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Abstract 

 

Dynamic Instruction Fusion 

By 

Ian Lee 

 

Energy efficiency in modern microprocessor design is a first order 

concern.  Every facet of the microprocessor needs to be optimized now to be 

efficient in accesses, storage, and instruction execution.  Dynamic Instruction 

Fusion provides a means to accomplish all three of these goals.  By leveraging 

register re-use within typical instruction streams, whether generated through the 

use of a trace cache, or through wide issue instruction logic, it is possible to 

simultaneously reduce both the number of accesses to the register file, as well the 

number of instructions stored within the instruction window. 

On average, Dynamic Instruction Fusion can reduce the number of 

instructions scheduled by ~ 48%, while simultaneously reducing the number of 

accesses to the register file by ~30%.  This reduction in both the number of 

register file accesses and instruction window entries directly corresponds to a 

saving in energy in the register file. 
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Chapter 1 – Introduction 

Today’s modern High Performance Computing (HPC) applications 

continue to operate on larger data sets.  In many cases, the same sequences of 

instructions are executed repeatedly hundreds or thousands of times.  Many of 

these instructions are formed into tight loops performing the same operations 

multiple times.  Consider the vector multiplication kernel, SAXPY, which 

multiplies a vector, A[], by a scalar, S, and adds a constant, C,  to it.  The pseudo-

code for this kernel is as follows: 

Algorithm 1: SAXPY Vector Multiplication 

Input:  A[N], S, C 

Output: Z[N] 

 

for (i = 0; i < N; i++) { 

  Z[i] = A[i] * S + C; 

} 

 

The assembly instructions executed for this code would be relatively 

simple as the scalar and constant values do not change between iterations of the 

loop, with only the loop counter incrementing, which the load and store addresses 

for the vectors.  

When these loops are compiled, assembly code is produced, generating 

instructions of the form: X + Y => Z.  Here, X and Y correspond to the source 

registers and Z corresponds to the destination register where the result will be 

stored.  For simplicity a simple addition is depicted here, however it could be any 

type of instruction from the Instruction Set Architecture (ISA) which take 0, 1, or 

2 sources and produce 0 or 1 destination register.  Each access to these registers, 
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whether reading or writing their values, costs a certain amount of energy based on 

the design of the register file. 

After the instruction is fetched and its operands are decoded, it is placed 

into the instruction window where it waits for an available Functional Unit (FU) 

as well as any pending dependent operands to become ready.  Typically, the 

instruction window is fairly large.  Modern Intel architectures have instruction 

windows on the order of 128 entries, maintaining instructions ready for execution 

whenever a functional unit becomes available.  While providing larger instruction 

windows, on the order of 1k entries, can provide a performance improvement by 

helping to hide main-memory latency, there is a penalty to using them in the form 

of the energy consumed by such a large memory structure [1]. 

The size of any memory structure: RAM, register file, instruction window, 

etc. directly affects the amount of energy that is required both to sustain the 

values in the structure (leakage energy), as well as to access the elements of the 

structure (dynamic energy).  The main purpose of this thesis is to present a 

dynamic, hardware based methodology to reduce not only the number of registers 

accessed by the instruction stream, but also the total number of instructions which 

are issued through the instruction window.  This is accomplished by examining 

streams of in-flight instructions, which are allowed to span multiple basic blocks 

(branch boundaries), and fusing similar types of instructions together.  This fusion 

clusters several instructions of the same type into a single entry in the instruction 

window, to be processed by a specialized ALU. 
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Results show that this technique is able to reduce the number of source 

register reads by 32% and destination register writes by 25%.  At the same time, 

this technique provides a 48% reduction to the number of instructions issuing 

through the pipeline through the use of highly fused instructions.  
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Chapter 2 – Related Works 

Instruction fusion is not a new concept; however, until now it has never 

been applied at a level greater than looking at a few instructions at a time.  

Because there are such strong dependencies between instructions it is natural to 

look for ways to optimize the instruction stream by combining instructions and in 

particular, dependent instructions.  Typically instructions are “fused” by 

considering groups of instructions to be the basic building block rather than taking 

each instruction individually.  These groups of instructions can be executed by 

more powerful execution engines, such as those capable of performing arithmetic 

on three sources.  In order to determine how to optimize these instructions 

streams, there must be a mechanism to allow the examination of greater numbers 

of instructions at once.  One option is to leverage wide-issue processors, while 

another is to examine instruction streams which we expect to execute again, off 

the critical path of the execution engine. 

2.1 Trace Cache 

In order to perform the instruction fusion, we ideally want more 

instructions than are fetched each cycle by the typical modern processor.  One 

method to obtain these instruction streams is through use of a trace cache [2] [3] 

[4].  Traces caches have been developed in order to take advantage of tight and 

often repeated loops.  As instructions issue through the processor pipeline, they 

are analyzed and collected into trace lines which are stored into the trace cache for 

future use.  Later in time, when the processor requests the same instruction 
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address as an entry in the trace cache, the trace line will be fetched rather than the 

stream of instructions from the instruction cache. 

 The typical trace cache design allows for a trace line with as many as 16 

instructions across 3 branches (4 basic blocks maximum).  Returns, indirect 

branching, and serializing instructions terminate the creation of a trace line.  Once 

a trace line has been finalized, it is stored into the trace cache.  Some researchers 

[4] [3] have proposed that this is an ideal time to perform several dynamic 

optimizations to the trace.  These optimizations include: instruction combination 

on a limited number of instructions, dependency collapsing, and dead code 

elimination. 

 One of the drawbacks to these traces is that they rely on the fact that the 

branches within the trace are predicted properly.  Within long code loops, this will 

tend to be the case, with modern branch predictors providing very high prediction 

rates.  However, eventually the loop will complete, and the execution must 

continue at a different point.  This transition period can occur inside of a trace line 

which was being executed.  Therefore, even though the assumption is made that a 

trace “knows” the taken/not-taken behavior of all branches within it, the branches 

must still be executed in order to verify.  In the event that a branch miss-

prediction was made, the in-flight instructions fetched from the trace cache must 

be flushed, the state rolled back, and the stream of instructions must be re-fetched, 

this time directly from the instruction cache.  The benefits of the trace cache 

therefore rely on the accuracy of the branch predictor, and whether the execution 



 

6 

 

path stored in the trace cache is correct.  Figure 1 shows the branch prediction 

rates observed average 89.4% across all benchmarks, utilizing the O-GEHL 

branch predictor [5].  If the outliers, hmmer and sjeng are ignored, we see a 

94.8% prediction rate, implying that we will be able to make effective use of a 

trace cache or more complex architecture (described later). 

 

Figure 1: Branch Prediction Rates for OGEHL Branch Predictor 

 

2.2 Instruction Fusion & Complex ALUs 

Several researchers have proposed techniques to fuse instructions together 

in order to reach higher levels of performance [6] [7] [8] [9] [10].  Often times 

these techniques require the use of specialized ALUs which can handle the 

processing of these fused instructions. 

 Bracy et al. [6] proposed the use of what they called “Dataflow Mini-

Graphs” to statically combine multiple instructions together.  This approach 

provides a 2-12% performance improvement overall, with peak gains exceeding 
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40%.  The processor deals with instructions through quasi-instructions called 

“handles.”  These handles maintain the restriction that they be limited to two 

reads & one write, using a chain of ALUs to “amplify” the execution stage of the 

pipeline.  In all stages of the pipeline, the handle is treated as a simple singleton 

instruction, except in the execution stage, where a dynamic instruction stream 

editor (DISE) consults a Mini-Graph Table to expand the instruction for 

execution.  The ALU pipeline is a single entry, single exit chain of ALUs which 

selects its output from any single stage in the pipeline, which is important as it 

allows the substitution of ALU pipelines for ALUs without penalizing singleton 

instruction performance.  The authors find that the majority of the improvements 

(60% coverage) are gained by using only 2 instruction mini-graphs, with some 

advantage being gained by using 3 or 4 instruction mini-graphs. 

 MACRO-OP Scheduling [7], proposed by Kim and Lipasti, is an 

alternative approach to pipelined ALUs which allows an out-of-order processor to 

dynamically combine pairs of dependent instructions.  Within deeply pipelined 

processors there is a performance gap between memory and the processor core.  

In order to overcome this gap a large instruction window is used to hide the 

latency of memory operations.  Increased instruction window size, however, 

requires complicated scheduling logic, while increasing the amount of energy 

consumed by the processor.  MACRO-OP scheduling allows for pairs of 

dependent instructions to be combined, allowing for a reduction in the number of 

entries in the instruction window.  For simplicity, the authors choose to limit the 
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MACRO-OP combinations to two dependent instructions, therefore having a 

maximum of 3 sources.  Single cycle ALU operations, store address generation 

instructions, and control (branching) instructions are allowed to be combined in 

this way. 

 A similar idea is proposed by Vassiliadis et al. [8] through the use of what 

they call Interlock Collapsing ALUs.  This specialized ALU is capable of 

performing 2’s complement, unsigned binary, and binary logical operations, 

taking three sources and producing one output.  Such an ALU allows instructions 

which would normally not be allowed to execute in the same cycle, creating 

“multi-operation instructions,” such as:  

R3 = R3 + R2 

R4 = R4 + R3          =>  R4 = R4 + R3 + R2. 

In modern simultaneous multithreading (SMT) processors, register 

availability is an important design consideration.  Tran et al. [9] propose two 

simple techniques to provide register sharing.  First, they allow dynamically 

combining physical registers which contain the same value. Second, they allow 

sharing of physical register storage among instructions modifying the same 

logical registers.  In order to reduce the complexity of sharing registers with any 

arbitrary value, the authors limit themselves to sharing trivial values 0 and 1, as 

well as trivial computations which produce known 0 or X values (ie: X AND 0 => 

0). They find that even with this limitation, they are able to produce 50% of the 

benefit as they would see if they allowed the sharing of arbitrary register values.  
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In the case of SMT processor where register availability is a bottleneck, the 

authors find similar performance between a regular processor with 200 physical 

registers and a modified processor using their sharing techniques but with only 

160 physical registers. 

 Static Strands [10] are proposed by Sassone et al. as yet another means to 

dynamically collapse instructions in the pipeline.  The authors observe that values 

generated within the strand tend to be “transient operands” that feed only a single 

dependent instruction.  As many as 90% of the instruction strands the authors 

construct are purely ALU instructions with intermediate values which never leave 

the ALU.  Therefore, these values have no need to be written into the register file, 

saving energy in the bypass logic (17-20% energy savings), issue logic (16-24% 

energy reduction), and register file accesses (13-14% energy reduction).  In 

addition the authors are able to obtain a 15% increase in the number of 

Instructions Per Cycle (IPC), which they point out could be traded for additional 

increased energy savings by reducing the clock frequency while still maintaining 

the base performance.  In contrast, the work presented in this thesis provides a 

general framework to allow handling instruction streams which generate more 

than a single destination value and which look beyond basic block boundaries, 

thereby providing greater energy savings.  
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Chapter 3 – Methodology 

3.1 Fusion Selection Engine 

Traditionally, instructions are fetched into the processor pipeline by way 

of the instruction cache, with the Program Counter (PC) specifying the current 

location in the executing code.  Each cycle, instructions are fetched from the 

instruction cache, or alternatively, for those processors equipped with one, the PC 

can index into the trace cache to fetch a sequence of instructions that has been 

constructed into a trace.  Modern processors are superscalar, meaning that they 

can fetch and decode multiple instructions per cycle.  This behavior is quite like a 

trace cache, enabling Dynamic Instruction Fusion on these streams of instructions.  

Taking things a step further, it is possible to design a wide issue, superscalar 

processor which would be capable of predicting multiple branches in a single 

cycle.  Such a feature should enable fetching the equivalent of a trace line worth 

of instructions: 16 instructions spanning three predicted branches, in order to 

match the specifications of a trace cache. 

Once a stream of instructions becomes available, either from a trace cache 

or a wide issue processor capable of predicting multiple branches per cycle, it is 

passed to the Fusion Selection Engine (FSE).  The FSE examines these 

instructions to determine how the fused instructions will be generated.  There are 

two main approaches that you could leverage.  Given the entire stream of as many 

as 16 instructions, we could try to compute the most optimal compression.  This 

optimal case could be in terms of the number of read or write accesses to the 
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register file, the total number of accesses to the register file, or the total number of 

instructions placed into the instruction window after the fusion.  For the purposes 

of this work the energy consumption of a read and a write to the register file will 

be assumed to be the same, thus reducing the problem to a trade-off between the 

number of register file accesses (reads + writes) and the number of instructions 

required. 

The difficulty with this approach is that solving the optimization on a 

given batch of instructions requires a trade-off between the number of register file 

accesses and the number of instructions which will go to the instruction window.  

In particular, the more varied the instruction mix, the more options there are for 

the fusion.  An alternate approach is to simply examine the instructions in order, 

with a set of rules to determine how they should be fused.  This is the preferred 

approach for this work, due to the goal of designing a low complexity hardware 

implementation for the proposed Dynamic Instruction Fusion. 

The mix of instructions issuing through the pipeline plays a huge role in 

how efficiently the FSE can reduce the number of instructions and register file 

accesses.  The instruction mix within the processor pipeline can be logically 

binned into one of five types of instructions: ALU, branch, load, store, or FPU.  

The count, as well as the mix of instructions which are considered for fusion, is 

given in Figure 2: Average Instruction Mix.  ALU instructions (59.02%) are the 

primary type of instructions which are fused and for simplicity we combine 

branching instructions (7.74%) into ALU instructions, as they are both executed 
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in the same way in the processor, as supported by Kim and Lipasti [7].  Load 

(15.55%) and store (15.76%) instructions operate exactly as you would expect, 

however, special care must be taken with them to avoid violating dependency 

rules.  FPU instructions (1.93%) are similar to the ALU instructions, and could 

have their own fusion operations performed on them.  For this work, the fusion of 

FPU instructions is not handled, with the focus instead on integer performance 

and applications, though it is extend this work to support them. 

 

Figure 2: Average Instruction Mix 

The most straightforward implementation of the FSE would be to insert 

the control logic between the fetch and the issue stages of the processor pipeline.  

This would allow for the processing of the instructions in an In-Order fashion, and 

therefore isolate the FSE from the more complicated Out-of-Order execution 

engine.  An alternative placement would be applicable to trace cache enhanced 

processors, where the FSE could be combined into the trace construction logic.   
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 For the purposes of this discussion, the assumption is made that the fusion 

occurs dynamically as instructions are fetched through the pipeline.  In the 

alternate case that a trace cache is utilized, the fusion logic can be removed from 

the pipeline and run in the background as part of the trace formation process.  

Doing so has the benefit of offloading the processing from the critical path, 

therefore eliminating any delay that would be associated with the FSE, trading 

instead for a greater latency before the fusion instructions become available. 

3.2 Standard Execution 

In a standard processor, instructions are fetched from the instruction cache 

according to the current Program Counter (PC) value.  These instructions are then 

issued to the execution units in the processor either in- or out-of-order.  In-order 

execution refers to the instructions being issued in the same, sequential order 

which they were fetched.  Out-of-order execution, on the other hand, provides the 

capability for instructions to be re-organized in such a way that instructions 

without pending dependencies may execute ahead of earlier fetched instructions.  

To guarantee correctness, the requirement that instructions retire in-order is 

enforced. 

3.3 Naïve In-Order Fusion 

 The most basic approach to instruction fusion would be to operate the FSE 

on instructions, in-order, as they are fetched from the instruction cache.  Naïvely, 

it makes sense to fuse all consecutive instructions together, as long as the stream 
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is not interrupted by incoming load, store, or FPU operations.  This particular 

approach is incredibly easy to implement, with an algorithm as follows: 

Algorithm 2: Fusion Selection Engine - Naïve In-Order Handling 

1. Initialize a new Fusion Instruction 

2. FOR ALL instructions in Instruction Cache 

a. Fetch the instruction and decode the registers 

b. IF this instruction is an ALU operation  

i. Fuse the instruction  

c. ELSE 

i. Issue the Fusion Instruction 

ii. Issue the newly fetched, non-ALU, instruction 

iii. Initialize a new Fusion Instruction 

In Dynamic Instruction Fusion, instructions selected to be fused by the 

FSE are not actually modified by the processor.  The “fusion” itself comes from 

combining multiple instructions together and treating them as a single unit.  This 

approach is very similar to the way that instructions are grouped together into a 

table and accessed by a “handle” in the Dataflow Mini-Graphs proposed by Bracy 

et al [6].  They are clustered together and passed through the execution engine as 

a unit, allowing for a reduction in the number of instructions which need to be 

managed individually.  A detailed overview of the architecture required for this 

technique is described in Chapter 3.6 Required Architecture. 
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3.4 Queued Fusion 

 A simple, dynamic, in-order algorithm in the Fusion Selection Engine 

allows for greater efficiency in the fusion results, at the cost of increased 

complexity.  This method does not build the best fusion stream possible, but 

provides a benefit in that it does not require a complicated decision engine for 

selecting the instructions to fuse, as would be required to squeeze the last bit of 

performance into the best fusions.   

The queued fusion method operates by examining each instruction in order 

and making a decision based on rules for its instruction type.  The assumption is 

made that fusing as many instructions as possible into as few fusion instructions 

as possible, is ideal.  To this end, we apply the simplification that at any time 

there can be at most one single fusion instruction under construction.  In the 

equations below, the syntax “Ra, Rb  Rx, Ry, Rz” is used to signify that the 

instruction takes in sources Rx, Ry, and Rz, operates on them, and then stores 

destination results in registers Ra and Rb.  The operations that are performed are 

the same operations as the original un-fused instructions, modifying only the way 

in which the operations and registers are accessed.  The rules for processing each 

instruction type are as follows: 

 If the current ALU instruction being examined requires a value from a 

pending load instruction, then we must issue the load instruction before 

proceeding with the current instruction.  If it turns out that said load instruction 

had a dependence on a register within the currently pending fusion instruction, 
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then we must also issue that fusion instruction.  Example 1 is an example of this 

where the load (instruction 3) will cause the pending fusion operation to issue.  In 

a similar fashion, if there is a pending store instruction and the current ALU 

instruction being evaluated would overwrite the register containing the value 

which we intend to store, we must issue both the store instruction as well as the 

fusion instruction which the store depends upon. 

 Load and store instructions obviously act in a similar fashion to the ALU 

instructions.  If the current instruction being considered for fusion is either a load 

or store, we must check to ensure that any dependencies with instructions within 

the pending fusion instruction are maintained.  In the case of a load, the new 

instruction may be attempting to overwrite a value needed by a pending fusion 

instruction.  In Example 1, the load into R4 (instruction 3) would overwrite the 

value needed by the pending fusion instruction (instruction 2); therefore the naïve 

in-order approach to handle this case might be to simply mark the pending 

instruction as completed and send both it and the load, in order, to the execution 

pipeline.  Another, more intelligent approach, would be to queue the load until we 

detect either that the destination of the load (R4) is needed, or that we are going to 

overwrite the source of the load (R1).  These two cases can be seen as instructions 

5 and 6 below, respectively. 
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Example 1: Fusion Selection Engine – Simple Load/Store/FPU Skipping 

1. R2  R2, R4  new fusion 

2. R5  R2, R7  fuses to R2, R5  R2, R4, R7 

3. R4  LD[R1]    R4  LD[R1] 

4. R2  R2, R7  new fusion 

5. R2  R2, R4   fuses to R2  R2, R4, R7 

6. R1  R2, R3  fuses to R1, R2  R2, R3, R4, R7 

In the case of the former, depending on the particular dependencies for the 

pending fusion instruction it may be possible to issue the load out of order, before 

the ALU instruction.  In the case of this particular instruction stream, we are able 

delay the fusion by one instruction, providing a savings of an additional register 

read. 

Example 2: FSE Load – Load Queue Handling 

1. R2  R2, R4  new fusion 

2. R5  R2, R7  fuses to R2, R5  R2, R4, R7 

3. R4  LD[R1]  queued  R4  LD[R1] 

4. R2  R2, R7  fuses to R2, R5  R2, R4, R7 

5. R2  R2, R4   new fusion, issue queued load 

6. R1  R2, R3  fuses to R1, R2  R2, R3, R4 

Example 1 provides an example of the naïve in-order load handling, while 

Example 2 shows how the load queue can be used to improve the fusion 

performance.  The instructions displayed in red are the actual fused instructions 

issued from the FSE.  In the original instruction stream there are 11 register reads, 
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6 writes, and 6 issued instructions (Example 1).  The naïve, in-order fusion 

approach results in 8 reads, 5 writes, and 3 issued instructions (Example 2).  By 

introducing the load queue, we are able to eliminate another of the register reads 

leaving: 7 reads, 5 writes, and 3 instructions issued as the optimal fusion. 

Store instructions require a similar, though simpler, handling.  With store 

instructions, there is no result produced, so we are solely concerned with whether 

the source register required by the store is going to be overwritten by an incoming 

ALU or Load instruction.  As in the case of load instructions, store instructions 

can be handled either naïvely or with the added benefit of a store queue.  The 

results for including both the load queue and the store queue are discussed further 

in Chapter 4 – Results. 

For the purposes of this work, the focus is on designing around, and 

optimizing for, ALU operations.  Floating point instructions are therefore handled 

similarly to the naïve approaches for load and store instructions.  That is, they are 

simply passed through the FSE and issued to the execution engine.  It would be 

possible to add a simple queue which would operate the same as the Load/Store 

Queues; however, due to the limited number of FPU instructions in the 

benchmarks examined, the reduction opportunities are limited. 

3.5 “Perfect” Fusion 

Using a mechanism such as a trace cache to feed the FSE provides certain 

benefits, including the ability to obtain a theoretically “perfect” fusion.  This is 

due to the fact that by fetching a trace line from the cache, we have access to all 
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information about all the instructions contained, which we wish to fuse.  The 

difficulty comes from the fact that there are theoretically as many as 16! = 

~2x10
13

 possible instruction combinations to consider.  In reality the number of 

viable combinations will be greatly reduced by the fact that we must continue to 

enforce dependencies between instructions.  For comparison purposes, it would be 

useful to compare the results of the fusion algorithms here to some theoretical 

baseline.  Due to the difficulty in determining the definition of “perfect fusion,” 

two separate perfect baselines are created. 

The first corresponds to if there was perfect register file access.  In this 

baseline the key metric is the number of unique registers accessed.  This is sub-

divided to consider the number of unique sources as well as unique destinations.  

Given an infinitely powerful computational unit, this would correspond to the 

minimum number of register file accesses possible. 

The second baseline corresponds to the minimum number of instructions 

that could be issued.  The fusion techniques proposed in this thesis provide 

support only for ALU operations.  The best technique, with some sort of magic 

value passing, would therefore allow all ALU instructions in a trace line to fuse 

together into a single fusion instruction.  

These two baselines will serve as the main comparison for the fusion 

techniques to showcase the absolute best that could ever be done under any 

circumstances.  They will highlight how close this work, some of the first of its 
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kind, is to these perfect cases.  It is important to note, however, that these two 

“perfect” cases are not realistic, and represent an unobtainable goal. 

3.6 Required Architecture 

 There are three main additions to the standard processor which must be 

added to accommodate the Dynamic Instruction Fusion architecture.  The first is a 

smaller, more efficient register file which will provide the energy savings that is 

the primary goal of this work.  The second is the addition of a Fusion Selection 

Engine (FSE) which is, as its name implies, responsible for deciding which 

instructions should be fused.  The final core component is an enhanced ALU.  

This Fusion ALU must be able to handle the fused instruction streams which will 

be issuing through the pipeline. 

 In order to provide an energy savings there must be some sort of change to 

the processor to allow us to not have to read / write every register of all in-flight 

instructions.  This can be done one of two ways.  The first is to instrument a 

complicated forwarding logic system, or pipelined execution engine which allows 

the register values to pass from one stage to another.  This approach has the 

benefit of not requiring any intermediate storage of register values, but does cost 

more in the overhead of the system.  This approach is similar to that described by 

Bracy et al. [6] which takes advantage of a pipelined ALU with the ability to write 

out the results from any stage of the ALU pipeline.   

An alternative approach is to use a small and energy efficient register file 

(Transient Register File) tightly coupled to the Fusion ALU in order to provide 
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the savings.   Transient register values are stored in this structure in order to allow 

them to be consumed by the Fusion ALU.  This method takes advantage of the 

fact that small memory structures, with fewer ports, are much less expensive 

energy-wise.  By “caching” the transient register values, the expensive accesses to 

the large, many ported register file are avoided in favor of the smaller coupled 

structure.  Sizing this register file is an important design consideration, as it needs 

to be able to hold all of the unique registers that will be needed by fused 

instruction.  Experiments, detailed in Chapter 4.6 Register File Sizing, prove that 

sizing this register file around 8 entries (32 – 128 bytes) provides greater than 

99% of the coverage of all fused instructions, with a mere 4 entries required in 

order to provide 91% coverage.  Compared to the typical register file at ~160 or 

more entries, this is a substantial savings.  If using the efficient register file 

approach, extra work must be performed to load in the initial registers required by 

the fused instruction, as well as writing out the resulting registers.  Given the 

results in Chapter 4.6 Register File Sizing, this overhead cost should be very low 

compared to the savings achieved. 

The Fusion Selection Engine contains the logic responsible for deciding 

how to fuse the instructions together, as well as the memory structures to hold the 

instructions as they are being constructed.  In particular, a set of queues are 

needed for the each of the types of instructions which will be held, pending their 

being sent to the execution stage.  The examination of the instruction mix shows 

that load and store instructions comprise 16% and 13% of the total instructions, 
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with a whopping 74% of the instructions being ALU or branch instructions which 

can be fused together.  The queue required for the fused instructions will be the 

largest, with something on the order of 8-16 entries in order to take full advantage 

of the generously sized fusion instructions that we wish to generate.  Due to the 

much smaller ratio of loads and stores, their respective queues can be quite small, 

2-4 entries each in order to provide complete coverage for most instruction traces.  

Finally, a queue is required to hold the FPU operations while the FSE is fusing the 

instructions. 

In order to avoid generating wide instructions with many bits of data being 

passed around, a small table will be used to store the particular instructions within 

the fusion instruction which will be executed.  A pointer into this table will be 

encoded into the fusion instruction which will be decoded in the Fusion ALU to 

execute the instructions required as well as referencing a smaller register file 

which provides the energy savings we are seeking.  This arrangement mirrors that 

implemented by Bracy et al. [6] through the use of their Mini-Graph Table and 

the handles associated with each entry into this table. 

 If the simplicity of a smaller more energy efficient register file is 

leveraged, there is relatively little that needs to be changed in the Fusion ALU.  

The only difference is that now the ALU will be accessing the smaller structure, 

rather than the global register file.  It is possible to instead use a pipelined ALU 

such as described by Bracy et al. [6], however, due to the added complexity of 

such a structure, the preference remains with the transient register file. 
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3.7 FSE Example 

Table 1 shows a single instruction stream taken from the execution of the 

SPEC 2006 mcf benchmark.  Each row corresponds to an instruction within the 

sequence, and details the source and destination registers along with the type of 

instruction (ALU, FPU, Load, Store, and Branch).   

Table 1: Sample Instruction Stream 

# Type   Src1 Src2   Dst1 Dst2 

1 ALU 
 

1 
 

-> 76 
 2 LOAD 

 
76 

 
-> 7 

 3 ALU 
 

1 
 

-> 1 66 

4 ALU 
 

7 
 

-> 76 
 5 ALU 

 
76 

 
-> 66 

 6 ALU 
   

-> 76 
 7 ALU 

 
66 76 -> 76 

 8 BRANCH 
 

76 
 

-> 
  9 ALU 

 
1 12 -> 76 

 10 ALU 
 

76 
 

-> 66 
 11 ALU 

   
-> 76 

 12 ALU 
 

66 76 -> 76 
 13 BRANCH 

 
76 

 
-> 

  14 ALU 
 

7 
 

-> 76 
 15 ALU 

 
76 

 
-> 4 

 16 ALU 
 

4 
 

-> 76 
  

Figure 3 shows the same instruction sequence in graphical form, and 

allows for an easy way to visualize the flow of data through the sequence.  Each 

of the green lines connects the source to the destination registers for an ALU 

operation.  The blue lines correspond to Load operations, while orange lines mark 

the Branch instructions which do not produce a value to be written into a register 

(symbolized by the empty box).  This stream is organized to show the ordering of 

the dependencies between the instructions, and to visually demonstrate that there 
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are actually several places where the stream is inefficient in the number of 

instructions issuing through the pipeline. 

Figure 4 shows what this sequence could be compressed from 16 down to 

6 instructions while still maintaining all of the required dependency information.  

This is one form of instruction fusion.  It is possible to imagine this sequence 

being fused in such a way that each of the 6 rows of instructions could be 

executed together as there are no dependencies among the instructions on a row.  

It is also important to note that there is no way to compress the sequence into 

fewer than 6 instruction cycles to execute, due to the length of the longest path 

through this stream requiring 6 cycles (R1  R76  R7  R76  R66 R76 

BR).   
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Figure 3: Sample Instruction Stream Visualization 
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Figure 4: Sample Instruction Stream with Compression 

 

 By applying the Queued Dynamic Instruction Fusion technique described 

in Chapter 3.4 Queued Fusion, we obtain the fusion shown in Figure 5 and Figure 

6.  This fused instruction stream queues the Load (R76  R7), allowing the 

instruction following it (R1  R66 + R1) to fuse with the first instruction and 

eliminate a read from the execution.  This same savings is also provided with the 

compression shown in Figure 4.  The Queued Dynamic Instruction Fusion adds an 

additional savings on top of this.  After the load is completed, all of the 

subsequent instructions are ALU operations which can be fused into a single 

fused instruction which requires reading in registers R1, R7, and R12 and 

produces values for R4, R66, and R76.  In reality R66 & R76 correspond to the 

temporary register used for load/store addresses as well as branching instructions, 

and therefore are likely not to be needed after the fusion instruction stream 

completes executing.  However, in order to guarantee the correctness of the 

register values after the fusion, these values are written out and therefore available 

to future instructions. 
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Figure 5: Sample Instruction Stream with Fusion Overview 
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Figure 6: Sample Instruction Stream with Fusion Detailed 



 

28 

 

3.8 Further Optimizations 

 By examining the sequence found in Figure 3 and Figure 4, you may 

notice there is another option available of how to divide up the instructions into 

the fusion instructions.  If we treat the sequence the way that it is visualized, as a 

graph, then we can see that there is an alternative approach to cutting the graph 

around the load.  ALU operations connected above and to the right of the load can 

all be fused into a single ALU operation, while those following the load can form 

a second fused instruction. 

 In hardware, this sort of an approach would be somewhat costly.  It would 

require either the entire instruction stream be examined as a whole, or 

alternatively you could allow multiple pending fusion instructions to accomplish 

this more complicated fusion selection.  Such a modification would require that 

there be a mechanism to fuse pending fusion instructions together if an overlap in 

the dependencies was encountered.  As you can imagine this would increase the 

complexity of the FSE design substantially. 

 An interesting alternative which is not fully explored in this work would 

be to implement these ideas and scheduling preferences into the compiler.  It 

would be a simple matter for the compiler to detect that there were these three 

distinct clusters in the instruction stream graph and to optimize the clustering of 

as many dependent instructions together as densely as possible, in order to 

increase the efficiency of the in-order Fusion Selection Engine. 
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3.9 Limitations 

 Several limitations and concerns must be taken into account when 

designing the Fusion Selection Engine.  These limitations include: the number of 

immediate values which are needed by a fusion instruction and the number of 

ports required to keep up with the computation of the enhanced ALU. 

 Immediate values are constant values encoded into the instructions at 

compile time.  Unfortunately, there are a limited number of bits available to each 

instruction, and therefore there is no way that many immediate values could be 

bundled into a single instruction encoding.  One way to handle the issue of 

dealing with multiple immediate values which might need to be encoded into a 

single fusion instruction is to pre-store any immediate values beyond the first into 

registers.  In this way the FSE will be able to treat them as normal ALU 

operations and be none the wiser.   

This of course has a penalty in the form of increased numbers of 

instructions issuing through the pipeline, as well as adding, rather than removing, 

register file accesses and total register use.  Such an optimization could be 

provided either by a Fusion aware compiler, or handled at runtime by dynamically 

cracking the instructions into a pair of dependent instructions.  Results show that 

86% of the instruction sequences that enter the FSE contain 0, 1, or 2 immediate 

values.  This small number of immediate dependencies is probably reasonable 

enough to allow for an extension to the ISA to support two immediate values per 
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instruction; especially given that almost 50% of the streams examined have two 

immediate values per sequence. 

 The second issue to overcome is in the form of a “knob” which we can use 

to tweak the performance of the FSE.  In particular, the number of ports into the 

register file as well as the ALU pipeline will have an impact on the performance 

that can be sustained.  In addition, adding extra ports to each of these structures 

will result in extra energy consumption which will begin to undermine the energy 

savings provided by Dynamic Instruction Fusion.  The effect of varying these 

parameters is discussed in detail in Chapter 4.4 Number of Immediate Values per 

Stream. 
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Chapter 4 – Results 

4.1 Setup  

In order to evaluate the performance of the Dynamic Instruction Fusion 

technique, the suite of SPEC 2006 benchmarks are run through the ESESC 

architectural simulator.  Each benchmark was sampled using the SMARTSmode 

sampling method [11] [12].  This method has four modes: Rabbit, Warm-Up, 

Detail and Timing as described in Table 2: ESESC Simulation Modes.  Each 

benchmark was run for a maximum of ten billion instructions, with an average of 

2.3 billion instructions going through the full Timing simulation. 

Table 2: ESESC Simulation Modes 

Phase Description 

Rabbit Fast-forward emulation or native co-execution 

Warm-up Memory and branch traces to maintain accurate state 

Detail Cycle-accurate modeling, statistics are discarded 

Timing Cycle-accurate timing modeling 

 

Two architectural designs are evaluated for this work.  The first 

(Traditional) is a traditional modern 4-way superscalar processor, capable of 

fetching four instructions and providing a single branch prediction each cycle.  

The second (Fusion) is a fusion architecture designed to match the functionality 

that would be provided by either a trace cache or a wide issue processor.  Namely 

this architecture is capable of fetching 16 instructions and producing three branch 
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predictions per cycle.  The results in each section below will be provided for both 

of these architectures in order to demonstrate the effectiveness of the Dynamic 

Instruction Fusion technique on both a conservative and a more aggressive 

architecture. 

4.2 Instruction Stream Sizing 

Modern branch predictors are extremely good at predicting the paths of 

branches.  Therefore the number of instructions available to the Fusion Engine is 

quite high, with 90 % of the instruction streams on the Traditional 4-way 

superscalar architecture containing the maximum of 4 instructions (Figure 7).  

Similarly, on the Fusion architecture, over 60% of streams consist of the full 

complement of 16 instructions each (Figure 8). 

 

Figure 7: Average # of Instructions per Instruction Stream on Traditional Architecture  

Across all Benchmarks 
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Figure 8: Average # of Instructions per Instruction Stream on Fuse Architecture 

Across all Benchmarks 

4.3 Reductions – Register Accesses and Instructions 

 Two primary metrics are used to evaluate the performance of the Dynamic 

Instruction Fusion technique: register file accesses and the number of instruction 

handles issued through the execution pipeline.  Here the results are reported for 

the Naïve (Chapter 3.3 Naïve In-Order Fusion) and Queued (Chapter 3.4 Queued 

Fusion) fusion algorithms as well as the Perfect or Unique results (Chapter 3.5 

“Perfect” Fusion).  All results are reported relative to the baseline run where no 

fusion is performed, and the instructions issue normally (sequentially and 

independently). 

 On the traditional architecture (Figure 9 and Figure 10), with at most four 

instructions available for fusion, the Naïve and Queued fusion algorithms provide 

a 17% and 21% reduction respectively in the number of register file accesses, 

while providing a 38% and 44% reduction to the number of instructions issued to 

the execution engine.  These results are reasonably good in comparison to the 
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“Perfect” results which would provide a 37% reduction to register file accesses as 

well as a 48% reduction to the number of instructions issued, despite having only 

a few instructions available to perform the fusion on. 

 

Figure 9: Traditional Architecture -- # of Register File Accesses, Normalized to Non-Fused Baseline 

 

 

Figure 10: Traditional Architecture -- # of Instructions Issued, Normalized to Non-Fused Baseline 
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Slightly better results are achieved when the number of instructions evaluated by 

the FSE expanded to 16 instructions on the Fusion architecture (Figure 11 & 

Figure 12).  Here we see that there is an available 24% or 31% reduction to the 

number of register file accesses using the Naïve and Queued fusion algorithms 

respectively.  An even more drastic an improvement is provided to the number of 

instructions issued seeing reductions of 45% (Naïve Fusion) and 54% (Queued 

Fusion).  Amazingly, if it were possible to obtain the results provided through the 

“Perfect” fusion (which, as a reminder, is a physical impossibility due to 

instruction dependencies) one would see an astounding 64% and a 65% reduction 

to the number of register file accesses and instructions issued respectively. 

 

Figure 11: Fusion Architecture -- # of Register File Accesses, Normalized to Non-Fused Baseline 
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Figure 12: Fusion Architecture -- # of Instructions Issued, Normalized to Non-Fused Baseline 

 

4.4 Number of Immediate Values per Stream 
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processors.  In branching instructions, the offset to the new code is a fixed 

distance away in memory, and therefore the offset from the branch instruction to 

the target of the branch is known at compile time.  This value is encoded into the 

instruction, and is retrieved at decode time.  By examining the instruction streams 

in the SPEC Benchmarks, it is revealed that a large percentage of instructions 

require an immediate value be encoded into the instruction.  When the scope of 
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architecture, it is clear that the vast maturity of these (62% and 91% respectively) 

require more than a single immediate value per fused instruction.  Figure 13 and 
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immediate values within the instruction mix. 
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Constrained by the limited number of instructions evaluated by the FSE on 

the Traditional architecture, a full 86% of the incoming instruction streams 

contain at most two immediate values.  This small number of immediate values is 

something that could conceivably be built into a new Instruction Set Architecture 

at the cost of the extra bits required to store the instruction.  In the case of the 

Fusion architecture, an average 91% of the instruction streams contain at most 

eight immediate values.  This number is unreasonably large for it to be considered 

being supported in the ISA, and an alternative method must handle this many 

immediate values. 

One possible way to handle this case is to pad out the beginning of the 

instruction stream with instructions which are capable of pre-loading the 

immediate values into temporary registers to be consumed by the fused 

instruction.  This approach has the drawback of cutting into the savings by the 

FSE in terms of the number of register file accesses.  This penalty could 

potentially be offset by the ability to “re-use” some of these immediate values.  It 

is reasonable to assume that only a handle of values are going to be used by the 

instruction stream, and that you could re-use these values for multiple instructions 

by loading them into a temporary register.  In particular, the values 0 and 1 are 

very common immediate values to observe encoded into the instructions. 
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Figure 13: Traditional Architecture -- # of Immediates Consumed per Instruction Stream 

 

 

 
 

Figure 14: Fusion Architecture -- # of Immediates Consumed per Instruction Stream 
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selected for its ability to model large cache structures [13].  Four main focuses 

were examined in CACTI to evaluate the sizing of the of the memory structures to 

be used.  Figures Figure 15, Figure 16, Figure 17, and Figure 18 show the CACTI 

results graphically for access time, area, read energy, and leakage power 

respectively.  Each series in each of the plots corresponds to the size in bytes of 

the register file modeled.  The number of ports provided for the register file plays 

a substantial role in the performance of the structure, with more ports bringing 

higher costs in access time, area usage, and increased read energy and leakage 

power.  Within each specified cluster of ports (i.e., 4 ports) the results for the 

various size memories are given. 

 

 

Figure 15: CACTI - Access Time by Register File Size 

 

 0.01

 0.10

 1.00

1 2 4 8 16

A
cc

e
ss

 T
im

e
 (

n
s)

 

# of Ports 

512 1024 2048 4096 8192 16384



 

40 

 

 

Figure 16: CACTI – Area by Register File Size 

 

 

Figure 17: CACTI - Dynamic Read Energy by Register File Size 
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Figure 18: CACTI - Leakage Power by Register File Size 
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values for the ALU, and should produce a better efficiency.  Figure 19 & Figure 

20 show that constraining the fusion instructions to allow at most 8 unique 

registers each, provides 99.9% and 99% coverage for the Traditional and Fusion 

Architectures respectively. Limiting the size of the Transient Register File 

proposed in Chapter 3.6 Required Architecture to a small 8-entry size amounts to 

a TRF of between 32 and 128 Bytes depending on the size of the registers needed 

(32 – 128 bit).  For a port count, 2 or perhaps 4 ports could be selected to balance 

the performance of reading and writing from the Transient Register File each 

cycle.   

Unfortunately, CACTI is unable to simulate memory structures smaller 

than 512 Bytes, therefore results for a 32 or 128 Byte TRF are omitted from this 

thesis, but from examining the trends in the results from the CACTI simulations 

we can expect that there will be a 25-75% improvement to the four aspects that 

we are focused on: access time, area, read energy, and leakage power vs the 512 

byte structure. 
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Figure 19: Traditional Architecture -- Registers Used per Fusion Instruction 

 

 

Figure 20: Fusion Architecture -- Registers Used per Fusion Instruction 
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fusion architecture of 512B, 4 port register file.  The fusion architecture sizing is 

chosen to optimally cover the number of registers used per instruction stream, 

given the results in Chapter 4.6 Register File Sizing.  Namely the 512 byte TRF is 

chosen as it can hold eight 64-bit values, which experiments show covers 99% of 

all fused instruction streams.   

Table 3 shows the access time, area, dynamic energy, and leakage power 

of both the TRF as well as the traditional baseline register file.  We can see that 

the power overhead of the 512 byte TRF is a mere 1.06 mW, with an area of 0.05 

mm2.  With the access time to the TRF being approximately 7x faster than that of 

the baseline architecture, there should be plenty of room to accommodate the 

overhead of selecting to load values from the TRF rather than the global register 

file, when appropriate.   

Table 3: Transient Register File vs Traditional Register File 

 Baseline 

Architecture 

Fusion 

Architecture 

 

Improvement 

Size (bytes) 16384 512 -- 

Ports 16 4 -- 

Access Time (ns) 0.53 0.08 7.03x 

Area (mm
2
) 1.65 0.05 32.66x 

Dynamic Energy (pJ) 45.67 2.43 18.81x 

Leakage Power (mW) 84.66 1.06 79.64x 
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The main purpose of this work is to provide a means of saving energy 

through the reduction of the number of accesses to the global register file.  This is 

accomplished by instead storing intermediate values in the Transient Register 

File, where accesses are substantially cheaper, with a low power and area 

overhead.  Figure 21 shows that the savings energy from leveraging the TRF is 

nearly the same as the savings in register file accesses overall, as shown in Figure 

11.  This improvement comes from the fact that the TRF accesses are ~19x 

cheaper than those to the global register file.  

 

Figure 21: Savings in Dynamic Energy Consumption by leveraging the Transient Register File 
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Chapter 5 – Conclusions 

 This work introduces a simple, in-order, hardware based approach to 

dynamic instruction fusion.  Instruction fusion provides a powerful means to 

reduce both the number of accesses to the register file, eliminating an average of 

32% of reads and 25% of writes, while reducing the number of instructions 

issuing through the processor pipeline by 48%. 
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