
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Learning from local image regions

Permalink
https://escholarship.org/uc/item/41p642rq

Author
Dollár, Piotr

Publication Date
2007
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/41p642rq
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Learning from Local Image Regions

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Piotr Dollár

Committee in charge:

Professor Serge Belongie, Chair
Professor Gary Cottrell
Professor Sanjoy Dasgupta
Professor Truong Nguyen
Professor Zhuowen Tu
Professor Nuno Vasconcelos

2007



Copyright

Piotr Dollár, 2007

All rights reserved.



The dissertation of Piotr Dollár is approved, and

it is acceptable in quality and form for publication

on microfilm:

Chair

University of California, San Diego

2007

iii



To my parents.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Supervised Learning of Edges and Object Boundaries . . . . . . . . . . . 4
2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Learning edge probability . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Classification framework . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Probabilistic Boosting Tree - training . . . . . . . . . . . . . 10
2.3.4 Computing probability . . . . . . . . . . . . . . . . . . . . . 12

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Illustrations of Gestalt laws . . . . . . . . . . . . . . . . . . 13
2.4.2 Detecting object boundaries . . . . . . . . . . . . . . . . . . 15
2.4.3 Road detection . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 Edge detection in natural images . . . . . . . . . . . . . . . 18

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Learning to Traverse Image Manifolds . . . . . . . . . . . . . . . . . . . . 24
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Experiments on Point Sets . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Results on Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Mathematical Details . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 Equivalence of error1(θ) and error2(θ) . . . . . . . . . . . . . 40
3.6.2 Minimization for General Manifolds . . . . . . . . . . . . . . 41
3.6.3 Minimization for Image Manifolds . . . . . . . . . . . . . . . 43
3.6.4 lsml for General Manifolds . . . . . . . . . . . . . . . . . . . 45
3.6.5 lsml for Image Manifolds . . . . . . . . . . . . . . . . . . . 46

v



4 Behavior Recognition via Sparse Spatio-Temporal Features . . . . . . . . 47
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Feature Detection . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Cuboids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Cuboid Prototypes . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.4 Behavior Descriptor . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.3 Algorithms for Comparison . . . . . . . . . . . . . . . . . . . 63
4.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



LIST OF FIGURES

Figure 1.1: Local patch based representations have the advantage that
they are robust to global transformations, occlusion, clutter, object
and image variation, and so on, while retaining rich information about
image content. Patches have found application in object detection . . . 2

Figure 2.1: Manual segmentations of an example image and the corre-
sponding edge maps. For illustration purposes, we show the negative
of the probability so the darker the pixel, the higher the probability
of an edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.2: (A) Some positive (center pixel is an edge point) and (B) neg-
ative (center pixel is not an edge) image patches. . . . . . . . . . . . 10

Figure 2.3: Learning the Gestalt laws of perceptual organization: paral-
lelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.4: Learning the Gestalt laws of perceptual organization: modal
completion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.5: Learning the Gestalt laws of perceptual organization: alter-
nate interpretation of the same data. . . . . . . . . . . . . . . . . . 15

Figure 2.6: Illustration of object boundary detection. Two of fourteen
training images are shown in the first row. The next rows show two
of the seven testing images – BEL is able to generalize to the unseen
images. Not only are boundaries of the mouse found . . . . . . . . . . 16

Figure 2.7: Zoomed in view of final testing image for mouse boundary
detection and result of classifier. The classifier fails to detect edges
near the moving head due to considerable motion blur, an artifact
not observed in the training data. Two positive patches . . . . . . . . 17

Figure 2.8: Some results on road detection. Three satellite images were
obtained from Google Maps, along with their corresponding road
maps. The first two images were used for training, their correspond-
ing road maps were converted to probability distributions of . . . . . . 19

Figure 2.9: Zoomed in view of a test image form the natural image dataset.
Qualitative properties of our output can be seen: (1) BEL gives a true
probability, not just a measure of edge strength. The strongest re-
sponses correlate well with regions where the largest number . . . . . 20

Figure 2.10: Precision recall curves of BEL and Pb on gray (left) scale and
color versions (right) of the Berkeley test set. The overall performance
on gray scale images of BEL improves on the performance of Pb, whose
performance is the highest reported in the literature. . . . . . . . . . 21

Figure 2.11: The first row contains gray scale images from the Berkeley
dataset (http://www.cs.berkeley.edu/projects/vision/grouping/segbench),
and the second the overlayed manual segmentations. For each image
we give our results and the result of the Berkeley . . . . . . . . . . . . 22

vii



Figure 3.1: Overview. Twenty points (n=20) that lie on 1D curve (d=1)
in a 2D space (D=2) are shown in (a). Black lines denote neighbors,
in this case the neighborhood graph is not connected. We apply lsml
to train H (with f = 4 rbfs). H maps points in R2 to . . . . . . . . . 28

Figure 3.2: Robustness. lsml used to recover the embedding of the S-
curve under a number of sampling conditions. In each plot we show
the original points along with the computed embedding (rotated to
align vertically), correspondence is indicated by . . . . . . . . . . . . . 31

Figure 3.3: Reconstruction. Reconstruction examples are used to demon-
strate quality and generalization of H. (a) Points sampled from the
Swiss-roll manifold (middle), some recovered tangent vectors in a
zoomed-in region (left) and embedding found by lsml (right). . . . . 33

Figure 3.4: The translation manifold. Here F i = Xi; s = 17, d = 2
and 9 sets of 6 translated images each were used (not including the
cameraman). (a) Zero padded, smoothed test image x. (b) Visual-
ization of learned Θ, see text for details. (c) Hθ(x) computed . . . . . 35

Figure 3.5: Manifold generated by out-of-plane rotation of a teapot
(data from [77], sub-sampled and smoothed). Here, d = 1, f = 400
and roughly 3000 patches of width s = 13 were sampled from 30
frames. Bottom row shows the ground truth images; dashed box . . . 36

Figure 3.6: Traversing the eye manifold. lsml trained on one eye
moving along five different lines (3 vertical and 2 horizontal). Here
d = 2, f = 600, s = 19 and around 5000 patches were sampled; 2
frames were considered neighbors if they were adjacent in time . . . . 37

Figure 4.1: Visualization of cuboid based behavior recognition. A spatio-
temporal volume of mouse footage shown at top. We apply a spatio-
temporal interest point detector to find local regions of interest in
space and time (cuboids) which serve as the substrate for behavior. . . 48

Figure 4.2: Example of six cuboids extracted from two different sequences
of grooming. A single frame is shown from each original sequence.
Below, each cuboid is shown over time. Note that although the pos-
ture of the mouse is quite different in the two cases. . . . . . . . . . . 50

Figure 4.3: Filters used to detect interest points, tuned to fire maximally
when intensity in a local spatial region oscillates temporally. Dark
lobes correspond to negative areas. Surfaces shown are drawn at 10%
of the peak filter response. The 1D profile of the temporal filters . . . 55

Figure 4.4: Shown is the intra and inter class performance of our recog-
nition method on the face dataset using different cuboid descriptors.
The full algorithm, dataset and methodology are discussed later, the
sole purpose of this figure is to give a sense of the relative. . . . . . . 57

Figure 4.5: Representative frames from clips in each domain: (a) facial
expressions, (b) mouse behavior, and (c) human activity. . . . . . . . 60

viii



Figure 4.6: We tested how sensitive the performance of our method is to
various parameter settings on the face dataset. In each of the above
curves we plot classification error for 10 different settings of a given
parameter with all other parameters kept constant at default, . . . . . 62

Figure 4.7: face dataset Top row: We investigated how identity and
lighting affect each algorithm’s performance. In all cases cuboids
gave the best results. efros and cuboids+harris had approxi-
mately equal error rates, except that efros tended to perform . . . . 65

Figure 4.8: mouse dataset Left: Confusion matrix generated by cuboids
on the full mouse dataset. As mentioned, this dataset presents a chal-
lenging recognition problem. Except for a few difficult categories,
recognition rates using our method were fairly high. Right: . . . . . . 66

Figure 4.9: human activity dataset Shown are confusion matrices
generated by cuboids. Two classifiers were used: 1-nearest neighbor
and Support Vector Machines with radial basis functions [32]. Using
SVMs resulted in a slight reduction of the error. Note that most . . . 67

ix



ACKNOWLEDGEMENTS

When entering graduate school, I only had a vague idea of what I would

accomplish. Serge Belongie gradually but effectively steered me in the right direction

and helped me formulate my vision and goals as a scientist. His help both on specific

research topics and on coping with the daily challenges facing a scientist has been

invaluable. Serge was also always very supportive; I could not ask more from an

advisor.

Zhuowen Tu has greatly influenced how I approach real world problems

and how to see a project through from beginning to end. He has shared practical

knowledge as well as his wisdom and philosophical insight into computer vision.

Throughout our work together Zhuowen has kept my passion for research alive,

especially during the tough times that we must all inevitably face. In short, I was

lucky enough not to have just one great advisor but two.

I would also like to thank others who helped guide my research at UCSD.

Sanjoy Dasgupta is one of the best teachers I’ve met. Also, somewhat surprisingly,

he never seemed to get tired of my pestering him with random problems and wild

theories. Charles Elkan has been supportive and insightful, and helped teach me

how to present myself and my work. I would also like to thank Gary Cottrell for his

support and guidance in my research, especially in the early phases of my studies,

and Nuno Vasconcelos for insightful conversations.

Graduate school would have been much lonelier without the other students

who shared the same plight as I. Vincent Rabaud has played a very significant role

in more than half of the research I have done. He has also kept me happy and was

a friend – the number of sleepless nights we spent together coding or hacking away

at some particularly hairy math without killing each other is surprising. Kristin

Branson has been very supportive and helped put many of my earlier ideas on more

solid ground. Sameer Agarwal and Eric Wiewiora were excellent resources who

know far too much for their own good. Working and sharing my excitement of

computer vision with Boris Babenko has been great. Many others have made these

years enjoyable – including Lawrence Cayton, Ben Ochoa, Craig Donner, Andrew

Rabinovich, Doug Turnbull, Luke Barrington, Matt Tong, Lingyun Zhang, Carolina

x



Galleguillos, Stephan Steinbach, Josh Wills, Will Chang and Tim Marks among

others.

One person that deserves my special thanks is Anna Shemorry. Her friend-

ship and her love make everything I do a little more worthwhile. Her patience is

almost uncanny – not only did she accept my sleeping in lab a week at a time before

a deadline, she would also bring me food and occasionally a change of clothes. I

hope I can repay my debt to some small extent as Anna pursues her own doctorate.

Finally, my parents’ attention and guidance have made me the person I

am today, from engrossing me with math puzzles for hours at a time to pushing me

to always challenge myself. Against my best efforts, some of their knowledge has

rubbed off on me. I can only hope to make them proud.

Portions of this dissertation are based on papers that I have co-authored

with others. Listed below are my contributions to each of these papers.

1. Chapter 2 is in part based on the paper “Supervised Learning of Edges and

Object Boundaries” by P. Dollár, Z. Tu and S. Belongie [17]. The disserta-

tion author was responsible for implementing the algorithm, performing the

experiments and writing the paper.

2. Chapter 3 is in part based on the paper “Learning to Traverse Image Mani-

folds” by P. Dollár, V. Rabaud and S. Belongie [15]. The dissertation author

proposed the initial idea, developed much of the mathematics and code, and

wrote the bulk of the paper.

3. Chapter 4 is in part based on the paper “Behavior Recognition via Sparse

Spatio-Temporal Features” by P. Dollár, V. Rabaud, G. Cottrell and S. Be-

longie, [16]. The dissertation author was responsible for the development of

the algorithm, experimental design and literature survey, and also wrote most

of the paper.

xi



VITA

1980 Born, Krakow, Poland.

2002 A. B., Harvard University.

2002 S. M., Harvard University.

2007 Ph. D., University of California, San Diego.

PUBLICATIONS

B. Babenko, P. Dollár and S. Belongie, “Task Specific Local Region Matching,”
IEEE International Conference on Computer Vision (ICCV), 2007.

P. Dollár, V. Rabaud and S. Belongie, “Non-Isometric Manifold Learning: Analysis
and an Algorithm,” International Conference on Machine Learning (ICML), 2007.

P. Dollár, Z. Tu, H. Tao and S. Belongie, “Feature Mining for Image Classification,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

P. Dollár, V. Rabaud and S. Belongie, “Learning to Traverse Image Manifolds,”
Neural Information Processing Systems (NIPS), 19, 2006.

P. Dollár, Z. Tu and S. Belongie, “Supervised Learning of Edges and Object Bound-
aries,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2006.

P. Dollár, V. Rabaud, G. Cottrell and S. Belongie, “Behavior Recognition via Sparse
Spatio-Temporal Features,” IEEE International Conference on Computer Vision
- Visual Surveillance and Performance Evaluation of Tracking and Surveillance
(ICCV VS-PETS), 2005.

S. Belongie, K. Branson, P. Dollár, and V. Rabaud, “Monitoring Animal Behavior
in the Smart Vivarium,” Measuring Behavior, 2005.

P. Dollár, P. Laskowski and M. Van Alstyne, “Simulating the Growth and Diffusion
of Knowledge in Agent Societies,” Conference on Computational Analysis of Social
and Organization Systems (CASOS), 2002.

O. Chmaissem, J.D. Jorgensen, H. Shaked, P. Dollár, J.L. Tallon, “Crystal and mag-
netic structure of ferromagnetic superconducting RuSr2GdCu2O8,” Physics Review
B, 61, 2000.

xii



ABSTRACT OF THE DISSERTATION

Learning from Local Image Regions

by

Piotr Dollár

Doctor of Philosophy in Computer Science

University of California San Diego, 2007

Professor Serge Belongie, Chair

A trend in computer vision over the last decade or so has been to describe

the statistics and content of images in terms of local image regions, i.e., image

patches. Applications have included object detection, scene recognition, texture

classification and image categorization. Local patch based representations have

the advantage that they are robust to global transformations, occlusion, clutter,

object and image variation, and so on, while retaining rich information about image

content. This is the case even when global information relating the relative position

of patches is not used, as in so called “bags of words” approaches. Furthermore,

in the supervised learning framework where labeled images are a source of data,

characterizing images using patches means a single image can provide a large number

of patches for training. These properties suggest local patch based representations

should continue to find expanded use in computer vision.

In this dissertation we show the application of patch based methods to

three domains for which traditionally more global approaches have been used. First

we show how the classic problem of edge detection can be posed as a series of patch

by patch decisions that can be solved in a supervised learning framework. We show

the application of this approach to a number of specific domains such as mouse

boundary detection and road detection. Second, we show how modeling object

warps and highly non-linear image transformations can again be done locally, thus

avoiding computational challenges and the scarcity of data typically associated with
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these problems. For example, our approach is able to learn eye motion and out-of-

plane rotation of a teacup from sparse data. Third, we extend the notion of local

regions from 2D to 3D, i.e. from patches to cuboids, in order to model the content

of video. We show applications to behavior recognition in a number of domains

including human activity and mouse behavior.

The methods we introduce here advance the state of the art and have

the potential to be useful in a broad range of applications in computer vision. Our

approach to edge detection currently outperforms all competing approaches for gray

scale edge detection and comes in close second for color edge detection on the well

established Berkeley Segmentation Dataset [48]. We hope it will play a similar role

as Canny edge detection but for highly textured, real world images. Our approach

to modeling object warps locally showed dramatic improvements over previous such

methods [4], and helped solidify the theoretical foundation of nonlinear manifold

learning. Finally, our cuboids formalism is simple yet powerful, and has already

been utilized in two vision systems [54, 79]. It has the potential to serve as the

basis for a broad range of methods for describing the contents of video. Overall, our

contribution has been to help establish the importance of patch based approaches

and to expand our understanding of a fundamental aspect of computer vision.

xiv



1

Introduction

A trend in computer vision over the last decade or so has been to describe

the statistics and content of images in terms of local image regions, i.e., image

patches. Applications have included object detection, scene recognition, texture

classification and image categorization. Local patch based representations (see Fig-

ure 1.1) have the advantage that they are robust to global transformations, occlusion,

clutter, object and image variation, and so on, while retaining rich information about

image content. This is the case even when global information relating the relative

position of patches is not used, as in so called “bags of words” approaches. Fur-

thermore, in the supervised learning framework where labeled images are a source

of data, characterizing images using patches means a single image can provide a

large number of patches for training. These properties suggest local patch based

representations should continue to find expanded use in computer vision.

In this dissertation we show the application of patch based methods to three

domains for which traditionally more global approaches have been used, including

edge detection, manifold learning and behavior recognition.

First we show how the classic problem of edge detection can be posed as

a series of patch by patch decisions that can be solved in a supervised learning

framework. Edge detection is one of the most studied problems in computer vision,

yet it remains a very challenging task. It is difficult since often the decision for an

edge cannot be made purely based on low level cues such as the gradient, instead

we need to engage all levels of information, low, middle, and high, in order to decide

1
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Figure 1.1: Local patch based representations have the advantage that they are
robust to global transformations, occlusion, clutter, object and image variation, and
so on, while retaining rich information about image content. Patches have found
application in object detection, scene recognition, texture classification and image
categorization. In this work we show how patch based approaches can also be used
for edge detection, manifold learning and behavior recognition.

where to put edges. In Chapter 2 we propose a novel supervised learning algorithm

for edge and object boundary detection which we refer to as Boosted Edge Learning

or BEL for short. A decision of an edge point is made independently at each location

in the image; a very large aperture is used providing significant context for each

decision. In the learning stage, the algorithm selects and combines a large number

of features across different scales in order to learn a discriminative model using an

extended version of the Probabilistic Boosting Tree classification algorithm. The

learning based framework is highly adaptive and there are no parameters to tune.

We show applications for edge detection in a number of specific image domains, such

as mouse boundary detection and road detection, as well as on natural images. We

test on various datasets including the Berkeley dataset and the results obtained are

competitive with he best results in the literature.

In Chapter 3 we present a new algorithm, Locally Smooth Manifold Learn-

ing (lsml), that learns a warping function from a point on a manifold to its neigh-

bors. We show how modeling object warps and highly non-linear image transfor-

mations can again be done locally, thus avoiding computational challenges and the

scarcity of data typically associated with these problems. The key insight to working

with images is that although images can live in very high dimensional spaces, we

do not have to learn transformations with that many parameters. Essentially, we
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assume that each pixel in an image transformation can be computed only using the

information in a patch centered on the corresponding pixel. The resulting technique

scales independently of the number of pixels in an image, furthermore different sized

images can be used. The per patch assumption is not always suitable, most notably

for transformations that are based only on image coordinates and are independent

of appearance; however in many cases our technique results in a very effective rep-

resentation. Among other applications, we show our approach is able to learn eye

motion and out-of-plane rotation of a teacup from sparse data.

A common trend in object recognition is to detect and leverage the use

of sparse, informative feature points. The use of such features makes the problem

more manageable while providing increased robustness to noise and pose variation.

In Chapter 4, we extend the notion of local regions from 2D to 3D, i.e., to the

spatio-temporal case. For this purpose, we show that the direct 3D counterparts

to commonly used 2D interest point detectors are inadequate, and we propose an

alternative. Anchoring off of these interest points, we devise a recognition algorithm

based on spatio-temporally windowed data. Recognition results on a variety of

datasets including both human and rodent behavior are presented.



2

Supervised Learning of Edges

and Object Boundaries

Edge detection is one of the most studied problems in computer vision. It

finds application in tasks such as object detection/recognition, structure from mo-

tion, segmentation and tracking, e.g. [68, 70, 9, 75]. Edges reduce the dimensionality

of the original data while retaining rich information about the contents of the image.

They can also serve as a basis for other forms of image representation, such as the

primal sketch [47, 30]. Nevertheless, high quality general edge detection remains

elusive. Methods that rely on local features, such as the Canny [12] detector, do not

take into account the context (e.g. if the surrounding area is textured), mid-level

information (e.g. the Gestalt laws [41]), or high level information (e.g. object knowl-

edge [74]). Canny also cannot take into account local information at multiple scales.

Such information is important: sometimes we hallucinate a boundary where there

is weak or even no local evidence (e.g. certain parts of an object may have the same

intensity pattern as the background), other times we do not see a boundary even

if there are strong local cues that would imply its existence (e.g. in the presence of

shadows). Complex generative models, such as presented in [74, 58], have the po-

tential to integrate both low-level and high-level information but present significant

computational challenges.

Even as intensive research into general edge detection continues, there is

general consensus in the community that edge detection is somewhat ill defined in

4
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that it is not quite clear what defines a correct output [48]. From an application

driven point of view, a general edge detection algorithm is possibly inappropriate

since relevant boundaries in a scene depend on the components of interest, which

in turn depend on the task being performed. For example, if the goal is to detect

object boundaries for object detection then all other detected edges are noise, but

if the task changes the object boundaries may no longer be relevant. One of the

motivations for this chapter is that while designing individual edge detectors for

particular tasks in particular domains is not feasible, often times it is simple to

obtain training images with labeled boundaries, and depending on the task there

need not be any ambiguity as to what constitutes a correct output.

In this chapter we propose a novel supervised learning algorithm for edge

and object boundary detection which we refer to as Boosted Edge Learning or BEL

for short. A decision of an edge point is made independently at each location in the

image; a very large aperture is used providing significant context for each decision.

In the learning stage, the algorithm selects and combines a set of features out of a

pool with tens of thousands of generic, efficient Haar wavelets in order to learn a

discriminative model. The scope of the machine learning problem is formidable: we

have tens of millions of training points with tens of thousands of features each. We

present an extension of the probabilistic boosting tree algorithm that copes with

this data much better than did either boosting or cascade approaches [76]. Our

method outputs true probabilities, whereas other edge detection methods either

output a binary value or a soft value based on edge strength (which is not a true

probability). We show how the method implicitly combines low-level, mid-level, and

context information across different scales when making a decision. The learning

based framework is highly adaptive and there are no parameters to tune. We show

applications for edge detection in a number of specific image domains as well as on

natural images. We test on various datasets including the Berkeley dataset and the

results obtained are very good.
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2.1 Related work

There have been many methods proposed for edge detection, we have al-

ready mentioned a few. A representative set is given by [12, 55, 74, 58], we review

each in some detail below. The Canny edge detector [12] is perhaps the most widely

used edge detector; it is based only on local gradient and has a scale parameter to

tune. Ramesh [55] systematically analyzed the performance of a number of edge

detectors w.r.t. their parameter setting. The method in [74] uses edges obtained

from bottom-up (discriminative) processes as proposals to guide the top-down (gen-

erative) search. Recently, Ren et al. [58] build graphs to reinforce some mid-level

cues to give more complete edges. In general, however, it is difficult to encode all

the rules needed for edge detection, for example how to exploit all sorts of mid-level

Gestalt laws such as junction, parallelism, symmetry, and closure, how to deal with

texture and color, how to resolve disagreements between cues that give conflicting

local information, and so on, even if mid-level and high-level information can be

modeled (for example in a generative framework), a search for optimal solutions can

be daunting.

Two other relevant algorithms are Pb, proposed by [48], and the method

presented in [42]. Both have data driven and learning components, although aside

from this obvious similarity they bear little resemblance to our approach. Pb uses

learning to perform cue combination on 9 carefully designed local features (texture

gradient, brightness gradient and color gradient at 3 scales each), learning improves

performance over setting the weights by hand. The learning component in both [48]

and [42] improves the overall results of the algorithms on general edge detection; our

method, however, relies entirely on learning. This makes our method very versatile,

and as we show in the experiments section we were able to apply it to a very broad

range of domains.

2.2 Problem formulation

A number of tasks in computer vision can be formulated as finding a likely

interpretation W for an observed image I, where W includes information about the

spatial location and extent of objects, regions, object boundaries, curves and so
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Figure 2.1: Manual segmentations of an example image and the corresponding edge
maps. For illustration purposes, we show the negative of the probability so the
darker the pixel, the higher the probability of an edge.

on. Let SW be a function associated with a scene interpretation W that encodes

the spatial location and extent of a component of interest, where SW (i, j) is 1 for

each image location (i, j) that belongs to the component and 0 elsewhere. Given

an image, obtaining an optimal or even likely scene interpretation W , or associated

SW , can be difficult. Instead, we can ask what is the probability a given location in

a given image belongs to the component of interest:

p(S(i, j)|I) =
∑
Wt

SWt(i, j)p(Wt|I), (2.1)

where t indexes each individual’s interpretation. See Figure (2.1). Calculating

p(S(i, j)|I) using the above is difficult. Instead we seek to learn this distribution

directly from image data. To further reduce the complexity, we seek to learn a

discriminative model p(S(i, j)|IN(i,j)) where IN(i,j) is an image patch centered at

(i, j). If we throw away the absolute coordinates, then the major focus of this

chapter is to learn:

p(S(c)|IN(c)), (2.2)

where c is the center of an image patch. So the decision for a single point is made

based on an image patch centered at it. A large enough patch contains low-level

features and also some mid-level and context information. We want to piece this

information together and learn a discriminative model.
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Edge detection is easily placed in the above framework if we let the scene

interpretation W of an image be its segmentation, and define SW (i, j) = 1 if any

region boundary in W passes through location (i, j), and otherwise SW (i, j) =

0. Then p(S(i, j)|I) gives the edge probability at each location in the image. To

obtain ground truth for our discriminative model, we use the manually labeled

segmentations from [48]. Given an image and a number of different segmentations

Wt, we can obtain an approximation, p̂(S|I), by considering each of the human

segmentations to have an equal probability p(Wt|I). We can then sample positive

and negative example patches from I according to p̂(S|I). Figure (2.1) shows an

example where human subjects drew different segmentations. The edge probability

map summing up all manual segmentations is shown on the right. Figure (2.2)

shows some sample patches.

We describe other applications of this framework, as well as other methods

for generating the ground truth, in the experiments Section 2.4. However, for much

of this chapter we refer to p(S(c)|IN(c)) as the edge probability at c.

2.3 Learning edge probability

Our goal is to train a discriminative model p(S(c)|IN(c)) that predicts the

probability of a location being an edge point based on an image patch centered at

it.

2.3.1 Features

Informative features greatly facilitate the training stage of a classification

algorithm. Their design should be a compromise among generality, speed and effec-

tiveness. As mentioned, Pb performs cue combination on 9 features. These features

are a culmination of years of effort, and they are in fact very effective for edge de-

tection in natural images. Instead, our approach is to use tens of thousands of very

simple features, calculated over a much larger image region. The primary advan-

tage of such an approach is that the human effort is minimized, instead the work is

shifted to the classification algorithm. We can measure the time it took to design

and implement our features in terms of days. Also, such features tend to be much
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more general so applying the algorithm to a different domain is straightforward.

Including features far from the center of the patch implicitly provides mid-level and

context information to the discriminative algorithm. The primary disadvantage is

that the classification stage is far more challenging and the choice of a discriminative

algorithm more sensitive.

We used a large number of generic features at multiple locations, orienta-

tions, scales, aspect ratios and so on, calculated over a large image patch (e.g. of size

50 × 50). Features included gradients at multiple scales and locations, differences

between histograms computed over filter responses (difference of Gaussian (DoG)

and difference of offset Gaussian (DooG)) again at multiple scales and locations, and

also Haar wavelets[76]. We experimented with using the output of the Canny edge

detector at various scales as input to our method, although these Canny features

were not very informative and for speed reasons were not included in the final ver-

sion of our classifier. The classifier has to handle edges at different scales implicitly,

and also different types of edges, so it is important to have a large pool of informa-

tive features. Integral images, filter responses, and so on were computed once for

each input image, not once per patch, increasing efficiency when adjacent patches

must be evaluated. For color images we additionally calculated the above features

(gradients, histograms of filter responses, Haar wavelets) over each color channel.

We use approximately 50000 features. The same features were used in

all applications reported. We emphasize that little effort went into optimizing our

feature set.

2.3.2 Classification framework

Given a training image, along with an estimate of the probability that

each location is an edge point, p̂(S|I), we can sample positive and negative example

patches. The number of samples from a single image is equal to the number of

locations in the image (although typically the majority of locations contain negative

samples), and even more if we consider the image at multiple orientations, scales

and so on. Adjacent samples are highly similar, nevertheless, we often have very

large training sets (O(108) samples). Learning an accurate decision boundary for

this data is difficult, and we would like to use as much data as possible.
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(A) Positives (B) Negatives

Figure 2.2: (A) Some positive (center pixel is an edge point) and (B) negative (center
pixel is not an edge) image patches.

Advances in machine learning have allowed us to take advantage of the size

of this high dimensional dataset. Boosting [23, 24] deals well with high dimensional

data. Cascades of boosted classifiers [76] allow for efficient evaluation, and combined

with bootstrapping allow for training on very large datasets. In an early attempt we

trained a cascade of AdaBoost classifier, unfortunately the cascade did not give us

sufficiently good results. Even with a large number bootstrapping stages the error

remained fairly high (a comparison is given in the experiments section, specifically

see Figure 2.10).

Instead we chose to use an extension of the probabilistic boosting tree

(PBT) proposed in [73]. PBT can be seen as a combination of a decision tree with

boosting (a cascade is then just a special case of a tree). In this chapter, we give

an extended PBT that combines the bootstrapping procedure directly into the tree

formation while properly maintaining priors. We give a description of the algorithm

below, our presentation of the extended PBT algorithm uses a different notation from

[73].

2.3.3 Probabilistic Boosting Tree - training

Training PBT is similar to training a decision tree, except at each node a

boosted classifier is used to split the data. The tree is trained recursively: at each

node the empirical distribution q̂(y) of the data is calculated, and if the node is

not pure (0 < q̂(y) < 1), a strong classifier is trained on the data at the node.

Each sample is then passed to the left and right subtrees, weighted by q(−1|xi) and
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q(+1|xi) respectively, where q(+1|xi) is the probability that xi is a positive sample

according to the strong classifier. Thus, the strong classifier at each node is used

not to return the class of the sample but rather to assign the sample to the left or

right subtree. Training proceeds recursively. Details for the extended version of the

algorithm are given below, see [73] for information about the original algorithm. To

train:

1. Given a set of images with edges annotated, retrieve a training set

S = {(x1, y1, w1), ..., (xm, ym, wm) xi ∈ χ, yi ∈ {−1,+1},

where
∑

i wi = 1.

2. If the number (or weight) of either positive or negative samples in S is too

small, perform bootstrapping to augment S (see below).

3. Compute the empirical distribution of S, q̂(y) =
∑

i wiδ(yi = y). Continue if

the depth of the node does not exceed some maximum value and θ ≤ q̂(+1) ≤
(1− θ), e.g. θ = 0.99, else stop.

4. On training set S, train a strong boosted classifier (with a limited number of

weak learners). The number of weak classifiers is set by hand, alternatively it

could be set by using cross validation.

5. Split the data into two sets SL and SR using the decision boundary of the

learned classifier and a tolerance ε. For each sample (xi, yi, wi) compute

q(+1|xi) and q(−1|xi), then:

(xi, yi, wi ∗ q(+1|xi)) → SR

(xi, yi, wi ∗ q(−1|xi)) → SL.

Finally normalize all the weights in SL and also SR.

6. Train the left and right children recursively using SL and SR respectively (go

to step 2).

The bootstrapping step (2) for a given node is similar to bootstrapping

when training a cascade, except that both positive and negative examples are boot-

strapped. Let l1, ...lk denote the path to the current node at depth k + 1. The



12

weight of a sample (x, y, w) when it reaches the node is given by w′ = w
∏

q(x|li).
By resampling the original data after reweighing according to the above (and renor-

malizing), one can augment the data S at the given node. This bootstrapping

procedure allows us to deal with very large data sets while properly maintaining

priors.

Finally, to make training more efficient, step (5) can be altered so a given

sample is passed to both SL and SR only if it is near the decision boundary (the

bootstrapping procedure must be altered accordingly):

If q(+1|xi)− 1
2 > ε:

(xi, yi, wi) → SR

else if q(−1|xi)− 1
2 > ε:

(xi, yi, wi) → SL

else:
(xi, yi, wi ∗ q(+1|xi)) → SR

(xi, yi, wi ∗ q(−1|xi)) → SL.

2.3.4 Computing probability

Given a trained tree, the posterior p̃(y|x) is computed recursively. If the

tree has no children, the posterior is simply the learned empirical distribution at

the node p̃(y|x) = q̂(y). Otherwise the posterior is defined recursively:

p̃(y|x) = q(+1|x)p̃R(y|x) + q(−1|x)p̃L(y|x)

Here q(y|x) is the posterior of the classifier, and p̃L(y|x) and p̃R(y|x) are the poste-

riors of the left and right trees.

In other words, to compute the posterior at a non-terminal node of the

tree, the posterior of the left and right subtrees are calculated and the resulting

posterior is a weighted combination according to the output of the strong classifier

associated with the given node. Just as in training, we avoid traversing the entire

tree by recursing to both subtrees only if the sample is near the decision boundary:

If q(+1|x)− 1
2 > ε:

p̃(y|x) = q(+1|x)p̃R(y|x) + q(−1|x)q̂L(y)
else if q(−1|x)− 1

2 > ε:
p̃(y|x) = q(+1|x)q̂R(y) + q(−1|x)p̃L(y|x)
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else:
p̃(y|x) = q(+1|x)p̃R(y|x) + q(−1|x)p̃L(y|x)

Typically, using this approximation, only a few paths in the tree are traversed; thus

the amount of computation to calculate p̃(y|x) is roughly linear in the depth of the

tree.

2.4 Experiments

We show the application of our framework to 4 different domains: (1) illus-

trations of the Gestalt laws, (2) detection of object boundaries, (3) road detection

and (4) edge detection in natural images. We use nearly identical parameters in all

domains, except we change the depth of the tree depending on the amount of data

available to avoid overfitting.

2.4.1 Illustrations of Gestalt laws

The Gestalt laws of perceptual organization, including symmetry, closure,

parallelism and so on, are rules of how component parts are organized into over-

all patterns [41]. The Gestalt laws play an important role in determining object

grouping and region boundaries. Explicit studies of mid-level structures include

their representations, spatial relationships, and explicit probability distributions.

Though there has been substantial work done in this vein [18, 27, 30, 58, 78], indi-

vidual studies tend to focus on particular Gestalt laws, and it is not clear how to

combine them into a unified framework.

Typically, applying the Gestalt laws is seen as a separate ‘mid-level’ pro-

cessing stage that comes into play after low-level features have been calculated.

Instead, we show how in our framework the Gestalt laws can be exploited implicitly

in a discriminative model that uses very simple image features. The advantages to

this type of approach are as follows. First, providing training data is simple – we

just need to annotate the edges where the Gestalt laws apply. The same training

process can then be used. We do not have to define the individual laws, or how they

interact, instead the learning algorithm combines a set of features/weak classifiers

to generalize based on the training samples.
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(A) (B) (C) (D)

Figure 2.3: Learning the Gestalt laws of perceptual organization: parallelism.

(A) (B) (C) (D)

Figure 2.4: Learning the Gestalt laws of perceptual organization: modal completion.

In the remainder of this section we provide a few of examples in the form

of analogies: we provide a training image and the annotated ground truth, train

and apply the discriminative model to a novel test image. That is, we ask “A is to

B as C is to ?”, akin to the work of [34]. The input images in these examples are

binary. The results for these examples were easy to obtain – they required no special

parameter settings or tweaks to the algorithm. These are meant to be illustrative,

we argue that on real data similar principles are implicitly exploited to achieve good

results.

Parallelism, see Figure 2.3. Training is done on the image in (A) with the

ground truth given in (B), and the result when the classifier is applied to (C) is given

in (D). To correctly classify points as edge points the local gradient is insufficient.

Instead, some edges must be filled in using ‘parallelism’. Note that on the test

image the learned classifier outputs a high edge probability not only in locations

where local gradient was present but also in the gap. The learned classifier was

able to generalize to two parallel curves with a smooth turn from training data that

contained only straight parallel lines.

Modal completion, see Figure 2.4. Modal completion occurs when portions
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(A) (B) (C) (D)

Figure 2.5: Learning the Gestalt laws of perceptual organization: alternate inter-
pretation of the same data.

of an object are occluded by another object that happens to have the same color as

nearby regions [66]. Shown the so called Kanizsa triangle in figure (A), observers

typically report a white triangle occluding three black disks. In cases such as this,

there is a perception of a contrast border even though there is no local contrast. Our

algorithm is easily able to generalize to the example of the square. This is significant

because it shows that the method can hallucinate edges by fusing features on a

relatively large image neighborhood. Note that edge hallucination is not possible

with the algorithm of Martin et al. [48], where only local gradients are available.

The same data can have an alternate interpretation, see Figure 2.5. We

are agnostic with respect to preconceived notions about what defines an edge. The

algorithm learns based on the training data it is given.

2.4.2 Detecting object boundaries

We can train the algorithm to detect edges specifically between an object

and the rest of the image. By training on object boundaries the discriminative

model learns to suppress other edges in the image, regardless of local gradients.

If we let the scene interpretation W of an image include the location and

extent of an object of interest, and define SW (i, j) = 1 if the object boundary passes

through location (i, j), then p(S(i, j)|I), defined as before, gives the probability

that each location in the image is on the boundary of the object of interest. To

obtain ground truth we roughly outlined the object in each image using a paint

program. Since the labeling was error prone we smoothed the binary edge map

using a Gaussian kernel, which assumes a Gaussian model of the localization error.

The result was an approximation of the probability that each location contains an
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Training Image Ground Truth Training Image Ground Truth

Testing Image Ground Truth Canny Pb BEL

Figure 2.6: Illustration of object boundary detection. Two of fourteen training
images are shown in the first row. The next rows show two of the seven testing
images – BEL is able to generalize to the unseen images. Not only are boundaries of
the mouse found, but also other edges are suppressed – something that traditional
edge detection algorithms cannot do. Both Canny and Pb perform poorly, the ‘F’
score for BEL was .79 while for Canny it is .10 and for Pb it is .13 (for more on
evaluation methodology see Section 2.4.4). Not only do Canny and Pb detect non-
object edges but detection of the mouse edges is poor.

edge, p̂(S(i, j)|I), as before.

Results are shown in Figure (2.6). Results on the testing data match

the human labeled images well, although in some parts the mouse edges were not

detected (especially around the ears and tail). Very few non-object edges were

detected. The results are far superior to both Canny and Pb [48] which are not

tuned for this specific domain. Although Pb has a data driven component, code for

training is not available online, furthermore even if retrained we would not expect

Pb to suppress non-object edges since only local gradients are available as features.

In Figure (2.7) we show a closeup of the final testing image, and two

cropped patches, that demonstrate the importance of using significant context in-

formation.

Successful detection of object boundaries can facilitate object detection or

tracking. Ten images containing a given object provide only ten instances of the

object, yet tens of thousands of points on the boundaries of the object (although

these points may be highly correlated). Detecting the general location of the mouse

in the images in Figure (2.6) is trivial given the output of our algorithm.

One popular technique used in tracking is to perform background subtrac-



17
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Original Image Result

Figure 2.7: Zoomed in view of final testing image for mouse boundary detection and
result of classifier. The classifier fails to detect edges near the moving head due to
considerable motion blur, an artifact not observed in the training data. Two positive
patches of size 24x24 are shown, and corresponding patches of about half and double
size. The decision for the left patch can be made based on local information (the
small patch is sufficient), but for the right patch context information is crucial (the
larger patch is necessary). A patch size of 50x50 is used throughout this chapter to
make context information available to the discriminative method.
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tion. However, this requires both the camera and the background to be fixed - our

framework provides an alternate solution. The authors of [9] use the output of Pb

as input to their mouse tracker on very similar images, we would expect that our

method which is more accurate and faster would prove more useful.

2.4.3 Road detection

Our framework can also be applied to detect roads in satellite images.

We obtained the satellite images and corresponding road maps using Google Maps.

Each satellite image is aligned with its road map; to generate the ground truth we

converted the road map to a binary mask (the process could easily be automated).

Road detection is a well known problem, see for example [28]; here we show that

our algorithm is directly applicable.

The goal is to classify each pixel as belonging to a road or not. That is

we define SW (i, j) = 1 if a location in an image is part of a road according to scene

interpretation W , and otherwise 0. In this case, there is only one interpretation W

for each image, derived from the corresponding road map, so p̂(S(i, j)|I) = SW (i, j).

We smooth SW to allow for some positional uncertainty (alignment of the road to

the map is not perfect).

Note that roads are multiple pixels thick. Road detection is not edge de-

tection, rather, the task is pixel assignment. Some results are shown in Figure (2.8).

2.4.4 Edge detection in natural images

One of the strengths of our algorithm is that it can learn an edge detector

tuned for a specific domain. If labeled data is available, and the regions or boundaries

of interest are of a specific form (for example the boundaries on a mouse or roads

in satellite images), then our method outperforms other edge detection algorithms

which are designed to respond to all edges, not just specific edges, and cannot

take advantage of the particular properties of the edges of interest. However, it

is interesting to ask if our algorithm were trained to respond to edges in natural

images, how would its performance as a general edge detection algorithm rank?

To train our algorithm to respond to edges in natural images, and to test its

performance, we used the Berkeley Segmentation Dataset and Benchmark [48]. We
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Training Image Google Map Ground Truth

Testing Image Google Map BEL

Figure 2.8: Some results on road detection. Three satellite images were obtained
from Google Maps, along with their corresponding road maps. The first two images
were used for training, their corresponding road maps were converted to probability
distributions of pixel membership. Results on the third image are shown. Close
inspection reveals that ‘Winchester Dr.’ was not detected, it appears that it is
much darker than any road in the training data.
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image human BEL Pb

Figure 2.9: Zoomed in view of a test image form the natural image dataset. Qual-
itative properties of our output can be seen: (1) BEL gives a true probability, not
just a measure of edge strength. The strongest responses correlate well with re-
gions where the largest number of people marked edges. (2) The curvature of BEL
edges reflects the curvature of human edges, that is straight edges do not become
wavy and corners remain sharp (contrast this with the output of Pb). (3) Sharp,
clear boundaries (like the building boundaries) give rise to tightly peaked strong
responses, boundaries that are harder to localize (near the clouds and grass) give
rise to more diffuse weaker responses. This is consistent with human edges near the
clouds and grass which also had significant positional uncertainty. The ‘F’ score for
this image is .79 for Pb and .71 for BEL, i.e. according to the benchmark Pb performs
significantly better. When computing the overall precision and recall of the output
it must be thresholded and thinned, we suspect this adversely affected our measured
performance.
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Figure 2.10: Precision recall curves of BEL and Pb on gray (left) scale and color ver-
sions (right) of the Berkeley test set. The overall performance on gray scale images of
BEL improves on the performance of Pb, whose performance is the highest reported
in the literature. Similarly for color images, BEL-Color outperforms Pb-Color (the
‘F’ score is an overall measure of performance based on all precision/recall values).
Training a cascade classifier BEL-Cascade for gray scale images failed to give as
good of results (not shown), showing the importance of the classification algorithm
in our framework. (Curves were obtained from authors of Pb).

trained on a subset of the 200 training images (1
6 of each of the first 100 images) and

applied the algorithm to 100 test images. We repeated the experiment in both gray

scale and color (in our framework, adding features based on color simply involves

computing the same features we used for the gray scale image over each of the color

channels).

Some results on gray scale images are shown in Figure (2.11). Our out-

put gives a true probability whereas the output of Pb, like of most edge detection

algorithms, gives a strength or confidence of an edge being present, and not a true

probability. See Figure (2.9) for a qualitative comparison of the output.

We report quantitative results of our algorithm, calculated using the Berke-

ley benchmark, in Figure (2.10). More information on how the precision and recall

are computed and the significance of the curve can be found in [48]. We compare our

performance to multiple variants of Pb. The color and gray scale versions of Pb have

the highest reported performance in the literature. The overall performance of our
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Figure 2.11: The first row contains gray scale images from the Berkeley dataset
(http://www.cs.berkeley.edu/projects/vision/grouping/segbench), and the second
the overlayed manual segmentations. For each image we give our results and the
result of the Berkeley gray scale edge detector for comparison. The images chosen
are the same ones as in Figure 15 in [48].

methods on gray scale and color improves upon the performance of the correspond-

ing versions of Pb. The performance of all the algorithms shown in Figure (2.10)

is significantly higher than the performance of methods based only on brightness

gradients, such as the Canny detector. For a full comparison see [48].

We believe that if changed how we do edge thinning, increased the amount

of training data we use, trained a deeper tree, or tweaked any number of other factors

we could further improve the overall performance, however, this is not central to

our agenda, since as mentioned we believe that the true strength of our method lies

in its adaptability.
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2.5 Discussion

In this chapter, we have presented a learning based algorithm for edge de-

tection which implicitly combines low-level, mid-level and context information across

different scales to learn and compute discriminative models for complex patterns.

We treat edge detection as a machine learning problem with a very challenging

dataset. We use generic, fast features and make no assumptions about what defines

an edge, thus avoiding the need to specifically define ad-hoc rules. We use almost

identical parameters for training and there are no parameters to specify once the

model is learned.

The resulting algorithm is highly adaptive and scalable. We apply it to

a number of different datasets, achieving good results. There are a number of

applications, such as object detection and tracking, where edge detection could be

used but typically is not because edge detectors tend to be inaccurate and give strong

responses in uninteresting regions and weak responses in relevant regions. For many

of these areas of application sample labeled data can be made available, and we

hope that by making the algorithm adaptive it will find use in these applications.

We conclude by acknowledging that there is a limit to how far a discrimi-

native model such as ours can go. The method tends to do very well when adapted

to a specific domain, but still has problems on the more general problem of edge

detection in natural images, as demonstrated by the difficult images in the Berkeley

dataset. We have presented our method in view of an underlying generative model,

and argued its merit on the basis of its efficiency and good overall performance.

Eventually, however, models that explicitly represent and make use of high-level

knowledge must be engaged.

Portions of this chapter are based on “Supervised Learning of Edges and

Object Boundaries” by P. Dollár, Z. Tu and S. Belongie [17]. The dissertation

author was responsible for implementing the algorithm, performing the experiments

and writing the paper.
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Learning to Traverse Image

Manifolds

A number of techniques have been developed for dealing with high dimen-

sional data sets that fall on or near a smooth low dimensional nonlinear manifold.

Such data sets arise whenever the number of modes of variability of the data are

much fewer than the dimension of the input space, as is the case for image sequences.

Unsupervised manifold learning refers to the problem of recovering the structure of a

manifold from a set of unordered sample points. Manifold learning is often equated

with dimensionality reduction, where the goal is to find an embedding or ‘unrolling’

of the manifold into a lower dimensional space such that certain relationships be-

tween points are preserved. Such embeddings are typically used for visualization,

with the projected dimension being 2 or 3.

Image manifolds have also been studied in the context of measuring dis-

tance between images undergoing known transformations. For example, the tangent

distance [64, 65] between two images is computed by generating local approximations

of a manifold from known transformations and then computing the distance between

these approximated manifolds. In this chapter, we seek to frame the problem of re-

covering the structure of a manifold as that of directly learning the transformations

a point on a manifold may undergo. Our approach, Locally Smooth Manifold Learn-

ing (lsml), attempts to learn a warping function W with d degrees of freedom that

can take any point on the manifold and generate its neighbors. lsml recovers a

24
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first order approximation of W, and by making smoothness assumptions on W can

generalize to unseen points.

We show that lsml can recover the structure of the manifold where data

is given, and also in regions where it is not, including regions beyond the support

of the original data. We propose a number of uses for the recovered warping func-

tion W, including embedding with a natural out-of-sample extension, and in the

image domain discuss how it can be used for tasks such as computation of tangent

distance, image sequence interpolation, compression, and motion transfer. We also

show examples where lsml is used to simultaneously learn the structure of multiple

“parallel” manifolds, and even generalize to data on new manifolds. Finally, we

show that by exploiting the manifold smoothness, lsml is robust under conditions

where many embedding methods have difficulty.

Related work is presented in Section 3.1 and the algorithm in Section 3.2.

Experiments on point sets and results on images are shown in Sections 3.3 and 3.4,

respectively. We conclude in Section 3.5.

3.1 Related Work

Related work can be divided into two categories. The first is the literature

on manifold learning, which serves as the foundation for this chapter. The second

is work in computer vision and computer graphics addressing image warping and

generative models for image formation.

A number of classic methods exist for recovering the structure of a man-

ifold. Principal component analysis (pca) tries to find a linear subspace that

best captures the variance of the original data. Traditional methods for nonlin-

ear manifolds include self organizing maps, principal curves, and variants of multi-

dimensional scaling (mds) among others, see [33] for a brief introduction to these

techniques. Recently the field has seen a number of interesting developments in non-

linear manifold learning. [62] introduced a kernelized version of (pca). A number

of related embedding methods have also been introduced, representatives include

lle [59], Isomap [71], and more recently sde [77]. Broadly, such methods can

be classified as spectral embedding techniques [77]; the embeddings they compute
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are based on an eigenvector decomposition of an n × n matrix that represents ge-

ometrical relationships of some form between the original n points. Out-of-sample

extensions have been proposed [5]. The goal of embedding methods (to find struc-

ture preserving embeddings) differs from the goals of lsml (learn to traverse the

manifold).

Four methods that we share inspiration with are [8, 39, 4, 57]. [8] employs

a novel charting based technique to achieve increased robustness to noise and de-

creased probability of pathological behavior vs. lle and Isomap; we exploit similar

ideas in the construction of lsml but differ in motivation and potential applicability.

[4] proposed a method to learn the tangent space of a manifold and demonstrated a

preliminary illustration of rotating a small bitmap image by about 1◦. Work by [39]

is based on the notion of learning a model for class specific variation, the method

reduces to computing a linear tangent subspace that models variability of each class.

[57] shares one of our goals as it addresses the problem of learning Lie groups, the

infinitesimal generators of certain geometric transformations.

In image analysis, the number of dimensions is usually reduced via ap-

proaches like pca [53], epitomic representation [36], or generative models as in the

realMOVES system developed by Di Bernardo et al . [1]. Sometimes, a precise model

of the data, e.g . for faces [6] or eyes [52], is used to reduce the complexity of the

data. Another common approach is simply to have instances of an object in different

conditions: [7] start by estimating feature correspondences between a novel input

with unknown pose and lighting and a stored labeled example in order to apply an

arbitrary warp between pictures. The applications range from video texture syn-

thesis [61] and facial expression extrapolation [13, 72] to face recognition [19] and

video rewrite [10].

3.2 Algorithm

Let D be the dimension of the input space, and assume the data lies on a

smooth d-dimensional manifold (d � D). For simplicity assume that the manifold

is diffeomorphic with a subset of Rd, meaning that it can be endowed with a global

coordinate system (this requirement can easily be relaxed) and that there exists a
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continuous bijective mapping M that converts coordinates y ∈ Rd to points x ∈ RD

on the manifold. The goal of most dimensionality reduction techniques given a set

of data points xi is to find an embedding yi = M−1(xi) that preserves certain

properties of the original data like the distances between all points (classical mds)

or the distances or angles between nearby points (e.g . spectral embedding methods).

Instead, we seek to learn a warping function W that can take a point on

the manifold and return any neighboring point on the manifold, capturing all the

modes of variation of the data. Let us use W(x, ε) to denote the warping of x, with

ε ∈ Rd acting on the degrees of freedom of the warp according to the formula M:

W(x, ε) = M(y + ε), where y = M−1(x). Taking the first order approximation of

the above gives: W(x, ε) ≈ x+H(x)ε, where each columnH·k(x) of the matrixH(x)

is the partial derivative of M w.r.t. yk: H·k(x) = ∂/∂ykM(y). This approximation

is valid given ε small enough, hence we speak of W being an infinitesimal warping

function.

We can restate our goal of learning to warp in terms of learning a function

Hθ : RD → RD×d parameterized by a variable θ. Only data points xi sampled

from one or several manifolds are given. For each xi, the set N i of neighbors

is then computed (e.g . using variants of nearest neighbor such as kNN or εNN),

with the constraint that two points can be neighbors only if they come from the

same manifold. To proceed, we assume that if xj is a neighbor of xi, there then

exists an unknown εij such that W(xi, εij) = xj to within a good approximation.

Equivalently: Hθ(xi)εij ≈ xj − xi. We wish to find the best θ in the squared error

sense (the εij being additional free parameters that must be optimized over). The

expression of the error we need to minimize is therefore:

error1(θ) = min
{εij}

n∑
i=1

∑
j∈N i

∥∥Hθ(xi)εij − (xj − xi)
∥∥2

2
(3.1)

Minimizing the above error function can be interpreted as trying to find a warping

function that can transform a point into its neighbors. Note, however, that the

warping function has only d degrees of freedom while a point may have many more

neighbors. This intuition allows us to rewrite the error in an alternate form. Let ∆i

be the matrix where each column is of the form (xj − xi) for each neighbor of xi.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Overview. Twenty points (n=20) that lie on 1D curve (d=1) in a
2D space (D=2) are shown in (a). Black lines denote neighbors, in this case the
neighborhood graph is not connected. We apply lsml to train H (with f = 4
rbfs). H maps points in R2 to tangent vectors; in (b) tangent vectors computed
over a regularly spaced grid are displayed, with original points (blue) and curve
(gray) overlayed. Tangent vectors near original points align with the curve, but note
the seam through the middle. Regularization fixes this problem (c), the resulting
tangents roughly align to the curve along its entirety. We can traverse the manifold
by taking small steps in the direction of the tangent; (d) shows two such paths,
generated starting at the red plus and traversing outward in large steps (outer
curve) and finer steps (inner curve). This generates a coordinate system for the
curve resulting in a 1D embedding shown in (e). In (f) two parallel curves are
shown, with n=8 samples each. Training a common H results in a vector field that
more accurately fits each curve than training a separate H for each (if the structure
of the two manifolds was very different this need not be the case).
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Let ∆i = U iΣiV i> be the thin singular value decomposition of ∆i. Then, one can

show (see Section 3.6) that error1 is equivalent to the following:

error2(θ) = min
{Ei}

n∑
i=1

∥∥Hθ(xi)Ei − U iΣi
∥∥2

F
(3.2)

Here, the matrices Ei are the additional free parameters. Minimizing the above can

be interpreted as searching for a warping function that directly explains the modes

of variation at each point. This form is convenient since we no longer have to keep

track of neighbors. Furthermore, if there is no noise and the linearity assumption

holds there are at most d non-zero singular values. In practice we use the truncated

SVD, keeping at most 2d singular values, allowing for significant computational

savings.

We now give the remaining details of lsml for the general case (see Section

3.6). For the case of images, we present an efficient version in Section 3.4 which

uses some basic domain knowledge to avoid solving a large regression. Although

potentially any regression technique is applicable, a linear model is particularly

easy to work with. Let f i be f features computed over xi. We can then define

Hθ(xi) = [Θ1f i · · ·ΘDf i]>, where each Θk is a d × f matrix. Re-arranging error2

gives:

errorlin(θ) = min
{Ei}

n∑
i=1

D∑
k=1

∥∥∥f i>Θk>Ei − U i
k·Σ

i
∥∥∥2

2
(3.3)

Solving simultaneously for E and Θ is complex, but if either E or Θ is fixed, solving

for the remaining variable becomes a least squares problem (an equation of the form

AXB = C can be rewritten as B> ⊗ A · vec(X) = vec(C), where ⊗ denotes the

Kronecker product and vec the matrix vectorization function). To solve for θ, we

use an alternating minimization procedure. In all experiments in this chapter we

perform 30 iterations of the above procedure, and while local minima do not seem to

be to prevalent, we randomly restart the procedure 5 times. Finally, nowhere in the

construction have we enforced that the learned tangent vectors be orthogonal (such

a constraint would only be appropriate if the manifold was isometric to a plane).
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To avoid numerically unstable solutions we regularize the error:

error′lin(θ) = errorlin(θ) + λE

n∑
i=1

∥∥Ei
∥∥2

F
+ λθ

D∑
k=1

∥∥∥Θk
∥∥∥2

F
(3.4)

For the features we use radial basis functions (rbfs) [33], the number of basis func-

tions, f , being an additional parameter. Each basis function is of the form f j(x) =

exp(−‖x − µj‖22/2σ2) where the centers µj are obtained using K-means clustering

on the original data with f clusters and the width parameter σ is set to be twice

the average of the minimum distance between each cluster and its nearest neighbor

center. The feature vectors are then simply defined as f i = [f1(xi) · · · fp(xi)]>. The

parameter f controls the smoothness of the final mapping Hθ; larger values result

in mappings that better fit local variations of the data, but whose generalization

abilities to other points on the manifold may be weaker. This is exactly analogous

to the standard supervised setting and techniques like cross validation could be used

to optimize over f .

3.3 Experiments on Point Sets

We begin with a discussion on the intuition behind various aspects of lsml.

We then show experiments demonstrating the robustness of the method, followed

by a number of applications. In the figures that follow we make use of color/shading

to indicate point correspondences, for example when we show the original point set

and its embedding.

lsml learns a function H from points in RD to tangent directions that

agree, up to a linear combination, with estimated tangent directions at the origi-

nal training points of the manifold. By constraining H to be smooth (through use

of a limited number of rbfs), we can compute tangents at points not seen during

training, including points that may not lie on the underlying manifold. This gener-

alization ability of H will be central to the types of applications considered. Finally,

given multiple non-overlapping manifolds with similar structure, we can train a sin-

gle H to correctly predict the tangents of each, allowing information to be shared.

Fig. 3.1 gives a visual tutorial of these different concepts.
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(a) (b)

(c) (d)

Figure 3.2: Robustness. lsml used to recover the embedding of the S-curve under
a number of sampling conditions. In each plot we show the original points along with
the computed embedding (rotated to align vertically), correspondence is indicated
by coloring/shading (color was determined by the y-coordinate of the embedding).
In each case lsml was run with f = 8, d = 2, and neighbors computed by εNN with
ε = 1 (the height of the curve is 4). The embeddings shown were recovered from data
that was: (a) densely sampled (n=500) (b) sparsely sampled (n=100), (c) highly
structured (n=190), and (d) noisy (n=500, random Gaussian noise with σ = .1).
In each case lsml recovered the correct embedding. For comparison, lle recovered
good embeddings for (a) and (c) and Isomap for (a),(b), and (c). The experiments
were repeated a number of times yielding similar results. For a discussion see the
text.
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lsml appears quite robust. Fig. 3.2 shows lsml successfully applied for

recovering the embedding of the “S-curve” under a number of sampling conditions

(similar results were obtained on the “Swiss-roll”). After H is learned, the embed-

ding is computed by choosing a random point on the manifold and establishing a

coordinate system by traversing outward (the same procedure can be used to embed

novel points, providing a natural out-of-sample extension). Here we compare only

to lle and Isomap using published code. The densely sampled case, Fig. 3.2(a),

is comparatively easy and a number of methods have been shown to successfully

recover an embedding. On sparsely sampled data, Fig. 3.2(b), the problem is more

challenging; lle had problems for n < 250 (lowering lle’s regularization parameter

helped somewhat). Real data need not be uniformly sampled, see Fig. 3.2(c). In the

presence of noise Fig. 3.2(d), Isomap and lle performed poorly. A single outlier

can distort the shortest path computed by Isomap, and lle does not directly use

global information necessary to disambiguate noise. Other methods are known to

be robust [8], and in [82] the authors propose a method to “smooth” a manifold as

a preprocessing step for manifold learning algorithms; however a full comparison is

outside the scope of this chapter.

Having learned H and computed an embedding, we can also backproject

from a point y ∈ Rd to a point x on the manifold by first finding the coordinate of

the closest point yi in the original data, then traversing from xi by εj = yj − yi
j

along each tangent direction j (see Fig. 3.1(d)). Fig. 3.3(a) shows tangents and an

embedding recovered by lsml on the Swiss-roll. In Fig. 3.3(b) we backproject from

a grid of points in R2; by linking adjacent sets of points to form quadrilaterals we can

display the resulting backprojected points as a surface. In Fig. 3.3(c), we likewise do

a backprojection (this time keeping all the original points), however we backproject

grid points well below and above the support of the original data. Although there

is no ground truth here, the resulting extension of the surface seems “natural”. Fig.

3.3(d) shows the reconstruction of a unit hemisphere by traversing outward from

the topmost point. There is no isometric mapping (preserving distance) between

a hemisphere and a plane, and given a sphere there is actually not even a confor-

mal mapping (preserving angles). In the latter case an embedding is not possible,

however, we can still easily recover H for both (only hemisphere results are shown).
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(a) (b)

(c) (d)

Figure 3.3: Reconstruction. Reconstruction examples are used to demonstrate
quality and generalization of H. (a) Points sampled from the Swiss-roll manifold
(middle), some recovered tangent vectors in a zoomed-in region (left) and embedding
found by lsml (right). Here n = 500 f = 20, d = 2, and neighbors were computed
by εNN with ε = 4 (height of roll is 20). Reconstruction of Swiss-roll (b), created
by a backprojection from regularly spaced grid points in the embedding (traversal
was done from a single original point located at the base of the roll, see text for
details). Another reconstruction (c), this time using all points and extending the
grid well beyond the support of the original data. The Swiss-roll is extended in a
reasonable manner both inward (occluded) and outward. (d) Reconstruction of unit
hemisphere (lsml trained with n = 100 f = 6, d = 2, εNN with ε = .3) by traversing
outward from topmost point, note reconstruction in regions with no points.
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3.4 Results on Images

Before continuing, we consider potential applications of H in the image do-

main, including tangent distance estimation, nonlinear interpolation, extrapolation,

compression, and motion transfer. We refer to results on point-sets to aid visual-

ization. Tangent distance estimation: H computes the tangent and can be used

directly in invariant recognition schemes such as [65]. Compression: Fig. 3.3(b,d)

suggest how given a reference point and H nearby points can be reconstructed us-

ing d numbers (with distortion increasing with distance). Nonlinear interpolation

and extrapolation: points can be generated within and beyond the support of given

data (cf . Fig. 3.3); of potential use in tasks such as frame rate up-conversion, recon-

structing dropped frames and view synthesis. Motion transfer: for certain classes of

manifolds with “parallel” structure (cf . Fig. 3.1(f)), a recovered warp may be used

on an entirely novel image. These applications will depend not only on the accuracy

of the learned H but also on how close a set of images is to a smooth manifold.

The key insight to working with images is that although images can live

in very high dimensional spaces (with D ≈ 106 quite common), we do not have to

learn a transformation with that many parameters. Let x be an image and H·k(x),

k ∈ [1, d], be the d tangent images. Here we assume that each pixel in H·k(x) can be

computed based only on the information in s×s patch centered on the corresponding

pixel in x. Thus, instead of learning a function RD → RD×d we learn a function

Rs2 → Rd, and to compute H we apply the per patch function at each of the D

locations in the image. The resulting technique scales independently of D, in fact

different sized images can be used. The per patch assumption is not always suitable,

most notably for transformations that are based only on image coordinate and are

independent of appearance.

The approach of Section 3.2 needs to be slightly modified to accommodate

patches. We rewrite each image xi ∈ RD as a s2 × D matrix Xi where each row

contains pixels from one patch in xi (in training we sub-sample patches). Patches

from all the images are clustered to obtain the f rbfs; each Xi is then transformed

to a f ×D matrix F i that contains the features computed for each patch. The per

patch linear model can now be written as Hθ(xi) = (ΘF i)>, where Θ is a d × f
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Figure 3.4: The translation manifold. Here F i = Xi; s = 17, d = 2 and 9
sets of 6 translated images each were used (not including the cameraman). (a)
Zero padded, smoothed test image x. (b) Visualization of learned Θ, see text for
details. (c) Hθ(x) computed via convolution. (d) Several transformations obtained
after multiple steps along manifold for different linear combinations of Hθ(x). Some
artifacts due to error propagation start to appear in the top figures.
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~~· · · ~~· · ·
(a) (b) (c) (d) (e)

Figure 5: Manifold generated by out-of-plane rotation of a teapot (data from [23], sub-sampled and smoothed).
Here, d = 1, f = 400 and roughly 3000 patches of width s = 13 were sampled from 30 frames. Bottom row shows the
ground truth images; dashed box contains 3 of 30 training images, representing ∼ 8◦ of physical rotation. The top row
shows the learned transformation applied to the central image. By observing the tip, handle and the two white blobs on
the teapot, and comparing to ground truth data, we can observe the quality of the learned transformation on seen data (b)
and unseen data (d), both starting from a single frame (c). The outmost figures (a)(e) shows failure for large rotations.

Fig. 5 shows the application of LSML for learning out-of-plane rotation of a teapot. On this size problem
training LSML (in MATLAB) takes a few minutes; convergence occurs within about 10 iterations of the mini-
mization procedure. Hθ(x) for novel x can be computed with f convolutions (to compute cross correlation)
and is also fast. The outer frames in Fig. 5 highlight a limitation of the approach: with every successive
step error is introduced; eventually significant error can accumulate. Here, we used a step size which gives
roughly 10 interpolated frames between each pair of original frames. With out-of-plane rotation, information
must be created and the problem becomes ambiguous (multiple manifolds can intersect at a single point),
hence generalization across images is not expected to be good.

�
�

�
�

�
�

�
�

�
�

��

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

��+

� Q
Q

Q
Q

Q
Q

QQk

?

6

Q
Q

Q
Q

Q
Q

QQs

-�
�

�
�

�
�

��3

(a) (b) (c) (d)

Figure 6: Traversing the eye manifold. LSML trained on one eye moving along five different lines (3 vertical and 2
horizontal). Here d = 2, f = 600, s = 19 and around 5000 patches were sampled; 2 frames were considered neighbors
if they were adjacent in time. Figure (a) shows images generated from the central image. The inner 8 frames lie just
outside the support of the training data (not shown), the outer 8 are extrapolated beyond its support. Figure (b) details
Hθ(x) for two images in a warping sequence: a linear combination can lead the iris/eyelid to move in different directions
(e.g. the sum would make the iris go up). Figure (c) shows extrapolation far beyond the training data, i.e. an eye wide
open and fully closed. Finally, Figure(d) shows how the eye manifold we learned on one eye can be applied on a novel
eye not seen during training.

Figure 3.5: Manifold generated by out-of-plane rotation of a teapot (data
from [77], sub-sampled and smoothed). Here, d = 1, f = 400 and roughly 3000
patches of width s = 13 were sampled from 30 frames. Bottom row shows the
ground truth images; dashed box contains 3 of 30 training images, representing
∼ 8◦ of physical rotation. The top row shows the learned transformation applied
to the central image. By observing the tip, handle and the two white blobs on
the teapot, and comparing to ground truth data, we can observe the quality of the
learned transformation on seen data (b) and unseen data (d), both starting from a
single frame (c). The outmost figures (a)(e) shows failure for large rotations.

matrix (compare with the D Θs needed without the patch assumption). The error

function, which is minimized in a similar way (see Section 3.6), becomes:

errorimg(Θ) = min
{Ei}

n∑
i=1

∥∥∥F i>Θ>Ei − U iΣi
∥∥∥2

F
(3.5)

We begin with the illustrative example of translation (Fig. 3.4). Here,

rbfs were not used, instead F i = Xi. The learned Θ is a 2 × s2 matrix, which

can be visualized as two s × s images as in Fig. 3.4(b). These resemble derivative

of Gaussian filters, which are in fact the infinitesimal generates for translation [57].

Computing the dot product of each column of Θ with each patch can be done using

a convolution. Fig. 3.4 shows applications of the learned transformations, which

resemble translations with some artifacts.

Fig. 3.5 shows the application of lsml for learning out-of-plane rotation

of a teapot. On this size problem training lsml (in Matlab) takes a few minutes;

convergence occurs within about 10 iterations of the minimization procedure. Hθ(x)

for novel x can be computed with f convolutions (to compute cross correlation) and

is also fast. The outer frames in Fig. 3.5 highlight a limitation of the approach: with

every successive step error is introduced; eventually significant error can accumulate.
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(a) (b) (c) (d)

Figure 1: Traversing the eye manifold. LSML trained on one eye moving along five different lines (3 vertical
and 2 horizontal). Here d = 2, f = 600, s = 19 and around 5000 patches were sampled; 2 frames were
considered neighbors if they were adjacent in time. Figure (a) shows images generated from the central image.
The inner 8 frames lie just outside the support of the training data (not shown), the outer 8 are extrapolated
beyond its support. Figure (b) details Hθ(x) for two images in a warping sequence: a linear combination can
lead the iris/eyelid to move in different directions (e.g. the sum would make the iris go up). Figure (c) shows
extrapolation far beyond the training data, i.e. an eye wide open and fully closed. Finally, Figure(d) shows how
the eye manifold we learned on one eye can be applied on a novel eye not seen during training.

Figure 3.6: Traversing the eye manifold. lsml trained on one eye moving along
five different lines (3 vertical and 2 horizontal). Here d = 2, f = 600, s = 19
and around 5000 patches were sampled; 2 frames were considered neighbors if they
were adjacent in time. Figure (a) shows images generated from the central image.
The inner 8 frames lie just outside the support of the training data (not shown),
the outer 8 are extrapolated beyond its support. Figure (b) details Hθ(x) for two
images in a warping sequence: a linear combination can lead the iris/eyelid to move
in different directions (e.g . the sum would make the iris go up). Figure (c) shows
extrapolation far beyond the training data, i.e. an eye wide open and fully closed.
Finally, Figure(d) shows how the eye manifold we learned on one eye can be applied
on a novel eye not seen during training.

Here, we used a step size which gives roughly 10 interpolated frames between each

pair of original frames. With out-of-plane rotation, information must be created

and the problem becomes ambiguous (multiple manifolds can intersect at a single

point), hence generalization across images is not expected to be good.

In Fig. 3.6, results are shown on an eye manifold with 2 degrees of freedom.

lsml was trained on sparse data from video of a single eye; Hθ was used to synthesize

views within and also well outside the support of the original data (cf . Fig. 3.6(c)).

In Fig. 3.6(d), we applied the transformation learned from one person’s eye to a

single image of another person’s eye (taken under the same imaging conditions).

lsml was able to start from the novel test image and generate a convincing series

of transformations. Thus, motion transfer was possible - Hθ trained on one series

of images generalized to a different set of images.
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3.5 Discussion

In this chapter we presented an algorithm, Locally Smooth Manifold Learn-

ing, for learning the structure of a manifold. Rather than pose manifold learning as

the problem of recovering an embedding, we posed the problem in terms of learn-

ing a warping function for traversing the manifold. Smoothness assumptions on

W allowed us to generalize to unseen data. Proposed uses of lsml include tan-

gent distance estimation, frame rate up-conversion, video compression and motion

transfer.

Future work includes scaling the implementation to handle large datasets;

the goal would be to integrate lsml into recognition systems to provide increased

invariance to transformations.

This chapter is in part based on the paper “Learning to Traverse Image

Manifolds” by P. Dollár, V. Rabaud and S. Belongie [15]. The dissertation author

proposed the initial idea, developed much of the mathematics and code, and wrote

the bulk of the paper.
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3.6 Mathematical Details

Notation:

a Scalar
a Vector
ai Vector indexed for some purpose
ai ith element of the vector a
A Matrix
Ai Matrix indexed for some purpose
A·j jth column of the matrix A
Ai· ith row of the matrix A
vec (A) vector version of the matrix A
A+ Pseudo-inverse of A

‖x‖22 squared L2 norm of x
‖A‖2F squared Frobenius norm of A

Variables:

D dim. of original space

d dim. of projected space

n number of data points

f number features per point

xi [D × 1] i ∈ [n], data point

f i [f × 1] i ∈ [n], features of xi

Ni indices of neighbors of xi

Hθ Hθ : RD → RD×d

H i [D × d] H i = Hθ(xi)(θ fixed)

εij , Ei free parameters

∆i [D × |Ni|] ∆i
·j = xj − xi

U iΣiV i> SVD of ∆i
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3.6.1 Equivalence of error1(θ) and error2(θ)

error1(θ) = min
{εij}

n∑
i=1

∑
j∈N i

∥∥Hθ(xi)εij − (xj − xi)
∥∥2

2

error2(θ) = min
{Ei}

n∑
i=1

∥∥Hθ(xi)Ei − U iΣi
∥∥2

F

Fixing θ we can solve for each εij and Ei and rewrite error1(θ) and error2(θ) as:

error1(θ) = min
{εij}

n∑
i=1

∑
j∈N i

∥∥Hiεij −∆i
·j
∥∥2

2
=

n∑
i=1

∑
j∈N i

∥∥∥(
HiHi+ − I

)
∆i
·j

∥∥∥2

2

error2(θ) = min
{Ei}

n∑
i=1

∥∥HiEi − U iΣi
∥∥2

F
=

n∑
i=1

∥∥∥(
HiHi+ − I

)
U iΣi

∥∥∥2

F

We show the equivalence of these two forms, using the facts that ‖A‖2F = tr(A ·A>),
‖x‖22 = tr(xx>), and for any unitary matrix V the following holds:

∑
j

(
Vj·

> · Vj·
)

=
I. Proof:

error1(θ) =
n∑

i=1

∑
j∈N i

∥∥∥(
HiHi+ − I

)
∆i
·j

∥∥∥2

2

=
∑

i

∑
j∈Ni

tr

((
HiHi+ − I

)
∆i
·j∆

i
·j>

(
HiHi+ − I

)>)

=
∑

i

∑
j∈Ni

tr

((
HiHi+ − I

)
· U iΣiV i

·j
> · V i

·jΣ
i>U i> ·

(
HiHi+ − I

)>)

=
∑

i

tr

(
HiHi+ − I

)
· U iΣi ·

∑
j∈Ni

(
V i
·j
> · V i

·j

)
· Σi>U i> ·

(
HiHi+ − I

)>
=

∑
i

tr

((
HiHi+ − I

)
· U iΣi · Σi>U i> ·

(
HiHi+ − I

)>)
as V i is unitary

=
∑

i

∥∥∥(
HiHi+ − I

)
U iΣi

∥∥∥2

F
= error2(θ)
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3.6.2 Minimization for General Manifolds

Here we use the linear parametrization of HΘ: HΘ is parameterized by

Θ = (Θ1, · · · ,ΘD), where each Θk is a d×f matrix. The total number of parameters

is thus Ddf . HΘ has the following form:

HΘ(xi) =
[
Θ1f i · · ·ΘDf i

]>
Plugging HΘ into error2(θ) gives the new error function errorlin(θ):

errorlin(θ) = min
{Ei}

n∑
i=1

∥∥HΘ(xi)Ei − U iΣi
∥∥2

F

= min
{Ei}

n∑
i=1

D∑
k=1

∥∥∥f i>Θk>Ei − U i
k·Σ

i
∥∥∥2

2

Minimize with respect to Θ:

1. Initialize Θ randomly.

2. Loop:

(a) For each i, solve for the best Ei given the Θk’s:

Ei = arg min
{Ei}

D∑
k=1

∥∥∥f i>Θk>Ei − U i
k·Σ

i
∥∥∥2

2

= arg min
{Ei}

∥∥H iEi − U iΣi
∥∥2

F

= H i+U iΣi
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(b) For each k, solve for the best Θk given the Ei’s:

Θk = arg min
Θk

n∑
i=1

∥∥∥f i>Θk>Ei − U i
k·Σ

i
∥∥∥2

2

= arg min
Θk

n∑
i=1

∥∥∥(
Ei> ⊗ f i>

)
vec

(
Θk>

)
− vec

(
U i

k·Σ
i
)∥∥∥2

2

Since vec
(
U i

k·Σ
i
)

= ΣiU i
k·
>, the least squares solution for Θk becomes:

vec
(
Θk>

)
=


E1> ⊗ f1>

...

En> ⊗ fn>


+ 

Σ1U1
k·
>

...

ΣnUn
k·
>


Adding a regularization term on the Eis and Θks is important for achieving

good solutions. The error function becomes:

error′lin(θ) = errorlin(θ) + λE

n∑
i=1

∥∥Ei
∥∥2

F
+ λθ

D∑
k=1

∥∥∥Θk
∥∥∥2

F

When computing the optimal Θk and Ei, the above equations needs to be modified

only slightly. The scheme is similar to solving for x = arg minx ‖Ax− b‖22 +λ ‖x‖22,
in which case the solution is simply obtained by taking the derivative and setting

to 0: x = (A>A + λI)−1A>b. The above equations are adjusted similarly.
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3.6.3 Minimization for Image Manifolds

K ≤ D patches of size s×s are extracted from each image. After clustering

the patches to obtain f clusters, for each patch a length f feature vector is computed,

and for each image i the feature vectors for each patch are stacked in a matrix F i

(of size f × K). For images, there is a single Θ (of size d × f). The error, again

derived from error2(θ) is:

errorimg(θ) = min
{Ei}

n∑
i=1

∥∥HΘ(xi)Ei − U iΣi
∥∥2

F

= min
{Ei}

n∑
i=1

∥∥∥F i>Θ>Ei − U iΣi
∥∥∥2

F

Minimize with respect to Θ:

1. Initialize Θ randomly.

2. Loop:

(a) For each i, solve for the best Ei given Θ:

Ei =
(
F i>Θ>

)+
U iΣi

(b) Solve for the best Θ given the Ei’s:

Θ = arg min
Θ

n∑
i=1

∥∥∥F i>Θ>Ei − U iΣi
∥∥∥2

F

= arg min
Θ

n∑
i=1

∥∥∥(
Ei> ⊗ F i>

)
vec

(
Θ>

)
− vec

(
U iΣi

)∥∥∥2

F

Hence, vec
(
Θ>)

is the least square solution of:
A11

...

AnD

 vec
(
Θ>

)
=


vec

(
U1Σ1

)
...

vec (UnΣn)

 =


U1
·1Σ

1
11

...

Un
·DΣn

DD


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where Aij = Ei
·j
> ⊗ F i>. As the left matrix is of size nDK × df , we do

not solve this least squares problem directly, but rather transform the

equation to:


A11

...

AnD


> 

A11

...

AnD

 vec
(
Θ>

)
=


A11

...

AnD


> 

U1
·1Σ

1
11

...

Un
·DΣn

DD


 n∑

i=1

D∑
j=1

Aij>Aij

 vec
(
Θ>

)
=

n∑
i=1

D∑
j=1

Σi
jjA

ij>U i
·j

This equation is simpler to solve as the left matrix is only df × df and

typically full rank.

Adding a regularization term is similar to the case for general manifolds.
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3.6.4 lsml for General Manifolds

Input

xi: input data points (1 ≤ i ≤ n) in RD

N i: neighbors of xi (e.g . using kNN)
d: manifold dimensionality
f : number of rbfs (controls smoothness)

Precomputations

µj , σ: Run K-means on the xi with f clusters; set µj to
the cluster centers. Set σ to twice the average dis-
tance between a cluster and its nearest neighbor.

f i: Features: f i
j = exp(

∥∥xi − µj
∥∥2

2
/2σ2)

U i,Σi: For each xi, compute the difference to neighbor
matrix ∆i and apply the SVD to get: ∆i =
U iΣiV i>

Minimization

∀k, initialize Θk to a random d× f matrix.

while errorlin(θ) still decreases do

∀i, solve for the best Ei given the Θks:

H i =
[
Θ1f i · · ·ΘDf i

]>
Ei = H i+U iΣi

∀k, solve for the best Θk given the Ei’s:

vec
(
Θk>

)
=


E1> ⊗ f1>

...

En> ⊗ fn>


+ 

Σ1U1
k·
>

...

ΣnUn
k·
>


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3.6.5 lsml for Image Manifolds

Input

xi: input images (1 ≤ i ≤ n) in RD

N i: neighbors of xi (e.g . from proximity in video)
d: manifold dimensionality
f : number of rbfs (controls smoothness)
s: patch width/height

Precomputations

µj , σ: Run K-means on large number of flattened s × s
image patches. Set µj , σ as in general case.

F i: Ftrs: F i
jk = exp(

∥∥pik − µj
∥∥2

2
/2σ2) where pik is

the kth patch in image i.
U i,Σi: For each xi, compute the difference to neighbor

matrix ∆i and apply the SVD to get: ∆i =
U iΣiV i>

Minimization

Initialize Θ to a random d× f matrix.

while errorimg(θ) still decreases do ∀i, solve for the best Ei given Θ:

Ei =
(
F i>Θ>

)+
U iΣi

solve for the best Θ given the Ei’s:

Aij = Ei
·j
> ⊗ F i>

A =

 n∑
i=1

D∑
j=1

Aij>Aij


vec

(
Θ>

)
= A+

n∑
i=1

D∑
j=1

Σi
jjA

ij>U i
·j
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Behavior Recognition via Sparse

Spatio-Temporal Features

In this chapter we develop a general framework for detecting and character-

izing behavior from video sequences, making few underlying assumptions about the

domain and subjects under observation. Consider some of the well-known difficul-

ties faced in behavior recognition. Subjects under observation can vary in posture,

appearance and size. Occlusions and complex backgrounds can impede observa-

tion, and variations in the environment, such as in illumination, can further make

observations difficult. Moreover, there are variations in the behaviors themselves.

Many of the problems described above have counterparts in object recogni-

tion. The inspiration for our approach comes from approaches to object recognition

that rely on sparsely detected features in a particular arrangement to characterize

an object, e.g. [21, 2, 44]. Such approaches tend to be robust to pose, image clutter,

occlusion, object variation, and the imprecise nature of the feature detectors. In

short they can provide a robust descriptor for objects without relying on too many

assumptions.

We propose to characterize behavior through the use of spatio-temporal

feature points (see figure 4.1). A spatio-temporal feature is a short, local video

sequence such as an eye opening or a knee bending, or for a mouse, a paw rapidly

moving back and forth. A behavior is then fully described in terms of the types and

locations of feature points present (for simplicity in this work we ignore the feature

47
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Figure 4.1: Visualization of cuboid based behavior recognition. A spatio-temporal
volume of mouse footage shown at top. We apply a spatio-temporal interest point
detector to find local regions of interest in space and time (cuboids) which serve as
the substrate for behavior recognition.
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locations). The motivation is that a particular behavior can be characterized as such

regardless of global appearance, posture, nearby motion or occlusion and so forth,

for example, see figure 4.2. The complexity of discerning whether two behaviors are

similar is shifted to the detection and description of a rich set of features.

Although the method is inspired by approaches to object recognition that

rely on spatial features, video and images have distinct properties. The third dimen-

sion is temporal, not spatial, and must be treated accordingly. Detection of objects

in 3D spatial volumes is a distinct problem, see for example [25].

In this chapter we show that direct 3D counterparts to commonly used

2D interest point detectors are inadequate for detection of spatio-temporal feature

points and propose an alternative. We also develop and test a number of descrip-

tors to characterize the cuboids of spatio-temporally windowed data surrounding a

feature point. Cuboids extracted from a number of sample behaviors from a given

domain are clustered to form a dictionary of cuboid prototypes. The only infor-

mation kept from all subsequent video data is the location and type of the cuboid

prototypes present. We argue that such a representation is sufficient for recogni-

tion and robust with respect to variations in the data. We show applications of

this framework, utilizing a simple behavior descriptor, to three datasets containing

human and mouse behaviors, and show superior results over a number of existing

algorithms.

The structure of the chapter is as follows. In Section 4.1 we discuss related

work. We describe our algorithm in Section 4.2. In Section 4.3 we present a detailed

comparison of the performance of our algorithm versus existing methods on various

datasets. We conclude in Section 4.4.

4.1 Related Work

Tracking and behavior recognition are closely related problems, and in fact

many traditional approaches to behavior recognition are based on tracking models of

varying sophistication, from paradigms that use explicit shape models in either 2D

or 3D to those that rely on tracked features; for a broad overview see [26]. The basic

idea is that given a tracked feature or object, its time series provides a descriptor
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Figure 4.2: Example of six cuboids extracted from two different sequences of groom-
ing. A single frame is shown from each original sequence. Below, each cuboid is
shown over time. Note that although the posture of the mouse is quite different in
the two cases, three of the six cuboids (shown in the top three rows) for each mouse
are quite similar. The other three have no obvious correspondences, although it’s
very hard to perceive what these are without motion.

that can be used in a general recognition framework.

In the domain of human behavior recognition for example, an entire class

of approaches for recognition is based on first recovering the location and pose of

body parts, see for example [80, 11]. However, it is unclear how to extend paradigms

that rely on articulated models in either 2D or 3D to domains where behavior is

not based on changes in configurations of rigid parts, as is the case for recognition

of rodent behavior. Perhaps more fundamental, however, is that even in domains

where explicit shape models are applicable, it is often very difficult to fit the models

to the data accurately.

Another class of approaches performs recognition by first tracking a number

of spatial features. Song et al . [67] use spatial arrangements of tracked points to

distinguish between walking and biking, using the intuition that people can identify

such behaviors from Johansson displays. In [56], the authors use view invariant

aspects of the trajectory of a tracked hand to differentiate between actions such

as opening a cabinet or picking up an object. Recognition can also proceed from
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tracked contours, such as in [35].

In response to the practical difficulties of feature and contour tracking, [51]

and [69] introduced the framework of ‘tracking as repeated recognition,’ in which the

recovery of pose and body configuration emerges as a byproduct of frame-by-frame

recognition using a hand labeled dataset of canonical poses. These approaches are

based on the comparison of Canny edges. While the assumptions of edge detection

are less restrictive than those of feature or contour tracking, it is still unreliable in

domains with cluttered or textured backgrounds or in which the object of interest

has poor contrast.

The work of Efros et al. [20] focuses on the case of low resolution video of

human behaviors, targeting what they refer to as ‘the 30 pixel man.’ In this setting

they propose a spatio-temporal descriptor based on optical flow measurements, and

apply it to recognize actions in ballet, tennis and football datasets. Our proposed

method bears some similarity to this approach, but is categorically different in

that it uses local features rather than a global measurement. Earlier approaches

in this vein are those of [81] and [14]. In [81] for example, Zelnik-Manor and Irani

use descriptors based on global histograms of image gradients at multiple temporal

scales. The approach shows promise for coarse video indexing of highly visually

distinct actions. We examine the approaches of [81] and [20] in more detail in

section 4.3.3.

Most closely related to our approach is that of [63], who also use sparsely

detected spatio-temporal features for recognition, building on the work on spatio-

temporal feature detectors by [43]. They show promising results in human behavior

recognition, demonstrating the potential of a method based on spatio-temporal fea-

tures in a domain where explicit shape models have traditionally been used. The

spatio-temporal detector, feature descriptor and behavior descriptor employed in

their approach differ from ours. Their method assumes fixed length behaviors, and

the similarity between a pair of behaviors is found using a greedy match of the

features where multiple features can map to the same corresponding feature. Our

approach allows varying length behaviors and is applicable to a much broader range

of data.
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4.2 Proposed Algorithm

In the following sections we describe our algorithm in detail. In Section

4.2.1 we discuss detection of spatial interest points and extensions to the spatio-

temporal domain. We describe cuboids in more detail in Section 4.2.2, and in

Section 4.2.3 we describe the use and importance of cuboid prototypes. We describe

the very simple behavior descriptor used in all of our experiments in Section 4.2.4.

4.2.1 Feature Detection

A variety of methods exist to detect interest points in the spatial domain,

for an extensive review and comparison of methods see [60]. Typically, a response

function is calculated at every location in the image and feature points correspond

to local maxima.

One of the most popular approaches to interest point detection in the

spatial domain is based on the detection of corners, such as [31, 22]. Corners are

defined as regions where the local intensity gradient vectors point in orthogonal

directions. The gradient vectors are obtained by taking the first order derivatives of

a smoothed image L(x, y, σ) = I(x, y)∗g(x, y, σ), where g is the Gaussian smoothing

kernel. σ controls the spatial scale at which corners are detected. The response

strength at each point is then based on the rank of the covariance matrix of the

gradient calculated in a local window. Different measures of the rank lead to slightly

different algorithms.

Another common approach is to use the Laplacian of Gaussian (LoG) for

the response function. For example, Lowe [45] proposed using an approximation of

the LoG based on the difference of the image smoothed at different scales. Specifi-

cally, his response function is D = (g(·; kσ)− g(·;σ))∗ I = L(·; kσ)−L(·;σ) where k

is a parameter that controls the accuracy of the approximation; D tends to the scale

normalized LoG as k goes to 1. Under varying conditions either the LoG or Harris

detector may have better performance; [49] proposes a technique that incorporates

both approaches.

Kadir and Brady [37] approach feature detection with the specific goal

of detecting features for object recognition. They define a local measure of patch
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complexity and look for points the maximize this measure spatially and across scales.

Motivation for this type of approach is that salient points are precisely those which

maximize discriminability between the objects. This feature detector was used by

[21] in their object recognition framework.

Extensions to the Spatio-Temporal Case

The general idea of interest point detection in the spatio-temporal case

is similar to the spatial case. Instead of an image I(x, y), interest point detection

must operate on a stack of images denoted by I(x, y, t). Localization must proceed

not only along the spatial dimensions x and y but also the temporal dimension t.

Likewise, detected features also have temporal extent.

The only spatio-temporal interest point operator that we know of is an

extension of the Harris corner detect to the 3D case, which has been studied quite

extensively by Laptev and Lindeberg (for a recent work see [43]). The basic idea

is simple and elegant. Gradients can be found not only along x and y, but also

along t, and spatio-temporal corners are defined as regions where the local gradient

vectors point in orthogonal directions spanning x, y and t. Intuitively, a spatio-

temporal corner is an image region containing a spatial corner whose velocity vector

is reversing direction. The second moment matrix is now a 3 × 3 matrix, and the

response function is again based on the rank of this matrix.

The generalized Harris detector described above has many interesting math-

ematical properties, and in practice it is quite effective at detecting spatio-temporal

corners. As mentioned [63] used spatio-temporal features detected by the gener-

alized Harris detector to build a system that distinguishes between certain human

behaviors. The behaviors their method can discriminate amongst, including walk-

ing, jogging, running, boxing, clapping and waving, are in fact well characterized

by the reversal in the direction of motion of arms and legs. Hence these behaviors

give rise to spatio-temporal corners, so the technique is well suited for dealing with

their dataset.

In certain problem domains, e.g., rodent behavior recognition or facial

expressions, we have observed that true spatio-temporal corners are quite rare, even

when seemingly interesting motion is occurring. Sparseness is desirable to an extent,
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but features that are too rare can prove troubling in a recognition framework, as

observed by Lowe [45].

In addition to the rarity of spatio-temporal corners, a more general ques-

tion that remains unanswered is whether spatio-temporal corners are in fact the

features one needs for general behavior recognition. Analogous to useful features

for object recognition, we are interested in precisely those features that maximize

discrimination between behaviors. Consider two examples, the jaw of a horse chew-

ing on hay and the spinning wheel of a bicycle. Neither example gives rise to a

spatio-temporal corner as the motions are subtle and gradually changing, yet both

seem like particularly relevant features for behavior recognition.

We propose an alternative spatio-temporal feature detector for our be-

havior recognition framework. We have explicitly designed the detector to err on

the side of detecting too many features rather than too few, noting that object

recognition schemes based on spatial interest points deal well with irrelevant and

possibly misleading features generated by scene clutter and imperfect detectors [45].

The resulting representation is still orders of magnitude sparser than a direct pixel

representation.

Like much of the work on interest point detectors, our response function

is calculated by application of separable linear filters. We assume a stationary

camera or a process that can account for camera motion. The response function

has the form R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 where g(x, y;σ) is the 2D Gaussian

smoothing kernel, applied only along the spatial dimensions, and hev and hod are a

quadrature pair [29] of 1D Gabor filters applied temporally. These are defined as

hev(t; τ, ω) = − cos(2πtω)e−t2/τ2
and hod(t; τ, ω) = − sin(2πtω)e−t2/τ2

. In all cases

we use ω = 4/τ , effectively giving the response function R two parameters σ and

τ , corresponding roughly to the spatial and temporal scale of the detector. The

spatio-temporal filters g ∗ hod and g ∗ hev take on the form shown in figure 4.3.

The detector is tuned to fire whenever variations in local image intensities

contain periodic frequency components. In general there is no reason to believe that

only periodic motions are interesting. Periodic motions, such as a bird flapping its

wings, will indeed evoke the strongest responses, however, the detector responds

strongly to a range of other motions, including spatio-temporal corners. In general,
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Figure 4.3: Filters used to detect interest points, tuned to fire maximally when
intensity in a local spatial region oscillates temporally. Dark lobes correspond to
negative areas. Surfaces shown are drawn at 10% of the peak filter response. The
1D profile of the temporal filters is shown in the upper right, the heights of the
peaks corresponds to the diameters of the lobes.

any region with spatially distinguishing characteristics undergoing a complex motion

can induce a strong response. Areas undergoing pure translational motion will in

general not induce a response, as a moving, smoothed edge will cause only a gradual

change in intensity at a given spatial location. Areas without spatially distinguishing

features cannot induce a response.

4.2.2 Cuboids

At each interest point (local maxima of the response function defined

above), a cuboid is extracted which contains the spatio-temporally windowed pixel

values. The size of the cuboid is set to contain most of the volume of data that con-

tributed to the response function at that interest point; specifically, cuboids have

a side length of approximately six times the scale at which they were detected per

spatial and temporal dimension.

To compare two cuboids, a notion of similarity needs to be defined. Given

the large number of cuboids we deal with in some of the datasets (on the order of
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105), we opted to use a descriptor that could be computed once for each cuboid and

compare using Euclidean distance.

The simplest cuboid descriptor is a vector of flattened cuboid values. More

generally, a transformation can be applied to the cuboid, such as normalization of

the pixel values, and given the transformed cuboid, various methods can be em-

ployed to create a feature vector, such as histogramming. The goal of both phases

is to create a descriptor with invariance to small translations, slight variation in

appearance or motion, changes in lighting, and so on, while retaining the descrip-

tor’s discriminative power. Instead of trying to predict the right balance between

invariance and discriminative power, we design a number of descriptors and test

each in our recognition framework.

The transformations we apply to each cuboid include: (1) normalized

brightness values (pixels are set to have zero mean and unit variance), (2) the

brightness gradient, and (3) windowed optical flow. The brightness gradient is

calculated at each spatio-temporal location (x, y, t), giving rise to three channels

(Gx, Gy, Gt) each the same size as the cuboid. To extract motion information we

calculate Lucas-Kanade optical flow [46] between each pair of consecutive frames,

creating two channels (Vx, Vy). Each channel is the same size as the cuboid, minus

one frame.

We use one of three methods to create a feature vector given the trans-

formed cuboid (or multiple resulting cuboids when using the gradient or optical

flow). The simplest method involves flattening the cuboid into a vector, although

the resulting vector is potentially sensitive to small cuboid perturbations. The sec-

ond method involves histogramming the values in the cuboid. Such a representation

is robust to perturbations but also discards all positional information (spatial and

temporal). Local histograms, used as part of Lowe’s 2D SIFT descriptor [45], provide

a compromise solution. The cuboid is divided into a number of regions and a local

histogram is created for each region. The goal is to introduce robustness to small

perturbations while retaining some positional information. For all the methods, to

reduce the dimensionality of the final descriptors we use PCA [32].

Many of the above choices were motivated by research in descriptors for

2D features (image patches). For a detailed review of 2D descriptors see [50]. Other
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Figure 4.4: Shown is the intra and inter class performance of our recognition method
on the face dataset using different cuboid descriptors. The full algorithm, dataset
and methodology are discussed later, the sole purpose of this figure is to give a
sense of the relative performance of the various cuboid descriptors. Recall that
the descriptors we use involve first transforming the cuboid into: (1) normalized
brightness, (2) gradient, or (3) windowed optical flow, followed by a conversion into
a vector by (1) flattening, (2) global histogramming, or (3) local histogramming, for
a total of nine methods, along with multi-dimensional histograms when they apply.
Using the gradient in any form gave very reliable results, as did using the flattened
vector of normalized brightness values.
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spatio-temporal descriptors are possible. For example, Schuldt et al . [63] used dif-

ferential descriptors [40] for their spatio-temporal interest points, however, among

the descriptors examined for 2D features, differential descriptors are not particularly

robust.

We tested the performance of our overall algorithm changing only the

cuboid descriptor on a dataset described later in this chapter. Results are shown

in figure 4.4. Histograms, both local and global did not provide improved perfor-

mance; apparently the added benefit of increased robustness was offset by the loss

of positional information. In all experiments reported later in the chapter we used

the flattened gradient as the descriptor, which is essentially a generalization of the

PCA-SIFT descriptor [38].

4.2.3 Cuboid Prototypes

Our approach is based on the idea that although two instances of the same

behavior may vary significantly in terms of their overall appearance and motion,

many of the interest points they give rise to are similar. Under this assumption,

even though the number of possible cuboids is virtually unlimited, the number of

different types of cuboids is relatively small. In terms of recognition the exact form

of a cuboid becomes unimportant, only its type matters.

We create a library of cuboid prototypes by clustering a large number of

cuboids extracted from the training data. We cluster using the k-means algorithm.

The library of cuboid prototypes is generated separately for each dataset since the

cuboids types are very different in each (mouse cuboids are quite distinct from face

cuboids). Clusters of cuboids tend to be perceptually meaningful.

Using cluster prototypes is a very simple yet powerful method for reducing

variability of the data while maintaining its richness. After the training phase, each

cuboid detected is either assumed to be one of the known types or rejected as an

outlier.

Intuitively the prototypes serve a similar function as parts do in object

recognition. The definition of parts varies widely in the literature on object recogni-

tion, the analogy here is most applicable to the work of [21] and especially [2], who

refer to the local neighborhoods of spatially detected interest points as parts. In the
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case of static face detection, these might include the eyes or hairline features.

4.2.4 Behavior Descriptor

After extraction of the cuboids the original clip is discarded. The ratio-

nale for this is that once the interest points have been detected, together their

local neighborhoods contain all the information necessary to characterize a behav-

ior. Each cuboid is assigned a type by mapping it to the closest prototype vector,

at which point the cuboids themselves are discarded and only their type is kept.

We use a histogram of the cuboid types as the behavior descriptor. Dis-

tance between the behavior descriptors (histograms) can be calculated by using the

Euclidean or χ2 distance. When more training data is available, we use the behavior

descriptor and class labels in a classification framework.

The relative positions of the cuboids are currently not used. Previously

mentioned algorithms for object recognition, such as [21] or [2] could be used as

models for how to incorporate positional information.

4.3 Experiments

We explore results in three representative domains: facial expressions,

mouse behavior and human activity. Representative frames are shown in figure 4.5.

To judge the performance of our algorithm, we compare to results obtained using

three other general activity recognition algorithms on these datasets. Each domain

presents its own challenges and demonstrates various strengths and weaknesses of

each algorithm tested.

We describe each dataset in detail in the following section, training and

testing methodology in Section 4.3.2, the algorithms used for comparison in Section

4.3.3, and finally detailed results in Section 4.3.4.

4.3.1 Datasets

We compiled the facial expressions and mouse behavior datasets ourselves,

they are available for download at http://vision.ucsd.edu. The human activity
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(a) (b) (c)

Figure 4.5: Representative frames from clips in each domain: (a) facial expressions,
(b) mouse behavior, and (c) human activity.

dataset was collected by [63] and is available online at

http://www.nada.kth.se/cvap/actions/.

The face data involves 2 individuals, each expressing 6 different emotions

under 2 lighting setups. The expressions are anger, disgust, fear, joy, sadness and

surprise. Certain expressions are quite distinct, such as sadness and joy, others are

fairly similar, such as fear and surprise. Under each lighting setup, each individual

was asked to repeat each of the 6 expressions 8 times. The subject always starts

with a neutral expression, expresses an emotion, and returns to neutral, all in about

2 seconds.

The mouse data includes short clips taken from seven fifteen minute videos

of the same mouse filmed at different points in the day. Each clip contains the

mouse engaged in a single behavior. The set of behaviors includes drinking, eating,

exploring, grooming and sleeping. The number of occurrences and characteristics

of each behavior vary substantially for each of the seven videos. A total of 406

clips were extracted ranging from 14 occurrences of drinking to 159 occurrences

of exploring, each lasting between 1 and 10 seconds. Typical mouse diameter is

approximately 120 pixels although the mouse can stretch or compress substantially.

All filming was done in the vivarium in which the mice are housed. The videos were

collected with help from veterinarians at the UCSD Animal Care Program, who also

advised on how to classify and label the data by hand.

In order to be able to do a full comparison of methods, we also created a
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greatly simplified, small scale version of the mouse dataset. While the mouse eats,

it tends to sit still, and on occasion when it explores it sniffs around but remains

stationary. From two different mouse videos we extracted a number of examples of

these two behaviors, all of the same (short) duration, and made sure the mouse is

spatially centered in each. Data in this form does not benefit our algorithm in any

way, however, it is necessary to get results for some of the methods we test against.

The human activity data comes from the dataset collected by [63]. There

are 25 individuals engaged in the following activities: walking, jogging, boxing,

clapping and waving. We use a subset of the dataset which includes each person

repeating each activity 8 times for about 4 seconds each, wearing different clothing

(referred to scenarios s1 and s3), for a total of almost 1,200 clips. The clips have been

sub-sampled (people are approximately 80 pixels in height) and contain compression

artifacts (this is the version of the dataset available online).

4.3.2 Methodology

We divide each dataset into groups. The groups we chose for the datasets

discussed above are as follows: face clips are divided into 4 groups, one group per

person per lighting setup; mouse clips are divided into 7 groups, corresponding to

each of the source videos; human activity clips are divided into 25 groups, one per

person. We analyze the performance of various algorithms trained on a subset of

the groups and tested on a different subset. Often, because of the limited amount

of data, we use leave one out cross validation to get an estimate of performance.

All algorithms have parameters that need tuning. In all cases that we

report results we report the best performance achieved by a given algorithm – pa-

rameter sweeps were done for all the algorithms. As can be seen in figure 4.6 our

method is not very sensitive to the exact parameter settings, in fact, aside from

the scale of the cuboids we used the same parameter settings on all three datasets.

Some of the algorithms also have a random component (for example a clustering

phase), in this case any experiment reported is averaged over 20 runs.

When applicable, we focus on reporting relative performance of the algo-

rithms so as to avoid questions of the absolute difficulty of a given dataset.
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Figure 4.6: We tested how sensitive the performance of our method is to various
parameter settings on the face dataset. In each of the above curves we plot classifi-
cation error for 10 different settings of a given parameter with all other parameters
kept constant at default, ‘reasonable’ values. Random guessing would result in 80%
error; all data points shown fall well below this. The x-axis differs for each param-
eter; the thing to note is that the overall shape of each curve is smooth and tends
to be bowl shaped. The four parameters shown are: k, 50 < k < 500, the number
of clusters prototypes (i.e. cuboid types), n, 10 ≤ n ≤ 200 the number of cuboids
detected per face clips, ω, 0 < ω < 1 the fraction overlap allowed between cuboids,
and σ, .2 < σ < 9, the spatial scale of the detector (which also determines the size
of the cuboid). Optimal settings were approximately: k = 250, n = 30, ω = .9 and
σ = 2.
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4.3.3 Algorithms for Comparison

We compare our approach to three other methods. Each of these is a

general purpose behavior recognition algorithm that is capable of dealing with low

resolution and noisy data. We implement the algorithms of Efros et al. [20] and

Zelnik-Manor and Irani [81], we refer to these as efros and zmi, respectively. We

also use a variation of our framework based on the Harris 3D corner detector [63],

described previously. The only difference between this and our framework is that we

swap our feature detector for the Harris corner detector. We refer to our framework

as cuboids and to the variation using the Harris detector as cuboids+harris1.

Unless otherwise specified we use 1-nearest neighbor classifier with the χ2 distance

on top of the cuboid representation. We describe efros and zmi in more detail

below.

efros is used to calculate the similarity of the activity of two subjects using

a version of normalized cross correlation on optical flow measurements. Subjects

must be tracked and stabilized. If the background is non uniform this can also

require figure-ground segmentation. However, when these requirements are satisfied

the method has been shown to work well for human activity recognition and has

been tested on ballet, tennis and football datasets2. efros tends to be particularly

robust to changes in appearance and has shown impressive results even on very low

resolution video.

zmi works by histogramming normalized gradient measurements from a

spatio-temporal volume at various temporal scales, resulting in a coarse descriptor

of activity. No assumptions are made about the data nor is tracking or stabiliza-

tion required. The method’s strength lies in distinguishing motions that are grossly

different; promising results have been shown on human activities such as running,

waving, rolling or hopping. In some sense zmi and efros are complementary algo-

rithms and we could expect one to perform well when the other does not.
1This algorithm is very different from the work of [63], the only similarity is that both use

features detected by the Harris corner detector.
2Unfortunately, these datasets are no longer available.
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4.3.4 Results

In the following sections we show results on the datasets described above:

facial expressions, human activity and mouse behavior. In all experiments on all

datasets, cuboids had the highest recognition rate, often by a wide margin. Typi-

cally the error is reduced by at least a third from the second best method.

Facial Expression

In each experiment, training is done on a single subject under one of the two

lighting setups and tested on: (1) the same subject under the same illumination3,

(2) the same subject under different illumination, (3) a different subject under the

same illumination, and (4) a different subject under different illumination. Results

are shown in figure 4.7. In all cases cuboids had the highest recognition rates.

A majority of the error is caused by anger being confused with other expressions.

Subjectively, the two subjects’ expression of anger is quite different, which may

account for this phenomenon.

Mouse Behavior

The mouse data presents a highly challenging behavior recognition prob-

lem. Differences between behaviors can be subtle, optical flow calculations tend

to be inaccurate, the mouse blends in with the bedding of the cage, and there are

no easily trackable features on the mice themselves (the eyes of the mouse are fre-

quently occluded or closed). The pose of the mouse w.r.t. the camera also varies

significantly.

Results on the full dataset are presented in figure 4.8, on the left. The

overall recognition rate is around 72%. As mentioned, we also used a simplified,

small scale version of the mouse dataset in order to do a full comparison of methods4.

In both experiments cuboids had the lowest errors, see figure 4.8, on the right.
3In this case we use leave one out cross validation.
4efros requires a stabilized figure, and with a non-uniform background stabilization requires

figure-ground segmentation, a non-trivial task.
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Figure 4.7: face dataset Top row: We investigated how identity and light-
ing affect each algorithm’s performance. In all cases cuboids gave the best re-
sults. efros and cuboids+harris had approximately equal error rates, except
that efros tended to perform better under changes in illumination. zmi was not
well suited to discriminating between facial expressions, performing only slightly
better than chance. Random guessing would result in 83% error. All algorithms
were run with optimal parameters. Bottom row: Inter-class confusion matrices ob-
tained using our method under the first illumination setup on the face data. “Sub
1” and “Sub 2” refer to the first and second subjects, respectively. A majority of
the error is caused by anger being confused with other expressions. Subjectively,
the two subjects’ expression of anger is quite different.
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Figure 4.8: mouse dataset Left: Confusion matrix generated by cuboids on the
full mouse dataset. As mentioned, this dataset presents a challenging recognition
problem. Except for a few difficult categories, recognition rates using our method
were fairly high. Right: Due to the form of the data, a full comparison of algorithms
was not possible. Instead, we created a simple small scale experiment and ran all
four algorithms on it. cuboids had the lowest error rates, zmi was a near second on
intra-class error. Note that all algorithms did far better than chance, which would
result in 80% error.

Human Activity

For the human activity dataset we used leave one out cross validation to

get the overall classification error. Due to the large size of this dataset, we did not

attempt a comparison with other methods5. Rather, we provide results only to show

that our algorithm works well on a diverse range of data. Confusion matrices for

the six categories of behavior are shown in figure 4.9; the overall recognition rate

was over 80%.

4.4 Discussion

In this chapter we have shown the viability of doing behavior recognition

by characterizing behavior in terms of spatio-temporal features. A new spatio-

temporal interest point detector was presented, and a number of cuboid descriptors

were analyzed. We showed how the use of cuboid prototypes gave rise to an efficient
5Although the confusion matrices in figure 4.9 are better than those reported in [63], the results

are not directly comparable because the methodologies are different.
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Figure 4.9: human activity dataset Shown are confusion matrices generated
by cuboids. Two classifiers were used: 1-nearest neighbor and Support Vector Ma-
chines with radial basis functions [32]. Using SVMs resulted in a slight reduction
of the error. Note that most of the confusion occurs between jogging and walking
or running, and between boxing and clapping, most other activities are easily dis-
tinguished. The overall error of our approach was about 20% compared to random
guessing which would result in 83% error.

and robust behavior descriptor. Throughout we have tried to establish the link

between the domains of behavior recognition and object recognition, creating the

potential to bring in a range of established techniques from the spatial domain to

that of behavior recognition.

We have demonstrated our framework across a number of domains and

obtained state of the art results; in all experiments outperforming well established

algorithms. Our approach avoids the challenges of tracking, background-foreground

modeling, model fitting, etc. The proposed method is computationally efficient: our

Matlab implementation is real time6. Furthermore the approach is straightforward

and easy to implement.

Future extensions include using the spatio-temporal layout of the features,

extending such approaches as [3] or [2] to the spatio-temporal domain. Using fea-

tures detected at multiple scales should also improve performance. Another possible

direction of future work is to incorporate a dynamic model on top of our represen-

tation.

Portions of this chapter are based on “Behavior Recognition via Sparse
6In our implementation we require the entire video to be stored on disk, but this is not a

fundamental requirement of the algorithm.
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Spatio-Temporal Features” by P. Dollár, V. Rabaud, G. Cottrell and S. Belongie,

[16]. I was responsible for the development of the algorithm, experimental design

and literature survey, and also wrote most of the paper.
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