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Group Decisions with Multiple Criteria¤

Manel Baucellsy Rakesh K. Sarinz

January 9, 2002

Abstract

We consider a decision problem where a group of individuals evaluates multi-

attribute alternatives. We explore the minimal required agreements that are

su±cient to specify the group utility function. A surprising result is that, under

some conditions, a bilateral agreement among pairs of individuals on a single

attribute is su±cient to derive the multi-attribute group utility. The bilateral

agreement between a pair of individuals could be on the weight of an attribute,

on an attribute evaluation function, or on willingness to pay.

We investigate cases in which each individual's utility function is either

additive or multiplicative. In the additive case, the group utility can be rep-

resented as the weighted sum of group attribute weights and group attribute

evaluation functions. In the multiplicative case, the group utility takes a more

complex form.

1 Introduction

In this paper, we focus on group decisions where a group of individuals or a com-
mittee collectively shares the responsibility for choosing among alternative proposals
for action. Individual or committee members may have di®erent views on the rela-
tive merit of each proposal. Therefore, the problem boils down to how one should

¤The authors are thankful to the seminar participants at Duke University, The Wharton School,
INSEAD (Singapore), and Informs Hawaii for several helpful suggestions.

yIESE Business School and the Fuqua School of Business
zThe Anderson School at UCLA
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aggregate the views/preferences of the committee members to arrive at a preferred
decision.

Arrow (1963) and Sen (1970) have shown that, in general, there is no procedure
for combining individual rankings into a group ranking without violating some rather
reasonable assumptions. Interpersonal comparison of preferences is the Achilles Heel
in escaping from the trap that Arrow's Impossibility Theorem has so eloquently laid
out. In the spirit of Keeney and Rai®a (1976), we will assume that individuals are
willing to perform interpersonal comparisons of utility or welfare.

Our contribution is to provide explicit ways to elicit the utility comparisons to
derive the group utility. We show that it is possible to restrict these utility com-
parisons at a pair level. Our strategy is to seek compromise and agreement on a
chosen parameter from the two individuals comprising the pair. Thus, for example,
two individuals who attach di®erent importance weights to an attribute of interest
are asked to compromise and to come up with an agreement on their common weight
for the attribute in question. We show that a bilateral agreement, when elicited in a
systematic way, is su±cient to arrive at the joint utility for the pair of individuals.
We will make it clear how some chosen bilateral agreements de¯ne the \pair utility"
and how (n¡ 1) pair utilities determine the group utility, where n is the number of
individuals in the group. Therefore, at least in theory, there is never a need to put
more than two individuals together at a time to derive the group utility from individ-
ual utilities. We use the typical divide and conquer strategy that is so often employed
in decision analysis to decompose and simplify a complex problem. In simple terms,
our approach can be described as follows.

Given the individual utility function u1; :::; un, a series of bilateral agreements not
to exceed (n ¡ 1) in total, are used to derive the group utility function uN . Given
a particular set of alternatives, the alternative with the highest value of uN (or the
highest expected value of uN) is chosen.

Our interpretation of individual utilities are individual preferences that satisfy
the usual rationality requirements (von Neumann-Morgenstern utility). For organi-
zational decisions, an individual may represent a department such as Marketing or
R&D. The individual would presumably re°ect the preferences of the department.
Marketing, for example, may believe that an early entry to market (attribute: time
to market entry) is more important, but R&D may believe that the features of the
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introduced product (attribute: product features) is a more important attribute. The
group utility (or company utility in this case) is derived by forming bilateral agree-
ments that seek a compromise on the attribute weight. Thus, depending on the
context of the decision, individual utility may re°ect an impact on oneself, or an
impact on the department or constituency that the individual represents. Keeney
and Rai®a (1976) and Sen (1977) have noted that there is no single group decision
problem; instead, there are several group decision problems each requiring a di®erent
interpretation of individual utilities and of the aggregation procedure that is used
to derive the group utility. Our approach is consistent with these alternative group
decision problems. We, however, require that individuals are able to specify their
own utilities or the utilities of the constituency they represent precisely and that a
given pair of individuals can reach an agreement on some chosen parameter (e.g., the
weight of an attribute or the utility of an outcome). Technically, we have assumed
that individual preferences as well as pair preferences are complete. The latter as-
sumption implies that bilateral agreements can always be reached. Coalition (n ¸ 3)
or group preferences are not assumed to be complete; instead, these are derived to
be complete.

Consider a simple example with n = 3. Suppose ui (x0) = 0, ui (x¤) = 1; i = 1
to 3, where x0 and x¤ are respectively the least preferred and the most preferred
consequences. For an intermediate consequence, x, let u1(x) = 0:25 and u2(x) = 0:45.
To reach a bilateral agreement, Individuals 1 and 2 must agree on a \pair utility"
for x in the range (0:25; 0:45) that represents the pair preference, say u12(x) = 0:35.
The bilateral agreement between Individuals 1 and 2 means that they have jointly
agreed that x is indi®erent to a lottery that yields x¤ with a 0.35 chance and x0

with a 0.65 chance, even though their individual indi®erence probabilities were 0.25
and 0.45 respectively. We will show that once an agreement is reached on the utility
of a single outcome, the complete agreement between Individuals 1 and 2 can be
inferred regarding all other possible outcomes. For multidimensional outcomes, x,
the indi®erence probability may be di±cult to elicit. We will show that under some
simplifying assumptions on the structure of utility function, a bilateral agreement on
one parameter (e.g., weight of an attribute) may be su±cient to determine the joint
utility for the pair of individuals.

Returning to our example, now suppose u3(x) = 0:35. We now need either a
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bilateral agreement between Individuals 1 and 3 or between Individuals 2 and 3,
but not both. Let us suppose u13(x) = 0:3. So for n = 3, we have two bilateral
agreements: one between Individuals 1 and 2 and the other between Individuals 1
and 3. These two bilateral agreements are su±cient to derive the group utility. In
our example, u123 has to be 1

3u1 +
1
3u2 +

1
3u3. The key assumption that permits us to

derive the entire pair utility function from the bilateral agreement on the utility of a
single consequence, and the group utility function from (n¡ 1) pair utility functions,
is the Extended Pareto Principle. Simply stated, the Extended Pareto Principle
requires that if a coalition, A, prefers x to y and another disjoint coalition, B, also
prefers x to y, then the coalition A [ B must prefer x to y. It is trivial to see that
for n = 2 (A = f1g; B = f2g) the Extended Pareto Principle particularizes to the
well known Pareto Principle that is the cornerstone of most social welfare theory. In
Section 2, we summarize some key results that show how bilateral agreements among
(n ¡ 1) pairs of individuals are enough to derive the group utility function. The
theoretical support for the results in this section is based on Baucells and Shapley
(2000).

In the remainder of this paper, we consider the multiattribute decision problem
where the consequences or the outcomes of a decision are measured using multiple
attributes. Examples include location of facilities, selection of a candidate and choice
of a new product or process technology (for numerous applications see Keeney and
Rai®a, 1976). In Section 3, we assume that the individual multiattribute utility func-
tions are additive (i.e., they can be expressed as the weighted sum of single-attribute
evaluation functions (attribute utilities)). In Subsection 3.1, we examine the special
situation where all members of the committee agree on single-attribute evaluation
functions, but di®er in the weights given to each attribute (homogeneous attribute
evaluation). In Subsection 3.2, we treat the general case where the individuals di®er
on both the single-attribute evaluation functions as well as on the weights (hetero-
geneous attribute evaluation). A surprising result is that individuals' weights and
attribute utilities can be used to derive group weights for the attributes and group
attribute utilities. Thus, group utility can be expressed as a weighted sum of group
attribute utilities. These group attribute utilities are themselves weighted sums of
the individual attribute utilities. Clearly, a series of bilateral agreements are needed
to derive group utility from individual utilities. Interestingly, agreements regarding
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all attribute weights and attribute utilities is not necessary. In fact, an agreement on
the weight of any one chosen attribute, or on the trade-o® between two attributes,
may be su±cient to derive the multiattribute pair utility. For example, suppose time
to market entry, product features, product performance, product reliability and cost
are relevant attributes for a new product introduction decision. Marketing is willing
to pay ten million dollars to accelerate market entry by six months; whereas R&D
prefers that the additional resources be spent on enhancing product features and
is willing to pay only ¯ve million dollars to facilitate early market entry. A bilat-
eral agreement between the two departments may be to pay eight million dollars for
an earlier introduction of the product. Given individual utilities of Marketing and
R&D, the one bilateral agreement on trade-o®s is su±cient to derive their joint util-
ity. Consistency with the Extended Pareto Rule and the additive structure of the
multiattribute utility ensures that the agreement on the trade-o®s among the other
remaining attributes (say cost and product features) cannot be arbitrary.

In Section 4, we consider the case where individual multiattribute utilities are
multiplicative. In the homogeneous case (individuals agree on attribute utilities, but
not on weights), the group utility takes the multiplicative form and the group multi-
plicative scaling constant is a weighted sum of individuals' multiplicative constants.
In the heterogeneous case (individuals disagree on both attribute utilities and on
weights), a group utility can be obtained through bilateral agreements. The struc-
ture of the group utility, however, takes a more complex form and does not simplify
to an easy-to-interpret multiplicative form.

If a large number of individuals are involved in a group decision, pairwise com-
parisons may be too onerous. Section 5 shows how our framework can be extended
to consider coalition agreements. Finally, in Section 6, we discuss some possible ex-
tensions of the present work. We begin by laying out the formal framework for our
approach.

2 The Formal Framework

2.1 Notation

Consider a set of individuals N = f1; 2; :::; ng, with n ¸ 2, who must jointly choose
from a set of alternatives. The outcome of a decision is evaluated on m attributes
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and therefore an outcome x = (x1; :::; xm) is a point in the outcome space X =
X1 £X2 £ :::£Xm, where Xa, a = 1 to m, is the set of possible outcomes on the ath

attribute. We assume X is ¯nite. Each individual i's utility ui is assumed to satisfy
von Neumann-Morgenstern (1947) rationality requirements, ui : x! Re. The choice
set eX from which the individuals and the group choose a preferred course of action
is the set of all probability distributions over X. We will use symbols x, y, z, etc. to
denote both the deterministic outcomes as well as probability distributions over X.
The expected value of ui is used to determine individual i's preference over probability
distributions or lotteries over X. Though not necessary, we will often assume that
there is the least preferred consequence, x0, and the most preferred consequence, x¤,
for all individuals and we can therefore set ui(x0) = 0, ui(x¤) = 1, and i = 1 to n.

It is clear that we have assumed that the preference relation %i for individual
i is complete and satis¯es von Neumann-Morgenstern axioms. A coalition S is a
subset of N . We will assume that preferences of each coalition S½N also satisfy von
Neumann-Morgenstern axioms, except completeness (x % y or y % x) is replaced
by the much weaker condition of re°exivity (x % x). Thus, a coalition will have
a partial ordering or incomplete preferences over X. Incomplete preferences merely
imply that the coalition is sometimes unable to express the direction of preference
for certain pairs of alternatives. Though we do not assume from the outset that
group preferences are complete, the assumption of completeness of individual and
pair preferences together with the Extended Pareto Principle will ensure that group
preferences are also complete. For a more thorough discussion and development of
incomplete preferences see Aumann (1962; 1964), Dubra and Ok (1999), Sen (1970)
and Baucells and Shapley (2000).

2.2 The Extended Pareto Principle

The Pareto Principle states that if each individual prefers x to y, then the group must
prefer x to y. A natural extension of this principle is to require that if each disjoint
coalition A and B prefers x to y, then the coalition A[B must prefer x to y. Thus if
f1; 2g and f3; 4; 5g each prefer x to y, then the combined subgroup f1; 2; 3; 4; 5g must
prefer x to y. We use the following de¯nition of the Extended Pareto Rule (EPR).

A collection of preferences %S, S µ N , satis¯es the Extended Pareto Rule (EPR)
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if for all disjoint coalitions A and B, and for all x; y 2 eX,

x %A y; x %B y =) x %A[B y; and (1)

x ÂA y; x %B y =) x ÂA[B y: (2)

It is clear that for n = 2, the EPR reduces to exactly the well-known Pareto Rule.
An implication of the EPR is that if we break a group into subgroups and if each
subgroup prefers x to y, then the group as a whole should prefer x to y. We will use
the EPR to derive group preferences from pair preferences.

2.3 Pair Preferences

Consider two individuals i and j who are endowed with utility functions ui and uj,
respectively. The joint utility of the pair fi; jg, denoted uij, is the convex combination
of ui and uj if the pair preference is complete and the Extended Pareto Rule holds.
The following theorem, when applied to a pair of individuals, provides the desired
result.

Theorem 1 Let A and B be two disjoint coalitions with complete preferences. If the
preference for the coalition A [ B is complete and the Extended Pareto Rule holds,
then there exists 0 < ® < 1 such that %A[B is represented by uA[B = ®uA+(1¡®)uB.

Proof. This is a well-known result after Harsanyi (1955)'s seminal work. A proof
is given in Baucells and Shapley (2000).

An immediate implication of Theorem 1 is that uij = ®jiui + (1 ¡ ®ji )uj for some
®ji 2 (0; 1). The parameter ®ji is to be determined through a bilateral agreement
between individuals i and j. We reiterate that a bilateral agreement requires that
the two individuals are able to perform interpersonal comparisons of utility. We now
present an example of how ®ji can be elicited. Clearly, other procedures are possible.

Choose a consequence x so that ui(x) 6= uj(x) and without loss of generality let
ui(x) < uj(x). The usual von Neumann-Morgenstern interpretation of utility implies
that if individual i is indi®erent between x for sure and the binary lottery yielding x¤

(the best outcome) with a probability pi and yielding x0 (the worst outcome) with
a probability (1 ¡ pi), then ui(x) = pi. Similar interpretation holds for determin-
ing uj(x) = pj. To elicit uij(x) through a bilateral agreement, ¯nd a probability

7



pij 2 (pi; pj) so that, as a pair, i and j are indi®erent between x for sure and the
lottery yielding x¤ with a pij chance and x0 with a (1 ¡ pij) chance. A compromise
between individuals i and j is needed to reach the common indi®erence probability,
pij . We note that pij cannot take the extreme values of the interval because such an
assignment (pij = pi or pij = pj) would violate strong condition 2 of the Extended
Pareto Rule. To derive ®ji from pij , observe that

pij = uij(x) = ®jiui(x) + (1 ¡ ®ji )uj(x);

so that

®ji =
pj ¡ pij
pj ¡ pi

: (3)

Once ®ji is determined using (3), uij(x), x 2 X is completely speci¯ed. A com-
promise or bilateral agreement on the utility of one chosen consequence, therefore,
determines the entire utility function for the pair (i; j). It may not be immediately
clear why a compromise on the utility of one outcome predetermines the compromise
on the utility of other outcomes. We show by means of an example that the Ex-
tended Pareto Principle will be violated if the compromise on the utility of another
outcome y is not restricted in accord with the original compromise on the utility of
the outcome x.

Consider a setting with four monetary consequences of $0, $200, $500 and $1,00.
The individual utilities for these outcomes, normalized so that u12(0) = 0 and
u12(1000) = 1, are given below.

outcome $0 $200 $500 $1; 000
u1 0 0:20 0:50 1
u2 0 0:40 0:75 1

Assume that Individuals 1 and 2 agree that u12(500) = 0:55. Using (3) yields
®21 = 0:8. Now, suppose we choose the outcome $200 and seek a compromise to de-
termine u12(200). Notice that in order to be consistent with the original compromise
(u12(500) = 0:55), u12(200) must be 0:24 = 0:8u1(200)+0:2u2(200): any other agree-
ment, say u12(200) = 0:32, produces a violation of the Pareto Principle. To show
this, we will construct two lotteries L1 and L2 such that L1 Â1 L2, L1 Â2 L2, but
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L2 Â12 L1 - a violation of the Extended Pareto Principle. The lotteries L1 and L2
and the corresponding expected utilities are given below.

$0 $200 $500 $1; 000
L1 40% 0% 60% 0%
L2 13% 75% 0% 12%

EU1 EU2 EU12
L1 0:30 0:45 0:33
L2 0:27 0:42 0:36

Thus, in the above example both Individuals 1 and 2 prefer L1 to L2. If, however,
we choose u12(200) = 0:32 and u12(500) = 0:55, then the pair f1; 2g prefers L2 to
L1. The violation of the Pareto Principle vanishes if u12(200) is chosen to be 0:24 as
implied by the original agreement on u12(500).

In theory, agreement on the utility of one outcome is su±cient to completely
specify the pair utility. In practice, however, one should seek compromises on addi-
tional points and revisit the agreements to ensure consistency. Further, the ranking
of alternatives implied by the pair utility should be displayed. Such a ranking may
make it vivid whether either individual has unknowingly given up too much in the
compromise. If the individuals do not ¯nd the ranking satisfactory, the agreement
point should be revisited.

So far, we have shown how the pair utility uij can be derived from a bilateral
agreement. We now discuss how the utility of a three-person coalition can be obtained.

2.4 Three Individuals And \No Arbitrage" In The Utility
Comparison Rates

A bilateral agreement between Individuals 1 and 2 yields u12. Similarly, a bilateral
agreement between Individuals 2 and 3 yields u23. We now show that these two
bilateral agreements are su±cient to derive u123 (group utility for the case n = 3).
We could of course choose either u12 and u13 or u13 and u23 to derive u123. Recall
that uij = ®jiui + (1 ¡ ®ji )uj. Alternatively, we may write uij = (ui + ±jiuj)=(1 + ±

j
i ),

where the \utility comparison rate" ±ji = (1 ¡ ®ji )=®ji 2 (0;1). In the alternative
expression for uij, the parameter ±ji is the utility comparison rate between i and j:
±ji units of i's utility are expressed in the same units as one unit of j's utility. The
order of the subscripts and superscripts is important because ±ij = 1=±ji . Henceforth,
we use ±ji to denote the utility comparison rate associated with a bilateral agreement
between individuals i and j.
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For a geometric illustration of the assertion that u12 and u23 are su±cient to
determine u123, refer to Figure 1. If the outcomes in X are ¯nite, then ui can be
thought of a vector of utilities or a point in a vector space. Under this interpretation,
note that u12 is a convex combination of u1 and u2 and, therefore, lies on the line
segment connecting u1 and u2. Similarly, u23 lies on the line segment connecting u2
and u3. Now apply Theorem 1 to the partition f12; 3g. So u123 must lie somewhere
on the line segment connecting u12 and u3. Apply Theorem 1 again to the partition
f1; 23g to conclude that u123 must lie somewhere on the line segment connecting u1
and u23. There is only one point that lies on both the line segments u12u3 and u1u23
- the point u123 where these two line segments intersect. Thus from the two bilateral
agreements u12 and u23, a complete preference %123with utility u123 emerges. Figure
1 also illustrates that there is a unique utility candidate for the remaining bilateral
agreement u13 - the point where the line connecting u2 and u123 intersects line segment
u1u3. Otherwise, the Extended Pareto Rule applied to f2; 13g would not hold.

 

δ1
2 

δ2
3 

δ1
3 

u1 

u3 

u2 

u12 

u13 

u23 
u123 

Figure 1: ±31 follows from ±21 and ±32 as ±21±
3
2.

The following result provides the utilities that obtain from this construction.

Theorem 2 Consider bilateral agreements u12 and u23 with utility comparison rates
±21 and ±32, respectively. If the Extended Pareto Rule holds, then &123 is complete and
has utility u123 ´ (u1 + ±21u2 + ±

3
1u3)=(1 + ±21 + ±

3
1). Moreover, if &13 is a complete

preference, then it has utility u13 ´ (u1 + ±31u3)=(1 + ±
3
1), where ±

3
1 ´ ±21±32.

Proof. See Baucells and Shapley (2000).

10



The utility comparison rates that stem from this geometrical construction have an
interesting interpretation in terms of \no arbitrage." Thus, if ±21 and ±

3
2 are the utility

comparison rates of the bilateral agreements u12 and u23 (±21 \utils" of Individual 1 are
comparable to one \util" of Individual 2; and ±32 \utils" of Individual 2 are comparable
to one \util" of Individual 3), then it should be the case that ±21±

3
2 \utils" of Individual

1 are comparable to one \util" of Individual 3. Similar to \no arbitrage" in currency
exchange rates, the natural utility comparison rate between Individuals 1 and 3 is
±31 = ±

2
1±

3
2.

The generalization of Theorem 2 to n = 4 case requires a nontrivial extension that
uses Desargues' Theorem. This result is illustrated in the Appendix. The subsequent
generalization to n > 4 is then straightforward. The idea is to establish at least one
comparison channel between each pair of individuals. Moreover, the \no arbitrage"
condition indicates that a chain of bilateral agreements that \cycles" (starts and
¯nishes in the same individual) contains redundancies. If we view the individuals
as the nodes of a graph and the bilateral agreements as the edges, then these two
conditions express that the bilateral agreements form a connected and acyclic graph,
i.e., a spanning tree.

2.5 Group Preferences Based On Bilateral Agreements

For a group of n individuals, the group utility, uN , is obtained by eliciting (n ¡ 1)
bilateral agreements. For an example, suppose one obtains u12; u13; :::; u1n. We now
know ±21; ±

3
1; :::; ±

n
1 ; that is, the utility comparison rates between Individual 1 and

Individual i, i = 2 to n. The EPR permits us to write

uN = (u1 + ±21u2 + :::+ ±
n
1un)=(1 + ±

2
1 + :::+ ±

n
1 ). (4)

There are many possible ways (spanning trees) to obtain (n¡ 1) bilateral agree-
ments. For example, another possibility is to obtain u12; u23; :::; u(n¡1)n. Such a
comparison or spanning tree will yield ±21; ±

3
2; :::; ±

n
(n¡1). We can easily obtain ±i1 in (4)

by the multiplication ±21£±32£ :::£±i(i¡1). In general, however, we need to ¯rst specify
the spanning tree. It is an empirical question whether the choice of a spanning tree
systematically in°uences the derived utility comparison rates or utility weights. We
assume that the decision context and practical considerations will dictate the choice
of an appropriate spanning tree.
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Equipped with a spanning tree T on the set of individuals,1 consider complete
preferences or bilateral agreements for all pairs in T and let ±ji , ij 2 T , be the
corresponding utility comparison rates. To obtain the weights ¸i in that apply to
ui in the expression for the group (or coalition) utility, we have to multiply the ±ji
along the branches of the tree that connect some chosen base agent and individual i.
Formally, choose an arbitrary base agent,2 say i = 1, as the \root" of the tree and let
±11 ´ 1. For i 6= 1, let P i1 be the collection of pairs in the unique path between 1 and
i in T , and de¯ne

¸i ´ ±i1 =
Q
jk2Pi1

±kj (5)

The following theorem provides the main result upon which the subsequent de-
velopments are based.

Theorem 3 Assume that any three utilities are linearly independent and that every
pair ij in N has complete (but undetermined) preferences. Let T be a spanning tree
of bilateral agreements (determined pair preferences) and let (¸1; :::; ¸n) be given as
in (5). Then, the Extended Pareto Rule holds if and only if for all coalition S in N ,
&S is complete and has utility

uS ´
P
i2S ¸iuiP
i2S ¸i

: (6)

Proof. We have provided the intuition of the proof. See Baucells and Shapley
(2000) for the formal details.

The interest of Theorem 3 resides in its usefulness to devise a practical proce-
dure for preference aggregation. We will exploit several nice features of Theorem
3. First, it just requires the determination of n ¡ 1 parameters, namely, the n ¡ 1
utility exchange rates between pairs of individuals. Second, the choice of the n ¡ 1

1Given a set N , a collection of pairs T is a spanning tree of n if and only if there is a unique
path (sequence of pairs) in T connecting any two agents in n. It follows that T contains precisely
n ¡ 1 pairs and has no cycles.

2A moment's re°ection reveals that a di®erent choice of base agent, say i¤ 6= 1, would produce
weights ¸¤

i = ±1
i¤¸i, i 2 n. Because the utility representation of the preference of a coalition S that

we seek is uS ´ P
i2S ¸iui=

P
i2S ¸i, the choice of base agent is immaterial: the factor ±i¤;1 would

produce a re-scaled version of the same utility function.
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pairs is rather °exible in that we can choose any n ¡ 1 pairs that form a spanning
tree. Additional criteria may be used so that a particular spanning tree o®ers more
advantages. Third, simple manipulations allow us to obtain an alternative represen-
tation of the group utility as a weighted sum of utilities of disjoint coalitions. The
resulting utility comparison rates between disjoint coalitions enable us to apply our
results from bilateral agreements to agreements between two disjoint coalitions (see
Section 5).

3 Multiattribute Group Decisions: The Additive
Case

We now examine the case where the consequence of a decision is evaluated on mul-
tiple attributes. We assume that the members of the group have agreed on the
attributes X1; :::;Xm and each individual is able to specify his own utility function
for these multiple attributes. An arbitrary multidimensional consequence is denoted
x = (x1; :::; xm); and x¤a and x0a are respectively the best and the worst consequences
on attribute a that are agreed upon by all individuals. Our theory permits that the
worst and the best levels of an attribute could be di®erent for di®erent individuals.
We further assume that each individual's utility function over the multiple attributes
is additively separable. Thus, we can write

ui(x) =
mX

a=1

¯i;avi;a(x); i = 1 to n; (7)

where ¯i;a is the importance weight (scaling constant) that individual i attaches
to attribute a, 0 < ¯i;a < 1,

Pm
a=1 ¯i;a = 1 and vi;a is individual i's component

utility function (attribute evaluation function) for attribute a which, is normalized
by vi;a(x¤a) = 1, vi;a(x0a) = 0; i = 1 to n, a = 1 to m.

3.1 Homogeneous Attribute Evaluation

We begin by studying a special case where all individuals agree on how each attribute
ranks the alternatives. Thus, vi;a(x) = va(x), for all i = 1 to n. The individuals di®er,
however, on the particular weights to be associated with each attribute. Thus, (7)
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particularizes into

ui(x) = ¯i;1v1(x) + ¯i;2v2(x) + :::+ ¯i;mvm(x); (8)

where va(x) is the common evaluation of alternative x with respect to attribute a = 1
to m. Our concern here is to ¯nd a consensus in the trade-o® between the attributes.
In other words, ¯nd a collection of weights that expresses a group decision rule.

Having a common ordering of the alternatives by attribute is not as unrealistic as
it may appear at ¯rst. For example, these orderings could be given by independent
experts. The role of the committee is not to question such opinions, but to judge the
relative importance of the di®erent attributes (environmental impact, cost, health
and safety, etc.). We make this assumption to make the reader acquainted with our
aggregation rule based on single attribute comparisons. Later we will show that our
results generalize to the case of heterogeneous attribute evaluation functions.

From our previous theory, we know that we need (n¡ 1) bilateral agreements to
determine the group utility. The advantage here is that instead of bilateral agreements
based on indi®erence probability judgements, we can now use compromises on weights
assigned to attributes. It su±ces that a pair of individuals compromise on the weight
given to a single attribute. The agreement on just one weight will extend to the other
attributes. Finally, our Extended Pareto Rule allows us to form a group preference
based on n¡ 1 such bilateral agreements, provided they form a spanning tree of N .

The following result ties the bilateral agreement in terms of weights ¯i;a and ¯j;a
(the weights given by individuals i and j to attribute a) to the utility weight ®ji and
the utility comparison rate ±ji . To avoid degeneracy, it is required that ¯i;a 6= ¯j;a, say
¯i;a < ¯j;a. We assume throughout that any three utilities are linearly independent,
so that one such attribute exists for every pair of individuals.

Theorem 4 For a given pair of individuals i and j consider an attribute a such that
¯i;a < ¯j;a and let ¯ij;a 2 (¯i;a; ¯j;a) be a compromise between Individuals i and j
(i.e., as a pair, Individuals i and j agree that a pair preference should use weight ¯ij;a
to determine the importance of attribute a). Under this condition, the pair preference
is complete and given by uij = ®jiui + (1 ¡ ®ji )uj, where the utility weight ®ji and the
corresponding utility exchange rate ±ji are given by

®ji =
¯j;a ¡ ¯ij;a
¯j;a ¡ ¯i;a

and ±ji =
¯ij;a ¡ ¯i;a
¯j;a ¡ ¯ij;a

: (9)
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Proof. Noting that the pair utility uij is a linear combination of ui and uj and
exploiting expression (8) produce

uij = ®jiui + (1 ¡ ®ji )uj = ®ji [¯i;1v1 + :::+ ¯i;mvm] + (1 ¡ ®ji )[¯j;1v1 + :::+ ¯j;mvm] =
= [®ji¯i;1 + (1 ¡ ®ji )¯j;1]v1 + :::+ [®ji¯i;m + (1 ¡ ®ji )¯j;m]vm:

Because the weight assigned to attribute a is ®ji¯i;a + (1¡ ®ji )¯j;a, which we know is
agreed to be ¯ij;a, the expression for ®ji and ±

j
i = (1 ¡ ®ji )=®ji follows.

Thus, the aggregation procedure is particularly simple: n¡ 1 pairs of individuals
forming a spanning tree shall agree on how to compare the weights given to one of
the attributes. Once we have the n ¡ 1 bilateral agreements and the corresponding
utility comparison rates ±ji for ij 2 T given by (9), we calculate the weights as in (5).
The group utility is readily available as in (6). Because every individual knows how
attribute a trades o® with the rest of attributes in their overall utility, individuals
i and j should be aware that the pair weight ¯ij;a supposes a dual agreement, one
regarding the weight on attribute a, and another regarding the relative weights that
i and j will receive. This, in turn, determines an implicit agreement in all the other
attribute weights b 6= a given by ¯ij;b = ®

j
i¯i;b + (1 ¡ ®ji )¯j;b.

Substituting the expressions of ui as a weighted sum of attribute evaluation func-
tions and grouping terms allow us to express the group utility uN as a weighted sum
of attribute evaluation functions with weights given by ¯N;a =

Pn
i=1 ¸i¯i;a=

Pn
i=1 ¸i.

Thus,

uN(x) = [¸1u1(x) + ¸2u2(x) + :::+ ¸nun(x)]=
nX

i=1

¸i

= ¯N;1v1(x) + ¯N;2v2(x) + :::+ ¯N;mvm(x):

Here, we have a choice of both a spanning tree and, for each pair of individuals,
a particular attribute to compare. In a given instance, there may be one attribute
on which it is easier to compromise, such as a monetary consequence. If di®erent
individuals have a better understanding of di®erent attributes, then we could design
the spanning tree of bilateral agreements in such a way that every pair of individuals
compare the weights of a well understood attribute. The following example may help
clarify the previous discussion.

Example 5 Consider n = 4 individuals and m = 3 attributes, with homogeneous
attribute evaluation functions.
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The individual utilities are a weighted sum of the three attribute evaluation func-
tions as follows.

u1 = 0:1v1 + 0:3v2 + 0:6v3

u2 = 0:3v1 + 0:4v2 + 0:3v3

u3 = 0:2v1 + 0:4v2 + 0:4v3

u4 = 0:2v1 + 0:6v2 + 0:2v3

Suppose pairs f1; 2g and f1; 3g feel comfortable in compromising on Attribute 1;
whereas, pair f3; 4g prefers to compromise on Attribute 3. We could use spanning
tree T = f12; 13; 34g, and Attributes 1, 1, and 3 in the respective bilateral agreements.
Suppose that the bilateral agreements are ¯12;1 = 0:22 2 (0:1; 0:3), ¯13;1 = 0:12 2
(0:1; 0:2) and ¯34;3 = 0:25 2 (0:2; 0:4). The pair utility u12 would be u12 = 0:4u1 +
0:6u3 = (u1 + 1:5u3)=2:5, where ®21 = (¯2;1 ¡ ¯12;1)=(¯2;1 ¡ ¯1;1) = 0:4 and ±21 =
(¯12;1 ¡ ¯1;1)=(¯2;1 ¡ ¯12;1) = 3=2 follows from (9). Similarly, u13 = 0:8u1 + 0:2u3 =
(u1 + 0:25u3)=(1:25), where ®31 = (¯3;1 ¡ ¯13;1)=(¯3;1 ¡ ¯1;1) = 0:8 and ±31 = (¯13;1 ¡
¯1;1)=(¯3;1¡¯13;1) = 0:25. Regarding u34, we have that ®43 = 0:25 and ±43 = 3. Finally,
the weights ¸i that produce the group utility are given from (5) as follows.

¸1 = 1; ¸2 = ±21 = 3=2; ¸3 = ±31 = 1=4; and ¸4 = ±41 = ±
3
1±

4
3 = 3=4;

and the group attribute weights are given by ¯N;1 =
Pn
i=1 ¸i¯i;a=

Pn
i=1 ¸i. Thus,

¯N;1 = 0:2143; ¯N;2 = 0:4143; ¯N;3 = 0:3714;

and

u123 = (u1 + 3u2=2 + u3=4 + 3u4=4)=(1 + 3=2 + 1=4 + 3=4)

= 0:2143v1 + 0:4143v2 + 0:3714v3:

If the individuals are not satis¯ed with these weights or the ranking implied by
them, they may revisit their original bilateral agreements. Again, such an iterative
approach is common in the applications of multiattribute utility theory.

3.2 Heterogeneous Attribute Evaluation

In the previous section, we had assumed that for any given attribute each individual
agrees on its component utility function (attribute evaluation), but may di®er from
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other individuals on the weight assigned to the attribute. We now examine the
case where both the weight and the component utility function associated with an
attribute may be di®erent across individuals. In this case,

uN(x) =
nX

i=1

¸i
mX

a=1

¯i;avi;a(x); (10)

if we assume that each individual has a multiattribute additive utility function and
the group utility is linear in individual utilities. Though we do not make the latter
assumption from the outset, through (n ¡ 1) bilateral agreements we are always
able to produce the linear group utility uN ´ P

i2N ¸iui, where for each i, ui =P
¯i;avi;a. Since these weights and component utilities di®er across individuals, some

compromise is needed to obtain the pair utility uij: A compromise directly on the
utilities that the two individuals assign to a multidimensional consequence may be
di±cult. We assume that individuals have a good and clear understanding of their
preferences (i.e., each individual is clear about his own weights and his own component
utilities), but may not be able to directly provide a holistic preference for the complex
multidimensional consequence.

Fortunately, the pair preference uij can be constructed by seeking a compromise on
a part of the problem (e.g., on the weight that individuals i and j assign to an attribute
a). The Extended Pareto Principle then restricts the compromises for the other parts
of the problem. Thus, if two individuals compromise on the weight of an attribute,
their implied agreements on the weights on the other remaining attributes can be
displayed and they can be given an opportunity to revisit their original compromise.
At the expense of belaboring the argument, we again state that a compromise more
in favor of Individual 1 on one attribute weight, but more in favor of Individual 2 on
the other attribute weight is not permitted. For the two attribute case, it is trivial
to see that if ¯1;1 = 0:8, ¯2;1 = 0:6, then we cannot have ¯12;1 = 0:75 (compromise
closer to Individual 1) and simultaneously have ¯12;2 = 0:35 (compromise closer to
Individual 2 as ¯1;2 = 0:2, ¯2;2 = 0:4). The two weights ¯12;1 and ¯12;2 must add
to 1 and therefore ¯12;2 has to be 0:25 if ¯12;1was agreed to be 0:75. So, there is
no free lunch here and the individuals must understand the full implication of their
compromise.

In general, the Extended Pareto Rule restricts the compromises on other parts of
the problem if a compromise on one part of the problem is reached. Suppose two
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individuals compromise half way, each on their willingness to pay to improve the
environment. Their compromise on the willingness to pay for improving health and
safety can now be derived, but it would not be half way in general. Thus, the implied
compromises are not proportionately the same as the original compromise, but they
can be derived.

We will discuss three di®erent methods for eliciting bilateral agreements to specify
pair utilities which, in turn, are used to derive the group utility. The group utility so
constructed will have n£m terms (see (10)). It is interesting to examine whether the
group utility can be represented as the weighted sum of group attribute utilities (i.e.,
uN = ¯1v1 + :::+ ¯nvm, where ¯a is the \group attribute weight" for the attribute a
and va is the \group attribute utility" for the attribute a). Surprisingly, as Theorem
7 shows, we are indeed able to express the group utility as the weighted sum of
group attribute utilities. From the narrow perspective of simply being able to rank
alternatives, it may not seem important how the group utility is represented so long as
it can somehow be assessed. For practical considerations, however, the decomposition
of the group utility into \group attribute weights" and \group attribute utilities" may
facilitate communication and implementation. For example, a higher level policy
maker who has delegated the responsibility of the decision to the committee may
wish to interpret the group attribute weights as the weights he will assign to the
attributes if he were to make the decision on his own.

Before we describe our formal development, an example with two individuals and
two attributes illustrates our strategy for constructing the group utility. In our frame-
work, the EPR is used to obtain the group utility from the pairwise utilities. Imag-
ine that our two-individual, two-attribute problem is conceived as a four-individual
aggregation problem where Individual 1a re°ects the preference of Individual 1 on
attribute a in the original problem, Individual 1b re°ects the preference of Individual
1 on attribute b, and so on for Individuals 2a and 2b. We now need three pairwise
comparisons to obtain the group utility of the modi¯ed problem. The bilateral agree-
ments between 1a and 1b and similarly between 2a and 2b are immediate as we know
their respective weights for attributes a and b. Actually, the bilateral agreement
between hypothetical Individuals 1a (2a) and 1b (2b) simply means how the real In-
dividual 1 (2) trades o® attribute a with attribute b. So we only need to elicit one
compromise say between 1a and 2a or we could have chosen a compromise between
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1b and 2b. This compromise between the two hypothetical Individuals 1a and 2a (or
1b and 2b) is actually a compromise between the real Individuals 1 and 2 on attribute
a (or attribute b). Unlike our real n person problem, some pair preferences cannot
be elicited in any practical way. For example, a compromise between hypothetical
Individuals 1a and 2b is rather nonsensical. In other words, for our hypothetically
enlarged problem, the choice of spanning tree is limited. In the original problem - if
there were to be truly four real individuals - any spanning tree can be used. But this
causes no real problem either in theory or in practice. This is because we only need
(n¡ 1) and not nC2 = n(n¡ 1)=2 pair preferences to construct the group utility.

Basically, we need to impose the Extended Pareto Rule to a larger set of pref-
erences, namely, %Q, where Q µ N £ M (N is the set of individuals f1:::ng and
M is the set of attributes f1:::mg). Intuitively, we may think that each individual
has multiple preferences, one for each attribute and that individual aggregates these
preferences using weights ¯i;a. Thus, we may enlarge the set of \basic" individuals
to N £M , and any such subset is endowed with a preference. The enlarged coali-
tion N £M corresponds to the group utility, and the enlarged coalition fig £ M
corresponds to individual i, with utility ui. Similarly, vi;a, the attribute evaluation
function of individual i, represents the preference of the coalition fig £ fag; and the
group attribute evaluation function va is the preference of the coalition N £ fag.

Application of the Extended Pareto Rule to all the disjoint subsets of N £ M
permits us to increase the number of linearity conditions. In particular, for all con-
sequences x the following relationships hold

uij = ®jiui + (1 ¡ ®ji )uj; for some ®ji 2 (0; 1) (11)

vij;a = ®j;ai;avi;a + (1 ¡ ®j;ai;a)vj;a; for some ®j;ai;a 2 (0; 1) (12)

uij =
mX

a=1

¯ij;avij;a; for some ¯ij;a with
mX

a=1

¯ij;a = 1: (13)

As before, ®ji and the utility comparison rate ±ji = (1 ¡ ®ji )=®ji determine pair
utility uij = ®jiui + (1 ¡ ®ji )uj . The weights ®j;ai;a represent the trade-o® between vi;a
and vj;a to form the pair attribute evaluation function vij;a = ®j;ai;avi;a + (1 ¡ ®j;ai;a)vj;a,
where vij;a is the utility of the coalition fi; jg £ fag, expressed as the weighted sum
of the utilities of fig £ fag and fjg £ fag. Finally, Corollary 9 allows us to express
uij as the weighted sum of utilities that can be formed in any partition of fi; jg£M .
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One such partition takes the form fi; jg £ fag, for a 2M and produces (13).
Before proceeding with di®erent ways to elicit the previous parameters, we now

present a result that links their values leaving only one degree of freedom for each
pair of individuals, and n¡ 1 degrees of freedom for the group. The intuition behind
this result comes from our idea of the spanning tree. If we view vi;a as the nodes
of the spanning tree, then the fact that ui is a linear combination of the vi;a for all
a 2 M tells us that all the bilateral agreements between the nodes vi;a and vi;b are
already in place with ±i;bi;a = ¯i;b=¯i;a. Thus, once we establish one link between i and
j, then our consistency condition already ¯lls the gaps and establishes all the utility
comparison rates between individuals and between attribute evaluation functions.
Having imposed the Extended Pareto Rule to the attribute evaluation function will
allow us to determine some additional parameters that are linked to ®ji .

Lemma 6 If the Extended Pareto Rule holds among the disjoint subsets of N £M ,
then the parameters ±ji = (1 ¡ ®ji )=®ji , ±j;ai;a = (1 ¡ ®j;ai;a)=®j;ai;a, and ¯ij;a are related as
follows

±j;ai;a =
¯j;a
¯i;a
±ji (14)

¯ij;a = ®ji¯i;a + (1 ¡ ®ji )¯j;a (15)

for all i; j 2 N and all a 2M . Moreover

vij;a =
®ji¯i;avi;a + (1 ¡ ®ji )¯j;avj;a

¯ij;a
: (16)

Proof. Using (11), (12) and (13), we write

uij =
mX

a=1

¯ij;avij;a =
mX

a=1

¯ij;a[®
j;a
i;avi;a + (1 ¡ ®j;ai;a)vj;a]

= ®jiui + (1 ¡ ®ji )uj = ®ji
mX

a=1

¯i;avi;a + (1 ¡ ®ji )
mX

a=1

¯j;avj;a:

Because this holds for all x 2 X, linear independence of the attribute utilities only
holds if the coe±cients of the vi;a's are the same. Evaluate this expression at alter-
natives (xo1; :::; xoa¡1; x¤a; xoa+1:::; xom) for all a 2M to arrive at

¯ij;a®
j;a
i;a = ¯i;a®

j
i

¯ij;a(1 ¡ ®j;ai;a) = ¯j;a(1 ¡ ®ji )
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Equation (14) follows from dividing one expression by the other, and (15) from
adding both equations. The last expression follows from replacing ®j;ai;a = ¯i;a®

j
i=¯ij;a

in (12) and using (15).
With this result in mind we now present three alternative ways to elicit bilateral

agreements among (n¡ 1) pairs of individuals.

3.2.1 Method I: Compromise On Attribute Evaluation Functions

For a given pair of individuals i and j, and some choice of an attribute a, let vi;a and
vj;a be the corresponding attribute evaluation functions. Next, we ¯x alternatives
xh = (xo1; :::; xoa¡1; x¤a; xoa+1:::; xom) and x` = (xo1; :::; xoa¡1; xoa; xoa+1:::; xom) and ¯nd some
intermediate alternative x = (xo1; :::; xoa¡1; xa; xoa+1:::; xom) such that vi;a(x) 6= vj;a(x).
Thus, ui(x) = ¯i;avi;a(xa), ui(xh) = ¯i;a and ui(x`) = 0 so that individual i is indif-
ferent between x and a probability mixture pi = vi;a(x) between xh and x`. Then, we
ask individuals i and j to ¯nd a compromise probability pij 2 (pi; pj). This says that
uij(x) = ¯ij;apij , or

vij;a(x) = pij = ®j;ai;ap1 + (1 ¡ ®j;ai;a)pj = ®j;ai;avi;a(x) + (1 ¡ ®j;ai;a)vj;a(x)

so that

®j;ai;a =
pj ¡ pij
pj ¡ pi

and ±j;ai;a =
pij ¡ pi
pj ¡ pij

: (17)

Using (14) and (15) we derive the value of the other parameters. Speci¯cally we
obtain that

uij ´ ®jiui + (1 ¡ ®ji )uj ;

where ®ji = 1=(1+±ji ), ±
j
i = ¯i;a±

j;a
i;a=¯j;a. Alternatively, the group utility is represented

by

uij ´
mP
a=1
¯ij;avij;a;

where ¯ij;a = ®
j
i¯i;a + (1¡ ®ji )¯j;a. Finally, for all b 2M , vij;b can be expressed as in

(16). This possibility of ¯nding pair attribute evaluation functions is the result that
later we will extend to uN .

21



3.2.2 Method II: Compromise On Attribute Weights

An alternative way to elicit the bilateral agreement is by means of comparing the
weights given to the di®erent attributes, as in the homogeneous case. For a given
pair of individuals i and j and some choice of an attribute a, let ¯i;a and ¯j;a be
the corresponding weights given to attribute a. Recall that ¯i;a is interpreted as the
utility of alternative xh = (xo1; :::; xoa¡1; x¤a; xoa+1; :::; xom). Alternatively, individual i is
indi®erent between xh and a mixture that with probability ¯i;a produces x¤ or xo. If
¯i;a 6= ¯j;a, then we ask the pair to reach a bilateral agreement ¯ij;a 2 (¯i;a; ¯j;a) that
will be interpreted as the pair utility of xh, or

uij(xh) = ¯ij;a = ®
j
iui(x

h) + (1 ¡ ®ji )uj(xh) = ®ji¯i;a + (1 ¡ ®ji )¯j;a

so that the same expression as in (9) results

®ji =
¯j;a ¡ ¯ij;a
¯j;a ¡ ¯i;a

and ±ji =
¯ij;a ¡ ¯i;a
¯j;a ¡ ¯ij;a

: (18)

Using ®ji , ±
j
i , (15), and (16), we can compute ¯ij;b and vij;b for all b 2 M , and

write uij as a linear combination of vij;b.

3.2.3 Method III: Compromise On The Willingness To Pay

A common procedure widely used in multiattribute applications to elicit the individ-
ual weights ¯i;a is the following. Assuming attribute a = 1 is the most important, we
seek x1 so that

(x1; xo2; x3; :::; xm) »i (xo1; x¤2; x3; :::; xm)

This implies that ¯i;1vi;1(x1) = ¯i;2. Now, we seek x01 so that

(x01; x2; x
o
3; x4; :::; xm) »i (xo1; x2; x¤3; x4; :::; xm);

which implies ¯i;1vi;1(x01) = ¯i;3, and so on. This method relates all the attribute
weights to ¯i;1, and we elicit ¯i;1 by ¯nding the probability p so that a mixture of x¤

and xo is indi®erent to (x¤1; xo2; :::; xom). This implies that ¯i;1 = p. The idea is to get
one weight by the lottery method and the others by trade-o®s. Notice that if the ¯rst
attribute is money, then we derive ¯i;1 by ¯nding out how much individual i is willing
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to pay to raise the value of x2 from xo2 to x¤2, and so on. Let xi1 be i's willingness to
pay, or

(xi1; x
o
2; x3; :::; xm) »i (xo1; x¤2; x3; :::; xm)

Similarly, let xj1 be j's willingness to pay. If xi1 6= xj1, then we can ask the pair to
reach a compromise and seek a pair willingness to pay xij1 2 (xi1; x

j
1). The next step,

of course, is to ¯nd the ®ji and ±
j
i that follow from xij1 . They are given by:

®ji =
¯j;1[vj;1(x

j
1) ¡ vj;1(xij1 )]

¯i;1[vi;1(x
ij
1 ) ¡ vi;1(xi1)] + ¯j;1[vj;1(xj1) ¡ vj;1(xij1 )]

; and (19)

±ji =
¯i;1
¯j;1

[vi;1(xij1 ) ¡ vi;1(xi1)]
[vj;1(x

j
1) ¡ vj;1(xij1 )]

:

To derive these expressions, just notice that the agreement in willingness to pay
xij1 says

(xij1 ; xo2; x3; :::; xm) »ij (xo1; x¤2; x3; :::; xm); or
uij(xij1 ; xo2; x3; :::; xm) = uij(xo1; x¤2; x3; :::; xm):

Using uij = ®jiui+(1¡®ji )uj, and cancelling the terms involving x3; :::; xm, produces

®ji¯i;1vi;1(x
ij
1 ) + (1 ¡ ®ji )¯j;1vj;1(xij1 ) = ®ji¯i;2 + (1 ¡ ®ji )¯j;2

and the following alternative expression for ®ji ,

®ji =
¯j;2 ¡ ¯j;1vj;1(xij1 )

¯j;2 ¡ ¯i;2 + ¯i;1vi;1(xij1 ) ¡ ¯j;1vj;1(xij1 )
:

Plugging ¯i;2 = ¯i;1vi;1(xi1) and ¯j;2 = ¯j;1vj;1(x
j
1) yields (19).

Again, using ®ji , ±
j
i , (15), and (16), we can compute ¯ij;b and vij;b for all b 2 M ,

and write uij as a linear combination of the vij;b.

3.2.4 The Main Result

After repeating any of these procedures for n¡ 1 pairs forming a spanning tree, the
¯nal results are weights ®ji and utility exchange rates ±ji , for ij 2 T . We use (5)
to calculate ¸i = ±i1. Finally, we simplify the notation by writing va ´ vN;a and
¯a ´ ¯N;a. The result we obtain is:
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Theorem 7 Let ¸i be the weights obtained as in (5) by means of n ¡ 1 bilateral
agreements forming a spanning tree of N . Then, group preference is complete and is
represented by

uN ´
Pn
i=1 ¸iuiPn
i=1 ¸i

: (20)

Alternatively, the group utility is equally represented by

uN ´
mP
a=1
¯ava; (21)

where ¯a =
Pn
i=1 ¸i¯i;a=

Pn
i=1 ¸i and each va is a group attribute preference given by

va ´
Pn
i=1 ¸i¯i;avi;aPn
i=1 ¸i¯i;a

: (22)

Proof. (20) is just a direct application of Theorem 3. By substituting (7) into
(20), we obtain a sum of n£m terms of the form vi;a, with weights of the form ¸i£¯i;a.
(21) follows from forming a partition of N £M in sets Aa = N £ fag, for a 2 M ,
and applying Corollary 9. Indeed, ±Aa1;1 =

Pn
i=1 ¸i¯i;a=(¸1¯1;1). Here the subscript

(1; 1) indicates that the utilities are expressed in units of v1;1. By normalizing so that
Pm
a=1 ¯a = 1, we obtain

¯a =
±Aa1;1Pm
a=1 ±

Aa
1;1

=
±Aa1;1Pm

a=1
Pn
i=1 ¸i¯i;a

=
Pn
i=1 ¸i¯i;aPn

i=1 ¸i
Pm
a=1 ¯i;a

=
Pn
i=1 ¸i¯i;aPn
i=1 ¸i

:

The attribute evaluation function va corresponds to the utility of the \coalition"
Aa = N £ fag. To express va in terms of the vi;a's su±ces to break Aa into their
components fig £ fag. Then, ±i;a1;a = (¸i¯i;a)=(¸1¯1;1). Of course, the denominator
cancels out once we write

va =
Pn
i=1 ±

i;a
1;avi;aPn

i=1 ±
i;a
1;a

=
Pn
i=1 ¸i¯i;avi;aPn
i=1 ¸i¯i;a

:

3.2.5 An Example

To illustrate the use of the three elicitation methods, we consider an example with
n = 2 individuals and m = 3 attributes. The three attributes of an alternative
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x = (x1; x2; x3) may represent a monetary outcome (say a discounted cash °ow) x1,
some indicator of environmental impact x2, and some measure of health and safety
x3. Let the worst outcome be xo = (0; 0; 0) and the best be x¤ = (100; 100; 100).
The individual utilities are additive, separable in the following attribute evaluation
functions

u1(x) = 0:4
1 ¡ e¡x1=100
1 ¡ e¡1 + 0:35

x2
100

+ 0:25
x3
100

u2(x) = 0:5
1 ¡ e¡x1=200
1 ¡ e¡1=2 + 0:3

x2
100

+ 0:2
x3
100

Notice that vi;a(xo) = 0 and vi;a(x¤) = 1. The ¯rst component reveals that both
individuals are risk averse with respect to monetary consequences with exponential
utility functions. Regarding the other two attributes, we assume for simplicity that
their attribute evaluation function is linear in x2 and x3.

To elicit a bilateral agreement applying Method I, we choose the monetary at-
tribute x1. Accordingly, we let xh = (100; 0; 0), x` = (0; 0; 0) and ¯x some interme-
diate alternative, say x = (40; 0; 0). Thus, v1;1(x) = 0:52 6= v2;1(x) = 0:46 so that
Individual 1 is indi®erent between x and a probability mixture p1 = 0:52 between xh

and x`. p2 = 0:46 has the same interpretation for Individual 2. Now, Individuals 1 and
2 elicit a bilateral agreement by ¯nding a compromise probability p12 2 (0:46; 0:52),
say p12 = 0:51. Using (17) we ¯nd that

®2;11;1 =
p2 ¡ p12
p2 ¡ p1

=
0:46 ¡ 0:51
0:46 ¡ 0:52

= 0:81 and ±2;11;1 =
0:51 ¡ 0:52
0:46 ¡ 0:51

= 0:23

From ±2;11;1, we derive ±21 = ¯1;1±
2;1
1;1=¯2;1 = 0:4 £ 0:23=0:5 = 0:19 and ®21 = 1=(1 +

±21) = 0:84. This allows us to write the group utility as

u12(x) = 0:84u1(x) + 0:16u2(x):

Alternatively, the group utility can be represented by

u12 ´
mP
a=1
¯12;ava = 0:42v1 + 0:34v2 + 0:24v3

where ¯12;a = ®21¯1;a + (1 ¡ ®21)¯2;a and va ´ v12;a =
Pn
i=1 ¸i¯i;avi;a=

Pn
i=1 ¸i¯i;a.
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Because ¸1 = 1 and ¸2 = ±21 = 0:19, we have that

v1 =
1 £ 0:4 £ v1;1 + 0:19 £ 0:5 £ v2;1

0:4 + 0:19 £ 0:5
= 0:81v1;1 + 0:19v2;1

v2 =
1 £ 0:35 £ v1;2 + 0:19 £ 0:3 £ v2;2

0:35 + 0:19 £ 0:3
= 0:86v1;2 + 0:14v2;2

v3 =
1 £ 0:25 £ v1;3 + 0:19 £ 0:2 £ v2;3

0:25 + 0:19 £ 0:2
= 0:87v1;3 + 0:13v2;3

Alternatively, Individuals 1 and 2 could use Method II and compare the weights
given to some attribute, say a = 2. In this case, ¯1;2 = 0:35 and ¯2;2 = 0:3 are
the weights, and a bilateral agreement is some ¯12;2 2 (0:3; 0:35). If this bilateral
agreement is to be consistent with the previous one, then ¯12;2 = 0:342 so that

®21 =
¯2;2 ¡ ¯12;2
¯2;2 ¡ ¯1;2

= 0:84 and ±21 =
¯12;2 ¡ ¯1;2
¯2;2 ¡ ¯12;2

= 0:19:

Finally, Method III is based on willingness to pay. Thus, we begin ¯nding the
monetary outcomes that Individuals 1 and 2 are willing to pay to move x2 from 0,
its worst level, to 100, its best level. By setting

(xi1; 0; x3) »i (0; 100; x3)

we ¯nd that x11 = 80:5 and x21 = 53:8. Now a bilateral agreement takes the form of a
compromise in this willingness to pay, x121 2 (53:8; 80:5). If this bilateral agreement
is to be consistent with the previous one, then x121 = 74:4 and (19) produces

®21 =
¯2;1[v2;1(x21) ¡ v2;1(x121 )]

¯1;1[v1;1(x121 ) ¡ v1;1(x11)] + ¯2;1[v2;1(x21) ¡ v2;1(x121 )]
= 0:84; and

±21 =
¯1;1
¯2;1

[v1;1(x121 ) ¡ v1;1(x11)]
[v2;1(xj1) ¡ v2;1(x121 )]

=
0:4
0:5

[0:83 ¡ 0:875]
[0:6 ¡ 0:79]

= 0:19:

Of course, in both Method II and Method III the group utility can also be ex-
pressed in terms of group attribute evaluation functions va upon computing ¯12;a and
using Equation (22).

4 Multiattribute Group Decisions: TheMultiplica-
tive Case

In the previous section, we showed that the group utility can be represented as a
weighted sum of group weights and group attribute evaluation functions provided that
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each individual's multiattribute utility function is additive. Further, we showed that
n¡ 1 bilateral agreements are su±cient to derive the group utility. We now consider
the case in which each individual's multiattribute utility function is multiplicative
(Keeney and Rai®a, 1976) and individuals still wish to abide by the Extended Pareto
Rule.

For notation simplicity, we describe a case with m = 2 attributes. The extension
to m > 2 attributes is straightforward. Let the individual utilities take the following
representation

ui(x) = ¯i;1vi;1(x) + ¯i;2vi;2(x) + kivi;1(x)vi;2(x) (23)

In this multiplicative form, vi;1 and vi;2 take values between 0 and 1 and we have
normalized the scales so that ki = (1 ¡ ¯i;1 ¡ ¯i;2), where ki is the multiplicative
constant. As in the additive case when we interpreted the attribute evaluation func-
tions vi;k as utility functions associated with an attribute-agent within individual i,
we now interpret the multiplicative term as a third attribute-agent that takes care
of the complementarity e®ects (k > 0) or substitution e®ects (k < 0) between at-
tributes. Thus, it is like having a third attribute whose evaluation function is limited
to a constant times the product of the previous two evaluation functions.

We begin by considering the homogenous attribute evaluation case: all the
individuals agree on how each attribute ranks the consequences, and disagree on the
particular weights to be associated with each attribute. Thus, (23) particularizes into

ui(x) = ¯i;1v1(x) + ¯i;2v2(x) + (1 ¡ ¯i;1 ¡ ¯i;2)v1(x)v2(x)

where va(x) = vi;a(x), i = 1 to n, is the common component utility function for
attribute a.

For a given pair of individuals, say f1; 2g, we can obtain a compromise on the
attribute weight of an attribute a. Thus, ¯12;a 2 (¯1;a; ¯2;a) is elicited from Individuals
1 and 2 and this bilateral agreement is su±cient to compute the utility exchange
rate between Individuals 1 and 2. The compromise on the weights of the other
remaining attributes will be implied by the elicited compromise on the weight of
attribute a. Thus, a single compromise permits us to compute the weights that
the pair associates with the attributes in consideration; hence, the multiplication
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constant for the pair can be easily computed. Keeney and Rai®a (1976) have noted
the close similarity of the additive and the multiplicative multiattribute models. The
multiplicative constant is calculated using a simple equation once all of the attribute
weights become available. More formally,

Theorem 8 For a given pair of individuals, say i = 1; 2, consider one attribute
a 2M such that ¯1;a < ¯2;a and let ¯12;a 2 (¯1;a; ¯2;a) be a compromise between Indi-
viduals 1 and 2 (i.e., as a pair, Individuals 1 and 2 agree that a pair preference should
use weight ¯12;a to determine the importance of attribute a). Under this condition,
the pair preference is complete and is given by u12 = ®21u1 + (1 ¡ ®21)u2, where the
utility weight ®21 and the corresponding utility exchange rate ±21 are given by

®21 =
¯2;a ¡ ¯12;a
¯2;a ¡ ¯1;a

and ±21 =
¯12;a ¡ ¯1;a
¯2;a ¡ ¯12;a

: (24)

Proof. Noting that the pair utility u12 is a linear combination of u1 and u2 and
exploiting the expression (8) produces

u12 = ®21u1 + (1 ¡ ®21)u2
= ®21[¯1;1v1 + ¯1;2v2 + ·1v1v2] + (1 ¡ ®21)[¯2;1v1 + ¯2;2v2 + ·2v1v2]
= [®21¯1;1 + (1 ¡ ®21)¯2;1]v1 + [®21¯1;2 + (1 ¡ ®21)¯2;2]v2 + [®21·1 + (1 ¡ ®21)·2]v1v2
= ¯12;1v1 + ¯12;2v2 + ·12v1v2:

Thus, the weight assigned to attribute a 2M is ®21¯1;a+(1¡®21)¯2;a, which we know
is agreed to be ¯12;a. The expression for ®21 and ±21 = (1 ¡ ®21)=®21 follows.

Using Theorem 8, we can obtain the utility for any given pair of individuals by
seeking their compromise on the weights of a chosen attribute. Now, the aggregation
procedure is particularly simple: n ¡ 1 pairs of individuals forming a spanning tree
agree on how to compare one of the attributes. Once we have the n ¡ 1 bilateral
agreements and the corresponding utility comparison rates ±ji for ij 2 T , we calculate
the group utility weights as in (5). The group utility is easily derived. The ¯nal
group weight for a given attribute is then ¯N;a =

Pn
i=1 ¸i¯i;a=

Pn
i=1 ¸i, the group

multiplicative constant becomes ·N =
Pn
i=1 ¸i·i=

Pn
i=1 ¸i and

uN(x) = [¸1u1(x) + ¸2u2(x) + :::+ ¸nun(x)]=
nX

i=1

¸i =

= ¯N;1v1(x) + ¯N;2v2(x) + ·Nv1(x)v2(x):
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In the heterogeneous attribute evaluation case (individuals use di®erent at-
tribute evaluation functions an arbitrary weights), we can apply the general theory
already discussed Section 2 and obtain a group utility that is a weighted sum of
individuals' utilities, or

un = ¸1u1 + :::+ ¸nun = (25)

= ¸1[¯1;1v1;1 + ¯1;2vi;2 + k1v1;1v1;2] + :::+ ¸n[¯n;1vn;1 + ¯n;2vn;2 + knvn;1vn;2]:

However, the decomposition in group attribute evaluation functions that we ob-
tained in (21) and (22) is not possible. Speci¯cally, the group utility cannot be
written as uN = ¯1v1+ ¯2v2+ ¯3v1v2 for group attribute evaluation functions v1 and
v2, which are a weighed sum of the individual attribute functions. Assuming that this
were possible, the idea would be to expand the expression uN = ¯1v1+¯2v2+¯3v1v2
and compare it with (25) to identify the coe±cients. However, this expansion pro-
duces terms of the form vi;1vi;2 as in (25), along with terms of the form vi;1vj;2 for
i 6= j, but these terms do not appear in (25). Thus, in the heterogeneous case, we
cannot express the group utility in the form of the original multiplicative form (23)
where the parameters now refer to the group rather than the individuals. We can,
however, obtain the group utility from the pairwise bilateral agreements, which in
turn can be used to produce the group's ranking of alternatives.

5 Coalition Agreements

So far, we have emphasized bilateral agreements and the resulting pairwise utilities
as the building blocks for the group utility. If a large number of individuals are
involved in a group decision, pairwise comparisons may be too onerous. A more
practical procedure may be to divide the group into small coalitions A1; A2; :::; Aq.
Then, representatives of each coalition will meet and try to reach an agreement. This
is analogous to multiattribute utility theory where trade-o®s are generally sought
among individual attributes, but sometimes also among subgroups of attributes.

Because our setting treats individuals and coalitions alike, once we have a partition
of the group and utilities for each of these partitions, we can proceed as if these
coalitions were the \original" individuals. For example, let uA and uB be the utilities
of two disjoint coalitions A and B. Both uA and uB are weighted averages of the
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individual utilities of the members of A and B, respectively. Now, instead of some pair
agreement between some i 2 A and some j 2 B of the form uij = (ui+±jiuj)=(1+±

j
i ),

let the agreement take place at a coalition level. Thus, two representatives from A
and B will now try to reach a bilateral agreement at the level of coalitions of the form
uA[B = (uA + ±BAuB)=(1 + ±

B
A). It is immediately clear that if q ¡ 1 such agreements

take place among a spanning tree of the partition A1; A2; :::; Aq of N , then group
utility uN is obtained as before.

The question remains of how such group agreements relate to the hypothetical
pair agreements that individuals i and j could have made on their own and that
produced the same group utility uA[B. First, the weight of i in uA is ¸i=

P
k2A ¸k

and the weight of j in uB is ¸j=
P
k2B ¸k. Because the utility comparison rate between

uA and uB is ±BA, or

uA[B =
uA + ±BAuB
1 + ±BA

=
P
k2A ¸kuk=

P
k2A ¸k + ±

B
A

P
k2B ¸kuk=

P
k2B ¸k

1 + ±BA

the ratio of weights between ui and uj in uA[B is

±ji = ±
B
A
¸j=

P
k2B ¸k

¸i=
P
k2A ¸k

:

Of course, we don't have to restrict ourselves to one partition. We could imagine
that an intermediate partition may form (¯ltrations of N), and agreements are formed
at higher levels. We now see a picture where individuals may act as portrayers of
their own preferences or become representatives of some coalition (say the di®erent
departments in a corporation). In the latter case, the individual should re°ect the
coalition preferences. We leave the investigation of a more general hierarchical coali-
tion structure, appropriate for organizational decision making, as a future research
question.

Conversely, having obtained a group utility uN , we could derive the hypothetical
utility comparison rates between disjoint coalitions implied by the bilateral agree-
ments. Simple manipulations of expression (6) in Theorem 3 allow us to obtain an
alternative representations of the group utility as a weighted sum of utilities of disjoint
coalitions.

Proposition 9 Let uN be a group utility as in (6). If A and B are disjoint coalitions
such that A [B = N , then ±BA ´ (

P
i2B ¸i)=(

P
i2A ¸i) is the utility comparison rate

30



between coalitions A and B, and uA[B = (uA + ±BAuB)=(1 + ±
B
A). If A1, A2,..., Aq is

a partition of N and let ±Ai1 ´ (
P
i2Ai ¸i), then uN =

Pq
i=1 ±

Ai
1 uAi=

Pq
i=1 ±

Ai
1 .

Proof. Notice that

uA[B =
P
i2A ¸iui +

P
i2B ¸iuiP

i2A[B ¸i
=

¡P
i2A ¸i

¢
uA +

¡P
i2B ¸i

¢
uBP

i2A[B ¸i
=
uA + ±BAuB
1 + ±BA

:

6 Discussion

The key building block in our theory for aggregating individuals' preferences is the
bilateral agreement on a chosen parameter (utility of a consequence, weight of an
attribute, willingness to pay, etc.) between two individuals or two coalitions. To reach
the bilateral agreement, both parties must compromise. In committee decisions, such
compromises are commonplace. Nevertheless, bilateral agreements can be di±cult
to achieve in some circumstances . An interesting research question is to investigate
the case where individuals are unable to reach a complete agreement. Technically,
one must relax the completeness assumption at the pair level. It is quite possible
that the preferred set of alternatives is narrowed down considerably even when a
consensus cannot be reached on the chosen parameter. The presence of a higher level
decision maker or an arbitrator helps a great deal in narrowing down the agreement
zone. In a practical application of choosing a new product design for introduction
where Marketing assigned a greater weight to early market entry, but R&D assigned
a greater weight to product features and favored a somewhat delayed market entry,
the presence of the Vice President of the division greatly facilitated an agreement on
the importance weights assigned to these attributes (see Sarin, 1993).

A related issue is that a compromise on the weight of a single attribute deter-
mines the pair utility, and eventually the group utility, through n¡ 1 such bilateral
agreements. We caution against using minimal information in a practical application.
Instead, we recommend that once a bilateral agreement is reached the full implica-
tions of this agreement should be shown to both parties. They must understand the
implied compromises on the weights of other attributes and should feel comfortable
with the ranking of alternatives that their agreement could produce. This, of course,
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is not a new suggestion, as in multiattribute decision analysis it is a routine practice
to seek more information than necessary and to use consistency checks to aid the
decision maker in the exploration of his preferences.

We note that our approach is equally applicable to decisions under certainty. In
this case, individual and group preferences are de¯ned through a measurable value
function (Krantz et al., 1971; Dyer and Sarin, 1979a, 1979b). Our theory requires that
the preference functions be cardinal (invariant with respect to a positive linear trans-
formation) and thus our approach is not restricted to the von Neumann-Morgenstern
utility functions.

Finally, once the Extended Pareto Rule is ¯rmly adhered to, our theory can easily
accommodate other forms of multiattribute utility functions (multilinear or more
general forms). We believe that the Extended Pareto Rule is a much more appealing
normative requirement than the exact form of the multiattribute utility function -
additive, multiplicative or some other. It would, however, be interesting to explore
the extensions of our theory to cases where the Extended Pareto Rule is relaxed. Such
extensions are likely to be nontrivial and would require imposing some constraints on
the structure of the group utility.

Several authors have noted that many multicriteria problems are resolved in group
settings and that these require aggregating individual weights and preferences (Harte
et al. 1996; Limayem and DeSanctis, 2000). Our theory provides a systematic way
to elicit group preference from individual preferences. In the spirit of the divide
and conquer strategy of decision analysis, we build the group preference through
bilateral agreements between two individuals at a time. In multiattribute decisions,
the pair of individuals is required to reach an agreement only on the weight of one
chosen attribute. Such an agreement speci¯es the pair utility completely. The group
utility is derived from suitably chosen (n ¡ 1) pair utilities. Thus, at most (n ¡ 1)
bilateral agreements are needed to completely specify the group utility. An appealing
form for the group utility is derived for the case in which individual multiattribute
utility functions are additive. In this case, the group utility can be represented as
a weighted sum of group attribute weights and group attribute evaluation functions.
The group attribute weight for a given attribute is the weighted sum of the individual
attribute weights for that attribute. The group attribute evaluation function for a
given attribute is the weighted sum of the individual attribute evaluation functions
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for that attribute.
When individual multiattribute utility functions are multiplicative, the group util-

ity, in general, does not have an analogous multiplicative representation in terms of
group attribute weights and group attribute evaluation functions. It is, however, pos-
sible to derive the group utility through (n¡ 1) bilateral agreements similar to that
in the additive case.

In the literature on the aggregation of individual utilities into group utility (Harsanyi
1955; Keeney and Rai®a, 1976; Sen, 1970), there is little guidance provided on how
the members of the group who are jointly responsible for making a decision should
carry out the interpersonal comparisons of utilities. We have suggested in this pa-
per that bilateral agreements can be fruitfully employed to derive the group utility.
Though we cannot avoid the interpersonal comparisons altogether, our theory sim-
pli¯es such comparisons in two ways: (1) interpersonal comparisons are made only
at the pair level, and (2) even at the pair level, the individuals compromise on a cho-
sen parameter, say the weight of an attribute, and the interpersonal comparison is
inferred through the compromise reached. Since such compromises are commonplace
in group decisions, our results can be useful in practical applications.

Decision analysis has a strong tradition of breaking down complex problems into
simple parts and then combining the information collected on these parts to reach a
decision. In multiattribute decisions, for example, the multiattribute preference func-
tion is built from attribute weights and attribute evaluation functions. The attribute
weights, for example, are elicited by restricting attention to trade-o®s between two
attributes at a time. Independence conditions (utility independence, for example)
are used to justify a particular decomposition. In a similar vein, our approach uses
the Extended Pareto Rule to build the group preference from individual and pair
preferences. Since the aggregation of preferences is at the heart of a group decision
problem, we have provided a theoretically sound way to approach the preference ag-
gregation issue at the simplest level. We hope that our work will spark additional
theoretical and applied research into the somewhat neglected, but important, area of
group decision making.

33



A Desargues Theorem

Theorem 3 is a non-trivial generalization of Theorem 2. To illustrate one of the
di±culties, and its unexpected resolution, consider a case with four individuals. For
expository purposes we add a fourth point in Figure 1 corresponding to u4, the
utility of a new individual viewed as a point in a vector space (see Figure 2). Let
T = f12; 23; 34g be the spanning tree of bilateral agreements. The application of
Theorem 2 using u2; u3; u4; ±32; and ±

4
3 produces a complete preference u234, with u234

as the intersection of u2u34 and u23u4. Because we already u123, we could obtain
u1234 using the intersection of the lines u123u4 and u1u234. However, there is a third
segment available, namely u12u34. It is impossible to have consistent and complete
preferences unless these three segments are concurrent, i.e., they have a common
point of intersection. This di±culty can be addressed in geometric terms by means
of Desargues' theorem.

Theorem 10 (Desargues 1648) Let pi and qi, for i = 1; 2; 3 be two sets of in-
dependent points in a vector space satisfying pi 6= qi (i = 1; 2; 3). Then, the seg-
ments piqi, i = 1; 2; 3 are concurrent if and only if the three points sij = pipj \ qiqj,
1 · i < j · 3 are collinear.

Figure 2 represents Desargues' theorem as applied to

p1 = u1 p2 = u12 p3 = u123
q1 = u234 q2 = u34 q3 = u4

¾
) s12 = u2 s13 = u23 s23 = u3

By EPR, s13 2 s12s23 so that the line segments u1u234, u12u34, and u123u4 are con-
current: u1234 is well de¯ned. To see that u1234 2 u13u24, declare p02 = u13 and
q02 = u24, and maintain the other four points. The desired conclusion follows from
s013 = u23 2 u3u2 = s012s023.
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Figure 2: Desargues' Theorem.
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