
UC Berkeley
UC Berkeley Previously Published Works

Title
Parallel implementation and performance optimization of the configuration-interaction
method

Permalink
https://escholarship.org/uc/item/4200p6k4

Authors
Shan, Hongzhang
Williams, Samuel
Johnson, Calvin
et al.

Publication Date
2015-11-15

DOI
10.1145/2807591.2807618

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4200p6k4
https://escholarship.org/uc/item/4200p6k4#author
https://escholarship.org
http://www.cdlib.org/

Parallel Implementation and Performance Optimization of
the Configuration-Interaction Method

Hongzhang Shan
Computational Research Division

Lawrence Berkeley Laboratory
Berkeley, CA, 94720

hshan@lbl.gov

Kenneth McElvain
Department of Physics

University of California, Berkeley
Berkeley, CA 94720

kenmcelvain@me.com

Calvin W. Johnson
Department of Physics

San Diego State University
San Diego, CA 92182

cjohnson@mail.sdsu.edu

Samuel Williams
Computational Research Division

Lawrence Berkeley Laboratory
Berkeley, CA, 94720
swwilliams@lbl.gov

W. Erich Ormand
Department of Physics

Lawrence Livermore Laboratory
Livermore, CA 94551

ormand1@llnl.gov

ABSTRACT
The configuration-interaction (CI) method, long a popular
approach to describe quantum many-body systems, is cast
as a very large sparse matrix eigenpair problem with ma-
trices whose dimension can exceed one billion. Such formu-
lations place high demands on memory capacity and mem-
ory bandwidth — two quantities at a premium today. In
this paper, we describe an efficient, scalable implementa-
tion, BIGSTICK, which, by factorizing both the basis and
the interaction into two levels, can reconstruct the nonzero
matrix elements on the fly, reduce the memory requirements
by one or two orders of magnitude, and enable researchers
to trade reduced resources for increased computational time.
We optimize BIGSTICK on two leading HPC platforms —
the Cray XC30 and the IBM Blue Gene/Q. Specifically, we
not only develop an empirically-driven load balancing strat-
egy that can evenly distribute the matrix-vector multiplica-
tion across 256K threads, we also developed techniques that
improve the performance of the Lanczos reorthogonaliza-
tion. Combined, these optimizations improved performance
by 1.3-8× depending on platform and configuration.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming ; D.2 [Software Engineering]: Metrics—Per-
formance measures

Keywords
BIGSTICK, configuration-interaction, Lanczos, eigenvalue,
reorthogonalization, load balancing, performance, scalabil-
ity

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA
c© 2017 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807618

1. BACKGROUND
Atoms and their nuclei are quantum many-body systems.

We describe such systems by the non-relativistic many-body
Schrödinger equation HΨ(r1, r2, . . . , rA) = EΨ, with

H =

A∑
i=1

− ~2

2M
∇2
i +

∑
i<j

V (|ri − rj |). (1)

While the Schrödinger equation is linear, it is a partial dif-
ferential equation with 6A independent variables (including
spin) for A particles, and is all but impossible to solve for
more than four particles.

The many-body wavefunction is important for many are-
nas. For example there is strong evidence that non-baryonic
dark matter is a significant component of the cosmos [20,
30]. Detection and characterization of exotic particles such
as dark matter often hinge upon their interactions with nu-
clei. As such, the spin-dependent elastic scattering rate is
proportional to the nuclear spin response [15]

aT
2J + 1

|〈Ψ||~Sp ± ~Sn||Ψ〉|2, (2)

where Ψ is the nuclear ground state wave function, and the
double-bars denote a reduced matrix element [13]. The +
sign is for the isoscalar response and − is for isovector, while
aT is the coupling constant between dark matter particles
and nucleons (and is likely different for isoscalar, T = 0 and
isoscalar, T = 1 responses). By measuring the response for
different targets we can in principle determine the value of
aT . Among the possible targets for dark matter detectors
are naturally occurring Xenon [2] and Cesium [17] and could
be used in accelerator or terrestrial experiments [14, 16, 30].
We are applying our optimized BIGSTICK to a large port-
folio of proposed dark matter target isotopes and couplings
in order to identify the most promising candidates. Some
early results will be presented in Section 10.

To calculate the nuclear response, we find approximate so-
lutions to Eq. 1 by rewriting it as a matrix equation. Using
a finite set of basis functions {Φα(r1, r2, . . . , rA)} we expand
the wave function Ψ =

∑
α cαΦα, and solve for the coeffi-

cient cα and the energy E by computing the matrix elements
Hαβ = Φ†αHΦβ and finding the eigenpairs.

We can either choose basis states which are already highly

http://dx.doi.org/10.1145/2807591.2807618

correlated, but of which we need only a few, or we can build
up correlations from many simple basis states. Although
both paths have their advantages, we follow the latter, us-
ing so-called Slater determinants [27, 23], antisymmeterized
products of single-particle states, that is Φα(r1, r2, . . . , rA)
= A φ1(r1) φ2(r2) . . . φA(rA), where A indicates a sum over
all antisymmetric permutations of the coordinates r1, r2,
If the single-particle state {φi(r)} are orthonormal, the re-
sulting Slater determinants are automatically also orthonor-
mal, and one can handle them using fermion creation and
annihilation operators. This approach is often called the
configuration-interaction (CI) method [11, 27, 6, 5, 9]. As
we are most often interested in low-lying eigenpairs, we use
the Lanczos algorithm [33, 9].

This path is not without a price. Many systems require
millions or even billions of basis states for appropriate de-
scription; below we will describe systems with dimensions
up to 9 billion. The resultant matrices are very sparse with
a density of roughly 10−6. Nevertheless, this still leads to
a very large number of nonzero matrix elements: if the di-
mension were 109, there could be more than 1012 nonzero
matrix elements constituting at least O(10) TB of data.
Thus, we have three challenging computational issues: (1)
efficiently finding the location and values of those one-in-a-
million nonzero matrix elements Hαβ ; (2) efficient storage
or recall of those nonzero matrix elements; and (3) efficient
load-balancing when solving the eigenvalue problem.

Although (1) and (3) could be addressed via direct stor-
age of a sparse matrix, either on disk [33, 3], where the per-
formance bottleneck is I/O time, or in DRAM [28], where
the performance bottleneck is the sheer amount of DRAM
needed, we exploit native properties of the physical systems,
namely conservation laws we describe in the next section, to
allow us to ‘factorize’ the problem and retrieve the nonzero
matrix element on-the-fly. Such an approach greatly re-
duces the time spent identifying the nonzero matrix ele-
ments and reduces the memory needed to store the nonzero
matrix elements by a factor of 10 or more. Furthermore fac-
torization allows one to efficiently compute the number of
nonzero matrix elements in a block of work, which in turn
allows one to effectively distribute the work. While sev-
eral other codes utilize similar factorization algorithms [10,
8, 4, 25, 32], we work with the BIGSTICK configuration-
interaction code [19], focusing on efficient load-balancing of
matrix-vector multiplication and of reorthogonalization crit-
ical for BIGSTICK to be successful on the large-scale HPC
platforms.

2. FACTORIZATION IN CONFIGURATION-
INTERACTION CALCULATIONS

The central problem of configuration-interaction calcula-
tions is finding extremal eigenpairs of a large, sparse matrix
H (the Hamiltonian matrix). Due to physical conservation
laws, the matrix H has a block structure we can exploit.
The conservation law we exploit is expressed by Noether’s
theorem in [H,Jz] = 0, where the matrix Jz represents the
component of angular momentum in the z-direction. The
eigenvalues of Jz are highly degenerate, with each eigen-
value labeling a subspace (an irreducible representation or
an irrep in group theory), and because of conservation the
Hamiltonian matrix H is block-diagonal in the irreps of Jz.

It is easy to construct this block-diagonal structure because
the group defined by Jz is Abelian, so that if a system is
composed of several subsystem, each of which is an eigen-
state of Jz, then the composite system is also an eigenstate
of Jz, with its eigenvalue just the sum of the eigenvalues of
the subsystems. In nuclei, we can choose our representa-
tions of each nucleon to be eigenstates of Jz with eigenvalue
mi (also called the magnetic quantum number), and then
we choose our basis to be those states of A particles whose
sum M = m1 + m2 + m3 + . . .mA is fixed; this is called
an M -scheme basis. One can also use the matrix J2, which
is the total angular momentum, to construct the so-called
J-scheme basis. An M -scheme basis is larger in dimension
than a J-scheme basis, sometimes a factor of ten larger, but
is much easier to construct.

We can choose a block structure based upon subsystems
and their Jz eigenvalues at any convenient level. We choose
to describe each basis state as a simple product of a proton
substate (with eigenvalue Mp) and a neutron substate (Mn)
such that M = Mp +Mn. This leads to the concept of fac-
torization [19]. First, given that total M is fixed, if we know
Mp we know the associated Mn = M −Mp. Furthermore,
we can generally assume that all proton substates with a
given Mp not only can, but must combine with all neutron
substates with Mn = M −Mp. This means we do not need
to explicitly represent all the basis states, but only have to
represent the constituent proton and neutron substates, and
keep track of their respective eigenvalues Mp,Mn.

This factorization allows us to reduce the storage of the
elements of the Hamiltonian matrix. Physically, the Hamil-
tonian operator can affect at most two nucleons at a time
(generalizations to three nucleons are possible and have been
implemented, but we leave those out to simplify the discus-
sion). Thus we can classify the elements of the Hamiltonian
as PP (two protons), NN (two neutrons), or PN (one pro-
ton and one neutron); a fourth kind of element are the single-
particle energies or SPE which only contribute to the diag-
onal elements. The elements of the Hamiltonian matrix are
still constrained by the block form dictated by conservation.
So, as PP acts only on protons, neutrons are spectators, Mn

cannot change, and hence Mp cannot change. Thus, while
the entire Hamiltonian matrix is contained within a space
defined by fixed M , the PP part of the Hamiltonian matrix
can only be nonzero within blocks of fixed Mp. The same is
true of course for NN , and there are similar constraints for
PN and SPE.

The information controlling the reconstruction and appli-
cation of the Hamiltonian matrix elements is organized into
uniform data structures called opbundles, used to distribute
the matvec work among the processes. The opbundle data
structure contains information about the type of operation
(PP , NN , etc.), the structure of loops over proton and neu-
tron substates, and number of operations. BIGSTICK con-
tains routines to subdivide opbundles among processes, al-
lowing for improved load balancing at the expense of a slight
increase in computation (an impediment to strong scaling).

3. PARALLEL IMPLEMENTATION
BIGSTICK, following other CI codes, uses the iterative

Lanczos algorithm to compute the low-lying eigenstates. The
algorithm is divided into two steps, the sparse matrix-vector
multiplication (matvec) step followed by the reorthogonal-
ization (reorth) step. Recall, the sparse matrix is never ex-

*
1->1

*
2->1

*
n-1->1

*
n->1

*
1->2

*
2->2

*
n-1->2

*
n->2

*
1->n-1

*
2->n-1

*
n-1->n-1

*
n->n-1

*
1->n

*
2->n

*
n-1->n

*
n->n

Each column is an input fragment with a column
subcommunicator, rows correspond to output fragments

Per Process
copy of input
fragment

+

Per process result
fragments, reduced
to fragment row
communicator root

+

+

+

Blocks
represent a
team of MPI
processes
matched to
block
workload

Figure 1: A schematic diagram of the matrix vector
product flow. Blue lines indicate MPI communica-
tions.

plicitly formed or stored, but is continually reconstructed
on the fly. When coupled with the number of nonzeros, the
matrix-vector multiplication is the most important compu-
tation of the lanczos algorithm. To efficiently parallelize this
operation, one is motivated to evenly distribute the nonzero
Hamilton matrix elements and the Lanczos vectors across
the MPI processes. To fulfill this purpose, the basis is di-
vided into fragments based upon the proton substate eigen-
value Mp and upon a threshold predefined to govern the
efficiency of factorization. Once the basis state vectors are
divided into n fragments, the Hamiltonian matrix will be
divided into n× n blocks correspondingly. Each block (i, j)
includes all the jump operations from fragment j of the in-
put basis state vector to fragment i of the output vector
and the control information is contained in the opbundle
data structures.

We can accurately predict the number of operations in
a block (by operation we mean reconstruction and applica-
tion of a matrix element) from the opbundle information.
The MPI processes will be assigned to these blocks propor-
tionally to the amount of work associated. All processes
assigned to the same block form a team. The operations
and associated data will be evenly distributed among the
team members. Figure 1 shows the MPI processes divided
into a two dimensional array of teams. Each MPI process
now stores only one fragment of the input and output vec-
tors, which is much less than the prior version where every
MPI process kept complete vectors.

New MPI sub-communicators are formed in the block row
and block column directions. The column, or col communi-
cator is used to update the input fragment before beginning
the matrix vector product. After each team computes its
contribution to the output fragment, the row communicator
is used to perform a reduction onto the rank 0 process of the
communicator. An important detail is that the same MPI
processes are assigned rank 0, which we will call the root,
for all sub-communicators they are part of. There are total
n root processes, one from each diagonal block.

The above algorithm using only the number of operations

fragment
root

vector history

⊙

slice level dot
products with
history vectors

⊕

⊕

⊕

⊕

single allreduce with
other fragments to

complete dot
products

allreduce
with other
fragments

⊙

⊙

⊙

subcommunicator
scatter

subcommunicator
gather

⊗ ⊙

⊗ ⊙

⊗ ⊙

⊗ ⊙

 col
broadcast

Figure 2: A schematic diagram of the reorthogonal-
ization flow. Blue lines indicate MPI communica-
tions.

to distribute the work among the processes still causes sig-
nificant load imbalance. Later in Section 7, we will introduce
an empirically-driven load balancing algorithm, which differ-
entiates the types of matrix elements and assigns different
weight to their operation.

Once the matrix vector product step has finished the re-
duction, the next step is to reorthogonalize and normalize
the result. The Lanczos algorithm produces a sequence of
normalized vectors that are mathematically orthogonal to
earlier vectors in the sequence. However, in practical imple-
mentations, the Lanczos vectors often lose their mutual or-
thogonality due to numerical errors. Therefore, a reorthog-
onalization process is needed to maintain the vector orthog-
onality.

To begin the process, the result fragments must be dis-
tributed to a number of MPI processes which will store slices
of the fragments and perform the computations. To simul-
taneously balance the workload and storage requirements of
reorthogonalization, the distribution of slices is done via a
third sub-communicator which we call the reorth communi-
cator. This sub-communicator again shares the same root
as the row and column ones. The member processes are as-
signed to the corresponding fragment in a manner akin to
round-robin but proportionally to the fragment size.

The flow, as seen in Figure 2, is illustrated for one frag-
ment. The root process scatters the data to the slice MPI
processes over the reorth communicator. A slice local dot-
product is computed between the new slice and all the prior
ones. These values are collected and reduced with a single
global allreduce call to produce global dot-products against
all prior vectors. Using the global dot-product results over-
lap is locally removed, the now orthogonalized new vector
is normalized and each MPI process saves its slice of the
vector. To begin the next Lanczos iteration, the slices for
each fragment of the normalized vector are gathered back
to the corresponding fragment root processes and then the
column copies of the fragment are updated via a broadcast
on the col communicator. BIGSTICK will iterate on these
Lanczos iterations until convergence has been reached or a
fixed number of iterations (e.g. 200) has been executed.

Memory capacity is at a premium in BIGSTICK. Dupli-
cating tables among multiple MPI processes on a shared
memory node architecture is inefficient. As such, BIGSTICK
uses OpenMP to maintain parallelism while conserving mem-
ory by sharing the tables used in the construction of matrix
elements. For simple loops, BIGSTICK applies the ”omp
parallel do” directives directly. For complex loops like the
core matvec phase where load balancing is difficult, BIG-
STICK will compute the workload in advance and divide the
work evenly while avoiding write conflicts between threads.
BIGSTICK is developed in Fortran90 and uses both MPI
and OpenMP to implement the parallelization.

4. RELATED WORK
The most closely related work to ours is MFDn [28], which

implements the configuration interaction method by storing
the nonzero matrix elements in memory instead of recon-
structing them on the fly. Its performance has well been
studied on several large-scale HPC platforms. P. Sternberg
et al. described the code changes for MFDn and its improved
performance on NERSC’s XT4 (Franklin) [28]. Since then,
its performance had been studied on different multicore plat-
forms [1]. Recently, the matrix construction part was ported
to the NVIDIA GPU architecture and evaluated on the Oak
Ridge’s XK7 (Titan) [26]. As both BIGSTICK and MFDn
use M -scheme bases, the information in their Hamiltonian
matrices and the eigenpair solutions are identical. The or-
dering of the basis, and thus of matrix elements and of vector
coefficients, are quite different: BIGSTICK groups the basis
by Mp to exploit factorization, whereas MFDn orders the
basis to make distribution of the non-zero elements of H as
uniform as possible.

Other codes, such as OXBASH [3], ANTOINE [10], NA-
THAN [8], NuShellX [4], and EICODE [25], have not been
evaluated or ported to large-scale, distributed-memory par-
allel supercomputers. The preliminary performance of BIG-
STICK on NERSC’s Cray XE6 (Hopper) had been reported
in [19]. Since then, both the code design and the perfor-
mance have been improved substantially. BIGSTICK can
now solve problems with basis sizes exceeding 9 billion.

The design and performance of MPI collective operations,
which are heavily used in BIGSTICK and performance criti-
cal, have been extensively studied. R. Thakur and W. Gropp
described the algorithms used by MPICH [31]. Some specific
implementations on the IBM BG/Q platform have been dis-
cussed in [22]. K. Kandalla et al. discussed how to develop
the topology-aware algorithms for Infiniband clusters [21].
For the Aries network used on the Cray XC30 platform,
N. Jain et al. [18] found that using random job placement
can often avoid hot-spots and deliver better performance.
Similarly, K. Kandalla [7] found that increasing the aver-
age communication distance between nodes may improve
the performance when the system utilization is over 80%.
These results is in contrast to the conventional wisdom that
usually advocates to pack the placement of a job as close as
possible. In our study, we have a similar discovery.

5. EXPERIMENTAL SETUP

5.1 Platforms
In this paper, we evaluate and optimize BIGSTICK per-

formance on two HPC computing platforms.

Table 1: Test Problem Characteristics

Frozen Valence Basis Nonzero
Core Protons Neutrons Dimension Elements

132Cs 100Sn 5 27 1 Billion 2.39× 1012

112Xe 100Sn 4 8 9.3 Billion 1.43× 1013

Edison is a Cray XC30 system located at NERSC [12]. It
is comprised of 5,576 compute nodes, each of which contains
two 12-core Intel Ivy Bridge out-of-order superscalar proces-
sors running at 2.4 GHz, and is connected by Cray’s Aries
(Dragonfly) network. On Edison, the third rank of the drag-
onfly is substantially tapered and, as all experiments which
run in production mode, there is no control over job place-
ment. Each core includes private 32KB L1 and 256KB L2
caches, and each processor includes a shared 30MB L3 cache.
Nominal STREAM [29] bandwidth to DRAM is roughly
103 GB/s per compute node.

Mira is an IBM Blue Gene/Q located at Argonne Na-
tional Laboratory [24]. Mira is composed of 49,152 compute
nodes, each of which includes 16 multithreaded PowerPC
A2 cores for user code and one additional core for operat-
ing system services. Each in-order, dual-issue core runs at
1.6 GHz and supports four threads. Unlike Ivy Bridge, at
least 2 threads per core (32 threads per node) are required
to efficiently utilize the A2 processor; we run with the full
64 threads supported by each node. The cache hierarchy
is very different from the Ivy Bridge processor in that each
core only has a small 16KB L1 cache, while all cores on
a node share a 32MB L2 cache. Nodes are interconnected
using IBM’s high-performance proprietary network in a 5D
torus. The STREAM bandwidth is approximately 26GB/s.

Superficially, a processor on Edison should provide supe-
rior performance and its out-of-order nature mitigates the
complexity of opbundle operation processing. Conversely,
Mira’s 5D torus should provide superior performance on col-
lective operations.

5.2 Test Problems
In this paper, we use two test problems — 132Cs and 112Xe

— listed in Table 1. In both cases, we use a frozen core
of 100Sn. This provides 132Cs with 5 valence protons and
27 neutrons and 112Xe with 4 valence protons and 8 neu-
trons. The dimension of the resultant problems are 1 and
9.3 billion respectively. Effectively, the 112Xe problem has
14 trillion nonzeros. BIGSTICK mitigates the storage and
data movement bottlenecks associated with such large ma-
trices allowing us to run problems for which a stored ma-
trix representation might require 150TB using as few as 32
nodes. Nevertheless, when encoded in opbundles, there can
be as few as about 5000 opbundles for these problems. As
such, this finite, coarse-grained parallelism (opbundles) can
impose an impediment to strong scaling to large concurren-
cies.

Our test problems were selected based on two criteria.
First, they were of an appropriate size for our computational
resources (memory, CPU-hours, etc...). Second, they are
similar to isotopes being proposed for dark matter detector
experiments. Thus, in this paper, we use these isotopes to
improve the performance of BIGSTICK in preparation for
the use of BIGSTICK in the context of nuclear science.

1.0	

10.0	

100.0	

32	 64	 128	 256	 512	 1024	

Ti
m
e	
Pe

r	
It
er
a+

on
	 (s
ec
)	

Number	 of	 Compute	 Nodes	 	

Cray	 XC30	 (132Cs)	

Lanczos	
Matvec	
Reorth	

1.0	

10.0	

100.0	

128	 256	 512	 1024	 2048	 4096	

Ti
m
e	
Pe

r	
Ie
tr
a+

on
	 (s
ec
)	

Number	 of	 Compute	 Nodes	

IBM	 BG/Q	 (132Cs)	

Lanczos	

Matvec	

Reorth	

1.0	

10.0	

100.0	

1000.0	

32	 64	 128	 256	 512	 1024	

Ti
m
e	
Pe

r	
It
er
a+

on
	 (s
ec
)	

Number	 of	 Compute	 Nodes	

Cray	 XC30	 (112Xe)	

Lanczos	 Matvec	 Reorth	
1.0	

10.0	

100.0	

1000.0	

256	 512	 1024	 2048	 4096	

Ti
m
e	
Pe

r	
It
er
a+

on
	 (s
ec
)	

Number	 of	 Compute	 Nodes	

IBM	 BG/Q	 (112Xe)	

Lanczos	 Matvec	 Reorth	

Figure 3: Baseline performance for 132Cs and 112Xe when strong scaling on the Cray XC30 and the IBM
BG/Q. Lanczos iteration time is broken down into Matvec and Reorth time. On the Cray XC30, each node
runs 4 MPI processes with 6 OpenMP threads for 132Cs and 2 MPI processes with 12 OpenMP threads for
112Xe. On the IBM BG/Q, each node runs 4 MPI processes with 16 OpenMP threads for 132Cs and 1 MPI
process with 64 OpenMP threads for 112Xe. Note the log-log scale.

6. BASELINE PERFORMANCE
Before discussing performance optimizations, we present

the baseline strong scaling performance of BIGSTICK us-
ing the 132Cs and 112Xe test problems. Recall, the 112Xe
is roughly an order of magnitude larger. Figure 3 shows
Lanczos time per iteration in the baseline MPI+OpenMP
implementation as a function of the number of nodes on the
Cray XC30 and the IBM BG/Q platforms. Moreover, we
break Lanczos time down into its two major components —
matrix-vector multiplication (matvec) and reorthogonaliza-
tion (reorth).

For the 132Cs problem on the Cray XC30 platform, Lanc-
zos is dominated by matrix-vector multiplications and per-
formance scales very well up to about 512 nodes. At 1K
nodes case, Lanczos times increases substantially. There are
two potential reasons for this spike. First, at this scale,
the load imbalance begins to impede matvec performance.
Second, the reorthogonalization time, which is insignificant
earlier, increases quickly reaching about 40% of the Lanczos
time. Similar performance characteristics is shown for 132Cs
on the IBM BG/Q platform. However, on the IBM BG/Q,
matvec time continues to scale, while reorthogonalization

sees a steady increase in time. At 2K nodes on BG/Q, re-
orthogonalization reaches parity with matvec and dominates
it beyond reaching over 40% of the lanczos computing time
at 4K nodes.

The 112Xe results are shown at the Figure 3(bottom).
Compared with 132Cs, its basis vector size is about 10 times
larger. On both machines, Lanczos is dominated by the
MatVec execution times. Interestingly, there is no spike in
reorthogonalization time on the XC30 while there remains
a steady increase in reorthogonalization time on the BG/Q.
In effect, the 112Xe is larger and is easier to load balance.
This ensures matvec both dominates the execution time and
continues to scale to larger concurrencies.

Generally speaking, node-for-node, the XC30 (Edison) de-
livers 3-5× better performance (and comparable energy) than
the IBM BG/Q (Mira) except for the 1K nodes case. For
problems with substantial indirections and heavy memory
usage, this should come as no surprise as the XC30 has
roughly 4× the DRAM bandwidth.

The remaining focus of this paper is improving the per-
formance and scalability of these machines in particular for
the 132Cs problem.

Table 2: Average time per operation in nanoseconds
by opbundle type, platform, and problem (also used
as empirically-determined weights)

132Cs

SPE PP NN PN(’B’) PN(’F’)

Cray XC30 2.26 1.01 0.38 2.66 0.51
IBM BG/Q 17.20 4.40 2.63 14.00 5.34

112Xe

SPE PP NN PN(’B’) PN(’F’)

Cray XC30 2.01 0.43 0.24 1.25 0.26
IBM BG/Q 17.18 0.93 0.70 2.08 1.40

7. EMPIRICALLY-DRIVEN MATVEC LOAD
BALANCING

Figure 3 demonstrates a jump in matvec execution time
for the 132Cs on the XC30 at 1K nodes. Further analysis re-
veals that this is not only due to communication, but rather
to increased load imbalance.

In BIGSTICK, the matrix-vector multiplication opera-
tions are governed by a data structure called opbundles,
briefly described in Section 2. Opbundles are restricted to
specific fragments of the input and output vectors in matvec.
They are also restricted to a particular kind of operation:
PP,NN, etc. The total number of opbundles of each type
and the number of operations for each opbundle can be com-
puted in advance. BIGSTICK evenly distributes the opbun-
dles over MPI processes based on the number of operations
without considering type.

We observe that for different types of opbundles, the time
to perform a operation can differ substantially. This can be
understood as arising from different ordering of the loops
over proton substates and neutron substates. Such func-
tional heterogeneity can lead to significant execution time
differences and hence load imbalance.

To highlight this imbalance, Table 2 shows the average
time per operation for different types of opbundles in nanosec-
onds (total time by opbundle divided by the number of op-
erations). The usage of OpenMP threads helps to bring
the average time down under 1 nanoseconds. We can see
the average time per operation varies substantially across
the opbundle types (SPE is nearly 7× more expensive than
NN). We may thus develop a load balancing scheme based
on opbundle type. We further refine this scheme by lever-
aging platform-specific information.

Originally, BIGSTICK had tried to incorporate this per-
formance variation into consideration by assigning different
weights for operations from different opbundle types. By
assigning a different weight for each opbundle type, the per-
formance can be improved significantly. However, we dis-
covered that for the PN type, which consumes most of the
matrix-vector multiplication times, assigning one weight is
not sufficient; load imbalance persists, arising from the fact
the operational time jumping from i to f states is not the
same as from f to i. The information in these opbundles
is identical, but again due to loop ordering the timing is
not. Internally these opbundles are labeled as forward (’F’)

1.0	

10.0	

100.0	

32	 64	 128	 256	 512	 1024	

	 M
at
ve
c	
Ti
m
e	
Pe

r	
Ie
tr
a.

on
	

(s
ec
on

ds
)	

Number	 of	 Compute	 Nodes	

Cray	 XC30	 (132Cs)	

No	 Weight	

Weight	

1.0	

10.0	

100.0	

128	 256	 512	 1024	 2048	 4096	

M
at
ve
c	
Ti
m
e	
Pe

r	
It
er
a.

on
	

(s
ec
on

ds
)	

Number	 of	 Compute	 Nodes	

IBM	 BG/Q	 (132Cs)	

No	 Weight	

Weight	

Figure 4: Matrix-vector execution time per iteration
with and without our empirically-determined oper-
ation weights on the Cray XC30 and the IBM BG/Q
for 132Cs. The execution times have been improved
by 30-70%.

versus backwards (’B’). The average time per operation be-
tween these two subclasses can differ by up to 5×.

Based on our performance observations for the execution
time by operation type, we constructed a new series of em-
pirically driven weights (Table 2) for both the XC30 and the
BG/Q running either the 132Cs or the 112Xe problems. The
weights need to be adjusted accordingly if different number
of OpenMP threads per MPI process are used. In effect, one
may profile performance using a limited number of Lanczos
iterations, limited scale, or a suitably general problem, pop-
ulate the weights, then run the full solver.

Using the new weights, Figure 4 highlights the benefit to
matvec execution time from improved load balance on the
132Cs problem on the XC30 and BG/Q. We see that matvec
performance has been improved by 30-70% at all concur-
rencies with similar benefits for 112Xe (not shown). We also
develop a simple metric to measure the load imbalance of the
matvec times across processes. The metric is computed as
a ratio between maximum and average time. Higher values
indicate worse load imbalance across processes. Initially, the
ratio is between 4.3-5.1 and 3.5-5.0 for all concurrency con-
figurations for the 132Cs problem on the XC30 and BG/Q,

respectively. By applying weights, the ratios are reduced
to 1.3-1.8 and 1.4-3.0. There remains significant room for
further improvement.

Although MPI time (reductions and broadcasts) remains
roughly constant across scales, the reduction in local com-
putation in this strong scaling regime has resulted in MPI
time exceeding 55% of the total matvec time. When MPI
dominates, scalability will be inhibited.

8. HYBRID PROGRAMMING EFFECT
Multi- and manycore continue to dominate the HPC land-

scape. At one extreme, one may run one process per core.
Although this obviates thread parallelization, this approach
puts tremendous pressure on the communication library and
network, and in the context of BIGSTICK, duplicates vast
amounts of data. At the other extreme, one may run one
process per node. Unfortunately, this approach can under
utilize the network (a single core might not be capable of sat-
urating the network) and requires extremely efficient thread
parallelization on potentially NUMA architectures. In real-
ity, it is imperative to tune the MPI vs. OpenMP paralleliza-
tion to determine the application- and architecture-specific
optimal balance.

Figure 5 presents Lanczos iteration execution time on the
Cray XC30 and IBM BG/Q platforms as a function of node
concurrency and hybrid programming model configuration.
For a given node concurrency, the hardware resources used
are fixed across all hybrid programming model configura-
tions. That is, on the Cray XC30, the product of MPI pro-
cesses per node and OMP threads per process is always 24
while on the IBM BG/Q, the product is always 64. OpenMP
is implemented inside the processing of opbundles. It is easy
to partition the work to avoid write conflicts within an op-
bundle.

We observe that matrix-vector multiplication (Matvec)
time is relatively insensitive to the choice of threading. This
is true even on the Cray XC30 despite the threat of NUMA
effects when running a single process per node which usually
results in a factor of 2× loss in performance without proper
optimization. We attribute this result partly to the presort-
ing of the data array so that each thread will mostly only
access its own part of the data and partly to the heavy local
computations to generate the matrix element. An advantage
of higher OpenMP parallelism is that the table memory for
the generation of matrix elements is shared. Computation
time being roughly equal would then favor more threads per
process.

For reorthogonalization we observe that execution times
(labeled as Reorth) are clearly sensitive to the number of
processes per node particularly on the IBM BG/Q plat-
forms. The clear result is that running one MPI process
per node (24 OpenMP threads on the Cray XC30 and 64
OpenMP threads on the IBM BG/Q) achieves the best re-
orth performance. The cause is related to BIGSTICK’s code
design. When fewer MPI processes are used, the number
of processes in the subcommunicators tend to be smaller,
but the volume of communication does not change. Such
configurations reward reduced process concurrency by re-
placing explicit messaging with cache-coherent communica-
tion. To be clear, although many MPI libraries are opti-
mized with shared memory implementations, threaded en-
vironments both avoid duplication of data by using a single
copy of shared tables in cache-coherent shared memory, and

0.0	

2.0	

4.0	

6.0	

8.0	

10.0	

12.0	

OMP=6	 OMP=12	 OMP=24	 OMP=6	 OMP=12	 OMP=24	

256	 nodes	 512	 nodes	

La
nc
zo
s	
Ti
m
e	
Pe

r	
It
er
a1

on
	

(s
ec
on

ds
)	

Cray	 XC30	 (132Cs)	

Reorth	 Matvec	

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

OMP=16	 OMP=32	 OMP=64	 OMP=16	 OMP=32	 OMP=64	

512	 nodes	 1024	 nodes	

La
nc
zo
s	
Ti
m
e	
Pe

r	
It
er
a1

on
	

(s
ec
on

ds
)	

IBM	 BG/Q	 (132Cs)	

Reorth	 Matvec	

Figure 5: The hybrid programming effect. On the
Cray XC30, the product of MPI processes per node
and OMP threads per process is always 24 while on
the IBM BG/Q, the product is always 64.

avoid DRAM bandwidth-expensive broadcasts and reduc-
tions on node.

Overall, we found that the best performance is obtained
on the IBM BG/Q when we use one MPI process of 64
OpenMP threads per node. On the Cray XC30, the perfor-
mance differences are more subtle and dependent on node
concurrency. The best result is the combinational effect of
both the matvec and reorth phases and the performance dif-
ference across different combinations is relatively small.

9. REORTHOGONALIZATION
In order to maintain the mutual orthogonality of the Lanc-

zos vectors, reorthogonalization is an essential step to cor-
rect the numerical roundoff errors. As shown in Figure 3,
the reorthogonalization process will become the performance
scaling bottleneck at concurrencies of about 1K nodes. In
this section, we investigate three approaches improving the
performance and scalability of reorthogonalization.

9.1 Process Rank Reordering
As described earlier in Section 3, both the scatter and

gather collective operations are performed inside the reorth

subcommunicator. In the current implementation, the mem-
ber processes are assigned in a manner akin to round-robin
in order to simultaneously balance the workload and storage
requirements of reorthogonalization.

One alternative is to assign processes with contiguous
world ranks to form the reorth communicator group. The ra-
tional behind is that processes with contiguous logical ranks
have a better chance to be automatically mapped to the
same or neighboring physical nodes and achieve better per-
formance. Figure 6 displays the times spent on the reorthog-
onalization phase, labeled “Contiguous”. The times for the
implementation where MPI+OpenMP has been tuned are
labeled as “Tuned MPI+OpenMP”. The results are collected
with the best combination of MPI and OpenMP threads as
discussed in Section 8, i.e., running 1 MPI process with 64
OpenMP threads on each IBM BG/Q node and 2 MPI pro-
cesses with 12 OpenMP threads on each Cray XC30 node.

On the Cray XC30 platform, contiguous assignment deliv-
ers similar performance with the tuned MPI+OpenMP im-
plementation, aside from the one data point for 112Xe (1K
nodes), where reorthogonalization time jumps unexpectedly.
The MPI profiling shows that this sudden jump is caused by
the gather operation. Recent studies [18, 7] on the dragon-
fly network find that contiguous assignment may not be the
best strategy. Our performance results are consistent with
such findings. Conversely, on the IBM BG/Q platform, us-
ing a contiguous assignment of ranks can deliver similar or
better performance for both the 132Cs and 112Xe data sets.
This suggests optimization of the reorthogonalization step
will be platform-dependent.

9.2 Fusing Collectives
Nominally, matvec requires a MPI reduce while reorthog-

onalization requires a MPI scatter. One is motivated to
combine these collective operations via MPI reduce scatter
and thereby defer the reduction. The advantage is that we
can perform the reduction operation directly on the destina-
tion process. Based on the simple, non-contention network
models used to analyze the MPI collective performance [31],
the time taken by MPI Reduce scatter is

(P − 1)α+
P − 1

P
nβ +

P − 1

P
nγ

for long messages using pair-wise exchange algorithm, where
P is the number of MPI processes, α is the latency per
message, β is transfer time per bytes, n is the message size
in bytes, and γ is computation cost per byte to perform the
local reduction operation. The time taken by MPI Reduce
is

2 log(P)α+ 2
P − 1

P
nβ +

P − 1

P
nγ

while for MPI scatter, the time is

log(P)α+
P − 1

P
nβ

The performance of BIGSTICK is most sensitive to the
bandwidth terms due to its large collective message sizes.
If we compare the bandwidth terms of MPI Reduce scatter
with the sum of MPI Reduce and MPI scatter, the former
should improve the performance substantially.

Unfortunately, the MPI reduce scatter can not be directly
applied here. First, different communicators are used for the

reduce and gather operations in BIGSTICK. Secondly, the
MPI function MPI reduce scatter can only scatter the data
based on the process rank in the communicator. It does not
support the displacement parameter as in the MPI Scatter
function to scatter the data based on offsets. The first prob-
lem (different communicators) can be addressed by dupli-
cating the reorth communicator from the row communica-
tor. The potential drawback is that the Lanczos vectors will
not be evenly distributed among all processes. But the dif-
ference should be small and tolerable. To address the sec-
ond problem (displacement parameter), we developed our
own implementation using the pairwise algorithms used by
MPICH [31]. This algorithm requires P −1 steps. At step s,
process with rank r will send data to process mod(r + s, p)
and receive data from process mod(r−s+p, p). The commu-
nicated data is only the data needed for the scattered result
on the process. After process r has received the data, a re-
duction operation will be performed locally with OpenMP
enabled.

Using this new scheme, reorthogonalization execution times
are shown in Figure 6 labeled with “Fusing”. Significant per-
formance improvement has been observed on the Cray XC30.
Compared with the tuned implementation, the reorthogo-
nalization times have been reduced over 50%. Moreover,
the time spent in reductions in the matrix-vector multipli-
cation phase has also been reduced by over 5×. Figure 7
displays the reduction times on the Cray XC30 platform for
the original and fusing algorithms.

On the IBM BG/Q platform, in most cases, we can ob-
serve the explicit advantage of fusing the two collective oper-
ations. However, the performance benefits are much smaller
compared with the Cray XC30 platform, especially for the
132Cs data set when larger number of nodes are used. This
can likely be explained by the performance capabilities of
these two network architectures when performing large col-
lective operations. The more sensitive XC30 sees a large
speedup when collectives are fused and optimized.

9.3 Judicious Parallelization
As one moves to ever higher concurrencies, the matrix-

vector multiplication time generally scales well. However,
the reorthogonalization time saturates, or more than likely,
increases substantially. At sufficiently high concurrency, re-
orthogonalization becomes a bottleneck to overall perfor-
mance.

As this is a strong scaling regime, we choose to forestall
this bottleneck by running reorthogonalization at reduced
concurrency. That is, we will perform the matvec with the
full number of MPI processes, but judiciously choose the
number of MPI processes for the reothogonalizration in or-
der to maximize its performance. In extreme case, we may
use only 1 MPI process in each reorth communicator. Al-
though this will substantially reduce the scatter and gather
time (fewer communicating partners), the size of the Lanc-
zos vectors stored on the MPI processes involved in the re-
orthogonalization will increase correspondingly (as well the
local time to perform the dot products). Ideally, we expect
this algorithm to deliver constant time (or at least propor-
tional to the dot product time). At high concurrencies, this
algorithm will outperform the other algorithms.

Figure 6 displays the times for this approach labeled as
Judicious. On the IBM BG/Q platform, the reorthogonal-
ization times remains nearly constant with increasing con-

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

32	 64	 128	 256	 512	 1024	

Re
or
th
	 T
im

es
	 P
er
	 It
er
a/

on
	

(s
ec
on

ds
)	

Number	 of	 Compute	 Nodes	

Cray	 XC30	 (132Cs)	

Tuned	 MPI+OpenMP	
Con8guous	
Fusing	
Judicious	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

8.0	

128	 256	 512	 1024	 2048	 4096	

Re
or
th
	 T
im

es
	 P
er
	 It
er
a/

on
	

(s
ec
on

ds
)	

Number	 of	 Compute	 Nodes	

IBM	 BG/Q	 (132Cs)	

Tuned	 MPI+OpenMP	
Con:guous	
Fusing	
Judicious	

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

30.0	

35.0	

40.0	

32	 64	 128	 256	 512	 1024	

Re
or
th
	 T
im

es
	 P
er
	 It
er
a/

on
	 	

(s
ec
on

ds
)	

Number	 of	 Compute	 Nodes	

Cray	 XC30	 (112Xe)	

Tuned	 MPI+OpenMP	
Con8guous	
Fusing	
Judicious	

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

256	 512	 1024	 2048	 4096	

Re
or
th
	 T
im

es
	 P
er
	 It
er
a/

on
	

(s
ec
on

ds
)	

Number	 of	 Compute	 Nodes	

IBM	 BG/Q	 (112Xe)	

Tuned	 MPI+OpenMP	
Con8guous	
Fusing	
Judicious	

Figure 6: Reorthogonalization execution time per iteration on the Cray XC30 and the IBM BG/Q for 132Cs
and 112Xe for each algorithm. Observe the platform- and scale-dependent optimal implementation.

0.1	

1.0	

10.0	

100.0	

1000.0	

32	 64	 128	 256	 512	 1024	

Re
du

c&
on

	 T
im

es
	 (s
ec
s)
	

Number	 of	 Compute	 Nodes	

Cray	 XC30	

112Xe	 Original	 112Xe	 Fusing	

132Cs	 Original	 132Cs	 Fusing	

Figure 7: Time spent in matvec’s MPI reduction
on the Cray XC30 platform when using either the
original or collective fusing reorthogonalization al-
gorithms.

currency. Below 1K nodes, our optimized reorthogonaliza-

tion algorithms are not differentiated. However, at extreme
scale, this approach is 2-3× faster. Conversely, on the Cray
XC30, while the reduced parallelization scheme is faster than
the original implementation with tuned MPI+OpenMP at
1K nodes, it is still 2× slower than using the custom fusing
approach. Platform-specific (network topology-specific) al-
gorithms and parallelization schemes are clearly a necessity,
yet an undesirable solution.

10. SCIENCE RESULTS
Nuclei are important laboratories for exploring new physics,

such as dark matter detection, and BIGSTICK and other
nuclear structure codes enable interpretation of those exper-
iments. At the end of a BIGSTICK run the wave functions
for the low lying states can be written to disk and post-
processed to extract cross-sections, decay rates, etc. In the
case of dark matter, we do not know the strength of the cou-
pling between dark matter particles and nucleons, nor even
its character. By conducting experiments with a variety of
different targets we can either determine the coupling or es-
tablish upper limits. As an example, we present in Table 3
the spin response defined in equation (2) for several stable
isotopes used in ongoing dark matter detection experiments;
we choose nuclei with an odd number of nucleons because
they have the largest spin response. Calculations for other
nuclei and other couplings are in progress.

0.00	

1.00	

2.00	

3.00	

4.00	

5.00	

6.00	

7.00	

8.00	

9.00	

1.0	

10.0	

100.0	

1000.0	

32	 64	 128	 256	 512	 1024	

Sp
ee
du

ps
	

La
nc
zo
s	
Ti
m
es
	 P
er
	 It
er
a5

on
	

(s
ec
on

ds
)	

Number	 of	 Compute	 Nodes	

Cray	 XC30	 (132Cs)	

Original	
Op5mized	
Speedup	

0.00	

2.00	

4.00	

6.00	

8.00	

1.0	

10.0	

100.0	

1000.0	

128	 256	 512	 1024	 2048	 4096	

Sp
ee
du

ps
	

La
nc
zo
s	
Ti
m
es
	 P
er
	 It
er
a5

on
	

(s
ec
on

ds
)	

Number	 of	 of	 Compute	 Nodes	

IBM	 BG/Q	 (132Cs)	

Original	
Op3mized	
Speedup	

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

1.0	

10.0	

100.0	

1000.0	

32	 64	 128	 256	 512	 1024	

Sp
ee
du

ps
	

La
nc
zo
s	
Ti
m
es
	 P
er
	 It
er
a5

on
	

(s
ec
on

ds
)	

Number	 of	 Compute	 Nodes	

Cray	 XC30	 (112Xe)	

Original	

Op3mized	

Speedup	

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

1.0	

10.0	

100.0	

1000.0	

256	 512	 1024	 2048	 4096	

Sp
ee
du

ps
	

La
nc
zo
s	
Ti
m
es
	 P
er
	 It
er
a5

on
	

(s
ec
on

ds
)	

Number	 of	 Compute	 Nodes	

IBM	 BG/Q(112Xe)	

Original	
Op4mized	
Speedup	

Figure 8: Lanczos iteration time before and after optimization for 132Cs and 112Xe on the Cray XC30 and the
IBM BG/Q platforms. Observe substantial speedups at scale for the 132Cs problem.

Table 3: Isoscalar and Isovector Spin Response

Isotope Spin Response Basis
Isoscalar Isovector Dimension

127I 0.7087 0.5011 1.3 Billion
133Cs 0.8404 0.7235 0.2 Billion
131Xe 0.5251 0.4627 0.2 Billion
129Xe 0.0005 0.0005 3.1 Billion

11. SUMMARY AND FUTURE WORK
In this paper, we examined the performance and scala-

bility of BIGSTICK, a matrix-free configuration interaction
code. In order to address the observed performance and
scalability bottlenecks, we implemented several optimiza-
tions including empirically-driven load balancing, tuning of
the process vs. thread parallelization, fusing MPI collective
operations, and running some operations at reduced concur-
rency. Figure 8 presents the performance of our ultimate
optimized version compared to the original implementation.
For clarity, we add a third curve to denote the attained
speedup of optimized over original.

On both machines, we eliminate the scaling inflection point
for 132Cs at extreme scale to ensure monotonic strong scal-
ing. On the IBM BG/Q platform, we attain a speedup of

about 2.5-4× for 132Cs and about 1.5× for 112Xe (a problem
size less sensitive to load imbalance). The best performance
is obtained using the fusing algorithm up to 1K nodes. Be-
yond that point, the judicious (reduced) parallelization of
reorthogonalization attains the best performance. On the
Cray XC30 platform, the best performance at all concur-
rencies is obtained by the fusing algorithm. Collectively,
optimization provide a 3-8× speedup for the 132Cs problem
and up to 2.5× for 112Xe (the differences in scalability and
parallel efficiency for 132Cs and 112Xe are attributable to the
differences in their sizes and densities). The IBM BG/Q’s
scaling is substantially impaired beyond 4K nodes as it has
exhausted most of the available coarse-grained (opbundle)
parallelism. Based on these insights we believe one could
probably scale the Cray XC30 to perhaps 2K or 4K nodes.
Nevertheless, we observe that the Cray XC30 at 1K nodes
is up to 2.6× faster than the IBM BG/Q at 4K nodes for
the 132Cs problem.

Stored matrix representations like MFDn will require 1-2
orders of magnitude more memory than BIGSTICK to de-
scribe a system. Whereas BIGSTICK can be sensitive to
load balancing challenges as the cost of an opbundle can
differ by more than 7× within a platform and by more than
10× across platforms, highly-optimized, distributed SpMV
implementations are easier to load balance and scale. BIG-
STICK is very attractive as it can solve large systems with
very few nodes and strong scale to 1000s of nodes. How-

ever, at extreme scale, where network and reorthogonaliza-
tion times dominate, the more easily optimized stored ma-
trix codes will likely be faster. Nevertheless, BIGSTICK’s
memory-efficient representation will allow for solutions to
extreme-scale systems that stored matrix representations
cannot describe.

To further enhance performance and scalability of BIG-
STICK, we will combine our collective fusion and judicious
parallelization techniques. In addition, we will explore al-
ternate mappings of process ranks to fragments in order to
mitigate any tapering in the network and finite bisection
bandwidth.

Finally, as processors like the Knights Landing Xeon Phi
move towards hierarchical memory architectures, the capa-
bility and performance of stored matrix approach will be
increasingly challenged as one cannot store large matrices in
the “fast” memory. We believe the factorization approach
used in BIGSTICK is more amenable to such architectures
as one can fit a representation of the matrix in fast mem-
ory. Moreover, as we have demonstrated, BIGSTICK de-
livers high performance up to 64 threads. We thus believe
it will efficiently implement the matvec by meeting the on-
chip concurrency demands of the KNL processor. We will
thus move BIGSTICK to the KNL-based Cori at NERSC
when available in order to quantify the impacts of hierarchi-
cal memory and substantially higher node and core concur-
rency.

Acknowledgements
This material is based upon work supported by the Ad-
vanced Scientific Computing Research Program in the U.S.
Department of Energy, Office of Science, under Award Num-
ber DE-AC02-05CH11231 (Shan and Williams), and by the
U.S. Department of Energy, Office of Science, Office of Nu-
clear Physics, under Award Numbers DE-AC02-05CH11231
(McElvain), DE-FG02-96ER40985 (Johnson), and Contract
No. DE-AC52-07NA27344 and Work Proposal No. SCW0498
(Ormand). This research used resources of the National En-
ergy Research Scientific Computing Center (NERSC), which
is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231, and
the Argonne Leadership Computing Facility, which is sup-
ported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-06CH11357.

12. REFERENCES
[1] H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P.

Vary. Improving the scalability of a symmetric
iterative eigensolver for multi-core platforms.
Concurrency and Computation: Practice and
Experience, 26:2631–2651, 2014.

[2] E. Aprile and T. Doke. Liquid xenon detectors for
particle physics and astrophysics. Rev. Mod. Phys.,
82:2053–2097, Jul 2010.

[3] B. Brown, A. Etchegoyen, and W. Rae. Computer
code OXBASH: the Oxford University-Buenos
Aires-MSU shell model code. Michigan State
University Cyclotron Laboratory Report No. 524, 1985.

[4] B. A. Brown and W. D. M. Rae. The Shell-Model
Code NuShellX@MSU. Nuclear Data Sheets,
120:115–118, 2014.

[5] B. A. Brown and B. H. Wildentha. Status of the
nuclear shell model. Annual Review of Nuclear and
Particle Science, 38:29–66, 1988.

[6] P. Brussard and P. Glaudemans. Shell-model
applications in nuclear spectroscopy. North-Holland
Publishing Company, Amsterdam, 1977.

[7] R. D. Budiardja, L. Crosby, and H. You. Effect of
Rank Placement on Cray XC30 Communication Cost.
The Cray User Group Meeting, 2013.

[8] E. Caurier, G. Martinez-Pinedo, F. Nowacki,
A. Poves, J. Retamosa, and A. P. Zuker. Full 0~ω shell
model calculation of the binding energies of the 1f7/2
nuclei. Phys. Rev. C, 59:2033–2039, 1999.

[9] E. Caurier, G. Martinez-Pinedo, F. Nowacki,
A. Poves, and A. P. Zuker. The shell model as a
unified view of nuclear structure. Reviews of Modern
Physics, 77:427–488, 2005.

[10] E. Caurier and F. Nowacki. Present status of shell
model techniques. Scopus Preview, 30:705–714, 1999.

[11] C. J. Christopher. Essentials of Computational
Chemistry, pages 191–232. John Wiley & Sons, Ltd.,
ISBN 0-471-48552-7, 2002.

[12] www.nersc.gov/systems/edison-cray-xc30/.

[13] A. R. Edmonds. Angular momentum in quantum
mechanics. Princeton University Press, 1996.

[14] J. Ellis, A. Ferstl, and K. A. Olive. Constraints from
accelerator experiments on the elastic scattering of
CMSSM dark matter. Physics Letters B, 532(3-4):318
– 328, 2002.

[15] J. Engel, S. Pittel, and P. Vogel. Nuclear physics of
dark matter detection. International Journal of
Modern Physics E, 1(01):1–37, 1992.

[16] M. W. Goodman and E. Witten. Detectability of
certain dark-matter candidates. Phys. Rev. D,
31:3059–3063, Jun 1985.

[17] P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher,
B. Estey, and H. Muller. Viewpoint: More power to
atom interferometry. Physics Review Letters,
114:100405, 2015.

[18] N. Jain, A. Bhatele, N. J. W. Xiang Ni, and L. V.
Kale. Maximizing Throughput on a Dragonfly
Network. The International Conference for High
Performance Computing, Networking, Storage and
Analysis, 2014.

[19] C. W. Johnson, W. E. Ormand, and P. G. Krastev.
Factorization in large-scale many-body calculations.
Computer Physics Communications, 184:2761–2774,
2013.

[20] G. Jungman, M. Kamionkowski, and K. Griest.
Supersymmetric dark matter. Physics Reports,
267(5-6):195 – 373, 1996.

[21] K. Kandalla, H. Subramoni, A. Vishnu, and D. K. D.
Pandaj. Designing Topology-Aware Collective
Communication Algorithms for Large Scale InfiniBand
Clusters: Case Studies with Scatter and Gather. IEEE
International Symposium on Parallel and Distributed
Processing, Workshops and Phd Forum (IPDPSW),
2010.

[22] S. Kumar, A. Mamidala, P. Heidelberger, D. Chen,
and D. Faraj. Optimization of MPI collective
operations on the IBM Blue Gene/Q supercomputer.

www.nersc.gov/systems/edison-cray-xc30/

International Journal of High Performance Computing
Applications, 28:450–464, 2014.

[23] D. A. B. Miller. Quantum Mechanics for Scientists
and Engineers. Cambridge University Press, ISBN-13:
978-0521897839, 2008.

[24] http:
//www.alcf.anl.gov/user-guides/mira-cetus-vesta/.

[25] https://www.jyu.fi/fysiikka/en/research/accelerator/
nuctheory/Research/Shellmodel.

[26] H. Potter, D. Oryspayev, P. Maris, M. Sosonkina, and
et. al. Accelerating Ab Initio Nuclear Physics
Calculations with GPUs. Proc. ’Nuclear Theory in the
Supercomputing Era - 2013’ (NTSE-2013), 2014.

[27] I. Shavitt. The history and evolution of configuration
interaction. Molecular Physics, 94:3–17, 1998.

[28] P. Sternberg, E. Ng, C. Yang, P. Maris, J. Vary,
M. Sosonkina, and H. V. Le. Accelerating
configuration interaction calculations for nuclear
structure. The Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, 2008.

[29] www.cs.virginia.edu/stream/ref.html.

[30] L. E. Strigari. Galactic searches for dark matter.
Physics Reports, 531(1):1 – 88, 2013. Galactic searches
for dark matter.

[31] R. Thakur and W. Gropp. Improving the Performance
of Collective Operations in MPICH. 10th European
PVM/MPI User’s Group Meeting, 2003.

[32] J. Toivanen. Efficient matrix-vector products for
large-scale nuclear shell-model calculations.
http:// inspirehep.net/ record/ 728378/ , 2006.

[33] R. R. Whitehead, A. Watt, B. J. Cole, and
I. Morrison. Computational Methods for Shell-Model
Calculations. Adv. Nuclear Phys. Vol. 9, pp 123-176,
1977.

http://www.alcf.anl.gov/user-guides/mira-cetus-vesta/
http://www.alcf.anl.gov/user-guides/mira-cetus-vesta/
https://www.jyu.fi/fysiikka/en/research/accelerator/nuctheory/Research/Shellmodel
https://www.jyu.fi/fysiikka/en/research/accelerator/nuctheory/Research/Shellmodel
www.cs.virginia.edu/stream/ref.html
http://inspirehep.net/record/728378/

	Background
	Factorization in configuration-interaction calculations
	Parallel Implementation
	Related Work
	Experimental Setup
	Platforms
	Test Problems

	Baseline Performance
	Empirically-Driven MatVec Load Balancing
	Hybrid Programming Effect
	Reorthogonalization
	Process Rank Reordering
	Fusing Collectives
	Judicious Parallelization

	Science Results
	Summary and Future Work
	References

