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RESEARCH ARTICLE Open Access

Transcriptome analysis of Aspergillus niger
xlnR and xkiA mutants grown on corn
Stover and soybean hulls reveals a highly
complex regulatory network
Claire Khosravi1†, Joanna E. Kowalczyk1†, Tania Chroumpi1, Evy Battaglia1, Maria-Victoria Aguilar Pontes1,
Mao Peng1, Ad Wiebenga1, Vivian Ng2, Anna Lipzen2, Guifen He2, Diane Bauer2, Igor V. Grigoriev2,3 and
Ronald P. de Vries1*

Abstract

Background: Enzymatic plant biomass degradation by fungi is a highly complex process and one of the leading
challenges in developing a biobased economy. Some industrial fungi (e.g. Aspergillus niger) have a long history of
use with respect to plant biomass degradation and for that reason have become ‘model’ species for this topic. A.
niger is a major industrial enzyme producer that has a broad ability to degrade plant based polysaccharides. A. niger
wild-type, the (hemi-)cellulolytic regulator (xlnR) and xylulokinase (xkiA1) mutant strains were grown on a monocot
(corn stover, CS) and dicot (soybean hulls, SBH) substrate. The xkiA1 mutant is unable to utilize the pentoses D-
xylose and L-arabinose and the polysaccharide xylan, and was previously shown to accumulate inducers for the
(hemi-)cellulolytic transcriptional activator XlnR and the arabinanolytic transcriptional activator AraR in the presence
of pentoses, resulting in overexpression of their target genes. The xlnR mutant has reduced growth on xylan and
down-regulation of its target genes. The mutants therefore have a similar phenotype on xylan, but an opposite
transcriptional effect. D-xylose and L-arabinose are the most abundant monosaccharides after D-glucose in nearly
all plant-derived biomass materials. In this study we evaluated the effect of the xlnR and xkiA1 mutation during
growth on two pentose-rich substrates by transcriptome analysis.

Results: Particular attention was given to CAZymes, metabolic pathways and transcription factors related to the plant
biomass degradation. Genes coding for the main enzymes involved in plant biomass degradation were down-
regulated at the beginning of the growth on CS and SBH. However, at a later time point, significant differences were
found in the expression profiles of both mutants on CS compared to SBH.

Conclusion: This study demonstrates the high complexity of the plant biomass degradation process by fungi, by
showing that mutant strains with fairly straightforward phenotypes on pure mono- and polysaccharides, have much
less clear-cut phenotypes and transcriptomes on crude plant biomass.
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Background
Aspergillus niger is a filamentous fungus that degrades
plant biomass polysaccharides, such as cellulose, hemi-
cellulose and pectin into monomeric sugars that can
serve as a carbon source. Cellulose has a simple struc-
ture as a linear polymer of D-glucose. Hemicelluloses
are more complex heterosaccharides with many varia-
tions in their structure. Pectins are a family of complex
polysaccharides with D-galacturonic acid as the main
monomeric component. The composition of plant bio-
mass is detailed in Table 1. A. niger is able to secrete a
broad spectrum of enzymes that can hydrolyze polysac-
charides into pentoses, hexoses and other monomeric
components [1], which can be taken up by the fungus.
A. niger then uses a variety of catabolic pathways to
efficiently convert the monomeric components of plant
biomass. Significant progress has been made in the
utilization and conversion of cellulose-derived hexose
sugars into bioethanol. Several reports summarized the
latest developments from 1st generation to 2nd gener-
ation (2G) ethanol technologies [2]. However, the use of
pentose sugars, such as L-arabinose and D-xylose pre-
sents an opportunity to increase the efficiency of 2G

bioethanol. In A. niger the release of L-arabinose and D-
xylose from plant biomass requires the synergistic action
of several Carbohydrate Active enZymes (CAZymes) [1].
After release from the polymers, L-arabinose and D-
xylose are metabolized through the pentose catabolic
pathway (PCP), consisting of oxidation, reduction and
phosphorylation reactions to form D-xylulose-5-phos-
phate, which enters the pentose phosphate pathway
(PPP) [3–5]. The PPP is one of the central metabolic
pathways in primary carbon metabolism. The production
of D-xylulose-5-phosphate from the PCP enables the
fungus to answer efficiently to the increased demands of
NADH and NADPH [6].
In A. niger, the xylanolytic enzyme system is regu-

lated by the zinc binuclear transcription factor (TF)
XlnR [5, 7–12]. In addition to extracellular enzymes,
XlnR also regulates D-xylose reductase (xyrA) in the
PCP, and ribose-5-isomerase (rpiA) and transaldolase
(talB) in the PPP [13]. Activation of XlnR depends on
the presence of D-xylose that acts as an inducer, re-
leased from the environment by low level constitutively
expressed or starvation-influenced scouting enzymes
[13–17]. It has been demonstrated that D-xylose

Table 1 Composition of plant biomass. Based on Kowalczyk et al., 2014

Biomass Polymer Monomers

Cellulose D-glucose

Hemicellulose Xylan D-xylose

Glucuronoxylan D-glucuronic acid, D-xylose

Arabinoglucuronoxylan D-xylose, L-arabinose

Arabinoxylan D-xylose, L-arabinose

Galacto(gluco)mannan D-glucose, D-mannose, D-galactose

Mannan/galactomannan D-mannose, D-galactose

Xyloglucan D-glucose, D-xylose, D-fructose, D-galactose

β(1,3)/(1,4)-Glucan D-glucose

Pectin Homogalacturonan D-galacturonic acid

Xylogalacturonan D-galacturonic acid, D-xylose

Rhamnogalacturonan I D-galacturonic acid, L-rhamnose, D-galactose,
L-arabinose, ferulic acid, D-glucuronic acid

Rhamnogalacturonan II D-galacturonic acid, L-rhamnose, D-galactose,
L-arabinose, L-fucose, D-glucose,
D-manno-octulosonic acid (KDO),
D-lyxo-heptulosaric acid (DhA), D-xylose,
D-apiose, L-acetic acid

Inulin D-fructose, D-glucose

Starch Amylose D-glucose

Amylopectin D-glucose

Various gums D-galacturonic acid, L-rhamnose, D-galactose,
L-arabinose, D-xylose, L-fucose (depending on
the specific gum type)

Lignin monolignols: ρ-coumaryl alcohol,
coniferyl alcohol, sinapyl alcohol
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induction is concentration-dependent: acting as an in-
ducer for xylanases at low concentrations and as a repres-
sor through CreA at higher concentrations [14, 18].
Another TF, AraR, has been identified in A. niger and
was shown to interact with XlnR in the regulation of
the PCP [5, 13].
Corn stover (CS) and soybean hulls (SBH) are

commonly used as renewable feedstocks for many
applications. CS has strong advantages as a feedstock
for energy, chemicals, and materials, because of its
high volume and low cost [19]. CS contains stalks,
leaves, tassel, husk, and cob from the corn crop [20],
making it highly heterogeneous. The composition of
each fraction varies, and each fraction is known to
respond differently to enzymatic hydrolysis [21–23].
Crude CS consists of 37.1% cellulose, 20.9% hemicellu-
lose, 13.5% lignin, and 1.3% ash [24].
Soybean hulls (SBH) is the predominant by-product

from the soybean process industry [25]. The chemical
composition of SBH may contain variable amounts of
cellulose (29–51%), hemicellulose (10–25%), lignin (1–
4%), pectin (4–8%), proteins (11–15%), and minor ex-
tractives [25]. Lignin is the most recalcitrant compo-
nent of the plant cell wall. SBH is easy degradable due
to its low level of lignin and is therefore attractive as a
potential feedstock for fuel and other industrial uses.
Different pretreatment methods have been studied in

relation to the production of monomeric sugars from CS
and SBH [21, 26]. However, the costs of cellulase and
hemicellulase production contribute significantly to the
price of biofuel. Improving the methods to obtain these
enzyme cocktails and increasing their efficiency is a key
factor to make biofuels economically sustainable. One of
the possibilities to optimize the biofuel production
process is the genetic engineering of enzyme production
organisms, such as A. niger.
The role of XlnR in regulation of enzyme production

was studied in detail on monosaccharides and polysac-
charides, but the role of this TF on two natural
substrates like CS and SBH has been studied less ex-
tensively. In this study we describe a transcriptomic
analysis of A. niger wild-type, ΔxlnR and xkiA1 mutant
grown on CS and SBH. The goal was to analyze the ef-
fect of the deletion of xlnR and xkiA1 over time during
growth on these substrates. Our hypothesis in this
study was that at an early time point the XlnR target
genes would have reduced expression in ΔxlnR and are
up-regulated in xkiA1 mutant due to accumulation of
the inducers of XlnR and AraR. Previous studies
demonstrated that transcript levels of several genes
encoding cellulolytic, xylanolytic and xyloglucanolytic
enzymes were decreased in an xlnR deletion mutant
[10, 27, 28]. In contrast, increased transcript levels of
genes encoding arabinan and xylan degrading enzymes

have been observed in the xkiA1 mutant, as well as intra-
cellular accumulation of L-arabitol and xylitol [3, 5, 29].
At the later time points of our study, we expected A. niger
to compensate for these mutations by using other regula-
tory mechanisms. Interestingly, our results demonstrated
that the response of A. niger to crude plant biomass sub-
strates is even more complex than could be extrapolated
from studies on pure mono- and polysaccharides.

Results and discussion
Growth profile of A. niger wild-type, xkiA1 and ΔxlnR
The three strains were grown on minimal medium con-
taining no carbon source, 25 mM D-glucose, 25 mM D-
xylose, 1% beechwood xylan, 3% corn stover or 3% soy
bean hulls (Fig. 1). As has been shown before, the xkiA1
mutant was not able to grow on D-xylose (due to a
block in the pentose catabolic pathway [30]) and had
only residual growth on beechwood xylan (due to other
sugars than D-xylose in this substrate), while the xlnR
deletion strain had only a small reduction in growth on
D-xylose (due to compensation of AraR [5, 31]) and
strongly reduced growth on beechwood xylan (due to re-
duced expression of xylanases [10]).
Interestingly, on corn stover and soy bean hulls, both

strains had a very similar phenotype, which was some-
what less growth than the wild type. This indicates that
during growth on crude plant biomass, the influence of
these mutations is significantly smaller than on xylan,
most likely due to the presence of other polymers that
can serve as alternative carbon sources. The net bur-
den of either blocking pentose catabolism or signifi-
cantly reduced production of xylanolytic genes can
apparently be compensated for by other systems.
Therefore, we studied the response of these strains in
detail by using transcriptomics.

Overall effect of xlnR and xkiA1 deletion on the CAZy
genes involved in the plant biomass degradation
To gain more insight into the regulation of cellulose-,
hemicellulose- and pectin-degrading enzymes by XlnR
on a natural substrate, the wild-type strain and the
mutant strains ΔxlnR and xkiA1 were pre-grown in li-
quid cultures containing MM with D-fructose, and
then transferred to MM with 1% CS or 1% SBH for 4,
24 and 48 h. RNA-seq analysis was performed and the
transcriptome response during growth on CS and SBH
was analyzed in the mutants compared to the wild-
type strain. On average 98% of the reads were mapped
to the genome and 80% of the reads were mapped to a
gene. Based on previous studies on monosaccharides
and polysaccharides, it was expected that XlnR-target
genes will be reduced in expression in the xlnR mutant
and up-regulated in the xkiA1 mutant at the early time
point [29]. The expression data were analyzed to
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evaluate whether this is also the case on a crude sub-
strate consisting of multiple monomeric compounds.
A. niger XlnR is involved in degradation of cellulose,
xylan, xyloglucan and to some extent galactomannan
[9–11, 32]. The xkiA1 mutant is an UV mutant, unable
to grow on L-arabinose and D-xylose and deficient in
D-xylulose kinase activity [3, 29]. XkiA is essential for
the utilization of D-xylose and L-arabinose, which are
major components of xylan, xyloglucan and pectin.
Since CS contains mainly cellulose and xylan, and SBH
mainly cellulose, xyloglucan and pectin, we evaluated
the effects of the deletion of xlnR and xkiA1 on CAZy
genes related to these polysaccharides. Principle Compo-
nent Analysis was performed on the transcriptome data
to verify the reproducibility of the biological replicates
(Additional file 1: Figure S1). This also demonstrated

that the pre-cultures of the xlnR deletion strain dif-
fered from those of the other strains. While we did not
see strong overlap in the set of differentially expressed
genes of the pre-culture and the later samples, we can-
not fully exclude that this difference in the pre-culture
may have some effect on the expression of the later
samples.
Genes were considered differentially expressed if the

log2 fold change was greater than 0.6 or less than − 0.6
with adjusted p-value ≤0.05. GO-term enrichment
demonstrated that in particular genes related to carbo-
hydrate metabolism were affected in the strains
(Additional file 2: Figure S2; Additional file 3: Table S1),
so we focused on these gene groups in our study. The dif-
ference in CAZy gene expression of ΔxlnR and the xkiA1
mutant compared to the wild-type was analyzed over time

Fig. 1 Growth of Aspergillus niger wild-type N402, xkiA1 and ΔxlnR strains on no carbon source, 25 mM D-glucose, 25 mM D-xylose, 1%
beechwood xylan, 3% corn stover and 3% soybean hulls, after 3 days of growth at 30 degrees
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(4, 24 and 48 h). After 4 h on CS 108 genes had re-
duced expression in ΔxlnR and from those genes, two
were up-regulated and 79 were down-regulated in the
xkiA1 mutant (Fig. 2; Additional file 4: Table S2). Simi-
lar results were observed after 24 h on CS, with 108
genes that were down-regulated in ΔxlnR of which
four were up-regulated and 63 were down-regulated in
the xkiA1 mutant. After 48 h on CS 108 genes were
down-regulated in ΔxlnR and from them 23 were up-
regulated and 47 were down-regulated in the xkiA1
mutant, indicating that the highest number of CAZy
genes showed the expected profile of down-regulated
in the xlnR mutant and up-regulated in the xkiA1 mu-
tant at the latest time point. Expression of a previously
identified set of 21 XlnR-dependent targets genes was
evaluated in our data-set (Fig. 3), most of which were
significantly down-regulated in ΔxlnR. The exception
was an α-rhamnosidase encoding gene (NRRL3_07520)
after 4 h of transfer to CS. Interestingly, after 24 h of
transfer to CS, of the four genes down-regulated in
ΔxlnR and up-regulated in the xkiA1 mutant, only one
gene has been identified as an XlnR-target gene: β-
xylosidase (BXL; xlnD) (Fig. 3). After 48 h of transfer
to CS, of the 23 genes that were down-regulated in
ΔxlnR and up-regulated in the xkiA1 mutant, two
genes have been previously identified as XlnR-target
genes: an α-galactosidase (AGL; aglB) and an α-
xylosidase (AXL; axlA). Overall, the set of genes
responding to the mutations differs from those ob-
served on xylan or D-xylose, indicating the more com-
plex regulatory system that is active during growth on
crude plant biomass.
After 4 h on SBH, 96 genes were down-regulated in

ΔxlnR and of those genes six were up-regulated and 68
were down-regulated in the xkiA1 mutant (Fig. 2;
Additional file 4: Table S2). Compared to CS, there
was a larger shift in the expression profiles between
the time points, since after 24 h on SBH, only 48 genes
were down-regulated in the ΔxlnR strain of which
eight were up-regulated and 12 were down-regulated
in the xkiA1 mutant. After 48 h on SBH 67 genes were
down-regulated in ΔxlnR. From these, 18 were up-
regulated and six were down-regulated in the xkiA1
mutant. As was observed for CS, after 48 h the highest
number of CAZy genes showed the expected profile of
being down-regulated in the xlnR deletion mutant and
up-regulated in the xkiA1 mutant. One α-galactosidase
(AGL; aglB), two cellobiohydrolases (CBH; cbhA and
cbhB) and one endoglucanase (EGL; eglA) were down-
regulated in ΔxlnR and up-regulated in the xkiA1 mu-
tant after 24 h and 48 h of transfer to SBH. In addition,
axlA was down-regulated in ΔxlnR and up-regulated in
the xkiA1 mutant after 48 h of transfer to SBH (Fig. 2;
Additional file 4: Table S2).

Overall, larger differences were observed in SBH
compared to CS after 24 h and 48 h. A higher number
of CAZy genes were up-regulated in the xkiA1 mutant,
especially pectinases, on SBH compared to CS after 24
h. Our results showed an antagonistic effect between
ΔxlnR and the xkiA1 mutant after 48 h to CS and SBH,
since more genes were up-regulated in the xkiA1 mu-
tant compared to ΔxlnR, while more genes were down-
regulated in ΔxlnR compared to the xkiA1 mutant.

Expression of cellulolytic genes
After 4 h and 24 h of transfer to CS, 15 cellulolytic CAZy
genes were down-regulated in ΔxlnR compared to the
wild-type, while after 48 h, 13 cellulolytic CAZy genes
were down-regulated (Figs. 4, 5 and 6; Additional file 4:
Table S2, Additional file 5: Figure S3). Some cellulolytic
genes were up-regulated in the ΔxlnR strain at all three
tested time-points. In the xkiA1 mutant after 4 h and
24 h a similar trend can be observed; most cellulolytic
genes were down-regulated and only a few genes were
up-regulated, but after 48 h the opposite effect was ob-
served. Two cellulolytic genes were down-regulated
and ten were up-regulated in the xkiA1 mutant com-
pared to the wild-type.
In SBH, the same trend as for CS was observed in

ΔxlnR, in that the majority of cellulolytic genes were
down-regulated at all the time points tested (Figs. 4, 5 and
6; Additional file 4: Table S2, Additional file 5: Figure S3),
but a lower number of genes were differentially expressed
in the xkiA1 mutant compared to CS. Several cellulolytic
genes, previously identified as XlnR-target genes showed
interesting transcript profiles. Two endoglucanases (EGL;
eglA and eglC) [10, 32] were down-regulated at all time
points in both substrates, while a third EGL, eglB, was only
down-regulated after 24 h in CS and after 4 h in SBH.
Two XlnR-regulated cellobiohydrolases (CBH; cbhA and
cbhB) [11] were down-regulated at all the time points in
CS, while in SBH, cbhA was down-regulated only after 4 h
and cbhB after 4 h and 48 h. Interestingly, eglA, cbhA
and cbhB showed the expected profile, down-regulated
in ΔxlnR and up-regulated in the xkiA1 mutant, but
only after 48 h of transfer to CS and not at the earlier
time points.

Expression of xylan and xyloglucan genes
At all time points tested in CS and SBH, the majority
of the xylanolytic genes and xyloglucan-specific genes
were down-regulated in ΔxlnR. After 4 h in CS most of
the xylanolytic genes and xyloglucan-specific genes
were also down-regulated in the xkiA1 mutant, but
after 24 h, the effect of the xkiA1 mutation is less pro-
nounced, and after 48 h more xyloglucan- specific
genes were up-regulated, compared to the earlier time
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Fig. 2 Venn diagrams showing the CAZy genes involved in the degradation of plant biomass in A. niger that are significantly up-regulated and
down- regulated genes in SBH (a, c, e) and CS (b, d, f) between ΔxlnR vs the wild-type (green and blue) and between xkiA1 vs the wild-type
(orange and pink) after 4 h (a; b), 24 h (c; d) and 48 h (e, f). The gene numbers are listed in Additional file 3: Table S1
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points (Figs. 4, 5 and 6; Additional file 4: Table S2,
Additional file 5: Figure S3).
No major differences were observed after 4 h in SBH

in the xkiA1 mutant compared to ΔxlnR. After 24 h,
unlike in CS, no xylanolytic genes and xyloglucan-
specific genes were down-regulated in SBH in the
xkiA1 mutant. After 48 h no xylanolytic genes were
down-regulated in SBH in the xkiA1 mutant compared
to the wild-type, whereas four were down-regulated in
CS. Previously, two endoxylanases (XLN; xlnA, xlnB)
and a β-xylosidase (BXL, xlnD) have been identified as
XlnR-target genes [9, 10]. In our RNA-seq analysis,
xlnA and xlnB were down-regulated at all time points
in both substrates, while xlnD was also down-regulated

at all-time point in CS, but only after 4 h and 24 h in
SBH. These genes were in general not up-regulated in
the xkiA1 mutant, with the exception that xlnD was
up-regulated only after 24 h on CS.

Expression of pectinolytic genes
At all the time points tested, most of the pectinolytic
genes were down-regulated in CS in both ΔxlnR and
the xkiA1 mutant (Figs. 4, 5 and 6; Additional file 4:
Table S2, Additional file 5: Figure S3). In contrast,
after 4 h in SBH, ten pectinolytic genes were up-
regulated, while only one was up-regulated in CS in
ΔxlnR. This became even more pronounced after 24 h,
when twenty-nine pectinolytic genes were up-regulated

Fig. 3 Hierarchical clustering of expression of genes regulated by XlnR in the A. niger ΔxlnR mutant compared to the wild-type after 4 h, 24 h, 48
h of transfer to 1% corn stover (CS) or 1% soybean hulls (SBH). The polysaccharide the genes are related to are indicated in green
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in SBH, whereas only six were up-regulated in CS in
ΔxlnR. In contrast, only four were down-regulated at
this time point in SBH. Interestingly, this pattern changed
after 48 h, as then thirteen pectinolytic genes were down-
regulated in SBH, and twenty-six were down-regulated in
CS in ΔxlnR, and the number of up-regulated genes re-
duced to ten for SBH and seven for CS.
The pectinolytic expression profiles of the xkiA1 mu-

tant in CS and SBH after 24 h were similar to ΔxlnR,
with sixteen pectinolytic genes that were up-regulated in
SBH, while only five were up-regulated in CS. However,
unlike for ΔxlnR, this effect was still observed after 48 h.
Overall, pectinolytic gene expression seems to go up in

the absence of XlnR and to a smaller extent XkiA on SBH,
which could be explained by the use of L-rhamnose and/
or D-galacturonic acid as an alternative carbon source,
which is highly present in this substrate. This would be
expected to result in increased induction of GaaR and
RhaR, two of the main activators of pectinolytic genes, but
this was not observed (see below). Alternatively, these reg-
ulators may be under post-transcriptional control in the

presence of these compounds, as was shown for XlnR on
D-xylose [33].

Expression of CAZy genes related to other plant biomass
components
The expression of CAZy genes related to other plant bio-
mass components (galactomannan, starch, and inulin) was
also evaluated to determine whether expression of these
genes was affected in the mutants. At all time points in CS
most of the galactomannan-specific genes, starch-specific
genes and CAZy genes acting on various substrates were
down-regulated in ΔxlnR (Figs. 4, 5 and 6; Additional file 4:
Table S2, Additional file 5: Figure S3). One galactomannan-
specific gene, previously identified as XlnR-target genes,
aglB [8], was up-regulated in SBH and down-regulated in
CS. However, after 4 h, four inulin-specific genes were up-
regulated, while one was down-regulated in CS in ΔxlnR.
Most of the galactomannan-specific genes and starch-
specific genes were down-regulated in the xkiA1 mutant in
CS at all time points, but this was only the case at 4 and 24
h in CS for the CAZy genes acting on various substrates.

Fig. 4 Pie-chart presenting the proportion of CAZy genes involved in the degradation of different plant polysaccharides in A. niger that are
significantly up-regulated or down-regulated between ΔxlnR vs the wild-type and between xkiA1 vs the wild-type after 4 h of transfer to Corn
Stover and Soybean Hulls. The gene numbers are listed in Additional file 3: Table S1
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After 4 h in SBH, more starch-specific genes were up-
regulated in ΔxlnR compared to CS. After 24 h three
galactomannan-specific genes and four inulin-specific
genes were up-regulated in SBH, whereas only one of
each group was up-regulated in CS. No major differ-
ences were observed after 48 h between CS and SBH in
ΔxlnR. In the xkiA1 mutant, after 4 h in SBH, more
galactomannan-specific genes, inulin-specific genes and
CAZy genes acting on various substrates were up-
regulated compared to CS. This effect became less pro-
nounced after 24 and 48 h.
These results showed that the effect of xlnR deletion

and xkiA1 mutation on CAZy gene expression changes
over time and depends on the composition of the
crude substrates. Overall, many CAZy genes involved
in the degradation of cellulose, xylan and xyloglucan
were down-regulated at all time points tested on both
substrates in ΔxlnR (Figs. 4, 5 and 6; Additional file 4:
Table S2, Additional file 5: Figure S3). In the xkiA1
mutant most of the cellulolytic, xylanolytic and
xyloglucan-specific genes were down-regulated after 4

h in both substrates as observed for ΔxlnR. After 4 h in
CS or SBH, xlnR and xkiA1 mutants respond in a simi-
lar way, suggesting that at this early time point inabil-
ity to use pentoses is the main effect on the expression
profiles rather than the difference in the mutation
causing this.
However, after 24 h and 48 h differences were ob-

served in both deletion mutants between the two crude
substrates. In the xkiA1 mutant, a higher number of
cellulolytic genes were down-regulated after 24 h and
up-regulated after 48 h in CS, compared to SBH. Also,
after 24 h, more xylanolytic and xyloglucan-specific
genes were down-regulated in SBH compared to CS in
the xkiA1 mutant. After 24 h in SBH a high number of
enzymes acting on the different substructures of the
pectin, homogalacturonic acid (HGA), rhamnogalac-
turonan I (RG-I) and side chains (SC) were up-
regulated in both mutants compared to CS.
After 48 h, a high number of pectinases were up-

regulated in SBH in the xkiA1 mutant. Our data
showed that the mutation of xkiA1 results in up-

Fig. 5 Pie-chart presenting the proportion of CAZy genes involved in the degradation of different plant polysaccharides in A. niger that are
significantly up-regulated or down-regulated between ΔxlnR vs the wild-type and between xkiA1 vs the wild-type after 24 h of transfer to Corn
Stover and Soybean Hulls. The gene numbers are listed in Additional file 3: Table S1
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regulation, whereas the deletion of xlnR results in
down-regulation of several CAZymes involved in plant
biomass degradation. This demonstrates that a meta-
bolic and regulatory mutation with the same pheno-
type when grown on pure monosaccharides can result
in a different physiology during prolonged growth on
crude substrates.
Previously, we demonstrated the dominant role of

XlnR in colonization and degradation of wheat bran
[34]. During the late colonization stage (40 h post in-
oculation), only the strains in which xlnR was deleted
were unable to colonize the smooth surface of wheat
bran, due to the absence/reduction of several cellulo-
lytic and arabinoxylanolytic enzymes. These results
correlate with the down-regulation of CAZymes
involved in the degradation of cellulose, xylan, xyloglu-
can and galactomannan observed in the ΔxlnR strain
on CS and SBH. The expression profiles of seven se-
lected genes were confirmed by qRT-PCR, to validate
the RNAseq data (Additional file 6: Figure S4).

Expression profiles of other regulators involved in the
degradation of CS and SBH and their metabolic target
genes
The monomeric composition of CS and SBH is detailed
in Table 2. CS and SBH contain various polysaccharides
and provide options for consumption of other sugars
than hexoses, for example pentoses (D-xylose and L-
arabinose) and uronic acids. It is important to notice
that the uronic acid level is higher in SBH than in CS
and it also consists of different quantities of the other
monomeric sugars. In SBH, the uronic acid fraction con-
sists mainly of D-galacturonic-acid, while CS contains
(4-(O)-methyl-)D-glucuronic-acid [1]. These differences
in composition not only imply variation in the presence
or levels of inducers for plant biomass related transcrip-
tional regulators, but also the need –to activate different
metabolic pathways in time to optimally use the two
substrates.
To analyze the effect of xlnR or xkiA1 mutants on sugar

catabolism, expression of genes involved in conversion of

Fig. 6 Pie-chart presenting the proportion of CAZy genes involved in the degradation of different plant polysaccharides in A. niger that are
significantly up-regulated or down-regulated between ΔxlnR vs the wild-type and between xkiA1 vs the wild-type after 48 h of transfer to Corn
Stover and Soybean Hulls. The gene numbers are listed in Additional file 3: Table S1
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L-arabinose/D-xylose, L-rhamnose, and D-galacturonic
acid, and the regulators controlling them, was analyzed
in the xlnR and xkiA1 mutants compared to the wild-
type strain grown on CS and SBH for 4 h, 24 h, and 48
h. Expression of other TFs involved in the cellulose,
hemicellulose and pectin degradation was also ana-
lyzed to determine the effect of xlnR or xkiA1 mutants
on their expression.

The L-arabinose-responsive regulator AraR
AraR regulates most genes involved in the PCP: L-
arabinose reductase (larA), L-arabitol dehydrogenase
(ladA), L-xylulose reductase (lxrA), xylitol dehydrogen-
ase (xdhA) and D-xylulokinase (xkiA1) during growth on
L-arabinose in A. niger [5, 13]. The later two genes as
well as D-xylose reductase (xyrA) are under control of
XlnR during growth on D-xylose. In addition, rpiA and
talB have been identified as XlnR regulated genes. After
4 h of transfer to CS or SBH all the genes involved in
the PCP were down-regulated in ΔxlnR, but only on
SBH in the xkiA1 mutant compared to the wild type
strain (Additional file 4: Table S2, Additional file 7:
Table S3). Interestingly, after 24 h and 48 h, the previ-
ously identified XlnR-target genes from the PCP, xyrA
and xdhA, were down-regulated in both substrates at all
time-points tested in ΔxlnR. XlnR seems to have a major
influence on the expression of xdhA on both CS and
SBH because in absence of XlnR, we do not observe the
antagonistic interaction of AraR in regulation of this
gene. None of the other PCP genes (larA, ladA, lxrA
and xkiA) were consistently down-regulated in ΔxlnR
(Additional file 7: Table S3, Additional file 8: Figure S5),
but sometimes up-regulated at certain late time-points
on CS or SBH, which implies that these genes are
dependant on both XlnR and AraR on these crude sub-
strates, but with a dominant regulatory role for AraR for
the genes involved in the first three steps of te L-
arabinose pathway. In ΔxlnR araR was up-regulated
after 4 and 24 h of transfer to CS or SBH, compared to
the wild-type strain (Additional file 9: Table S4). These
results correlate well with the previously reported antag-
onistic interaction of these regulators in A. niger, where
it was shown that deletion of xlnR results in up-
regulation of the PCP genes under control of AraR [5].
In the xkiA1 mutant araR was up-regulated after 24

h and 48 h of transfer to CS, but only after 4 h of trans-
fer to SBH (Additional file 9: Table S4). L-arabitol is
the inducer from AraR and accumulates in the xkiA1

mutant during growth on D-xylose or L-arabinose
[29]. After 4 h on both CS and SBH xyrA and xdhA
were down-regulated, and similar results were ob-
served for the extracellular enzymes releasing D-xylose
residues. After 24 and 48 h, transcript levels of these
genes were not consistently down-regulated as ob-
served in the xlnR deletion mutant. In contrast, tran-
script levels of larA, ladA, lxrA and xkiA on CS were up-
regulated at some of the time points, while this was ob-
served only for ladA and lxrA on SBH (Additional file 7:
Table S3, Additional file 8: Figure S5).
The results in our study indicate that conversion of

pentoses and subsequent accumulation of L-arabitol and
D-xylose in the xkiA1 mutant might occur earlier in
SBH than in CS. L-arabitol and D-xylose accumulation
would cause up-regulation of the XlnR regulated genes
at the early time-point on CS and SBH according to our
hypothesis. However, the transcript levels of genes
involved in the PCP and especially the extracellular
response (xylanolytic and xyloglucan-active enzymes)
appears to be similar to the xlnR deletion mutant after
4 h. We hypothesize that L-arabitol or D-xylose might
not have accumulated to a high enough level that it
can (hyper) induce the XlnR regulated genes as it has
been observed previously during growth D-xylose and
L-arabinose [13, 29].
As the PCP and PPP are interconnected, we also eval-

uated expression of genes involved in the PPP. Several
genes involved in the PPP were down-regulated in
ΔxlnR, after transfer to CS or SBH (Additional file 7:
Table S3). As expected, talB, previously identified as
XlnR regulated gene, was down-regulated in both sub-
strates at all the time points tested [35]. However, the
other suggested XlnR-regulated gene (rpiA) was only
down-regulated after 24 h of transfer to SBH and there-
fore our results do not conclusively confirm that rpiA is
only regulated by XlnR. Similarly, none of the other PPP
genes were consistently down-regulated at all time
points in ΔxlnR, which implies that they are not directly
regulated by XlnR, but more likely indirectly affected to
a different extent at the various time points.

L-rhamnose responsive regulator (RhaR)
RhaR controls expression of genes involved in RG-I
degradation, as well as the L-rhamnose catabolic genes
L-rhamnose-1-dehydrogenase (lraA), L-rhamnono-γ-
lactonase (lraB) and L-rhamnonate dehydratase (lraC)
during growth on L-rhamnose in A. niger [36–38].

Table 2 Composition of the substrates used in this study

Mol% L-rhamnose D-fucose L-arabinose D-xylose D-mannose D-galactose D-glucose Uronic acid Total

SBH 1.0 0.0 8.4 15.0 7.1 4.0 50.0 15.9 68.0

CS 0.4 0.0 4.6 34.9 0.7 1.7 53.4 4.3 59.5
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Interestingly, rhaR was up-regulated at all the time
points tested in SBH in ΔxlnR, as were lraA, lraB and
lraC (Additional file 7: Table S3, Additional file 8:
Figure S5, Additional file 10: Figure S6). This may indi-
cate that A. niger uses RhaR to (partially) compensate
for the loss of XlnR or alternatively that an active XlnR
somehow suppresses expression of rhaR. A compensa-
tion effect between regulators has recently been shown
in A. nidulans between GalR, XlnR and AraR [39], and
previously in A. niger for XlnR and AraR [5]. The RG-I
main chain is cleaved by endo- (RHG) and exo-
rhamnogalacturonase (RGX), unsaturated rhamnoga-
lacturonan hydrolase (URGH), α-rhamnosidase (RHA)
and rhamnogalacturonan lyase (RGL), with the assist-
ance of rhamnogalacturonan acetyl esterase (RGAE)
[1, 40, 41]. In our study, up-regulation of a number of
RG-I degrading-enzymes was observed after 4 h (eight
enzymes) and 24 h (thirteen enzymes) of transfer to
SBH, correlating well with the up-regulation of RhaR.
However, after 48 h of growth the majority of pectino-
lytic genes involved in RG-I degradation were down-
regulated.
Since in CS the amount of L-rhamnose is lower than

in SBH, this pathway will not substantially contribute to
growth on CS. Indeed, lraA, lraB and lraC were down-
regulated after 24 h and 48 h of transfer to CS in the
ΔxlnR strain. However, rhaR was only down-regulated
after 48 h of transfer to CS in ΔxlnR. In the xkiA1
mutant, rhaR was up-regulated after 4 h of transfer to
SBH and down-regulated after 48 h of transfer to CS
(Additional file 6: Figure S4). These results correlate
with the up-regulation of lraA, lraB, at all the time
points tested, and lraC after 4 h and 24 h of transfer to
SBH. In the xkiA1 mutant on CS the results showed up-
regulation of lraA and lraC after 4 h and down-
regulation of lraA, lraB after 24 h and 48 h, and lraC
after 48 h (Additional file 7: Table S3, Additional file 10:
Figure S6). The up-regulation of rhaR after 4 h of trans-
fer to SBH might be sufficient to up-regulate the path-
way genes at all time points. This up-regulation of rhaR
correlates with the pectinolytic transcript levels. Five out
of seven pectinolytic genes were involved in RG-I deg-
radation and up-regulated after 4 h on SBH in the xkiA1
mutant. On CS, the down-regulation of lraA, lraB and
lraC after 24 h or 48 h, correlated with the down-
regulation of the majority of the pectinolytic genes at all
the time point.

D-galacturonic-acid-responsive regulators: GaaR and GaaX
GaaR is a transcription factor required for growth on
D-galacturonic acid and for the activation of the D-
galacturonic acid responsive genes in A. niger. GaaX
has been recently described as a repressor, inhibiting
the transcription activity of GaaR under non-inducing

conditions [42]. The majority of the GaaR-regulated genes
encode enzymes needed for the degradation of homoga-
lacturonan (HG), such as exo-polygalacturonases (PGX),
endo-polygalacturonases (PGA), pectin methyl esterases
(PME) and pectin lyases (PEL) [42]. Also, GaaR is required
for induction of D-galacturonic acid reductase (gaaA),
L-galactonic acid dehydratase (gaaB), 2-keto-3-deoxy-
L-galactonate aldolase (gaaC) and L-glyceraldehyde/L-
arabinose reductase (gaaD/larA) genes involved in D-
galacturonic acid catabolism in A. niger [43]. After 4 h
of transfer to CS or SBH gaaX was down-regulated in
ΔxlnR suggesting that the repression of GaaR by GaaX
is removed in the absence of XlnR (Additional file 6:
Figure S4). However, after 24 h and 48 h of transfer to
SBH and 48 h of transfer to CS gaaX was up-regulated
in ΔxlnR, indicating that removal of repression is only
an initial effect in this strain on CS. All genes involved
in the D-galacturonic-acid metabolism were down-
regulated in both substrates after 4 h of transfer to CS
or SBH in ΔxlnR. In the xkiA1 mutant this was only
the case for SBH. After 24 h and 48 h of transfer to
SBH nearly all D-galacturonic acid pathway genes were
up-regulated in both ΔxlnR and the xkiA1 mutant
(Additional file 7: Table S3). The exception was gaaD/
larA, which was not differentially expressed in the
xkiA1 mutant. After 24 h on CS gaaA and gaaB were
up-regulated in the xkiA1 mutant, while gaaD was only
up-regulated in ΔxlnR. After 48 h on CS all genes were
down-regulated in both deletion mutants. Expression
of gaaR was not affected by xlnR deletion or xkiA1
mutation on SBH at all most of the time points tested.
However, gaaR was down-regulated after 4 h of trans-
fer to CS in ΔxlnR and after 24 h in the xkiA1 mutant
(Additional file 9: Table S4). The down-regulation of
gaaR might be due to other factors at the early time
point and not due to a direct effect of xlnR deletion in
ΔxlnR in CS.
The higher content of D-galacturonic acid present in

SBH compared to CS likely explains the up-regulation
observed after 24 h and 48 h of the first three genes in-
volved in the pathway, while on CS all the pathway
genes were down-regulated after 48 h. On SBH, these
results correlates with the up-regulation of several
HG-degrading enzymes after 24 h and 48 h, while on
CS the majority of the genes involved in the HG deg-
radation were down-regulated at all the time points
tested, in both deletion mutants.

The amylolytic regulator AmyR
AmyR is a transcriptional regulator that controls the
genes involved in starch degradation, and it has been the
first well-studied regulator in several Aspergillus species
such as A. nidulans and A. oryzae [44, 45]. Expression of
amyR was down-regulated at all time points in ΔxlnR
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grown on CS, and after 4 h and 48 h of transfer to CS in
the xkiA1 mutant (Additional file 9: Table S4). These re-
sults correlate with the down-regulation of a number of
starch degrading-enzymes after 4 and 48 h of transfer to
CS in the xkiA1 mutant (Figs. 4 & 6; Additional file 4:
Table S2). After 4 h of transfer to CS in the xkiA1
mutant nine starch-degrading enzymes were down-
regulated: glaA, six AGD genes (agdA, agdB, agdC,
agdD, agdE and agdF) and two AMY genes (aamA and
NRRL3_07699). After 48 h of transfer to CS seven
starch-degrading enzymes were down-regulated in the
xkiA1 mutant, glaA and six AGD genes (agdA, agdB,
agdC, agdD and agdE).
In SBH amyR was only down-regulated after 24 h in

ΔxlnR, and after 4 h in the xkiA1 mutant. The down-
regulation of amyR in the xkiA1 mutant might be part of
the initial response of A. niger after 4 h of transfer to CS.
In ΔxlnR, the results did not correlate with the expres-
sion of genes encoding starch-degrading enzymes in
both substrates, suggesting an indirect effect of XlnR.

The cellulose regulators ClrA and ClrB
ClrA and ClrB are two TFs involved in the regulation of
cellulose degradation, which have been partially charac-
terized in A. niger [27]. It was shown that the interaction
of two TFs, ClrB and McmA, is necessary for the regula-
tion of eglA and eglB in A. nidulans [46], while in A.
niger, expression of cbhA, eglC and xynA was shown to
be affected by both XlnR and ClrB [45]. Expression of
clrA was not affected on SBH at any time point tested in
either of the deletion mutants. In contrast, clrB was
down-regulated after 48 h of transfer to SBH in ΔxlnR,
and up-regulated after 24 h and 48 h of transfer to SBH
in the xkiA1 mutant (Additional file 6: Table S3). In CS,
clrA was down-regulated at all the time points tested in
both deletion mutants, as was clrB after 4 h in the xkiA1
mutant and after 24 h and 48 h in ΔxlnR. These results
indicate that ClrA or ClrB do not appear to compensate
for the absence of XlnR, as observed previously in wheat
straw [43]. The role of the homologs of these regulators
(Clr1 and Clr2) has been studied in more detail in
Neurospora crassa, where they are important regulators
of genes encoding enzymes that are required for the deg-
radation of cellulose. In contrast, the N. crassa XlnR
homolog was not necessary for cellulase gene expression
or activity [47], demonstrating diverse organization of
the regulatory network in fungi. Clr1 and Clr2 appear to
be essential in the cellulose degradation in N. crassa, but
not in A. niger where XlnR is the major TF involved in
the cellulose and hemicellulose degradation. At this
point, no indications for a role of ClrA or ClrB in sugar
catabolism have been reported and also our results do
not suggest that they affect the expression profiles of the
sugar catabolic genes.

Conclusion
In conclusion, in nature fungi are confronted with
mixtures of carbon sources, and therefore likely activate
a combination of the gene sets that were observed in re-
sponse to crude substrates. Our understanding of the
hierarchy of the transcriptional regulators and their
interaction is still in its infancy, but appears to differ
between fungal species. Our results also demonstrate
that metabolic and regulatory mutations that result in a
similar phenotype on pure sugars can cause significantly
different physiology on crude substrates, especially after
prolonged exposure. The results of this study confirm
that XlnR is the major regulator affecting expression of
genes encoding (hemi-)cellulolytic enzymes in A. niger,
but its influence appears to be dependent on the com-
position of the available substrates. This composition
also strongly affects expression of CAZy genes that are
not controlled by XlnR, such as those encoding pectin-
degrading enzymes.
Also time influences the expression profiles, in par-

ticular during growth on soybean hulls, where the
number of differentially expressed genes reduced over
time, while the number of differentially expressed genes
remained similar on corn stover during the cultivation.
This indicates that the dynamic changes in gene expres-
sion profiles are strongly substrate dependent.

Methods
Strains, media and growth conditions
A. niger strains, CBS 141247 (N402, cspA1) [48], CBS
141248 (cspA1, ΔargB, nicA1, leuA1, ΔxlnR) [5] and CBS
141251 (N572, cspA1, xkiA1, nicA1) [49] were used in
our study and were either generated in our laboratory or
obtained previously from Dr. J. Visser at Wageningen
University. The A. niger strains used in this study were
grown in minimal (MM) or complete (CM) medium
[50] at pH 6.0 and 30 °C with 1.5% of agar. Spore were
generates on CM plates containing 2% D-glucose. Liquid
cultures of three biological triplicates were inoculated
with 106 spores/ml and incubated at 250 rpm and 30 °C
in a rotary shaker. Pre-cultures for RNA isolation were
performed as described previously [51]. Mycelium was
washed with MM and transferred for 4 h, 24 h and 48 h,
in 250 ml Erlenmeyer flasks containing 50 ml MM sup-
plemented with 1% CS or 1% SBH for RNA-seq. Myce-
lium was harvested after 4 h, 24 h and 48 h by vacuum
filtration, dried between tissue paper and frozen in liquid
nitrogen.

RNA extraction, cDNA library preparation, RNA-
sequencing and RNA data analysis
Total RNA was extracted as described previously [51],
while cDNA library preparation and RNA sequencing
has also been previously described [52]. Data analysis
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was performed essentially as in [53]. Filtered reads from
each library were aligned to the reference genome
(http://genome.jgi.doe.gov/Aspni_NRRL3_1/Aspni_
NRRL3_1.home.html) using HISAT version 0.1.4-beta
[54], featureCounts [55] was used to generate the raw
gene counts using gff3 annotations. On average 98% of
the reads were mapped to the genome and 80% of the
reads were mapped to a gene. Gene expression was cal-
culated as FPKM (Fragments Per Kilobase of transcript
per Million mapped reads). DESeq2 (version 1.10.0) [56]
was used to determine which genes were differentially
expressed between pairs of conditions. The parameters
used to call a gene differently expressed between condi-
tions were adjusted p-value <= 0.05 and log2 fold change
0.6 for up-regulated and − 0.6 for down-regulated. Raw
gene counts were used for DGE analysis. DESeq2
normalization was based on library size.
PCA was generated using raw counts for all genes ob-

tained from featureCounts [55]. PCA was calculated
using the PCA function from FactoMineR package v1.41
[57] keeping 5 dimensions and plotted using ggplot2
v2.2.1 [58] in R statistical language and environment
3.4.0 [59]. Biological replicates are color coded.
RT-qPCR reactions were performed as described previ-

ously [51]. The A. niger genes studied were: the xylanolytic
activator (xlnR), endoxylanase (xynB), β-xylosidase (xlnD),
α-glucuronidase (aguA), rhamnogalacturonan lyase B (rglB),
exorhamnogalacturonase A (rgxA) and rhamnogalacturo-
nan acetyl esterase A (rgaeA). Histone gene (H2S) was used
as reference gene. The sequences of all primers for RT-
qPCR analysis were designed using the Primer Express 3.0
software (Applied Biosystems, Foster City, CA, USA) and
their optimal primer concentrations and efficiency have
been previously described [51, 60]. Three biological and
three technical replicates were analyzed.
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Additional file 1: Figure S1. Principle Component Analysis (PCA)
demonstrating the high reproducibility of the biological replicates.

Additional file 2: Figure S2. GO-term enrichment analysis of
differentially expressed genes.

Additional file 3: Table S1. GO-term enrichment analysis of
differentially expressed genes.

Additional file 4: Table S2. Expression of selected CAZymes involved
in the degradation of plant biomass in A. niger. The comparisons
between strains are ΔxlnR over the wild-type and xkiA1 over the wild-
type. The cut-off for differential expression is log2 fold change > 0.6
(cells marked red if up-regulated) and log2 fold change <0.6 (cells
marked green if down-regulated) and adjusted p-value <=0.05(cells
marked yellow).

Additional file 5: Figure S3. Heatmap reflecting the differential
expression of CAZYme-encoding genes The polysaccharides the genes
are related to are indicated in the grid behind the heat map.

Additional file 6: Figure S4. Comparison of RNAseq and Q-PCR
expression profiles of seven selected genes. aguA = alpha-glucuronidase
(NRRL3_01069), xlnD = beta-xylosidase (NRRL3_02451), xynB= endoxylanase
(NRRL3_01648), xlnR= (hemi-)cellulolytic transcriptional activator, rglB =
rhamnogalacturonan lyase (NRRL3_10115), rgxA = exorhamnogalacturonase
(NRRL3_02832), rgaeA = rhamnogalacturonan acetyl esterase (NRRL3_00169).
Graphs depict the log2 of the fold change of the averaged expression
values of the wild type vs the indicated mutant.

Additional file 7: Table S3. Expression of known genes involved in
central carbon metabolism in A. niger. The comparisons between strains
are ΔxlnR over the wild-type and xkiA1 over the wild-type. The cut-off for
differential expression is log2 fold change > 0.6 (cells marked red if up-
regulated) and log2 fold change < 0.6 (cells marked green if down-
regulated) and adjusted p-value < 0.05(cells marked yellow).

Additional file 8: Figure S5. Representation of pentose catabolic
pathway, including expression profiles of the genes involved in the
pathway.

Additional file 9: Table S4. Expression of known regulators genes
involved in plant biomass degradation in A. niger. The comparisons are
between deletion mutants over the wild-type. The cutoff for differential
expression if up-regulated log2 fold-change > 0.6 (cells marked dark grey)
and log2 fold-change <− 0.6 if down-regulated (cells marked light grey)
and adjusted p-value <=0.05 (*).

Additional file 10: Figure S6. Representation of L-rhamnose pathway,
including expression profiles of the genes involved in the pathway.
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