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Phenotyping grapevine red
blotch virus and grapevine
leafroll-associated viruses before
and after symptom expression
through machine-learning
analysis of hyperspectral images

Erica Sawyer1,2†, Eve Laroche-Pinel1,3†, Madison Flasco4,
Monica L. Cooper5, Benjamin Corrales1, Marc Fuchs4

and Luca Brillante1,3*

1Viticulture & Enology Research Center, California State University Fresno, Fresno, CA, United States,
2Department of Mathematics, California State University Fresno, Fresno, CA, United States,
3Department of Viticulture & Enology, California State University Fresno, Fresno, CA, United States,
4Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY, United States, 5University
of California, Agriculture & Natural Resources, Napa, CA, United States
Introduction: Grapevine leafroll-associated viruses (GLRaVs) and grapevine red

blotch virus (GRBV) cause substantial economic losses and concern to North

America’s grape and wine industries. Fast and accurate identification of these two

groups of viruses is key to informing disease management strategies and limiting

their spread by insect vectors in the vineyard. Hyperspectral imaging offers new

opportunities for virus disease scouting.

Methods: Here we used two machine learning methods, i.e., Random Forest (RF)

and 3D-Convolutional Neural Network (CNN), to identify and distinguish leaves

from red blotch-infected vines, leafroll-infected vines, and vines co-infected

with both viruses using spatiospectral information in the visible domain (510-

710nm). We captured hyperspectral images of about 500 leaves from 250 vines

at two sampling times during the growing season (a pre-symptomatic stage at

veraison and a symptomatic stage at mid-ripening). Concurrently, viral infections

were determined in leaf petioles by polymerase chain reaction (PCR) based

assays using virus-specific primers and by visual assessment of disease

symptoms.

Results: When binarily classifying infected vs. non-infected leaves, the CNN

model reaches an overall maximum accuracy of 87% versus 82.8% for the RF

model. Using the symptomatic dataset lowers the rate of false negatives. Based

on amulticlass categorization of leaves, the CNN and RFmodels had a maximum
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accuracy of 77.7% and 76.9% (averaged across both healthy and infected leaf

categories). Both CNN and RF outperformed visual assessment of symptoms by

experts when using RGB segmented images. Interpretation of the RF data

showed that the most important wavelengths were in the green, orange, and

red subregions.

Discussion: While differentiation between plants co-infected with GLRaVs and

GRBV proved to be relatively challenging, both models showed promising

accuracies across infection categories.
KEYWORDS

phenomics, spectroscopy, Vitis vinifera L., disease detection, deep-learning,
convolutional neural network, random forest
1 Introduction

California vineyards are affected by two major viral diseases

with similar symptoms and consequences on grape quality and

quantity: leafroll and red blotch (Sudarshana et al., 2015). Six

grapevine leafroll-associated viruses (GLRaVs) are associated with

leafroll disease, among which GLRaV-3 is predominant (Naidu

et al., 2015). These viruses affect fruit ripening, decrease grape

quality, and reduce yield by up to 68% (Atallah et al., 2012).

Grapevine red blotch virus (GRBV) causes red blotch disease

(Yepes et al., 2018). This virus slows down and can stop the

accumulation of sugars and phenolic compounds (Ricketts et al.,

2017; Martıńez-Lüscher et al., 2019). Both viral diseases show

similar foliar symptoms of leaf reddening on red wine grape

cultivars (Sudarshana et al., 2015). Without any control measures,

both diseases can cause economic losses of up to $226,405/ha for

leafroll (Ricketts et al., 2015) and up to $68,548/ha for red blotch

(Ricketts et al., 2017) over the approximate 25-year lifetime of

a vineyard.

To date, scouting and removing symptomatic vines and replanting

themwith healthy ones (i.e., roguing) is the principal strategy employed

by growers to limit the secondary spread of both viruses by their insect

vectors in diseased vineyards. Most GLRaVs are transmitted by

mealybugs and soft-scale insects (Naidu et al., 2015), while GRBV is

transmitted by the three-cornered alfalfa hopper (Flasco et al., 2021).

Roguing infected vines is efficient against these diseases, but diagnosing

infected plants based on visual symptoms is time-consuming. It is also

impractical as symptoms are only expressed late in the season when

growers are busy with harvest operations and have limited time for

additional tasks. Moreover, expertise is required to precisely identify

infected plants and avoid misdiagnosis, as both diseases can be

confused with other pathological, nutritional, and physiological issues

(Sudarshana et al., 2015). The use of molecular diagnostic methods is

the golden standard for assessing viral infections in vines.

Unfortunately, these assays are costly and time-consuming, so a

census approach to testing vines is not feasible (testing each vine
02
one-by-one). A more automated way to quickly detect and diagnose

viral diseases would be undeniably beneficial to vineyard managers.

Spectroscopy is a set of powerful tools which can help identify

plants infected with diseases that affect biochemical and biophysical

plant properties, changing their optical signatures (Knipling, 1970;

Croft and Chen, 2018). These sensing techniques can also be applied

remotely, thus offering the ability for rapid-scale identification over

large areas. Hyperspectral imaging spectrometry is a very effective

remote sensing tool, as individual wavelength information can be

obtained over large regions of the electromagnetic spectrum while

maintaining spatial information. Consequently, there has been a

rapid increase in research activity in this field in recent years

(Terentev et al., 2022). In grapevine, several studies have used

hyperspectral data to identify pests and diseases such as phylloxera

(Vanegas et al., 2018), leaf stripe disease (Junges et al., 2018),

flavescence dorée (AL-Saddik et al., 2017), leafroll (MacDonald

et al., 2016; Sinha et al., 2019; Bendel et al., 2020; Gao et al., 2020)

and red blotch (Mehrubeoglu et al., 2016). To our knowledge, no

study on hyperspectral imaging methodologies has attempted to

distinguish between the leafroll and red blotch virus infection.

Deep learning methods, such as the Convolutional Neural

Network (CNN) (Lecun and Bengio, 1995), are particularly well-

suited for disease detection on images, as they can detect underlying

structures and spatial patterns (Lee et al., 2015; Grinblat et al., 2016;

Kerkech et al., 2020). However, few studies on detecting grapevine

diseases used deep learning models (Hruska et al., 2018; Nguyen

et al., 2021). To the best of our knowledge, no prior studies have

compared visual assessment to machine-learning detection of viral

diseases in grapevines. Our study fills this gap by comparing two

machine learning models, CNN and RF, to detect GLRaVs, GRBV,

and mixed infections of GLRaVs and GRBV from hyperspectral

imagery and by contrasting predictions to molecular and visual

estimates. We worked with over 400 leaf images of healthy and

infected grapevines captured within the visible range (from 510nm

to 710nm) at different symptomatic stages (before and after

symptoms were visible). Finally, we performed an explanatory
frontiersin.org
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analysis to identify the most essential wavelengths to predict virus-

infected vines in the visible range.
2 Materials and methods

Figure 1 summarizes the workflow used in this study. The first

step consisted of collecting leaves from selected grapevines in three

vineyards and testing the petioles for viruses using molecular analyses

to distinguish between healthy and diseased samples. The next step

consisted of imaging the leaves in the visible domain with a

hyperspectral camera in a dark cabinet under controlled lighting in

the laboratory. Images were then pre-processed to segment the leaves

from the background, and data were transformed into reflectance

values. Random Forest and CNN models were then applied to the

segmented images to classify their infection status and compare

diagnostic predictions of the models with the molecular test results

and with a visual assessment made by experts.
Frontiers in Plant Science 03
2.1 Sampling and data collection

2.1.1 Grapevine leaf sampling, image acquisition,
and pre-processing

In August and September 2019 and 2022, leaves were sampled

from randomly selected vines in one Cabernet franc vineyard and in

two Cabernet Sauvignon vineyards, located in North and Central

California (Rutherford, Fresno, Madera). Vineyards were composed

of adult plants at least 10-years old and grown according to common

practices for the area. All vineyards were known to exhibit leafroll-

and red blotch-like symptoms. We collected four leaves per plant on

the lower portion of the canopy close to the trunk. Samples were

temporarily stored in a cooler and later maintained at 4°C in the

laboratory. Two of the four leaves collected per vine were randomly

selected for imaging in a dark cabinet under a LED light. This light

did not emit in the near-infrared (Fiber-Lite Mi-LED Illuminator,

Dolan-Jenner Industries USA) to remove noise related to time

differences between sampling and imaging. One mega-pixel image
FIGURE 1

Workflow of the different methodology steps used in this study. The acquisition was done in three vineyards in August and September 2019 and
2022. About 500 leaves were sampled for PCR analysis and imaged using a hyperspectral camera in a dark cabinet. The image pre-process
consisted of segmenting the leaves to extract the pure leaf signal and converting the radiance to reflectance using a white standard. The predictions
of the PCR results were done using random forest (RF) and convolutional neural network (CNN). A visual assessment by experts was also done. The
results were evaluated using accuracy and confusion matrices and interpreted via variable importance rate.
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https://doi.org/10.3389/fpls.2023.1117869
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sawyer et al. 10.3389/fpls.2023.1117869
was acquired with a Senop HIS camera using a 200ms exposure time.

Bands were acquired every ~5nm from 510nm to 710nm for a total of

40 bands. In all pictures, we included a white reflectance standard

(Spectralon®, Labsphere, USA). We separated the leaf from the

background in all images using an unsupervised segmentation

approach based on k-means clustering (Dhanachandra et al., 2015).

Four different disease categories were identified in the image

dataset: non-infected, infected with GRBV, infected with GLRaV,

and co-infected with GRBV and GLRaV (Figure 2). Leaves from

vines that tested negative for GLRaV and.or GRBV via PCR,

although presenting reddening, were also included in the dataset

(Supplementary Figure 1). They were classified as non-infected

following PCR results.

2.1.2 Assessment of virus infection
Viral infection was assessed by PCR-based analysis on the

petioles of the four-leaf set collected per plant. Petioles were

sliced into small pieces with sterile razor blades and used for

nucleic acid isolation using the MagMAX 96 AI/ND Isolation kit

(Thermo Fisher Scientific) on a King Fisher instrument. GLRaV-1,

-2, -3, and -4, and GRBV were detected by RT-PCR and PCR,

respectively, as previously described (Osman et al., 2007; Krenz

et al., 2014).
2.2 Classification process

2.2.1 Experts’ classification
Classification of the leaves into the four disease categories

according to visual symptoms was performed on RGB segmented

images by two experts in cooperation with each other and without
Frontiers in Plant Science 04
previous information on the dataset (using 525.3nm, 555.7nm,

and 601.3nm).

2.2.2 Machine learning models description
Two predictive machine learning models were used in this

study: Random Forest (RF) (Breiman, 2001; Parmar et al., 2019;

Shaik and Srinivasan, 2019), and Convolutional Neural Network

(CNN) (LeCun et al., 2015; Lu et al., 2021).

The random forest algorithm is a commonly used model for

remote sensing classification (Pal, 2005; Belgiu and Drăgut, 2016).

This model has found multiple applications in viticulture, such as

sensing soil water (Brillante et al., 2016a), or imaging grapevine

water uptake (Brillante et al., 2016b). A random forest uses decision

trees in an ensemble built through a modified bagging approach.

Decision trees are a rule-based model where each rule splits the

dataset into more homogeneous groups with respect to the response

variable. Their structure greatly varies with minor changes in the

data available for modeling and ensemble methods like bagging

leverage this property. In bagging, multiple trees are built using

different versions of the original data set obtained through

resampling techniques. In this way, each tree has a different

structure and learns other aspects of the dataset; the ensemble

finally outperforms the individual learners. In random forest, the

perturbation process is further enhanced by the fact that the trees

use only a fraction of all available predictors at each split. In this

work, we tuned the number of trees in the forest and the number of

predictors available at each partition using a cross-validation

routine, as previously reported (Brillante et al., 2015).

A neural network is a sequence of linear and nonlinear

transformations that uses training data to learn the structure of

the dataset and inform optimal classifications of test data. A CNN is
FIGURE 2

Examples of RGB segmented leaf images for each category using the reflectance at 525.3nm, 555.7nm, and 601.3nm.
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a specific type of neural network which consists of convolutional,

normalization, nonlinear, and fully connected layers. CNNs are

especially useful in the case of machine learning problems using

image data, as they can isolate smaller regions of the image to

reduce the amount of data that must be processed at a given time

(Albawi et al., 2017). Also, the depth of CNNmodels allows them to

adapt well to highly nonlinear data, such as the dataset being

explored in this study.

The 3D-CNN architecture used in this work is shown in

Figure 3. To predict the virus status of a given leaf, the CNN first

accepts as input a hyperspectral image, which contains matrices of

data representing that same image captured from 40 different

wavelengths. Each matrix is passed to one of the network’s 40

channels to be simultaneously considered in recognizing significant

features of the image. There are then two consecutive sequences of

convolution, normalization, and rectified linear unit (ReLU)

pooling layers where the model can extract important features to

learn the structure of the images supplied. These sequences filter

through the image provided to each input channel and first filter out

values that differ significantly from the surrounding region

(convolutional layer), normalize values to reduce computational

cost (batch normalization layer), enhance nonlinearity of the data

(ReLU layer), and shrink each region to a single value to reduce the

size and decrease the likelihood of overfitting (pooling layer). Next,

the output of these layers is flattened into a one-dimensional array,

and a fully connected layer tunes internal parameters to adapt to the

nonlinearity in these data and make a classification. The final layer

of the network, namely the activation function, interprets the

classification made by the fully connected layer and assigns a

predicted class label, acting as the output of the CNN.

Network parameters in the fully connected layer are selected

using an iterative optimization technique known as Adaptive

Moment Estimation (Adam). Adam is an adaptation of Stochastic

Gradient Descent (SGD), an algorithm in which network parameter
Frontiers in Plant Science 05
values are tuned to minimize model loss by using a gradient

calculated using a random subset of points in the data set. A

unique feature of the Adam algorithm lies in its ability to track

previous gradients which guide model parameters towards optimal

values much more quickly and efficiently than similar methods,

making it an appropriate option for multilayer CNNs as are used for

this classification problem (Kingma and Ba, 2015). A fixed learning

rate of 0.001 is used for each iteration of the Adam algorithm.

2.2.3 Classification scheme
We classified the grapevine leaf samples into non-infected,

leafroll-infected, red blotch-infected, and leafroll and red blotch

co-infected categories according to the results from the PCR

analyses and independently from the visual assessments of

disease symptoms.

Due to the asymptomatic nature of the two diseases early in the

growing season we considered three different datasets: one with the

entire data, one with only pre-symptomatic leaves, and the last one

with only symptomatic leaves (post-symptomatic). This allowed us

to reliably assess the models’ ability to classify symptomatic,

infected vines and compare them to the performance of

asymptomatic classification.

A binary classification model was initially explored for which

CNN and RF models were trained to distinguish between non-

infected and infected plants. Later the models were trained in a

multiclass classification scheme, for which each class was

independently predicted (non-infected, infected by red blotch,

infected by leafroll or co-infected by both).

2.2.4 Training/testing
The prediction skills of each model were assessed using a

stratified 5-fold cross-validation (CV) scheme. A k-fold cross-

validation technique shuffled the dataset before partitioning it

into k non-overlapping folds. For each unique fold, data were
FIGURE 3

The convolutional neural network architecture used in this study for classification of grapevine disease. Input for the network consists of
hyperspectral images of leaves, captured at 40 wavelengths. Data is then fed through two sequences of layers which are designed to extract
significant features from each image (convolution), normalize values to minimize computational cost (batch normalization), adapt to nonlinearity of
values (ReLU), and combine regional values to reduce the overall size of the dataset to be processed (pooling). A fully connected layer flattens data
and updates network weights and parameters to improve prediction capability. A final activation function returns a class label which translates to the
predicted virus classification (non-infected, leafroll, red blotch, and co-infected with both viruses).
frontiersin.org
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held once for use as a test set, while all remaining k-1 folds were

combined into a training set. A model was fit on the training set and

evaluated using the test data, which were previously unseen by the

model. Model parameters were then cleared, and evaluation scores

were recorded and averaged across all folds. This technique is less

computationally costly than alternative forms of cross-validation,

and yields averaged measurements with a valuable estimate for the

predictive power of the model on the full dataset (James et al., 2013).

This work used stratified k-fold CV, wherein folds were selected to

maintain the class distribution of the full dataset. This is especially

useful for cases of class imbalance, as was seen in the dataset

generated in this study, where the model performance tends to be

more stable from fold to fold (López et al., 2014).

The training set for the CNN model was augmented to improve

network performance by providing additional training images with less

predictable features. Each training image was duplicated, and the copy

underwent a random combination of horizontal and vertical flips,

image shifts, scaling, and rotation (where each transformation has a

probability of 0.5 of being applied to a given image). This expanded and

introduced additional variability in the training dataset, preventing the

model from becoming familiar with leaf shape and orientation. The

average signal used in the RF model was invariant to most of these

transformations. Therefore, augmentation was not done for this model.

Augmentation was performed using the Albumentations package

in Python (Buslaev et al., 2020). Minibatch training was utilized to

reduce the computational and memory strain on the GPUs when

training the CNNmodel. Training data was broken down into batches

of 50 images each, and the model continued the tuning parameters for

30 epochs or full iterations through the dataset. There was no need to

use a similar technique for the RF model, as the input into the model is

a significantly smaller dataset and did not pose any computation or

storage complications.

The torch.nn.CrossEntropyLoss() function in PyTorch was used to

evaluate model loss for the RF and CNN methods. All experiments

were run on a 20-core machine with 2 GeForce RTX 2080Ti graphic

processing units (GPUs). All machine learning models were developed

and evaluated using Python version 3.7.10 and including tools from the

Pytorch and Scikit-learn packages.

2.2.5 Performance metrics

Overall accuracy and confusion matrices were computed to

measure the performance of each algorithm with respect to the

dataset used. In Top-N accuracy, a “correct” prediction denotes a

data point whose true class is one of the N most probable classes, as

predicted by the classification model. For this work, Top-1 accuracy

was used. A prediction was considered correct only if the most

probable class of a data point matched the true class. For a given

class k, performance was evaluated using the:

Top− 1 accuracy (class k)¼   #   points   correctly   predicted   as   class   k
#   of   points   belonging   to   class   k

This evaluation helped identify the strengths of the models

discussed, as well as certain classes in which the prediction

capabilities of each model should be improved.
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Results are presented through confusion matrices. A confusion

matrix displays predicted class labels on the horizontal axis and true

class labels on the vertical axis, so that the value in the ith column

and the jth row represents the proportion of data points that belong

to class j which the model predicted to belong to class i. For this

reason, the main diagonal of a confusion matrix represents the

proportion of each class that is correctly predicted, while every value

which is not on the main diagonal represents a proportion of data

points in each class that is misclassified by the respective model. For

binary classification, the other values represent the false positives

(data predicted infection while no infection is detected) and the

false negatives (data predicted non-infection while infection is

detected). In the multiclass classification, when looking at the

non-infected row, the sum of all values that are not correctly

predicted are false positives.

To understand how much the predictive power of the CNN

and RF models was affected by variability in virus symptom

expression at the leaf level, we calculated accuracy by imaging

two leaves collected from the same vine and combining them in

one single molecular test. When the model classified one leaf as

not infected and the other leaf as infected, the “healthy” leaf was

reclassified to match the category of the leaf predicted to be

infected. Accuracy was then calculated in the same manner as

previously done, with the adjusted array of category predictions.

In this analysis, a positive difference indicates an increase in

accuracy compared to the original accuracy figures. This work

was conducted on the whole dataset (including vines sampled in

early disease stages) to validate further the challenge posed to the

models by the image dataset regarding more variable foliar virus

symptoms earlier in the season.

2.2.6 Variable importance rate

For the random forest model, each fold of the cross-validation

returned variable importance rankings. For each of the variables (in

this case, the different bands of light whose images were used for

classification purposes), a variable importance ranking assessed the

level of contribution each respective attribute makes to the random

forest model. These rankings assessed the strength of the

relationships between light bands and prediction accuracy and

helped investigate the relationships between each wavelength and

the outcome used by the model for prediction (Kuhn &

Johnson, 2016).
3 Results

3.1 Dataset and image segmentation

Leaf samples were collected around veraison (August) when

most leafroll-infected and red blotch-infected vines were

asymptomatic. Leaf samples were also collected in late September

when disease symptoms were more apparent. In total we collected

496 images from 248 plants. From this dataset, two smaller datasets

of 319 and 312 images were obtained by including only the pre-
frontiersin.org
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symptomatic leaves from August or exclusively the symptomatic

leaves from September together with the images of the not-infected

leaves. For all samples, the viral infection status was determined by

PCR-based tests. Molecular assays revealed the predominance of

GRBV and GLRaV-3 in the samples tested by PCR with a few

petioles testing positive for GLRaV-1 and GLRaV-2, and many

samples testing negative for red blotch and leafroll-associated

viruses. For the purpose of this study, individual viruses

associated with leafroll were not distinguished; instead, a sample

was considered infected by leafroll if it tested positive for one of the

four leafroll viruses assayed for in this study.

In all datasets, roughly 1/3 of the images were from leaves

collected from non-infected vines and 2/3 were from images of

leaves collected from infected vines. The dataset was divided into

categories used in the machine-learning models (Table 1). Non-

infected versus infected categories were used for the binary

classification models, and classes 0-3 were used in the

multiclassification models.
3.2 Binary classification

3.2.1 Accuracy in binary classification

The overall accuracies of the RF and CNN binary models

were calculated for the three datasets (Table 2). In all the cases,

the CNN model performed better than the RF model (from 1.4

points to 4.6 points more than the RF). With the entire dataset,

the overall accuracy was 79.5% for the RF model and 80.9% for

the CNN model. Using only the pre-symptomatic dataset the

overall accuracy increased to 82.8% for RF and 85.6% for the

CNN model (Table 2). For the symptomatic dataset, the overall

accuracy was 82.4% for the RF model and 87% for the CNN

model. The highest accuracy was obtain using the CNN model

with the symptomatic dataset.

Confusion matrices for the three datasets were obtained

with the RF and CNN models (Figure 4). For the entire dataset,

errors were mostly related to false positives, where the CNN

model (41% of the non-infected) did slightly worse than the RF

model (38% of the non-infected). In contrast, the CNN model

did bet ter than the RF model on the fa lse-negat ive

rate (Figure 4).
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With the pre-symptomatic dataset, the greatest improvements

were for the false positives that decreased to more than half in both

the RF (38% to 12% of the non-infected) and CNN (41% to 15% of

the non-infected) models, resulting in an improved ability to

accurately predict non-infected cases from 62% to 88% for the RF

model and from 59% to 85% for the CNN model. The false negative

rate slightly increased from 14% to 21% for the RF model and from

11% to 14% with the CNN model (Figure 4).

For the symptomatic dataset, both the false negative and false

positive rates tended to decrease, although the improvement in the

false positive was less striking than with the pre-symptomatic

dataset (Figure 4). The CNN model shows fewer false negatives

(7%), improving the prediction accuracy of the infected class

to 93%.
3.2.2 Effect of variability in symptom expression
at leaf level

The binary accuracies of the original models used to predict

infection of each leaf separately and the new accuracies

computed combining the prediction of both leaves of the same

vine was compared (Table 3). When the model classified one leaf

as not infected and the other leaf as infected, both leaves were

considered as infected, and consequently the whole plant was

considered as infected. For both models, the overall accuracy

remained almost the same while the accuracy of the infected

class improved by 5 points and that of the non-infected

decreased by 8 to 11 points. The decrease in non-infected class

accuracy can be due to the impact of false positives within the

dataset. If the vine was not infected, the two leaves classified as

infected corresponded to false positives, and this adjustment

reduced the number of correctly predicted non-infected leaves.
TABLE 1 Number of images by category according to the dataset used.

Category Description Entire dataset Pre-symptomatic Symptomatic

0 Non-infected 135 135 135

1 Leafroll 156 50 106

2 Red blotch 108 86 22

3 Leafroll and red blotch 97 48 49

Non-infected 135 135 135

Infected 361 184 177

Total 496 319 312
TABLE 2 Overall accuracy of binary classifications for each model and
each dataset.

Overall accuracy CNN model RF model

Entire dataset 80.9 79.5

Pre-symptomatic dataset 85.6 82.8

Symptomatic dataset 87 82.4
f

Results are expressed in % points.
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3.3 Performance evaluation and
exploration of the four-category
classification

3.3.1 Accuracy in multiclassification models
Multiclassification models were used to predict infection status

in four categories, i.e., non-infected, infected with leafroll only,

infected with red blotch only, and co-infected with both viruses, to

determine the accuracy for each category with the RF and CNN

models using the entire dataset, the pre-symptomatic dataset, or the

symptomatic dataset (Table 4).

The overall accuracy of the RF model was 62.2% for the entire

dataset, and 67% for the CNN model. This accuracy for the pre-

symptomatic dataset increased to 77.7% for the RF model and
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76.9% for the CNNmodel. Symptomatic overall accuracy was lower

with 65.7% for the RF model and 73.2% for the CNN model. The

highest overall accuracy was observed for the CNN model with a

difference of 0.8 to 7.5% according to the dataset used (Table 4).

Considering performances on predicting individual categories,

the results were closer between the two models when using the

entire dataset but differences in accuracy increased for the

symptomatic dataset (Table 4). On this dataset, the largest

improvement in accuracy was obtained with the CNN model with

respect to the RF model in the red blotch category (+49%), and both

virus category (+15%). However, this increase was obtained at the

expense of longer training times. Besides training time, there were

no significant differences in the prediction time of new samples’

infection status (in the model application).
FIGURE 4

Confusion matrices of binary classification using the RF (top) and CNN (bottom) models with the entire dataset (left), the pre-symptomatic dataset
(center) and the symptomatic dataset (right). The top left corner shows the percentage of non-infected vines that were well predicted as non-
infected. The top right corner shows the percentage of non-infected vines that were wrongly predicted as infected (false positive). The bottom left
corner shows the percentage of infected vines that were wrongly predicted as non-infected (false negative). The bottom right corner shows the
percentage of infected vines that were well predicted as infected. Using the pre-symptomatic dataset shows fewer false positives and using the
symptomatic dataset shows fewer false negatives and false positives.
TABLE 3 Accuracy comparison of the binary classification models with two-leaf adjusted model prediction scheme on the full dataset. Results are
shown in % points.

RF CNN

Original, single
leaf accuracy

Two-leaf adjusted pre-
diction accuracy

Difference Original, single
leaf accuracy

Two-leaf adjusted pre-
diction accuracy

Difference

Overall 79.5 79.7 +0.2 80.9 81.6 +0.7

Non-
infected

62 54 -8 59 48 -11

Infected 86 91 +5 89 94 +5
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Confusion matrices for each dataset with the RF and CNNmodels

were used for prediction of each category (Figure 5). Two categories,

non-infected and leafroll, were best predicted by both types of models.

Leafroll was the best predicted class with a maximum of 9% of false

negatives using the RF model.

With the full dataset, some GRBV-infected leaves were predicted as

non-infected (50% with the RF model and 41% with the CNN model),

and one third of the leaves infected with both viruses were predicted as

leafroll infected (28%with the RFmodel and 33%with the CNNmodel).
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Using the pre-symptomatic dataset, GRBV-infected leaves were

wrongly predicted as non-infected for 42% by RF and 34% by CNN.

Leaves infected with both viruses were well predicted for 97% by RF

and 98% by CNN.

For the symptomatic dataset, GRBV-infected leaves were also

wrongly predicted as non-infected (51% with the RF model and 43%

with the CNN model). The CNN model correctly classified 57% of

GRBV-infected leaves, while the RF model mostly predicted them as

non-infected (51%) or leafroll infected (33%). Leaves infected by both
TABLE 4 Accuracy of the RF and CNN models for each dataset and category.

Dataset Overall Non-infected Leafroll Red blotch Both

RF

Entire dataset 62.2 67 74 35 67

Pre-symptomatic 77.7 90 81 46 97

Symptomatic 65.7 75 84 8 22

CNN

Entire dataset 67 60 86 49 66

Pre-symptomatic 76.9 79 92 53 98

Symptomatic 73.2 84 80 57 37
frontie
Results are shown in % points and best results are highlighted in italics-bold.
FIGURE 5

Confusion matrices averaged across the five CV folds for data with the entire dataset (left), the pre-symptomatic dataset (center), and the
symptomatic dataset (right) using the RF (top) and CNN (bottom) models. The diagonal represents the percentage for each category that was well
predicted. The three percentages below the top left corner represent the false negatives for each infected category. Two categories, non-infected
and leafroll, were best predicted by both types of models. Leafroll was the best-predicted class with a maximum of 9% of false negatives using the
RF model for the symptomatic dataset.
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viruses were mainly predicted as leafroll infected (73% with the RF

model and 63% with the CNN model).
3.3.2 Effect of variability in symptom expression
at the leaf level

Multiclass accuracies of the original models used to predict

infection of each leaf separately and the new accuracies computed

using the combined prediction of both leaves of the same vine were

compared (Table 5). The impact of the two-leaf adjustment method

on model performances surpassed what was observed in the binary

classification models (Table 3). Accuracy improved in the red blotch

and both-viruses categories for the CNN and RF models. The

largest impact was in the prediction of red blotch-infected

samples, with a 14.1% increase in accuracy with the RF model

and 10.3 with the CNNmodel. The CNNmodel agreed with itself in

predicting leaves of the same vine 70% of the time, in contrast to

55% of the time for the RF model. The accuracy of the non-infected

category decreased for both models, which is likely due to the

impact of false positives within the dataset, as also observed when

applied to the binary classification scheme (Table 3).
3.3.3 Variable importance rate of RF
The relative importance of each band in terms of contribution

to the RF model was analyzed for all the different datasets with

binary and multiclass classifications (Figure 6). In all cases, a larger

number of wavelengths was relatively more important for multiclass

classifications than for binary classifications. More wavelengths

were also highlighted for the classifications with the symptomatic

dataset compared with the pre-symptomatic dataset. For the pre-

symptomatic dataset with both binary and multiclass classifications,

two wavelengths appeared to be dominant at 586 nm and 596 nm in

the yellow region. Concerning the symptomatic dataset, the

important wavelengths belong to the green (~530 nm), orange

(~600 nm), red (650 nm), and the beginning of the red-edge regions

(~700 nm).
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3.4 Visual assessment

The difficulty in visually assessing virus infections on our

datasets was confirmed by the performance of expert predictions

using RGB segmented images (Table 6). The binary classification

accuracy was about 50% independent of the dataset. Accuracy

improved in the four-category classification to 40% overall

(selecting the right category by chance would be 25%).
4 Discussion

4.1 Model performances and comparison

4.1.1 Comparing the accuracy of random forest
with convolutional neural networks

This study tested two machine learning algorithms, a tree-based

ensemble learning method (RF) and a deep neural network method

(CNN). The CNNmodel outperformed the RF model in most of the

cases by up to 7.5 points with regards to the overall accuracy for the

four-category classification (Table 4, Figure 5) and up to 4.6 points

with regards to the binary classification (Table 2). This is in

accordance with previous studies comparing the CNN with RF

models for land classification (Jozdani et al., 2019; Yoo et al., 2019)

and recently for plant disease detection (Hatuwal et al., 2020; Musci

et al., 2020).

For the binary classifications, the false negative rate decreased

with the use of the CNN compared to the RF model. This can

be explained by the fact that we had to train the RF algorithm on

the average spectral signal and the CNN model on the

whole hypercube.

4.1.2 Comparison of model performances with
the literature

The non-infected and leafroll-infected grapevine leaves were the

best predicted categories (up to 86% for leafroll prediction with the
TABLE 5 Accuracy comparison of the multiclassification scheme with two-leaf adjusted model prediction scheme on the full dataset.

RF CNN

Original
single leaf
accuracy

Two-leaf adjusted predic-
tion accuracy

Difference Original single leaf
accuracy

Two-leaf adjusted predic-
tion accuracy

Difference

Overall 62.6 62.8 +0.2 67 66 -1

Non-
infected

67 55.6 -11.4 60 51.9 -8.1

Leafroll 74 73.7 -0.3 86 81.4 -4.6

Red
blotch

35 49.1 +14.1 49 59.3 +10.3

Both 67 69.1 +2.1 66 67 +1
Results are shown in % points.
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CNN model using the entire dataset and up to 92% with the pre-

symptomatic dataset). These categories were also the ones with the

largest number of samples in most of the cases, which may affect the

model performances. Similarly, Naidu et al. (2009) obtained 81%

accuracy using spectral indices computed with data from a visible-

near (350-2500nm) portable spectrometer to classify leafroll-

infected vs. non-infected leaves with both symptomatic and non-

symptomatic data. In our study, the capability of a hyperspectral

camera was leveraged, thus maintaining the spatial information

used in the CNN model, but the spectral region was limited to the

visible. This was to avoid possible changes in the spectrum in the

near infrared region due to changes in water content with leaf

storage, for example, that could have affected the results. Other

studies used all the spectral information contained in hyperspectral

images from 500 to 2500nm to predict leafroll infection and

obtained a classification accuracy exceeding 90%, mostly using

leaves or plants with fully expressed symptoms (MacDonald et al.,

2016; Sinha et al., 2019; Bendel et al., 2020). However, these studies

used a binary classification where plants infected with a single virus
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(mostly leafroll) were differentiated from non-infected vines but did

not attempt a multiclass approach, neither included multiple virus

symptoms for a binary classification. In our study, binary

classification reached greater accuracy (87% overall accuracy of

the CNN model with the symptomatic dataset), despite the

complexity related to the presence of multiple viruses. In

California, there may not be the need to differentiate between

leafroll and red blotch viruses in a vineyard context, as the final

decision (i.e., removing infected vines) would be the same,

regardless of the virus, and a binary classification offering higher

accuracy and lower false negatives would be appropriate. In other

regions, where GRBV vector is absent, a binary model for the

detection of GLRaV is sufficient.

4.1.3 Comparison with visual assessment
As highlighted by Cruz et al. (2019), few studies on disease

detection using artificial intelligence compare their performance

with visual assessment, albeit being important to discuss the

potential of machine learning algorithms. Here we did not
FIGURE 6

Variable importance (VI) of RF model. The higher the importance of the band, the higher the contribution of the reflectance of this band to the
model. The first line represents the VI using the entire dataset, the second line is for the pre-symptomatic dataset and the third line is for the
symptomatic dataset. The first column represents the VI for the binary classifications. The second column represents the VI for the multiclass
classifications.
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accomplish a rigorous assessment and do not wish to claim the

superiority of hyperspectral imaging over visual identification. Our

intent was to characterize how challenging it was to predict this

dataset (because oftentimes symptoms were not visible in infected

vines) and we used visual assessment as the reference. In our

example, accurately differentiating leafroll or red blotch-infected

leaves was very challenging using RGB segmented images for our

two experts (Table 6). With an overall accuracy of up to 87% with a

binary classification, machine learning models could help identify

vines and increase screening speed. Although comparative

performance analyses with visual observation should be

performed in the vineyard on full grapevine with more experts, as

high accuracy rates can be achieved in-situ by experienced

personnel (Bell et al., 2017).
4.2 Effect of different parameters on model
performances

4.2.1 Effect of symptom variability
Grapevine virus disease symptoms vary during the growing

season (Poojari et al., 2017; Rumbaugh et al., 2021). As our field

campaign took place during several plant development stages,

infected vines did not show the same severity of foliar symptoms.

For the binary classification, the false negative rate was lower using

the symptomatic dataset compared with the pre-symptomatic

dataset. This can be explained by the absence or low level of

symptoms of infected vines from the earlier dataset despite some

wave l eng th s in the ye l l ow doma in s e eming to be

informative (Figure 6).

According to the confusion matrices computed for the RF and

CNN models, leaves infected with GRBV were predicted as non-

infected (from 34% to 51%). This might be explained by the

symptom expression level of red blotch leaves used in this study.

Indeed, the red blotch symptoms were observed to be overall milder

than leafroll symptoms. Symptoms on leaves infected only by

GRBV were often confused with healthy leaves, and leaves

infected with both viruses showed typical leafroll symptoms and

were sometimes predicted to be infected with only leafroll viruses.

The only study using hyperspectral imaging to detect GRBV

demonstrated the possibility of separating the parts of the leaves

with or without symptoms using a Support Vector Machine (SVM)

classifier (Mehrubeoglu et al., 2016). As this virus has been less

investigated because of its more recent discovery (Sudarshana et al.,

2015), further studies are needed to evaluate the potential of

hyperspectral images to detect it. To our knowledge, our study is
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the first to identify leaves affected by this virus within a dataset

obtained with healthy and leafroll-infected leaves.

The effect of the variability in disease symptom expression on

model performances was enhanced when working on a single leaf

rather than two leaves per plant as the basis for model development.

Combining the prediction on two leaves from the same plant

substantially increased the accuracy of the red-blotch category.

This is because when symptoms are variable or not strongly

expressed, the rate of false negatives is greater than the rate of

false positives. Therefore, even though our strategy increased the

number of false positive classifications in most cases, there was a

reduction of false negatives. This improvement is beneficial in a

vineyard setting where false negatives represent infected plants that

are not detected, and thus may contribute to virus spread by insect

vectors to healthy plants until correctly detected and eliminated. As

described by AL-Saddik et al. (2017) and Boulent et al. (2020), an

incorrect negative prediction that keeps an infected plant in place is

far more costly than a false positive prediction, leading to the

removal of a healthy plant.

4.2.2 Effect of the number of samples
We noticed that the overall accuracies using the symptomatic

dataset are lower than using the pre-symptomatic dataset in most of

the cases (-0.2 to –12 points), except for the binary classification

using the CNN (+1.4 points). This may mostly be due to the poor

accuracy of the red blotch-infected category for which the number

of samples is considerably lower for the symptomatic dataset (22

samples) than for the pre-symptomatic dataset (86 samples). This

observation is even more noticeable for the multiclass classification

using the RF model. In this case, efforts to balance the dataset by

lowering the number of non-infected and leafroll categories, the

accuracy of the red blotch category reached 27% (4% with the

original dataset), but the accuracy of the two other classes decreased

(Supplementary Figure 2). In our dataset, two different wine grape

cultivars were mixed with the intent of training a model that could

learn general features of virus symptoms and eventually generalize

infection. A sideback benefit of this approach is that the difference

between cultivars could be an additional piece of information for

the model (Gutiérrez et al., 2018). Future developments of this work

should focus on increasing the number of leaves imaged and trying

to have a well-balanced dataset for each category. This might prove

challenging because the composition of the dataset for each

category can only be ascertained after the images are taken and

the virus diagnostic tests are complete.
4.3 Spectral domains used

This study was performed using wavelengths from 510 nm to

710nm. These wavelengths belong to the visible domain that

enables the assessment of pigment content (Hodáňová, 1985;

Carter and Knapp, 2001). The variable importance rate computed

with the RF model highlighted the most important bands, which

were mainly located in the yellow region for the pre-symptomatic
TABLE 6 Overall accuracy of human prediction for binary and multi-
category classification with full or reduced dataset.

Binary Multiclass

Dataset with early symptoms 50.23 39.77

Dataset without early symptoms 50.80 41.93
Results are shown in %.
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dataset and in the green, orange, and red sub-regions for the

symptomatic dataset. This can be explained by the color change

caused by both diseases after veraison: symptomatic leaves turn

from green to red in red-berried wine grape cultivars such as

Cabernet franc and Cabernet Sauvignon. The green color is due

to the chlorophyll content (Main et al., 2011; Behmann et al., 2014;

Matese and Di Gennaro, 2015), while the red is due to the increase

of anthocyanins in leaves (Gamon and Surfus, 1999), as a response

to pathogen attack (Himeno et al., 2014).

As demonstrated byMartıńez-Lüscher et al. (2019), GRBV causes a

reduction in photosynthesis which may have an impact on chlorophyll

and carotenoid concentration. The same observation was made for

GLRaV (Endeshaw et al., 2014). Such findings are consistent with the

wavelengths identified as most important for the RF model with the

symptomatic dataset (Figure 6). These wavelengths are close to the

regions ofmaximum absorption of chlorophyll a and b, 642 nm and 626

nm, respectively. The visible domain is of interest to assess pigment

concentration, and the accuracy obtained in this study is promising to

identify healthy and leafroll-infected plants. Further investigations could

focus on the use of more spectral domains in the near-infrared and

shortwave infrared spectral regions for the detection of asymptomatic,

virus-infected grapevines (Nguyen et al., 2021). Indeed, these domains

can reflect the cellular structure or leaf water content which can be

affected by diseases (Junges et al., 2020). In that case, it will be important

to work with images of whole canopies instead of detached leaves.
5 Conclusion

Grapevine leafroll-associated viruses and grapevine red blotch

virus negatively impact vineyard health and wine quality. There is

no cure for these two viruses in the vineyard. The only way to limit

their secondary spread is to identify infected plants, remove them,

and replace them with clean plants. Identifying virus symptoms in

the vineyard for removal (aka roguing) is time-consuming and

costly. A rapid decision tool would be beneficial to the grape and

wine industries to deal with this challenge. In this study,

hyperspectral images were used for the identification of both

groups of viruses using two different machine learning models

(CNN and RF) on pre- and symptomatic datasets. The best results

were obtained using a CNN model with a dataset where samples

from infected vines were acquired at the time when symptoms were

more apparent (87% overall accuracy with a binary classification on

a symptomatic dataset) or when the model used two leaves rather

than a single leaf per vine. Therefore, working with a larger number

of leaves per plant and utilizing the most balanced dataset possible

(number of samples per category) is recommended when assessing

virus infection from hyperspectral images in the laboratory.

This study investigated for the first time a multiclassification

distinguishing non-infected grapevine leaves, leaves infected with

GRLaV, leaves infected with GRBV, or those co-infected with both

viruses. This was challenging both from machine learning and from
Frontiers in Plant Science 13
visual assessment standpoints, though our preliminary results are

promising. Further investigations are needed to increase prediction

performances, especially for the detection of GRBV-infected plants

with an extended number of samples. This work focused on the visible

region of the light spectrum. Within this range, the most informative

wavelengths to predict virus presence were in the red and orange

regions (anthocyanins) or associated with chlorophyll and carotenoid

absorption. Extending to a larger region of the electromagnetic

spectrum will be important when assessing difficult to classify vines.

Finally, a scale change, i.e., leaf versus canopy, can significantly improve

developing an operational tool to detect diseases in grapevines. Further

work will be need to treat images acquired over whole vines from the

ground or the air as a basis for future studies of virus detection in

vineyards using hyperspectral imaging.
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Ricketts, K. D., Gómez, M. I., Atallah, S. S., Fuchs., M. F., Martinson, T., Smith, R. J.,
et al. (2015). Reducing the economic impact of grapevine leafroll disease in California:
identifying optimal management practices. Am. J. Enology Viticulture 66, 138–147. doi:
10.5344/ajev.2014.14106
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