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ABSTRACT OF THE DISSERTATION

Fitting Multivariate Hawkes Models

to COVID-19 Data from All 50 States

in the United States

by

Wanling Gong

Master of in Applied Statistics And Data Science

University of California, Los Angeles, 2024

Professor Frederic R. Paik Schoenberg, Chair

This paper investigates whether the distribution of SARS-CoV-2 (COVID-19) transmis-

sion times can be reliably estimated using only case count data, employing the Hawkes

model as the analytical framework. Hawkes point processes, widely recognized for modeling

and analyzing time-to-event data, offer a robust approach to understanding transmission

dynamics. This study fits the Hawkes model with varying productivity levels to case count

data from all 50 U.S. states. Transmission time density is estimated using nonparametric

methods and normal approximations.

The findings indicate that, for most states, the mean transmission time is approximately

7 days, with a standard deviation of about 1 day (Science, 2020). These estimates are

compared across states and with prior reports, revealing slightly shorter average transmission

durations and reduced variability in this study. Furthermore, the results highlight that the

virus can be transmitted as early as the first day of contact, emphasizing its potential for

rapid spread (World Health Organization, 2020). As derived from this analysis, a deeper
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understanding of SARS-CoV-2 transmission dynamics carries significant implications for

public health modeling and policy-making (Pan et al., 2020).
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CHAPTER 1

Introduction

The COVID-19 pandemic caused by the SARS-CoV-2 virus has profoundly impacted global

society, reshaping daily life, healthcare systems, and economies. The World Health Organi-

zation (World Health Organization, 2020) noted that the pandemic has resulted in a massive

loss of life and unprecedented challenges to public health, food systems, and employment.

Economically, it has triggered the worst global recession since World War II, pushing mil-

lions into extreme poverty (World Bank, 2020). Healthcare systems are under tremendous

strain, with service disruptions and increased workloads for health workers [World Health

Organization, 2020]. Figure 1.1 depicts the trend in weekly COVID-19 deaths and total

COVID-19 mortality per 100,000 population (age-adjusted) in the United States reported to

the CDC. In that situation, Understanding the transmission dynamics of the virus, includ-

ing the serial interval between consecutive cases and the incubation period from exposure to

symptom onset, is critical to controlling the outbreak and developing effective strategies to

reduce transmission.
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Figure 1.1: The Trend In Weekly COVID-19 Deaths and Total COVID-19 Mortality Per

100,000 Population

The emergence of the SARS-CoV-2 virus and the resulting COVID-19 pandemic have

presented unprecedented challenges to global health systems, necessitating the development

of accurate models to predict and manage the spread of the virus. Central to controlling

the pandemic has been the ability to model its spread accurately. Epidemiological models,

which aim to predict infection trends and inform public health interventions, rely on a

comprehensive understanding of key transmission parameters. One such critical parameter is

the transmission time—the interval between an individual contracting the virus and infecting

others. This metric is fundamental for optimizing public health policies, including quarantine

durations, contact tracing strategies, and resource allocation, yet remains underexplored in

many contexts (Hethcote, 2000; Fraser et al., 2004).

Transmission time governs the dynamics of an epidemic’s spread and determines the

reproduction number key measure of how quickly a virus spreads through a population

(Anderson & May, 1991). While the incubation period, defined as the time from exposure

to symptom onset, has been extensively studied, the transmission interval adds a layer of
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complexity.

Studies have determined that the incubation period for SARS-CoV-2 has a median dura-

tion of four to five days, extending up to 14 days in some cases (Guan et al., 2020; Lauer et

al., 2020; Li et al., 2020). Approximately 97.5 % of symptomatic individuals show symptoms

within 11.5 days of infection (Lauer et al., 2020). Research from Wuhan, China, revealed

that the median time from symptom onset to the development of acute respiratory distress

syndrome (ARDS) ranges between eight and 12 days, while the median time to ICU admis-

sion falls between 9.5 and 12 days (Huang et al., 2020; Wang et al., 2020; Yang et al., 2020;

Zhou et al., 2020).

The Centers for Disease Control and Prevention (CDC) summarized these findings, noting

that the incubation period spans two to 14 days (CDC, 2021a). For individuals with SARS-

CoV-2, the contagious period typically lasts up to 10 days following symptom onset (CDC,

2021d) or 14 days after exposure (CDC, 2021c, 2021e), but it can extend to 20 days in some

cases (CDC, 2021a). Accordingly, the CDC recommends a 14-day home isolation period

after the last contact with an infected individual (CDC, 2021b, 2021c). Similarly, the World

Health Organization (WHO) advises a 14-day quarantine period after exposure, citing an

average incubation period of five to six days, with a possible range of up to 14 days (WHO,

2021a, 2021b). It reflects not only biological factors, such as viral load and infectiousness

but also behavioral patterns and environmental influences, including population mobility

and adherence to preventive measures (Ferretti et al., 2020). Understanding this metric is

vital for projecting infection waves and designing targeted interventions such as vaccination

campaigns or NPIs (non-pharmaceutical interventions) like mask mandates and physical

distancing. Without precise estimates of transmission time, epidemiological models risk

oversimplifying the nuanced dynamics of disease spread.

The COVID-19 pandemic, however, has demonstrated that the dynamics of disease trans-

mission are far from uniform. Factors such as population density, healthcare access, and

cultural norms significantly shape how the virus spreads within different regions. For in-
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stance, densely populated urban centers, with frequent close-contact interactions and high

mobility, have shown faster transmission rates compared to sparsely populated rural areas,

where individuals naturally engage in fewer close-contact interactions (Nuzzo et al., 2020).

Furthermore, differences in state-level policies, such as the timing of mask mandates, the

implementation of school closures, or the availability of testing and vaccination, have created

a patchwork of transmission patterns across the U.S. (Chernozhukov et al., 2021). These

regional variations underscore the need for localized studies that account for such hetero-

geneity, particularly in large, diverse countries like the United States.

Hawkes processes, originally developed in seismology to model earthquake aftershocks

(Hawkes, 1971; Ogata, 1988), offer a promising solution to these challenges. These models

are uniquely designed to account for self-exciting processes, where the occurrence of one event

increases the likelihood of subsequent events in a defined temporal and spatial window. Their

adaptability has led to successful applications in diverse fields. In finance, they model high-

frequency trading patterns, capturing rapid cascades of trades triggered by initial market

shocks (Bowsher, 2007). In criminology, they have been used to analyze crime patterns,

identifying hotspots where one incident increases the probability of additional crimes nearby

(Mohler et al., 2011). Social media platforms have leveraged Hawkes processes to track

the virality of posts, modeling how initial shares lead to exponential growth in reposts

(Zhao et al., 2015). These sectoral applications illustrate the model’s versatility in capturing

cascading, event-driven dynamics.

In epidemiology, Hawkes processes offer distinct advantages over traditional models. Un-

like SEIR frameworks, which rely on fixed compartments and static parameters, Hawkes

models dynamically adjust to reflect real-time data and event dependencies (Schoenberg,

2013). This flexibility is particularly valuable for capturing superspreading events and tem-

poral shifts in transmission dynamics, such as those driven by policy interventions or behav-

ioral changes. For example, during the early months of the pandemic, the serial interval—the

time between successive cases in a transmission chain—shortened in regions with stringent
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NPIs, such as lockdowns or mask mandates (Ali et al., 2020; Sun et al., 2021). Hawkes

processes excel at modeling these dynamic shifts, providing insights into how interventions

shape the trajectory of an epidemic.

Despite their strengths, Hawkes processes are not without limitations. Their reliance on

high-quality, real-time data can be a challenge in the context of COVID-19, where reporting

delays, underreporting, and data inconsistencies are common (Zhuang et al., 2004). More-

over, extending these models to multivariate settings—where interactions between regions

or populations are considered—poses computational and interpretive challenges, particularly

when data dimensions grow large (Bacry et al., 2015). These limitations highlight the im-

portance of thoughtful implementation and underscore the need for further methodological

advancements to fully realize their potential in epidemic modeling.

This study builds on the growing body of research that applies Hawkes processes to epi-

demic dynamics by extending the analysis to a broader range of U.S. states. By incorporat-

ing state-level heterogeneity in parameters and capturing regional variations in transmission

times, this research aims to provide deeper insights into how localized factors influence the

spread of the virus. Such an approach not only improves our understanding of COVID-19

transmission dynamics but also contributes to the development of adaptable modeling tools

that can inform responses to future pandemics.
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CHAPTER 2

Data

In this study, it includes 50 states in the United States, and daily SARS-CoV-2 case surveil-

lance data are obtained through the CDC’s public website https://covid.cdc.gov/covid-data-

tracker, CDC (2021f)). The data set used in this article contains the number of daily cases

from January 23, 2020, to August 25, 2021, a total of 582 days. For good analysis, parame-

ters were estimated in 36 non-overlapping windows, each containing 16 days. This approach

allows 576 days of data to be used in the analysis, that is, the period from January 23,

2020, to August 19, 2021. Each window provides a detailed snapshot of SARS-CoV-2 case

progression, enabling systematic analysis of temporal trends and changes. These data were

made public by the CDC and downloaded on August 26, 2021. This comprehensive dataset

provides a solid foundation for understanding the temporal dynamics of SARS-CoV-2 spread

in the United States over a specified time frame.

Figure 2.1 illustrates the total number of reported cases across U.S. states during the

582-day observation period. The distribution of cases strongly correlates with state popu-

lation sizes, as larger states such as California, Texas, and Florida report the highest case

counts, reflecting their status as the most populous states in the nation. States with smaller

populations, such as Wyoming and Vermont, naturally show much lower total case counts.
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Figure 2.1: Total Number Of Reported Cases Across U.S. States
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Figure 2.2: Per Capita Perspective By Displaying The Number Of Cases
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Figure 2.2 provides a per capita perspective by displaying the number of cases relative to

population size, using publicly available population data sourced from https://www.census.

gov/data /tables/time-series/demo/popest/2020s-state-total.html. This perspective reveals

important nuances. For instance, while California reports the highest absolute case numbers,

its per capita incidence is moderate compared to smaller states like North Dakota (0.1489),

Rhode Island (0.1471), South Dakota (0.1468), and Arkansas (0.1465), which exhibit the

highest cases per capita. This suggests that smaller states with fewer total cases can still

experience higher per capita burdens, likely influenced by factors such as population density,

public health responses, and demographic structures.

The data also show that most states exhibit relatively consistent per capita rates of

recorded incidence, with 41 out of 50 states falling within the range of 0.10 to 0.15. This

clustering reflects a common baseline of disease spread across much of the U.S. However, four

states—Hawaii (0.0380), Vermont (0.0401), Maine (0.0548), and Oregon (0.0625)—stand

out for their exceptionally low per capita incidence[4]. These states may have benefited

from geographic isolation, lower population density, or effective public health measures that

mitigated the spread of the disease. The contrast between total case counts and per capita

rates highlights the importance of considering population-adjusted metrics when assessing

disease burden across regions.

The Centers for Disease Control and Prevention (CDC) aggregates COVID-19 data sub-

mitted voluntarily by state and territorial health departments. This reporting process is

standardized but not mandatory, as the CDC does not possess direct authority to compel

data submissions. Instead, it relies on cooperative agreements with jurisdictions. Data dis-

crepancies can arise due to differences in reporting protocols, definitions of cases, and the

timing of updates, leading to variations between CDC-reported figures and those presented

by state or local health department websites (CDC FAQ).

The COVID-19 totals compiled by the CDC include both confirmed and probable SARS-

CoV-2 cases and deaths, following the criteria outlined in the Council of State and Territorial
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Epidemiologists (CSTE) case definitions. However, some exceptions apply, such as individ-

uals repatriated from Wuhan, China, and Japan CDC (2021f), which were excluded from

state and jurisdictional totals (CDC Technical Notes)

The reported numbers for a given day reflect the information provided by states and

jurisdictions, which may correspond to the actual date of case occurrence or the date the

case was reported. Such differences in methodologies contribute to temporal and geographic

variability in case data (CSTE Position Statements).

This passage highlights key limitations and considerations in analyzing SARS-CoV-2 case

data. The dates associated with recorded cases often differ significantly from the actual onset

of the disease. In this analysis, the ”transmission time” refers to the interval between the

recorded dates of two cases. This interval reflects not only the time for disease incubation

and expression but also the variability in reporting times. If cases resulting from rapid

transmissions are more likely to be recorded than those with delayed transmissions, the

average transmission time may be underestimated.

Missing data is a significant challenge in SARS-CoV-2 studies, as estimating the number

of unreported cases remains highly complex (Bertozzi et al., 2020; Kresin, Schoenberg, and

Mohler, 2021). During the early stages of the pandemic, the CDC conducted extensive

seroprevalence studies in the spring and summer of 2020 to estimate the virus’s prevalence

in various locations through random sampling and testing (Bajema et al., 2021). However,

these rigorous studies were discontinued following funding cuts to the CDC by the Trump

administration in the summer of 2020 (Wermer and Stein, 2020). While missing data rates

may vary by state (Bajema et al., 2021), no specific states are identified as having particularly

unreliable data.

For further details about the CDC’s SARS-CoV-2 case surveillance data collection, read-

ers are referred to CDC Surveillance FAQ or CDC (2021).

Figure 2.3 visualizes reported case trends per capita across six representative states, re-
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Figure 2.3: Case Trends Per Capita Across Six Representative States
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vealing the sharp, nearly exponential patterns of increase and decline typical of epidemic

models like SEIR and Hawkes models (Rizoiu et al., 2018; Kresin, Schoenberg, and Mohler,

2021). These trends reflect the dynamic nature of the pandemic and the influence of trans-

mission dynamics and reporting practices.
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CHAPTER 3

Methods

3.1 Overview

Hawkes point process models are self-exciting stochastic processes that model time-dependent

events, where one event increases the probability of subsequent events occurring nearby.

They are well suited for analyzing SARS-CoV-2 (COVID-19) dynamics because they cap-

ture the temporal and spatial clustering consistent with the spread of infection, where each

case increases the probability of other cases that are close in time or space. We explain what

Hawkes point process models are and how to use them in the following sections.

The Hawkes point process model has been utilized to estimate the temporal distribution

of the spread of SARS-CoV-2 (COVID-19) based on the number of daily cases reported in

all 50 states of the United States. This approach defines the number of cases as a self-

exciting point process, where new infections arise from a combination of background events

(independent spontaneous infections) and triggering events (infections caused by previous

cases). By modeling these temporal dynamics, the study identifies connections and properties

of disease transmission.
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3.2 Methods

3.2.1 Hawkes Point Process Model

The Hawkes or self-exciting point process model (Hawkes, 1971) is a statistical framework

used to model clustered point patterns, such as those observed in seismology, finance, crime,

and infectious disease spread (Cauchemez, 2006, Daley, 2003, Ogata, 1988, Reinhart, 2018).

The model describes the conditional intensity function λ(t, x, y), which represents the ex-

pected rate at which events (e.g., confirmed cases) occur over time t, given the history of

prior events:

λ(t, x, y) = µ+K(t)
∑
i:ti<t

g(t− ti) (1)

where:

• µ: A constant background rate representing external, non-triggered events.

• K(t): Represents productivity, the expected number of secondary events triggered di-

rectly by a single event at time t.

• g(·): A density function (non-negative and integrates to 1), referred to as the triggering

density or transmission time density, describing the time-dependent effect of an event

on subsequent occurrences.

The productivity K(t) is a key parameter that captures the ability of events to trigger

additional events and is closely tied to the reproduction number (Rt) in epidemic models

such as SEIR (Bertozzi (2020), Kresin (2021)). For a Hawkes process with 0 < K < 1, the

expected number of events triggered by an individual event is:

K +K2 +K3 + · · · = K

1−K
.

14



This relationship also implies that the fraction of events that are background (non-

triggered) is 1−K. The conditional intensity λ(t, x, y) fully characterizes the finite-dimensional

distribution of the point process (Prop. 7.2.IV of Daley and Vere-Jones, 2003).

3.2.2 Parameter Estimation

3.2.2.1 Precise Event Time Data

When the precise times of individual events are available, parameters of the Hawkes model

are typically estimated using Maximum Likelihood Estimation (MLE). This method provides

statistical guarantees, including asymptotic unbiasedness, consistency, and efficiency (Ogata,

1978). The background rate µ and the triggering function g can be modeled parametrically

or non-parametrically. Non-parametric approaches allow flexibility in capturing variations

in g and µ, as shown in studies by ((Marsan and Lengline, 2008), (Zhuang, 2004)). Bayesian

methods have also been explored for parameter estimation and uncertainty quantification

((Mohler,2013), (Rasmussen, 2013)).

3.2.2.2 Daily Aggregated Data

When only aggregated daily event counts are available, precise event times cannot be used.

In such cases, we estimate parameters using a least squares approach, minimizing the sum

of squared differences between observed and expected daily counts. This approach leverages

the connection between Hawkes processes and autoregressive time series models ((Kirch-

ner, 2016), (Kirchner, 2017)), allowing for efficient computation while preserving the inter-

pretability of the model.

15



3.2.3 Model Implementation

Simulations demonstrate that the estimation of the transmission time distribution using

Equation (3) is highly accurate. The simulated processes follow the methodology detailed

in Section 3.3 of Reinhart (2018) or outlined in Section 1 of the Supplementary Material

(Schoenberg, 2023). In each simulation, background points are initially generated via a

homogeneous Poisson process with a rate µ. Each background point triggers a random

number of additional points, determined by a Poisson random variable with mean K. These

triggered points are distributed in time according to the density g relative to their triggering

point. The process continues recursively, with each point potentially triggering further points

until no new points are generated within the 576-day observation window.

Figure 3.1 illustrates the actual and estimated transmission time densities for simulated

Hawkes processes. These models employ three distinct normal densities with varying means

and standard deviations. Across the 576-day simulations, the estimated transmission time

distributions closely match the true distributions. The estimated transmission time distri-

butions have higher peaks while the tails of true distributions are longer. Parameters for the

first set of simulations include µ = 1 point/day, K = 0.95, ν = 9 days, and σ = 1 day. For

two additional simulations, µ and K remain unchanged, while (ν, σ) are set to (11 days, 2

days) and (4 days, 1.2 days), respectively.

For the scenario with µ = 1 point/day, K = 0.95, ν = 9, and σ = 1, 50 simulations were

conducted, each spanning 576 days. Compared to Figure 3.2, Figure 3.3 provides a more

precise estimate for stats. The resulting actual and estimated transmission time densities are

displayed in Figure 3.3. Root mean square (RMS) errors for ν and σ across the 50 simulations

were 0.148 and 0.224, respectively, demonstrating the accuracy of the least squares estimates

for scenarios akin to SARS-CoV-2 transmission data.

Figure 3.4 depicts a modified scenario where 10% of cases occurring on Saturdays and

20% of cases occurring on Sundays are recorded on the following Monday. Despite this

16



recording bias, the mean estimated ν was 8.92 (true ν = 9.0), and the mean estimated σ

was 1.56 (true σ = 1.0). However, the RMS errors for ν and σ increased to 0.198 and 0.576,

respectively, indicating a moderate impact of recording errors on the least squares estimates.

3.2.3.1 Parametric Model

In the parametric version of the model, the triggering density g(u) is assumed to follow a

normal distribution:

g(u) ∼ N (ν, σ2) (2)

where ν and σ2 represent the mean and variance of the triggering density, respectively.

The parameter vector θ for the parametric model includes µ, ν, σ2, and K(t), with K(t)

estimated for each time interval. This results in a total of 39 parameters.

3.2.3.2 Non-Parametric Model

In the non-parametric model, the triggering density g(u) is approximated by a step function

defined over 16-day intervals. The step heights are constrained to sum to 1, ensuring g(u)

remains a valid probability density function. This reduces the number of free parameters

associated with g to 15, resulting in a total of 52 parameters for the non-parametric model.

For both models, parameters are estimated by minimizing the following objective func-

tion:

T∑
t=1

(
N(t)−

[
µ+

16∑
i=1

K(t− i)g(i)N(t− i)

])2

, (3)

where:

• N(t): The observed number of events (e.g., confirmed cases) on the day t,

17



• T = 576: The total number of days in the dataset (36 time windows of 16 days each).

3.2.4 Optimization Procedure

Parameter optimization is performed using the Nelder-Mead algorithm implemented in R’s

optim function. Initial values for µ, ν, σ2, and K(t) are derived from prior estimates, and

the maximum number of iterations is set to 100,000 to ensure convergence. For the non-

parametric model, step heights for g(u) are initialized iteratively, using the ending values

from one iteration as the starting values for the next.

3.2.5 State-Specific Analysis

To account for heterogeneity across geographical regions, we fit the Hawkes model indepen-

dently for each state, allowing all parameters to vary across states. This approach enables

the model to capture region-specific dynamics in the underlying processes while maintaining

consistency in methodology across states.

3.2.6 Summary

By fitting both parametric and non-parametric versions of the Hawkes model, we aim to

provide a comprehensive analysis of the dynamics of event occurrences. The flexibility of the

model ensures robust parameter estimation across different data granularities and geograph-

ical regions, while the optimization process ensures computational efficiency and reliability.
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Figure 3.1: The Real and Estimated Transmission Time Densities For Simulated Hawkes

Models
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Figure 3.2: Time Densities for Arizona
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Figure 3.3: The Real And Estimated Transmission Time Densities
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Figure 3.4: The Real And Estimated Transmission Time Densities With Event Dates

22



CHAPTER 4

Result

The Hawkes model provides an excellent fit for case-count data across all 50 states. For

instance, Figure 4.1 illustrates how closely the Hawkes model, using a nonparametric estimate

of the transmission density, approximates observed case counts in California, New York,

Nevada, and Maryland. It also displays the corresponding estimated productivities, K(t),

for the model fitted to each of these states. The root mean square (RMS) errors in daily

case counts for California, New York, Nevada, and Maryland are 2699, 861, 226, and 341,

respectively. Across all 50 states, the RMS errors ranged from 22.1 in Vermont to 2729 in

Texas, with a median error of 355.3 in New Jersey, a mean error of 493.7, and a standard

deviation of 539.4. States with larger populations and higher case counts generally exhibited

larger RMS errors. (Schoenberg, 2024)
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Figures 4.1 - 4.4 present the nonparametric transmission time density estimates for all

50 states and their mean. Figure 4.1 shows the close approximation of the Hawkes model

with non-parametrically estimated transmission density to the truly observed case counts

throughout the observation period for California, New York, Nevada, and Maryland as well

as the corresponding estimated productivity K(t) for the Hawkes model fit data from each

of these four states. Although the approximation is very close to reality, Hawkes’s model

fails to capture the severe fluctuation of case count especially for Maryland.

Figures 4.2 and 4.3 show a clear peak at seven days, suggesting a weekly cycle in the

transmission dynamics. Also, there are masses at 1 day and 14 days, which indicates within

16 16-day periods, 1 day, 7 days, and 14 days are the strong triggering times. While the

normal density offers a reasonable approximation of the transmission time distribution, the

nonparametric estimates also show some mass at one-day and 14-day transmission times.

However, as shown in Figure 4.4, no strong weekly cycle is apparent in the confirmed case

counts by weekday, either across states or overall. Kansas is an exception, displaying signifi-

cant variability in case counts by weekday, with elevated counts on Wednesdays and Fridays

and lower counts on Tuesdays and Thursdays—likely due to reporting practices.

Using the normal approximation for transmission time, Figure 4.5 illustrates the esti-

mated transmission time densities for each state alongside the mean. There are several

outliers of which the normal distribution is shifted to the left a lot suggesting the unusually

low estimated mean transmission time, though the reason for this remains unclear.

Figures 4.6 and 4.7 provide estimates of ν and σ for the fitted normal transmission time

densities in all 50 states. Estimates of ν exhibit strong consistency across most states, with

values ranging from 6.51 to 7.22 days for 46 states, and standard errors between 0.10 and

0.21 days. However, four outliers—Ohio, Virginia, Oklahoma, and Kansas—deviate notably.

The estimated σ values are also consistent across states, ranging between 0.406 and 1.56

days, with standard errors from 0.15 to 0.27 days. Kansas is an obvious outlier, which may

stem from reporting irregularities, such as numerous days with zero confirmed cases.
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Figure 4.1: Nonparametric Transmission Time Density Estimates For 4 States
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Figure 4.2: Nonparametric Transmission Time Density Estimates For 9 States
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Figure 4.3: Nonparametric Transmission Time Density Estimates And Mean For All 50

States
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Figure 4.4: Proportion Of Case Counts On Each Day Of The Week And Mean For All 50

States
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Figure 4.5: Estimated Normal Transmission Time Densities And Mean For All 50 States
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Figure 4.6: Estimates of the mean and standard deviation for estimated normal transmission

time densities for fitted Hawkes models for all 50 states
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Figure 4.7: Estimates of the mean of the estimated normal transmission time density for

fitted Hawkes models, for all 50 states, vs. the number of days in each state with zero

confirmed SARS-CoV-2 cases in the dataset.
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4.1 Discussion

The results suggest that the transmission time distribution for SARS-CoV-2 is centered at

seven days, with a standard deviation of approximately one day. This is a somewhat narrower

density compared to prior reports based on case studies.

The density in the estimate of the triggering function at 14 days is likely due to harmonic

aliasing (Brillinger, 1981). However, the estimated density at one day is more difficult to

explain. One possibility might be contagion due to physical contact, such as hand-to-hand or

hand-surface-hand exposure. While most transmission is likely attributable to aerial spread

via respiratory droplets, some cases might involve very short transmission times (Lotfi et al.,

2020). Another explanation may be substantial autocorrelation between daily case counts,

attributed to continuity in human behaviors, policies, and recording decisions. Additionally,

some subjects might be infectious before their cases are reported, as recorded dates may

differ from actual disease onset.

Data dumping and reporting trends might also explain some results. For instance, the

higher estimated seven-day transmissions may result from weekly reporting cycles. However,

as shown in Figure 4.2, transmission time estimates are not extremely sensitive to such

errors, and most states’ confirmed cases vary little by weekday. The results were remarkably

consistent across states, with the seven-day density peaking.

It is important to note that many cases of SARS-CoV-2 are likely missing from state

and CDC databases, particularly early in the pandemic when testing was scarce. While

unreported asymptomatic cases were likely common, this underreporting seems minimally

impactful on transmission time distribution estimates unless systematic trends exist. As dis-

cussed by Kresin, Schoenberg and Mohler (2021), the difficulty in estimating the percentage

of asymptomatic cases introduces more error into SEIR models than Hawkes models, which

bypasses this issue by focusing on recorded cases as an autoregressive process.

The assumption of a constant value of µ across states may be violated due to varying
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immigration rates of the virus, especially as stay-at-home orders changed. However, such

errors are unlikely to significantly affect transmission time estimates.

As an alternative to fitting a simple Hawkes model to each state, a multivariate Hawkes

model could be used to account for interstate transmission. However, this approach may

lead to issues of nonidentifiability and multicollinearity, resulting in high-variance estimates

and poor forecasting performance (Yuan et al., 2021). Addressing these challenges is an

important subject for future statistical work.

A crucial topic for future research is improving the estimation of uncertainties for Hawkes

model parameters and forecasts. Current simulation-based methods tend to underestimate

uncertainties, and exploring better ways to address this issue remains an important area for

statistical work (Schoenberg, 2022).

Figure 4.8 considers a parametric form for the g function. Basically, on each day after

2020/01/23, we take the previous data and estimate µ, K(t), c, p. Here, µ represents the

baseline rate of new events, while K measures how strongly past events influence future ones.

The parameter c denotes the average delay between a triggering event and subsequent cases,

and p represents the variability of that delay. The distribution reveals interesting trends. At

the very beginning, the range of different parameters is various covering 0 to 10. Gradually,

the estimation of parameters converges to a specific range and becomes much more stable.

µ concentrates within 0 to 4. K(t) concentrates around 1. The mean of normal distribution

concentrates within 8 to 10. The standard error concentrates around 0. With more data

support, the estimation of parameters is more reliable and stable.
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Figure 4.8: Model parameters estimation distribution over time. Each parameter is repre-

sented by a different color: red for µ, blue for K, black for c, and green for p.
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CHAPTER 5

Conclusion

The work highlights the strength of Hawkes point process models in understanding the spread

of SARS-CoV-2. By focusing on daily case counts, these models offer precise insights into

transmission dynamics, outperforming traditional models like SEIR in terms of accuracy.

The consistent finding of a seven-day transmission period suggests that the virus spreads

faster and more predictably than earlier reports indicated, which has important implications

for designing effective public health policies, such as quarantine durations.

The models also proved resilient in the face of real-world challenges, like missing data or

irregular reporting, making them a reliable tool for pandemic analysis. However, the study

recognizes that certain limitations remain. For instance, underreported cases, especially

asymptomatic ones, could introduce some bias. Moreover, the assumption that the rate of

external infections stays constant might not fully capture the complexities of how the virus

enters different states.

Future research could build on this work by developing models that account for trans-

mission between states or regions, as well as exploring better ways to handle uncertainties in

the data. Despite these challenges, this study confirms that Hawkes models are a powerful

and adaptable approach for analyzing infectious disease dynamics and can provide valuable

support for managing public health responses.
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CHAPTER 6

Supplementary Data and Reference

Frederic Schoenberg. (2024). Estimating COVID-19 transmission time using Hawkes point

processes. ResearchGate.

Code for data analysis and simulations (DOI: 10.1214/23-AOAS1765SUPP; .zip).Zip file

containing R code used for the data analysis, simulations, and construction.
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