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Abstract

Access Classification for Race Detection Optimization

by

Dustin Rhodes

Multicore architectures are an increasingly important technique used to achieve

increased performance in modern CPUs [31]. While increasing the number of cores in a

chip leads to easy performance benefits when running multiple applications in parallel,

writing multithreaded programs has proven to be difficult even for experienced program-

mers [63, 1]. This difficulty stems, in part, from the loss of fundamental abstractions

available in single threaded programs. These lost abstractions include sequential con-

sistency [91], atomicity [50], and determinism [76, 35, 64]. Research has gone into

recovering these abstractions in multithreaded environments, but all are difficult to re-

cover in the presence of data races. Therefore, eliminating data races has become a key

issue in writing multithreaded code.

The desire to eliminate data races has led to the development of tools to detect

and/or stop data races in multithreaded programs. Unfortunately, these race detectors

must monitor all access to shared memory to detect data races. Shared memory is a

huge portion of memory, and in many modern programming languages, such as Java and

C++, it comprises all of heap memory. Likewise, checks must be added to all program

locations that access shared memory. The huge range of memory and the large number

of program points to be monitored leads to large overheads in race detectors.

This thesis aims to increase the speed of dynamic race detectors by restricting

the set of memory and program locations they monitor. In general, we aim to classify

various objects or locations as safe, meaning that race detection checks can be omitted

on these locations/objects without reducing precision. We classify memory/program

locations as safe by either:

• an overlapping race check,
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• only being reachable by a single thread,

• belonging to a synchronized class,

• or being protected by a synchronized class.

These safe classifications allow for their corresponding checks to be omitted or simplified,

leading to performance gains in race detection and improved programmer understanding

of complex multithreaded programs.
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Chapter 1

Introduction

Data race conditions are a notorious problem in multithreaded software, often

resulting in erroneous outputs and violations of expected correctness properties, such

as sequential consistency, atomicity, and determinism. Much prior work has focused on

static [2, 22, 8, 57, 10, 37, 41, 72, 100] and dynamic [87, 99, 74, 108, 79, 30, 88, 108]

data race detection.

With the introduction of multiple threads comes the question of how these

threads interact. One common method of interaction is for threads to share memory

(as is done in most imperative and object oriented languages). This sharing introduces

the possibility for two threads to access the same memory location simultaneously; this

unordered memory access is a data race.

Data races cause some of the invariants that programmers often rely on, such

as sequential consistency [91], atomicity [50], and determinism [76, 35, 64] to break

down. Without these invariants, it can be difficult for a programmer to identify bugs in

their programs or reason about the possible executions. Unfortunately, data races can

also be difficult for programmers to identify. Static and dynamic race detection tools

aid programmers in identifying data races, but come with a severe slowdown due to the

need to check every memory access.

Static analyses are able to reason about all executions of a program, but gen-
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erate false alarms or miss actual data races due to their necessarily conservative approx-

imations of program behavior. In contrast, precise dynamic analyses offer a stronger

guarantee of reporting a data race if and only if a race occurs in the observed trace.

The main limitation of precise dynamic detection is performance. The most efficient

precise detectors, such as DJIT+ [79] and FastTrack [47], have overheads close to an

order of magnitude or more, which is too high for many applications.

This thesis aims to reduce the overhead of dynamic race detection, as well as

aid programmer understanding, by classifying some memory/program locations as safe.

In general race detectors add checks to all program locations that access heap memory.

A safe location is a location at which the race detection check can be elided without

changing the result of race detection. This technique can cut down dramatically on the

number of checks made, thus reducing the overhead of dynamic race detectors. Classify-

ing certain accesses as safe also leaves programmers free to focus their debugging efforts

on the relatively fewer memory locations that rely on more complex synchronization.

We begin with micro classifications that aim to leverage the huge amount

of overlap in the access patterns of an average program. This work is published as

BigFoot: Static Check Placement for Dynamic Race Detection in PLDI 2017 [82].

BigFoot improves the speed of race detection by combining and sometimes eliding race

detection checks. For example, every element of an array may be accessed by a loop.

Traditionally, race detection checks each of these access separately for a race. However,

BigFoot can often coalesce these checks into a single check over the whole range at

the end of the loop, greatly speeding up the process of race detection. Alternatively, in

many cases the same memory location is accessed multiple times with no intervening

locking/unlocking operations; in this case, only one access needs to be checked as if any

is involved in a race, they will all are involved. We show that this work has a large effect

on the efficiency of precise dynamic race detection and can reveal some usage patterns

about code (such as what memory locations are always accessed together). We also

provide a proof of correctness for eliding these checks.
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From there we increase our scope to look at macro classifications based on

the reachability of memory. While all heap memory is shared, and in a language like

C can be accessed by any thread through pointer arithmetic, portions of the heap

may not be reachable by all threads in memory safe languages. Heap memory that is

only reachable by a single thread is known as thread-local memory. Escape analyses

are used by compilers and race detectors to determine what memory is guaranteed

to be thread-local throughout its life. We extend this analysis to partial thread-local

memory, memory which may eventually escape its creating thread but has not done

so yet. This optimization has recently been suggested for compilers [96] but has not

been proven correct. We provide a proof that removing checks on partial thread-local

memory is safe, but eliding partial thread-local locks is unsound and can introduce

race conditions. This work is published as Correctness of Partial Escape Analysis for

Multithreaded Optimization in FTFJP 2017 [83].

Through this work we find that while many objects are reachable by multiple

threads, most are built so that they function if only a single thread is inside (executing

method code) at a time. We call these objects capsules and introduce the idea of capsule-

local memory to denote objects that are only reachable through a single capsule. Like

thread-local memory capsule-local memory is also free from data races.

We provide a syntax and semantics which we use to define a capsule-local

algorithm. We implement this algorithm in RoadRunner to build a filter for capsule-

local accesses and analyze a series of benchmarks in order to gain a sense of how effective

optimization based on capsules can be in practice. We provide a proof that capsule-

local memory can not be involved in a data race and show that a majority of program

locations and accesses in the JavaGrande [59] and DaCapo [12] benchmarks only access

capsule-local memory.

Multithreaded code is prone to errors due, in part, to the lack of guarantees

provided by the programming environment when compared to a single threaded envi-

ronment. Removing race conditions makes a mulithreaded environment more closely

3



resemble a traditional single threaded one. Race detection can be used to either verify

that a given program is race-free or identify races in a racy program so they may be

removed. Unfortunately, dynamic race detection has a large overhead. We reduce the

overhead of precise dynamic race detectors using location and memory classifications.

In particular this thesis provides:

• a race detector based on micro classifications called BigFoot that improves on

the state of the art (published in PLDI 2017),

• a proof of correctness for this race detector (published in PLDI 2017),

• a proof of correctness for removing checks on partial thread-local memory (pub-

lished in FTFJP 2017),

• a proof of incorrectness for partial lock elision and provide an example where

compilers performing partial lock elision introduce data races (published in FTFJP

2017),

• a proof of correctness for removing checks on capsule and capsule-local memory,

• and results that show the majority of program locations are capsule-local in pop-

ular Java benchmarks.
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Chapter 2

Background

2.1 Problems Associated with Data Races

Programming concurrent code can be more difficult than programming sin-

gle threaded code. The difficulties inherent in parallel code come from a number of

complexities that are not present in single threaded code, for example a lack of:

• sequential consistency,

• atomicity,

• and determinism.

Prior research provides fixes for these issues but most of these fixes rely on a race free

execution. Therefore, we focus not on addressing these individual problems but on the

detection of data races. The following section lays out the work already done to ensure

that with proper race detection these problems are also solvable.

2.1.1 Sequential Consistency

Programmers rely on their code being executed in order, and as such, languages

use a sequentially consistent memory model. The memory model of a language defines

which values are legitimate return values for a read on a memory location. A sequentially
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consistent memory model ensures that the observable output of a program is consistent

with each memory read returning the latest value written to that memory location. This

property guarantees, for instance, that the code below will always print 4 and never 3.

x = 4;

print(x);

x = 3;

Compiler optimizations may modify or rearrange program statements but only

when they can maintain sequential consistency [5]. In the above example, the compiler

may see that a write to x of 4 occurs before a read of x, with no intervening writes,

so optimize the print statement to print(4), thereby eliminating a read at run time.

This optimization, while safe in a single threaded environment, is problematic if another

thread is able to write to x between the assignment and the print statement.

In a multithreaded environment, a sequentially consistent trace is one in which

the observable output of the program is consistent with a total ordering on the oper-

ations of various threads, and each read of a location returns the most recent write to

that location according to this total ordering [6]. In the following example, sequential

consistency dictates that the program must print 0 if it prints anything [91]. Here the

two sides of the figure represent two concurrently running threads:

initially x = 0, y = 0

x = 1;

if(y == 1){

print(x);

}

if(x == 1){

x = 0;

y = 1;

}

Any sequentially consistent interleaving of these two threads will either print

0 or print nothing at all. The only sequence of actions which will print anything is the

left thread assigns x to 1. Then the right thread assigns x to 0 and y to 1. Finally,
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the left thread prints the value of x, which must be the most recent write 0. All other

sequentially consistent interleavings result in no output.

However, under the current Java memory model, it is possible (both in theory

and in practice) for this program to print 1. The compiler sees that there is a write to x

of 1 followed by a read of x at the print statement, with no intervening assignments to

x. It then optimizes the statement print(x) into print(1). This optimization causes

the program to print 1 in the interleaving described above. Note, this abnormality is

only possible because of the data race on variables x and y. If the code is modified to

prevent this data race (as shown below), then the program behaves as expected.

initially x = 0, y = 0

acq(l);

x = 1;

if(y = 1){

print(x);

}

rel(l);

acq(l);

if(x == 1){

x = 0;

y = 1;

}

rel(l);

While inlining reads and other compiler optimizations are guaranteed to main-

tain sequential consistency in single threaded programs, they only guarantee sequential

consistency in multithreaded programs as long as the program is race-free. However,

race-freedom is not guaranteed by the Java or C++ languages and neither provide an

easy way to detect if a race has occurred. As such, while debugging programs, a pro-

grammer does not know if they are able to rely on sequential consistency. Ensuring

that a program has no data races using a race detector ensures sequential consistency

and allows a programmer to reason about the possible return values of a memory read

while debugging.
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2.1.2 Race-freedom Implies Sequential Consistency

Parallel programming languages are not able to provide a sequentially con-

sistent memory model without sacrificing efficiency. The standard memory model for

single threaded programs defines the only correct value for a read of a location to be the

most recent write to that location [5]. There is one, and only one, valid value for any

given read. Memory models based on this principle ensure sequential consistency, the

observable results of the program are consistent with the source code being executed in

the order specified by the program.

This memory model proves too restrictive for many compiler optimizations

when in a multithreaded setting. Instead, languages like Java use a more complex

memory model that only offers sequential consistency in the absence of data races [7].

Under the Java memory model, the above guarantees of a memory read returning the

most recent write only apply in the absence of data races. Languages like C++ use a

similar memory model where the return value of a read is undefined in the presence of

data races [5]. C++ is free to use undefined values in its specification but Java, being

a memory safe language, can not return an undefined value. In order to define which

values are valid in the presence of races, the concurrent Java memory model is complex

with numerous bugs appearing over the years [5, 81].

While Java’s more complex memory model does define the valid return values

for a read, even in the presence of a data race, the reads are non-deterministic (they have

multiple valid return values). This non-determinism greatly increases code complexity.

Both the C, C++, and Java memory models are therefore problematic to reason about

as a programmer in the presence of data races.

The ambiguity introduced by non-sequentially consistent memory reads is a

significant loss as a programmer must now reason about multiple possible read values.

Additionally, without a race detector, a programmer may not know if their program

has data races and may incorrectly reason about their code as if it has none. These

types of memory models make correctly identifying data races a vital part of concurrent
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programming, both in order to understand what return values are valid from reads

as well as for enforcing sequential consistency when it is needed. In the absence of

data races, the memory models of Java and C++ behave like their single threaded

counterparts. Therefore, there is a large incentive to remove data races either through

language features or by using race detection [4, 40].

2.1.3 Atomicity

Our above definition of sequential consistency in multithreaded environments

allows for the arbitrary interleaving of the program statements of two threads. This

freedom of interleaving allows for some unexpected behavior. For example:

initially x = 0

x++; x++;

Viewed as above, it seems that x should result in 2 regardless of which in-

crement operation happens first. However, x++ is not an atomic statement in most

languages. Instead it consists of a read, a modify, and a write:

initially x = 0, r1 = 0, r2 = 0

r1 = x;

r1 = r1 + 1;

x = r1;

r2 = x;

r2 = r2 + 1;

x = r2;

With x++ expanded, we can see that thread 1 can begin its increment by

reading x as 0 and storing this value in r1. After this read, but before the increment,

it is possible for thread 2 to also read the value of x as 0 and store the value in r2. At

this point, both threads increment their temporary values from 0 to 1 and write their

1 to x resulting in a final value of 1, when the correct result should be 2, essentially

losing one of the increments.

This type of error is an atomicity error. A portion of code that the programmer

views as atomic, or a discrete portion of code, is interleaved with another thread in a
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way that causes inconsistencies. Many patterns we use have an expectation of atomicity.

For example:

initially x is not null

if(x != null){

x .f();

}

x = null;

In a single threaded environment, this code will never fail due to a null pointer

exception. However, in a multithreaded environment, the statement x = null can be

interleaved between the guarding if and the function call reintroducing a null pointer

exception. If the if block could be marked as atomic, then a null pointer exception

would once again be impossible.

In the above example, the code has both a data race and an atomicity viola-

tion. However, atomicity errors can occur even in code without data races. Atomicity

violations and data races are related but not identical issues. In multithreaded appli-

cations, critical sections can be used to enforce atomicity guarantees but only in the

absence of data races [73]. A region surrounded by a lock on l can not be interleaved

with other regions surrounded by the same lock. Thus, lock acquire and release state-

ments can be used to enforce some desired atomicity properties, but only in the absence

of data races. In the presence of data races, a region protected by a lock on l may be

interleaved with a data race thus destroying any atomicity guarantees. In this sense, a

data race is often the sign of an atomicity violation. Other tools exist that aim to check

atomicity properties specifically that do not handle general race detection [50, 45, 66]

2.1.4 Non-determinism

Non-determinism in code is the cause of numerous bugs [62]. Sources of non-

determinism include: C programs that only crash under certain memory configurations,

programs that rely on faulty external input, and multithreaded programs [76, 35, 64].

The non-determinism in multithreaded programs is difficult to avoid, appearing even
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in programs without data races. A system that wishes to enforce determinism on a

multithreaded program must monitor every heap access and enforce a specific ordering

on them. This method of enforcing determinism causes a large overhead in software

systems that use it [76]. However, in the absence of data races, enforcing determinism

becomes much simpler.

The non-determinism present in multithreaded programs appears in two places:

first, the order in which locks are acquired by the program and second, what return val-

ues the memory model returns for racy reads. There are orders of magnitude fewer lock

operations than memory accesses and so eliminating the first type of non-determinism is

significantly easier. Eliminating only the non-determinism of lock acquisition is consid-

ered weak determinism, while eliminating both types of non-determinism is considered

strong determinism [76].

In the absence of data races, all memory accesses are deterministic by de-

fault. Therefore, in race free programs, all non-determinism comes from the order in

which locks are acquired. For example, the following code will print either 1 2 or 2 1

depending on which thread is able to acquire l first.

acq(l);

print(1);

rel(l);

acq(l);

print(2);

rel(l);

Enforcing determinism on lock acquires and releases is much simpler and has a

lower overhead than enforcing determinism on memory accesses. While weak determin-

ism is helpful, in order to fully realize its benefits, the target program must be race-free.

If a program is weakly deterministic and has no data races, then it is also strongly

deterministic. Therefore, identifying and removing data races allows programmers to

use the relatively low overhead weak determinism tools to enforce strong determinism

without the associated overhead. In much the same way that type and memory safe

languages have eliminated many of the sources of memory based non-determinism, weak

determinism tools can eliminate the sources of mulithreaded non-determinism in race
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free programs.

2.2 Alternative Solutions to Parallel Programming

There are a variety of techniques aimed at simplifying coding for multithreaded

architectures. Attempts have been made to eliminate race conditions and their associ-

ated problems, either through hardware, language constructs, or static/dynamic detec-

tion of race conditions. While we aim to improve dynamic race detection as a solution,

we outline some of the other attempts at solving the problem below.

2.2.1 Transactional Memory

For years, databases have been used to share information across multiple pro-

gram instances without races. One of the key concepts that gives databases their ease of

use is the transaction [32]. A transaction is a unit of computation that either completes

or does nothing. The transaction either commits the entire unit of work to the database

or none of it (in the case where it is interrupted midway), thus preventing the atomicity

errors seen in Section 2.1.3.

In many modern languages, we have no way of marking a portion of code as

atomic, and many of the operations that we would assume are atomic are not. For

instance, as noted above, the code x++ appears atomic but is actually a sequenced read,

add, and write.

Transactional memory aims to address issues of atomicity and, more generally,

of data races by applying the idea of transactions to program memory. In the case of

multiple threads incrementing the same variable, one thread would commit its change

to memory before the other thread. This commit causes the second thread to rerun

its computation (rereading the value of x, incrementing it, and then writing the value

back), thereby preventing the lost update.

There have been attempts to introduce transactional memory at both the

hardware level [14] and software level [93]. However, there are difficulties with both
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techniques. Hardware level implementations are expensive to implement, while software

level implementations are too slow. Both suffer from the difficulty of efficiently handling

both small and large transactions [14]. Some attempts at specific data-structure level

transactions have been made with specialized functions to support both small and large

transactions [95], but a general solution to the problem does not appear imminent.

2.2.2 Restricting Compiler Optimizations

Compilers are free to move program statements as long as sequential consis-

tency is maintained in a single threaded environment. However, in the presence of data

races, even trivial code migration can break sequential consistency, as seen in Section

2.1.1. Compilers either have to forgo optimization of code or define a looser standard

than sequential consistency. As we saw in Section 2.1.2, most have chosen to loosen the

standard.

Some work has been done in rewriting compiler optimizations to enforce se-

quential consistency even in the face of data races, however, these lead to less opti-

mization [18]. Other work has focused on writing compilers that handle parallelization

themselves. These compilers are able to ensure sequential consistency while still al-

lowing optimization. However, it is difficult for a compiler to determine what can be

safely multithreaded statically, as this decision relies on reference reachability, a stati-

cally undecidable problem. In practice, large amounts of code that could be parallel are

serialized in these systems [77].

The far more prevalent solution has been to use memory models that only offer

sequential consistency in the absence of data races. While many current compilers use

this technique, such as the C/C++ and Java compilers, defining what is allowed in the

presence of data races has still proven problematic. Bugs in Java’s concurrent memory

model have been found and the memory model is agreed to be highly complex [81].

While loosening the restriction of sequential consistency to sequential con-

sistency in the absence of data races solves many compiler optimization problems, it

13



introduces a new one. As compilers are unable to detect data races, the programmer

has no idea if their code behaves sequentially consistently without the added help of a

race detector.

2.2.3 Type Systems

To overcome the limitations of static decidability, some languages use type

systems to parallelize code without programmer input. This technique fits well in func-

tional programming languages, such as Data Parallel Haskell [24] or Jade [84], in which

memory access is already restricted by the type system. In these systems, because

data races only happen through shared memory, all pure computations can safely be

parallelized across multiple threads with no risk of introducing data races. However, in

languages where memory reads and writes are not already restricted by the type system,

new type systems must be introduced to determine what code is safe to parallelize.

For example, deterministic parallel Java [16, 15] is a Java-like programming

language that introduces the idea of dividing memory into regions and implements new

syntax to allow a programmer to mark loops or sections of code that may be run in

parallel. The introduction of regions allows the type checker to verify that code marked

to be run in parallel only operates on disjoint portions of memory. By forcing threads

to work on disjoint regions of memory, race-freedom is guaranteed even in the absence

of locking operations.

However, in order to provide such strong static guarantees, the burden placed

on the programmers by the type system is relatively high. Fields must be manually

labeled by region. These regions divide memory into distinct sections and parallel code

must show that every thread operates on a distinct region. For algorithms that use

tree structures in which memory can be divided into increasingly smaller portions, this

technique works well, but it can struggle for algorithms where defining disjoint memory

regions is non-trivial.

Likewise, the Rust [69] type system also ensures that threads do not operate

14



on the same memory. In the Rust type system, references are only reachable by a single

thread. When a reference is shared, it is lent. Lending a reference removes the original

thread’s copy, thereby preventing duplication of references across threads. Rust also

introduces multiple traits to allow the programmer to define objects that can not be

shared, can be shared safely, or can be shared with some qualifications. By using its

idea of ownership, Rust is able to implement safe multithreading at the cost of a more

restrictive type system.

These solutions work well for specific use cases, but a general, easy to use, type

system does not exist for Java or C++. New languages can aid in this area but do not

solve the concurrency problems associated with programs already written in C++ or

Java as there is no easy conversion solution.

2.3 Race Detection

2.3.1 Overview

Languages which used shared memory such as C++ and Java require programs

to be race-free or give up sequential consistency. Unfortunately, these languages lack

a built in mechanism to identify data races in executions. As such, a programmer can

never rely on any guarantees of sequential consistency, atomicity, or determinism as

they have no way of knowing if a data race has occurred in a given execution or not.

Race detection is an area of research which aims to bridge this gap by adding

the ability to detect data races to either the language runtime or a separate debugger.

Race detectors provide a flexible approach that can be turned on during debugging and

turned off again in production. During debugging, a race detector will provide either

the location of a data race that the programmer can fix or a guarantee that no races

occurred. If no races occurred, then standard tools and reasoning may be relied upon.

Ideally, race detection would eventually be rolled into a language runtime to allow data

races to act as exceptions (as suggested in Conflict Exceptions: Simplifying Concurrent
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Language Semantics with Precise Hardware Exceptions for Data-Races [67]).

Static analyses are able to reason about all executions of a program, but they

generate false alarms or miss actual data races due to their necessarily conservative

approximations of program behavior. In contrast, precise dynamic analyses offer a

stronger guarantee of reporting a race condition if and only if a race occurs in the

observed trace. The main limitation of precise dynamic detection is performance. The

most efficient precise detectors, such as DJIT+ [79] and FastTrack [47] have overheads

close to an order of magnitude or more, which is too high for many applications. We aim

to limit this drawback of precise dynamic detectors by cutting down on the large number

of checks that need to be made and the large regions of memory to be monitored.

2.3.2 Race Definition

As we have seen, identifying data races is a vital part of concurrent Java or

C++ programming. Intuitively, a data race occurs when two threads access the same

memory location at the same time. Languages define a data race more formally by

constructing a happens-before graph for a program trace.

A multithreaded program consists of a number of concurrently running threads.

These threads can access memory, acquire or release locks, spawn off new threads, or

join back into their spawning thread. A single execution of a multithreaded program

can then be formalized as a trace consisting of the sequence of operations performed

by the various program threads. For simplicity, we omit all operations that are not

involved in race conditions. Therefore these traces are made up of memory accesses,

locking operations, and the creation of new threads.

We reason about the timing of operations within a trace by using the happens-

before relation <α. Two operations are ordered by happens-before if:

• the two operations are performed by the same thread,

• or the two operations acquire/release the same lock.
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The happens-before relationship is defined as the smallest transitively-closed relation

for which the above hold. If two actions from the same thread appear in a trace, the

first always happens before the second. Likewise if a release of a lock appears in a trace

before an acquire of that lock the release action happens before the acquire action.

If a happens before b, then b happens after a. If two operations in a trace are

not related by the happens-before relation, then they are considered concurrent. Two

memory access conflict if they both access (read or write) the same variable, and at

least one of the operations is a write. Using this terminology, a trace has a data race if

it has concurrent conflicting accesses.

In addition to the above definitions, we define a synchronous-free region (SFR)

as any section of code where there are no synchronization operations. For instance, the

code between a lock acquire and its later release forms an SFR. These SFR form blocks

that all happen “at the same time” with regard to the operations of other threads. If

an operation a in SFR A happens-before operation b of another thread, then operation

a′ also in SFR A also happens-before b.

2.3.3 Program Traces

Data races are a property of a particular program execution. A target program

may never have a data race, have a data race on only some executions, or contain data

races on every execution. A program that has a data race on some executions is still

sequentially consistent on those executions where it does not have a data race. Our

dynamic analyses work the same way, they report a race if one occurs in the current

execution not if the program may race on some execution.

A program trace contains information about a specific execution. As a program

executes, it performs a number of actions out of a selection of possible actions. By taking

all of these actions in sequence we generate a trace. Our analyses monitor different

program properties and so have different sets of actions, but all include the following:

• t accesses o.f - the thread t is has accessed (read or write) the field f of object o,
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• t acquires o - the thread t has acquired the lock o,

• t releases o - the thread t has released the lock o,

• t1 forks t2 - the thread t1 forks off the thread t2

While a trace has an intrinsic order, however, this order is not the same as the

happens before order. For example, in the trace 1 access o.f . 2 access o.f it appears

that thread 1 accessed o.f first and thread 2 accesses it second. In reality these accesses

are unordered and this is a data race. In order to see when operations of different

threads occur in relation to each other it is necessary to use the trace to construct a

happens before graph. For an exact definition of data races, see the previous section.

Traces are also useful for defining atomicity and determinism properties. All of

our analyses work on program traces and can either be thought of as either happening

alongside execution or working on stored traces. In practice, we make use of the Road-

Runner (section 2.4) framework which allows for implementations of our algorithms to

run alongside execution.

2.3.4 Race Detection Precision

Race detectors have a variety of different correctness properties based on their

intended use case. These range from heuristics based analyses that may report a race

when none is present or vice versa to completely precise detectors that report a race if

and only if a race occurred. To solve the problems outlined in section 2.1 the runtime

environment must guarantee a lack of races; we therefore do not consider methods which

produce false negatives (a race occurs but it is not reported). In theory, false positives

still let us solve many of the issues related to parallelism and shared memory, but they

also limit the scope of writeable programs (some correct programs won’t run because

the runtime believes a race has occurred when it has not) and so we try to avoid analyses

which give false positives.

Even within this restricted scope, there is still latitude on the precision of
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race detectors. Specifically, we define precise (no false positives or false negatives) race

detectors as either trace precise or address precise. An address precise race detector

will report every address involved in a race for a given trace if and only if that address

is involved in a race. A trace precise race detector has a weaker notion of correctness

and will report a race in a given trace if and only if that trace contains a race. A trace

precise race detector will also report the address of the first race, but it is possible that

this first race corrupts the analysis state so future races may be missed. We never run

into this corruption in practice as detailed in section 3.1 and memory safety in languages

like Java can sometimes prevent it entirely.

Either of these correctness properties are sufficient for our goals, as in either

case, if the race detector reports that no races occurred, then it is guaranteed that no

races have occurred. For identifying races in existing programs, address precision can

be helpful for solving multiple races without needing to rerun the analysis. However, in

all practical tests we have run both precision types give the same results.

2.3.5 Static Race Detection

Many static analysis techniques for identifying races have been explored, in-

cluding systems based on types [2, 8, 57], model checking [25, 107, 71] and dataflow

analysis [41], as well as scalable whole-program analyses [72, 100]. While static race

detection provides the potential to detect all race conditions over all program paths,

decidability limitations imply that any static race detector that catches all races will

also produce false alarms. Many of the mentioned static analyses are either unsound by

design or unsound in their implementations to reduce the number of spurious warnings

(see, e.g., [2, 41]).

Many of the above systems make use of types in some way to aid in their static

detection. However, the type burden placed on the programmer is less than the systems

in Section 2.2.3. For example, static systems such as Type-Based Race Detection for

Java [44] allow for fewer type annotations when compared to systems like Deterministic
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Parallel Java (DPJ) [60]. However, unlike DPJ, these systems are imprecise, missing

some data races and reporting false positives on others. In addition to having fewer

annotations, the type system used in Type-Based Race Detection remains much closer

to the standard Java type system. Annotations show which locks protect which pieces

of data and parallelism is done manually, as opposed to DPJ where annotations divide

memory into regions and parallelism is achieved through added syntax [60].

In addition to purely static systems, other systems aim to statically improve

dynamic race detectors’ performance. For example, Gross et al. present a global static

analysis to improve the precision and performance of a LockSet-based detector [98].

Their analysis aims to statically eliminate dynamic checks on objects that it can stati-

cally guarantee are not involved in races. However, as their system relies on an imprecise

dynamic race detector, their system both misses races and reports spurious warnings.

Choi et al. present a different global analysis for removing run-time race checks

for accesses guaranteed to be race-free [29]. They also introduce a “weaker than rela-

tion”, that defines some memory locations as weaker than others. The weaker memory

location is accessed if and only if the stronger memory location has already been ac-

cessed (and checked) within the current SFR. In general, the fact that detecting data

races relies heavily on aliasing information means most static detection is difficult.

2.3.6 Imprecise Dynamic Checking

In contrast to static checking, dynamic checking has access to precise aliasing

information and does not suffer from decidability limitations. However, for speed rea-

sons, many dynamic checkers remain imprecise. For example, the lockset algorithm for

Eraser and Goldilocks [40, 87] serves as the basis for much of the imprecise dynamic

checking work.

The lockset algorithm does not track the happens-before relation and so is

not precise. Instead, it tracks a set of guarding locks for all memory location. A new

memory location starts out with the set containing all locks. At a memory access, the
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algorithm finds the intersection of the memory location’s set of locks and the set of locks

currently held by the accessing thread. The algorithm then assigns the resulting set to

be the new set of locks protecting that location. If the set of locks protecting a location

ever drops to the empty set an error is reported.

This strategy works well for programs that have been written with lockset in

mind, as, in these programs, a field not protected by a lock is very likely to be part of

a data race. However, there are many situations where a lockset may be empty but a

data race has not occurred. Consider the following example:

initially x.f = 1

acq(L);

a = x .f;

rel(L);

acq(M);

b = x .f;

rel(M);

acq(L);

acq(M);

x .f = 3;

rel(L);

rel(M);

In the above code, no data race is present on x, as thread 2 can only write to

x.f if it holds both locks. However, threads are free to read from x.f if they hold only

one of the two locks. Under the lockset algorithm, the first read operation assigns the set

of locks protecting x to L. The second read intersects the set containing only L with the

set containing only M. This intersection causes the set of locks protecting x to become

the empty set, and an error is reported even though no race has occurred. Another area

where false positives occur in lockset algorithms is from thread-local objects which may

be safely accessed with no locks held. Lockset based algorithms must either accept that

all thread-local accesses will be false positives or add in heuristics to avoid these false

positives which may introduce false negatives.

While lockset algorithms are relatively fast compared to precise algorithms,

they report false positives in real world applications. Unfortunately, distinguishing

between a false positive and a true data race has shown to be difficult [49], limiting
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the usability of race-detectors that report false positives. Some work has gone into

automatically differentiating between these false positives and true positives [108, 75,

79], but false positives can never be completely eliminated with these methods. Choi et

al. present a modified lockset algorithm that instead ensures that all access locksets are

mutually intersecting [29]. This modification removes many false positives but is still

not precise.

Other systems such as MUVI [65] use heuristics about which sets of variables

are accessed together in order to compress the total number of accesses that need to

be checked. This compression can either be done without loss of information resulting

in the same precision as the original, or more aggressively to increase speed but lose

precision. BigFoot uses some of these techniques to speed up its precise race detection

but without the use of heuristics and with a vector clock based analysis in mind.

In order to solve problems with sequential consistency, atomicity, and deter-

minism, the runtime must be able to guarantee that the current program trace does not

have any races. For this reason, tools that give false negatives are unsuited for the job

and tools with false positives mean that valid programs may be rejected.

2.3.7 Precise Dynamic Checking

Precise dynamic race detectors are able to detect data races with no false

positives (never reporting a race when none are present) or false negatives (never missing

races that have occurred during an execution). The detector reports a race if and only

if a race occurred on the current execution. This accuracy is a large benefit given the

difficult nature of identifying false positives.

The basis for precise dynamic checking stems from the vector clock algorithm

[79]. This algorithm relies on vector clocks that keep one “time” for each thread in the

target program. In practice, a vector clock is an array of integers. Each thread keeps a

vector clock, recording its own time and a time for each of the other threads.

Threads, locks, and memory locations have their own vector clock. Locks’
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and threads’ vector clocks are updated on synchronization operations that impose a

happens-before order between operations of different threads. For example, when thread

u releases lock m, the vector clock algorithm updates the clock of m to be the clock of u

and increments u’s clock. If a thread t subsequently acquires m, the algorithm updates

the clock of t to be the maximum of the clocks of m and t since subsequent operations

of thread t now happen after the release operation in thread u.

Finally, in order to correctly identify races, the vector clock algorithm keeps

two vector clocks for each memory location, a read and a write vector clock. These

vector clocks record the time of the last read and write to the that location by each

thread. A read on a memory location by thread t is race-free if it happens after the last

write of each other thread. A write on a memory location by thread t is race-free if it

happens after the last read and write by all other threads.

Since their introduction, vector clock algorithms have been heavily optimized.

FastTrack brings the running time from 20x to 8.5x (when comparing RoadRunner

implementations in Java) by noting the fact that, given no data races, writes to a

memory location are totally ordered and thus only the most recent access needs to be

recorded and compared. This insight cuts the running time of vector clock checking

from linear in the number of threads to constant time for all writes and most reads [47].

FastTrack makes this optimization by introducing the notion of epochs. Instead

of recording an integer time for each thread, an epoch contains the thread I.D. and time

of the last access. An epoch is sufficient to track happens before when events are totally

ordered, because a verification that the current access comes after the previous access

also means the current access comes after all accesses before it due to transitivity. In

all instances except read sharing of a location, accesses must be totally ordered, so in

practice this optimization leads to an asymptotic speedup.

Other efforts have focused on both reducing the amount of redundant checks

[49], eliminating provably safe checks, and compressing the state of the vector clocks

[103]. These optimizations reduce both the memory and runtime overhead of vector
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clock algorithms with state-of-the-art algorithms having slowdowns of 7.1x [103]. All

the vector clock algorithms we examine or implement in this thesis are precise.

2.4 RoadRunner

Data races are possible at any shared memory access. Therefore, most dy-

namic algorithms aim to instrument memory accesses to do some additional form of

checking when memory is accessed. To facilitate the ease of development and to allow

for consistent comparisons across various algorithms, the RoadRunner framework was

developed [48].

RoadRunner provides a framework for designing and testing dynamic race

detection algorithms. The user defines functions for events (read, write, acquire, release,

etc.) that are inserted into user code statically by the RoadRunner system. For

example, RoadRunner takes code of the form: x = y .f; y .f = z and adds in checks,

transforming it into the form:

readCheck(y .f); x = y .f; writeCheck(y .f); y .f = z;

To track the timing information of various locations, RoadRunner also adds

shadow state to every field. A standard vector clock based race detector stores a read

and a write vector clock for every field. The optimization seen in FastTrack [47] changes

all write vector clocks and many read vector clocks to epochs (from an array of integers

to a single integer). A lockset based algorithm usually keeps a set of the guarding locks

for every field access. These shadow states make up the bulk of memory overhead for

the various race detectors.

RoadRunner naively adds in checks at all memory accesses and synchro-

nization operations. While this is sufficient for a precise algorithm, it is also overly

conservative. Therefore, some systems such as RedCard [49] provide more complex

check insertion algorithms that limit the number of redundant checks. These systems

then work to show that their analysis remains precise even with reduced checking. The

work of this thesis is mainly focused on reducing the number of checks that are inserted.
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The examples used in this thesis all assume they are being run using a Road-

Runner-like system. It is also possible to implement checks directly, however, this

strategy makes comparing runtime overheads between algorithms difficult. Different

analyses may be implemented for different languages, computing platforms, or virtual

machines and may run on a standard virtual machine or a modified one [48].

2.4.1 Difficulties in Verifying Race-Freedom

Ensuring that a program is race-free is a boon in reasoning about multithreaded

programs. In the absence of races the memory models of Java and C++ guarantee

sequential consistency just like their single-threaded counterparts. Without data races,

atomicity and determinism become enforceable with low overhead using existing tools.

In fact, data races themselves have been shown to correlate with program bugs [62, 91]

in real world code.

However, race-freedom is difficult to verify because every heap memory access

is potentially a race and therefore must be checked. Modern attempts at eliminating

race conditions come in the form of both static [2, 22, 8, 57, 10, 37, 41, 72, 100] and

dynamic [87, 99, 74, 108, 79, 30, 88, 79] race detection algorithms. Static race detection

reasons about multiple control flow paths but is, by necessity, imprecise. Dynamic race

detectors are often sound but slow, although some trade precision for speed. Dynamic

sound race detectors are precise in that they never report false positives, but are still

relatively slow to run on large software, with leading algorithms such as Fasttrack having

an 8.5x overhead [47]. Much of this slowdown comes from the need to perform a check

on every memory access [47].

This thesis aims to increase the speed of precise dynamic race detectors through

static and dynamic optimizations. Specifically, we aim to remove checks that are:

• redundant (they have already been checked or can be coalesced),

• on thread-local variables,
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• or local to fully synchronized objects (such as memory accesses inside Vector to

its array storage).
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Chapter 3

BigFoot Micro Classifications

3.1 Introduction

Precise dynamic data race detectors provide strong correctness guarantees but

have high overheads because they generally keep analysis state in a separate shadow

location for each heap memory location, and they check (and potentially update) the

corresponding shadow location on each heap access. The BigFoot dynamic data race

detector uses a combination of static and dynamic analysis techniques to coalesce checks

and compress shadow locations. With BigFoot, multiple accesses to an object or array

often induce a single coalesced check that manipulates a single compressed shadow

location, resulting in a performance improvement over FastTrack of 61%.

In this section, we present an optimized precise dynamic data race detection

algorithm, BigFoot, that mitigates these overheads as follows:

1. Rather than keeping a distinct shadow location for each field in an object, or

each entry in an array, BigFoot employs compressed representations using fewer

shadow locations per object/array.

2. Rather than checking and updating shadow location metadata at each memory

access of the target program, BigFoot uses a sophisticated static analysis to

optimize check placement in the target code. In particular, it statically eliminates
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Standard Race Checks BigFoot Race Checks

class Point {
int x, y, z;

void move(int dx, int dy, int dz) {
int tmp;
CheckRead(this.x); tmp = this.x;
CheckWrite(this.x); this.x = tmp + dx;

CheckRead(this.y); tmp = this.y;
CheckWrite(this.y); this.y = tmp + dy;

CheckRead(this.z); tmp = this.z;
CheckWrite(this.z); this.z = tmp + dz;

}
}

void movePts(Point[] a, int lo, int hi) {
for(int i = lo; i < hi; i++) {

CheckRead(a[i]);
a[i].move(1, 1, 1);

}
}

class Point {
int x, y, z;

void move(int dx, int dy, int dz) {
int tmp;
tmp = this.x;
this.x = tmp + dx;

tmp = this.y;
this.y = tmp + dy;

tmp = this.z;
this.z = tmp + dz;

CheckWrite(this.x/y/z);
}

}

void movePts(Point[] a, int lo, int hi) {
for(int i = lo; i < hi; i++) {

a[i].move(1, 1, 1);
}
CheckRead(a[lo..hi]);

}

Figure 3.1: Check placement for precise data race detection.

redundant checks where possible and statically combines multiple checks into a

single coalesced check covering multiple fields or array indices.

Figure 3.1 compares BigFoot’s static check placement algorithm to the stan-

dard approach of performing a check at each access. In the move method, a typical race

detector would instrument each of the six accesses with a check verifying that the access

is race-free. In contrast, BigFoot determines that the read check in each read-modify-

write sequence is redundant with the check on the subsequent write, in the sense that

the read will be involved in a data-race only if the write is also in a race. Thus, the

read checks are not necessary to validate whether a trace is race-free.

Furthermore, BigFoot combines the three write checks into a single coalesced

check CheckWrite(this.x/y/z) covering all three fields. Coalescing field checks in this

manner is particularly helpful because it enables static shadow location compression for

objects. In particular, suppose that all checks on Point objects are coalesced checks

of the form CheckWrite(p.x/y/z) or CheckRead(p.x/y/z). BigFoot can then safely

combine the shadow locations for the three fields into a single shadow location, and the
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coalesced checks then perform a single check-and-update operation on that shadow loca-

tion, in contrast to the six checks on three shadow locations required by the traditional

approach.

BigFoot optimizes array checks similarly, as shown in the method movePts

in Figure 3.1. That code iterates over all array indices in a from lo to hi and moves

each corresponding Point. In contrast to a standard dynamic race detector, which

separately checks each array read, BigFoot coalesces these checks into the single check

CheckRead(a[lo..hi]) after the loop. Here, lo..hi denotes the closed-open interval

lo, lo + 1, . . . , hi− 2, hi− 1.

To efficiently handle such coalesced checks, BigFoot again employs a com-

pressed representation for array shadow locations. In contrast to objects however, this

compressed representation is chosen and adaptively refined at run time. Specifically, an

array like a is initially represented as a “coarse-grained” single shadow location covering

all array elements. A call such as movePts(a,0,a.length) generates a coalesced check

CheckRead(a[0..a.length]) covering all array elements, which ]is processed at run

time by checking and updating that array’s single shadow location. If a subsequent call

movePts(a, 0, a.length/2) generates a check CheckRead(a[0..a.length/2]) cover-

ing just half the array elements, the BigFoot run time would refine the shadow state

for a to be two shadow locations, each covering half of a. That check is then handled

by appropriately updating the first of these two shadow locations.

BigFoot’s adaptive mechanism for arrays, modeled after SlimState [103],

enables compressed array representations under a variety of common access patterns

including block-based and strided accesses. If those patterns are not followed, BigFoot

reverts to the “fine-grained” representation of a shadow location for each array element.
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Imprecisions in BigFoot’s static analysis may lead to sub-optimal check place-

ment, as in the following example:

for(int i = 0; i < a .length; i++) {
if(predicate()) {

a[i] .move(1, 1, 1);
CheckRead(a[i]);

}
}

BigFoot’s method-local analysis will not statically coalesce the array checks

because it cannot statically determine which elements are accessed. At run time, sup-

pose a has a single shadow location when this code runs. If predicate() always returns

true, then all indices in a are accessed, and we’d like to preserve the coarse-grained rep-

resentation to save both space and time. To do so, BigFoot’s run time defers checks

on arrays, and instead dynamically records a per-thread footprint of which indices have

“pending” checks. BigFoot “commits” the footprint for a thread and checks the corre-

sponding shadow locations for races when the thread next performs a synchronization

operation. This dynamic footprinting technique allows BigFoot to keep a single shadow

location for the array a, even in the presence of a scenario like the above that is not

amenable to static coalescing.

Figure 3.2 compares BigFoot to several prior precise race detection algo-

rithms: FastTrack, RedCard (which statically eliminates some redundant checks

and compresses shadow state), SlimState (which dynamically compresses array shadow

state), and SlimCard (which combines the RedCard and SlimState analyses, as de-

scribed in Section 3.6). All were implemented in the RoadRunner framework for

Java [48]. The key innovations of BigFoot, namely static check motion and coalesc-

ing, provide substantial performance improvements, particularly when combined with

existing static and dynamic shadow compression techniques.

Detection Precision A data race detector is trace-precise if it correctly determines

whether a given trace has a race condition or not. A trace-precise race detector is
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additionally address-precise if it can also determine all addresses that have race con-

ditions. Using this terminology, FastTrack and SlimState are address-precise.

Our BigFoot core algorithm is also address-precise, as we discuss in Section 3.3. Our

BigFoot implementation, however, uses additional check placement optimizations for

which one data race may prevent the detection of a subsequent race. Consequently, our

implementation is trace-precise but not address-precise, as described in Section 3.5.1 In

practice, the BigFoot implementation was address-precise in all our experiments.

We also note that since BigFoot defers checking until after accesses occur, a

data race may be detected only after it has happened. This introduces several subtleties

related to precision. First, we currently assume for simplicity that all loops terminate

and consider all unchecked exceptions to be programming errors. Thus, a race prevent-

ing a loop from terminating or causing an unchecked exception may be missed since the

deferred check is never reached. However, we did not see this occur in practice, and

we discuss analysis extensions to cover these items in Sections 3.3 and 3.5. In addi-

tion, if a data race can corrupt the race detector’s analysis state, it may similarly go

undetected [11], but for type-safe languages like Java, this cannot happen.

Contributions The primary contributions of this chapter are:

• We define a theory of precise check placement for dynamic race detection and

describe a core static analysis to optimize check placement (Sections 3.2 and 3.3).

• We integrate static field proxy compression and dynamic array shadow compres-

sion techniques to further reduce run-time overhead (Section 3.4).

• We present our BigFoot prototype for Java (Section 3.5).

• We show that BigFoot’s static analysis scales well (requiring on average less

than 0.2s per method processed) and reduces run-time overhead from 7.3x (for

FastTrack) to 2.5x, an improvement of 61% (Section 3.6).
1RedCard and SlimCard exhibit similar precision properties for the same reasons.
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1: acq(lock);
∅ • {b.f3}

2: x = b.f;
{b.f�} • {b.f3}

3: rel(lock);
∅ • {b.f3}

4: y = b.f;
{b.f�} • ∅

5: check(b.f);
{b.f�, b.f

√
} • ∅

6: acq(lock);
{b.f�, b.f

√
} • {b.f3}

7: z = b.f;
{b.f�, b.f

√
} • ∅

8: rel(lock);
∅ • ∅

Figure 3.3: A code fragment with precise checks, and the corresponding BigFoot
analysis contexts from Section 3.3. (All variables are thread-local, and objects thread-
shared.)
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(a) Covering Checks (b) Legitimate Checks

Figure 3.4: Precise and imprecise check placement locations.

3.2 Theory of Check Placement

A key design goal of the core BigFoot algorithm is that the checks inserted

into a target program enable address-precise data race detection. That is, BigFoot

must insert checks that are sufficient to detect all data races but that never report false

alarms. Reasoning about this requirement can be subtle. For example, the code in

Figure 3.3 contains a single check that enables precise data race detection for all three

accesses, but it may not be immediately apparent why this is the case.

In this section, we develop a theory of check placement to characterize exactly
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where checks must be performed to avoid false negatives and false positives. To simplify

our exposition, we initially do not distinguish between read and write accesses (although

our implementation extends these ideas to do so, as described in Section 3.5).

Given an execution trace of a program, we say the trace has a data race if it has

two accesses to the same memory location that are not ordered by the happens-before

relation, which is defined in the usual fashion [61, 79].

Similarly, a trace has a check race if it has two checks to the same memory

location that are not ordered by happens-before. A precise check placement algorithm

must ensure that any execution trace of the target program has a data race if and only

if it has a check race.

Figure 3.4(a) illustrates where checks must be performed in a trace to guarantee

all data races are detected. The trace shown has a data race because the happens-before

edges (shown as solid arrows) generated by synchronization operations do not order the

two accesses to y.f, as indicated by the dashed edge. Any check performed by Thread 1

in the Covering Check Range will trigger a check race corresponding to that data race.

However, checks outside that range will not, resulting in a false negative because the

access race would have no corresponding check race.

With this intuition, we say that a check covers an access to the same location

by the same thread if the check either:

• precedes the access with no intervening release, or

• succeeds the access with no intervening acquire.

Note that we treat acquire and release differently, as they serve as sources and sinks

for synchronization edges in the happens-before graph, respectively. Returning to Fig-

ure 3.3, the single check thus covers all three accesses in any trace generated by this code.

We show in the appendix that if each access in a program has a covering check, then

any trace with a data race also has a check race. That is, access coverage guarantees

no missed races.

Figure 3.4(b) illustrates where checks may be performed in a trace to guarantee
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all check races indicate data races. This trace has no data race because the three

accesses to y.f are ordered by happens-before edges. Similarly, the checks inside the

critical section of Thread 1 (marked Legitimate Check Range) produce no check races.

However, a check outside this range produces a check race, which would be a false alarm

since there is no corresponding data race.

We say that a check is legitimate for an access to the same location by the

same thread if the check either:

• precedes the access with no intervening acquire, or

• succeeds the access with no intervening release.

For example, in Figure 3.3, the check is legitimate for the second access, but not the

first or third.

With these notions of legitimacy and coverage, we say a trace has precise checks

if each access is covered by some check (no missed races) and each check is legitimate

for some access (no false alarms). A program has precise checks if all possible execution

traces have precise checks.

3.3 Optimizing Check Placement

We next describe our static analysis for optimizing the placement of precise

checks.

3.3.1 BFJ Language and Semantics

We formalize our ideas in terms of the idealized language BFJ (BigFoot

Java) shown in Figure 3.5. A program P contains a sequence of class definitions D and

a collection of concurrent threads s1‖...‖sn. Each class definition D contains field and

method declarations. Each field declaration is simply a field name f . Each method

declaration m(x){s; return z} includes a unique method m, formal parameters x, and

a body s followed by a return of the local variable z. We omit static types and local
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P ∈ Program ::= D s1‖ . . . ‖sn
D ∈ Defn ::= class c { f meth }
meth ∈ Method ::= m(x) { s; return z }

s ∈ Stmt ::= skip | s; s | if be s s
| loop{ s; { if be break }; s }
| x = e | x← y | acq(y) | rel(y)
| x = new c | y.f = x | x = y.f
| x = new_array z | y[z] = x | x = y[z]
| x = y.m(z) | check(C)

e ∈ Expr ::= x | v | e = e | . . .
be ∈ BoolExpr ⊆ Expr
C ∈ PathSet ::= 2Path

p ∈ Path ::= x.f | x[r]
r ∈ StridedRange ::= e..e :e

c ∈ ClassName f ∈ FieldName
m ∈ MethodName x, y, z ∈ V ar

Figure 3.5: BFJ Syntax.

variable declarations, which are orthogonal to our formal development. We leave the

set of expressions e unspecified but assume it includes at least null, boolean values,

and local variables.

To facilitate our technical development, BFJ statements are in A-normal

form [52] and include a loop construct with the exit test in the middle of the loop

body. We motivate and describe the renaming operator x← y below.

BFJ includes the statement check(C) to explicitly check for races on each

heap location described by a path p ∈ C. A path of the form x.f describes an object

field, and path of the form x[r] describes array accesses, where r is a strided range of

the form “b..e :k” represents the set of indices {b+ ik : b ≤ b+ ik < e} to be checked.

We use b and b..e to abbreviate singleton (“b..(b + 1): 1”) and continuous (“b..e : 1”)

strided ranges, respectively. We defer distinguishing read checks and write checks until

Section 3.5.
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∅ • {b.f3}
if (i<0) {

{i < 0} • {b.f3, b.g3}
y = b.g;

{i < 0, b.g�} • {b.f3}
check(b.g);
{i < 0, b.g�, b.g

√
} • {b.f3}

} else {
{i ≥ 0} • {b.f3}

x = b.f;
{i ≥ 0, b.f�} • {b.f3}

}
∅ • {b.f3}

z = b.f;
{b.f�} • ∅

check(b.f);
{b.f�, b.f

√
} • ∅

1: i = 0;
{i = 0} • {b.f3, a[i]3}

2: loop {
{a[0..i]�} • {a[i]3, b.f3}

3: t = b.f;
{a[0..i]�, b.f�} • {a[i]3}

4: a[i] = t;
{a[0..i]�, a[i]�, b.f�} • ∅

5: i’←i;
{a[0..i’]�, a[i’]�, b.f�} • ∅

6: i = i’ + 1;
{i=i’+1, a[0..i’]�, a[i’]�, b.f�} • ∅

7: if (...) break;
{i=i’+1, a[0..i’]�, a[i’]�, b.f�} • {b.f3, a[i]3}

8: }
{i=i’+1, a[0..i’]�, a[i’]�, b.f�} • ∅

9: check(a[0..i],b.f);

Figure 3.6: Analysis contexts and check placements for BFJ method bodies containing
(a) an if statement and (b) a loop.

Analysis Contexts

The BigFoot analysis is intraprocedural, analyzing and inserting checks into

each method one at a time. Within each method, the analysis infers a context H •A

for each program point that describes the known history properties H and anticipated

properties A at that point:

Context ::= H•A H ⊆ History A ⊆ Anticipated

h ∈ History ::= be | p� | p
√

a ∈ Anticipated ::= p3

These properties capture the following notions:

• Boolean expressions be from, e.g., branch tests.

• Past accesses p�, meaning that path p was previously accessed, with no subsequent

release. The analysis must ensure there is a corresponding covering check.

• Past checks p
√
, meaning that p was previously checked within the method, with

no subsequent release.

• Anticipated accesses p3, meaning that the continuation after the program point

will access p (and therefore check p), with no intervening acquire.
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3.3.2 Check Placement Algorithm Overview

The BigFoot check placement algorithm defers checks as long as possible

and only inserts them into the program code when they cannot be further deferred

without risking false alarms or missed data races; thus checks are only placed before

synchronization operations and control flow merge points, and at the ends of methods

and threads.

To illustrate how BigFoot uses context information to place checks, we ex-

amine the analysis contexts in Figure 3.3. As in all BFJ code, the variables in this

snippet are local and cannot be changed by other threads, although they may point to

shared objects.

BigFoot adds a past access p� to the history whenever the code accesses p,

and before an acquire it inserts a check for any past access p� with no past covering

check p
√
, as at line 5. Since the acquire signifies the end of that past access’s covering

check range, placing the check any later would introduce the potential for missed data

races.

At each release, BigFoot removes each past access p� from the history. The

release signifies the end of the legitimate check range for those accesses, and placing

checks for them any later would introduce the potential for false alarms. “Forgetting” a

past access p� like this typically requires BigFoot to place a covering check before the

release, but there are two situations when no check is needed: (1) a covering check has

already occurred (p
√

is in the history), as at line 8; or (2) we anticipate a later access

to the same location, as at line 3. The anticipated later access (and hence its covering

check) will occur before leaving the original access’s covering check range at the next

acquire. Each check p
√

must also be forgotten at a release because that check does not

cover any subsequent access to p.

Anticipated access information flows backwards, and anticipated accesses in

an acquire’s post-history must be removed from its pre-history because checks covering

those future accesses will not cover accesses prior to the acquire.

38



We now examine the if statement in Figure 3.6(a). The merged context

∅•{b.f3} after the if describes properties holding after both branches, and it omits

past accesses occurring only on one branch. BigFoot must ensure a covering check

exists for any such “forgotten” past access. That necessitates checking b.g in the “then”

branch, after which it is permissible to simultaneously forget both the past access and

past check on b.g when leaving the if. In contrast, bz.f is anticipated at the end of

the “else” branch, and we skip checking it at that point because the later access will

have a check covering both accesses.

Figure 3.6(b) illustrates how loops are handled. To simplify our analysis, we

require that the target x of any assignment be a “fresh” variable not mentioned in the

preceding history, as the assignment would otherwise invalidate that history information.

The operation i’ ← i copies the value of i into a fresh variable i’ and replaces all

mentions of i in the history by i’, thereby ensuring i is afterwards fresh, that is, not

mentioned in the history. BigFoot inserts renaming statements on demand, but for

simplicity our presentation assumes any necessary renamings already exist.

BigFoot places all necessary checks at line 9 after the loop using the fol-

lowing technique. First, BigFoot synthesizes a loop invariant history that captures

the set of accesses that have been performed whenever execution reaches line 2. The

invariant for our example is the underlined history Hinv = {a[0..i]�}. On entry

to the loop, Hinv holds because i = 0, meaning no array elements have been ac-

cessed. On the loop back edge, Hinv is entailed by the loop body’s final history

{i=i’+1, a[0..i’]�, a[i’]�, b.f�}.

BigFoot defers checks until after the loop whenever possible. In this case,

the history at the loop exit on line 7 contains a[0..i’]� (the invariant rewritten due

to the renaming of i to i’ at line 5) and a[i’]� (the similarly rewritten access from

line 4). That history context captures all accesses that must be checked after the loop.

Given that i’ = i + 1, BigFoot places the single check of a[0..i] at line 9 to cover

all array accesses from inside the loop.
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BigFoot requires no global analysis to move the checks out of the loop because

all variables referenced in the code are local and cannot be changed by other methods

or threads.

This example also demonstrates that anticipation is crucial for moving some

checks out of loops. At the end of the loop on line 8, the history contains b.f�, but

the back edge returns to loop head on line 2, where b.f� is not in the history. This

would normally necessitate placing a check on b.f inside the loop before the back edge.

However, since b.f3 is anticipated at the loop head, we can avoid checking b.f inside

the loop and defer the check until after the loop.

Checks deferred until after a loop may never be executed if the loop diverges.

We currently assume all loops terminate but could alternatively include a termination

analysis and treat potentially non-terminating loops specially by, for example, periodi-

cally committing deferred checks inside the loop.

3.3.3 Check Placement Rules

We formalize BigFoot’s check placement algorithm as the judgment ` s :

H•A→ H ′•A′ defined in Figure 3.7. The contexts H•A and H ′•A′ are the pre- and post-

contexts of s. The analysis is a combined forward/backward analysis; history properties

flow forward from pre-history H to post-history H ′, while anticipated properties flow

backwards from post-anticipated A′ to pre-anticipated A.

For conciseness, we do not express check placement as a rewriting transfor-

mation on program syntax. Instead, we assume that a pre-transformation has already

inserted a check check(C) wherever one may be required. The goal of the check place-

ment algorithm is then to resolve each path set variable C into the appropriate set of

paths to be checked at that point. The rules for ` s : H•A→ H ′•A′ include antecedents

constraining each C appropriately.

Context Entailment and Ordering Our rules use the notation h ∈ H for the usual

syntactic notion of set membership for history properties. In addition, we introduce
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` s : H•A→ H′•A′ (We assume x 6∈ Vars(H) in the rules
modifying x)

[Skip] ` skip : H•A → H•A
[Acq] ` check(C); acq(x) : H•∅ → (H ∪ C

√
)•A where C = Checks(H, ∅)

[Rel] ` check(C); rel(x) : H•A → (H \ {_
√
,_�})•A where C = Checks(H,A)

[Assign] ` x = e : H•A[x := e] → (H ∪ {x = e})•A where x 6∈ Vars(e)
[Rename] ` x← y : H•A[x := y] → H[y := x]•A
[New] ` x = new c : H•(A \ x) → H•A
[A-New] ` x = new_array z : H•(A \ x) → H•A
[Write] ` y.f = x : H•(A ∪ {y.f3}) → (H ∪ {y.f�})•A
[A-Write] ` y[z] = x : H•(A ∪ {y[z]3}) → (H ∪ {y[z]�})•A
[Read] ` x = y.f : H•(A \ x ∪ {y.f3}) → (H ∪ {y.f�})•A
[A-Read] ` x = y[z] : H•(A \ x ∪ {y[z]3}) → (H ∪ {y[z]�})•A

[If]
H1 = Hin ∪ {be} ` s1 : H1•A1 → H′

1•Aout
H2 = Hin ∪ {¬be} ` s2 : H2•A2 → H′

2•Aout
C1 = Checks(H′

1, H
′
1 uH

′
2, Aout) C2 = Checks(H′

2, H
′
1 uH

′
2, Aout)

Ain = H1•A1 uH2•A2 Hout = (H′
1 ∪ C

√

1 ) u (H′
2 ∪ C

√

2 )
` if be {s1; check(C1)} {s2; check(C2)} : Hin•Ain → Hout•Aout

[Seq]
` s1 : H1•A1 → H2•A2
` s2 : H2•A2 → H3•A3
` s1; s2 : H1•A1 → H3•A3

[Loop] ` s : Hinv•Ain → H•Ainv
Hback = H ∪ {¬be} Hout = H ∪ {be}

Cin = Checks(Hin, Hinv, Ain) Hin ∪ C
√

in
w Hinv

Cback = Checks(Hback, Hinv, Ain) Hback ∪ C
√

back
w Hinv

Hback ` Ainv v Ain Hout ` Ainv v Aout
` check(Cin); loop{ s; { if be break }; check(Cback) } :

Hin•Ain → Hout•Aout

[Call]
C = Checks(H,H \ KillSetHistory(m), A)
H′ = (H ∪ C

√
) \ KillSetHistory(m)

A = A′ \ x \ KillSetAnticipated(m)
` check(C); x = y.m(z) : H•A→ H′•A′

[Stmt] ` s : ∅•A→ H•∅
C = Checks(H, ∅)
` s; check(C)

[Method]
` s

` m(x) { s; return z }

[Class]
∀ meth ∈ meth. ` meth
` class c { f meth }

[Program]
∀D ∈ D. ` D
∀i. ` si

` D s1‖...‖sn

Figure 3.7: Check Placement Rules.

a richer notion of history entailment (H ` h) that accounts for other information in

H. For example, if H = {z[i]�, i = j} then we can safely infer that H entails z[j]�,

written H ` z[j]�. Similarly, we introduce anticipated entailment (H •A ` a), as in

{i < 10}•{x[0..10]3} ` x[0..i]3. Our implementation uses Z3 [33] to reason about

entailment.

While history and anticipated sets could be ordered by the subset relation (⊆),

we employ a stronger ordering (v) based on entailment to achieve greater precision:

H1 v H2 iff ∀h ∈ H1. H2 ` h

H ` A1 v A2 iff ∀a ∈ A1. H•A2 ` a

These orderings generate corresponding meet operators, where the meet on anticipated
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sets additionally takes history sets to reason about entailment.

H1 u H2 = {h∈H1∪H2 : H1 ` a,H2 ` a}

H1•A1 u H2•A2 = {a∈A1∪A2 : H1•A1`a,H2•A2`a}

Analysis Rules The analysis rules are somewhat complex due to their bidirectional

nature and the subtle properties being captured. We present the technical details of our

core rules below, but subsequent sections do not assume an in depth understanding of

all of their details.

[Rel]: Since past accesses need to be checked before a release, this rule targets the

syntax

check(C); rel(x) and uses the function

Checks(H,A) = { p : p� ∈ H,H 6` p
√
, H•A 6` p3 }

to ensure that the path set C contains any path p that was accessed (p� ∈ H) but not

yet checked and is not anticipated. (If p is anticipated, then the future check on the

anticipated access serves as the covering check for the past access.)

The post-history removes (1) all prior checks (denoted _
√
) because these

checks do not cover accesses after the release and (2) all prior accesses (denoted _�)

because we are leaving the legitimate check range for them.

[Acq]: This rule for check(C); acq(x) ensures C contains any path p that was accessed

but not checked. The post-history contains the newly checked paths (where C
√

abbre-

viates {p
√
| p ∈ C}). The pre-anticipated set must be empty because any anticipated

access would need to occur before this acquire.

[Read]: This rule matches the syntax x = y.f . To simplify our analysis, we require

that the target of any assignment be to a “fresh” variable not mentioned in the pre-

history H, as the assignment would otherwise invalidate that history information. The
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[Read] rule adds past access y.f� to the post-history. The pre-anticipated paths become

A \ x ∪ {y.f3}, where A \ x removes all properties mentioning x from A.

[Rename]: As mentioned above, assignments can only target “fresh” variables not in

H, but in some cases, e.g. before a loop back edge, we may need to modify an existing

non-fresh variable y. We cannot simply remove y from the history, as that might remove

past accesses with pending checks, such as y.f�. Instead, the renaming operation x← y

copies the value of y into a fresh variable x, and replaces all mentions of y in the history

H by x, with the result that y is now “fresh” (not mentioned in the history) and can

be an assignment target. To illustrate this rule, consider the renaming i ← i’ on line

5 in Figure 3.6(b). The history prior to the renaming contains a[0..i]� and a[i]�.

After renaming, we have a[0..i’]� and a[i’]�, enabling us to continue deferring the

checks for those accesses.

[Write]: This rule for y.f = x adds the access y.f� to the post-history, and y.f3 to the

pre-anticipated set.

[Assign]: This rule for the assignment x = e adds the boolean expression x = e to the

post-history. We require x 6∈ Vars(e) to ensure the post-history does not refer to the

pre-value of x. The pre-anticipated set is computed from the A via the substitution

A[x := e], which replaces all occurrences of x with e in each p3 ∈ A. Since anticipated

paths are not closed under this substitution, we remove from the result any syntactically

ill-formed anticipated paths.

[If]: Conditionals may require checks to be placed at the end of each branch, and so this

rule targets the syntax if be {s1; check(C1)} {s2; check(C2)}. This rule first computes

the post-histories H ′1 and H ′2 and pre-anticipated sets A1 and A2 for s1 and s2. The

merged history H ′1 uH ′2 describes properties holding after both branches but may leave

out accesses that occurred only on one branch. We introduce the following variant of

the Checks function to compute the unanticipated unchecked past accesses in H that
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must be checked when H is approximated by H ′:

Checks(H,H ′, A) = { p : p� ∈ H,H ′ 6` p�, H 6` p
√
, H•A 6` p3 }

Thus, C1 = Checks(H ′1, H ′1 uH ′2, Aout) are those paths that must be checked at the end

of the “then” branch, and similarly for C2 on the “else” branch. The contexts at the

end of the branches are then H1 ∪ C
√

1 and H2 ∪ C
√

2 , and these are merged via u to

yield the final history Hout. The anticipated pre-context Ain is computed by merging

together the anticipated contexts preceding s1 and s2.

[Loop]: Loops similarly require checks on the two paths meeting at the loop head, and

this rule targets the form:

check(Cin); loop{ s; { if be break }; check(Cback) }

In this rule, Hin and Hback are the pre-histories of check(Cin) and check(Cback),

respectively, and Hinv is the loop-invariant history at the loop head. As in [If], the

Checks function uses these sets and Ain, the anticipated set at the loop head, to compute

Cin and Cback. The side conditions Hin ∪ C
√

in w Hinv and Hback ∪ C
√

back w Hinv ensure

that properties in Hinv are true on all paths into the loop head.

Note that Hinv, H, and Hback are defined via mutual recursion; they are com-

puted as part of a greatest fixed point computation over a method body. The com-

putation is seeded with an initial conjecture for Hinv that is then refined via a form

of predicate abstraction. (See Section 3.5.) An analogous anticipated set Ainv charac-

terizing what is anticipated prior to the loop exit test is used in the computation of

Ain.

[Call]: A method call may require checks prior to the call if the callee performs synchro-

nization (either directly or indirectly via a nested method call). Thus we match syntax

of the form check(C); x = y.m(z). The function KillSetHistory(m) denotes the set of
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history properties killed by the side effects of method m, and contains:

{ _�} if m acquires a lock

{ _�,_
√
} if m releases a lock

The function KillSetAnticipated(m) describes anticipated accesses killed by m. It is

{_3} if m acquires a lock and ∅ otherwise. Our implementation pre-computes

KillSetHistory(m) and KillSetAnticipated(m) using a separate whole program analysis.

Checks are added before the call for any unchecked accesses C that are killed by the

call, and the post-history H ′ is derived from the pre-history H and C by removing all

such killed properties.

Correctness Sketch We first formalize an operational semantics for BFJ that eval-

uates program P = D s1‖ . . . ‖sn via a sequence of states Σ0 →a1 Σ1 →a2 . . . →an Σn,

where Σ0 is an initial state for P and Σn is a final terminating state. This evaluation

sequence yields a trace α = a1.a2 . . . an describing the memory accesses, race checks,

and synchronization operations performed by P .

We also define a judgement D;α 
 Σ describing when a run-time state has

correct checks in the context of an execution history α. This judgement most notably

ensures that, for each thread t, the context H •A for thread t’s current program point

is consistent with Σ and α. This judgement entails the following: 1) Each expression

be ∈ H is true when evaluated by t in the current state Σ. 2) If p� ∈ H and p denotes

a memory l, there is an access to l in by t α with no later release. (Each p
√
∈ H must

have similar check). 3) Each check by t in α is legitimate for a preceding access. 4)

Each access to a location l by t in α is either covered by a check, or t is still in that

access’s covering check range and there is some path p denoting l such that either p� is

in H or p3 is in A.

The first two requirements show that the history context soundly approximates

program behavior. The third and fourth guarantee that each check performed by t is
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legitimate and that each access by t has either been covered by a check or will be covered

by deferred check performed later in the trace.

Provided ` P , the initial state satisfies the criteria for well-formed states (i.e.,

D; ε 
 Σ0), and we show via a preservation argument that it holds for each subsequent

state, including the last, i.e., D;α 
 Σn. Since each thread in Σn has terminated

and will perform no subsequent checks or accesses, the rules for (
) imply that α has

precise checks. Consequently, the checks in P are address-precise. That is, if ` P and

P generates a trace α, then for any address l, α has a data race on l if and only if it

has a check race on l.

3.4 Check Coalescing & Shadow Compression

Post-Analysis Path Coalescing In preparation for our shadow compression algo-

rithms, we perform one last coalescing step on each set of checks added to the program.

Specifically, for each check(C) statement, we divide the paths in C into equivalence

classes based on the path designator: that is, d1.f1 and d2.f2 are in the same class if

d1 and d2 refer to the same object in the check’s pre-history written H ` d1 = d2), and

similarly for array paths.

We then coalesce each group d1.f1, d2.f2, . . . , dn.fn sharing equivalent designa-

tors to the coalesced field path d1.f1/f2/ · · · /fn. We also coalesce each group of paths

d1[b1..e1 :k1], . . . , dn[bn..en :kn]

to one array path d1[b..e : k] such that the strided range “b..e : k” captures the exact

same set of indices as the n original strided ranges. This step necessitates solving a

collection of integer constraints over program expressions, but those constraints have a

form that cannot be handled by, e.g., Omega [80] or effectively solved directly via Z3.

Thus, to find a suitable b, e, and k, our implementation tries various combinations of

the bounds and step sizes from the original strided ranges. This combinatorial approach
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can be expensive if there are a large number of strided ranges, but we have found it

effective in practice. If a coalesced path cannot be found, we simply keep the original

set of paths. We could alternatively try to divide the set into two or more coalescible

subsets, but this provided little benefit in practice.

Shadow Compression A precise dynamic race detector typically maintains a distinct

shadow location for each object field or array element. Thus, an object pt with three

fields requires three shadow locations and check(pt.x/y/z) performs three shadow-

location operations. Similarly, an array a of n elements requires n shadow locations,

and check(a[0..n]) performs n shadow-location operations.

However, check coalescing enables us to identify groups of shadow locations

that can be compressed into a single shadow location at run time with no loss in preci-

sion. Moreover, a coalesced check covering a compressible group only requires a single

shadow-location operation, yielding substantial performance benefits. Compressible lo-

cations can be identified statically or dynamically. We have found the combination of

static compression for object fields and dynamic compression for array elements yields

the best performance.

Static Field Compression We identify fields of a class that are compressible via a

static shadow proxy analysis [49]. Given a class with fields x and y, field x is a proxy

for y if every check check(p.· · · /y/· · · ) also checks p.x. In this situation, any trace

exhibiting a race on p.y will also have a race on p.x. Hence, we can compress the

shadow locations for x and y into a single location while still being able to distinguish

race-free executions from those with races.2 Identifying field proxies requires a single

pass over all checks.
2While this optimization guarantees that we precisely identify race-free traces, we may not identify

all memory locations with races since a race on x may or may not imply a race on y. This subtlety goes
away if we consider only symmetric proxy relations, e.g.when y is also a proxy for x.
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Dynamic Array Compression We could express similar proxy relationships for ar-

ray elements. For example, a[0] could be a proxy for all array entries a[0..n] if all

checks on the array all have the form check(a[0..n]). Similarly a[i%2] could be the

proxy for each a[i] if all checks have the form check(a[0..n:2]) or

check(a[1..n:2]). RedCard [49] used this approach, but its static array proxy anal-

ysis failed to scale and was too imprecise to capture many proxy relationships, as we

demonstrate in Section 3.6.

BigFoot instead makes array shadow compression choices dynamically using

an extension of the approach introduced in the SlimState checker [103]. Specifically,

BigFoot augments static array check coalescing with a complementary dynamic coa-

lescing technique based on array footprints. For each array a, the BigFoot run time

maintains a per-thread footprint of which indices must be checked prior to that thread’s

next synchronization operation. When a thread t performs check(a[b..e:k]), Big-

Foot adds the strided range b..e:k to t’s footprint for a. In this way, many individual

check operations that were not coalesced statically may be coalesced dynamically into

a single, large footprint. At thread t’s next synchronization point, its footprint for a

is “committed” and the necessary shadow-location operations are performed to verify

race freedom.

BigFoot initially compresses the shadow state for the entire array into a

single shadow location. It then adaptively refines that representation whenever it must

commit a footprint that is not consistent with the array’s current representation. As

in SlimState, BigFoot supports compression modes matching common patterns of

array accesses, including block-based and stride-based patterns. SlimState processes

every individual array access at run time to build its dynamic footprints. By statically

coalescing checks, BigFoot eliminates much of that overhead.
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3.5 Implementation

We have implemented our analysis in the BigFoot checker for Java. BigFoot

consists of a static component (StaticBF) and a dynamic component (DynamicBF).

StaticBF reads in a bytecode program and a list of classes and methods to transform,

and it outputs a version of the program with explicit race checks for all object and

array accesses in the specified methods. DynamicBF is the complementary dynamic

race detector that reads in the instrumented program, runs it, and reports any races

observed.

Extending the BFJ analysis to the full Java language is straightforward, and

we describe the most important aspects of StaticBF below. BigFoot handles all basic

synchronization operations present in Java, including locks, volatile variables, fork/join,

and wait/notify, as described in [47].

Alias Expressions and Precision StaticBF augments BFJ’s set of boolean ex-

pression be with heap alias expressions of the form x = y.f and x = y[z], which enable

us to reason about aliasing when deciding entailment. Those expressions are added to

the history on field/array reads and are retained as long as they are valid under the as-

sumption that the target is race free. If an alias expression is invalidated by a data race

at run time, we may miss reporting some subsequent data races (because race checks

were not placed in the necessary positions), but we will always detect the initial race.

acq(lock);

x = a.f; // x = a.f

s = x.g;

y = a.f; // y = a.f

t = y.g;

check (a.f, x.g);

rel(lock);

For example, consider the code fragment to the

right, which includes the alias expressions recorded by Stat-

icBF. Those alias expressions enable StaticBF to conclude

x = y at the check operation, meaning that the check on x.g

covers the access to y.g. Thus, no check on y.g is inserted.

However, those alias assumptions could be violated by a racy

write to a.f in between the two reads, and thus the race on

a.f could effectively hide a race on y.g.
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While utlizing local alias expressions enables Stat-

icBF to better optimize check placement, it means that, in

theory, BigFoot is trace precise but not address precise. In practice, however, Big-

Foot was address-precise for all of our benchmark runs, which we verified via an addi-

tional dynamic analysis that checks that each observed execution trace performs precise

checks (in the sense of Section 3.2).

3.5.1 StaticBF

StaticBF is built on top of the WALA analysis framework [101]. WALA

represents methods as CFGs over SSA instructions and analyzes all methods in a call

graph constructed using a 0-CFA analysis. To ensure method CFGs are amenable to

our analysis, StaticBF performs an initial pass over the target to (1) rewrite each

loop as an if statement containing a do-while loop matching BFJ’s syntax, and (2)

eliminate all critical edges from the CFGs (see, e.g., [9]). We use Soot [97] for this pass.

We also precompute KillSetHistory and KillSetAnticipated via a simple interprocedural

dataflow analysis. StaticBF then inserts checks into each method using a method-local

dataflow analysis.

The initial context for each program point is {h : h ∈ History}•{a : a ∈

Anticipated}, and the analysis computes the greatest fixed point solution for those

contexts according to the rules in Figure 3.7. To simplify the implementation, we

compute context properties via separate passes for (1) boolean and alias expressions,

(2) past accesses, (3) anticipated accesses, and finally (4) past checks and the set C

for each check(C). All passes are forward analyses, except for the anticipated accesses

pass.

StaticBF handles SSA φ-functions as they were handled in RedCard [49].

Also as in RedCard, StaticBF tracks extended paths containing multiple field/array

references (as in a[i].f or b.f.g), which are necessary for maintaining precision when

merging contexts encoding equivalent aliasing facts via different local variables. We
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implement the entailment relations via the Z3 SMT Solver [33].

After applying the final coalescing step and static field proxy analysis described

in Section 3.4, StaticBF generates a new version of the target code with the necessary

checks inserted. These checks take the form of method calls into the DynamicBF run

time. Paths in check statements refer to SSA variables and variables introduced via

the [Rename] rule, and not the stack slots and locals present in the original bytecode.

Thus, StaticBF inserts additional locals and load/store instructions to reify them

in the instrumented target. Our relatively naive algorithm may introduce extraneous

memory loads/stores, and we apply the Soot optimizer in a post-transformation pass to

eliminate them.

Distinguishing Reads andWrites Up to this point, we have not distinguished reads

and writes. However, StaticBF must do so because precise dynamic race detectors

treat them differently. In particular, two concurrent accesses are considered conflicting

only when at least one is a write.

To account for this, we extend our notions of legitimate and covering checks.

A write check is only legitimate for a write access, but a read check is legitimate for

both write and read accesses. A write check can cover write or read accesses, but a read

check can only cover read accesses. In addition, contexts record whether each p� and

p3 is a read or write access, and whether each p
√
is a read or write check. The analysis

rules and coalescing operations are also extended appropriately.

Loop Invariants StaticBF infers the loop invariant Hinv for rule [Loop] via a form

of Cartesian predicate abstraction [56, 51]. Specifically, StaticBF identifies the loop’s

linear induction variables and trip count [104, 54] and then builds an initial set Hheuristic

of boolean constraints and past accesses consistent with that information. Since this

algorithm does not reason precisely about synchronization, function calls, and various

other bytecode features, it may produce some incorrect properties. Thus, StaticBF

repeatedly analyzes the loop body to infer the maximal Hinv ⊆ Hheuristic that is valid
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loop invariant as part of its dataflow analysis passes. StaticBF similarly infers the

anticipated invariant Ainv by constructing an initial Aheuristic and computing the max-

imal valid Ainv ⊆ Aheuristic. If no induction variables can be identified, then Aheuristic

is the empty set, and no loop invariant are inferred. Irreducible loops and complex

computations may be problematic for our algorithm, but it is quite effective in practice.

Static Fields In the JVM, a thread’s first access to a static field may synchronize

with the declaring class’s static initializer to ensure proper behavior [68]. StaticBF

provides a command line flag to treat static field accesses as potential synchronization

so that checks will not be deferred across them. We use this flag for several benchmarks

where this matters. (Other instructions that may synchronize with static initializers,

e.g. type casts, are handled similarly.)

Exceptions StaticBF reasons about control paths for checked exceptions [55], but

assumes unchecked exceptions, such as NullPointerExceptions, are errors in the target

program and guarantees precision only for error-free traces. This is an artifact of our

current implementation and not a fundamental limitation. Unchecked exceptions could

be fully handled via a more sophisticated code translation scheme inside StaticBF,

but given the complexity of the resulting code, a better approach would be to integrate

parts of the analysis into the JVM’s exception mechanism. Our current treatment of

exceptions did not lead to missed race checks in any of our benchmark experiments.

3.5.2 DynamicBF

We built our complementary DynamicBF dynamic analysis in the Road-

Runner framework [48]. Dynamic footprinting and array shadow compression are

implemented as in the earlier SlimState checker and we use FastTrack’s adaptive

epoch representation [47] for shadow locations. BigFoot follows RoadRunner’s stan-

dard treatment of libraries: fields of Java’s core library classes are not checked for

races, and synchronization operations internal to those libraries are assumed not to be
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Figure 3.8: Check Ratio for FastTrack and BigFoot, and BigFoot’s overhead
relative to the FastTrack overhead.

used to protect any of the target’s data and are ignored. However, several key library

methods from java.lang.Object and java.lang.Thread, such as Object.notify and

Thread.start, are treated specially as synchronizing operations. These assumptions

are shared by all checkers we evaluate, and also included in StaticBF. Their violation

may impact precision.

3.6 Validation

We validate BigFoot’s performance by comparing it against FastTrack [47],

SlimState [103], RedCard [49], and SlimCard (Section 3.6.2) on the JavaGrande [59]

and DaCapo [12] benchmark suites. To facilitate comparison the detectors share as much

common implementation as possible.

We configured the JavaGrande programs to use their largest data sizes and

16 worker threads. We also fixed racy barrier implementations in several of them. We

configured the DaCapo benchmarks to use their default sizes, but we exclude tradebeans

and eclipse because of incompatibilities with our underlying framework and other known

issues [103]. We additionally exclude several specific methods from the other programs

that RoadRunner cannot properly instrument because the resulting code would exceed

a JVM limit on method size. Several DaCapo programs use reflection heavily. To
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facilitate building the call graph for those programs in StaticBF and RedCard, we

used a modified version of Tamiflex [17] to eliminate reflection.

Since RoadRunner does not support the specialized class loading features

used by the DaCapo test harness, we implemented a simplified version of that harness.

It runs a target’s workload several times in a warm up phase and then measures the

running time for 10 iterations of the workload. We used that harness for the JavaGrande

programs as well. We report the means of ten such trials.

We verified all race detection tools examined reported the same races (modulo

variations due scheduling) manually. All experiments were performed on a 2.4GHz

16-core AMD Opteron processor with 64GB running Ubuntu Linux and Oracle’s Java

HotSpot 64-bit Server VM version 1.8.

3.6.1 StaticBF

BigFoot took 0.16 seconds per method on average to process the benchmark

programs, as shown in Table 3.1. With careful caching of SMT solver results, only

about 10% of this time was spent solving Z3 queries. Together, call graph construc-

tion for computing method kill sets and reasoning about heap and boolean constraints

accounted for more than half of the running time in most cases. We have focused on

implementation simplicity and high precision. More careful tuning would likely lead to

significant improvements.

3.6.2 DynamicBF Time Overhead

Figure 3.8 shows, for each program, how many race checks on shadow locations

FastTrack (left graph) and BigFoot (middle graph) perform relative to the number

of heap accesses. FastTrack performs a check on each access, meaning its check ratio

( # Checks
# Accesses) is always 1. For BigFoot, the average check ratio is 0.43, and much smaller

for some programs, particularly those in which traversals over large arrays are covered

by a single coalesced check. BigFoot’s check ratio is also substantially lower than that
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of RedCard (0.73), SlimState (1.0), and SlimCard (0.76).

Table 3.1 shows the base running time for each program and the overhead of

each checker. Overhead is the additional time beyond the base time necessary to check

a program:

CheckerOverhead = CheckerTime− BaseTime

Comparison to FastTrack BigFoot is significantly faster than the other detectors.

As shown in the last column of Table 3.1, BigFoot incurs only 39% of the overhead

of FastTrack. The right-most graph in Figure 3.8 shows this improvement visually.

BigFoot is most effective on programs exhibiting highly-structured access patterns to

large data sets, and thus low check ratios, such as crypt, moldyn, montecarlo, and

sunflow. Moving checks out of loops and coalescing them accounts for much of this

improvement. BigFoot is also effective on programs with many redundant checks that

can be eliminated altogether, such as sparse.

It is interesting to note that several programs do not follow the expected trend.

For series, the FastTrack overhead of only 1% is mostly due to internal Road-

Runner bookkeeping, which leaves little opportunity for improvement. The lufact

benchmark performs a triangular array computation whose array accesses are readily

coalesced by BigFoot, resulting in a small check ratio. However, that triangular pat-

tern is not amenable to our online array state compression algorithm, meaning that the

array’s shadow representation becomes fine-grained and each coalesced check induces

many shadow location operations.

In other benchmarks, such as h2 and avrora, bookkeeping for synchronization

operations accounts for a greater fraction of checking overhead, diminishing the benefit

of optimizing memory operations with BigFoot. The degraded performance for tomcat

appears to be caused by higher contention on interal RoadRunner data structures

when using BigFoot.

Field compression via proxies accounted for about 5% of the savings in general,

but over 50% of the savings in raytracer and sunflow.
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StaticBF Dynamic Analyses

Methods
Optimized
(count)

Time
Method
(sec)

BigFoot
Check
Ratio

Base
Time
(sec)

Time Overhead
(x Base Time)

Time Overhead vs. FT
Program

(
RC
FT

) (
SS
FT

)(
SC
FT

)(
BF
FT

)
FT RC SS SC BF

crypt 148 0.67 0.00000028 0.39 96.21 62.41 16.87 16.11 0.07 (0.65) (0.18) (0.17) (0.01)
series 144 0.10 0.000042 119.39 0.01 0.01 0.01 0.01 0.01 (1.00) (1.00) (1.00) (1.00)
lufact 168 0.15 0.0022 0.68 71.67 74.31 70.53 74.08 39.53 (1.04) (0.98) (1.03) (0.55)
moldyn 172 0.27 0.077 4.67 27.56 8.73 27.18 6.58 2.72 (0.32) (0.99) (0.24) (0.10)
montecarlo 480 0.05 0.085 2.23 7.38 6.81 2.73 2.02 0.08 (0.92) (0.37) (0.27) (0.01)
sparse 140 0.20 0.14 1.27 26.86 22.57 30.78 27.20 6.68 (0.84) (1.15) (1.01) (0.25)
sor 136 0.24 0.25 0.84 13.37 13.03 15.39 13.85 10.73 (0.97) (1.15) (1.04) (0.80)
batik 20,140 0.16 0.29 1.27 3.96 3.92† 4.07 4.06 2.26 (0.99) (1.03) (1.03) (0.57)
raytracer 308 0.07 0.32 1.84 13.46 6.46 12.64 7.72 6.37 (0.48) (0.94) (0.57) (0.47)
tomcat 27,940 0.12 0.50 0.81 2.05 1.49† 2.22 1.56 2.43 (0.73) (1.08) (0.76) (1.19)
sunflow 3,088 0.21 0.52 1.44 25.94 17.13 26.12 20.50 15.14 (0.66) (1.01) (0.79) (0.58)
luindex 4,728 0.07 0.67 0.54 16.35 15.75 19.00 17.64 11.34 (0.96) (1.16) (1.08) (0.69)
pmd 18,604 0.18 0.69 0.93 3.08 2.98† 2.75 2.65 2.38 (0.97) (0.89) (0.86) (0.77)
fop 24,756 0.15 0.73 0.44 6.51 5.12† 5.65 5.54 5.01 (0.79) (0.87) (0.85) (0.77)
lusearch 3,544 0.07 0.74 0.65 19.45 22.79 7.79 7.24 6.57 (1.17) (0.40) (0.37) (0.34)
avrora 9,936 0.04 0.75 7.82 1.45 1.34† 1.46 1.38 1.24 (0.92) (1.01) (0.95) (0.86)
jython 81,140 0.11 0.78 4.97 9.31 9.32† 8.77 8.58 8.28 (1.0) (0.94) (0.92) (0.89)
xalan 13,420 0.05 0.80 0.86 5.68 5.63† 5.62 5.43 4.64 (0.99) (0.99) (0.96) (0.82)
h2 16,748 0.08 0.81 22.60 3.23 3.08† 3.20 3.23 3.07 (0.95) (0.99) (1.00) (0.95)

Mean 0.16 0.43 7.26 6.00 6.03 5.05 2.47 (0.83) (0.83) (0.70) (0.39)

Table 3.1: Checker performance. Mean StaticBF time and Check Ratios are arith-
metic means. Mean checker overheads for FastTrack (FT), RedCard (RC), Slim-
State (SS), SlimCard (SC), and BigFoot (BF) are geometric means. The † symbol
indicates that RedCard’s proxy analysis failed to terminate within 4 hours. We turned
off that analysis in those cases.

Comparison to RedCard RedCard eliminates one form of redundant check [49],

namely checks on accesses where the current thread has already accessed (and checked)

that location within the same release-free span. The BigFoot check placement algo-

rithm is able to eliminate other forms of redundancy by both reasoning about anticipated

accesses and moving checks. For example, BigFoot can eliminate more redundant

checks and move checks out of loops, as shown in Figure 3.6.

RedCard also performs static proxy analysis, but the array component cru-

cially depends upon globally-computed allocation-site points-to information. As such,

RedCard’s static analysis fails to terminate within four hours on many benchmarks,

as indicated by the † symbol in Table 3.1. We use RedCard’s redundancy analysis

without proxies for those programs. Moreover, imprecisions in the proxy analysis limit

its effectiveness even on small programs.

Overall, the check ratio and overhead reduction for RedCard were 0.73 and

17%, respectively. In contrast, the check ratio and overhead reduction for BigFoot were

were 0.43 and 61%. BigFoot’s ability to move checks out of loops is key to achieving
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Base
Mem
(MB)

Space Overhead

Program FT
Base

(
RC
FT

) (
SS
FT

) (
SC
FT

) (
BF
FT

)
crypt 193.76 26.27 (0.97) (0.04) (0.04) (0.04)
series 22.01 4.45 (1.02) (0.58) (0.59) (0.57)
lufact 32.15 10.16 (1.00) (1.10) (1.10) (1.11)
moldyn 16.20 5.44 (0.82) (0.91) (0.80) (0.82)
montecarlo 622.83 3.67 (1.00) (0.30) (0.30) (0.30)
sparse 98.11 5.64 (1.01) (1.44) (1.05) (0.79)
sor 32.12 5.11 (1.00) (1.40) (1.40) (2.48)
batik 44.74 3.78 (0.99) (0.75) (0.95) (1.00)
raytracer 16.42 3.67 (0.96) (0.60) (0.57) (0.60)
tomcat 19.59 4.81 (0.99) (0.98) (0.99) (1.14)
sunflow 10.42 9.50 (0.91) (0.93) (0.88) (0.86)
luindex 6.15 16.3 (0.98) (0.96) (0.96) (0.52)
pmd 30.24 6.02 (1.05) (1.02) (1.03) (1.09)
fop 28.07 6.35 (1.00) (0.98) (0.97) (0.99)
lusearch 12.04 7.00 (1.00) (0.57) (0.57) (0.57)
avrora 2.09 15.22 (1.01) (1.01) (1.01) (1.01)
jython 24.06 5.97 (1.03) (0.96) (0.96) (1.02)
xalan 8.20 11.00 (1.00) (0.84) (0.84) (0.82)
h2 259.71 3.90 (1.06) (1.10) (1.10) (0.93)
Geo Mean 6.84 (0.99) (0.73) (0.74) (0.72)

Table 3.2: Checker space overhead relative to FastTrack.

this improvement, particularly when coupled with dynamic array shadow compression.

Comparison to SlimState SlimState introduced the dynamic array compression

scheme we use in BigFoot, but its check ratio is 1 because it processes every access

at run time. BigFoot offers two crucial improvements: 1) BigFoot eliminates many

redundant checks. 2) While SlimState must process every individual array access

at run time to build its footprints, BigFoot statically coalesces array checks where

possible, thereby reducing the amount of run-time footprint processing and eliminating

much of SlimState’s dynamic footprint construction overhead. BigFoot’s overhead

is less than half of SlimState’s as a result. Field compression, and moving field checks

out of loops, contributes to the performance savings as well.
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Comparison to SlimCard SlimCard combines RedCard’s static check elimina-

tion and field proxy analysis with SlimState’s dynamic array state compression. We

did not include static proxy analysis for arrays in SlimCard because integrating the

run-time bookkeeping necessary to support static array proxies [49] into SlimState’s

analysis led to worse performance. As a result, SlimCard has an overall check ratio of

76%, which is a few percent higher than RedCard’s ratio (73%).

As expected, the combined analysis improves upon SlimState by eliminat-

ing many redundant checks and incurs only 70% of FastTrack’s overhead. However,

SlimCard still experiences the same overheads related to the construction of footprints

at run time as SlimState. Moreover, it cannot move checks out of loops and coalesce

them, which are crucial for achieving BigFoot’s much better performance. Slim-

Card’s memory overhead did not differ significantly from SlimState’s or BigFoot’s.

3.6.3 DynamicBF Memory Overhead

While we have focused primarily on running time, we also report the target

program’s memory requirements, as well as the overheads for each checker in Table 3.2.

Following the methodology of earlier work [103], we measure memory as the smallest

heap permitting successful execution of the target program, which we find by iteratively

shrinking the JVM’s maximum heap until the program crashes or fails to terminate

within thrice the time to run with a 64 GB heap.

BigFoot, SlimState, and SlimCard reduce space overhead by about 26–

28% when compared to FastTrack. These three tools utilize the same dynamic array

compression scheme. SlimCard and BigFoot additionally uses field compression, but

while field compression improved time, it did not lead to sizable space reductions. In-

spection of the programs for which field compression made the greatest speed difference

revealed that there were never sufficiently many objects with compressed fields alive at

the same time to sizably impact overall space needs.

The limited impact of static compression on space can also be seen by com-

58



paring the space overhead of RedCard to FastTrack. The only fundamental space

difference is due to RedCard’s use of compression for field and array proxies, but again,

there is little overall impact.

3.7 Other Related Work

In addition to RedCard and SlimState, described earlier, much work has

focused on improving the performance of dynamic race detection. Many precise tools,

such as DJIT+ [79], use vector clocks [70], which are expensive. FastTrack introduced

epochs [49] to reduce these overheads. A common approach for further reducing overhead

is to use a single shadow location for whole arrays and objects [99, 75, 26, 79, 47, 20],

although this may generate false alarms, motivating additional technology to see if a

reported warning reflects a real race [23, 41].

Another approach for reducing overheads is to use sampling [19, 42, 39], again

with some loss of soundness. Eraser verifies race-freedom for data that is thread-local,

read-shared, or lock protected [87], and has been extended to produce fewer false alarms

[75, 41, 23, 90, 106].

Several dynamic checkers defer the processing of accesses. RecPlay [85] records

all locations accessed within each synchronization-free region and then verifies that

concurrent regions access disjoint locations during replay. DRD [36] and ThreadSani-

tizer [89] similarly buffer accesses but do not infer patterns or compress shadow state.

Similar buffering is also common in transactional memory systems [93]. Other work [94]

uses a single shadow location for contiguous memory locations accessed within the same

critical sections. However, only the first two critical sections accessing a location are

considered, resulting in potential false alarms if later accesses are not correlated.

Many static analyses for identifying races have also been explored, including

type-based systems [2, 8, 57], model checking [25, 107, 71] and dataflow analyses [41],

as well as whole-program analyses [72, 100]. Many of the mentioned static analyses

are unsound by design or unsound in their implementations to reduce the number of
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spurious warnings (see, e.g., [2, 41]). Their focus on identifying race-free accesses rather

than redundant checks also lead to different design choices in terms of precision and

scalability.

Gross et al. present a global static analysis to improve the precision and

performance of a LockSet-based detector [98]. It is primarily designed to identify objects

on which no races can occur and requires global aliasing information, as well as a static

approximation of the happens-before graph for the whole program. Moreover, their

reliance on an imprecise race detector leads their system to both miss races and report

spurious warnings. They also do not support arrays. Choi et al. present a different

global analysis for removing run-time race checks for accesses guaranteed to be race-

free [29]. Their analysis eliminates some redundant checks via a simple intra-procedural

forward analysis.

Properties related to accesses or checks within release-free spans have been

used in other settings. For example, the IFRit race detector uses similar insights in

its notion of interference-free regions [39], which were originally designed to facilitate

compiler optimizations for race-free programs [38]. The IFRit race detector monitors

execution and reports a data race when multiple concurrently executing interference-

free regions access the same variable. IFRit prioritizes performance over precision,

and so may possibly miss races (but nicely guarantees no false alarms). IFRit uses a

static analysis to insert and minimize monitor start/stop calls, which is analogous to

BigFoot’s check insertion algorithm. BigFoot’s approach necessitates a more complex

static analysis to ensure sufficient precision to perform check motion, and so is at a

different point in the design space.

3.8 Summary

BigFoot leverages our theory of precise check placement to substantially im-

prove the efficiency of dynamic data race detection. This work may enable more wide-

spread use of data race detectors, and it opens the door for further studies on statically
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optimizing dynamic concurrency analyses.

One interesting direction is to extend our techniques to compress memory

locations across multiple arrays or objects, which could yield further time and space

savings. Another important avenue for future work is to improve StaticBF’s perfor-

mance by adapting it to be modular or incremental and by tailoring its data structures

and decision procedures to the most common cases encountered in practice.
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3.9 Proof of Correctness

We next prove that the check placement algorithm is correct. In particular it

inserts checks so that any generated trace has precise checks, and so has a data race if

and only if there is a check race detected by DynamicBF.

• Section 3.9.1 formalizes the operational semantics of BFJ.

• Section 3.9.2 shows that a trace with precise checks has a data race if and only if

it has a check race.

• Section 3.9.3 formalizes a GoodChecks judgment that satisfies preservation.

• Section 3.9.4 shows that the CheckPlacement algorithm inserts checks that

satisfy

GoodChecks.

• Section 3.9.5 shows that the programs satisfying the GoodChecks judgment

generate traces with precise checks.

• Section 3.9.6 shows that correctness of BigFoot.
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3.9.1 Semantics

We specify the operational semantics of BFJ in Figure 3.9. This semantics

evaluates a program by stepping through a sequence of states. Each state Σ consists

of two components: a heap S and a collection of threads T . The heap maps locations

to values, where each location ρ.f or ρ[i] combines an address ρ with a field name f or

array index i. The heap also maps each object address ρ to the thread identifier (or

Tid) of the thread holding the object’s lock (or ⊥ if it is not held). The thread set T

maps each thread identifier t ∈ Tid to a thread state 〈σ, s〉 that combines a statement

s with a (thread-local) store σ mapping variables in s to values.

In the context of a set of definitions D, the relation

D ` S · 〈σ, s〉 −→a S′ · 〈σ′, s′〉

models the effect of a single step by thread 〈σ, s〉 on the heap S and the thread’s local

state. The Action a captures the heap operation performed by the step. For example, if

thread t accesses location ρ.f , a would be t :acc(ρ.f). The special action t :ε indicates

that a step has no heap effect.

Figure 3.9 defines the evaluation rules for each statement. In these rules, the

heap S[ρ.f := v] is identical to S except that it maps the location ρ.f to the value

v. Similar update operations are used on the other state components. For example,

S[ρ := t] updates S to indicate that the lock for the object at location ρ is held by t.

The term σ(e) evaluates an expression e using local store σ for the values of variables.

The rule [E-ChkSet] unrolls a check on a set of paths to separate checks on

each path. The rule [E-ChkIndex] checks a strided range of array indices by explicitly

checking the first index and generating a new check for the remainder of the strided

range. Rule [E-ChkEmpty] handles empty strided array indices.

To invoke a method x = y.m(z), we first look up the methodm in the program

definitions. We then construct a substitution θ that maps 1) m’s local variables, which
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are the free variables of s, other than the return result variable r, to fresh names, 2)

the parameters z′ to the arguments z, 3) the self-reference this to y, and 4) the return

variable r to x. If s is the method body of m, θ(s) may be inserted into the evaluation

context surrounding the call without variable capture. Moreover, the result of the call

is placed in x, as expected.

The relation D ` Σ →a Σ′ describes a single step of multithreaded program

execution. That rule selects an arbitrary thread t to take a step and updates the global

state Σ accordingly. As above, a captures the memory or synchronization operation

performed by the step. We use the notation t : _ to represent an arbitrary action by

thread t.

The relation D ` Σ −→α Σ denotes the reflexive-transitive closure of −→a,

where the trace α is a sequence of actions a1.a2 . . . an. Given this definition, D ` Σ→a

Σ′ models the arbitrary interleaving of the various threads of a multithreaded program

D.

For a program D s1‖ . . . ‖sn, its initial state is Σ0 = S0 · T0, where

• S0 maps all locations to null and all addresses to ⊥; and

• T0 maps each thread t ∈ 1..n to 〈σ, st〉, where σ assigns a distinct global address to

each free variable in s1..n. Thus, free variables in s1..n implicitly denote potentially

thread-shared objects.
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3.9.2 Data Races and Check Races

The happens-before relation <α for a trace α is the smallest transitively-closed

relation over the operations in α such that the relation a <α b holds whenever a occurs

before b in α and one of the following holds:

• Program order: The two operations performed by the same thread.

• Locking: The two operations acquire or release the same lock.

We introduce the following definitions:

• Two operations are concurrent if they are not ordered by happens before.

• Two accesses conflict if they access the same location.

• Two checks conflict if they check the same location.

• A trace has a data race on a location l if it has a pair of conflicting concurrent

accesses to l.

• A trace has a check race on a location l if it has a pair of conflicting concurrent

checks on l.

• A check c = t :check(l) covers an access a = t :acc(l) if:

– c precedes a with no intervening t :rel(l).

– c succeeds a with no intervening t :acq(l).

• A check c = t :check(l) is legitimate for an access a = t :acc(l) if:

– c precedes a with no intervening t :acq(l).

– c succeeds a with no intervening t :rel(l).

• A trace α has precise checks if each access has a covering check and each check is

legitimate for some access.
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We start with two technical lemmas that show how the notions of covering and

legitimate checks constrain the happens-before relation for a trace.

Lemma 1. If a trace α has an access a with a covering check c then for any action d

by a different thread in α we have that:

1. c <α d⇒ a <α d

2. d <α c⇒ d <α a

Proof. The check c can become either before or after the access in α.

• Case Before:

α = α1.c.α2.a.α3, where α2 has no releases by thread t since check c covers a.

Program order then shows that d <α c⇒ d <α a.

Since α2 does not contain a release by thread t, c <α d⇒ a <α d.

• Case After:

α = α1.a.α2.c.α3, where α2 has no acquires by t since check c covers a

By program order c <α d⇒ a <α d.

Since α2 does not contain an acquire by thread t, d <α c⇒ d <α a.

Lemma 2. If a trace α has a check c that is legitimate for an access a then for any

action d by a different thread in α we have:

1. a <α d⇒ c <α d

2. d <α a⇒ d <α c

Proof. The proof is similar to the above lemma.
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We next show that the notion of covering checks guarantees no missed races

(false negatives), and the notion of legitimate checks guarantees no false alarms (false

positives).

Lemma 3. Let l be a location and suppose each access to l in α has a covering check.

If α has no check race on l then α has no data race on l.

Proof. Let t :acc(l) and u : acc(l) be two accesses in α whose covering checks are not

racy. Without loss of generality we assume t : check(l) <α u : check(l). By Lemma

1(1), t : acc(l) <α u : check(l), and hence by Lemma 1(2) t : acc(l) <α u : acc(l), so

the accesses are race-free.

Lemma 4. Let l be a location and suppose each check in α on l is legitimate for some

access. If α has a check race on l then α has a data race on l.

Proof. Suppose α has two race-free accesses t :acc(l) and u :acc(l), where t :acc(l) <α

u : acc(l). Each access has a covering check t : check(l) and u : check(l). By Lemma

2(1), t :check(l) <α u :acc(l). By Lemma 2(2), t :check(l) <α u :check(l).

By combining these ideas of covering and legitimate checks, we prove that a

trace with precise checks has a check race if and only if the trace has a data race (and

therefore running a dynamic race detector with these checks will report a race if and

only if there is a data race).

Theorem 3.9.1. Suppose α has precise checks. Then for all locations l, α has a check

race on l if and only if α has a data race on l.

Proof. By the application of Lemma 3 and 4.
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3.9.3 GoodChecks Judgment

Studies of type systems typically separate the problems of type inference and

type checking. In our setting, we also separate the problems of inferring where to place

checks and verifying that check placement is precise. BigFoot’s check placement judg-

ment shown in Figure 3.7 performs the former; the “good checks" judgment presented

in this section performs the later. We refer to those judgments as CheckPlacement

and GoodChecks, respectively.

The GoodChecks rules shown in Figure 3.10 include a subsumption rule

[CC-Sub], and so it is not a syntax-directed algorithm like CheckPlacement; instead

it is a mathematical definition designed to satisfy the usual preservation property plus

other correctness properties discussed below regarding precise race detection.

The CheckPlacement algorithm uses both a history context H and antic-

ipated context A to represent the forwards and backwards analysis. GoodChecks

combines these two to form a single context Π = H ∪ A. We define the entailment

relation Π ` h from a context Π = H ∪ A as simply H ` h. The GoodChecks rules

are defined as follows:

• [CC-Skip], [CC-New], and [CC-ANew] do not change the context and always

succeed.

• [CC-Assign] adds a new constraint representing the assignment to the

post-context.

• [CC-Chk] adds the checked paths (C
√
) to the post context. It only succeeds if

each path p to check has already been accessed. This condition prevents false

positives by preventing checking locations which have not yet been accessed. We

always delay checks and never bring them forward so a location must have been

accessed in order to be checked.

• [CC-Read] removes any anticipated accesses to y.f and adds an access to y.f .

Removing the anticipated access is safe because we are adding in an access to the
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same location.

• [CC-Write] also removes any anticipated accesses to y.f and adds in an access to

y.f .

• [CC-ARead] and [CC-AWrite] are similar to the above.

• [CC-Seq] allows for the chaining of two statements with the post-context of the

first becoming the pre-context of the second.

• [CC-If] checks both the then and the else branches using the pre-context along

with the information gained about be. The resulting post-contexts must match

and are used for the post-context of the whole expression. Rule [CC-Sub] below

can be used to bring the two post-contexts into alignment.

• [CC-Loop] enters the loop with a context of Πinv. Statement s1 is checked with

this context and produces a new context Π1∪{¬be}. Statement s2 is then checked

with Π1 ∪ {¬be} and produces the post context Πinv which can safely check s1.

Upon exiting the loop s1 has run and the be is true so the resulting post-context

is Π1 ∪ {be}.

• [CC-Acq] does not change the context. However, it does check that all accesses in

the context have already been checked (as checking them after acquiring the lock

may cause a false negative). It also checks that there are no anticipated accesses

in the context as in the backward analysis the anticipated accesses can not be

safely moved before an acquire.

• [CC-Rel] removes all history information from the context except boolean expres-

sions. We must remove accesses and checks as the checks made so far are only

valid while the lock about to be released is held. For every variable that has been

accessed but not checked yet there must be an anticipated access in the post con-

text. This constraint allows the delaying of checks outside of critical sections but

only when a later access can be guaranteed.
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• [CC-Call] does not modify the context and requires that it not contain any items

in the kill set of that method. All accesses which may be killed in the method must

be checked before the call. We can use [CC-Sub], shown below, to remove checked

access that may be killed but we can not use subsumption to remove unchecked

accesses so the analysis remains sound.

• [CC-Sub] allows us to conservatively approximate contexts according to the fol-

lowing context ordering:

(H1 ∪A1) � (H2 ∪A2) iff


H1 w H2

H1 ` A1 v A2

∀p� ∈ H1. (H2 ` p�) ∨ (H1 ` p
√

) ∨ (H2•A2 ` p3)

Run-Time States We introduce the rules shown in Figure 3.11 to extend the

GoodChecks relation to run-time states. The judgment σ;α 
t h determines when

a history property h holds in a given thread-local store σ of thread t. The execution

history α is used to validate past checks and accesses in h. The judgment σ;α 
t Π

extends the previous judgment to contexts, and ensures (via C1) each check in α has a

legitimizing previous access in α, and also each access in α either 1) has a covering check

in α (via A1 or A2) or 2) the context Π records a corresponding past or anticipated

access (via A3).

We extend the store σ to map paths (used by the static analysis) to sets of

locations (used by the dynamic semantics) as follows:

σ(x.f) = { σ(x).f }

σ(x[e1..e2 :e3]) = { p[j] : p = σ(x),

j = σ(e1) + i σ(e3),

σ(e1) ≤ j < σ(e2) }

The rules [CC-Thread] and [CC-State] then extend this well-formedness cri-

teria to threads and states, respectively. Note that [CC-State] does not constraint the
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heap S in any way, since we do not reason about heap contents statically. If we were

to, for example, include alias assumptions in our core analysis, then we would need to

ensure that all of our alias assumptions are true for S.
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We assume x 6∈ Vars(Π) in [CC-New], [CC-Assign], [CC-Read], [CC-ARead], [CC-ANew],
[CC-Rename], [CC-Call].


 s : Π→ Π′

[CC-Skip]


 skip : Π→ Π

[CC-Assign]
Π′ = Π ∪ {x = e}

 x = e : Π→ Π′

[CC-Rename]
Π′ = H[y := x] ∪A


 x← y : H ∪A[x := y]→ Π′

[CC-Chk]
∀p ∈ C. Π ` p�


 check(C) : Π→ Π ∪ C
√

[CC-New]


 x = new c : Π→ Π

[CC-Read]

Π′ = Π \ {y.f3} ∪ {y.f�}

 x = y.f : Π→ Π′

[CC-Write]

Π′ = Π \ {y.f3} ∪ {y.f�}

 y.f = x : Π→ Π′

[CC-ANew]


 x = new c : Π→ Π

[CC-ARead]
Π′ = Π \ {y[z]3} ∪ {y[z]�}


 x = y[z] : Π→ Π′

[CC-AWrite]
Π′ = Π \ {y[z]3} ∪ {y[z]�}


 y[z] = x : Π→ Π′

[CC-Seq]

 s1 : Π→ Π1

 s2 : Π1 → Π2

 s1; s2 : Π→ Π2

[CC-If]

 s1 : Π ∪ {be} → Π′

 s1 : Π ∪ {¬be} → Π′


 if be s1 s2 : Π→ Π′

[CC-Loop]

 s1 : Πinv → Π1


 s2 : Π1 ∪ {¬be} → Πinv

 loop{ s1; { if be break }; s2 } : Πinv → Π1 ∪ {be}

[CC-Acq]
∀p. p3 6∈ Π

∀p. p� ∈ Π⇒ Π ` p
√


 acq(x) : Π→ Π

[CC-Rel]

∀p. p� 6∈ Π and p
√
6∈ Π


 rel(x) : Π→ Π

[CC-Call]
Π ∩KillSetHistory(m) = ∅

Π ∩KillSetAnticipated(m) = ∅

 x = y.m(z) : Π→ Π

[CC-Sub]

 s : Π′1 → Π′2

Π1 � Π′1
Π′2 � Π2


 s : Π1 → Π2


 meth 
 D 
 s 
 D s

[CC-Method]


 s


 m(x){s; return z}

[CC-Class]

∀ meth ∈ meth. 
 meth


 class c{f meth}

[CC-Stmt]


 s : ∅ → ∅

 s

[CC-Program]
∀D ∈ D. 
 D
∀i. 
 si


 D s1‖ . . . ‖sn

Figure 3.10: GoodChecks Rules.
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D;α 
 Σ D;α 
t 〈σ, s〉
[CC-State]

∀D ∈ D. 
 D

∀t ∈ T id. D;α 
t T (t)
D;α 
 S · T

[CC-Thread]
σ;α 
t Π


 s : Π→ ∅
D;α 
t 〈σ, s〉

σ;α 
t Π

[CC-Context]
∀h ∈ Π. σ;α 
t h

Each t : check(l) in α is preceded by t : acc(l) with no intervening t : rel(_) (C1)

Each t : acc(l) in α is

{
preceded by t : check(l) with no intervening t : rel(_) or
followed by t : check(l) with no intervening t : acq(_) or
not followed by t : acq(_) and ∃p. (l ∈ σ(p) and (p3 ∈ Π or p� ∈ Π))

(A1)
(A2)
(A3)

σ;α 
t Π
σ;α 
t h

[CC-BoolExp]

σ(be) = true
σ;α 
t be

[CC-PastAccess]
∀l ∈ σ(p).

(
α = α1.t : acc(l).α2
α2 does not contain t : rel(ρ)

)
σ;α 
t p�

[CC-PastCheck]
∀l ∈ σ(p).

(
α = α1.t : check(l).α2
α2 does not contain t : rel(ρ)

)
σ;α 
t p

√

Figure 3.11: GoodChecks rules for Runtime States.
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3.9.4 Correctness of CheckPlacement

Any program satisfying the CheckPlacement judgment will satisfy the

GoodChecks judgment.

Lemma 5. If ` D s1‖ . . . ‖sn then 
 D s1‖ . . . ‖sn.

Proof. Follows from Lemma 6.

Lemma 6. If ` s then 
 s.

Proof. If ` s then s = s′; check(C) where ` s′ : ∅•A → H •∅ and C = Checks(H, ∅)

from [Stmt]. Hence 
 s′ : A→ H by Lemma 7 so 
 s : A→ H ∪C
√

by [CC-Seq], and

so by [CC-Sub] 
 s : ∅ → ∅, and hence 
 s.

Lemma 7. If ` s : H•A′ → H ′•A then (
 s : H ∪A′ → H ′ ∪A).

Proof. By induction on the derivation of (` s : H•A′ → H ′•A) and case analysis on the

rule concluding that derivation.

• [Assign] where s = (x = e): In this case we have

` x = e : H•A[x := e]→ H ∪ {x = e}•A

where x 6∈ Vars(e,H). Rule [CC-Assign] gives us


 x = e : H ∪A[x := e]→ H ∪ {x = e} ∪A[x := e]

Finally, H ∪ A[x := e] ∪ {x = e} � H ∪ {x = e} ∪ A by our assumption about

entailment, so by [CC-Sub]


 x = e : H ∪A[x := e]→ H ∪ {x = e} ∪A

as required.
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• [Rename] where s = (x← y): In this case we have

` x← y : H•A[x := y]→ H[y := x]•A

where x 6∈ Vars(H). Rule [CC-Assign] gives us the desired


 x← y : H ∪A[x := y]→ H[y := x] ∪A

• [Write] where s = (y.f = x): In this case we have

` y.f = x : H•A ∪ {y.f3} → H ∪ {y.f�}•A

Rule [CC-Write] gives us


 y.f = x : H ∪A ∪ {y.f3} → H ∪A ∪ {y.f�}

• [Read] where s = (x = y.f) : In this case we have

` x = y.f : H•A \ x ∪ {y.f3} → H ∪ {y.f�}•A

Rule [CC-Read] gives us


 x = y.f : H ∪A \ x ∪ {y.f3} → H ∪ {y.f�} ∪A \ y.f3

Finally, H ∪ {y.f�} ∪ A \ y.f3 � H ∪ {y.f�} ∪ A so by [CC-Sub] we reach our

desired


 x = y.f : H ∪A \ x ∪ {y.f3} → H ∪ {y.f�} ∪A
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• [Skip] where s = skip: Skip does not modify or place restrictions on the context

in either GoodChecks or CheckPlacement and so is trivial.

• [New] where s = (x = new c): In this case we have

` x = new c : H•A \ x→ H•A

where x 6∈ Vars(H). Rule [CC-New] gives us


 x = new c : H ∪A \ x→ H ∪A \ x

Finally, H ∪A \ x � H ∪A so by [CC-Sub]


 x = new c : H ∪A \ x→ H ∪A

• [A-New], [A-Write], and [A-Read] follow the same proofs as [New], [Write], and

[Read].

• [Acq] where s = check(C); acq(x): In this case we have

` check(C); acq(x) : H•∅ → H ∪ C
√
•A

where C = Checks(H, ∅). Rule [CC-Chk] gives us


 check(C) : H → H ∪ C
√

and requires that ∀p ∈ C. H ` p� which holds by the construction of C. Next
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[CC-Acq] gives us


 acq(x) : H ∪ C
√
→ H ∪ C

√

and requires that ∀p. p3 6∈ H∪C
√
, which is trivially true, and ∀p. p� ∈ H∪C

√
⇒

H∪C
√
` p
√
which is true by the construction of C. Finally, H∪C

√
� H∪C

√
∪A

and so by [CC-Sub] and [CC-Seq] we have the desired


 check(C); acq(x) : H → H ∪ C
√
∪A

• [Rel] where s = check(C); rel(x): In this case we have

` check(C); rel(x) : H•A→ H \ {_
√
,_�}•A

where C = Checks(H,A). GoodChecks gives us


 check(C) : H ∪A→ H ∪A ∪ C
√

and requires that ∀p ∈ C. H ` p� which it does by the construction of C.

H ∪A∪C
√
� H \{_

√
,_�}∪A because we will never remove an access p� where

p
√
6∈ H ∪ C

√
. Thus by [CC-Sub] we have that


 check(C) : H ∪A→ H \ {_
√
,_�} ∪A

and by [CC-Rel] and the fact that ∀p. p� 6∈ H \{_
√
,_�} and p

√
6∈ H \{_

√
,_�}

we have


 rel(x) : H \ {_
√
,_�} ∪A→ H \ {_

√
,_�} ∪A
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Finally, by [CC-Seq] we have the desired


 check(C); rel(x) : H ∪A→ H \ {_
√
,_�} ∪A

• [If] where s = if be (s1; check(C1)) (s2; check(C2)): In this case we have

` if be (s1; check(C1)) (s2; check(C2)) : Hin•Ain → Hout•Aout

` s1 : Hin ∪ {be}•Ain → H ′1•Aout

` s2 : Hin ∪ {¬be}•Ain → H ′2•Aout

C1 = Checks(H ′1, H ′1 uH ′2, Aout)

C2 = Checks(H ′2, H ′1 uH ′2, Aout)

Ain = H1•A1 uH2•A2

Hout = (H ′1 ∪ C
√

1 ) u (H ′2 ∪ C
√

2 )

In order to conclude


 if be (s1; check(C1)) (s2; check(C2)) : Hin ∪Ain → Hout ∪Aout

We need to show that


 s1; check(C1) : Hin ∪Ain ∪ {be} → Hout ∪Aout


 s2; check(C2) : Hin ∪Ain ∪ {¬be} → Hout ∪Aout

By induction, [CC-Chk], and [CC-Seq] we have


 s1; check(C1) : Hin ∪Ain ∪ {be} → H ′1 ∪ C
√

1 ∪Aout
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 s2; check(C2) : Hin ∪Ain ∪ {¬be} → H ′2 ∪ C
√

2 ∪Aout

Finally by [CC-Sub]


 s1; check(C1) : Hin ∪Ain ∪ {be} → Hout ∪Aout


 s2; check(C2) : Hin ∪Ain ∪ {¬be} → Hout ∪Aout

• [Seq] where s = s1; s2: This case holds trivial by induction.

• [Call] where s = (check(C);x = y.m(z)): In this case we have

` check(C);x = y.m(z) : H•A→ H ′•A′

such that

C = Checks(H,H \KillSetHistory(m), A)

= {p : p� ∈ H,H \KillSetHistory(m) 6` p�, H•A 6` p3}

H ′ = (H ∪ C
√

) \KillSetHistory(m)

A = A′ \ x \KillSetAnticipated(m)

By [CC-Check]


 check(C) : H ∪A→ H ∪ C
√
∪A

By [CC-Call]


 x = y.m(z) : H ′ ∪A→ H ′ ∪A

Also H ′ ∪A � H ′ ∪A′.
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Finally, we need to show

H ∪ C
√
∪A � H ′ ∪A = (H ∪ C

√
) \KillSetHistory(m) ∪A

and in particular that

∀p� ∈ H. H ′ ` p� or H ′•A ` p3

If C
√
6` p
√

then H \KillSetHistory(m) ` p� or H ∪ C
√
` p
√

or H ′•A ` p3 and

so the desired context ordering follows. Hence


 check(C) : H ∪A→ H ∪ C
√
∪A

H ∪ C
√
∪A � H ′ ∪A


 x = y.m(z) : H ′ ∪A→ H ′ ∪A

H ′ ∪A � H ′ ∪A′

• [Loop] where s = check(Cin); loop{ s1; { if be break }; check(Cback) }: In

this case we have the following:

` s : Hin•Ain → Hout•Ainv

` s1 : Hinv•Ain → H•Ainv

Hback = H ∪ {¬be}

Hout = H ∪ {be}

Cin = Checks(Hin, Hinv, Ain)

Hin ∪ C
√

in w Hinv

Cback = Checks(Hback, Hinv, Ain)

Hback ∪ C
√

back w Hinv
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By induction,


 s1 : Hinv ∪Ain → H ∪Ainv

Also, by [CC-Chk],


 check(Cback) : Hback ∪Ainv → Hback ∪Ainv ∪ C
√

back

Also, Hback ∪Ainv ∪ C
√

back � Hinv ∪Ain. Hence by [CC-Loop]


 check(Cin); loop{ s1; { if be break }; check(Cback) } : Hinv ∪Ain → Hout ∪Ainv

This case concludes via [CC-Seq] and [CC-Sub] based on:

Hout ∪Ainv � Hout ∪Aout


 check(Cin) : Hin ∪Ain → Hin ∪Ain ∪ C
√

in

Hin ∪Ain ∪ C
√

in � Hinv ∪Ain

Assumption 1 (Entailment Assumptions). We rely on the following assumptions about

the entailment relationship.

1. H•A ` p3 is monotonic in H and A.

2. H ` h is monotonic in H.

3. {x = e}•{p3} ` p[x := e]3

4. {x = e}•{p[x := e]3} ` p3

5. {h} ` h

6. H•A ` p3 only depends on boolean expressions in H
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7. {x[e1]
√
, x[(e1 + e3)..e2 :e3]

√
} ` x[e1..e2 :e3]

√
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3.9.5 Correctness of GoodChecks

We now show that if a program has passed GoodChecks then the program

generates traces that have precise checks.

Definition 3.9.1. A state Σ is terminated if all threads are skip.

Theorem 3.9.2 (Correctness of GoodChecks). If D; ε 
 Σ0 and D 
 Σ0 −→α Σ′

and Σ′ is terminated then α has precise checks.

Proof. By the Preservation Theorem, we have that D;α 
 Σ′ where Σ′ = S ·T . Pick any

thread t, and let 〈σ, skip〉 = T (t). By [CC-State] and [CC-Thread], D;α 
t 〈σ, skip〉

where σ;α 
t Π and 
 skip : Π→ ∅ for some Π � ∅. Hence [CC-Context] implies that

(from C1) each check by t has a preceding legitimizing access. Moreover, since Π � ∅,

from the definition of � we know that Π has no anticipated access, and ∀p� ∈ Π we

have that Π ` p
√
.

Consider any access t :acc(l) in α, which must satisfy one of the antecedents

A1, A2, A3 in [CC-Context]. If the access satisfies A1 or A2, then it clearly has a

covering check. If the access satisfies A3, then, since Π has no anticipated accesses,

∃p. σ(p) = l and p� ∈ Π. Then, from above, Π ` p
√
, and so by [CC-PastCheck] α

contains a check covering the access. Hence, α has precise checks.

In order to prove the above induction we must prove that evaluation preserves

well-formed states.

Theorem 3.9.3 (Preservation). If D;α 
 Σ and Σ −→a Σ′ then D; (α.a) 
 Σ′.

Proof. Suppose the action a is performed by thread t. From the rule [CC-State] and
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the definition of our transition relation, we have:


 D ∀D ∈ D

D;α 
i T (i) ∀i ∈ Tid

Σ = S · T [t := 〈σ, s〉]

Σ′ = S′ · T [t := 〈σ′, s′〉]

D ` S · 〈σ, s〉 −→a S′ · 〈σ′, s′〉

In addition, for any thread T (i) = 〈σi, si〉, rule [CC-Thread] requires that there is a Πi

such that:

σi;α 
i Πi


 si : Πi → ∅

If i 6= t, then an inspection of [CC-Context] shows that σi;α.a 
i Πi, and hence

D; (α.a) 
i T (i). For thread t, from Lemma 8 below we have that there exists Π3 such

that


 s′ : Π3 → ∅

σ′;α.a 
t Π3

Hence D; (α.a) 
t 〈σ′, s′〉. Finally, D; (α.a) 
 Σ′ then follows by rule [CC-State].

To prove the above we must prove preservation for an individual thread step.

Given a well formed thread state, if we take one step of evaluation the thread state

remains well-formed.

Lemma 8 (Preservation for Statements). If ∀D ∈ D. 
 D and a is an action by thread

t and

 s : Π1 → Π2

σ;α 
t Π1

D ` S · 〈σ, s〉 −→a S′ · 〈σ′, s′〉
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then there exist Π3 such that:

 s′ : Π3 → Π2

σ′; (α.a) 
t Π3

Proof. By induction on the derivation of 
 s : Π1 → Π2 and case analysis on the rule

used to conclude that derivation.

• [CC-If] where s = if be s1 s2: There are two cases:

– if σ(be) = true:
s′ = s1, σ

′ = σ, a = t : ε Via Evaluation

Let Π3 = Π1 ∪ {be}

σ;α 
t Π1 Given

Need to show σ;α 
t Π1 ∪ {be} as σ(be) = true

Need to show 
 s1 : Π1 ∪ {be} → Π2 Shown via [CC-If]

– If σ(be) = false:

The false case is similar.

• [CC-Rel] where s = rel(x): In this case,
s = rel(x)

Π2 = Π1

∀p. p� 6∈ Π1, p
√
6∈ Π1

s′ = skip

a = t :rel(p)

σ′ = σ

Let Π3 = Π1. We have 
 s′ : Π1 → Π1 via [CC-Skip].

Since Π1 does not contain prior accesses or checks, it only contains boolean ex-

pressions, and so ∀h ∈ Π1 from σ;α 
t h we can conclude σ;α.a 
t h. Also,

properties C1, A1, A2, A3 are not invalidated by adding a to α so we conclude

σ;α.a 
t Π1 as required.

• [CC-Acq] where s = acq(x): In this case,
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Π2 = Π1 Via [CC-Acq]

∀p. p3 6∈ Π1 Via [CC-Acq]

∀p. p� ∈ Π1 ⇒ Π1 
 p
√

Via [CC-Acq]

a = t : acq(ρ) Via Evaluation

s′ = skip, σ′ = σ Via Evaluation

Let Π3 = Π2


 s′ : Π2 → Π2 Shown via [CC-Skip]
We must show σ; (α.a) 
t Π1.

For all h ∈ Π1, we have σ; (α) 
t h and hence σ; (α.a) 
t h as a is not a release.

Since Π1 does not contain any anticipated access, the requirements C1, A2, A2,

and A3 on α also hold for α.a. Hence σ; (α.a) 
t Π1.

• [CC-Chk] where s = check(C)

There are four evaluation rules for s.

– [E-ChkField] where s = check({x.f}).

In this case,
s′ = skip, σ′ = σ Via Evaluation

a = t :check(σ(x).f) Via Evaluation

Π1 ` x.f� Via [CC-Chk]

Π2 = Π1 ∪ {x.f
√
} Via [CC-Chk]

Let Π3 = Π2


 s′ : Π2 → Π2 Via [CC-Skip]
It remains to show σ;α.a 
t Π2.

Clearly σ;α.a 
t x.f
√

and so ∀h ∈ Π2. σ;α.a 
t h.

Since we are adding t :check(σ(x).f) to α, we need to show by C1 there was

a t : acc(σ(x).f) in α with no later release, which is already guaranteed by

σ;α 
t x.f�.

Hence we conclude σ;α.a 
t Π2.
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– [E-ChkSet] where C = {p1, . . . , pn}.

In this case,
s′ = check({p1}); . . . ; check({pn}) Via Evaluation

σ′ = σ Via Evaluation

a = t : ε Via Evaluation

Let Π3 = Π1

From 
 s : Π1 → Π2 we clearly have 
 s′ : Π1 → Π2 and σ;α.a 
t Π1.

– [E-ChkEmpty] where C = x[e1..e2 :e3] and σ(e1) ≥ σ(e2).

We have
s′ = skip Via Evaluation

σ′ = σ Via Evaluation

a = t : ε Via Evaluation

Π2 = Π1 ∪ {x[e1..e2 :e3]
√
} Via [CC-Chk]

Let Π3 = Π2


 s′ : Π2 → Π2 Via [CC-Skip]
We need to show σ;α.a 
t Π2, which reduces to showing σ;α.a 
t x[e1..e2 :

e3]
√
, which holds via [CC-PastCheck] as σ(x[e1..e2 :e3]) is empty.

– [E-ChkIndex] where C = {x[e1..e2 :e3]}.

We have
ρ = σ(x) Via Evaluation

i = σ(e1) Via Evaluation

i < σ(e2) Via Evaluation

s′ = check({x[(e1 + e3)..e2 :e3]}) Via Evaluation

σ′ = σ Via Evaluation

a = t :check(ρ[i]) Via Evaluation

Π2 = Π1 ∪ {x[e1..e2 :e3]
√
} Via [CC-Chk]

Let Π3 = Π1 ∪ {x[e1]
√
}

Clearly σ;α.a 
t x[e1]
√
.

Since we are adding check a to the trace, we need to show by C1 there was a
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corresponding access t :acc(ρ[i]) in α with no later release, which is already

guaranteed by σ;α 
t x[e1..e2 :e3]�.

Hence we conclude σ;α.a 
t Π2.

Also, we have 
 s′ : Π1 ∪ {x[e1]
√
} → Π1 ∪ {x[e1]

√
} ∪ {x[e1 + e3..e2 : e3]

√
}

via [CC-Chk], which via [CC-Sub] gives 
 s′ : Π3 → Π2 as required.

• [CC-Call] where s = (x = y.m(z)): In this case,
D 
 m(x){sm; return r} Via [CC-Call]

x 6∈ Vars(Π1, e)

s′ = θ(sm) Via Evaluation

θ = {z′ := z, this := y, r := x} Via [CC-Call]

Π ∩KillSetHistory(m) = ∅ Via [CC-Call]

Π ∩KillSetAnticipated(m) = ∅ Via [CC-Call]

σ′ = σ, a = t : ε Via Evaluation

Let Π3 = Π1 = Π2 = Π

Need to show σ;α.a 
t Π Given

Need to show 
 sm : Π→ Π


 sm : ∅ → ∅ Via [CC-Method] and [CC-Stmt]


 θ(sm) : ∅ → ∅ Via Lemma 10


 sm : ∅ ∪Π→ ∅ ∪Π Via Lemma 9

• [CC-Loop] where s = L:
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L = loop{ s1; { if be break }; s2 }

s′ = s1; if be skip {s2;L} Via Evaluation

σ′ = σ, a = t : ε Via Evaluation

Π′ = Π2 \ {be}


 s1 : Π1 → Π′ Via [CC-Loop]


 s2 : Π′ ∪ {¬be} → Π1 Via [CC-Loop]

Let Π3 = Π1

Need to show σ;α.a 
t Π1 Given

Π2 = Π1 ∪ {be} Via [CC-Loop]

Need to show 
 s′ : Π1 → Π′ ∪ {be}


 L : Π1 → Π′ ∪ {be} Given


 s2;L : Π′ ∪ {¬be} → Π′ ∪ {be} Via [CC-Seq]


 skip : Π′ ∪ {be} → Π′ ∪ {be} Via [CC-Skip]


 if be skip (s2;L) : Π′ → Π′ ∪ {¬be} Via [CC-Seq] and [CC-Sub]


 s′ : Π1 → Π′ ∪ {be} Via [CC-Seq]

• [CC-Seq] where s = s1; s2: There are two cases:

– If s1 = skip:
S′ = s2, σ

′ = σ, a = t : ε Via Evaluation

Let Π3 = Π1

Need to show 
 s2 : Π1 → Π2 Shown via [CC-Seq]

Need to show σ;α 
t Π1 Given
– If s1 6= skip:
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D ` S · 〈σ, s1〉 −→a S′ · 〈σ′, s′1〉 Via Evaluation


 s1 : Π1 → Π′ Via [CC-Seq]


 s2 : Π′ → Π2 Via [CC-Seq]

σ;α 
t Π1 Given


 s′1 : Π4 → Π′ Via inductive hypothesis

σ; (α.a) 
t Π4 Via inductive hypothesis

Let Π3 = Π4

Need to show σ; (α.a) 
t Π4 Shown via induction above

Need to show 
 s′1; s2 : Π3 → Π2 Shown via application of [CC-Seq]

• [CC-Read] where s = (x = y.f):
Π2 = (Π1 \ {y.f3}) ∪ {y.f�} Via [CC-Read]

x 6∈ Vars(Π1, e)

s′ = skip, σ′ = σ[x := v], v = S(σ(y.f)) Via Evaluation

Let Π3 = Π2

Need to show 
 s′ : Π2 → Π2 Shown via [CC-Skip]

a = t : acc(y.f) Via Evaluation

Need to show σ′; (α.a) 
t (Π1 \ {y.f3}) ∪ {y.f�})
All actions in α proved by A3 are still proved because we have removed y.f3 but

added in a y.f�. Clearly σ;α.a 
t y.f�. a is proved by A3 because y.f� ∈ Π3.

All history properties in Π1 remain proved in σ′ as x 6∈ Vars(Π1).

• [CC-ARead] where s = (x = y[z]): The proof is similar to above.

• [CC-Write] where s = (y.f = x):
Π2 = Π1 \ {f, y.f3} ∪ {y.f�, x = y.f} Via [CC-Write]

s′ = skip, σ′ = σ Via Evaluation

Let Π3 = Π2

Need to show 
 s′ : Π2 → Π2 shown via [CC-Skip]

a = t : acc(y.f) Via Evaluation

Need to show σ′; (α.a) 
t Π2
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All actions in α proved by A3 are still proved because we have removed y.f3 but

added in a y.f�. Those proved by A1, A2, and C1 do not change because we have

not changed α. Clearly σ;α.a 
t y.f�. a is proved by A3 because y.f� ∈ Π3.

• [CC-AWrite] where s = (y[z] = x): The proof is similar to above.

• [CC-New] where s = (x = new c):
Π2 = Π1 [CC-New]

x 6∈ Vars(Π1, e)

σ′ = σ[x := ρ] Via Evaluation

s′ = skip, a = t : ε Via Evaluation

Let Π3 = Π2

Need to show 
 s′ : Π2 → Π2 Shown via [CC-Skip]

Need to show σ′;α 
t Π1 Given

• [CC-ANew]: The proof is similar to above.

• [CC-Assign] where s = (x = e):
s′ = skip, σ′ = σ[x := v], a = t : ε, v = σ(e) Via Evaluation

x 6∈ Vars(Π1, e)

Π2 = Π1 ∪ {x = e} Via [CC-Assign]

Let Π3 = Π2

Need to show 
 s′ : Π2 → Π2 Shown via [CC-Skip]

Need to show σ′;α 
t Π1 ∪ {x = e} Shown via what is given

and the new constraint is true based on σ′

• [CC-Rename] where s = (x← y):
s′ = skip, σ′ = σ[x := σ(y)], a = t : ε Via Evaluation

x 6∈ Vars(Π1)

Π1 = H ∪A[x := y]

Π2 = H[y := x] ∪A Via [CC-Rename]

Let Π3 = Π2

Need to show 
 s′ : Π2 → Π2 Shown via [CC-Skip]

Need to show σ′;α 
t Π2 Shown via x 6∈ Vars(Π1) and σ(y) = σ′(x)
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We now state several technical lemmas used in the arguments above. We ex-

tend the functions KillSetAnticipated and KillSetHistory from method names to state-

ments in the expected manner.

Lemma 9 (Extension). If 
 s : Π1 → Π2 and Π′ = Π \ KillSetHistory(s) \ KillSetAnticipated(s) then


 s : Π1 ∪Π′ → Π2 ∪Π′.

Proof. By induction on the derivation of 
 s : Π1 → Π2 and case analysis on the rule

used to conclude that derivation.

• [CC-Skip], [CC-New], [CC-Assign]: These rules have no constraints on their input and output

Π so the proof holds trivially.

• [CC-Acq]:
Π1 = Π2 [CC-Acq]
∀p. p3 6∈ Π1 [CC-Acq]
∀p. p� ∈ Π1 ⇒ Π1 
 p

√
[CC-Acq]

Need to show ∀p. p3 6∈ (Π1 ∪Π′) [CC-Acq]
∀p. p3 6∈ Π′ Because an acquire kills p3

Need to show ∀p. p� ∈ (Π1 ∪Π′)⇒ (Π1 ∪Π′) 
 p
√

[CC-Acq]
∀p. p� 6∈ Π′ Because an acquire kills p�

• [CC-Rel] where s = rel(x): In this case Π1 = Π2 and ∀p. p� 6∈ Π1, p
√
6∈ Π1

A release kills past checks and acquires, so ∀p. p� 6∈ Π′ and p
√
6∈ Π′. Hence 
 s : Π1 ∪ Π′ → Π2 ∪ Π′ as

required.

• [CC-Read], [CC-Write], [CC-ARead], [CC-AWrite]: The only restriction is that the re-

sulting Πf must contain no y.f3 and must contain y.f�. Unioning with Π′ can also not remove y.f� so

that condition is met. If Π′ adds in a y.f3 then by [CC-Sub] the rule still holds as the resulting Πf is

greater then the original.

• [CC-If], [CC-Seq], [CC-Loop]: By induction.

• [CC-Call], [CC-Sub]: All requirements involving subterms are proved by induction. The only

remaining requirements are proved because Π1 � Π2 ⇒ (Π1 ∪Π) � (Π2 ∪Π).

• [CC-Check]: If Π1 
 p� then Π1 ∪Π′ 
 p�.
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Lemma 10 (Substitution). If 
 s : Π1 → Π2 and θ : Var → Var is a permutation on

variables, then 
 θ(s) : θ(Π1)→ θ(Π2).

Proof. Proof is by induction on the derivation of 
 s : Π1 → Π2.

3.9.6 Correctness of BigFoot

Theorem 3.9.4 (Correctness). Suppose P = D s1‖ . . . ‖sn is a program with inserted

checks (i.e. ` P ) that generates a trace α via

D ` Σ0 −→α Σ

where Σ0 is the initial state for P and Σ is terminated. Then α has a data race on a

location l if and only if α has a check race on that location.

Proof. By Lemma 5, we have that 
 D s1‖ . . . ‖sn. Lemma 11 implies that D; ε 
 Σ0.

By Theorem 3.9.2, α has precise checks. Finally, Theorem 3.9.1 shows that α has a data

race on location l if and only if it has a check race on l.

Lemma 11. If P = D s1‖ . . . ‖sn, 
 P , and Σ0 = S0 ·T0 is the initial state for P , then

D; ε 
 Σ0.

Proof. By definition, T0 maps each t ∈ 1..n to 〈σ, st〉, where Dom(σ) = FV (s1) ∪ . . . ∪

FV (sn). Since 
 P can only be derived via [CC-Prog], it must be that ∀D ∈ D. 
 D.

Also, we have that σ; ε 
t ∅ via [CC-Ctxt]. Consider any t. Since ` P , we know that

` st via [Program], which implies that 
 st via Lemma 6. This is only derivable via

rule [CC-Stmt], which means that 
 s : ∅ → ∅. From the above, rule [CC-Thread]

allows us to conclude that D; ε 
t 〈σ, st〉. It then follows from rule [CC-State] that

D; ε 
 Σ0.
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Chapter 4

Thread-Local Macro

classifications

BigFoot’s analysis relies mostly on access and synchronization information

to remove redundant checks and coalesce needed checks. Our other analyses instead

make use of high level reachability arguments to classify objects as race free. While all

of heap memory is shared in Java many portions of memory may not be reachable by

all threads. If a memory location is reachable by only a single thread then checks on

that location can be safely removed. Our first macro analysis works with this idea and

examines the correctness of eliding checks and lock operations on thread-local objects.

4.1 Introduction

Compilers often use escape analysis to elide locking operations on thread-local

data. Similarly, dynamic race detectors may use escape analysis to elide race checks

on thread-local data. In this section, we study the correctness of these two related

optimization’s when using a partial escape analysis, which identifies objects that are

currently thread-local, but may later become thread-shared.

We show that lock elision based on partial escape analysis is unsound for the
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Java memory model. We also show that race check elision based on a partial escape

analysis weakens the precision of dynamic race detectors. Finally, we show that dynamic

race detectors that use a partial escape analysis remain sound with respect to this

weakened notion of precision.

When reasoning about heap allocated objects, compilers and other analyses

must, in general, assume that concurrent threads can make arbitrary changes to any

object. This uncertainty makes it difficult to reason about the possible behavior of

code. For thread-local objects (that is, objects that are only accessible by a single

thread), concurrent modifications are not possible until that object has escaped out of

its allocating thread. An object escapes its allocating thread when it is assigned to a

field of a thread-shared object. Many compilers and analyses make use of an escape

analysis to determine which objects escape their allocating thread [34].

Escape analyses fall into two major categories. A total escape analysis deter-

mines if an object is always thread-local (i.e. it never escapes its allocating thread).

On the other hand, a partial escape analysis determines if an object has not escaped its

allocating thread yet [96].

Optimizing compilers, such as Hotspot [78], use an escape analysis to elide

expensive synchronization operations on thread-local locks. We refer to lock elision

based on total and partial escape analyses as total and partial lock elision respectively,

and both have been proposed in the literature [96, 27].

Total lock elision has been proven sound [27]. However, lock elision optimiza-

tions have also been based on a partial escape analysis (see [96]). In this section, we

show that partial lock elision is unsound in that it can introduce additional behaviors

that are not permitted under the Java memory model.

Dynamic race detectors also leverage information about thread-local data. In

part, a dynamic race detector typically performs a race check every time a thread of the

target program reads or writes to an object. These race checks can be elided for access

to thread-local objects.
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We refer to race check elision based on total and partial escape analyses as

total and partial race check elision respectively. We show that partial race check elision

weakens the precision guarantees provided by a dynamic race detector. Partial race

check elision never causes a race detector to miss the first data race in a program, but

may cause it to miss subsequent data races.

Contributions: In summary, the contributions of this section are that we

show:

• partial lock elision is unsound for compilers,

• partial race check elision may cause a race detector to miss some races in an

execution,

• and partial race check elision will never cause a race detector to miss the first race

in an execution.

4.2 Review of Data Races

Race detectors and other analyses use the concept of a trace to analyze a

specific execution of a given program. We define a program trace α as a sequence of all

the operations performed by the various threads. These operations include reads and

writes of object fields as well as lock acquire and releases.

The happens-before relation <α for a trace α is the smallest transitively-closed

relation over the operations in the trace such that the relation a <α b holds whenever a

occurs before b in the trace and one of the following holds:

• Program order: The two operations are performed by the same thread.

• Locking: The two operations acquire or release the same lock.

• Fork: One operation forks a new thread and the other operation is by that new

thread.
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If two operations in a trace are not related by the happens-before relation, then they are

considered concurrent. Two memory access conflict if they both access (read or write)

the same address, and at least one of the operations is a write. Using this terminology,

a trace has a race condition on a particular address if it has two concurrent conflicting

accesses to that address.

Data races lead to unexpected behavior (in Java [91, 68]) or undefined behavior

(in C++ [18]) and as such, compilers are not allowed to introduce data races when

optimizing code. As we examined in section xxx the Java memory model uses a race-

freedom implies sequential consistency standard. By introducing data races where none

previously existed the Java compiler may break sequential consistency even when there

was no data race in the original program.

Likewise, for a race detector to be precise it must not miss data races. More

specifically, we say a dynamic race detector is

• trace precise if it correctly reports whether a program trace has a race, and

• address precise if it correctly reports all addresses in a trace that have race con-

ditions.

We show that partial race check elision weakens the precision of a dynamic

race detector from address precise to trace precise; in particular, one race in a trace

may prevent subsequent races on different addresses from being detected. We prove,

however, that the first race in a trace is always detected and so partial race check

elision is still trace precise, which is sufficient for many applications. In particular a

trace precise detector provides sufficient guarantees to reinstate sequential consistency,

atomicity, and determinism.

4.3 Partial Lock Elision is Unsound

A partial escape analysis marks the point at which an object escapes its al-

locating thread. Partial lock elision uses this information to remove all acquire and
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release operations on the object before it escapes.

To illustrate why partial lock elision is unsound, consider the program shown

in Figure 4.1. Thread 1 allocates a new Ref object, initializes its f field with 11 and

then 12 inside a synchronized block, and then shares its address via p .o with thread 2.

Thread 2 busy waits until p .o is non-null and then reads f inside a synchronized block.

The two threads race on p .o due to the write from thread 1 and the busy wait from

thread 2. However, the accesses to field f are race-free as all three accesses are protected

by the lock created in thread 1 line 1. Because these accesses are race-free sequential

consistency is maintained and Thread 2 can never read the partially-initialized value of

11. Consequently, the assertion on line 14 never fails.

Because the synchronization on the lock at r0 in Thread 1 happens before the

lock escapes, partial lock elision as described in [96] would remove it, resulting in the

code in Figure 4.1 after lock elision. In this new code, there is no happens before edge

between the writes to f by Thread 1 and the read by Thread 2 because Thread 1’s

synchronization has been removed. Since these operations are now involved in a data

race, the Java memory model allows either value, the first write of 11 or the second

write of 12, to be read by Thread 2 allowing the assertion to fail. Thus, the compiler

has introduced a data race on f and an assertion violation that was not present in the

original program. This behavior violates Java’s memory model and breaks sequential

consistency even when the user code contained no data races.

4.4 Partial Race Check Elision is not Address Precise

To illustrate why partial race check elision not address precise, consider the

program in Figure 4.2. Here, Thread 1 creates a new Ref object, writes to f, and then

shares the object by writing its address to p .o. Thread 2 reads the address of the

Ref from p .o and writes to f. A trace of this program reveals two races: the first of

which occurs on p .o on lines 31 and 32. Race checks are not elided on lines 31 and 32

because p is a shared object, thus this race is caught. However, there is a second race
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Before Lock Elision After Lock Elision

Thread1 Thread2

1 Ref r0 = new Ref();
2 synchronized(r0){
3 r0.f = 11;
4 r0.f = 12;
5 }
6 p.o = r0;

1 int r2;
2 Ref r1 = null;
3 while(r1 == null)
4 r1 = p.o;
5 synchronized(r1){
6 r2 = r1.f;
7 }
8 assert(r2 != 11);

Thread1 Thread2

1 Ref r0 = new Ref();
2

3 r0.f = 11;
4 r0.f = 12;
5

6 p.o = r0;

1 int r2;
2 Ref r1 = null;
3 while(r1 == null)
4 r1 = p.o;
5 synchronized(r1){
6 r2 = r1.f;
7 }
8 assert(r2 != 11);

Figure 4.1: Example of Partial Lock Elision (p is a shared object and p .o is null
initialized)

Thread 1 Thread 2
1 Ref r1 = new Ref();
2 r1 .f = 11;
3 p .o = r1;

1 Ref r1 = p .o;
2 r1 .f = 12;

Figure 4.2: Example of Partial Race Check Elision (p is a shared object)

in the program between the two writes to f on lines 30 and 33. In this case, the first

race check on line 30 happens before r1 has escaped and would be elided by partial

race check elision. The check on line 33 is not elided because by this time the Ref has

escaped. However, the race on f will not be detected due to the previously elided check.

Note, this race is only missed due to the previous racy write to the shared pointer p .o,

so the analysis is still trace precise for this particular trace.

4.5 Partial Race Check Elision is Trace Precise

We next show that partial race check elision is trace precise in general.
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4.5.1 Idealized Language SimpleJava

We formalize our proof in terms of the idealized language SimpleJava shown

in Figure 4.3. A programs P consists of a sequence class definitions D (containing

methods and fields) as well as a main expression e. Expressions can create new objects

(new), read from fields (e.f), assign to fields (e.f = e), create temporary variables

(let x = e in e), call methods (e.m(e)), acquire and release locks (acq e and rel e),

and fork off new threads (fork e).

Figure 4.3 also shows the semantics for our language. A running program has

a heap H and a thread set T . The heap maps locations to values and locks to the

thread holding them. Values v are addresses p and null. A location l = p.f is an object

address p along with a field f . The thread set maps thread identifiers to expressions.

This semantics is standard, but includes actions that are emitted for every evaluation

step.

A program starts with an empty heap ∅, and a thread set T = [t := e] with a

single thread e with thread identifier t. A single evaluation step

P ` H,T →a H ′, T ′

produces an action a. Taken in sequence these actions form a trace α. We include P in

the evaluation relation to facilitate method lookup, and we assume method names are

unique.

4.5.2 Partial Race Check Elision Algorithm

Figure 4.4 shows a partial race check elision algorithm. This algorithm per-

forms a dynamic thread escape analysis, recording in G all addresses reachable by

multiple threads. The judgement

P ` G,H, T →a
b G
′, H ′, T ′
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P ∈ Program ::= D e

D ∈ Class ::= class c {f,method}
method ∈ Method ::= m(x){e}
l ∈ Location ::= p.f
p ∈ ObjAddr
v ∈ V alue ::= p | null
e ∈ Expression ::= new c() | x | v | e.f | e.f = e | e.m(e) | let x = e in e | acq e

| rel e | fork e

E ∈ Context ::= E.f | E.f = e | p.f = E | E.m(e) | p.m(v, E, e) | acq E | rel E
| let x = E in e

H ∈ Heap ::= (ObjAddr → Tid⊥) and (Location→ V alue)
T ∈ ThreadSet ::= Tid→ e
a, b ∈ Action ::= t : acq p | t : rel p | t : read l v | t : write l v | t : fork p t′ | t : no-op
α, β ∈ Trace ::= a

P ` H,T →a H,T

P ` H,T [t := E[p.m(v)]] →t:no-op H,T [t := E[e[x := v, this := p]] if p contains m(x){e}
P ` H,T [t := E[let x = v in e]] →t:no-op H,T [t := E[e[x := v]]]
P ` H,T [t := E[p.f = v]] →t:write p.f v H[p.f := v], T [t := E[v]]
P ` H,T [t := E[p.f ]] →t:read p.f v H,T [t := E[v]] H[p.f ] = v

P ` H,T [t := E[acq p]] →t:acq p H[p := t], T [t := E[null]] H[p] = null
P ` H,T [t := E[rel p]] →t:rel p H[p := null], T [t := E[null]]
P ` H,T [t := E[fork p]] →t:fork p t′ H,T [t′ := p.run(), t := E[null]] t′ is fresh
P ` H,T [t := E[new c()]] →t:no-op H,T [t := E[p]] where p is fresh

Figure 4.3: SimpleJava Syntax and Semantics

performs a single evaluation step

P ` H,T →a H ′, T ′

and also extends the set G′ of global or escaped addresses. The judgement produces two

actions a and b. The action b is a no-op if the action a is a field access whose race check

can be elided; otherwise b is simply the action a of the target program. Thus, combining

multiple steps of this judgement yields a run of the race check elision algorithm

P ` G,H, T −→α
β G

′, H ′, T ′

where α is the full trace of the target program, and the trace β is a subsequence of α

that elides accesses to thread-local objects.

Acquire and release actions are never elided because of the unsoundness of

partial lock elision, as shown in Section 4.3. The errors involved in partial lock elision

for compilers also make it unsound for use in race detection as the race detector may

detect a race that does not occur. Reads and writes are elided if the address being
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P ` G,H, T →aa G,H, T

P ` H,T →t:no-op H,T ′

P ` G,H, T →t:no-op
t:no-op G,H, T ′

P ` H,T →t:acq p H,T ′

P ` G,H, T →t:acq p
t:acq p G,H, T

′

P ` H,T →t:rel p H,T ′

P ` G,H, T →t:rel p
t:rel p G,H, T

′

p 6∈ G
P ` H,T →t:write p.f v H′, T ′

P ` G,H, T →t:write p.f v
t:no-op G,H′, T ′

p ∈ G
G′ = G ∪ reachable(H, v)

P ` H,T →t:write p.f v H′, T ′

P ` G,H, T →t:write p.f v
t:write p.f v

G′, H′, T ′

G′ = G ∪ reachable(H, p)
P ` H,T →t:fork p t′ H,T ′

P ` G,H, T →t:fork p t′
t:fork p t′

G′, H, T ′

p 6∈ G
P ` H,T →t:read p.f v H,T ′

P ` G,H, T →t:read p.f v
t:no-op G,H, T ′

p ∈ G
P ` H,T →t:read p.f v H,T ′

P ` G,H, T →t:read p.f v
t:read p.f v

G,H, T ′

Figure 4.4: Dynamic Escape Analysis Algorithm

read/written is not in G (they have not escaped), but are kept if the address is in G

(reachable by multiple threads). A write to an object in G expands G to include this

new object as well as all objects reachable from it given the current heap. Finally, a

fork is never elided for the same reasons as lock acquire and releases and also expands

the global set to include all items reachable from the forked thread (as they are also

reachable from the forking thread).

4.5.3 Partial Race Check Elision is Trace Precise

We prove that if P ` ∅, ∅, [t := e] −→α
β G,H, T then α has a race if and only

if β has a race.

We start by formalizing the notion of reachability with respect to a given heap.

We say an address p′ is reachable from p in heap H if:

• p′ = p, or

• for some field f , p′ is reachable from H(p.f)

Moreover, we say an address p is reachable from an expression e in a heap H if

p is reachable from some addresses q in e in heap H. We use reachable(e,H) to denote

the set of addresses reachable from expression e in H.

We say a state G,H, T is valid if G contains all references reachable by multiple

threads in T with heap H.

103



Definition 4.5.1. G,H, T is valid if ∀t1, t2 ∈ Tid. if t1 6= t2 then

reachable(T (t1), H) ∩ reachable(T (t2), H) ⊆ G

The set of addresses an action accesses is defined as:

addr(t : write q.f v) = {q, v} ∩ObjAddr.

addr(t : read q.f v) = {q, v} ∩ObjAddr.

Additionally, each access has a target address.

target(t : write q.f v) = q.

target(t : read q.f v) = q.

Finally, the function tid extracts the thread of an action:

tid(t : a) = t

Next we prove preservation for our algorithm: if the analysis takes a step from

a valid state, the resulting state is still valid.

Lemma 12 (Preservation). If G,H, T is valid and P ` G,H, T →a
b G

′, H ′, T ′ then

G′, H ′, T ′ is valid.

Proof. Case analysis of P ` G,H, T →a
b G
′, H ′, T ′

All actions in β appear in α. As we do not remove lock acquires, lock releases

or forks with our analysis, no happens before information is lost. As such, if two actions

are conflicting in β then they are also conflicting in α. Therefore a race in β implies a

race in α.

Theorem 4.5.1. If G,H, T is valid, P ` G,H, T −→α
β G′, H ′, T ′, and β has a race

then α has a trace.

Proof. Suppose β has a race between two concurrent conflicting actions b1 and b2, then

b1 and b2 also appear in α. By case analysis on P ` G,H, T −→α
β G

′, H ′, T ′, no acquire,
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release, or fork actions are elided so these actions remain the same in both α and β.

Therefore b1 and b2 are also concurrent and conflicting in α, and so α has a race.

To prove the other implication we must show that no accesses involved in the

first race in α have been elided in β.

Theorem 4.5.2. If G,H, T is valid, P ` G,H, T −→α
β G′, H ′, T ′, and α has a race

then β has a race.

Proof. Let a1, a2 be the first race in α where p = target(a1) and p = target(a2). By

induction on the length of α, without loss of generality assume α = a1.α
′.a2 where a1.α

′

is race-free:

• If a1 ∈ β then p ∈ G so a2 ∈ β (since G is monotonically increasing by Lemma 14

below) so β has a race.

• If a1 6∈ β then we have:
α = a1.α

′.a2

p 6∈ G

p ∈ addr(a1)

p ∈ addr(a2)

α′ is race-free
By lemma 13 below, a1 <α a2 and we have a contradiction.

We next prove two auxiliary lemmas required by the above proof: First, if two

actions a1 and a2 access the same address p, where p is not in G at the time of a1, and

no race occurs between a1 and a2, then a1 and a2 are ordered by happens-before. This

ordering arises from the race-free transmission of p from tid(a1) to tid(a2). There must

exist some pair of actions a′1 and a′2 which write p to a shared object and read p from

that object in a race-free manner. As a′1 and a′2 are ordered by happens-before, this

same ordering applies to a1 and a2.
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Lemma 13. Suppose

G,H, T is valid

P ` G,H, T −→α
β G

′, H ′, T ′

α = a1.α
′.a2

p 6∈ G

p ∈ addr(a1)

p ∈ addr(a2)

α′ is race-free

Then a1 <α a2

Proof. By induction on the length of α. Let t1 = tid(a1) and t2 = tid(a2). We proceed

by case analysis on how thread t2 recieved the address p.

• If t1 = t2 then a1 <α a2 by program order.

• If α contains t1 : fork p t2 then a1 <α a2 by the fork ordering.

• Otherwise t2 read p from some shared location q.f previously written by some

thread t3 (which may or may not be t1). Thus α′ = α1.a
′
1.α2.a

′
2.α3 where

– a′1 = t3 : write q.f p and

– a′2 = t2 : read q.f p

then:
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p 6∈ G, p ∈ addr(a1) Given

p ∈ addr(a′1) By Construction

Let α′ = α1.a
′
1.α2.a

′
2.α3

a1.α1 is race-free Because α′ is race-free

|α1| < |α|

a1 <α a
′
1 By induction on |α|

a′1 <α a
′
2 By α′ is race-free

a′2 <α a2 By program order

a1 <α a2 By transitivity

We prove that α has a race if and only if β has a race by using the previous

theorems that prove both sides of the implication.

Theorem 4.5.3 (Trace Precision). If P ` G,H, T −→α
β G

′, H ′, T ′ and G,H, T is valid

then α has a race if and only if β has a race.

Proof. By Theorem 4.5.2 and 4.5.1.

The previous proofs rely on the fact that G is monotonically increasing.

Lemma 14. If P ` G,H, T →a
b G
′, H ′, T ′ then G′ ⊇ G.

Proof. By case analysis on P ` G,H, T →a
b G
′, H ′, T ′.

4.6 Related Work

A memory model describes what behaviors are permitted by a program, and

consequently what optimizations and program transformations a compiler may perform.

Sequential consistency [7] is a simple memory model but it prohibits many common and

desirable optimizations. The Java Memory Model is a weaker memory model, and

therefore enables more optimizations.
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Ferrara describes the consequences of the Java memory model for static anal-

ysis, including total escape analysis. [43]. Unfortunately, the allowed optimizations

under the Java memory model are complex and Sevcik and Aspinall [91] detail a variety

of unsound compiler optimizations dealing with race conditions.

Compilers use escape analysis for a variety of optimizations. The two most

common being lock elision for thread-local locations and allocating temporary objects

on the stack as opposed to the heap. Choi et al. provide the current standard for total

escape analysis as implemented in the Java Hotspot compiler [27, 78]. They describe a

variety of optimizations that can be performed with this analysis and provide a proof

of correctness for their total escape analysis and optimizations. They later improve on

this work with a faster analysis that does not lose precision [28].

A variety of papers extend this basic escape analysis to either add functionality,

improve speed, or improve precision [102, 53, 13]. Salcianu and Rinard [86] use a

modified total escape analysis for allocating memory in a region based manner in order to

aid garbage collection. Stadler et al. extend the total escape analysis computation into

a partial escape analysis [96]. The conversion from total to partial escape analysis allows

for optimizations of objects that only escape on some program paths. Unfortunately,

this added complexity is unsound when applied to lock elision, as shown in Section 4.3.

They also make use of inlining to improve their partial escape analysis, a technique also

used by Shankar et al. [92].

In addition to compilers, many race detection algorithms use escape analyses.

Naik et al. use a total escape analysis in their static race detector [72], as do Voung et

al. [100]. Their analysis performs multiple passes, with a final expensive lockset pass

at the end to compute a set of locations where races may occur. Their earlier total

escape analysis pass removes any variables that do not escape into another thread from

the analysis. This race check elision pass does not reduce their precision beyond that

of their other optimization passes.

This technique of using a fast, static escape analysis to improve the speed of
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another, later analysis is also used by Von Praun and Gross [99] and is also used by

our own Bigfoot analysis. They add a total escape analysis to the dynamic lockset

algorithm Eraser [87]. They use this total escape analysis to perform race check elision

for memory that has not escaped into multiple threads. This optimization does not

weaken their correctness guarantees.

Nishiyama uses partial escape analysis in a dynamic race detector [74]. They

implement a low level lockset-based algorithm in the Hotspot Java virtual machine.

Their analysis uses a partial escape analysis based on a read barrier to produce a subset

of objects that must be instrumented. Objects are not included in the analysis until the

read barrier detects reads from multiple threads on the same address. This analysis does

not alter the preciseness of the lockset analysis it is based on but the lockset analysis is

already an imprecise analysis.

Likewise, Christiaens and Bosschere make use of a similar partial escape anal-

ysis to filter results for a vector clock based dynamic race detector [30]. They implement

the vector clock checks at a Java machine code level. They also implement a partial

escape analysis at this level that matches our own closely. In addition, they integrate

the analysis with the Java garbage collector in order to remove previously global objects

from the global set as they become unreachable. Their analysis is already only trace

precise so partial lock elision does not reduce their precision. Partial escape analyses can

also be implemented at a higher level then the Java machine code as done by Harrington

and Freund [58].

4.7 Conclusion

A partial escape analysis provides extra information about when an object

escapes compared to a total escape analysis. Unfortunately, using this information

for partial lock elision introduces data races into code where none were present before.

Additionally, when used in race detectors, partial race check elision reduces the precision

of the race detector to trace precise. Partial escape analysis remains useful for race
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detectors for which trace precision is enough as is the case in this thesis as described in

section xxx.
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Chapter 5

Capsule-Local Macro

Classifications

5.1 Introduction

Our partial thread-local analysis works by tracking what memory is reachable

by multiple threads. Through this work we observe that many objects that become

reachable by multiple threads share common design patterns of encapsulation and syn-

chronization. For our final analysis we extend our partial thread-local analysis to include

these common patterns by introducing the notion of capsules. Capsules provide a way of

limiting access to their fields (through encapsulation) as well as providing thread safety

(through synchronization). This chapter aims to provide a rigorous definition of cap-

sules, provide a proof that race detection checks on capsule-local objects may be elided

safely, and provides a classifier that we run on the JavaGrande [59] and DaCapo [12]

series of benchmarks to show the widespread usage of capsules in real world code.

In Chapter 4, we explored the validity of eliding checks on partial thread-local

objects. In theory, this analysis elides checks on:

• short lived objects that do not escape their allocating frame and

• long lived objects that are never shared between threads.
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In practice, we see examples of the first case successfully filtered but few examples of

the second. However, the lack of elisions on long lived objects is not because all long

lived objects are accessed by multiple threads, but because reachability does not take

into account the tools programmers use to encapsulate objects. For example, when a

parent thread creates a child thread in Java, all fields of the child thread are reachable

by the parent thread. Basing our analysis on a reachability argument means that it is

hard to design long lived objects that are not thread-shared unless they appear only on

the parent thread. For this analysis we look at accessibility instead of just reachability.

Where reachability does not take into account Java’s access modifiers, accessibility does.

While a child objects fields are always reachable by a parent thread they are not always

accessible.

For objects that are accessed by multiple threads we find that most are syn-

chronized to allow at most one thread access to their fields at any given time. These

objects are designed to be shared between threads, but only such that a single thread

is inside (has a method of that object on its stack) at a time. For example, Vector is

a class designed to be shared between threads but includes synchronization such that

only one thread may be evaluating inside it at any given time. This restriction means

that all accesses to a Vector object’s fields are guaranteed to be race-free (as shown in

Section 5.4.1). In addition, Vector is written in such a way that the array backing the

Vector is only accessible from inside the Vector class’s methods and so will also remain

race-free for the length of the program. These timing and encapsulation guarantees

combined mean that all accesses to Vector and its child objects are race-free.

We call classes that limit outside access to their fields and only allow a single

thread to be executing inside them at any one time capsules. Specifically, capsules must

adhere to these two capsule properties:

• Encapsulation - all field accesses must come from this, that is, there is no field

access outside of the capsule’s method bodies, and

• Synchronization - there is a total happens-before ordering on method calls to the
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capsule.

When an object marked as a capsule breaks one of these two properties we refer to it

as a capsule violation.

Note that Vector is an extreme case in that it enforces the synchronization

property itself. However, self enforcement is not necessary for correctness. For ex-

ample, ArrayList objects also share these two properties, however the responsibility

for correctly synchronizing ArrayList falls on the library client instead of the library

implementation. Despite relying on the implementation to correctly synchronize, the

design and documentation of the ArrayList class makes it clear that multiple threads

concurrently using an ArrayList’s methods is an error.

With the change from reachability to accessibility and thread-local to capsule-

local many objects that were considered thread-shared in our previous analysis are

considered capsule-local in our new analysis. However the change from reachability to

accessibility comes with a higher analysis cost. Only writes change the reachability

graph while writes, method calls, and method returns all change the accessibility graph.

To avoid excess overhead we only consider accessibility as it applies to capsules and

conservatively assume that only capsules protect their fields from outside access.

Capsule information can be leveraged to remove unneeded checks on capsule-

local objects without reducing the accuracy of race detection. Additionally, our capsule

analysis helps to draw out program structure by providing a more accurate picture of

what references are accessible from what capsules. Finally, in some cases a capsule vio-

lation is an error. For example, a capsule violation on ArrayList does not indicate that

ArrayList should not be treated as a capsule but instead that there was an improper

usage of an ArrayList object.

To explore these patterns, we define a language on which we prove the correct-

ness of eliminating checks on accesses to capsule-local memory by showing that accesses

to capsule-local memory can not be involved in the first race of a program. We translate

this formalism to the RoadRunner tool [48] where it acts as a filter for race detection
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1 class Parent extends Thread {
2 private Object p = new Object();
3 public void run(){
4 Child c = new Child();
5 c .start();
6 // c .o is reachable but not accessible here .
7 }
8 }
9

10 class Child extends Thread {
11 private Object o = new Object();
12 public void run(){
13 Object m = new Object();
14 }
15 }

Figure 5.1: Thread-Local Example

and produces a count of how many locations only access capsule-local objects.

To evaluate the helpfulness of these patterns in analyzing real world code we

implement a capsule filtering analysis and a capsule detection analysis in the RoadRun-

ner framework described in Section 2.4. We run these analyses on the same benchmarks

as we use for Bigfoot, JavaGrande [59] and DaCapo [12]. We find that a majority of

program locations only access capsule-local objects and may be safely filtered by a race

detector.

5.2 Capsules

5.2.1 Capsule Requirements

In our previous analysis in Chapter 4, thread reachability formed the basis for

our analysis. Any object only reachable by a single thread can only be accessed by that

thread and so all accesses to the object are race-free. For example, in figure 5.1 the

object at field p is only reachable by the Parent thread and the object at variable m is

only reachable by the Child thread. Unfortunately, the object at c .o is reachable by
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both threads. In practice we see a large number of fields like c .o, that are reachable

by multiple threads but, due to Java’s typing and the use of access modifiers, are not

accessible by multiple threads. By transitioning from reachability to accessibility, we

aim to allow standard object-oriented encapsulation techniques to limit the accessibility

of objects.

Our definition of reachability from Chapter 4 is:

an address p′ is reachable from p in heap H if:

• p′ = p, or

• for some field f , p′ is reachable from H(p.f)

Here, the main thread can reach c and c can reach the object at c .o and therefore, the

main thread can also reach the object at c .o.

For our capsule filtering analysis we rely on a limited version of accessibility

instead of reachability. Our accessibility analysis is limited in that we conservatively

assume that only capsules protect their fields from outside access. While it would be

possible to use a full accessibility analysis the added overhead and complexity is not

worth it for our race detection purposes. We define accessibility as:

an address p′ is accessible from p in heap H if p′ is not a capsule and either:

• p′ = p

• q is accessible from H(p.f) for some field f .

If we consider Child objects capsules then c can access the object at c .o, but the

Parent thread can not access c or the object at c .o.

We chose to make the capsule distinction at the class level (all objects of a

given class are either capsules or none are) in order to limit memory overhead and

because we find that this specificity is sufficient in practice.

In the example in Figure 5.1, the object at c .o can never become accessible by

the Parent thread. However, in many cases, private variables may eventually become
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accessible by multiple capsules through assignment, parameter passing, or return values.

For example, in Figure 5.2 the object at t2 .o may eventually become accessible by

Thread1 either through a call to t2 .getO or a call to t2 .leak.

Only assignment modifies reachability while assignment, parameter passing,

and return values modify accessibility as seen in getO and leak. Therefore, to use

accessibility we must also instrument capsule method calls and returns to properly

track the accessibility graph. Specifically, all objects returned from or passed to capsule

methods are marked as shared as they have escaped their containing capsule. Comments

in Figure 5.2 show where this sharing occurs.

Our previous analysis is precise because if all accesses come from the same

thread, they are guaranteed to be ordered by happens before. While thread locality

does guarantee happens before ordering, many objects enforce their own happens be-

fore ordering as well. For example, some classes like Vector ensure a happens before

ordering on their method calls through the use of the synchronized keyword. Method

call total ordering is easy to instrument as our accessibility analysis already relies on

instrumenting method calls and returns for capsule methods. This dynamic approach

to monitoring synchronization works for both for classes with internal synchronization,

such as Vector, but also for classes that rely external synchronizing, such as ArrayList.

From these ideas of encapsulation and synchronization we arrive at our two

capsule properties seen in the introduction:

• Encapsulation - all field accesses must come from this, that is, there is no field

access outside of the capsule’s method bodies, and

• Synchronization - there is a total happens-before ordering on method calls to the

capsule.

With these properties, accesses to capsule-local objects are race-free. Note,

capsules themselves are guaranteed to be capsule-local as they can never become acces-

sible by another capsule. The full proof of correctness is shown in Section 5.4.1, but at
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1 class Thread1 extends Thread {
2 public void run() {
3 Thread2 t2 = new Thread2(this);
4 }
5

6 public void use(Object o) {
7 // o’s fields are accessible .
8 }
9 }

10

11 class Thread2 extends Thread {
12 private Object o = new Object();
13 private Thread1 t1;
14

15 public Thread2(Thread1 t1) {
16 this .t1 = t1;
17 }
18

19 public void run() {
20 }
21

22 public void getO() {
23 // Mark o as shared before returning it .
24 return o;
25 }
26

27 public void leak() {
28 // Mark o as shared before passing it as a parameter .
29 t1 .use(o);
30 }
31 }

Figure 5.2: Leaky Capsules
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a high level it resembles the thread-local proof of correctness. If all accesses to a partic-

ular field come from within a capsule’s method bodies (encapsulation), and all method

calls are totally ordered (synchronization), then all accesses are also totally ordered. In

the case where a reference becomes capsule-shared through assignment, method call, or

method return then the race-free sharing of the object ensures that the last capsule-local

access and the first capsule-shared access is also race-free.

In practice we loosen the synchronization restriction on capsules slightly. We

find that many capsules contain methods that do not access state and are not syn-

chronized. These methods would usually break the capsule’s synchronization property

but are race-free because they have no accesses. For example, many capsules have

unsynchronized helper methods that call synchronized methods. To avoid classifying

these helper methods as capsule violations, we lazily enforce the capsule synchronization

property on the first memory access of a capsule method instead of immediately upon

method entry. This technique also simplifies the edge case of whether or not the lock

acquire of a synchronized method happens before or after the method enter action.

The two capsule properties provide a flexible and safe base for classifying

classes as capsules. For a non-thread example of a capsule, Figure 5.3 shows the Counter

class that meets the capsule properties. The Counter objects field a is never accessed

from outside of its method bodies and all three calls to its methods are totally or-

dered. This ordering of method calls may be enforced by the Counter class itself as is

shown with the set method, or by the caller as is shown with the unsynchSet method.

Lazy synchronization enforcement allows the helper method set0 to not cause a capsule

violation as it never accesses state.

In this example, Thread1, Thread2, and Counter all meet the requirements

for capsules while int[] does not. All accesses to the fields of Thread1, Thread2, and

Counter are race-free because they are capsule accesses. All accesses to the fields of the

array at c .a are race-free because the array is only accessible by c, and therefore these

accesses are capsule-local.

118



1 class Thread1 extends Thread {
2 public void run() {
3 Counter c = new Counter();
4 Thread2 t2 = new Thread2(c);
5 c .set(1, 2);
6 c .set0(1)
7 }
8 }
9

10 class Thread2 extends Thread {
11 private Counter c;
12

13 public Thread2(Counter c) {
14 this .c = c;
15 }
16

17 public void run() {
18 synchronize(c){
19 c .unsynchSet(2,3);
20 }
21 }
22 }
23

24 class Counter {
25 private int[] a = new int[10];
26

27 public synchronized set(int i, int v) {
28 a[i] = v;
29 }
30

31 public unsynchSet(int i, int v) {
32 a[i] = v;
33 }
34

35 public set0(int v){
36 set(0,v);
37 }
38 }

Figure 5.3: Objects as Capsules
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Our definition of capsules allows for all capsule-local references to have their

race checks elided. Looking at our notion of accessibility, we also see that it is impossible

for capsules themselves to become capsule-shared. Therefore, direct access to a capsule’s

fields from within that capsule’s methods are always race-free, we refer to these accesses

as capsule accesses. Access to the fields of non-capsule, capsule-local objects are also

race-free but these objects may become capsule-shared in the future. We refer to these

accesses as capsule-protected accesses.

We provide an extension to EscapeJava (the language used in Chapter 4)

called CapJava and a capsule filtering algorithm for CapJava. We provide a proof

of correctness for this algorithm showing that filtering capsule-local accesses does not

impact the precision of a trace precise race detector. Finally, we implement our filtering

algorithm using the RoadRunner framework and run it on the JavaGrande and Da

Capo series of benchmarks and find that a majority of locations only access capsule-local

objects.

5.2.2 Capsule Detection

In real world applications, people may choose to hand label classes that they

intend to be capsules. However, for testing purposes and to aid in ease of use, we have

developed a dynamic capsule detection algorithm that can be run alongside capsule

filtering and race detection.

The high level idea for capsule detection is to begin by assuming all classes as

capsules: as classes make capsule violations, they are removed from the list of capsules.

Our tool iteratively executes the program until an execution with no capsule violations

occurs. The presence of a capsule violation in an execution may hide a data race during

execution, so for the purposes of our algorithm a capsule violation is considered an error.

A capsule violation may be the result of a miss-classified capsule or an actual error (such

as a capsule violation on ArrayList). If the class is miss-classified the capsule detection

algorithm removes it from the list of capsules for the next run. If the capsule violation
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indicates a real error then the programmer must fix this error. In the benchmarks

tested we have found that a single iteration finds at least one capsule violation from

each non-capsule class and all future runs are free from capsule violations.

In more detail, capsule detection verifies that all capsule field accesses only

come from accesses to this, and that all enters and exits of capsule methods are ordered

by happens before. To verify that all accesses to capsule fields come from this capsule

detection inserts a check into race detection’s standard access instrumentation. On an

access to a field of a capsule, capsule detection compares the class of the target and the

location of the access, and if they do not match, the analysis reports a capsule violation.

In the future, much of this work could be done with a static analysis by checking that

all accesses to fields of capsule objects are of the form this .x.

To enforce the capsule synchronization property, that all enter and exits to

methods are totally ordered, capsule detection adds instrumentation to the beginning

and end of all capsule methods. Each capsule keeps a clock that tracks the timing of its

method enters and exits. Upon entering a capsule method, capsule detection compares

the clock of the capsule being entered to the clock of the calling thread to ensure that

this enter happens strictly after the last exit from this capsule. If the previous exit does

not happen before the current enter, the analysis reports a capsule violation. Upon

exiting a capsule, capsule detection records the time of the exit to be compared with

the threads time at the next enter. Because of the total ordering requirement, capsule

detection only needs to track the time and thread of the last exit and not the time of

the last exit for each thread.

An execution of a target program running capsule detection, capsule filtering,

and race detection produces:

• no errors: this execution is guaranteed to be race-free;

• a capsule violation: this execution may or may not have a race but does have either

an incorrectly labeled capsule or an improper usage of a capsule. The programmer

either fixes the capsule violation or on future runs the violating class will not be
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considered a capsule;

• a data race: this execution is guaranteed to have a data race on the address

reported.

In our benchmarks we find the capsule detection algorithm always gives capsule vio-

lations on the first execution (as all classes are initially marked as capsules) while all

future executions give either no errors or a data race.

5.3 Capsule Theory

We now define a syntax and semantics for CapJava on which we formalize

our capsule theories. CapJava aims to mimic Java in a simplified setting that removes

all actions not relevant to capsules or race detection.

5.3.1 Syntax

We extend the initial syntax of EscapeJava to include an optional capsule

annotation for classes, a new expression for evaluation inside a capsule, and new actions

for entering, exiting, reading, and writing to a capsule. We call this extended language

CapJava. A program P consists of a sequence of class definitions D (containing meth-

ods and fields), as well as a main expression e. Expressions can create new objects (new),

read from fields (e.f), assign to fields (e.f = e), create local variables (let x = e in e),

call methods (e.m(e)), acquire and release locks (acq e and rel e), and fork off new

threads (fork e).

The [capsule] annotation is optionally added to classes that should be treated

as capsules. If a capsule annotation is wrongly given, evaluation becomes stuck (necessi-

tating changing the annotation and re-evaluation). In implementation we automatically

label classes using capsule detection as described in Section 5.2.2. The capsule annota-

tion is class based, and either all objects of a class are capsules or none are. An object

is a capsule, if the class of the object has the capsule annotation.
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P ∈ Program ::= D e
c ∈ ClassName
f ∈ FieldName
m ∈ MethodName

D ∈ Class ::= [capsule] class c {f,m}
method ∈ Method ::= m(x){e}
l ∈ Location ::= p.f
p, q, r ∈ ObjAddr
v ∈ V alue ::= p | null
e ∈ Expression ::= new c() | x | v | e.f | e.f = e | e.m(e)

| let x = e in e | acq e | rel e
| fork e | in-cap k e

E ∈ Context ::= E.f | E.f = e | p.f = E | E.m(e) | p.m(v,E, e)
| acq E | rel E
| let x = E in e | in-cap k E

H ∈ Heap = (p→ t | ⊥) and (l→ v)
G ∈ GlobalSet
T ∈ ThreadSet = t→ e
Σ ∈ State ::= H • T
t ∈ Tid ::= (Thread identifiers)
a, b ∈ Action ::= t : acq p | t : rel p | t : read l v | t : write l v

| t : no-op | t : fork p t′ | t : enter k v | t : exit k v
α, β ∈ Trace ::= a

k ∈ Capsule = {p : p is a capsule}
o ∈ Owner ::= t | k

Figure 5.4: CapJava Syntax
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Evaluation uses the in-cap k e syntax to track the call stack of capsule

methods. The expression in-cap k e causes the expression e to be evaluated inside

the capsule k. When e has been fully evaluated to a value v, the capsule is exited.

The in-cap syntax is only ever used by capsule method calls and is not present in

user code. The well-foundedness of an expression ensures the correct placement of

in-cap expressions, as discussed in Section 5.4.1.

Most actions are the same as those in EscapeJava and contain the executing

thread, the action, as well as any information needed by the race detector. In addition

to these standard actions, we add an enter and exit action to track the flow into and

out of capsules. An enter action, enter k v, contains the capsule being entered, k, as

well as all of the parameters passed into the capsule by the method call v. The exit

action, t : exit k v, contains the capsule being exited, k, as well as the single return

value from that method, v. All actions have an owner. If an action is emitted under an

in-cap k e expression, the owner is the capsule k. Otherwise, the owner of an action is

the executing thread. Owners are not used in our semantics but are important for the

proof of correctness.

5.3.2 Semantics
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A running program has a heap H and a thread set T . The heap maps locations

to values and objects to thread identifiers (Tids). For standard objects, that may act

as locks, this Tid tracks the holding thread. For capsules, which are unable to act as

locks, the Tid tracks what thread occupies the capsule. Values v are addresses p and

null. A location l = p.f is an object address p along with a field f . The thread set T

maps thread identifiers Tid to expressions e.

A program starts with an empty heap ∅ and a thread set T = [t := e], with a

single thread e and thread identifier t. A single evaluation step

P ` H,T →a H ′, T ′

produces an action a. Taken in sequence these actions form a trace α. We include P in

the evaluation relation to facilitate method look up, and we assume method names are

unique.

The semantics of EscapeJava have been extended to handle operations on

capsules separately from those on other objects. Compared with other objects, capsules

emit enter and exit actions for capsule method calls, enforce encapsulation and syn-

chronization constraints, and may not act as locks. In implementation, the enter and

exit actions are already accommodated by RoadRunner, the privacy constraints are

checked dynamically on access, and the synchronization constraints are checked by a

small amount of code insertion.

The rules [Method] and [CapMethod] handle method calls. For method

calls on capsules, evaluation uses [CapMethod]. This rule emits an t : enter k v

action, where k is the capsule whose method is being called, and v are the parameters

being passed to that method. Executing [CapMethod] adds an in-cap k e expression

to the context where e is the method body being executed by the capsule k. After

evaluation of the method body finishes (e has been evaluated to v), evaluation uses

the [ExitCap] rule to remove the in-cap k v expression and exit the capsule. While

exiting, evaluation emits an exit action, t : exit k v, where k is the capsule being exited
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and v is the return value from the current method call.

In order to enforce the proper timing restrictions, evaluation uses the

capFree(H, k, a, α) syntax. This function checks that the current action (entering the

capsule) happens after all previous exit actions from that capsule and checks that no

other thread is currently in the capsule.

capFree: Heap× Capsule×Action×Action→ Boolean

capFree(H, k, a, α) = (H(k) = ⊥) and ∀ t : exit k v ∈ α . t : exit k v <α a

If the capFree(H, k, a, α) check returns true, evaluation enters the capsule.

Evaluation records the fact that a thread is currently inside the capsule by modifying

H(k) from ⊥ to the entering thread’s Tid. Exiting does not require any checks, but

does modify the heap again to return it to its initial state, H[k := ⊥]

For standard method calls, a t : no-op action is emitted and no in-cap

expression is added. As no in-cap expression is added for standard method calls, there

is no corresponding exit rule.

The [Let] rule works as expected. The basic reading and writing rules, [Read]

and [Write], also work as expected by modifying the store and emitting their corre-

sponding action. These rules do not apply to capsules, as noted in the side conditions.

Reading and writing to fields of a capsule use the [CapRead] and [CapWrite] rules.

The only difference between the standard and capsule access rules is that the capsule

rules enforce encapsulation by ensuring that the executor of the current thread is the

capsule being accessed. In other words, fields of a capsule can only be accessed inside of

that capsule’s methods. To make this restriction [CapWrite] and [CapRead] use the

executor(t) function. This function returns the capsule that the thread t is currently

evaluating under. If the thread is not evaluating under a capsule, the executor of a
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thread is the thread itself:

executor: Expression→ Owner

executor(e) = k if e = E[in-cap k e2] and e2 6= E′[in-cap _ _]

t otherwise

It is possible for evaluation to become stuck on either a faulty capsule method

call or access. By becoming stuck, evaluation stops before it breaks one of the capsule

properties and so the analysis remains precise. In implementation, instead of becoming

stuck, these operations emit a capsule violation and mark the violating class as not a

capsule for future runs.

5.3.3 Capsule Filtering

Figure 5.6 shows our capsule filtering algorithm. This algorithm performs a

dynamic capsule accessibility analysis, recording inG all addresses accessible by multiple

capsules. The judgment

P ` G,Σ→a
b G
′, H ′T ′

performs a single evaluation step

P ` H,T →a H ′, T ′

and also extends the set G′ of capsule-shared addresses. The judgment produces two

actions, a and b. The action b is a no-op action, if the action a is an access whose race

check can be elided; otherwise b is the same action as a. Thus, combining multiple steps

of this judgment yields a run of the capsule filtering algorithm,

P ` G,Σ −→α
β G

′, H ′T ′
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P ` G,Σ→a
a G,Σ

a = t : no-op
P ` Σ→a Σ′

P ` G,Σ→a
a G,Σ′

[CE-Noop]

a = t : fork p t′

P ` H • T →a H′ • T ′
G′ = G ∪ accessible(p,H)
P ` G,H • T →a

a G
′, H′ • T ′

[CE-Fork]

a = t : acq p
P ` Σ→a Σ′

P ` G,Σ→a
a G,Σ′

[CE-Acq]

a = t : rel p
P ` Σ→a Σ′

P ` G,Σ→a
a G,Σ′

[CE-Rel]

a = t : write p.f v
P ` Σ→a Σ′

p 6∈ G
P ` G,Σ→a

t:no-op G,Σ′
[CE-Write1]

a = t : write p.f v
P ` H • T →a H′ • T ′

G′ = G ∪ accessible(v,H)
p ∈ G

P ` G,H • T →a
a G
′, H′ • T ′

[CE-Write2]

a = t : read p.f v
P ` Σ→a Σ′

p 6∈ G
P ` G,Σ→a

t:no-op G,Σ′
[CE-Read1]

a = t : read p.f v
P ` Σ→a Σ′

p ∈ G
P ` G,Σ→a

a G,Σ′
[CE-Read2]

a = t : enter k v
P ` H • T →a H′ • T ′

G′ = G ∪ accessible(v,H)
P ` G,H • T →a

a G
′, H′ • T ′

[CE-Enter]

a = t : exit k v
P ` H • T →a H′ • T ′

G′ = G ∪ accessible(v,H)
P ` G,H • T →a

a G
′, H′ • T ′

[CE-Exit]

Figure 5.6: Dynamic Accessibility Analysis and Capsule Filtering Algorithm
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in which α is the full trace of the target program, while the trace β contains no-op actions

for accesses to capsule-local targets.

The rules [CE-Noop], [CE-Acq], and [CE-Rel] do not ever filter their ac-

tions or modify the global set G. The rules [CE-Write1] and [CE-Read1] handle

filtered accesses and only apply when the object being accessed is capsule-local, p 6∈ G.

Accesses matching these rules are race-free so the algorithm produces a no-op for the b

action. The other access rules, [CE-Write2] and [CE-Read2] handle cases where the

object being accessed is capsule-shared, p ∈ G. In these cases, actions are not filtered

and the [CE-Write2] rule extends the global set using the accessible(v,H) function

shown below.

We say an address q is accessible from p in heap H if q is not a capsule and

either:

• p = q

• q is accessible from H(p.f) for some field f .

This function is similar to the reachability function used in Chapter 4, however

capsules and their fields are not considered accessible as direct access to their fields is

disallowed by evaluation.

The rules for entering and exiting a capsule, [CE-Enter] and [CE-Exit], are

never filtered. These rules produce a new global set G′ that is formed from the union of

the old global set G and the set of all things accessible by the parameters being passed

in, v (in a [CE-Enter]), or returned, v (in [CE-Exit]), from the capsule.

5.4 Correctness Proof

5.4.1 Terminology

Our accessibility function takes into account the limited accessibility of cap-

sules. We also modify the definition of free addresses in the same way. Specifically, in the
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expression in-cap k e, the capsule k protects the expression e so in-cap expressions do

not contain free addresses. Also, a capsule is never a free address. All other definitions

are standard. We define the free addresses of a term e as:

FA: Expression→ 2ObjAddr

FA(k) = ∅

FA(p) = {p} p is not a capsule

FA(x) = ∅

FA(e.f) = FA(e)

FA(new c()) = ∅

FA(e1.f = e2) = FA(e1) ∪ FA(e2)

FA(e1.m(e2)) = FA(e1) ∪ FA(e2)

FA(let x = e1 in e2) = FA(e1) ∪ FA(e2)

FA(acq e) = FA(e)

FA(rel e) = FA(e)

FA(fork e) = FA(e)

FA(in-cap k e) = ∅

We define roots for owners (capsules or threads) to take into account both the free

addresses in their expressions as well as those accessible from fields. The roots of a

thread t with a thread set T are the free addresses in T (t).

roots: Owner × ThreadSet→ 2ObjAddr

roots(t, T ) = FA(T (t))

The roots of a capsule k, with respect to a thread set T , are the capsule itself as well

as the free addresses of expressions evaluating under that capsule.

roots(k, T ) = {k} ∪ {p ∈ FA(e) | ∃t.T (t) = in-cap k e}

131



Finally, p is root-accessible from owner o with respect to state H • T if p is accessible

from q ∈ roots(o, T ) with respect to heap H.

rootAccessible: Owner × State→ 2ObjAddr

rootAccessible(o,H • T ) = {p | p ∈ accessible(q,H), q ∈ roots(o, T )

Root-accessible takes into account both the accessibility of objects from other objects,

as well as the accessibility of objects from expressions.

A global set and state G,H • T is valid if G contains all references root-

accessible by multiple owners in a heap H and a thread set T and, for any capsule k,

There is at most one in-cap k e in the thread set T . In other words, at any given point

in evaluation, G is the global set or bigger; no two threads are evaluating in the same

capsule, and no single thread is evaluating under the same capsule twice.

Definition 5.4.1. G,H • T is valid if

∀o1, o2 ∈ owners if o1 6= o2 then

rootAccessible(o1, H • T ) ∩ rootAccessible(o2, H • T ) ⊆ G

and ∀k ∈ Capsule there is at most one in-cap k e in T

and H(k) = t

Each access has a target address.

target: Action→ ObjAddr

target(t : write p.f v) = p

target(t : read p.f v) = p

The function tid extracts the thread of an action:

tid: Action→ Tid
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tid(t : _) = t

A thread t is in a capsule k with respect to a threadset T :

in: Tid× Capsule× ThreadSet→ Bool

If there exists in-cap k e2 in T (t)

In Section 5.3.2 we defined the executor of a thread as the most recent capsule that

thread is in or, if it is in no capsules, the thread itself,

executor: Expression→ Owner

executor(e) = k if e = E[in-cap k e2] and e2 6= E′[in-cap _ _]

t otherwise

We also extend this definition to actions:

executor: Action× ThreadSet→ Owner

executor(a, T ) = executor(T (tid(a)))

Evaluating a program P will produce a trace α. Evaluating a program P with

our capsule filtering algorithm 5.6 will produce two traces α and β. For every action in

trace α at index i, there is a corresponding action in trace β at index i that is either

identical to the action in α or a no-op . Our proof shows that trace β contains a race

if and only if trace α contains a race.

5.4.2 Proof of Correctness

In this section, we prove that the original trace produced by evaluation has a

race if and only if the filtered trace also has a race. If the filtered trace contains a race,
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then it is trivial to prove the original trace also contains the same race, as all accesses

in the filtered trace also appear in the original and all acquire and release events are

identical. However, if a race occurs in the original, it is not immediately obvious that

the same race also occurs in the filtered trace, as one of the offending accesses may have

been filtered.

We start by proving that evaluation begins in a valid state and will preserve

this valid state throughout execution. We then show that if a race exits between two

actions a1 and a2, where a1 has been filtered, then some action shares the target of the

race with the owner of a2. If a1 and a2 race then this sharing also races. This sharing

race will be caught by race detection, so our analysis remains trace precise even when

a2 is filtered. If this sharing race does not exist, then the original race can not exist

either.

To begin, we prove our analysis preserves validity. Given a transition P `

G,Σ −→a1.a2...ai
b1.b2...bi

Σ′, T ′ for an action ai, we name the prestate of the action Σi and the

post state Σ′i. For example, P ` G1,Σ1 →a1
b1
G′1,Σ′1. For a state Σx we name the heap

and thread set Hx • Tx.

Lemma 15 (Preservation). If G,Σ is valid and P ` G,Σ →a
b G

′,Σ′, then G′,Σ′ is

valid.

Proof. Case analysis of P ` G,Σ→a
b G
′,Σ′

The proof of our desired correctness property in one direction is straightfor-

ward.

Theorem 5.4.1. If G,Σ is valid and P ` G,Σ −→α
β G

′,Σ′ and β has a race then α

has a trace.

Proof. Suppose β has a race between two concurrent conflicting accesses b1 and b2, then

b1 and b2 also appear in α. By case analysis on P ` G,Σ −→α
β Σ′, T ′, no acquire,

release, enter, exit, or fork actions are elided so these actions remain the same in both
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α and β. Therefore, b1 and b2 are also concurrent and conflicting in α, hence α has a

race.

To prove the other implication, we must show that no accesses involved in the

first race in α have been elided in β.

Theorem 5.4.2. If G,H, T is valid and P ` G,Σ −→α
β Σ′, T ′ and α has a race, then

β has a race.

Proof. Let a1, a2 be the first race in α, where p = target(a1) and p = target(a2). By

induction on the length of α, without loss of generality, assume α = a1.α
′.a2 where a1.α

′

is race-free:

• If a1 ∈ β then p ∈ G so a2 ∈ β (since G is increasing by Lemma 19 below) so β

has a race.

• If a1 6∈ β then we have:
α = a1.α

′.a2

p 6∈ G

o1 = executor(a1, T1)

o2 = executor(a2, T2)

p ∈ roots(o1, T1)

p ∈ roots(o2, T2)

α′ is race-free
By lemma 16 below, a1 <α a2 and we have a contradiction.

We next prove two auxiliary lemmas required by the above proof: First, if two

actions a1 and a2 access the same address p, where p is not in G at the time of a1,

and no race occurs between a1 and a2, then a1 and a2 are ordered by happens-before.

Intuitively, this ordering arises from the race-free transmission of p from executor(a1, T )

to executor(a2, T ). There must exist some pair of actions a′1 and a′2 that transmit p,
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from the owner of a1 to the owner of a2 in a race-free manner (either by through a write,

method call, or method return). As a′1 and a′2 are ordered by happens-before, this same

ordering applies to a1 and a2.

Lemma 16. Suppose

G,Σ is valid

P ` G,Σ −→α
β G

′,Σ′

α = a1.α
′.a2

p 6∈ G

o1 = executor(a1, T1)

o2 = executor(a2, T2)

p ∈ roots(o1, T1)

p ∈ roots(o2, T2)

α′ is race-free

Then a1 <α a2

Proof. By induction on the length of α. If o1 = o2 then by Lemma 17 they are ordered.

If o1 6= o2 then p 6∈ roots(o2, T1) so at some point p became a root in o2.

So there exists an action a3 in α′, such that p 6∈ roots(o2, T3) and p ∈

roots(o2, T
′
3). We proceed by case analysis on the type of a3.

• The cases for [Noop], [Acq], [Rel], [Write] do not modify the roots of o2.

• [Fork] a3 = t3 : fork p t2, t2 = o2 then:
a1 <α a3 By induction on |α|

a3 <α a2 By fork ordering

a1 <α a2 By transitivity.

• [Exit] a3 = t3 : exit k3 p, t3 is in o2 with respect to T3

then:
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a1 <α a3 By induction on |α|

a3 <α a2 By Lemma 17

a1 <α a2 By transitivity.

• [Enter] a3 = t3 : enter o2 q, and p ∈ q

then:
a1 <α a3 By induction on |α|

a3 <α a2 By Lemma 18

a1 <α a2 By transitivity

• [Read] a3 = t2 : read q.f p, executor(a3)T3 = o2

We proceed by case analysis on if H(q.f) = p.

– H(q.f) 6= p

then:
∃a4 = t3 : write q.f p

a1 <α a4 By induction on |α|

a4 <α a3 By no races in α′

a3 <α a2 By Lemma 17

– H(q.f) = p

q 6∈ G and so at some point before q enters G there must be an action a4

where q ∈ roots(o1, T4):
∃a4 . executor(a4)T4 = o1, q ∈ roots(o1, T4), q 6∈ G4

a1 <α a4 By Lemma 17

a4 <α a3 By induction

a3 <α a2 By Lemma 17

a1 <α a2 By transitivity

If two actions take place in the same owner, they are always ordered.
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Lemma 17. If
G,H, T is valid

P ` G,Σ −→α
β G

′,Σ′

α = a1.α
′.a2

a1 is in o with respect to Ta1

a2 is in o with respect to Ta2

tid(a1) = t1

tid(a2) = t2

then a1 <α a2

Proof. If o is a thread, then t1 = t2 and by programs order a1 <α a2. If o is a capsule,

then both actions may still be in the same thread in which case by program order. If

the actions are not in the same thread, then there exists an exit at or after a1, followed

by an enter before a2 (because no two threads may be in the same capsule at the same

time). Without loss of generality, assume the exit comes after a1.

• ax1 = t1 : exit o _

• ae2 = t2 : enter o _

where α = a1.α1.ax1.α2.ae2.α3.a2

a1 <α ax1 By program order

ax1 <α ae2 By enter exit order

ae2 <α a2 By program order

a1 <α a2 By transitivity

If it appears earlier in the trace, the action that enters a capsule happens before

an action in that capsule.
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Lemma 18. If
G,H, T is valid

P ` G,Σ −→α
β G

′, Sigma′

α = a1.α
′.a2

a1 = t1 : enter k _

a2 is in k

tid(a2) = t2

then a1 <α a2

Proof. There must exist some enter that comes before a2 for it to be in k. If this enter

is a1, then both actions happen in the same thread and are ordered by program order.

If this enter is not a1, then there exists an exit followed by an enter in α′.

• ax = t1 : exit k _

• ae = t2 : enter k _

where:
a1 <α ax By program order

ax <α ae By enter exit locking

ae <α a2 By program order

a1 <α a2 By transitivity

Theorem 5.4.2 relies on the fact that G is monotonically increasing.

Lemma 19. If P ` G,Σ→a
b G
′,Σ′ then G ⊆ G′.

Proof. By case analysis on P ` G,Σ→a
b G
′,Σ′.

Our main correctness result is then a straightforward combination of the above

two theorems.

Theorem 5.4.3 (Trace Precision). If G,H, T is valid and

P ` G,Σ −→α
β G

′,Σ′
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then α has a race if and only if β has a race.

Proof. By Theorem 5.4.2 and Theorem 5.4.1.

5.5 Implementation

5.5.1 Capsule Filter

We implement our capsule filter and capsule detection algorithms using the

RoadRunner framework detailed in Section 2.4. This framework instruments Java

bytecode, with the appropriate hooks to insert our own analysis code at various event

sites analogous to the actions of our semantics. We implement custom hooks where

our analyses differ from standard race detection on accesses and entering and exiting

from capsules. We also define helper functions to handle transitively sharing objects

and checking synchronization guarantees on capsules.

Our analyses can be run either on top of vector clock based race detection

or on their own. In both cases, capsule detection checks for capsule violations and

reports an error if a capsule violation is detected. If capsule filtering and detection are

being run stand-alone, they collect information on how many accesses and locations

are capsule or capsule-protected, and can be filtered. If they are being run on top of

race detection, then accesses that are not filtered are passed on to the underlying race

detection algorithm.

In order to track state on a per object or field basis race detectors use shadow

state. This shadow state is added to every object or field by the instrumenter and can

be used to store analysis data. Initial vector clock based race detectors stored two vector

clocks (one read and one write) per field per object. Each of these vector clocks has one

entry per thread in the target program. FastTrack [47] later reduced this requirement,

in most cases, from a read/write vector clock to a read/write epoch, although in some

cases a full vector clock is still required for reads. Our analysis has different shadow

state requirements for capsules and standard objects. For standard objects, one flag per
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object is added that marks the object as either capsule-shared or capsule-local. This

flag is in addition to any other shadow state that the underlying race detector may use.

This information can alternatively be captured using a global weak set that more closely

matches the global set G of our semantics.

A capsule object has a simplified shadow state that replaces the race detector’s

shadow state. Instead of keeping shadow state for each field, a capsule’s shadow state

consists of a single epoch for the object that records the timing information of the

capsule’s last exit. This reduced state saves memory in situations in which a large

amount of capsules are present.

Our idealized algorithm uses a number of helper functions not native to Java.

The accessible(o,H) function computes a set of objects accessible from the address o

and heap H. Java does not natively support any ideas about accessibility. This behavior

is instead captured in a leak function.

leak only operates on objects and arrays as it is not possible to pass other

types by reference in Java and so they can not become shared. The if on line 3 checks if

the object to leak is null, already accessible by multiple capsules (isShared), a boxed

primitive type (such as Integer), or itself a capsule. In all of these cases, leaking has no

effect and leak returns immediately. If the object to leak does not fall into any of these

categories, leak marks it as capsule-shared and then searches it for more references,

recursively leaking any it finds. If the object to leak is an array, then leak searches

using standard iteration (line 9). If the object to leak is not an array, leak uses reflection

to access all the fields of the object (line 15). For optimization purposes, code rewriting

may be used to add a getAllFields method to each object if reflection is too slow for

the target use case.

The leak function is used by all actions that cause objects to become capsule-

shared. An object may become shared through writes, capsule enters, or capsule exits.

As capsules classes are known at compile time, calls to leak are placed at the beginning of

each capsule method (to leak the parameters) and at the return site of capsule methods
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1 void leak(Object o) {
2 String oClass = o .getClass();
3 if(o == null || isShared(o) || isPrimitive(oClass) || isCAP(oClass))
4 return;
5

6 markAsShared(o);
7

8 if (o .getClass() .isArray()) {
9 // Transitive search if o is an array .

10 for(int i=0; i<Array .getLength(o); i++){
11 Object child = Array .get(o, i);
12 leak(child);
13 }
14 } else {
15 // Transitive search if o is an object .
16 Field[] fields = new Field[1];
17 fields = getAllModelFields(o .getClass()) .toArray(fields);
18 for(int i = 0;i<fields .length;i++) {
19 if(fields[i] == null) continue;
20 fields[i] .setAccessible(true);
21 leak(fields[i] .get(o));
22 }
23 }
24 }

Figure 5.7: Java leak Implementation

(to leak the return value). These instrumentations are only made for reference types.

For example, a method that takes an integer as a parameter and returns an integer is

unmodified.

Access events check if the access should be filtered, leak objects on writes,

and mark capsule violations if the access is to a capsule outside a capsule method.

filterAccess, shown in Figure 5.8, performs each of these three tasks. RoadRunner

calls this function on each access with the AccessEvent for the current access. If

filterAccess returns true, then further race detection is skipped without any loss

of precision. If filterAccess returns false the underlying race detector performs its

checks as normal.

filterAccess begins by identifying the target of the access, target, and the

value being assigned, newValue. filterAccess next handles the special case of static
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fields, something not covered in our semantics. If the access is a static write, newValue is

immediately leaked. All static fields are accessible by all capsules, so our analysis leaks

any value that is assigned to one. All static accesses must be checked so filterAccess

returns false.

filterAccess next checks if target is a capsule. If target is a capsule

filterAccess checks for a capsule violation by comparing the current program lo-

cation and target’s class (line 20). If this check fails, target’s class is added to

capsuleViolations and will no longer be counted as a capsule for future runs. If

target is a capsule and does not have a capsule violation, then filterAccess filters

this access by returning true.

If the target is not a capsule, it may still be capsule-protected (line 26). If

the target is capsule-protected, filterAccess returns true. If the target is neither

a capsule nor capsule-protected, filterAccess can not filter this access and returns

false (line 30). In the case where the current access is a write, it also leaks newValue

as this object is now capsule-shared.

In addition to the code shown, filterAccess contains bookkeeping code that

is used to classify the various accesses. At the end of a run, this data is used to form the

results seen in section 5.6. Some optimizations are present in the actual code compared

with the example code shown in this paper. For example, class comparisons are handled

using integers instead of string comparison, and some information is stored directly in

the shadow state.

5.5.2 Capsule Detection

In order to enforce the capsule properties, capsule detection checks for en-

capsulation violations at accesses to capsule fields and synchronization violations upon

entering capsule methods. As seen previously, capsule detection checks the encapsu-

lation property in filterAccess alongside filtering. Capsule detection enforces the

synchronization property upon entering a capsule method body. Upon entering a cap-
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1 boolean filterAccess(AccessEvent event) {
2 Object target = event .getTarget();
3 Object newValue = null;
4 if(event .newValue .getType() == TaggedValue .Type .OBJECT) {
5 newValue = event .newValue .getObjectValue();
6 }
7

8 // Leak static writes .
9 if(isStatic(event)) {

10 if(event .isWrite()) {
11 leak(newValue);
12 }
13 return false;
14 }
15

16 String targetClass = target .getClass();
17 if(isCAP(targetClass)) {
18 // Mark a violation if accessed outside of capsule bounds
19 String currentClass = getProgramLocation();
20 if(currentClass .equals(targetClass)){
21 return true;
22 } else { // Report a capsule violation .
23 capsuleViolations .add(targetClass);
24 return false;
25 }
26 } else if(!isShared(target)) {
27 return true;
28 } else {
29 if(event .isWrite()) leak(newValue);
30 return false;
31 }
32 }

Figure 5.8: Java filter Implentation

sule method, enterCap (shown in Figure 5.9) checks that there is not another thread

already in the capsule (line 3) and that the last exit happens before the current en-

ter (line 8). Capsules use an epoch to track both of these properties. Upon exiting

a capsule, the time of the exit is recorded in the capsule epoch. An exit action never

fails. Upon entering a capsule, the capsules epoch is checked against the current threads

vector clock to ensure the proper happens before ordering. If an enter succeeds, capsule
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1 boolean enterCap(Epoch capsuleTimer, int tid) {
2 synchronized(capsuleTimer) {
3 if(occupied(capsuleTimer)) {
4 return false; // A thread is already in this capsule .
5 } else {
6 VectorClock v = ts_get_V(tid);
7 long threadTime = v .get(mockThread);
8 if(time(capsuleTimer) <= threadTime) {
9 return true; // The last exit happens before this enter .

10 } else {
11 // The last exit doesn’t happen before this enter .
12 return false;
13 }
14 }
15 }
16 }
17

18 void exitCap(Epoch capsuleTimer, int tid) {
19 synchronized(capsuleTimer) {
20 VectorClock v = ts_get_V(thread);
21 setTime(capsuleTimer, tid, v .get(tid));
22 }
23 }

Figure 5.9: Java Capsule Timing Implentation
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detection sets the capsule’s epoch’s Tid to the current thread and its time component

to -1. Trying to enter a capsule whose time component is -1 always fails due to the

occupied check.

We make one modification to enterCap based on common code patterns we

find in real world code. Instead of placing enterCap immediately at the start of a capsule

method call, we lazily place it before the first access within that capsule’s method body.

This placement allows for helper methods, which may not be synchronized and that

do not modify state to not trigger a capsule violation. We see this pattern especially

in unsynchronized helper methods that call synchronized methods. For example, in

Vector the contains method is unsynchronized, however it does not access any state

on its own and only calls the indexOf method that is synchronized.

5.6 Results
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In addition to our proof of correctness, we also show that checks on capsule

and capsule-protected locations make up a majority of checks in Java code. We follow

RoadRunner’s standard treatment of libraries: fields of Java’s core library classes are

not checked for races, and synchronization operations internal to those libraries are

assumed not to be used to protect any of the target’s data and are ignored. However,

several key library methods from java.lang.Object and java.lang.Thread, such as

Object.notify and Thread.start, are treated specially as synchronizing operations.

In general, we believe that including all libraries would lead to an increase in capsule

and capsule-protected locations, as many of the Java library containers are capsules and

the arrays backing Java’s collections are almost always capsule-protected.

We measure results for objects, arrays, and classes. Arrays can not be capsules

as their contents are always accessed from outside their own method bodies, but they

can be capsule-protected. Objects may be either capsules or capsule-protected but

not both. We mark objects as capsules based on their violation or not of the capsule

properties, regardless of programmer intent. Many helper objects can be considered

either capsule-protected or capsules because their parents’ synchronization ensures their

own synchronization. We classify these as capsules as we have no way of knowing

programmer intent. For classes, the capsule classification is straightforward as either

all instances of a class are capsules or none are. For capsule-protected classes, we only

count those in which all objects of the given class are capsule-protected. All classes

that fall into multiple categories are marked as mixed. No library classes are counted

towards the total number of classes or any of the subcategories.

Table 5.1 shows the classification of program locations for the JavaGrande

(top) and DaCapo (bottom) benchmarks. Our tool classifies locations into one of the

following categories:

• Capsule - The target is always a capsule,

• Capsule-Protected - the target is always capsule-local but is not a capsule itself,
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• Single-Capsule-Access - the target is only accessed by a single capsule, but is

capsule-shared,

• Other - the target is capsule-shared and is accessed by multiple capsules,

• Read Shared - the target is capsule-shared but only written once,

• Mixed - The target is capsule-local on some accesses and capsule-shared on other

accesses.

Of these categories, locations that fall in the capsule or capsule-protected categories are

always race-free. Those that fall in the single-capsule-access category are race-free at the

moment but, as they are accessible by multiple capsules, may eventually be involved in a

race. These locations are not safe to filter. Code refactoring or a more complex capsule

analysis may be able to convert some of these locations to capsule or capsule-protected

locations. Other locations have targets that are capsule-shared and actively accessed by

multiple capsules. The targets are not capsules themselves due to either encapsulation

or synchronization violations and they are not local to any one capsule. For example,

locations that access a shared global array fall into this category. Mixed locations are

those that access objects that are capsule-local on some accesses but capsule-shared

on others. These locations generally access objects that start as capsule-protected but

eventually become capsule-shared.

We consider locations that only access capsule objects or capsule-protected

objects filterable. Both the JavaGrande and Da Capo benchmarks show that a majority

of program locations can be filtered using the capsule technique with 52% of object and

83% of array sites filterable in JavaGrande and 66% of object and 54% of array sites

filterable in Da Capo. Benchmarks show a wide range of variation in capsule results

based on their programming patterns from a low of 4% capsules in raytracer to a high of

84% capsules in elevator. Even in programs with few total capsules, such as raytracer,

the number of capsule-protected locations remains high (69% for arrays and 14% for

objects). The JavaGrande benchmarks show much more uniformity in programming
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Filtered Unfiltered
Benchmark Array Object Classes Array Object Classes
Avrora 0.95 0.52 0.85 0.05 0.48 0.16
Batik 0.96 0.7 0.58 0.04 0.3 0.42
fop 0.96 0.48 0.5 0.04 0.52 0.5

lufact 0.54 0.56 0.42 0.45 0.44 0.59
lunindex 0.85 0.63 0.52 0.15 0.37 0.49
lusearch 0.85 0.48 0.48 0.15 0.52 0.51
pmd 0.87 0.33 0.33 0.13 0.67 0.67
xalan 0.67 0.45 0.4 0.33 0.55 0.6

AVERAGE 0.83 0.52 0.51 0.17 0.48 0.49

Crypt 0.7 0.77 0.75 0.31 0.24 0.25
Elevator 0.5 0.85 0.86 0.5 0 0.14
moldyn 0.1 0.29 0.8 0.9 0.72 0.2

montecarlo 0.32 0.82 0.36 0.68 0.18 0.64
raytracer 0.69 0.17 0.2 0.32 0.84 0.8

sor 0.48 0.74 1 0.52 0.25 0
sparsematmult 0.98 0.98 1 0.02 0.02 0
AVERAGE 0.54 0.66 0.71 0.46 0.32 0.29

Table 5.2: Filtered vs. Non-Filtered Locations

style with a high of 54% capsules for Batik and a low of 25% for pmd. Almost all

array locations in JavaGrande programs are capsule-protected with an average of 85%.

Lufact, the JavaGrande benchmark with the lowest capsule-protected array count, has

two large thread-shared arrays that make up the bulk of non capsule-protected array

locations in that program.

Table 5.2 shows the percentage of filtered versus unfiltered checks. We consider

capsule and capsule-protected locations to be filtered and all others to be unfiltered. As

can be seen, the majority of both array and object locations from both benchmark sets

can be filtered.

5.7 Discussion

Despite a majority of locations being filtered, there are still objects only ac-

cessed by a single capsule that can not be filtered as they are accessible by multiple
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capsules. These objects are analogous to the objects in our previous analysis that were

only ever accessed by a single thread despite being reachable by multiple threads. Lo-

cations that access these objects make up the single-capsule-access column. It is not

safe to filter these accesses as a future access may eventually come from another cap-

sule. Some locations fall into this category due to the coarseness of our accessibility

procedure that can not distinguish between a reference being transferred versus shared.

For instance, Vector’s toArray method produces a fresh array that is not accessible by

Vector after it is returned. Because the array passes through a capsule return it will

always leak regardless of the fact that Vector keeps no reference to it and can no longer

access it. A more complex analysis, that distinguishes between sharing and transferring

accessibility, may be able to mark these objects or arrays as capsule-protected.

We also find a number of instances of classes that qualify as capsules based on

their synchronization, but have outside access to some of their fields. Changing these

public fields to be private with getter and setter methods would allow these classes

to be considered capsules. While currently all capsule-local locations are dynamically

filtered, there is the potential to make some of these statically filterable as well. Capsule

accesses can often be fully determined with typing information and lend themselves well

to static optimization. Some capsule-protected locations can be proven not to leak using

an escape analysis but generally this categorization lends itself well to a dynamic filter.

Read shared and single-capsule-access locations can not be filtered safely. Al-

though all current accesses have all been from the same capsule, there is always the

possibility for a future access from a different capsule that may race with a previous

access. Likewise for read shared there is always the possibility of a future write. For

this reason, read shared and single-capsule-access locations’ vector clocks must be kept

around for this potential future.
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5.8 Related Work

This work shares many of the same related works with those detailed in Chap-

ter 4. This work differs in its use of accessibility, specifically its special treatment of

capsules.

Many lockset based algorithms use ownership systems, similar to our acces-

sibility system, in order to minimize false positives on thread-local objects. Lockset

based algorithms track which locks are held when accessing fields and report an error

if the set of locks protecting a field drops to zero. A thread-local object that accesses

fields with no locks held can result in a false positive if some type of thread-local versus

thread-shared distinction is not made. One of the original lockset papers, Eraser: A

Dynamic Data Race Detector for Multithreaded Programs [87], classifies objects as ei-

ther exclusive to a thread or shared. Instead of using reachability or accessibility based

arguments for classification, it uses access patterns. This distinction can cause Eraser

to miss races on the first access to an object that does not come from its original thread.

As the lockset algorithm is not precise, this drawback matters less as it does not change

the total correctness of the algorithm. As vector clock algorithms are precise, we would

be significantly lowering the preciseness of race detection if we relied on access instead

of accessibility to determine locality.

Hybrid Dynamic Data Race Detection [75] expands on Eraser’s approach and

uses a vector clock based analysis to fill in some of the shortcomings of the lockset

algorithm. They develop a distinct notion of ownership that uses some static analysis

to expand on Eraser’s notions of thread-local versus thread-shared.

Object Race Detection [99] is another lockset based algorithm that uses a

more advanced ownership notion to increase performance. They introduce an analysis

that attempts to capture ownership transfer. They note that almost all instances of

ownership transfer involve a parent thread that: initializes some objects and a child

thread, passes ownership of the objects to the child thread, and never accesses the

objects again. Traditional lockset would classify these objects as thread-shared, as they
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are accessed by both parent and child thread, when really the ownership has been

transferred. Object Race Detection still relies on accesses instead of accessibility, which

can cause missed races if a race occurs at a transition point. As they have added

additional transition points to account for transfer of ownership, these transition points

present more areas for false negatives.

Goldilocks: a Race and Transaction-Aware Java Runtime [40] uses the standard

lockset based ownership notion but advances the idea to allow container classes to also

own references. This idea is similar to our idea of capsules, in that not just thread

ownership can protect references but synchronized objects can as well. Beyond this

similarity, the algorithm shares more with previous lockset based algorithms than our

own, in that it is access based and is specifically meant to work with lockset.

Efficient and Precise Data Race Detection for Multithreaded Object-Oriented

Programs [29] is another lockset based algorithm with its own take on ownership. They

focus on a large amount of static code analysis in order to improve the accuracy and

speed of their lockset based dynamic algorithm. One of these static passes uses escape

analysis to mark objects as thread-local. While their approach does not use accesses

as the basis of thread ownership like the analysis seen above, it still has trouble with

the transition from thread-local to thread-shared and can miss races at these transition

points.

TRaDe [30] introduces a novel idea to solve the problems of ownership transfer

dealt with by Object Race Detection. Instead of adding more categories to transition

between thread-local and thread-shared, TRaDe integrates with the Java garbage col-

lector to analyze when objects become unreachable by a given thread. The garbage

collector already does much of this analysis to determine which objects are reachable

by zero threads and can have their memory freed. They add a small amount of analysis

to this step to also compute which objects are reachable by only a single thread. This

extra instrumentation allows them to track objects that start out thread-local, become

thread-shared, but then later move back to being thread-local when the original thread
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loses its reference to the object.

In addition to the dynamic and static analysis described here, there is also

work on using types to aid in ownership tracking. For example, the work done in

Ownership Types for Safe Programming [21] and in Rust [69]. Both of these systems

rely on programmer annotations and unique type systems to statically determine which

references are thread-local and therefore race-free. Rust also contains unique syntax

to transfer a reference instead of sharing it and to define objects that can be safely

thread-shared (similar to our notion of capsules but statically instead of dynamically

enforced).

Finally, a variety of tools exist which are not race detection based but use

similar ideas to extract program architecture, specifically involving ownership and en-

capsulation. Dynamic Architecture Extraction [46] uses a dynamic analysis to construct

class diagrams about reference reachability, but does not make any claims about race

detection utility. Static Architecture Extraction using Annotations [3] has similar goals

of categorizing classes based on what classes they can reach or encapsulate, but uses

a static analysis instead of a dynamic one. To overcome the limitations of performing

such an analysis statically, they rely on programmer annotations to aid their analysis.

Our work brings together many of these ideas but differs mainly in the fact

that it is accessibility based and not access based and so remains precise. Additionally,

our notion of capsules allows for objects besides threads to protect references from data

races and our dynamic capsule detection algorithm allows for capsules to be defined

without programmer annotations.

5.9 Conclusion

Our thread-local analysis in Chapter 4 fails to deal with long lived objects,

as threads have no way of protecting their references from leaking. Capsules provide a

method to protect references, both for threads and other objects that meet the criteria.

We show that capsule-local locations are free from data races by using an idealized
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language and algorithm along with a proof of correctness for that algorithm. We also

show that a majority of location targets in popular Java benchmarks are capsule-local

and that capsule tracking can be captured using existing race detection tools. The fact

that capsules are both safe and already in use by programmers makes them a good

candidate for race check elision.
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Chapter 6

Summary of Results

Writing multithreaded programs is notoriously difficult in part due to a lack

of determinism, atomicity, and sequential consistency. These issues become simplified

in the absence of data races and so this thesis focuses on detecting and eliminating data

races. We chose to focus on precise dynamic race detectors as they give the precision

needed without restricting the realm of valid programs that can be written. These

race detectors work well and successfully identify data races without false positives or

false negatives. Unfortunately, they are often slow due to the need to check every heap

access for a data race. Therefore, the main goal of this thesis is to reduce the overhead

of dynamic race detectors by removing unnecessary checks while remaining precise.

While previous work has reduced the overhead of each individual check [47],

the sheer number of checks still causes slowdown. When implemented in RoadRunner,

the initial vector clock algorithms have a slow down of 20x , the FastTrack optimization

brings this down to 8.5x. We reduce this overhead by eliminating checks that do not

impact the precision of vector clock algorithms.

We approach removing these checks in two major ways. First, in BigFoot, we

look at access patterns mostly inside of a particular critical region and reason about the

overlap of checks in these regions. This proves particularly useful in cases where large

numbers of checks can be coalesced into a single check or where multiple access to the
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same locations means that some checks can be removed entirely. This analysis reduces

the run-time overhead of dynamic race detection to 2.5x and also reduces memory

overheads as well.

Our second approach deals not with synchronization primitives but with the

reachability of objects by multiple threads. An object that can only be reached by a

single thread is trivially race-free and therefore does not need to be monitored despite

belonging to heap memory. Compilers already use a similar technique to allocate some

objects on the stack or elide locking operations for thread-local locks. We begin with a

proof of correctness for these use cases and find, surprisingly, that partial lock elision is

unsound for compilers and race detectors. We also find that partial race check elision

reduces the accuracy of dynamic race detection from address precise to trace precise.

When considering thread-local objects we identify two main categories. The

first is temporary objects that are never assigned to fields while the second is objects

protected from outside access by encapsulation techniques. Our thread-local analysis

correctly classifies most temporary objects as thread-local but does not take into account

ideas of encapsulation. Under this analysis if a child thread is reachable by a parent

thread then any field of the child is reachable by the parent thread. In order to classify

these objects as safe, we transition from reachability to accessibility and add the idea

of capsules.

We identify two key properties that allow an object to protect its fields from

races, first all accesses to the objects fields must come from this, and second all method

calls to the object are totally ordered. We call objects that meet both of these properties

capsules. Many data structures in the standard Java library fall into this category. We

develop a capsule-local analysis that extends our thread-local analysis and allows us to

better classify objects which are reachable by multiple threads but are only accessible

through a single capsule.

We provide a proof that that all accesses to capsule-local objects are race-

free. We implement our capsule filtering algorithm using the RoadRunner framework
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to classify objects as capsule-local or capsule-shared. We find that a majority of race

checks are on locations that only access capsule-local objects and are guaranteed race-

free.

These two broad techniques of micro and macro memory classification allow

for fewer race checks in a dynamic race detector. With these techniques we introduce

no false positives and only lower the preciseness slightly by going from address precise.

Many programming language tools have started with high overheads and over

time become more efficient and integrated with the runtime. For example, array bounds

checking in memory safe languages initially requires a check at every array access but

through static and dynamic techniques is able to eliminate a large number of these

checks [105]. It is our hope that similarly race detection will eventually be fast enough

to be integrated into the runtime and allow a races-as-exceptions model in order to ease

the difficulties in writing multithreaded code.
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