03/09/2014 6.65 9.94 20.90 30.8 9.12 1.336 1.202 22.2
03/10/2014 5.03 5.87 14.99 20.9 3.83 0.755 0.721 23.1
03/11/2014 4.31 2.77 10.60 13.4 1.58 0.413 0.357 18.0
03/12/2014 4.97 4.28 11.35 15.6 2.17 0.480 0.435 10.9
03/13/2014 4.40 25.92 27.21 53.1 9.74 2.399 2.240 34.9
03/14/2014 3.09 15.10 21.33 36.4 12.38 2.070 1.925 33.5
03/15/2014 4.20 12.37 19.03 31.4 7.38 1.341 1.133 20.1
03/16/2014 4.76 9.29 14.89 24.2 9.46 1.257 0.953 20.2
03/17/2014 3.29 9.90 19.55 29.5 6.79 1.377 1.222 31.1
03/18/2014 4.55 19.39 26.91 46.3 7.92 1.825 1.634 33.5
03/19/2014 5.53 24.92 29.70 54.6 10.58 2.285 1.970 32.1
03/20/2014 4.70 13.69 21.56 35.2 11.48 1.670 1.520 24.8
03/21/2014 4.10 10.43 14.88 25.3 13.92 1.284 1.212 27.8
03/22/2014 4.46 5.62 13.81 19.4 12.79 0.872 0.761 13.9
03/23/2014 4.78 3.19 11.21 14.4 11.12 0.821 0.684
03/24/2014 5.94 10.17 21.79 32.0 10.79 1.352 1.190 25.5
03/25/2014 5.07 13.11 19.35 32.5 6.29 1.603 1.430 28.7
03/26/2014 4.84 11.76 15.20 27.0 6.04 1.362 1.286 28.0
03/27/2014 4.94 10.36 16.11 26.5 8.30 1.437 1.375 31.1
03/28/2014 5.18 14.86 16.13 31.0 8.83 1.977 1.775 34.0
03/29/2014 4.88 5.10 12.33 17.4 4.42 0.843 0.786 16.1
03/30/2014 4.93 3.86 10.83 14.7 3.71 0.547 0.503 20.3
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Table D.4: Diurnal profile, Oakland STP.

Hour WSpeed WDir Temp Press
(LST) (m/s) (0=N) (Celsius) (mbar)

0000h 2.33 232 11.3 1018
0100h 2.32 209 11.1 1018
0200h 2.40 195 10.8 1018
0300h 2.41 182 10.6 1018
0400h 2.51 167 10.5 1018
0500h 2.51 135 10.4 1018
0600h 2.42 144 10.3 1018
0700h 2.47 156 10.4 1018
0800h 2.69 170 11.4 1018
0900h 2.82 186 12.3 1019
1000h 2.99 225 13.0 1019
1100h 3.14 252 13.7 1019
1200h 3.48 268 14.4 1018
1300h 3.95 277 15.1 1017
1400h 4.25 274 15.4 1017
1500h 4.32 269 15.4 1017
1600h 4.06 267 15.1 1017
1700h 3.79 266 14.4 1017
1800h 3.39 272 13.7 1017
1900h 3.26 277 13.1 1017
2000h 3.02 279 12.6 1017
2100h 2.72 267 12.3 1017
2200h 2.43 254 11.9 1018
2300h 2.37 228 11.6 1018
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