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Abstract

Elevated fibroblast growth factor 23 (FGF23) is associated with cardiovascular disease in patients 

with chronic kidney disease. As a potential mediating mechanism, FGF23 induces left ventricular 

hypertrophy; however, its role in arterial calcification is less clear. In order to study this we 

quantified coronary artery and thoracic aorta calcium by computed tomography in 1501 patients 

from the Chronic Renal Insufficiency Cohort (CRIC) study within a median of 376 days 

(interquartile range 331 to 420 days) of baseline. Baseline plasma FGF23 was not associated with 

prevalence or severity of coronary artery calcium after multivariable adjustment. In contrast, 

higher serum phosphate levels were associated with prevalence and severity of coronary artery 

calcium, even after adjustment for FGF23. Neither FGF23 nor serum phosphate were consistently 

associated with thoracic aorta calcium. We could not detect mRNA expression of FGF23 or its co-

receptor, klotho, in human or mouse vascular smooth muscle cells, or normal or calcified mouse 

aorta. Whereas elevated phosphate concentrations induced calcification in vitro, FGF23 had no 

effect on phosphate uptake or phosphate-induced calcification regardless of phosphate 

concentration or even in the presence of soluble klotho. Thus, in contrast to serum phosphate, 

FGF23 is not associated with arterial calcification and does not promote calcification 

experimentally. Hence, phosphate and FGF23 promote cardiovascular disease through distinct 

mechanisms.

Keywords

phosphate; fibroblast growth factor 23; vascular calcification; vascular smooth muscle; chronic 
kidney disease

Introduction

Fibroblast growth factor 23 (FGF23) is a circulating phosphaturic hormone that is elevated 

in patients with chronic kidney disease (CKD) and is strongly associated with mortality and 

cardiovascular disease.1–6 To exert its primary physiologic functions, FGF23 binds to FGF 

receptor (FGFR)-klotho complexes in the kidney to stimulate urinary phosphate excretion 

and inhibit renal production of 1,25-dihydroxyvitamin D.7, 8 In addition to these classic, 

klotho-dependent effects, FGF23 also induces left ventricular hypertrophy via FGFR-

dependent, but klotho-independent, effects on cardiac myocytes.9 This finding raises the 

possibility that elevated FGF23 levels in CKD may also contribute to other forms of 

subclinical cardiovascular injury, which could further explain its strong association with 

cardiovascular events and mortality.

Arterial calcification is a common pattern of vascular injury in CKD that begins early in the 

course of disease and is associated with greater risk of cardiovascular events and 

mortality.10–14 Elevated serum phosphate is an independent risk factor for calcification.15 

High phosphate conditions enhance uptake of phosphate by cultured vascular smooth muscle 

cells (VSMC) through the type III Na-phosphate cotransporter, PiT-1. This induces 

osteogenic transformation and subsequent calcification.16–18 Similarly, vascular deficiency 

of klotho may also promote calcification by increasing PiT-1-dependent phosphate uptake 

by VSMCs, a phenotype that can be rescued by stimulating vascular klotho expression.19, 20
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Although FGF23 and klotho regulate phosphate balance, the specific effects of FGF23 on 

arterial calcification is less clear. Several small human studies demonstrated associations 

between higher levels of FGF23 and vascular calcification.21–25 In contrast, calcification is 

not described in transgenic animals that overexpress FGF23.26–29 Although this suggests 

that FGF23 does not induce calcification, FGF23 overexpression causes phosphate 

depletion, and may not generalize to human CKD in which FGF23 levels are elevated in 

association with normal or high serum phosphate.1 In the current translational study, we 

aimed to determine if elevated FGF23 levels are associated with prevalence and severity of 

coronary and thoracic aorta calcification in a large, carefully characterized cohort of patients 

with CKD stages 2–4; and tested whether FGF23 affects calcification directly using 

experimental models that previously established the calcifying effects of phosphate.17 In 

both the clinical and experimental analyses, we contrasted the effects of FGF23 with those 

of phosphate, and tested for independent effects of these novel, CKD-specific risk factors for 

cardiovascular disease.

Results

We studied the association between FGF23, serum phosphate, and calcification of the 

coronary arteries and thoracic aorta as assessed by computed tomography (CT) in 1501 

participants in the Chronic Renal Insufficiency Cohort (CRIC) Study. The study population 

had a mean age of 57 ± 12 years, mean estimated glomerular filtration rate (eGFR) of 47 ± 

17 ml/min/1.73 m2, 46% of participants were female, 32% were black, 22% were Hispanic 

and 47% had diabetes. The median plasma FGF23 was 134.5 RU/mL (interquartile range 

93.9 to 209.7 RU/mL). Higher plasma FGF23 levels were associated with decreased kidney 

function, other abnormalities of mineral metabolism, and traditional cardiovascular risk 

factors (Table 1). The median duration between measurement of biochemical parameters 

and assessment of calcification was 376 days (interquartile range 331 to 420 days).

Prevalence and severity of calcification

Overall, 983 participants (65%) had prevalent coronary artery calcification (CAC) and 693 

(46%) had thoracic aortic calcification (TAC), each defined as an Agatston score >0. Among 

those with prevalent CAC, 408 (42%) had a score ≤100; 233 (24%) had a score between 

101–400; and 342 (35%) had a score >400. Among those with prevalent TAC (score >0), 

325 (47%) had a score ≤100; 171 (25%) had a score between 101–400; and 197 (28%) had a 

score >400.

The unadjusted prevalence of CAC and TAC (scores > 0) was greater in higher quartiles of 

FGF23 and serum phosphate (Figure 1). Although higher plasma FGF23 was associated 

with greater CAC prevalence in models adjusted for demographics and kidney function 

(Table 2), the effect was abolished when further adjusted for traditional cardiovascular risk 

factors. FGF23 was not associated with CAC severity in any model (Table 2). In contrast, 

higher serum phosphate levels were independently associated with greater prevalence and 

greater severity of CAC in all adjusted models. Neither FGF23 nor phosphate was 

independently associated with TAC prevalence, however higher plasma FGF23 was 

associated with greater TAC severity in the subset with prevalent TAC (Table 2).
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History of cardiovascular disease was independently associated with prevalence and severity 

of CAC and TAC (p<0.01 for each) and did not modify the associations between serum 

phosphate and prevalence and severity of CAC (data not shown). In contrast, FGF23 was 

associated with TAC severity only in participants with prior cardiovascular disease (n=203; 

72% increase in TAC score per SD increase in ln FGF23; 95% CI, 24% to 141; p-

interaction=0.04). Diabetes and severity of CKD did not modify the associations of FGF23 

and serum phosphate with CAC and TAC, and there were no significant interactions 

between FGF23 and phosphate (data not shown). Since dietary phosphate intake alters 

FGF23 levels,30, 31 we evaluated the association of 24-hour urinary phosphate with 

calcification, but found no independent associations with prevalence or severity of CAC or 

TAC (Supplemental Table 1).

Sensitivity analyses

The primary results were qualitatively unchanged after excluding 74 participants who were 

using active vitamin D sterols or phosphate binders, when we additionally adjusted for 25-

hydroxyvitamin D and 1,25-hydroxyvitamin D if available (n=534), and when we adjusted 

for iothalamate GFR in lieu of eGFR (data not shown). We repeated the primary analyses 

among those with less than 1 year between biochemical measurements and assessment of 

calcification, and among those whose renal function remained unchanged (difference in 

eGFR ≤ 5ml/min/1.73m2) between measurements. In both of these sensitivity analyses, 

point estimates were similar to the primary analysis (Supplemental Tables 2 and 3).

To assess whether the results were robust to different modeling strategies, we fit 

multivariable-adjusted ordinal logistic regression models to evaluate the odds ratio of a one 

category (0; 1–100; 101–400; and >400) increase in CAC or TAC score. Consistent with the 

primary results, higher serum phosphate, but not FGF23, was associated with greater odds of 

being in a higher CAC category, and neither was associated with TAC using this approach 

(Table 3). Finally, we modeled prevalence of CAC using alternate threshold values. Similar 

to prevalence of CAC >0 (Table 2; Figure 2a), higher quartiles of serum phosphate, but not 

plasma FGF23, were associated with greater prevalence of CAC scores above versus below 

100, 400 and 800 in fully adjusted models (Figures 2b–d). Unlike TAC >0 (Table 2), higher 

quartiles of FGF23 were associated with greater prevalence of TAC >100, 400 and 800 but 

the estimates of effect were highly unstable and inconsistent across the different cut points 

(Supplemental Figure).

Mouse aorta and human vascular smooth muscle cells do not express FGF23 or klotho

Consistent with a recent report,32 we detected expression of FGF receptors (FGFR)1 and 

FGFR3 in cultured human vascular smooth muscle cells (VSMCs) by reverse transcription 

PCR (RT-PCR, data not shown). In contrast, we did not detect expression of FGF23 or its 

co-receptor, klotho in human or mouse cultured VSMCs by RT-PCR (Figure 3a). To 

investigate whether expression might be induced in CKD, we analyzed aortas from mice 

after partial renal ablation and dietary phosphate loading to promote uremic vascular 

calcification.33 FGF23 and klotho were not detected in any pooled sample of mouse aorta 

(2–3 aortas per pool) from 12 CKD mice, 6 of which had calcification as indicated by aortic 
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arch calcium content and aortic expression of the osteochondrogenic markers,33 or from 7 

healthy controls (data not shown).

FGF23 does not induce vascular calcification in vitro

Next, we tested whether high circulating levels of FGF23 that are prevalent in CKD could 

induce VSMC calcification. We treated human VSMCs and mouse aortic rings that were 

cultured in control (1–1.4 mM phosphate) and high phosphate media (2.6 mM) with 

ascending concentrations of FGF23. FGF23 had no effect on the calcium content in either 

control or high phosphate media (Figure 3b). These results were reproduced using 2 forms 

of human FGF23 (intact and mutant R176Q in concentrations of up to 50 ng/mL) in cultured 

primary human aortic VSMCs, and supported by lack of any FGF23-mediated increase in 

human VSMC protein levels of phosphorylated ERK and FRS2α, which are major signaling 

mediators downstream of klotho-dependent FGFR1 and FGFR3 activation (data not 

shown).34

Mouse aortic rings were pre-incubated with porcine pancreatic elastase for 24 hours prior to 

the 9-day calcification assay to simulate the matrix degradation that occurs in the vessels of 

CKD mice prior to uremic vascular calcification.33, 35 Similar to the findings in human 

VSMCs, FGF23 with or without soluble klotho had no significant effect on calcification of 

mouse aortic rings cultured under high phosphate conditions (Figure 3c).

FGF23 with and without soluble klotho has no effect on VSMC phosphate uptake

FGF23 regulates expression of type II sodium-dependent phosphate cotransporters in the 

kidney,36 but its effect on the type III sodium-dependent phosphate cotransporters, PiT-1 

and PiT-2, that mediate phosphate transport in VSMCs is unknown. We tested whether 

FGF23 regulates phosphate transport in VSMC by examining radiolabeled phosphate uptake 

in the presence of sodium chloride versus choline chloride to calculate sodium-dependent 

uptake. FGF23 (50 ng/mL) had no significant effect on phosphate uptake in the presence or 

absence of soluble klotho (50 ng/mL), in either mouse or human VSMCs (Figure 4).

Discussion

Elevated FGF23 levels were not consistently associated with coronary or thoracic aorta 

calcification in patients with CKD stages 2–4 enrolled in the CRIC study. In contrast, higher 

levels of serum phosphate were strongly associated with CAC independent of FGF23. The 

lack of association of FGF23 with arterial calcification is supported by our experimental 

data that demonstrated no expression of FGF23 in human and mouse VSMCs, or in normal 

or calcified mouse aortas. Furthermore, exogenous FGF23 neither augmented phosphate 

uptake nor induced calcification of cultured human VSMCs regardless of the phosphate 

concentration of the media and whether or not exogenous soluble klotho was added. To our 

knowledge, these are the first data to demonstrate an adverse effect of serum phosphate on 

the cardiovascular system independent of and exceeding the effect of FGF23. Juxtaposed 

with our previous finding that FGF23 can induce left ventricular hypertrophy,9 these data 

suggest that phosphate and FGF23 play distinct roles in the pathogenesis of cardiovascular 

disease in CKD and that future therapeutic strategies should target both factors.
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Prior experimental literature supports a direct role of phosphate in promoting arterial 

calcification. Incubation of VSMCs in phosphate-enriched growth media induced 

differentiation into an osteoblastic phenotype with subsequent calcification,16–18 and there 

was decreased calcification when phosphate uptake was blocked.16 In a mouse model of 

CKD, arterial medial calcification can be induced by a high phosphate diet,33 and transient 

elevations in serum phosphate are sufficient to drive this process.35 The pathogenic role of 

FGF23 in calcification in vivo has been less clear in experimental settings. Calcification 

occurs in animal models with elevated FGF23 levels, but only in the setting of secondary 

FGF23 excess with hyperphosphatemia,37, 38 and not in models of primary FGF23 excess in 

which serum phosphate is low.26–29 FGF23-ablated mice and CKD rats in which FGF23 

was neutralized demonstrate rapidly fatal vascular calcification associated with severe 

hyperphosphatemia.39, 40 Collectively, these data, along with our current results, implicate 

phosphate rather than FGF23 as a critical factor driving calcification.41

Our results provide new insight that may help explain the seemingly contradictory results of 

prior human studies relating FGF23 and arterial calcification.21–25, 42, 43 We observed that 

the association of higher plasma FGF23 with presence of CAC in minimally adjusted 

analyses did not persist after adjustment for traditional coronary risk factors that are 

associated with elevated FGF23,30 and that FGF23 was not associated with CAC severity in 

any analysis. Unlike these generally congruent results, analyses of TAC prevalence versus 

TAC severity yielded divergent results. Although FGF23 was not associated with presence 

versus absence of TAC, and the ordinal logistic regression approach that included all 

participants found no association, FGF23 was associated with TAC severity among those 

with non-zero scores. This could be interpreted to suggest that FGF23 may promote the 

progression, but not the genesis, of calcification in large vessels such as the aorta. 

Alternatively, the isolated association of elevated FGF23 with TAC severity may represent a 

statistical “false positive” that resulted from the complexity of modeling "zero inflated" data, 

such as the Agatston score44 and the relatively large number of tests we performed. Our 

negative experimental data support the latter conclusion. These observations emphasize that 

clinical studies of FGF23 and calcification are especially sensitive to how calcification is 

defined, which vascular bed is imaged, whether prevalence or severity is modeled, and how 

the large numbers of individuals with calcification scores of zero are handled 

methodologically.

By nesting within the CRIC study, we could adjust for a comprehensive set of clinical 

covariates in the largest analysis of FGF23 and calcification in CKD to date. Based on the 

confidence intervals we report, we can statistically exclude an association as small as a 6% 

increase in the prevalence and 16% increase in the severity of CAC per standard deviation 

increase in FGF23. Thus, if we missed an effect, it would have to be extremely small and 

perhaps of limited clinical relevance. Our study also has certain limitations. The lag of up to 

two years between biochemical measurements and assessment of calcification may have 

affected our ability to detect associations. However, in support of the validity of our results, 

the point estimates for FGF23 and phosphate were similar in the overall population and the 

subgroup with a shorter time lag between measurements. In addition, we were not able to 

fully adjust for vitamin D levels in our primary models. However, most prior studies did not 

adjust for vitamin D levels at all, and the subgroup analysis in which adjustment for vitamin 
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D had minimal effect on point estimates suggests it is unlikely that more complete 

adjustment would have exposed a significant association between FGF23 and CAC. Finally, 

in this study we were only able to study anatomic, and not functional, changes in the 

vasculature, which have been associated with FGF23.45

Our experimental data differ somewhat from previous studies. Unlike a recent study that 

reported transmembrane klotho protein expression in healthy human vessels,19 we could not 

detect klotho expression in human VSMCs, perhaps due to different culture conditions. 

Furthermore, we did not identify an anti-calcification effect of FGF23 in the presence of 

klotho as noted previously,19 however this may be due to our use of exogenous soluble 

klotho rather than induction of endogenous expression. In contrast to prior reports,20 we did 

not detect decreased calcification in response to soluble klotho. This could be due to species-

specific differences or the concentrations of soluble klotho that were studied. Despite their 

differences, it is important to note that none of the mechanistic studies has yet to identify a 

direct pro-calcification effect of FGF23 on VSMCs, suggesting that induction of vascular 

calcification is not likely to be a major disease pathway explaining the strong clinical 

associations between FGF23 and mortality.

Early studies that identified elevated FGF23 as a risk factor for mortality proposed that 

FGF23 could represent a superior biomarker of phosphate-related toxicity relative to serum 

phosphate.2 The results of the current study advance an intermediate paradigm in which 

FGF23 and phosphate may exert distinct effects on the cardiovascular system, with FGF23 

acting primarily on the heart and phosphate acting on the arterial tree. Furthermore, by 

demonstrating lack of a pro-calcification effect of FGF23, these well-powered “negative” 

data help to clarify the end-organ specificity of FGF23 toxicity and provide novel insight 

into the cardiovascular impact of disordered phosphate metabolism in CKD.

Methods

Study population

The CRIC Study is a prospective cohort study of 3939 adult men and women (ages 21–74 

years) with mild to moderate CKD (eGFR 20–70 ml/min/1.73 m2) enrolled from seven 

clinical centers in the United States between 2003 and 2008, as described previously.46, 47 A 

random subcohort of 2026 participants underwent CT for quantification of CAC and TAC 

within 4 years after enrollment. Twenty-nine participants were excluded from this analysis 

because baseline plasma samples were not available for FGF23 measurement. An additional 

496 were excluded because CT was performed more than 2 years after FGF23 was assessed 

at the baseline visit or after dialysis was initiated, leaving a total of 1501 participants for this 

analysis. The study was approved by the Institutional Review Boards of participating 

clinical centers, and each participant provided written informed consent.

Data collection

We measured FGF23 in stored plasma samples from the baseline visit using a second 

generation C-terminal assay (Immutopics, San Clemente, CA). Measurements were 

performed in duplicate in a central laboratory after a single thaw (coefficient of variation 
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<10%). We used standard assays to measure serum creatinine, albumin, calcium, phosphate, 

urinary albumin, and 24-hour urinary phosphate centrally. We corrected serum calcium for 

hypoalbuminemia.48 We measured plasma parathyroid hormone using a total intact assay 

(Scantibodies, Santee, CA). We analyzed renal function using the CRIC estimating equation 

for eGFR that was derived from direct measurements of iothalamate clearance (iGFR) in a 

subgroup of participants.49, 50

All participants underwent two concurrent CT scans with either Electron Beam CT scanner 

(GE Medical Systems), or multidetector CT scanner. We used commercially available 

software (Neo Imagery Technologies, Inc) to quantify calcification according to the 

Agatston criteria.51 Total CAC score was determined as the sum of scores from the left 

main, left anterior descending, left circumflex, and right coronary arteries. Total TAC score 

was determined as the sum of the scores from the ascending and descending thoracic aorta 

that were visible on the coronary CT scans, as has been done previously.52 Final scores were 

calculated as the mean of the two scans.53

Analysis of human data

We compared characteristics of the study population across quartiles of FGF23 using 

ANOVA, Pearson’s χ2 test, or Kruskal-Wallis test, as appropriate. For continuous analyses, 

we transformed FGF23 as the natural logarithm (ln), and standardized ln FGF23, serum 

phosphate, and 24-hour urinary phosphate to their respective standard deviations to facilitate 

comparison.

We estimated the association of FGF23 and serum phosphate with prevalence of CAC and 

TAC (score >0) using Poisson regression with robust variance estimation.54 We sequentially 

adjusted for demographics (age, sex, race, ethnicity), kidney function (eGFR, ln-transformed 

urine albumin-to-creatinine ratio), clinical center, traditional cardiovascular risk factors 

(prior cardiovascular disease, diabetes, hypertension, hypercholesterolemia, former or 

current smoking, categories of body mass index), and corrected serum calcium and ln-

transformed parathyroid hormone levels. Models of serum phosphate were analyzed before 

and after adjustment for FGF23, and models of FGF23 before and after adjustment for 

serum phosphate. We confirmed that the assumptions of a Poisson distribution were met by 

comparing our results to those obtained using negative binomial regression.

Among participants with calcification scores >0, we analyzed the association of FGF23 and 

serum phosphate with severity of calcification using linear regression to model the ln-

transformed score with sequential adjustments as described above. Regression coefficients 

(β) were expressed as the percent difference in CAC or TAC per 1 standard deviation 

increase in either ln FGF23 or serum phosphate by performing the inverse logarithm 

(eβ).55, 56 We confirmed adequate model fit using residual analysis.

To evaluate for effect modification of prevalence and severity of calcification, we performed 

analyses stratified by history of prior cardiovascular disease, diabetes, and CKD severity 

(eGFR above versus below 45 ml/min/1.73m2). We also tested for interaction between 

FGF23 and phosphate.
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In secondary analyses, we evaluated the association of calcification with 24-hour urinary 

phosphate as a surrogate of dietary phosphate intake. We repeated the main analyses after 

excluding 74 study participants who were treated with active vitamin D sterols or phosphate 

binders. We adjusted for directly measured iGFR in place of eGFR in the subset of 

participants in whom iGFR was available (n=1034), and for 25-hydroxyvitamin D and 1,25-

hydroxyvitamin D when available (n=534). We determined the association of FGF23 and 

serum phosphate with the prevalence of CAC and TAC using alternate threshold values (0, 

100, 400 and 800), and used ordinal logistic regression to model risk of being in higher 

severity categories (0; 1–100; 101–400; and >400). Finally, to confirm that our results were 

not biased by the time elapsed between measurement of FGF23, phosphate and CT scans, 

we fit primary models in the population with <1 year between measurements (n=597) and 

among those whose eGFR was unchanged (difference ≤ 5ml/min/1.73m2; n=842) between 

measurements. All analyses were performed using Stata 11.1 (StataCorp; College Station, 

TX).

Reverse transcription PCR (RT-PCR)

Mouse aortas isolated from an experiment involving phosphate-induced uremic vascular 

calcification33 were examined for FGF23 and klotho expression. RNA from the aortas of 

CKD and healthy control mice was extracted using TRIzol/chloroform followed by the 

RNeasy Mini Kit (Qiagen); each sample was pooled from 2 to 3 aortas. First-strand cDNA 

was made from total RNA using the Omniscript Reverse Transcriptase kit (Qiagen). Further, 

total RNA from cultured human and mouse VSMCs was extracted using the RNeasy Mini 

Kit, and used to make cDNA using the Omniscript Reverse Transcriptase kit (Qiagen).

We tested for human FGF23 and klotho expression using intron-spanning primers that have 

previously been described.32 We designed intron-spanning mouse FGF23 and klotho 

primers, using mouse calvarial cDNA (for FGF23) and kidney cDNA (for klotho) as 

positive controls. Mouse FGF23 primer sequences: forward 5'-

TGGGCACTGCTAGAGCCTAT-3' and reverse 5'-CTTCGAGTCATGGCTCCTGT-3’. 

Mouse klotho primer sequences: forward 5’-ATTGATGGCGACTACCCAGA-3’ and 

reverse 5’-AAGGAGGAAAGCCATTGTCC-3’.

FGF23 and klotho reagents

Intact human FGF23 and the mutant form, R176Q, of human FGF23 (P-0333) were 

provided by Genzyme (Cambridge, MA). Recombinant mouse FGF23 (2629-FG/CF) and 

klotho (1819-KL) were purchased from R&D Systems (Minneapolis, MN). In our 

experiments, we utilized doses of FGF23 and klotho that were in the upper end of the 

physiologic range (2 ng/mL) in prior human and animal studies,2, 33, 57–59 and also 

examined higher doses (20 and 50 ng/mL) for certain experiments.

Phosphate-induced calcification of cultured human VSMCs

Primary human aortic VSMCs were obtained from Clonetics Corporation (Palo Alto, CA). 

The cells were isolated, characterized, and immortalized as previously described.17 Cells 

were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen, Carlsbad, 

CA) containing 100 U/mL penicillin, 100 µg/mL streptomycin, 15% FBS and 1.4 mM 
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phosphate. Calcification was induced by supplementing the media with NaH2PO4/Na2HPO4 

to a final concentration of 2.6 mM phosphate. Various concentrations of native and mutant 

human FGF23 were tested for effect on calcification (1, 10, 20 and 50 ng/mL). Calcium 

content of the cultures was determined using the o-cresolphthalein complexone method and 

normalized to protein content as previously described.17

Phosphate-induced calcification of cultured mouse aortic rings

Mouse aortas were harvested from 12–14 week old DBA/2J mice and perivascular fat was 

removed. Aortas were cut into 2–3 mm length aortic rings, which were cultured in 

individual wells on a 24-well plate, in DMEM containing 100 U/mL penicillin, 100 µg/mL 

streptomycin, 0.25 µg/mL fungizone, 5% FBS and 1 mM phosphate. Aortic rings were 

incubated in 0.01 U/mL porcine pancreatic elastase (E7885, Sigma) for 24 hours to initiate 

elastin breakdown, which is prevalent in the vessels of CKD mice and precedes uremic 

vascular calcification.35 This elastase treatment protocol results in more reliable 

calcification of aortic rings (Lau and Giachelli, unpublished data). Calcification was induced 

by culture in high phosphate 2.6 mM media for 9 days, and two concentrations of mouse 

FGF23 with and without mouse klotho were tested (2 and 20 ng/mL). At the termination of 

the experiment, aortic rings were snap-frozen in liquid nitrogen, lyophilized, and decalcified 

with 0.6 N HCl at 37°C for 24 hours. The calcium content of the supernatant was 

determined colorimetrically with the ocresolphthalein complexone kit from Teco 

Diagnostics (Anaheim, CA). Aortic calcium content was normalized to the dry weight of the 

tissue and expressed as µg Ca/mg dry weight.

Phosphate uptake assays

Mouse primary aortic VSMCs and human aortic VSMCs were passaged in DMEM 

supplemented with 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin and 0.25 

µg/mL fungizone. The mouse and human VSMCs were seeded into 12-well and 24-well 

tissue culture plates respectively at 2.5 × 104 cells per well. After 2 days of growth, the cells 

were washed with modified Earle’s Balanced Salt Solution (EBSS) containing 146 mM 

sodium chloride for total uptake or 146 mM choline chloride to measure sodium 

independent uptake.

Cells were then incubated for 20 minutes in EBSS containing 0.05 mM inorganic phosphate 

and 3 µCi/ml 33P orthophosphoric acid with or without FGF23 and klotho. Mouse VSMCs 

were incubated with 50 ng/mL mouse FGF23 and 50 ng/mL mouse klotho, while human 

cells were treated with 50 ng/mL mutant human FGF23 (R176Q) and 50 ng/mL mouse 

klotho. Each experimental condition was performed in triplicate. Finally, cells were lysed in 

0.2 N NaOH for 20 minutes and neutralized with HCl. Radioactivity was measured using a 

liquid scintillation counter and was normalized to protein content (Pierce Micro BCA 

Protein Assay Kit, Thermo Scientific, Rockford, IL).

Analysis of experimental data

Statistical analyses were performed using SPSS software v16.0 (SPSS, Chicago, IL). Group 

means were compared using one-way ANOVA with Bonferroni post-hoc analysis, with 

significance set at p<0.05.
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Figure 1. 
Prevalence of coronary artery calcium and thoracic aorta calcium scores > 0 across quartiles 

of plasma fibroblast growth factor 23 (n=1501) and serum phosphate (n=1470).
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Figure 2. 
Adjusted prevalence ratios (black squares) and 95% confidence intervals (vertical bars) of 

coronary artery calcium (CAC) score greater than threshold values of (A) >0; (B) >100; (C) 

>400; and (D) >800. Results are presented by quartiles of plasma fibroblast growth factor 23 

(FGF23) and serum phosphate with quartile 1 serving as the reference group. All models are 

adjusted for age, sex, race, ethnicity, eGFR, urine albumin-to-creatinine ratio, prior 

cardiovascular disease, diabetes, smoking, hypertension, hypercholesterolemia, body mass 

index, parathyroid hormone, corrected serum calcium, and clinical center. Models of FGF23 

were additionally adjusted for serum phosphate. Models of serum phosphate were 

additionally adjusted for FGF23. P-values represent tests of trend across quartiles.
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Figure 3. 
(A) RT-PCR did not detect fibroblast growth factor 23 (FGF23) or klotho cDNA in human 

vascular smooth muscle cells (VSMCs), using primer sets that have previously been 

described.32 FGF23 positive control from plasmid cDNA (expected band size 649 bp), and 

klotho positive control from human kidney cDNA (expected band size 349 bp).

(B) In cultured human VSMCs, FGF23 did not induce calcification under control conditions 

(1.4 mM phosphate) and did not augment calcification under high-phosphate conditions (2.6 

mM phosphate). Data are mean ± s.d. and p-values for the two phosphate conditions are 

shown.

(C) FGF23 with or without soluble klotho did not affect phosphate-induced calcification of 

mouse aortic rings (n = 5 per group). Data are mean ± s.d. and p-value for the high-

phosphate groups is shown.
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Figure 4. 
Fibroblast growth factor 23 (50 ng/mL) with or without klotho (50 ng/mL) had no 

significant effect on sodium-dependent phosphate uptake in both mouse and human VSMCs. 

Data expressed as mean ± s.d. and p-values for the human and mouse data sets are 

presented.
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Table 3

Adjusted association of fibroblast growth factor 23 (FGF23) and serum phosphate with categories of coronary 

artery calcium (CAC) and thoracic aorta calcium (TAC) scores using ordinal logistic regression (n=1384)

Model*
Odds ratio for 1 unit

increase in CAC category† p
Odds ratio for 1 unit

increase in TAC category† p

Ln FGF23 (per SD‡)

   −Phosphate 1.05 (0.93–1.20)   0.43 1.07 (0.94–1.21) 0.33

   +Phosphate 1.02 (0.90–1.16)   0.74 1.06 (0.93–1.21) 0.38

Phosphate (per SD‡)

   −FGF23 1.29 (1.14–1.46) <0.01 1.12 (0.98–1.27) 0.10

   +FGF23 1.29 (1.13–1.46) <0.01 1.11 (0.97–1.26) 0.13

*
adjusted for age, sex, race, Hispanic ethnicity, eGFR, ln-transformed urine albumin-to-creatinine ratio, prior cardiovascular disease, diabetes, 

hypertension, hypercholesterolemia, smoking, body mass index, corrected serum calcium, ln-transformed PTH and clinical center

+Phosphate is additionally adjusted for serum phosphate

+FGF23 is additionally adjusted for ln-transformed FGF23

†
Categories defined as: category 1, score=0; category 2, score 1–100; category 3, score 101–400; category 4, score > 400.

‡
SD of Ln FGF23=0.72; SD of phosphate=0.69
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