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Abstract. Viscosities and diffusion rates of organics within
secondary organic aerosol (SOA) remain uncertain. Using
the bead-mobility technique, we measured viscosities as a
function of water activity (aw) of SOA generated by the
ozonolysis of limonene followed by browning by exposure to
NH3 (referred to as brown limonene SOA or brown LSOA).
These measurements together with viscosity measurements
reported in the literature show that the viscosity of brown
LSOA increases by 3–5 orders of magnitude as the aw de-
creases from 0.9 to approximately 0.05. In addition, we mea-
sured diffusion coefficients of intrinsic fluorescent organic
molecules within brown LSOA matrices using rectangular
area fluorescence recovery after photobleaching. Based on
the diffusion measurements, as the aw decreases from 0.9
to 0.33, the average diffusion coefficient of the intrinsic flu-
orescent organic molecules decreases from 5.5× 10−9 to
7.1× 10−13 cm2 s−1 and the mixing times of intrinsic fluo-
rescent organic molecules within 200 nm brown LSOA par-
ticles increases from 0.002 to 14 s. These results suggest that
the mixing times of large organics in the brown LSOA stud-
ied here are short (<1 h) for aw and temperatures often found
in the planetary boundary layer (PBL). Since the diffusion
coefficients and mixing times reported here correspond to
SOA generated using a high mass loading (∼ 1000 µg m−3),
biogenic SOA particles found in the atmosphere with mass

loadings ≤ 10 µg m−3 are likely to have higher viscosities
and longer mixing times (possibly 3 orders of magnitude
longer). These new measurements of viscosity and diffusion
were used to test the accuracy of the Stokes–Einstein relation
for predicting diffusion rates of organics within brown LSOA
matrices. The results show that the Stokes–Einstein equation
gives accurate predictions of diffusion coefficients of large
organics within brown LSOA matrices when the viscosity of
the matrix is as high as 102 to 104 Pa s. These results have
important implications for predicting diffusion and mixing
within SOA particles in the atmosphere.

1 Introduction

Large amounts of volatile organic compounds, such as
isoprene, limonene, and α-pinene from biogenic sources
and aliphatic and aromatic compounds from anthropogenic
sources, are released into the atmosphere. These compounds
can be oxidized by a complex series of atmospheric re-
actions to form lower-volatility products that condense to
form secondary organic aerosols (SOAs) (Hallquist et al.,
2009; Kanakidou et al., 2005). SOA makes up approximately
30 %–70 % of the mass of atmospheric particles (Kanakidou
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et al., 2005; Jimenez et al., 2009). Due to the hygroscopic
nature of SOA, an important component of SOA particles is
water (Bateman et al., 2015; Hildebrandt Ruiz et al., 2015;
Massoli et al., 2010). The amount of water in SOA particles
is determined by the relative humidity (RH); as the RH in-
creases, the water activity (aw) (and hence water content) in
SOA particles increases to maintain equilibrium with the gas
phase. SOA particles can influence climate either directly,
by absorbing and scattering sunlight, or indirectly, by act-
ing as cloud condensation nuclei (CCN) and ice nuclei (IN)
(Kanakidou et al., 2005; Murray et al., 2010; Solomon, 2007;
Wang et al., 2012). SOA particles can also influence air qual-
ity and public health (Baltensperger et al., 2008; Jang et al.,
2006; Pöschl and Shiraiwa, 2015; Shiraiwa et al., 2017b).

Despite the importance of SOA particles in climate and
air quality, their physicochemical properties remain poorly
understood (Hallquist et al., 2009). This leads to uncertain-
ties when predicting the role of SOA particles in atmospheric
chemistry, climate, and air quality (Hallquist et al., 2009;
Shiraiwa and Seinfeld, 2012; Shrivastava et al., 2017a; Za-
veri et al., 2014). One physicochemical property that remains
poorly known is the rate of diffusion of organics within SOA
particles (Liu et al., 2016; Shiraiwa et al., 2013; Shrivas-
tava et al., 2017a; Ye et al., 2016). Information on diffusion
rates is needed to predict the reactivity and photochemistry
of SOA particles (Chu and Chan, 2017; Davies and Wilson,
2015; Gržinić et al., 2015; Houle et al., 2015; Li et al., 2015;
Lignell et al., 2014; Shiraiwa et al., 2011; Wang et al., 2015).
Diffusion rates are also needed to predict the growth rates,
size distributions, cloud condensation ability, and ice nucle-
ating ability of SOA particles (Boyd et al., 2017; Huff Hartz
et al., 2005; Murray et al., 2010; Perraud et al., 2012; Riip-
inen et al., 2011; Shiraiwa and Seinfeld, 2012; Solomon et
al., 2007; Taina et al., 2017; Wagner et al., 2017; Wang et al.,
2012; Zaveri et al., 2014, 2018). Slow diffusion of molecules
in particles also has implications for the long-range trans-
port of pollutants (Bastelberger et al., 2017; Shrivastava et
al., 2017b; Zelenyuk et al., 2012; Zhou et al., 2012) and the
optical properties of particles (Adler et al., 2013; Robinson
et al., 2014).

To estimate diffusion rates of organics in SOA particles, it
is common to use viscosity measurements together with the
Stokes–Einstein relation (Booth et al., 2014; Hosny et al.,
2013; Koop et al., 2000; Power et al., 2013; Renbaum-Wolff
et al., 2013a; Shiraiwa et al., 2011, 2017a; Song et al., 2015,
2016),

D =
kT

6πηRH
, (1)

where D is the diffusion coefficient of the diffusing species,
k is the Boltzmann constant, T is the temperature, η is the
dynamic viscosity, and RH is the hydrodynamic radius of
the diffusing species. Until now, the accuracy of the Stokes–
Einstein relation for predicting diffusion rates of organics in
SOA particles has not been quantified, leading to uncertain-

ties when estimating diffusion rates from viscosity measure-
ments. Motivated primarily by the food industry, there have
been a few tests of the Stokes–Einstein relation for predicting
diffusion rates of organics in organic–water matrices, such as
saccharide–water matrices (Bastelberger et al., 2017; Cham-
pion et al., 1997; Chenyakin et al., 2017; Corti et al., 2008;
Price et al., 2016). In these cases, the matrices contained only
two species (one organic and water), which is very differ-
ent from SOA matrices that contain thousands of different
species (Nozière et al., 2015).

In the future, researchers will likely continue to use viscos-
ity data combined with the Stokes–Einstein relation to esti-
mate diffusion rates of organics in SOA particles, because
several techniques have been developed recently to measure
the viscosities of SOA matrices and proxies of SOA matri-
ces (Bateman et al., 2015; Grayson et al., 2016; Lee et al.,
2017; Marsh et al., 2017; Price et al., 2015; Reid et al., 2018;
Renbaum-Wolff et al., 2013a; Song et al., 2015; Zhang et al.,
2015). As a result, the accuracy of the Stokes–Einstein rela-
tion for predicting diffusion rates of organics in SOA parti-
cles needs to be quantified.

In the following, we measured the viscosities of brown
limonene SOA (brown LSOA) as a function of aw using the
bead-mobility technique. The brown LSOA is a product of
exposure of white limonene ozonolysis SOA to ppb levels of
ammonia vapor (Laskin et al., 2010), and it is a model sys-
tem for the formation of secondary brown carbon (Laskin et
al., 2015). In addition, we measured diffusion coefficients of
intrinsic fluorescent organic molecules within brown LSOA
matrices using a technique called rectangular area fluores-
cence recovery after photobleaching. These new data, com-
bined with viscosity data that already exist in the literature
for brown LSOA–water matrices, were used to test the ac-
curacy of the Stokes–Einstein relation for predicting diffu-
sion rates of organics within SOA particles. We also used the
measured diffusion coefficients to estimate mixing times of
organics within 200 nm brown LSOA particles at RHs typi-
cally found in the planetary boundary layer (PBL; the region
of the atmosphere from the surface to an altitude of up to
1 km). We focused on brown LSOA for the following rea-
sons: first, brown LSOA contains light-absorbing molecules
that are also fluorescent (here referred to as intrinsic fluores-
cent organic molecules) and capable of rapid photobleach-
ing (Lee et al., 2013). These intrinsic fluorescent organic
molecules offer a key advantage because one can measure
diffusion coefficients within brown LSOA using rectangular
area fluorescence recovery after photobleaching without the
need to add a foreign tracer fluorescent molecule to the SOA
matrix. Second, limonene accounts for roughly 10 % of the
global emissions of monoterpenes (and is thus an important
source of SOA in the atmosphere) (Kanakidou et al., 2005;
Sindelarova et al., 2014).

Atmos. Chem. Phys., 19, 1491–1503, 2019 www.atmos-chem-phys.net/19/1491/2019/
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2 Experimental

2.1 Generation of brown LSOA

Brown LSOA was produced at the University of California,
Irvine (UCI) following the procedure outlined in Hinks et
al. (2016). First, particles consisting of limonene secondary
organic material (LSOA) were generated in a 20 L flow tube
by dark ozonolysis of d-limonene. Mixing ratios of ozone
and d-limonene (97 % Sigma-Aldrich) were both 10 ppm
prior to reaction. Ozone was produced externally to the flow
tube by an electric discharge in pure O2 (ultra-high purity,
Airgas). After the ozonolysis reaction, the mass concentra-
tion of LSOA particles within the flow tube was approxi-
mately 1000 µg m−3. At the exit of the flow tube, the car-
rier gas and LSOA particles were passed through a charcoal
denuder to eliminate excess ozone and gas-phase organics,
followed by collection of the LSOA particles on hydropho-
bic slides (Hampton Research; Aliso Viejo, CA, USA) us-
ing a Sioutas impactor with a single stage “D” (0.25 µm
cut point at 9 SLM collection flow rate). After LSOA pro-
duction, the hydrophobic slides containing the LSOA were
placed within a small glass petri dish, which was left float-
ing on the surface of a solution of 0.1 M ammonium sulfate
(>99 %, EMD) in a larger, covered petri dish. Over a period
of 3 to 5 days, the ammonia vapor in equilibrium with the
ammonium sulfate solution (concentration estimated to be
300 ppb NH3 using the Extended AIM Aerosol Thermody-
namics Model II) (Clegg et al., 1998) reacted with the fresh
LSOA forming a visible brown color. After production of the
brown LSOA, the samples were shipped to the University of
British Columbia for viscosity and diffusion coefficient mea-
surements.

2.2 Viscosity measurements

The viscosities of brown LSOA particles were determined
at aw of approximately 0.7, 0.8, and 0.9, using the bead-
mobility technique (Renbaum-Wolff et al., 2013b). At lower
aw, the viscosities were too high for measurements with
this technique. In short, small particles (5–50 µm in diam-
eter) of brown LSOA were deposited on fluorinated glass
slides (Knopf, 2003) from the samples received from UCI
using the tip of a needle (BD PrecisionGlide™ Needle,
0.9 mm× 40 mm). A dilute solution containing hydrophilic
melamine beads (actual diameter: (0.87± 0.04) µm, Sigma
Aldrich, no. 86296) was then nebulized over the fluori-
nated glass slides containing the brown LSOA particles.
This resulted in melamine beads being incorporated into the
brown LSOA particles. The fluorinated glass slides contain-
ing the brown LSOA particles were then placed in a flow cell
(Renbaum-Wolff et al., 2013b). The RH within the flow cell
was controlled by passing a nitrogen carrier gas through a
water bubbler, which was located in a temperature-controlled
bath. The dew point of the nitrogen gas flow was measured

with a hygrometer (General Eastern; Model 1311DR), and
the temperature of the flow cell was measured with a ther-
mocouple. From the dew point and the temperature of the
flow cell, the RH was determined. The RH was calibrated
at the beginning of each set of measurements using the deli-
quescence point of ammonium sulfate.

Once the fluorinated glass slides containing the brown
LSOA particles were placed in the flow cell, a constant flow
(1100 to 1200 sccm) of humidified nitrogen gas (Praxair, ul-
trapure) was passed over the brown LSOA particles, which
caused a shear stress on the surface of the particles and cir-
culation of the beads within the particles. The velocity of the
beads was determined using an optical microscope (Zeiss
Axio Observer). For each aw studied, the speed of 7 to 16
beads in 2 to 5 brown LSOA droplets was measured and
the bead speed was averaged. Once determined, the velocity
of the beads was converted to viscosity using a calibration
curve based on sucrose–water particles and glycerol–water
particles from Grayson et al. (2017). Prior to measuring the
velocity of the beads in an experiment, the brown LSOA par-
ticles were equilibrated with the RH within the flow cell for
approximately 20 min, which should be long enough to en-
sure equilibration (Sect. S1 in the Supplement).

Viscosities for the same brown LSOA at aw of 0.05 and
0.3 are available from previous poke–flow measurements by
Hinks et al. (2016). Briefly, in these studies brown LSOA
was collected on hydrophobic glass surfaces using a proce-
dure similar to the procedure described above. This resulted
in supermicron particles with a spherical cap geometry. The
particles were then poked with a sharp needle, generating a
half-torus geometry. After poking, the material flowed and
returned to its spherical cap geometry due to surface tension
forces. From simulations of fluid flow, the viscosities of the
material were determined. This technique is limited to vis-
cosities≥ 103 Pa s (Grayson et al., 2015). In addition, the up-
per and lower limits of viscosity from this technique differ by
roughly a factor of 15 to 150. This uncertainty stems mainly
from uncertainties in the parameters used when simulating
the fluid flow.

2.3 Diffusion coefficient measurements

2.3.1 Generation of thin films of brown LSOA with a
known aw for the diffusion coefficient
measurements

Brown LSOA contains light-absorbing molecules that are
also fluorescent and easily photobleachable (Lee et al.,
2013). Diffusion coefficients of these intrinsic fluorescent or-
ganic molecules were determined using rectangle area fluo-
rescent recovery after photobleaching (discussed below). For
this technique, thin films (20–90 µm thick) containing brown
LSOA with a known aw were needed. To produce thin films
of brown LSOA with a known aw, particles of brown LSOA
with diameters of 50–200 µm were deposited on hydrophobic

www.atmos-chem-phys.net/19/1491/2019/ Atmos. Chem. Phys., 19, 1491–1503, 2019
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slides from the samples received from the UCI using the tip
of a needle (BD PrecisionGlide™ Needle, 0.9 mm× 40 mm).
The super-micrometer brown LSOA particles were then lo-
cated within a flow cell or sealed glass jar with controlled
RH to set the aw within the brown LSOA (at equilibration,
aw within the brown LSOA equals RH/100). The times used
to condition the brown LSOA particles to the controlled RH
are given in Table S1 and discussed in Sect. S1. After equili-
bration, the brown LSOA particles were sandwiched between
two hydrophobic glass slides to generate a thin film of brown
LSOA with a thickness of 20–90 µm. Assembly of the films
occurred within a glove bag that had a RH set to match the
RH used for conditioning the brown LSOA particles in or-
der to ensure the aw within the LSOA did not change during
assembly of the films. The thickness of the films was con-
trolled by aluminium spacers inserted between the two hy-
drophobic glass slides prior to assembly. After assembly, the
brown LSOA within the thin films was isolated from the sur-
rounding atmosphere using a layer of vacuum grease around
the perimeter of the films. For further details, see Chenyakin
et al. (2017) and Fig. S1.

2.3.2 Measurements of diffusion coefficients

Fluorescence recovery after photobleaching (FRAP) has of-
ten been used to determine diffusion rates of fluorescent
molecules in biological samples such as in the cytoplasm
and nuclei of cells (Axelrod et al., 1976; Deschout et al.,
2010; Jacobson et al., 1976; Meyvis et al., 1999; Seksek et
al., 1997). To determine diffusion coefficients of the intrinsic
fluorophores in the brown LSOA, we used a version of FRAP,
referred to as rectangular area fluorescence recovery after
photobleaching (rFRAP) (Deschout et al., 2010). rFRAP was
chosen over circular FRAP, since rFRAP has a closed-form
expression for the recovery process. In rFRAP, a rectangu-
lar region of a thin film containing fluorescent molecules is
photobleached with a high-intensity laser beam of a confo-
cal laser scanning microscope (Fig. S2). After photobleach-
ing, the fluorescence signal within the photobleached region
recovers due to diffusion of fluorescent molecules from out-
side the photobleached region into the photobleached region.
The recovery of the fluorescence signal over time is moni-
tored and used to determine the diffusion coefficient of the
fluorescent molecules.

The rFRAP measurements were conducted with a laser
scanning confocal microscope (Zeiss Axio Observer LSM 5
10 MP) with a low numerical aperture objective (Zeiss EC-
Plan Neofluar 10×, 0.3 numerical aperture) to ensure near-
uniform photobleaching in the z direction. One-dimensional
scanning with a pixel dwell of 2.56 µs and an image scan
time of 1.57 s were used. The images were acquired with
512× 512 pixels with a pinhole set to 80 µm. The scanning
laser power was varied between 17.0 and 42.6 µW depend-
ing on the fluorescence of the sample. In order to achieve
a bleach depth (decrease in fluorescence intensity) of 30 %–

50 %, as suggested by Deschout et al. (2010) for rFRAP ex-
periments, the laser power for photobleaching was varied be-
tween 93 and 297 µW, depending on the sample (Deschout et
al., 2010).

A rectangular area was used for photobleaching with
length (x) and width (y). The recovery time in the rFRAP ex-
periments were related to both the photobleaching area and
diffusion rate. When the diffusion rate was fast (e.g., high
water activities), we used a larger photobleaching area, and
when the diffusion rate was slow (e.g., low water activities),
we used a smaller photobleaching area to give experimen-
tally accessible recovery times. The image sizes used in the
rFRAP experiments were chosen in relation to the bleach
size with larger image sizes used for larger bleach sizes.
For example, at aw ≥ 0.8, photobleached areas of 20 µm by
20 µm and image sizes of 199.6 µm by 199.6 µm were used,
while at aw = 0.33, photobleached areas of 5 µm by 5 µm and
3 µm by 3 µm and image sizes of 30 µm by 30 µm were used.
All rFRAP experiments were carried out at a temperature of
294.5± 1.0 K. Shown in Fig. 1 are examples of images of
brown LSOA films with aw of 0.33, 0.6, and 0.9 recorded
during rFRAP experiments.

2.3.3 Extraction of diffusion coefficients

Based on Fick’s second law of diffusion, Deschout et
al. (2010) developed the following equation to describe the
fluorescence intensities in thin films after photobleaching a
rectangular area with a confocal microscope (Deschout et al.,
2010):

F(x, y, t)

F0(x, y)
= 1−

K0

4

[
erf

(
x+ lx

2
√
w(D, t, r)

)
− erf

(
x− lx

2
√
w(D, t, r)

)]

×

erf

 y+
ly
2

√
w(D, t, r)

− erf

 y−
ly
2

√
w(D, t, r)

, (2)

where F(x, y, t) is the fluorescence intensity at coordinate
(x, y) and time t after photobleaching; F0(x, y) is the fluo-
rescence intensity at coordinate (x, y) prior to photobleach-
ing;K0 is the effective bleach depth, which describes the de-
crease in the fluorescence intensity within the photobleached
area; lx and ly are the lengths of the photobleached area; r is
the lateral resolution of the microscope; and D is the diffu-
sion coefficient of the fluorescent molecules. The parameter
w(D, t, r) is given by the following equation:

w(D, t, r)= r2
+ 4Dt. (3)

In a first step of the analysis for the extraction of diffu-
sion coefficients, the images recorded after photobleaching
were normalized to an image recorded prior to photobleach-
ing using the open-source program ImageJ (Schneider et
al., 2012). The resolution of the images was changed from
512× 512 pixels to 128× 128 pixels by averaging to re-
duce the noise. Then, Eq. (2) was used to extract w(D, t, r)
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Figure 1. Images of brown limonene SOA films at three different aw (0.33, 0.6, and 0.9) recorded during a rectangular fluorescence recovery
after photobleaching (rFRAP) experiment. Times shown in each panel correspond to times after photobleaching. The orange rectangles depict
the area to be photobleached.

from each image. In the fitting procedure used to extract
w(D, t, r), K0 and a normalization factor were left as free
parameters. Next, w(D, t, r) was plotted as a function of t
and a straight line was fit to the data. The diffusion coeffi-
cient, D, was calculated from the slope of the straight line
using a linear fit to Eq. (3). Examples of plots of w(D, t, r)
vs. t are shown in Fig. 2.

Equation (2) assumes that the only mechanism for recov-
ery in the photobleached region is diffusion of unbleached
molecules. The spontaneous recovery of the fluorescence sig-
nal without diffusion, referred to as reversible photobleach-
ing, has been observed in previous studies at short timescales
(Sinnecker et al., 2005; Stout and Axelrod, 1995; Verkman,
2003). To determine if this process occurred during our dif-
fusion measurements with brown LSOA, a separate set of
experiments was carried out. Particles of brown LSOA (40
to 90 µm in diameter) were conditioned to an aw of 0.6 and
the entire particle was photobleached until the fluorescence
intensity decreased by between 17 % and 47 %. The photo-
bleaching was performed across the entire particle in order
to rule out fluorescence intensity recovery due to diffusion of
fluorescent molecules. Within the first 5 s after photobleach-
ing a small amount of the fluorescent signal recovered (1 %–
3 % of the photobleached signal), which we attribute to re-
versible photobleaching. To ensure this process did not im-
pact our diffusion measurements, the data recorded during
the first 5 s after photobleaching in the rFRAP experiments
were not included when determining diffusion coefficients.

Possible heating of the sample during photobleaching by
the laser was not expected to impact the diffusion measure-
ments since local heating during photobleaching should be
dissipated to the surroundings much faster than the time of

the diffusion measurements. Nevertheless, to support this ex-
pectation, two experiments were carried out with different
laser intensities but on the same sample conditioned to an aw
of 0.9. A laser intensity of 139.9 µW was used for a bleach
depth of 20 % and a laser intensity of 330 µW was used for
a bleach depth of 50 %. Within uncertainty, the diffusion co-
efficients determined with both bleach depths were in agree-
ment: (2.5±0.5)×10−9 cm2 s−1 was obtained for a laser in-
tensity of 139.9 µW and (2.8± 0.1)× 10−9 cm2 s−1 was ob-
tained for a laser intensity of 330 µW (uncertainties corre-
spond to 95 % confidence intervals).

Equation (2) assumes that the fluorescence intensity is
proportional to the concentration of the intrinsic fluorescent
molecules, which is a valid assumption when the transmit-
tance of light through the samples is ≥ 95 % (Fonin et al.,
2014). In our experiments the transmittance of light through
the samples was ≤ 93 %. To take into account the nonlin-
earity between the fluorescence signal and concentration, the
measured fluorescence signal was first converted to concen-
tration using the following equation:

C(x, y, t)

C0(x, y)
=

log
[
1− (1− T0) ·

F(x, y, t)
F0(x, y)

]
log(T0)

, (4)

where C(x, y, t)
C0(x, y)

is the normalized concentration of the intrin-

sic fluorescent dye, F(x, y, t)
F0(x, y)

is the normalized fluorescence
signal, and T0 is the transmittance prior to the photobleach-
ing process. Equation (4) is derived in Sect. S2. After the
normalized concentrations were calculated, they were used in
Eq. (2) in place of the normalized fluorescence signal. Note
that the application of Eq. (4) to account for nonlinearity
between the fluorescence signal and concentration changed
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Figure 2. Plot of w(D, t, r) as a function of time at aw of 0.9, 0.6,
and 0.33. The red line is a linear fit to the data. The blue circles
represent the data points that were included in the linear fit, and the
red circles represent data that were not included because of possible
reversible photobleaching. The diffusion coefficients were obtained
from the slopes.

the diffusion coefficients by less than the uncertainties in the
measurements.

3 Results and discussion

3.1 Viscosity of brown limonene SOA

Figure 3 shows the viscosity of brown LSOA as a function
of aw measured with the bead-mobility technique. For com-
parison, the known viscosity of pure water and the viscosity
of brown LSOA measured previously using the poke-and-
flow technique are also included (Hinks et al., 2016). Over-

all, Fig. 3 shows that the viscosity increases by 3–5 orders
of magnitude as the aw decreases from 0.9 to approximately
0.05. An increase in viscosity with a decrease in aw is ex-
pected due to the plasticizing effect of water (Koop et al.,
2011; Power et al., 2013; Zobrist et al., 2011). A liquid has
a viscosity of <102 Pa s, a semisolid has a viscosity between
102 and 1012 Pa s, and an amorphous solid has a viscosity of
>1012 Pa s (Koop et al., 2011; Mikhailov et al., 2009; Shi-
raiwa et al., 2011). Based on Fig. 3, the brown LSOA studied
here can be considered as a liquid above an aw of 0.7 and as
a semisolid at aw below roughly 0.5.

3.2 Diffusion coefficients and mixing times of intrinsic
fluorophores in brown limonene SOA

Figure 4a shows the measured diffusion coefficients of the
intrinsic fluorophores in brown LSOA as a function of aw.
The average diffusion coefficient decreases from 5.5× 10−9

to 7.1× 10−13 cm2 s−1 as the aw decreases from 0.9 to 0.33.
The strong dependence on aw is due to the plasticizing effect
of water as mentioned above (Koop et al., 2011; Power et
al., 2013; Zobrist et al., 2011). Also included in Fig. 4 (sec-
ondary y axis) is the mixing time of the intrinsic fluorophores
by molecular diffusion within a 200 nm brown SOA particle
based on the measured diffusion coefficients. Mixing times
were calculated with the following equation (Seinfeld and
Pandis, 2016; Shiraiwa et al., 2011):

τmixing =
D2

p

4π2Dorg
, (5)

where Dp is the diameter of the particle and Dorg the mea-
sured diffusion coefficient of the intrinsic fluorophore. The
mixing time is the time after which the concentration of the
diffusing molecules at the center of the particle deviates by
less than 1/e from the equilibrium concentration (Shiraiwa et
al., 2011). Based on the measured diffusion coefficients, for
the brown LSOA studied here mixing times of the organics
within 200 nm particles range from 0.002 to 14 s for aw from
0.9 to 0.33.

Also shown in Fig. 4 is the frequency distributions of
aw (panel b) and temperatures (panel c) found in the plan-
etary boundary layer for the months of January and July.
We calculated these frequency distributions using GEOS-
Chem version v10-01 (Pye et al., 2010), which was driven by
6 h average GEOS-5 meteorology fields. Following Maclean
et al. (2017), when determining the frequency distributions
of aw and temperatures within the PBL, we only included
grid cells in a column up to the top of the PBL if the
monthly averaged concentrations of organic aerosol (OA)
were>0.5 µg m−3 at the surface, based on GEOS-Chem ver-
sion v10-01 (Pye et al., 2010). Based on this model, OA con-
centrations were almost always <0.5 µg m−3 above the sur-
face of the oceans. Hence, Fig. 4b, c do not include most
conditions over the oceans. We excluded cases when OA con-
centrations were <0.5 µg m−3 at the surface since these con-
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Figure 3. Viscosity of brown LSOA as a function of aw (primary
x axis) and RH (secondary x axis). The green bars show the vis-
cosities that were measured by Hinks et al. (2016) and the blue tri-
angles show the viscosities that were measured in this study using
the bead-mobility technique. The black circle is the viscosity of wa-
ter measured by Crittenden et al. (2012).

centrations are not expected to be important for climate or
health. OA concentrations were >0.5 µg m−3 in all but one
of the previous surface measurements of OA at remote loca-
tions (Spracklen et al., 2011).

Figure 4b shows that aw in the PBL is most often
≥ 0.33 when the organic mass concentrations are higher than
0.5 µg m−3 at the surface. Figure 4c shows that the tempera-
ture in the PBL is often within 5 K of the temperature used
in our experiments (294.5 K). Based on Fig. 4, mixing times
of intrinsic fluorophore in the brown LSOA studied here are
often short (<1 h) for aw values and temperatures most often
found in the PBL when the organic mass concentrations are
higher than 0.5 µg m−3.

The diffusion coefficients and mixing times reported here
correspond to brown LSOA generated using mass concen-
trations of 1000 µg m−3 in a flow reactor. For some types
of SOA (SOA from ozonolysis of α-pinene, limonene, 3-
hexenyl acetate and 3-hexen-1-ol) the viscosity of the SOA
increases as the mass concentration used to generate the SOA
decreases (Grayson et al., 2016; Jain et al., 2018). Since mass
concentrations of biogenic SOA particles found in the atmo-
sphere are most often ≤ 10 µg m−3 (Spracklen et al., 2011)
the values reported here likely represent the lower limit for
the viscosities and upper limit for the diffusion coefficients.
Additional studies are needed to determine diffusion coeffi-
cients and mixing times for more atmospherically relevant
mass concentrations. In addition, the brown LSOA was gen-

Figure 4. (a) Measured diffusion coefficients of the intrinsic fluo-
rophore in brown LSOA as a function of aw (primary x axis) and
RH (secondary x axis). The secondary y axis shows the mixing
time, which is the time that would be needed for intrinsic fluo-
rophores to mix within a 200 nm brown limonene particle. The y
error bars correspond to the highest and lowest diffusion coefficient
measured. The x error bars correspond to uncertainty of the RH
measurements (±2.5 %). (b) The aw distribution in January (blue
line) and July (green line) in the planetary boundary layer (PBL)
when monthly averaged concentrations of organic aerosol (OA) are
>0.5 µg m−3 at the surface based on GEOS-Chem. (c) The temper-
ature distribution in January and July in the PBL when monthly av-
eraged concentrations of OA are >0.5 µg m−3 at the surface based
on GEOS-Chem.

erated using a ratio of limonene to ozone∼ 1, which suggests
that not all double bonds in limonene were oxidized. Addi-
tional studies are also needed to determine if diffusion coeffi-
cients in brown LSOA are sensitive to the extent of oxidation
of LSOA molecules.

Ye et al. (2018) studied the timescale for mixing of organ-
ics from toluene oxidation within limonene SOA particles
using mass spectrometry (Ye et al., 2018). In these studies,
the limonene SOA particles were generated with mass con-
centration of 16–22 µg m−3. Based on the studies by Ye et
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al. (2018) the mixing times of organics within limonene SOA
particles are on the order of 3–4 h for RH values ranging from
10 % to 30 %, with little evidence for an RH dependence. At
33 % RH, we calculate a mixing time of approximately 14 s.
This corresponds to a difference in diffusion coefficients of
a factor of roughly 1000. A possible explanation for the ap-
parent difference between the current results and the results
reported by Ye et al. (2018) is the difference in the mass con-
centrations used to generate the SOA, and the low extent of
oxidation of LSOA compounds, as discussed above.

3.3 Comparison between measured diffusion
coefficients and Stokes–Einstein predictions

Shown in Fig. 5 are the measured diffusion coefficients and
predicted diffusion coefficients based on viscosity measure-
ments and the Stokes–Einstein relation. The viscosity mea-
surements include our new bead-mobility viscosity results
(Fig. 3) and previous poke–flow viscosity measurements by
Hinks et al. (2016), as well as viscosity measurements of
pure water for comparison (Crittenden et al., 2012; Hinks et
al., 2016). To predict diffusion coefficients from the viscosity
measurements and the Stokes–Einstein equation, the average
dimension of the intrinsic fluorophores is needed. The exact
molecular identities of the chromophores and fluorophores
in brown LSOA is not known. Previous studies suggest that
there is a distribution of chromophores with a broad range of
molecular weights on the order of 500 g mol−1 (Nguyen et
al., 2013). Therefore, we tested a range of molecular weights
from 300 to 800 g mol−1, corresponding to hydrodynamic
radii from 4.5 to 6.2 Å with an assumed density of 1.3 g cm−3

(Saathoff et al., 2009) and an assumed spherical geometry of
the intrinsic fluorophores.

Figure 5 shows that the difference between the mea-
sured and predicted diffusion coefficients is less than the
uncertainty of the measurements for diffusion coefficients
as small as roughly 10−12 cm2 s−1, which corresponds to a
viscosity of between 4× 102 and 1.2× 104 Pa s, based on
Fig. 4. This conclusion is consistent with most previous
studies that have investigated the accuracy of the Stokes–
Einstein relation for predicting diffusion coefficients of large
organic molecules in organic–water mixtures. For example,
Chenyakin et al. (2017), Champion et al. (1997), and Price et
al. (2016) showed that the Stokes–Einstein relation predicts
diffusion coefficients of large organics in sucrose–water so-
lution consistent with measurements (i.e., within the uncer-
tainty of the measurements) when the viscosity is 1×104 Pa s
(Champion et al., 1997; Chenyakin et al., 2017; Price et al.,
2016). In contrast, Longinotti and Corti (2007) and Corti et
al. (2008) found disagreement between measured and pre-
dicted diffusion coefficients of large organics in organic–
water solutions at slightly lower viscosities (Corti et al.,
2008; Longinotti and Corti, 2007).

Figure 5. Measured and calculated diffusion coefficients in brown
LSOA as a function of aw (primary x axis) and RH (secondary
x axis). The red squares show the measured diffusion coefficients
of intrinsic fluorophores in brown LSOA. The blue triangles show
the calculated diffusion coefficients of the intrinsic fluorophore in
brown LSOA based on viscosities measured in this study using
the bead-mobility technique and the Stokes–Einstein equation. The
y error bars for the diffusion coefficients measured in this study
(red squares) and the diffusion coefficients calculated from bead-
mobility viscosity measurements (blue triangles) show the highest
and lowest values measured. The green vertical bars depict the high-
est and the lowest limit of calculated diffusion coefficients of brown
LSOA based on viscosity measurements from Hinks et al. (2016)
and the Stokes–Einstein equation. The black circle depicts the cal-
culated diffusion coefficient of the intrinsic fluorophore in pure wa-
ter based on viscosity measurements of Crittenden et al. (2012) and
the Stokes–Einstein equation. The uncertainties for the calculated
diffusion coefficients take into account the uncertainty of the hy-
drodynamic radii of the diffusing molecules (4.5 to 6.2 Å).

4 Summary and conclusion

One physicochemical property of SOA particles that remains
poorly understood is the diffusion rates of representative or-
ganics within SOA particles. To estimate diffusion rates of
organics in realistic models for SOA particles, we (as well
as other researchers) have used viscosity measurements to-
gether with the Stokes–Einstein relation. Until now, the ac-
curacy of the Stokes–Einstein relation for predicting diffu-
sion coefficients of organics in SOA particles had not been
quantified, leading to uncertainties when estimating diffusion
rates from viscosity measurements. In this study, we mea-
sured the viscosity of brown LSOA using the bead-mobility
technique. From these viscosity values, we calculated diffu-
sion coefficients of large organic molecules in brown LSOA.
These calculated diffusion coefficient values were compared
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to diffusion coefficients of large organic molecules that were
measured directly in brown LSOA using fluorescence recov-
ery after photobleaching. We found that the Stokes–Einstein
relation gives diffusion coefficients within the uncertainty of
the measurements for brown LSOA matrices with viscosities
between 0.2 and 1.2× 104 Pa s.

In addition, mixing times in a 200 nm sized brown LSOA
particle were calculated based on the measured diffusion co-
efficients. Mixing times were found to vary between 0.001 s
at an aw of 0.9 and 14 s at an aw of 0.3. These results sug-
gest that the mixing times of large organics in the brown
LSOA studied here are short (<1 h) for aw and temperatures
often found in the PBL. However, since the mixing times
reported here correspond to brown LSOA generated using
mass loadings of 1000 µg m−3, the mixing times are likely to
be longer in ambient biogenic SOA particles typically found
at mass loadings below 10 µg m−3 (Spracklen et al., 2011).
Additional studies are needed using more atmospherically
relevant mass concentrations, as well as the use of a range
of oxidation conditions from “fresh” to “highly aged” SOA.
The measurements reported here can be extended to lower
mass loading conditions by using a multi-orifice impactor,
which concentrates collected material into spots, and by col-
lecting material for extended periods of time (e.g., several
days) (Grayson et al., 2016).
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