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Abstract

A novel approach for dissecting complex traits is to experimentally evolve laboratory populations under a controlled
environment shift, resequence the resulting populations, and identify single nucleotide polymorphisms (SNPs) and/or
genomic regions highly diverged in allele frequency. To better understand the power and localization ability of such an
evolve and resequence (E&R) approach, we carried out forward-in-time population genetics simulations of 1 Mb genomic
regions under a large combination of experimental conditions, then attempted to detect significantly diverged SNPs. Our
analysis indicates that the ability to detect differentiation between populations is primarily affected by selection coef-
ficient, population size, number of replicate populations, and number of founding haplotypes. We estimate that E&R
studies can detect and localize causative sites with 80% success or greater when the number of founder haplotypes is over
500, experimental populations are replicated at least 25-fold, population size is at least 1,000 diploid individuals, and the
selection coefficient on the locus of interest is at least 0.1. More achievable experimental designs (less replicated, fewer
founder haplotypes, smaller effective population size, and smaller selection coefficients) can have power of greater than
50% to identify a handful of SNPs of which one is likely causative. Similarly, in cases where s� 0.2, less demanding
experimental designs can yield high power.
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Introduction
Quantitative traits are of special interest to biologists. The
variation in many traits of medical, agricultural, and evolu-
tionary relevance is due to the concerted action of several
genes and the environment. Quantitative trait locus (QTL)
mapping has been effective at explaining the majority of the
heritability of a trait but is poorly suited to resolving the lo-
cation of QTL beyond several cM (Mackay et al. 2009). More
recently, several groups have attempted to increase the reso-
lution of QTL mapping using advanced generation recombi-
nant inbred lines (c.f. Kover et al. 2009; Aylor et al. 2011; King
et al. 2012), but resolution is still limited to cM scales. Recently,
genome wide association studies (GWAS) have become a
major method for investigating the genetic basis for quanti-
tative traits (The Wellcome Trust Case Control Consortium,
2007a, 2007b; Craddock et al. 2010). Although GWAS studies
have identified replicable associations between SNPs and
complex traits, associated SNPs tend to explain only a small
fraction of the heritable variation in the study trait (Manolio
et al. 2009), a problem that cannot be solved by increasing
sample sizes to tens of thousands of individuals (Signer-Hasler
et al. 2012) or replacing SNPchips with complete resequenced
genomes (Spencer et al. 2009). Clearly, it is of value to explore
novel methods for dissecting complex traits.

In systems that have short generation times and that can
easily be reared in the lab in large numbers, an alternative
experimental approach to dissecting complex traits has been

to “evolve and resequence” (E&R) populations of organisms.
E&R studies have been performed with both asexual (Riehle
et al. 2001; Barrick et al. 2009; Kishimoto et al. 2010; Tenaillon
et al. 2012; Parts et al. 2011) and sexual (Teotónio et al. 2009;
Burke et al. 2010; Johansson et al. 2010; Turner et al. 2011;
Orozco-Terwengel et al. 2012; Turner and Miller 2012) pop-
ulations. Because asexual experimental evolution lacks recom-
bination and standing variation in the base population, the
footprints of selection in the genome and the means by which
an investigator may hope to identify causal variants are dif-
ferent in sexual and asexual systems. Thus, we limit our focus
to E&R studies in sexual systems. Under the E&R paradigm, a
base population is divided into several replicate populations,
half of which are subjected to a well-defined selection pres-
sure, and the other half of which are maintained without
selection. Next, the DNA pools from each population are
resequenced using NextGen technology and allele frequencies
in each pool are estimated. SNPs and/or genomic regions
showing consistent differentiation between selected and con-
trol population are candidates for harboring causative vari-
ants. Studies using this design have claimed to detect
numbers of candidate causative sites (CS) from 662 (Burke
et al. 2010) to almost 5,000 (Orozco-Terwengel et al. 2012) for
various quantitative traits. Currently, the CSs detected by E&R
methods have not been validated.

To date, the field of E&R has been almost entirely empir-
ically motivated. Study designs have varied greatly in terms of
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the number of replicate populations, the population sizes
maintained, the number of generations over which the
experiment was carried out, and the number of haplotypes
in the base population from which selection was initiated. For
example, Burke et al. (2010), Teotónio et al. (2009), Turner
and Miller (2012), and Orozco-Terwengel et al. (2012) main-
tained population sizes in excess of 1,000 individuals, whereas
Turner et al. (2011) used population sizes of around 225, and
Johansson et al. (2010) used effective population sizes of 27 to
44 individuals. The number of founder haplotypes is often not
precisely known but can vary from a few dozen individuals
(Johansson et al. 2010) to 113 isofemales (Orozco-Terwengel
et al. 2012) up to 173 inbred lines (Turner and Miller 2012).
The number of generations of evolution also varies widely
between experiments: Turner and Miller (2012) used 14 gen-
erations of selection, Orozco-Terwengel et al. (2012) used 37,
Teotónio et al. (2009) and Johansson et al. (2010) used 50,
Turner et al. (2011) used 100, and Burke et al. (2010) used 600.
Replication varies as well: Turner and Miller (2012) sequenced
two replicate populations each for two experimental treat-
ments, Turner et al. (2011) sequenced two replicate popula-
tions each for two experimental treatments and one control,
Orozco-Terwengel et al. (2012) sequenced three replicate
populations undergoing domestication, Johansson et al.
(2010) sequenced two populations selected for divergence,
and Teotónio et al. (2009) sequenced 29 total populations—
five control populations, four replicate populations for each
of three treatments, and four reverse-evolved populations for
all three treatments. Burke et al. (2010) sequenced five exper-
imental and five control populations, but each treatment was
sequenced as a single pool because of technological con-
straints. It is of value to quantify the extent to which these
experimental design decisions impact the power to detect
CSs and contribute to false positives.

Furthermore, there are no agreed upon statistical
approaches for analyzing the sets of pooled allele frequency
estimates obtained from E&R studies. For example, Burke
et al. (2010), Johansson et al. (2010), and Teotónio et al.
(2009), respectively, used Fisher’s exact test, a w2 test, and
an a posteriori Dunnett test to detect significant allele
frequency differences between treatments, whereas Orozco-
Terwengel et al. (2012) and Turner et al. (2011) used, respec-
tively, the Cochran–Mantel–Haenszel test and a statistic
referred to as “DiffStat” to determine whether allele frequen-
cies differed significantly from simulated allele frequencies
subject only to drift. Burke et al. (2010) favored sliding win-
dows of allele frequency change. Turner and Miller (2012)
used a graphical approach in which the divergence within
treatments was used to establish a null expectation, and di-
vergence between treatments was considered significant if it
fell outside this null range. The lack of a consistent standard
for statistics and experimental conditions prevents us from
confirming the numerous candidate CSs that these studies
claim to have detected.

The exact prediction of allele frequency change at even a
single locus is challenging when both selection and genetic
drift affect allele frequency. The approximation of allele fre-
quency probability distribution over time that is best suited

to this problem, the Kolmogorov forward diffusion equation
(Fisher 1930, reviewed by Kimura 1964), is a second-order
partial differential equation that can only be solved by nu-
merical integration in many cases (Gutenkunst et al. 2009).
This equation is advantageous in that, unlike the binomial
sampling method (Ethier and Nagylaki 1980), it does not
make the assumption that Hardy–Weinberg equilibrium is
maintained, which is crucial when modeling experimental
evolution because of the small population sizes and large
selection coefficients involved. The fact that time-dependent
diffusion equations often have no closed-form solutions and
make the strong assumption of very large population size and
weak evolutionary forces (e.g., small s in the case of selection)
motivates the use of simulation in this work. To accurately
predict the results of E&R experiments without an exact the-
oretical solution, we chose to quantify the power and false-
positive rate of E&R studies via forward-in-time population
genetic simulations of evolving 1 Mb regions. We generated
base populations with defined numbers of preexisting haplo-
types via coalescent simulation (analogous to establishing a
laboratory population from a wild caught sample), expanded
the base population, and chose diploid individuals to initiate
an experimental evolution experiment. Our simulations fo-
cused on a single causative SNP, embedded in a 1 Mb region
filled with neutral SNPs, under constant selection during the
course of the experiment. We designated a single SNP to have
a positive selection coefficient in the selected population and
a selection coefficient of zero in the control populations and
then allowed each population to evolve with selection, re-
combination, and drift. By simulating replicate E&R studies
and then carrying out appropriate statistical tests on the
replicated data sets, we obtained an estimate of the propor-
tion of times that a similar experiment would detect a region
(CR for causative region) harboring at least one causative SNP
and potentially identify a causative SNP (CS) embedded in
such a region. Because of the existence of linkage disequilib-
rium and strong selection during experimental evolution, it
may be easier to detect CRs than CSs. We carried out these
simulations under a variety of conditions: we varied popula-
tion size (n), number of founder haplotypes (h), selection
coefficient on the CS of interest (s), number of replicated
populations (r), and number of generations of evolution (g)
(table 1). We termed these parameter combinations “�.” We
included control simulations in which the selection coeffi-
cient at the causative SNP in the selected population was
zero, which allowed us to determine a Type I error rate for
CR and CS detection.

We observed that the false-positive rate for CR detection
(even when using a very stringent criterion of significance)
was extremely high using standard single-marker tests under a
minority of conditions when ten replicate populations were
used. The power to detect CRs was determined primarily by
population size, replication, selection coefficient, and number
of generations, with an intermediate number of generations
being ideal. The power to localize CSs was similar to the
power to detect CRs but was strongly affected by the
number of founder haplotypes. Achieving a total power to
detect CRs and localize CSs of 80% required almost all
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parameters to be at their ideal values (1,000 individuals per
population, 500 founder haplotypes, and 25 replicate popu-
lations) for the case of a selection coefficient of 0.1, but rea-
sonable levels of power can also be achieved with less costly
experimental designs or higher selection coefficients. Our sim-
ulations suggest that the experimental designs that could be
most effectively utilized for detecting CRs and localizing CSs
under the E&R paradigm are not currently widely employed
and likely require considerable experimental effort. Still, the
parameter space that provides reasonable power levels is not
outside the realm of possibility for E&R studies using macro-
scopic organisms.

Results

The False-Positive Rate

From the perspective of a naı̈ve observer, any given simulated
1 Mb genomic region might or might not contain a CS. To
determine the fraction of times that we falsely identified a CR,
we calculated for every parameter combination (�) where
s = 0 the fraction of cases in which at least one SNP was found
to have a P value of less than 10�1, 10�2, 10�3, and so on,
through 10�14. We referred to this as the false-positive CR
detection rate (fig. 1); that is, the fraction of neutrally evolving

regions that are nonetheless flagged as “significantly di-
verged.” It is apparent from the figure that the false-positive
rate is quite high for certain parameter combinations regard-
less of the statistical threshold employed. False positives are
especially frequent in the specific case in which all the follow-
ing are true: there are ten experimental replicates, the popu-
lation size is only 100 individuals, and there are between 32
and 100 founder individuals. This elevated false-positive rate is
likely due to the t-statistic used to assess significance not
being distributed as a t-distribution, especially in the tails,
when the number of replicates is small (supplementary fig.
S1, Supplementary Material online). It is important that our
1 Mb false-positive rate is essentially zero; otherwise, there is a
high likelihood of identifying a false-positive CR somewhere in
a genome that is several hundred Mb in size. In a genome, the
size of Drosophila melanogaster (122 Mb), the false-positive
CR detection rate necessary to achieve a genome-wide false-
positive rate of 0.05 is 0.05/122 = 0.00041. This corresponds to
approximately 1 false positive in every 2,439 regions tested. To
accurately measure the false-positive rate at low values, we
generated 10,000 replicate simulations at each � where s = 0.
With this number of replicate simulations, any � with four or
fewer false positives has an acceptable error rate. At each �,

Table 1. Useful Terms.

Term Values Used in Simulation Description

r Number of replicates 2, 5, 10, 15, 25 The number of independent experimental populations that are used
in each trial. There are an equal number of control populations.

n Population size 100, 250, 500, 1,000 The number of diploid individuals that successfully reproduce every
generation.

h Number of haplotypes 4, 32, 100, 500 The number of haplotypes present in each population at the start of
each experiment. A population originally derived from one male
and one female would have four haplotypes.

g Number of generations 100, 500, 1,000 The number of generations of selection that both the control popula-
tions and the selected populations have undergone before allele fre-
quency calculation.

s Selection coefficient 0, 0.0005, 0.005, 0.05, 0.1, 0.2 The strength of selection at the causative locus in a particular geno-
mic region.

? Parameter combination The particular set of r, n, h, g, and s used in each set of 500
simulations.

MSM Most significant marker The SNP that was found to have most significantly diverged in a par-
ticular simulation

CS Causative SNP The SNP that was selected upon in a particular simulation.
CR detection power The fraction of studies of a particular ? that found at least one sig-

nificantly diverged SNP
Exact location power The fraction of studies of a particular ? in which the MSM is

the CS.
Within 10 kb power The fraction of studies of a particular ? in which the MSM is within

10 kb of the CS.
Top 25 power The fraction of studies of a particular ? in which the CS is one of

the 25 most significantly diverged SNPs in the region.
Within 2 LOD power The fraction of studies of a particular ? in which the CS is within a

2 LOD drop of the MSM
Total Power The fraction of studies of a particular ? in which the CR is detected,

and the CS is localized according to one of the CS localization
methods earlier. In other words, CR detection power * localization
power

MSM-CS distance The physical distance between the MSM and the CS.
CS rank The significance rank of the CS when compared with all other SNPs

in the region
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we found the most lenient of our chosen significance thresh-
olds that produced four or fewer false positives and used it in
power calculations for the remainder of the experiment (sup-
plementary fig. S2 and table S1, Supplementary Material
online). This is a more fair comparison than choosing a
single significance threshold that is applied to all � because
the false-positive rate varies widely between �, so that a
significance threshold that is reasonable for some � is un-
necessarily strict for other � and would not provide a rea-
sonable estimate of the maximum power achievable in those
�. �, in which an acceptable false-positive rate was not
achieved by our most strict significance threshold, 10�14,
were discarded. This includes all experimental designs
where r = 10, n = 100, h = 100, and g = 500 or 1,000 are simul-
taneously true. Of the 208 chosen thresholds (one for each
combination of n, h, r, and g), the distribution was as follows,
with the first item in the list corresponding to 10�1, the
second corresponding to 10�2, and so on: 0, 0, 42, 0, 7, 25,
42, 62, 20, 5, 1, 1, 1, and 2. The large number of significance
thresholds set to 10�3 corresponds to the � in which r = 2; in
these �, power and false-positive rates are both extremely

low, so the selecting of a lenient significance threshold is
unsurprising. The mean of the �log10 of the significance
thresholds is 6.71.

Power to Detect a CR as Significant

Having controlled the false-positive rate via an individualized
statistical threshold, we examined the ability to detect CRs. As
in traditional QTL literature, there are two issues at hand.
First, is it possible to find an association between genetic
features and experimental treatment (this is analogous to
CR detection as discussed in this section)? Second, if an asso-
ciation is found, to what level of precision can the polymor-
phism underlying the trait be localized (this is analogous to CS
localization in the following sections)? As above, we consid-
ered a CR detected if it contained at least one significantly
diverged SNP (P� significance threshold). Because we only
used 500 simulations per parameter combination where
s> 0, we estimated the amount of error in estimates of
power due to limited sampling by finding the 95% confidence
interval around each power estimate using binomial

FIG. 1. The false-positive CR detection rate versus replication. This plot depicts the fraction out of 10,000 cases in which a region containing no CS
contained at least one significantly diverged SNP for four different per SNP –log10(P value) thresholds. The black line indicates the maximum allowable
false-positive rate (4/10,000). n represents population size, whereas h represents the number of founder haplotypes. The variable significance threshold
used in our later power analysis is also included for comparison. When two lines overlap, the line representing a more strict significance threshold is the
visible line.
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sampling. We found that the mean width of the 95% confi-
dence interval for all nonzero power estimates was 4.64%,
the standard deviation of these widths was 3.31%, and the
range of widths was 0.052–8.94%. The power to detect a
CR increased with increasing r, n, and s, slowly decreased
with increasing h, and was maximized at g = 500 when
s = 0.05 and at g = 100 when s� 0.1 (fig. 2). When r = 2, we
observed a power of near zero in all cases. For several simu-
lated parameter combinations, power was quite high, espe-
cially when n was large and the s associated with the CS was
�0.05. As expected from standard population genetic theory,
as decreasing s approached the reciprocal population size,
power to detect a CR decreased substantially. Interestingly,
although smaller numbers of starting haplotypes are associ-
ated with the greatest power to detect a CR, this effect was
weak (a feature of E&R experiments that will be important in
identifying CSs). Below, we disregarded parameter values
where CR power with that parameter value was always
below 35%; specifically, we disregarded all � where
s� 0.005, r = 2, n� 100, or the specific case where n� 250
and r� 5.

Power to Identify a CS

The goal of an E&R study is CR detection followed by the
identification of a CS within the detected CR. To determine
most effective method of CS localization, we examined the
distance from the most significant marker (MSM) to the
causative SNP (MSM-CS distance) in each simulated region
in which at least one SNP was significant (fig. 3). A large
fraction of MSM-CS distances were equal to zero for cases
of � where CR detection power was high, indicating that
precise localization is possible under some circumstances.
The nonzero MSM-CS distances appeared to be skewed,
such that a large fraction of MSMs were within 100 kb of
the CS, indicating that these MSMs are likely driven to high
levels of divergence by linkage to the CS, rather than drift.
Indeed, if we take, for example, the (relatively moderately
powered, drift-heavy) case in which s = 0.05, n = 500, h = 32,
r = 10, and g = 500, 95% of all nonzero MSM-CS distances
were less than 59 kb when only significant regions were con-
sidered. For a large portion of the � cases with high CR
detection power (i.e., n = 500, s� 0.05, r� 10, h� 100,
except where n = 500, h = 32, r = 10, and g = 1,000), the

FIG. 2. CR detection power. This plot depicts the power to detect regions containing one or more significantly diverged SNPs. The � in which all the
following are true simultaneously: r = 10, n = 100, h = 100, and g = 500 or 1,000 would be omitted due to high false-positive rates, but only g = 100 is
shown for ease of viewing. n represents population size. h represents the number of founder haplotypes. The P-value threshold for significance was
determined for each � by finding the most lenient threshold that sufficiently limited false positives. Each point represents 500 independently replicated
sets of populations. All lines that are not visible overlap with s = 0.005. The black lines indicate power levels of 50% and 80%.
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median MSM-CS distance is zero, whereas the mean is a
nonzero value. We observed a similar pattern in the CS
rank (supplementary fig. S3, Supplementary Material
online). Although selective sweeps are clearly visible in the
raw significance scores (supplementary fig. S4, Supplementary
Material online), the fact that a large majority of the MSMs in
most regions with high power have an MSM-CS distance of 0
seems to indicate that a sliding window analysis would be no
better than a single-SNP analysis at localizing CSs. Indeed, our
attempts to use a sliding window for CS localization by iden-
tifying the sliding window with the largest summed �log(p)
values in each region produced lower power than single-SNP
analyses (supplementary fig. S5, Supplementary Material
online). Thus, we chose to localize CSs through single-SNP
analyses.

We examined several methods of precisely localizing a CS,
conditional upon identifying its CR as significant. Most strictly,
we may identify a CS as being correctly localized only if the
MSM in a CR is the CS. Alternatively, many would consider
any analysis that restricts the likely location of a CS to a small
region (i.e., 10 kb), a small number of SNPs (i.e., 25), or within
a small logarithm (base 10) of odds (LOD) drop of the

MSM (i.e., within 2 LOD) to have utility, as additional exper-
iments may be capable of identifying the CS. Figure 4 sum-
marizes the power to localize the CS to: an exact location,
within 10 kb of the MSM, within the top 25 most significant
SNPs in a region, or within a 2 LOD drop of the MSM, all
conditional on CR detection and s = 0.1. g is set to 500 in all
plots below except where specified for ease of viewing, and
because the effect of g on power was relatively small in the
parameter space where power is high. The primary factor that
affected CS localization was h (the number of founding hap-
lotypes). When h is small, it appears that high linkage disequi-
librium results in significant allele frequency divergence at
SNPs near the CS, making it difficult for the CS to be differ-
entiated from neighboring SNPs. From figure 4, it is apparent
that the localization power was quite high provided that h
was high. h negatively affected CR detection power, yet pos-
itively affected CS localization power. As discussed later, the
overall effect of h on power was positive due to the extreme
effect of h on CS localization power. In a best case scenario
where n = 1,000, s = 0.05, g = 500, and r = 25, an h of four pro-
duces an exact location power of only 4.0%, whereas an h of
100 produces an exact location power of 76.4%.

FIG. 3. A histogram depicting the distribution of the distance from the MSM to the CS (MSM-CS distance) after 500 generations of selection with 500
individuals per population and a selection coefficient at the CS of 0.05 in all cases where the MSM was significant. Variation in population size is not
shown because its effects are similar to variation in replication. The MSM-CS distance is shifted by one base pair, so that MSM-CS distances of 0 are
visible after logarithmic transformation. The count refers to the number of pure replicates out of 500 that fell into a given range. Note the increase in
low-MSM-CS-distance hits due to selective sweeps when h is low.
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The false-positive localization rate, equal to 1 – (localiza-
tion power), can be considered the fraction of CRs in
which the CS is not correctly localized. At least one of the
localization false-positive rates calculated is below 5% in 123
of our simulated �, including but not limited to the en-
tire simulated parameter space where h� 500, n� 500,
r� 10, and s� 0.05. It is not possible to calculate a
genome-wide false-positive localization rate because the
number of expected CRs in a genome is unknown. Note
that this false-positive rate is distinct from the false-positive
CR detection rate. The false-positive CR detection rate indi-
cates specifically the frequency with which CRs are detected
where they do not exist, whereas the false-positive localization
rate indicates the fraction of the time that a true CR has its
CS incorrectly localized. This value may be of special interest
to researchers attempting to assess the chance that a signif-
icant SNP in a study is likely to be a CS or merely a neighbor
of a CS.

Total Power

Total power is the product of CR detection power and CS
localization power given CR detection. Total power is then
the fraction of all CSs that, starting from no prior knowledge
about the data, can be detected and localized successfully.
Figure 5 gives the total exact power, total top 25 power, and
CR detection power as functions of � when g = 100. The
range where h = 4 is excluded because the CS localization
power conditional upon CR detection in these � is less
than 80% for all statistics except the within 2 LOD power,
and few E&R experiments use only four founder haplotypes.
Total power is highest when s, n, h, and r are maximized, and g
is at a value of 100. The parameters necessary to achieve at
least 80% exact location power for the s = 0.1 case are
n� 1,000, r� 25, and h� 500 (fig. 5, supplementary fig. S6,
Supplementary Material online). This is a sobering result be-
cause it is experimentally difficult (in a system like Drosophila)
to achieve values of � that reach a total exact location power

FIG. 4. Localization power conditional on regional significance. In other words, the fraction of all significant SNP containing regions in which the CS
could be either exactly identified or localized to a small number of candidate SNPs. For clarity, only cases where s = 0.1 are shown, but similar patterns
occur for s = 0.05 and s = 0.2. This set of plots shows the fraction of experiments that correctly identified the location of the CS out of all experiments in
which at least one SNP was significant. Exact location power refers to cases in which the MSM is the CS, top 25 power refers to cases in which the CS is
among the 25 most significant SNPs, within 10 kb power refers to cases in which the MSM is within 10 kb of the CS, and within 2 LOD power refers to
cases in which the CS is within 2 LOD of the MSM. The population size is represented by n, whereas the number of founder haplotypes is represented
by h. Nonvisible within 10 kb power points overlap with top 25 power points. The black lines indicate 80% power and 95% power.
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above 80%. On the other hand, in the cases where s� 0.1, the
same goal of 80% exact location power is much more achiev-
able: 21 of our simulated �, including but not limited to all
cases in which s� 0.1, h� 500, r� 15, n� 1,000, and
100� g� 500 produce a total exact location power greater
than 80%. Thus, exact localization requires relatively strict
experimental conditions, but strongly selected SNPs are
more easily localized. Unsurprisingly, within 10 kb power,
top 25 power, and within 2 LOD power were consistently
higher than exact location power and were higher than 80%
when s� 0.05, n� 1,000, r� 25, g = 500, and h� 32, except
in the case where s = 0.05 and h = 100, suggesting that ambi-
tious, yet achievable, experimental designs are capable of lo-
calizing CSs to a few dozen or even fewer candidate SNPs.

In many experimental systems, there is a direct tradeoff
between n and r when setting up an E&R study because both
of these parameters are space and resource limited. Both
affect the total power differently: increasing replication (r)
improves the number of degrees of freedom during statistical

analysis, whereas increasing the population size maintained
during the experiment (n) decreases the effect of genetic drift
on allele frequencies. Both parameters are subject to dimin-
ishing returns as their values are increased. For example, in the
case where s = 0.05, g = 500, r = 10, and h = 100, a doubling of
n from 250 to 500 increases exact location power from 5% to
27%, whereas a doubling of n from 500 to 1,000 increases
exact location power from 27% to 46%. With the same pa-
rameters and an n of 500, an increase of r from 5 to 10
increases exact location power from 8% to 27%, but a similar
increase in r from 10 to 15 only increases exact location power
from 27% to 43%. Because diminishing returns occur, the ideal
r and n values for a given laboratory size should be balanced,
with the specific values depending on the specific conditions
of the experiment (supplementary fig. S7, Supplementary
Material online). Unfortunately, it is difficult to determine
an ideal r:n ratio because multiple costs are involved: the
cost of more replicates versus more generations, the cost of
sequencing versus rearing, and so on.

FIG. 5. Total power to detect and localize CSs. The ability to detect a CS-containing region and either correctly identify the exact location of a CS or
decrease the number of candidate loci to a manageable number after 1,000 generations with a selection coefficient at the CS of 0.05, 0.1, or 0.2. In other
words, the fraction of all simulations in which a region contains a significant SNP and one of two methods of detecting a CS is successful: the MSM is the
CS (total exact location power) or the CS is one of the 25 most significantly diverged SNPs in the region (total top 25 power). Also shown is the CR
detection power, which is the fraction of regions that contained at least one significant SNP. Other measurements of power are excluded for clarity. By
design, all total powers listed here must be lower than the CR detection power. The black lines indicate 50% and 80% power. Where CR detection power
is not visible on the plot, it overlaps with total top 25 power.
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As noted earlier, the effect of g on the total power to detect
and localize CSs was small in the parameter space where
power was high, so g was omitted from several plots for sim-
plicity. It was apparent that there was a strong interaction
between g and s with respect to power. At s = 0.05, an inter-
mediate g (500) appeared to be superior to either high (1,000)
or low (100) g values in terms of the power to detect CS-
containing regions and the total power to localize CSs (fig. 6);
at s = 0.1 and s = 0.2, the relationship between g and power
was generally negative. One possible explanation for this
result is that, when s = 0.05, selection had largely fixed any
CS’s by generation 500, but drift continued to influence allele
frequencies at linked markers past generation 500 resulting in
increased noise after 500 generations, whereas CSs with higher
selection coefficients, that is, s = 0.1 or 0.2, were mostly fixed
by generation 100, causing power to decrease when s> 100
due to genetic drift. We found that the number of fixed or
lost CS alleles in populations where s = 0.05 increased from
approximately 25% fixed or lost when g = 100 up to approx-
imately 100% fixed or lost when g = 500 (fig. 7; see supple-
mentary fig. S8, Supplementary Material online, for allele
frequencies), but that the total number of fixed alleles con-
tinued to increase even when g = 1,000, implying that

functional standing genetic variation in fitness was largely
exhausted by generation 500, but that drift at linked neutral
markers continued to occur. This result seems to confirm that
rapid selection and slow drift cause intermediate numbers of
generations to be ideal for CS detection and localization.

We used multiple linear regression to attempt to create a
model that predicts exact location power as a function of the
s, r, g, h, and n (supplementary table S2 and fig. S9,
Supplementary Material online). We generated a table of
total exact location power and the five experimental design
variables of interest, then censored it in R to only contain the
� where 10� r� 25, 250� n� 1,000, 32� h� 500,
0.05� s� 0.2, and 100� g� 1,000 to focus on modeling
the power curve in the area where power is highest. We
then used the lm function in R to fit the linear model below:

0:245� log10ðsÞ+ 0:668� log10ðrÞ+ 0:437� log10ðnÞ

+ 0:179� log10ðhÞ � 0:0001559

� g� 1:594¼ total exact location power

Before calculating the slopes, we modified s, r, h, and n by
applying the log10() function to them as this improved the fit
of the model. In the limited parameter space examined, the

FIG. 6. The total power to detect and localize SNPs when s� 0.05 and h = 100 versus the number of generations of selection. For simplicity, only CR
detection power and total exact location power are shown. Variation in h is not shown because there are no visible interactions between h and g. The
black lines indicate 50% and 80% power.
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linear model explains 86.9% (adjusted R2) of the variation in
total exact location power and has a standard error of
0.07782. Values produced by this formula that are above 1
or below 0 should be assumed to be, respectively, 1 or 0.
Although this equation does not take interactions between
experimental conditions into account, it produces a relatively
accurate power estimate in the aforementioned parameter
range.

Multiple Causative SNPs

We simulated the possible case of a 20 Mb chromosome con-
taining 6, 26, or 51 CSs to test the effect of multiple CSs on CR
detection power and total power. Specifically, we simulated
s = 0.05, 0.1, and 0.2 (the selection coefficients that produced
reasonable power levels in the previous simulation), g = 100,
500, and 1,000, and r = 2, 5, 10, 15, and 25. We simulated two
different combinations of h and n: 1) the highest power level
that we simulated (n = 1,000, h = 500) and 2) a moderate
power level (n = 500, h = 100). We generated 250 replicate
experiments under each of these parameter combinations.
In each replicate, one of the CSs was placed at the center
of the chromosome, and the others were randomly

distributed throughout the chromosome but not within
the 1 Mb region surrounding the central CS. The external
CSs always had the same s as the central CS. Over the
course of the forward simulation, the allele frequencies of
all SNPs in the 1 Mb region surrounding the central CS
were recorded and used to calculate P values. We analyzed
the resulting P values according to the same framework used
in the previous simulation. When compared with the single
CS simulation, the multiple CS simulations almost universally
produced higher CR detection power and lower CS localiza-
tion power (supplementary fig. S10, Supplementary Material
online). This result is expected. A larger number of neighbor-
ing CSs should increase the average significance of SNPs in the
region of interest by increasing the probability that an exter-
nal CS is adjacent to the focal region. This should increase CR
detection power by increasing the probability that at least
one SNP will be significant, but decrease total power by de-
creasing the probability that the CS will be the most signifi-
cant SNP in the region. For the three cases where the number
of external CSs was equal to 5, 25, and 50, the average shortest
distances from the focal CS to the closest external CS were,
respectively, 2.05 Mb, 0.87 Mb, and 0.68 Mb.

FIG. 7. The fraction of alleles that have fixed versus number of generations of selection. The blue line indicates the fraction of all CS alleles that reached
an allele frequency of 1 or 0, whereas the red line indicates the fraction of all alleles in the region that reached an allele frequency of 1 or 0. Note that this
plot makes use of all available replicates for every �. Circles represent s = 0, whereas triangles represent s = 0.05. Regions with an s of 0 have no CS, but
the fixation frequency of the centermost SNP is included (the blue lines) for comparison with the CS when s = 0.05.
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One consequence of an increased number of CSs coexist-
ing in a population is an increase in the variance of that
population’s fitness. We calculated the fitness of each possible
haplotype in each population and found its corresponding
frequency in the population to find a distribution (supple-
mentary fig. S11, Supplementary Material online) of fitnesses
at each simulated � in which more than one CS is present. As
expected, the distribution of fitness becomes broader as s and
the number of CSs increase. The variances that we observed
(supplementary fig. S12, Supplementary Material online)
when the number of external CSs was 25 or larger seem
much higher than those observed in natural populations
(Endler 1986, p. 207) and likely much higher than those ob-
served in laboratory experimental evolution (cf. ovary weight
in Roff and Fairbairn 2007), indicating that the presence of a
large number of CSs with large s values is not realistic under
these conditions.

Discussion
This study provides insight into the experimental designs and
genome-wide significance thresholds necessary to detect CRs
and localize CSs in E&R studies. Importantly, the experimental
parameters necessary for CS detection and localization are
more difficult to achieve than most experimentalists likely
imagine. Researchers wishing to detect more than 80% of
the CRs in which s = 0.05 are advised to have r� 25,
n� 1,000, and g� 500. Researchers wishing to successfully
both detect and localize more than 80% of CSs should have
s� 0.01, n� 1,000, r� 25, and h� 500. No value of n simu-
lated in this study was large enough to allow for detection of a
useful number of CRs where s� 0.005. The low power to
detect CSs with small fitness effects is important if we con-
sider that many traits of interest in E&R experiments are
quantitative and may have many loci of small effect contrib-
uting to standing variation. We have shown that CR detection
and CS localization are both improved by high values of n, r,
and s. A low h value improved CR detection but negatively
affected localization, likely because high linkage disequilibrium
limited our ability to distinguish between neighboring SNPs.
We found that intermediate g values provided the highest CR
detection and CS localization because most detectable CSs
have reached fixation by generation 500 or generation 100 in
cases where s� 0.1. The large effects that n, h, and r have on
power seem to indicate that the most efficient method to
increase power is to increase these parameters, especially r,
which seems to increase total power at a nearly linear rate, at
the expense of g, which appears to have a small effect on
power when other conditions, such as replication, are kept
high.

Although the � required for very high power is difficult to
achieve in practice, we find evidence that reasonable power
levels can be achieved fairly easily. For instance, the parameter
space in which the total top 25 power was over 50% was quite
large (176 �). Indeed, all � in which s� 0.05, h� 32, r� 15,
and n� 1,000 produced at least this power level, as did nu-
merous other �, such as the � where s� 0.2, h� 32, r� 5,
n� 500, and g = 100, except when h = n = 500, s = 0.05, and
r = 5. These � are perhaps more realistically approached than

the � necessary to achieve 80% total exact location power.
This suggests that ambitious but realistic E&R experiments
can narrow down CSs to a handful of SNPs in a small genetic
region. Such SNPs could be validated via additional experi-
ments such as targeted gene knockout/knockin (Gratz et al.
2013). Given that the primary interest in E&R experiments is
to identify the relationship between genotype and pheno-
type, meaning that validation experiments will be necessary
follow-ups to such experiments, we would argue that it is
critical to design experiments with high power to localize CSs.

Our results allow us to reflect on the validity of some of the
conclusions drawn in published E&R studies by examining the
CR detection power and the false-positive rate that we cal-
culated at the � that most closely match published experi-
ments. Supplementary figure S13, Supplementary Material
online, shows the CR detection power and false-positive
rate when s = 0.05 at the simulated � that most closely
match the � used by existing studies. The power levels at
our chosen significance thresholds and when s = 0.05, condi-
tional on using our modified t-statistic, were 19%, 1.4%, 0, 0, 0,
and 0 for Burke et al. (2010), Teotónio et al. (2009), Johansson
et al. (2010), Turner et al. (2011), Turner and Miller (2012),
and Orozco-Terwengel et al. (2012), respectively. Respective
powers for s = 0.1, generated using our chosen significance
thresholds, were 27.8%, 44.6%, 0, 0, 0.2%, and 0.2%, whereas
respective powers for s = 0.2 were 34%, 87%, 0, 0, 20.4%, and
20.4%. Respective significance thresholds chosen by our
system (see “The False-Positive Rate” in Results) were 10�7,
10�6, 10�3, 10�3, 10�3, and 10�3. For the same studies, we
estimate that CR detection false-positive rates were all equal
to 0, again conditional upon our statistical test. Although we
estimate a high CR detection rate for Teotónio et al. (2009),
the said study genotyped only 55 loci. The odds that any of
those 55 loci happened to be close enough to causative SNPs
to generate a detectable signal of selection are likely low.
Therefore, it may not be reasonable to conclude that
Teotónio et al. (2009) is more likely than other articles to
have produced a true positive result. It should be noted
that several of these studies (Burke et al. 2010; Orozco-
Terwengel et al. 2012) claim that all the SNPs that have
been detected as significant should be treated as candidate
CSs, to the extent that Burke et al. (2010) claim that they have
detected, on average, a candidate CS every 175 bp. Given that
our simulation shows that it is often more difficult to precisely
localize a CS than to detect a CS-containing region, and that
SNPs up to 100 kb away from a CS can be brought to signif-
icant levels of divergence by said CS, it may be more realistic
to say that these studies have detected numerous CRs but
have limited ability to precisely localize CSs or to determine
the number of CSs present in the genome. Admittedly, all
these studies used different test statistics and different signif-
icance thresholds than our study, so it is not entirely fair to
directly compare the power levels that we estimated from our
simulation to the studies in question. That being said, the
above studies tended to use a much more aggressive marginal
threshold for significance than the ones that we find properly
control the false-positive rate. A more fair comparison be-
tween this simulation and former studies would require the
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reanalysis of our simulated allele frequencies and the allele
frequency data from each experiment using the statistical
methods used by the original investigators. Although this is
possible using our simulated data set, it is outside the scope of
this investigation.

Despite our simulations suggesting low power and high
false-positive rate, several factors prevent the outright dismis-
sal of published studies. First, gene ontology analysis of genes
in regions enriched for change in published studies is consis-
tent with the characters being selected upon. For example,
the top five enriched gene ontology terms from Burke et al.
(2010) were imaginal disc development, smoothened signal-
ing pathway, larval development, wing disc development, and
larval development—all have clear causal connections to the
“accelerated development” character that was selected.
Second, our simulation does not take into account selection
coefficients larger than 0.2. Cases of very strong selection on
individual CSs could therefore still allow for high power. Even
if the majority of the candidate CSs in a given study are false
positives, it is still possible that some of them are true CSs. For
example, Johansson et al. (2010) examined a small population
of artificially selected chickens. Although their n of 27–44
should make even the detection of CSs with a selection co-
efficient of 0.2 difficult in this case, artificial selection usually
involves very high selection coefficients that may be high
enough to override the force of genetic drift. Johansson
et al. (2010) note that, in the candidate QTLs detected in
previous studies, estimated selection coefficients (selection
against the unfit allele at the candidate QTL of interest) lie
in the range of 0.19–0.93, well above the 0.2 simulated here.
QTL mapping experiments routinely detect a small number
of CSs of relatively large effect (e.g., King et al. 2012), so it
follows that under strong selection of the type used in
experimental evolution, some CSs should have selection co-
efficients above 0.05, which could account for Johansson
et al.’s (2010) ability (and the ability of other E&R experi-
ments) to detect apparently true CSs. A caveat of this
line of reasoning is that routine detection implies selection
response is due to a handful of genes of large effect as op-
posed to dozens to hundreds of genes of much more
subtle effect as claimed in the recent E&R literature
(Teotónio et al. 2009; Burke et al. 2010; Johansson et al.
2010; Turner et al. 2011; Orozco-Terwengel et al. 2012;
Turner and Miller 2012). Thus, the claims of the literature
of localization of CSs and dozen to hundreds of sites respond-
ing to selection seem mutually exclusive given the experimen-
tal designs employed.

This study makes a number of simplifying assumptions, all
of which we believe to be realistic when describing the case of
experimental evolution of small populations. Our simulation
machinery operates based on the Wright–Fisher model of
population genetics, in which the gametes of each generation
are aggregated into a gene pool to generate the next gener-
ation. The assumptions of this model, which generations are
discrete and mating is random, are realistic for experimental
evolution. A further assumption is that all heritable variation
is additive within and between loci. Although it is certainly
true that nonadditive variation exists, the majority of heritable

variation is likely additive in nature (Hill et al. 2008); therefore,
the omitting of nonadditive variation in our power analysis
should not dramatically affect our power estimates. Our sim-
ulations were limited to 1 Mb gene regions instead of com-
plete genomes, and all simulated regions have one or no
selected loci. We detected CRs by determining if a region
contained a significant SNP, then localized by identifying
the MSM in the region as the CS. Importantly, we observed
that the MSM could be quite distant from the CS: even for
parameter combinations with high power to detect a region
as significant, a small portion of MSMs were up to 100 kb
away from the CS, though few were more distant than that
(fig. 3). Although our simulations assume that the density of
CSs in the genome is relatively low (at most 1 per Mb), our
observation that peaks of significant allele frequency change
may be quite distant from CSs suggests that the number of
significant markers may not be a reliable proxy for the true
number of CSs in the genome and call into question whether
it is reasonable to deem any significant SNP a candidate CS,
especially when h is low. In our simulations, when h was�32
in a population and power was greater than 0, the average
exact localization power across our simulations was only
0.244. Although the selection of a 1 Mb region for our simu-
lations was somewhat arbitrary, we believe it is an appropri-
ately sized region to consider. The selective sweeps that
occurred in our simulated populations appeared to extend
less than 500 kb from the CS under most circumstances (sup-
plementary fig. S4, Supplementary Material online), and few
replicate simulations generated an MSM-CS distance greater
than 100 kb. Indeed, in the parameter space where s� 0.05,
95% of all simulated regions that contained at least one
SNP significant at a 10�8 threshold had an MSM-CS dis-
tance� 228 kb. Thus, any SNPs simulated further from the
CS would resemble SNPs in neutral regions. Similarly, our
decision to use the entire simulated region as a candidate
CR instead of using only a limited area (say, 100 kb) is
justified in that the various powers simulated here are virtu-
ally unchanged when one compares the power using a 1 Mb
region and a 100 kb region. The mean difference between
the 1 Mb CR detection power and the 100 kb CR detection
power is 0.3%, indicating that nearly all CSs that can be
detected can be localized to an area the size of a selective
sweep around the MSM; in other words, it is reasonable to
conclude that CR detection power = total within 100 kb
power.

Notably, our goal in simulating 1 Mb regions was not to
test the efficacy of the particular CS-detection technique used
here; researchers attempting to adapt this technique to em-
pirical use would need to first divide their genome of interest
into arbitrary 1 Mb blocks to perform our CR detection step,
which would be an unnecessarily arbitrary method of subdi-
viding a genome. Rather, our reasoning for choosing to sim-
ulate 1 Mb blocks was to be certain to capture all the genetic
change due to linkage to the CS in each simulated region. Our
CR detection power is thus an upper bound on the ability of a
study with a certain set of experimental parameters to detect
the presence of any particular CS. It gives no indication as to
the ability of that study to localize that CS, except perhaps to
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say that if a significant SNP is located, the CS that drove its
divergence must be close enough to it to have affected its
allele frequency via a selective sweep. Some problematic ef-
fects that could occur if our CR detection method were ap-
plied as-is to real life data, such as the possibility that a CS
could be immediately adjacent to a 1 Mb focal region and
could thus drive a SNP to significance in a non-CS-containing
region, are not considered further here.

It is possible to imagine much more complicated models
and significance tests than the ones we used. For example, we
did not attempt to use the combined P values of multiple
insignificant SNPs to determine the significance of a region
because there is no simple way to determine the probability
of observing any particular set of multiple P values if, as in this
case, the P values are not independent. Further, the advantage
of a combined P value approach (higher CR detection) would
presumably be at its largest in the � where linkage disequi-
librium is very high, such as when h is low, but such � have
already been established as having very high CR detection
power, so the advantage gained from a combined P value
approach would be minimal. On a similar note, we did not
attempt to simulate a distribution of selection coefficients
across the loci in our simulated genomic regions. Recent stud-
ies have raised the question as to whether the majority of
heritability for any particular trait is best explained by a small
number of mutations of large effect (Johnson and Barton
2005) or a large number of small effect mutations (Barton
and Turelli 1989; Barton and Keightley 2002). Because there is
not a scientific consensus on the question of QTL effect size,
and thus selection coefficient, distributions, we chose to
avoid making assumptions about selection coefficient distri-
butions, and instead merely simulated a range of selection
coefficients and calculated the power to detect CSs at each
selection coefficient level. Similarly, we chose not to simulate
genomic regions containing multiple CSs because they did
not fit the paradigm of this study. The design of this study, in
which small genomic regions are simulated, implicitly as-
sumes that CSs are distant enough from each other as to
not interact significantly. Were we to relax this assumption,
the most appropriate method for simulating multi-CS inter-
actions would be to simulate an entire chromosome and
distribute CSs across it. Doing so was outside the scope of
this study.

A final model we did not consider is the possibility of pla-
teauing allele frequencies due to diminishing selection pres-
sure as a phenotypic optimum is approached, as hypothesized
in Burke et al. (2010) and Burke and Long (2012) (also cf. Sellis
et al. 2011), based on a model in Chevin and Hospital (2008)
and potentially observed in Orozco-Terwengel et al. (2012).
That is, we assumed that immediately following the place-
ment of the selected populations into a novel environment,
a previously neutral SNP obtains a new fixed positive selection
coefficient. An additive CS that follows a plateauing allele fre-
quency trajectory could be more difficult to detect than one
in which allele frequencies approach fixation because of the
lower total level of divergence expected in a plateauing allele;
however, our simulation indicates that there are diminishing
returns on power from increased allele frequency divergence

over time (supplementary fig. S8, Supplementary Material
online), indicating that plateauing allele frequency trajectories
will not severely reduce power. This is evidenced by the fact
that, at the � where n = 1,000; h = 500, r = 25, and s = 0.05, a
near doubling of mean CS allele frequency over all 500 simu-
lation replicates from 52% at generation 100 to 94% at gen-
eration 500 only increased total exact location power from
71% to 76%.

Our simulation indicates that, in spite of their inability to
detect CSs of very small effect, E&R studies should be capable
of detecting and localizing the majority of CSs of moderate to
large effect under conditions that, whereas more labor-inten-
sive than traditional experimental evolution conditions, are
still feasible. The effectiveness of the next generation of E&R
experiments will depend on their ability to improve upon the
experimental designs of the past by using large, well-repli-
cated, initially diverse populations.

Materials and Methods

The Simulation

We simulated replicated experimental evolution using a two-
stage approach. First, we simulated 1,000 replicates of a
sample of size 2,000 chromosomes from a Wright–Fisher pop-
ulation using the “macs” software (version 0.4b, Chen et al.
2009) using the following parameters: macs 2000 1000000
-t 0.01 -r 0.1 -i 1000 -s $RANDOM. This command
line specifies 1,000 replicate simulations of a sample of 2,000
chromosomes. The locus length is 1 million base pairs mu-
tating at rate y= 4, Nu = 0.01 per site, and recombining at rate
�= 4N*(recombination rate) = 0.1 per site, where N is the size
of a Wright–Fisher population and u is the mutation rate, per
base pair per generation. The mutation parameter was
chosen to mimic SNP density in non-African Drosophila mel-
anogaster, and the recombination rate was based on esti-
mates from Chen et al. (2009).

The outputs from macs were used to seed forward-time
simulations using the first h haplotypes from a coalescent
simulation. The forward-time simulation used here is based
on a generic C ++ library (Thornton KR, unpublished data)
previously used in Thornton et al. (2013). The speed of the
library compares favorably to existing forward simulations
(Aberer and Stamatakis 2013; Messer 2013) but has the ad-
vantage that new models are easily implemented by enabling
simple code reuse via the C ++ template mechanism.
Haplotypes in macs are not sorted, so choosing the first h
haplotypes is equivalent to randomly choosing h haplotypes.
These h founding haplotypes were replicated r times, and
then r large “base” populations of n diploids each were gen-
erated by sampling with replacement from the initial coales-
cent simulations. A single site was assigned a positive selection
coefficient, and experimental evolution was simulated using
forward-in-time simulations. The forward in time simulations
were carried out with various population sizes (n), numbers of
founder haplotypes (h), numbers of replicate populations
evolved (r), numbers of generations of experimental evolution
(g), and selection coefficients (s). Note that, because of the
lack of population structure in these populations, the actual
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population size should be equal to the effective population
size; in a study of real data, the effective population size would
be more comparable to the n used here because of nonran-
dom mating and population size fluctuations. The SNP under
selection, or the CS, was always the centermost SNP in the
region. The selection scheme was codominant with fitnesses
1, 1 + s/2, and 1 + s, where s is the selection coefficient on the
CS. CSs thus followed the same distribution of initial allele
frequencies as all other SNPs in the simulation, consistent
with a SNP that is initially neutral, but that is selected upon
following a change in environmental conditions. Linkage dis-
equilibrium between SNPs is initially an outcome of the neu-
tral Wright–Fisher sampling process used to generate the h
founder haplotypes, and subsequently determined by the de-
tails of the forward-in-time simulation. The forward simula-
tions assume no further mutation in the region, and the
recombination rate used was 0.025 per diploid per generation
assuming that the 1 Mb region is 5% of a “typical” 20 Mb
chromosome whose total recombination rate per generation
is 0.5.

To find the experimental parameters best suited to E&R
CR detection and CS localization, we arranged our simulated
genomic regions as one would arrange a set of populations for
experimental evolution. In each replicate simulation, we set
up an equal number of experimental and control populations
(in which the selection coefficient at the CS is equal to zero),
all containing individuals with the same genomic region.
Haplotypes were generated based on the initial allele frequen-
cies, and individuals carrying these haplotypes were created. A
forward-in-time simulation was then used to keep track of
the movement of haplotypes over time with recombination
and selection applied. Allele frequencies were calculated and
recorded at 100, 500, and 1,000 generations. Although a true
E&R experiment would have allele frequency estimation
errors that are a complex function of number of individuals
sequenced, library preparation methods, average sequence
coverage, and variation in sequencing coverage, we chose to
simulate the best-case scenario where all allele frequencies are
estimated without error. Thus, our estimates of power are
likely somewhat optimistic. We performed simulations that
varied in population size (n diploids), number of founder
haplotypes (h = twice the number of founding diploids),
number of replicate populations (r), and selection coefficient
(s) on the CS. In total, 500 replicate simulations were per-
formed under each of 840 possible combinations of experi-
mental parameters (�) (table 1). Combinations in which h
was larger than n were not simulated because such popula-
tions would presumably closely resemble populations in
which h was reduced to the level of n. At each number of
generations (g) in which allele frequencies were recorded, a
modified t-statistic was calculated on arcsine square-root
transformed SNP frequencies using 2, 5, 10, 15, or 25 replicate
populations. This empirical Bayesian t-statistic (Baldi and
Long 2001) indicates the degree to which the allele frequen-
cies of SNPs in the selected populations have diverged from
the same allele frequencies in the control populations. It dif-
fers from a standard t-statistic in that it is not infinity in the
case where a SNP of interest is fixed in all experimental

replicates and lost in all control replicates. The expression
for the modified t-statistic is

t ¼
x1�x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�w
r v1 + v2ð Þ+ 2w

r
�v

q

where x1 and x2 are the mean allele frequencies across all
experimental replicates in selected and control treatments,
respectively, v1 and v2 are the respective variances, r is the
number of replicates, and w = 0.1. �v is the average within
treatment variance in allele frequency averaged over all
SNPs in the region and both treatments. �v is then an empir-
ically motivated Bayesian prior on allowable variances in allele
frequencies and has the effect of stabilizing the denominator
of the t-statistic. This is especially important in experimental
evolution experiments in which a SNP could differentially fix
in the experimental versus control replicates purely due to
drift alone and thus be associated with a traditional t-statistic
of infinity.

P values were calculated from the modified t-statistic using
the pt function in R, using a two-tailed method (e.g., see
supplementary fig. S4, Supplementary Material online). A
2-tailed t-test was used to avoid making a priori assumptions
about the nature of the two alleles involved at any given locus:
because either allele could be beneficial in theory, it is not
reasonable to assume that only the allele whose frequency is
being tracked could be beneficial. Degrees of freedom were
considered to be 2 r� 2 (because there are control and ex-
perimental treatments, the total number of replicates is twice
the number per treatment). The threshold for significance
was set independently for each � by calculating the false-
positive rate for every whole-number power of 10 from 10�1

to 10�14 and choosing the most lenient threshold with an
acceptable false-positive rate (see “The False-Positive Rate” in
Results). Power was calculated by finding the fraction out of
500 times that 1) at least one SNP was significantly diverged in
a region of interest and 2) a secondary condition was met.
These secondary conditions included having the MSM in the
region be the CS (exact location power), having the MSM be
within 10 kb of the CS (within 10 kb power), having the CS be
among the top 25 MSMs (top 25 power), and having the CS’s
LOD (logarithm base 10 of odds) score be within two of the
MSM’s LOD score (within 2 LOD power). The power to fulfill
the first condition without regard for a second condition was
termed “CR detection power.” This diversity of methods of
SNP localization allowed us to determine which method
would be most reliable under any particular set of experimen-
tal parameters. The CR detection false-positive rate was de-
termined by finding the fraction of cases in which a region
with an s of zero contained at least one significant SNP. The
distance from the MSM to the CS (MSM-CS distance) and the
rank of the CS’s P value compared with the other SNPs in its
region (CS rank) were calculated in every replicate of the 500
replicate simulations per � to analyze the distribution of
significant SNPs across parameter values.

An additional 18,000 replicate genome regions were gen-
erated in macs and used to seed forward-in-time simulations
with no selection under all of our � where s = 0. 10,000
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replicate neutral simulations were performed for each �
where s = 0. These additional replicates were used to more
accurately calculate the false-positive CR detection rate. This
high level of replication was only required for the calculation
of false-positive rates because the maximum allowable false-
positive rate is too small (~1/2,000) to be accurately measured
with only 500 replicate experiments.

The Data

This simulation produced 2,205,000 semi-independent exper-
imental results. There are 500 pure replicates of each possible
permutation of five distinct experimental parameters’ values
(table 1)—number of replicate populations (r), number of
haplotypes in the base population (h), population size (n),
selection coefficient at the selected locus (s), and number of
generations of selection (g). The resulting data sets are not
completely independent because the coalescent simulation
used to generate the 1 Mb regions used here was only run 500
times (10,000 where s = 0), and the resulting 500 (or 10,000)
genome regions were reused for the 500 (or 10,000) replicate
experiments for each parameter combination. Further, for
any particular combination of n, r, s, and h, the three g
values simulated were not entirely independent because the
data associated with larger g values were derived from con-
tinuing the forward simulations of the smaller g simulations.
Values were chosen based on the specifics of the variable: h, n,
and g values were chosen based on the levels historically used
in experiments of this type. The r values were chosen based
on the level of replication commonly used in experimental
evolution and the level of replication required for high power.
Experimental evolution of sexual organisms is usually carried
out with five or fewer replicate populations due to the diffi-
culty of rearing large numbers of populations, but, especially
in genomics, statistical significance is difficult to achieve with
low r values because the large number of independent com-
parisons require a strict significance threshold. s values were
chosen based on the minimum selection strength necessary
for selection to have an effect sufficiently stronger than ge-
netic drift to produce a measurable change in allele frequen-
cies: when the selection coefficient at an SNP is less than
~1/(2n), genetic drift is a more powerful force than selection
(Crow and Kimura 1970, p. 425). The s values were thus
chosen to cover a range of possible sizes, from an s consider-
ably smaller than 1/(2n) to an s larger than 1/(2n).

Data Availability

The simulation code and all data and the necessary code to
recreate the data are available online at http://www.molpop
gen.org/Data (last accessed February 4, 2014), as is a com-
mented copy of the scripts used to calculate P values, power,
and other statistics. macs is available at http://code.google.
com/p/macs/ (last accessed February 4, 2014).

Supplementary Material
Supplementary tables S1 and S2 and figures S1–S13 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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