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Abstract

Griffiths and Tenenbaum (2006) asked people to make pre-
dictions about the duration or extent of everyday events (e.g.,
human lifespans), and reported that predictions were optimal,
employing Bayesian inference based on veridical prior dis-
tributions. Although the predictions conformed strikingly to
statistics of the world, they reflect averages over many individ-
uals. We constructed a simple, heuristic approximation to the
Bayesian model, one of whose assumptions is that individuals
have access merely to a sample of & instances drawn from the
relevant distribution. We investigated how large k£ would have
to be to explain the magnitude and variability of the group re-
sponse reported by Griffiths and Tenenbaum. Two instances
proved sufficient. Thus, the accuracy of the group response is
achieved by averaging across individuals—a wisdom of crowds
effect (Galton, 1907)—and is consistent with individuals hav-
ing crude and impoverished internal models and simple rea-
soning heuristics.

Keywords: Bayesian models, prediction, wisdom of crowds,
optimality, probabilistic models, heuristics

Introduction

In 1906, Francis Galton was impressed with an event in which
visitors to the West of England Fat Stock and Poultry Exhi-
bition were each asked to write down their individual esti-
mates of the weight of a certain ox. Obtaining the original re-
sponses, Galton noted that the group average (1197 pounds)
was strikingly close to the measured weight of the ox (1198
pounds). This effect, ultimately a reflection of the statisti-
cal law of large numbers, has come to be commonly referred
to as the Wisdom of Crowds effect. (See Surowiecki, 2004,
for a highly readable review.) The present article points out
that this phenomenon can lead to an inflated estimate of the
amount of information individuals possess about real world
distributions.

Griffiths and Tenenbaum (2006; henceforth abbreviated
G&T) evaluated individuals’ ability to make conditional esti-
mates regarding “everyday” domains with which they would
have had some first- or second-hand experience. Some were
commonplace, such as human lifespans and move run times;

others were less so, such as cake baking times and the reigns
of pharaohs. In their study, G&T asked individuals questions
such as

If you were assessing an insurance case for an 18-year-
old man, what would you predict for his life span?

If your friend read you her favorite line of poetry, and
told you it was line 5 of a poem, what would you predict
for the total length of the poem?

If you opened a book about the history of ancient Egypt
to a page listing the reigns of the pharaohs, and noticed
that at 4000 BC a particular pharaoh had been ruling for
11 years, what would you predict for the total duration
of his reign?

If you were calling a telephone box office to book tickets
and had been on hold for 3 minutes, what would you
predict for the total time you would be on hold?

The average responses revealed what G&T termed a “close
correspondence between peoples implicit probabilistic mod-
els and the statistics of the world.” To elaborate, G&T con-
structed a normative prediction based on Bayesian inference
and a veridical prior distribution over the domains in ques-
tion, which G&T were able to obtain from various sources on
the web (e.g., mortality statistics by age).

The normative model yielded an excellent fit to the hu-
man predictions, suggesting that the computations underly-
ing higher-level kinds of judgment and reasoning may have a
statistical sophistication that has often been assumed to be ab-
sent from the domain of higher-order cognition (even though
it is often believed to be present in perceptual inference). We
now describe the G&T analysis in more detail, and then pro-
pose an alternative account, which suggests quite different
conclusions about the nature of higher-level judgment and
reasoning.
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The G&T Analysis

Consider a prediction query of the form, “If a person has lived
to age t.,, What age t,,;4; are they likely to live to?” G&T
modeled human predictions with a theory based on four key
claims:

1. Optimal (Bayesian) inference: Individuals make a predic-
tion for #,,, in accordance with Bayes rule, which speci-
fies the posterior distribution for #,,,,; as:

p(tcur |tt0tal )p(tmtal )
fr p(teur|t)p(7)

p(tmtal |tcur) =

2. Prior distribution: Past real-world experience provides
individuals with a veridical prior distribution over the do-
main in question, p(#). For example, in the case of pre-
dicting human life spans, G&T claim that individuals have
available a distribution that specifies the probability of liv-
ing to age t;51q; for any 4.

3. Likelihood function: Prediction within the Bayesian
framework requires an assumption about how the query
was generated, i.e., how the experimenter selects a value
of t.,-. In the prediction equation, this assumption is cast
as p(teurltiorar). G&T hypothesize that individuals assume
that the experimenter first has in mind a value of #4;, and
then chooses a ., from a uniform distribution over the in-
terval [0,%yrq]. In Tenenbaum and Griffiths (2001), this
assumption is referred to as the size principle.

4. Prediction function: Formulating a scalar prediction
for t;,:4 requires summarizing the posterior distribution,
D(tiorat|teur), in some manner. G&T assume that individ-
uals compute the median of the distribution.

An Alternative Approach:
Reasoning From Samples

Suppose that individuals do not have available veridical prior
distributions over each domain, but can recall merely a sam-
ple of instances of size k that they have encountered or heard
about. Let’s refer to this conjecture as the k-sample assump-
tion. If k is small, each individual has sparse knowledge. For
example, knowing about k = 2 poems that have 5 and 12 lines
total is hardly what one would consider to be a “close corre-
spondence” to the veridical prior distribution, p(f;q), Over
poem lengths, which requires knowledge of the proportion of
all poems that have length ., for all #,,4;.

Even though individuals have sparse knowledge by the k-
sample assumption, the collective mind of the crowd may
have a complete picture of the veridical prior distribution.
Further, the k-sample assumption does not preclude the possi-
bility that individuals reason according to the G&T Bayesian
model, with noisy sample-based prior distribution replacing
the veridical prior distribution.

Our investigation of the k-sample assumption asks two dis-
tinct but related questions. First, how small can k be and

still obtain predictions of comparable accuracy to the G&T
Bayesian model? Second, can the computation of the G&T
Bayesian model—even with the veridical prior distribution
replaced by a small-sample prior distribution—be simplified
by some heuristic algorithm? To anticipate our results, we
find that a heuristic algorithm with k = 2 obtains fits as good
as if not better than G&T. This result suggests a different
perspective on everyday reasoning than the G&T Bayesian
model implies.

The Minimume-of-k-Samples Model

We now elaborate the k-sample assumption into a simple
heuristic model, which we refer to as the minimum —of —k —
samples model, or MinkSamples. Like the G&T Bayesian
model, MinkSamples predicts a quantity #,,, given a value
of the query point, #,,, for some domain. The model may not
have the theoretical elegance of the G&T Bayesian model,
but it is intuitive and directly maps to cognitive mechanisms.

Given a query, MinkSamples posits that an individual first
retrieves a sample of k instances from memory. The model is
neutral as to whether memory retrieval is implicit or explicit.
Of the retrieved samples, only those with values at least as
large as t.,, are relevant to the query. (If the query specifies
a movie has already grossed $20M, then any movie known to
gross less than $20M is irrelevant because it fails to satisfy
the presupposition of the query.) Discarding the irrelevant
samples, the individual reports the minimum value of the re-
maining samples. When all available samples are irrelevant to
the query, the individual ventures a guess that is proportional
to the query point, f.,. (For example, if the query concerns
the total baking duration of a cake that has been in the oven
for 60 minutes, the individual might simply guess 25% above
the current baking time, or 75 minutes.)

Formally, MinkSamples operates as follows:

1. A set of k samples, S = s1,s57,...5¢, is drawn from the prior
distribution of the domain.

2. Irrelevant samples are discarded, forming a new set S’ =
{Si|si > tcur}o

3. If || > 0, the model’s prediction is min; s/.

4. If |S'| = 0, the model’s prediction is a proportion g larger
than the query, i.e., (1 + g)cur.

Methodology

Griffiths and Tenenbaum (2006) reported results from eight
domains: cake baking times (in minutes), terms of U.S. rep-
resentatives (in years), life spans (in years), movie grosses (in
hundreds of million dollars), pharaoh reigns (in years), poem
lengths (in lines), movie run times (in minutes), and waiting
times (in minutes).

For each domain, G&T collected data from over 125 par-
ticipants: 126 participants for cakes, 130 for U.S. represen-
tatives, 197 for life spans, 174 for movie grosses, 191 for
pharaoh reigns, 197 for poems, 136 for movie run times, and
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158 for waiting times. Each participant was queried with five
values of 7., for a domain; for example, the query values for
cake baking times were 10, 20, 35, 50, and 70 minutes.

To obtain data from MinkSamples we performed a sim-
ulation experiment with the same number of simulated par-
ticipants for each query as G&T studied. The procedure
for obtaining a prediction from each simulated participant
is presented above. Tom Griffiths provided us with the em-
pirical prior distributions from six of the domains, obtained
from sources on the world-wide web (see Griffiths & Tenen-
baum, 2006). For the other two domains—wait times and
pharaohs—G&T did not use an empirical prior, but instead
used hypothetical priors—a power-law distribution for wait
times and an Erlang distribution for pharaohs. Each of these
distributions had one free parameter that G&T fit to the hu-
man data. (The Erlang has two free parameters, but one was
constrained such that the mean of the distribution matched
participants’ estimate of the average reign of pharaohs.) Al-
though we could legitimately have set these parameters to ob-
tain the best fit to our model, we instead used the same param-
eters as G&T. The one free parameter of MinkSamples is the
multiplicative guessing factor, g.

G&T summarized the outcome of each experiment by de-
termining the median response of the participants to each
query. We did the same with MinkSamples, yielding a single
prediction from the model for each simulation experiment.
We performed 100 replications of the simulation experiment,
and obtained the mean and standard deviation over replica-
tions of the simulation experiment.

Results

Figure 1 presents results for the eight domains studied by
Griffiths and Tenenbaum (2006). Each graph includes the
median responses of human participants in the G&T exper-
iments (blue squares), predictions from the G&T-Bayesian
model (red dashed lines), and predictions from MinkSamples
with k=2 (i.e., Min2Samples) and g = 0.3 (solid green lines).
The error bars on the human data and on Min2Samples will
be discussed shortly.

To quantify the goodness of fit of each model to the
data, we computed the normalized root mean squared er-
ror (NRMSE) between the models and the data at the query
points, defined as

N2 1/2
Yi(hi m,)) 7 (1)

NRMSE ( Xi(hi —h)?
where h; and m; are the human data and model prediction
for query i. Examining Table 1, Min2Samples achieves a
lower NRMSE than G&T-Bayesian for six of the eight do-
mains, performing worse only on pharaoh reigns and life
spans. Min3Samples also achieves a better fit than G&T-
Bayesian for six of the eight domains, performing worse only
on run times and life spans. MinlSamples (not shown) does
not perform as well as either Min2Samples or Min3Samples.

Where does Min2Samples fail? Although the NRMSE
is higher for Min2Samples than G&T-Bayesian on pharaoh
reigns, it is impossible to see a qualitative difference in per-
formance between the models when examining the graph
(third row, first column) in Figure 1. G&T-Bayesian does
come closer than Min2Samples to human data for query
points 7., = 1,7,11, but as the error bars suggest, these are
the least reliable data. (More on the error bars shortly.) More-
over, the predictions of G&T-Bayesian for this particular data
set were based not on a veridical prior distribution, but on
a hypothetical prior distribution constructed by G&T. G&T
found that their model produced a poor fit to the data using
the veridical prior. Consequently, G&T assumed that partic-
ipants did not have much knowledge of pharaoh reigns be-
yond the general shape and mean of the distribution. G&T
therefore elected to use an Erlang distribution with one free
parameter to fit the data. (The Erlang has two free param-
eters, but one was constrained by the mean reign.) We did
not tune the parameter for fits with MinkSamples. There-
fore, G&T-Bayesian had an additional degree of freedom that
MinkSamples did not.

The second domain for which Min2Samples underper-
formed G&T-Bayesian was life spans. Examining the graph
(third row, second column of Figure 1), it is evident that
the poor fit of Min2Samples stems from the rightmost query
point, ¢y, = 96. For t,, = 96, MinkSamples is unlikely
to sample an individual who lived beyond this age; conse-
quently, the model will guess using the g factor, which will
produce a prediction of 124.8 years for the life span. Cer-
tainly participants in the G&T experiment are aware that peo-
ple rarely live to this age, and as a result might lower their
guess. MinkSamples lacks this world knowledge. Because g
has a significant effect on only the final query point, we might
lower g for this domain to reflect general knowledge about
life spans. Reducing g by a factor of ten, Min2Samples out-
performs G&T-Bayesian, shown in Figure 2 and quantified in
terms of NRMSE in column 4 of Table 1.

We emphasize once again that Min2Samples and
Min3Samples outperform G&T-Bayesian on six of eight do-
mains. We discussed the two remaining domains in detail to
discount the concern that MinkSamples shows any patholog-
ical deficiency.

Free Parameters

MinkSamples has one free parameter, g. Although this free
parameter was chosen to fit the human data, it has a rela-
tively weak effect on the model’s predictions, and its effect
is primarily seen for the rightmost query point of each graph,
where the set of samples drawn beyond the query point is
most likely to be empty.

Individual Variability

The key claim of MinkSamples is that each participant rea-
sons from a very small number of examples. Consequently,
response variance among participants should be quite high.
MinkSamples could be ruled out as a candidate explanation
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Figure 1: Human and simulation results on eight everyday prediction tasks. The blue squares indicate median human responses
from the experiments of Griffiths and Tenenbaum (2006). The G&T Bayesian-model prediction is indicated by the dashed red
line. The Min2Samples prediction, with g = 0.3, is indicated by the solid green line. The error bars surrounding the human
data and the Min2Samples predictions at the query points denote £2 standard deviations in experimental outcome. The error
bars for the human data were obtained by G&T via bootstrap sampling; the error bars for Min2Samples were obtained via 100
replications of the simulation experiment.
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Table 1: NRMSE Comparison of G&T-Bayesian and MinkSamples

Domain G&T-Bayesian Min2Samples Min2Samples Min3Samples Min3Samples
with g = .03 with g = .03

Cake Baking 0.3804 0.1455 0.1996

Congressional Terms  0.1960 0.1573 0.1109

Movie Grosses 0.1980 0.1712 0.1706

Movie Run Times 1.0629 1.0004 1.3156

Poem Lengths 0.1489 0.1284 0.1262

Waiting Times 0.0835 0.0503 0.0503

Pharaoh Reigns 0.3301 0.4418 0.3102

Life Spans 0.2572 1.2537 0.1898 1.3067 0.4543

for the data if it produces greater variability than G&T’s par- Life Sp ans

ticipants.

Ideally, we would like to know the inter-participant re-
sponse variance, but this measure was not available in G&T’s
paper or in materials that they provided to us. Instead, G&T
reported a bootstrap estimate of inter-experiment variance.
This estimate indicates the variability one would expect if
the entire experiment were replicated many times. Replicat-
ing the experiment involves obtaining data from 125+ partic-
ipants, and then computing the median of their predictions.
Because G&T use the median, not the mean, as a summary
statistic, the inter-participant variance is not equivalent to the
inter-experiment variance. Nonetheless, it is a close proxy,
and the inter-experiment variance offers insight into the inter-
participant variance. (When one is small, the other is small;
when one is large, the other is large.)

The human data in Figure 1 includes error bars that denote
+2 standard deviations on the inter-experiment distribution,
as G&T estimated by a 1,000-sample bootstrap. We also es-
timated inter-experiment distribution with Min2Samples, and
the Min2Samples predictions at the query points are shown
with error bars that denote 2 standard deviations. Because
simulation studies permit an unlimited supply of simulated
participants, instead of bootstrap sampling a finite set of par-
ticipants, we simply generated new participants for each of
100 replications of the experiment.

As the error bars clearly indicate, the variability of the
human participants is at least as large as that obtained by
MinkSamples. Thus, even though MinkSamples produces
significant inter-participant variability because each response
is based only on k samples, this variability is no larger than
that observed in the G&T human studies.

Discussion

When the Griffiths and Tenenbaum (2006) paper first ap-
peared, its conclusion that everyday reasoning can be cast as
optimal (Bayesian) inference seemed astonishing and radical
to many who learned of the work. Beyond surprise, many
were swayed by the elegance of the work. The research also
had an impact outside the academic community. Consider the
following quote, from The Economist:
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Figure 2: Life span simulation, with g = .03.

“[Griffiths and Tenenbaum)]...put the idea of a Bayesian
brain to a quotidian test. They found that it passes with
flying colors.

The key to successful Bayesian reasoning is ... in having
an appropriate prior, as it is known to the cognoscenti.
This prior is an assumption about the way the world
works—in essence, a hypothesis about reality—that can
be expressed as a mathematical probability distribution
of the frequency with which events of a particular mag-
nitude happen...

With the correct prior, even a single piece of data can be
used to make meaningful Bayesian predictions.

Indeed, one of the most impressive things Dr Griffiths
and Dr Tenenbaum have shown is the range of distri-
butions the mind can cope with. Besides Erlang, they
tested people with examples of normal distributions,
power-law distributions and, in the case of baking cakes,
a complex and irregular distribution. They found that
people could cope equally well with all of them, cakes
included. Indeed, they are so confident of their method
that they think it could be reversed in those cases where



the shape of a distribution in the real world is still a mat-
ter of debate.” (The Economist, 1/5/2006)

The message transmitted by G&T’s work is that individual
minds encode complex prior distributions in domains casu-
ally encountered in daily life, and that individual minds are
Bayesian and utilize these prior distributions to draw com-
plex inferences. In contrast, the present article shows that the
results are quite consistent with a far less dramatic possibil-
ity: individual minds may reason from only a small number
of instances—two or three—and that the mechanisms of rea-
soning may be simple heuristic algorithms.

How can these two perspectives—embodied in the G&T
Bayesian and MinkSamples models—both be consistent with
the data? The answer lies in the wisdom of crowds. Even if
any one individual has very limited knowledge and inference
capabilities, combining estimates over a large population—
greater than 125 in the G&T experiments—allows the popu-
lation to be well characterized from a Bayesian perspective.

Levels of Analysis

A proponent of Bayesian approaches may argue that G&T-
Bayesian is something like what linguists have referred to as
a competence theory, whereas MinkSamples is a performance
theory. That is, MinkSamples is a mechanistic approxima-
tion of the G&T-Bayesian theory. Alternatively, one might
cast the two theories as being at different levels of analysis
in the Marr sense: G&T-Bayesian is a computational level
theory, whereas MinkSamples is an algorithmic level theory.
MinkSamples and G&T-Bayesian are similar, in some sense:
the predictions of the two models for a large-population aver-
age are similar (Figure 1).

Moreover, there is some non-accidental correspondence
between MinkSamples and G&T-Bayesian. MinkSamples
utilizes the heuristic of reporting the minimum value of the
k samples recalled. This heuristic might be viewed as an
approximation to the Bayesian size principle, which biases
the posterior distribution to smaller hypotheses. However,
the heuristic works well only for small k; for large k, the
minimum of a sample will be smaller than the size-principle
weighted median of samples.

If our investigations had found that MinkSamples or some
other sample-based model required, say, k = 20 samples per
individual to match the data, we would not have considered
the sampling account to be a qualitatively different story than
the G&T-Bayesian account. However, when k = 2 samples
per individual accounts for the data, our sense is that the
MinkSamples and G&T-Bayesian accounts have to be viewed
as qualitatively distinct. Certainly, the sort of interpretation
described in the Economist article quoted above would not be
consistent with MinkSamples.

One point that a competence-performance or levels-of-
analysis distinction makes is that the Bayesian formalism is
sufficiently broad that nearly any heuristic or mechanistic ac-
count can be cast in Bayesian terms, given the right set of
assumptions. While an increased awareness of Bayesian rea-
soning is obviously a healthy development in cognitive sci-
ence, an almost religious devotion to this formalism may re-
sult in obscuring important psychological distinctions, and an
obscuring of the important limitations that apply to human
reasoning mechanisms.
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