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Abstract 

Technological change is a powerful force in economic and social life. Technological 

change is both an endogenous and a disruptive process because inventors create new 

technologies by recombining existing technological ideas and because new technologies often 

drive older technologies and their associated capital and skills into obsolescence. 

Technological disruption resonates in the economies of cities, producing both local economic 

growth and decline, because city-regions are a scale at which many of the factors of 

production are coordinated. 

In the existing literature, there is broad agreement that knowledge builds on itself 

endogenously, and there is some recognition that innovation is disruptive with consequences 

for city-regions. Despite these acknowledgments, the sources of knowledge that inventors 

used to create historical inventions have not been systematically documented, the question of 

how new city-regions enter the process of endogenous knowledge production has not been 

resolved, the geographical distribution of breakthrough innovation has not been described nor 
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explained, and the mechanisms through which inventors amass the technological knowledge 

needed to innovate in rapidly-evolving knowledge environments have not been adequately 

studied. 

In light of the above research gaps, this dissertation makes four contributions. First, it 

develops a method called knowledge phylogenetics and uses that method to create a long-run 

genealogy of technological knowledge containing over 8 million patented inventions created 

between 1836 and 2014. Second, it uncovers a general process that city-regions go through as 

they begin to become centers for innovation, involving the importation of non-local and 

disruptive ideas that are used to initiate local knowledge production. Third, it documents the 

extent to which breakthrough innovation is concentrated in large and knowledge-diverse 

cities, how that concentration changed over the 20
th

 century, and how those changes resulted 

from asymmetric improvements in different types of communication technologies. Fourth, it 

calculates the productivity benefits that inventors receive from working in teams and from the 

experiences that they accumulate over time. In this regard, the dissertation shows that 

inventors do not benefit from the experience that they accumulate over time because 

inventors struggle to learn quickly enough to keep pace with the advances made in their 

knowledge fields.  
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Chapter 1: Introduction 

Since Solow (1956), the accumulation of technological knowledge has been accepted 

as the leading cause of long-run economic growth and change. Inventors and scientists create 

technological knowledge by recombining existing ideas (Nelson and Winter, 1982; Romer, 

1990). Because individuals specialize in narrow areas of expertise, the recombination of ideas 

often involves interaction between agents (Lundvall, 1994; Powell et al., 1996).  

Spatial relationships are fundamental to the accumulation of technological knowledge 

because spatial proximity and separation between actors influences their patterns of 

interaction (Balland, 2012; van der Wouden, 2020). By influencing these patterns, spatial 

relationships tilt the direction of technological change (Catalini, 2017). In addition, 

technological change is fundamental to the configuration of spatial relationships, such as 

inter-regional income inequality. The accumulation of technological knowledge is an 

unstable process—new ideas build on older ones, but new ideas may also drive older ideas 

into obsolescence. This instability produces shifting spatial concentrations of technological 

power and economic opportunity (Storper and Walker, 1991).  

An evolutionary framework is powerful for studying both the influence of geography 

on innovation and the influence of innovation on geography. An evolutionary framework 

begins with the same observation as Romer (1990) and Nelson and Winter (1982), that 

knowledge is endogenously created by using existing ideas to create new ones. An 

evolutionary framework also acknowledges that ideas are often exchanged locally, so 

endogenous knowledge production is a place-dependent process (Storper and Venables, 

2004; Martin and Sunley, 2006; Essleztichler and Rigby, 2010). However, a full evolutionary 

framework adds that the accumulation of technological knowledge is not merely cumulative, 

meaning that the state of the art is not the sum of all prior inventions. Instead, technologies 

interact with one-another through complex relationships (Foster et al., 2013). In Chapter 3 of 
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this dissertation, I share the examples of the junction transistor and the vacuum tube amplifier 

to illustrate one of the complex ways in which technologies may interact. The junction 

semiconductor drove the vacuum tube amplifier into obsolescence after it was introduced, 

and helped to enable the relocation of the information technology industry’s core innovative 

activities from of the Northeast of the United States to the country’s south and west. Inter-

technology relationships such as this example of disruption are difficult to rationalize using 

traditional models of endogenous knowledge production, but they are powerfully captured by 

ecological models of knowledge evolution (Foster et al., 2013).  

The existing research on innovation and its geography does not develop a complete 

evolutionary framework that encompasses both endogenous knowledge production and inter-

technology relationships. This critique extends to the sub-discipline of evolutionary economic 

geography, where the common practice of aggregating knowledge to large technological 

fields obscures any true evolutionary process in knowledge creation, namely the 

recombination of existing ideas to create new ones (Hidalgo et al., 2007; Neffke et al., 2013). 

In addition, the paradigm of technological relatedness, which is commonplace in evolutionary 

economic geography, compresses qualitatively distinct relationships between technologies 

into ordinal similarity metrics (Hidalgo et al., 2018). This reduction prohibits the 

technological relatedness literature from studying the many and varied ways in which 

technologies interact. As a consequence, the technological relatedness literature is unable to 

analyze uneven technological development, including how stocks of technological ideas 

influence the usefulness of other stocks of ideas, and how the stocks of ideas accumulated in 

one geographical region may influence the usefulness of ideas accumulated in another.  

In light of the current state of the literature, the purpose of this dissertation is to 

develop and deploy a new evolutionary study of the creation of technological knowledge 

across space and time that is grounded in a micro-level theory of invention and embraces the 
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complex interactions between technologies. The dissertation has two main parts. The first 

part develops a novel dataset that records the line of descent between individual inventions. 

These data are needed in order to study technological evolution over long periods of time. 

The resulting dataset links over 8 million patents granted by the U.S. Patent and Trademark 

Office between 1836 and 2014 to their knowledge-based antecedents. Chapter 2 of this 

dissertation elaborates on the motivations for this data construction exercise, describes the 

methods used to construct that new data, and validates the data’s accuracy. 

The second part of the dissertation uses the newly constructed data to address three 

questions that pertain to innovation and its geography. The first question, which I examine in 

Chapter 3, is how new geographical concentrations of innovative activity emerge. The 

economic geography and agglomeration theory literatures observe that innovative activities 

are concentrated in space, but they rarely analyze the formative process of those 

concentrations. A traditional application of the spatialized endogenous knowledge growth 

model, wherein inventors create new ideas locally by recombining existing local ideas, 

cannot explain the emergence of new innovative centers because new innovative centers lack 

sufficient local ideas to be recombined. In the process I examine in Chapter 3, inventors 

transfer knowledge to new places by sourcing ideas across space and by subsequently using 

those imported ideas to create many more ideas locally. Thus, new innovative places are born 

from ideas sourced from older innovative places. 

The second question I examine is why the invention of breakthroughs tends to occur 

in spatially concentrated locations. I examine this issue in Chapter 4 where I develop a 

definition of technological breakthroughs as the subset of inventions that punctuate the long-

run knowledge evolution by recombining existing ideas in radically imaginative and useful 

ways. Using data from patents awarded to U.S.-based inventors between 1900 and 1999, I 

show that the intensity of the spatial concentration of the production of breakthroughs has 
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changed over time as the relative strength of long-distance communication technologies, the 

knowledge intensity of breakthrough inventions, and the disruptiveness of the regime of 

technological change have evolved.  

The third question I examine is how the collection of knowledge helps inventors to 

create high-impact inventions. I examine this issue in Chapter 5. Inventors collect knowledge 

in two primary ways: they collect knowledge into organizations by building collaborative 

teams, and they collect knowledge over time through accumulated experiences. My analysis 

shows that inventors benefit from knowledge pooled in teams, but that they do not benefit 

from knowledge accumulated over time. This latter result is surprising, because mature 

inventors with more experience should have knowledge of a greater number of ideas that they 

can deploy to create of high-impact inventions. In this chapter, I reconcile this result by 

showing that the rate at which inventors learn new ideas tends to be lower than the rate at 

which other inventors introduce new ideas to the knowledge fields they are working in. In 

particular, young and relatively inexperienced inventors enter patenting professions with 

current skills that they use to make high-impact inventions. Older inventors may encounter 

difficulties learning how to use these inventions to make new inventions, and so they become 

less capable over time.  
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Chapter 2: Development of Methods and Data 

2.1) Introduction 

The evolutionary study of technological knowledge creation has been impeded by a 

lack of harmonized long-run records of the sources of knowledge that inventors use to 

generate new ideas. Patent citation records are broadly used to study how inventors source 

technological knowledge, but patent citations carry two limitations. First, because many 

citations are added by patent examiners and the attorneys of patent applicants, the extent to 

which citations represent knowledge spillovers is debated (Arora et al., 2019). Second, the 

United States Patent and Trademark Office (USPTO) did not require patents to cite prior art 

before 1947, so patent citation records are unreliable before this date (Akcigit et al., 2017; 

Berkes, 2020).  

In this chapter, I develop a new method to trace the flow of knowledge between 

individual inventions. My method is called knowledge phylogenetics. I develop this method 

by integrating a model of recombinatory invention as developed by management theorists 

into a phylogenetics algorithm (Levinthal, 1996; Fleming and Sorenson, 2001). Phylogenetics 

is a method commonly practiced by biologists to trace evolutionary descent between 

biological species and by linguists to trace evolutionary descent between languages (Fox, 

Fisher, and Layton, 1999; Mace and Holden, 2005; Wiley and Lieberman, 2011). The 

insertion of a recombinatory model of invention into the phylogenetics algorithm allows me 

to trace the evolutionary descent between inventions based on the heuristics that inventors 

use to develop new technologies.  

Theorists of technological change generally agree that inventors create new 

technologies by combining existing ideas in new ways (Mokyr, 1990; Arthur, 2009). The 

recombinatory and incremental nature of invention is a natural outcome of inventors’ 

bounded rationality (Simon, 1955). However, assembling complex technologies overwhelms 
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the mental capacity of inventors because new inventions contain many parts that are arranged 

in irregular ways (Fleming and Sorenson, 2001; Broekel, 2019). Inventors thus rarely create 

new technologies from scratch and instead build on existing ideas. Car makers do not need to 

reinvent the wheel, nor do computer hardware engineers need to develop their own processor 

chips and video cards. Motherboards, for instance, contain all the computer chips needed to 

perform most of the core processing functions of computers in a pre-packaged module. 

Because inventors can use pre-developed modules, they can focus their attention on making 

connections between existing modules rather than developing modules anew (Foster and 

Evans, 2019).  

My application of technological phylogenetics uses the subclassification codes that 

the USPTO assigns to patents to identify the existing ideas combined in each invention. The 

USPTO classifies all utility patents using its highly detailed classification scheme. At the 

highest level of granularity, the USPC classification scheme contains over 160,000 unique 

subclass codes that describe the individual components contained in each patented invention 

(Fleming and Sorenson, 2001). Because technological knowledge is defined by inventors’ 

awareness of how technological elements, or components can be assembled to create 

functioning tools, the detailed subclassification codes listed on each patent indicates the 

recombinant know-how embedded in each patented technology (Fleming, 2001; Arthur, 

2009). This argument is illustrated by the example of the patent granted to Thomas Edison for 

the incandescent light bulb (USPTO patent number 223898). Edison’s bright idea was that a 

vacuum chamber slows the combustion of a carbon filament. The physical components 

Edison used to create a vacuum chamber for a filament – vacuum-tight joints to seal the bulb 

and a carbon filament – appear on his patent with the classification codes H01J5/24 and 

H01K1/14. The USPTO defines these codes as “vacuum-tight joints between insulating parts 

of vessel” and “incandescent bodies characterized by shape.” 
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Because the subclassification codes listed on a patent indicate the recombinant 

knowledge embedded in a technology, technological phylogenetics predicts that when two 

timestamped patents share many subclassification codes, they are linked by flows of 

knowledge (Foster and Evans, 2019). 

 

2.2) Method for Knowledge Tree Construction 

In this section I describe how I use knowledge phylogenetics to construct a record of 

knowledge flow between inventions. I begin with the raw public files of granted patents and 

USPC subclass assignments available on PatentsView for all utility patents granted between 

1836 and 2014.
1
 This dataset contains the entire collection of the 8.7 million utility patents 

granted for inventions that have received intellectual property protection in the United States 

since the U.S. patent office was rebuilt in 1836 after the building was burned to the ground in 

a fire. Because many international firms and inventors seek intellectual property protection in 

the U.S., the dataset has relatively strong global coverage.  

The USPTO assigns each patent to one or more USPC subclasses. I extract these 

codes when downloading the raw data from PatentsView. Most patents are assigned between 

2 and 6 subclassification codes; however, a very small number of patents are assigned more 

than 100 codes. To make the dataset less cumbersome, I discard excess subclassification 

codes on patents by selecting only the first 8 codes from each patent. By selecting the first 8 

codes on each patent, I retain each patent’s primary subclass. 

The phylogenetics algorithm begins by selecting the most recently granted patent and 

recording its components based on its USPC subclassification codes. I define recombinant 

knowledge as knowledge of components and the interactions of those components; so for 

each patent I generate all combinations of degree n of its components, where n is the number 

                                                 
1
 Download link: https://www.patentsview.org/download/ 

https://www.patentsview.org/download/
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of components in a patent.
2
 For example, if a focal patent (FP) contains the USPC 

subclassification codes A, B, C, I generate the knowledge vector expressed by Equation 2.1: 

(2.1) 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐹𝑃 = [ 𝐴 | 𝐵 |𝐶 | 𝐴𝐵 | 𝐵𝐶 | 𝐴𝐶 | 𝐴𝐵𝐶 ] 

Each element in 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐹𝑃 denotes a single unit of knowledge and the length of 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐹𝑃 indicates the total quantity of knowledge units embedded in the focal patent. 

The knowledge units in 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐹𝑃 are used to link the FP to its knowledge-based 

predecessors, or “parent patents,” based on the number of knowledge units that are found in 

both the focal patent and a possible parent patent. To identify the possible parents of a focal 

patent, I search for overlapping knowledge units in all patents that were granted before the 

focal patent. I identify the patents granted before each focal patent by sorting patents by their 

ID number. I do not constrain the time window during which a parent patent can serve as a 

source of knowledge for a child patent because inventors often build on both old and new 

ideas (Mukherjee et al., 2017).
3
 For each possible parent that fits the simple temporal 

criterion, I generate a shared knowledge vector (SKnowledge) to record the knowledge units 

that appear in both the focal patent and in the parent. For example, if a possible parents’ 

knowledge vector, 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑃𝑃, is given by Equation 2.2: 

(2.2) 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑃𝑃 = [ 𝐵 | 𝐶 |𝐷 | 𝐵𝐶 | 𝐶𝐷 | 𝐵𝐷 | 𝐵𝐶𝐷 ] 

The shared knowledge vector of the FP and the PP, 𝑆𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐹𝑃,𝑃𝑃, is taken as the 

intersection of the 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐹𝑃 vector and the 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑃𝑃 vector:  

(2.3) 𝑆𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐹𝑃,𝑃𝑃 = [ 𝐵 |𝐶 | 𝐵𝐶 ] 

                                                 
2
 The knowledge in a technology is embedded in the individual components in that technology and the way 

those components are interconnected. For example, Edison’s light bulb was created through Edison’s knowledge 

of the existence of the bamboo filament and the vacuum-tight joints as independent components, and through his 

understanding that these components work synergistically when assembled together. 

 
3
 While I do not constrain the time window, over 90% of child patents draw knowledge from parents that are 

less than 20 years old. 
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The length of the above 𝑆𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐹𝑃,𝑃𝑃 vector indicates that in this example the focal 

patent 𝐹𝑃 sourced 3 units of knowledge from the potential parent.  

When an FP has multiple potential parents for an individual unit of knowledge, I 

assign a fractional weight to the edge based on the number of possible parents for that 

knowledge unit. For example, if two possible parents contain the component [ B ], I assume 

that the FP sources 0.5 units of knowledge from the [ B ] in the first possible parent and 0.5 

units from the second. In practice, knowledge units of length 1 such as [ B ] tend to be found 

on many potential parent patents, while longer knowledge units such as [ BC ] tend to be 

found on fewer.
4
 Therefore, the fractional assignment of weights emphasizes non-ubiquitous 

and lengthy combinations of knowledge when predicting the parents of individual patents.  

The algorithm repeats the process described above for all elements in the 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐹𝑃 vector. After iterating through each of the elements in the subclass vector, the 

algorithm moves on to the next most recently granted patent and repeats the process. The 

phylogenetics algorithm outputs a directed acyclic weighted graph with over 8 million patent 

nodes and hundreds of millions of edges representing the knowledge flows between them. 

The resulting graph is very large (50 GB) because it contains many edges between 

patents with very low edge weights. Therefore, I trim the size of this graph by omitting all 

edges between patents with weights less than one.  

 

2.3) Methods to Detect Patent Impact 

I use the resulting technology tree to identify the impact of individual patents and the 

knowledge sourcing strategies of inventors. To compute the impact of individual patents, I 

calculate their out-degree in the tree of knowledge flow. The out-degree is a continuous 

                                                 
4
 At the most disaggregated level of subclasses, there are about 160,000 unique codes. While it improbable that 

any two randomly chosen patents will share a single subclass code, the probability that two randomly chosen 

patents will share two or more subclasses is exponentially smaller. Moreover, the granularity of the 

classification scheme and its combinations allows for very specific matches between child and parent patents. 
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variable which records the quantity of knowledge introduced by an earlier invention that is 

used by subsequent inventions.  

In Chapters 3 and 5, I also generate binary measures of patent impact. While the 

binary measures contain less variation than the continuous measure, the continuous measure 

has a skewed distribution until the later years of the study period because many older patents 

have an out-degree of 0. The binary measures do not have this skewed distribution. To 

compute the binary measures, I use a threshold out-degree value. Patents with an out-degree 

that exceeds the threshold are defined as “high-impact” patents, while patents with an out-

degree that does not exceed the threshold are defined as “low-impact.” In Chapter 3, the 

threshold is the top 10% of the impact distribution of all patents granted in the same 5-year 

period. In Chapter 5, I use a somewhat higher threshold – the top 5% of the impact 

distribution of all patents granted in the same year – because the study period of Chapter 5 

extends back to 1836 and therefore includes a time period during which very many patents 

have an out-degree of 0.  

In Figure 2.1, I plot the mean impact of patents and the value at the top 5% of the 

impact distribution by year between 1836 and 1975. The mean out-degree of patents hovers 

near 1 until the 1930s. This low mean out-degree reflects the fact that most pre-1930 patents 

have an out-degree of 0, indicating that they have no discernible impact on subsequent 

innovation. The mean out-degree rises steadily in the 1930s and exceeds 3 by 1975. The 90th 

percentile of the out degree distribution is slightly above 2.5 in the years leading up to 1930, 

after which it climbs sharply and reaches 7.5 by 1975. Right-truncation is limited in these 

out-degree measures because the knowledge flow graph contains all USPTO patents granted 

up to 2014.  
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Figure 2.1: Average Out-Degree of Patents by Year 

 

 

2.4) Validation of Patent Impact 

I perform two validation checks to test whether the impact measures calculated using 

the out-degree of the technology tree corresponds to external sources. In the first validation 

check, I test whether patents identified by technological historians as uniquely consequential 

inventions have a higher mean out-degree than a comparison set of patents.  

I use two sets of historian-identified patents for this purpose. The first is provided by 

Rogers (2011), which lists over 100 important inventions made in the U.S. between 1840 and 

1920.
5
 The second is provided by the Computer History Museum in San Jose, California, 

which lists the patents issued for inventions that were milestones in the development of the 

silicon engine of modern computers.
6
 For each set of historian-identified patents, I create a 

control group of patents that are technologically similar but were not included in the 

historians’ lists. The control group consists of all patents that were granted in same year and 

assigned to the same primary subclass (at which level there are over 160,000 unique 

                                                 
5
 While Rogers (2011) lists impactful inventions back to 1750, his pre-1840 inventions cannot be linked to 

patents. 

 
6
 https://www.computerhistory.org/siliconengine/timeline/ 
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subclasses) as the historians’ patents. The mean out-degree of the historian-identified patents 

and their reference group are given in Table 2.1. The table shows that the mean out-degree of 

the two sets of historian-identified patents is greater than that of the comparison groups. 

Table 2.1: Mean Out-Degree of Historian-Identified Great Patents 

Historian List of Great Patents 

Mean Out-Degree 

Patent in 

Historian 

List 

Control 

Group 

Great American Patents 

1840-1920 

Rogers (2011) 

2.6 0.77 

Milestones in the Silicon Engine 

1904-1983 

Computer History Museum 

12.8 8.9 

Control group of patents are all USPTO patents granted in the same year and same 

primary subclass (160K unique classes) as the historian-identified patents. 

In a second validation exercise, I compare the mean out-degree of patents from the 

technology tree to the number of forward citations they receive from subsequent inventions. 

Because patent forward citations are not broadly available before 1975, I perform this 

validation exercise using only patents granted starting in that year. In addition, both patents’ 

forward citation count and out-degree from the technology tree suffer right-truncation in 

recent years. Therefore, I do not include patents granted after 2000 in this exercise.  

To test the association between patents’ forward citations and out-degree, I run a 

regression model of the forward citations received by patent p as a function of the out-degree 

of patent p. To compare similar types of technologies, I include a primary subclass fixed 

effect in the model. In addition, I include a year-specific fixed effect. The model is given by 

Equation 2.4 and its results are presented in Table 2.2. 

(2.4) 𝐹𝑤𝑑𝐶𝑖𝑡𝑒𝑠𝑝 = 𝐵1𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒𝑝 + 𝐹𝐸𝑌𝑒𝑎𝑟 + 𝐹𝐸𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑝 
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Table 2.2: Regression of Forward Citations and Out-Degree of Patents (1975-2000) 

B1 Coefficient 1.16*** 

B1 Standard Error 0.006 

Fixed Effects? Yes 

R
2 

0.39 

*** Denotes statistical significance at the 99% confidence interval 

Table 2.2 shows that for patents granted between 1975 and 2000, out-degree is 

positively associated with forward citation counts. Therefore, the out-degree of patents 

calculated using the technology tree is positively associated with three external records of 

patent impact: forward citations, inclusion in Rogers’ (2011) list of great American patents, 

and inclusion in the Computer History Museum’s list of milestone patents in the development 

of the silicon engine. 
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Chapter 3: The Emergence of Innovation in New Places 

 

3.1) Abstract 

This chapter investigates how new locations emerge as advantageous places for the 

creation of ideas. Analysis of a novel patent-based dataset that traces the flow of knowledge 

between inventions and across time reveals that inventors initiate technological knowledge 

production in new places through a three-stage process. In the first stage, about 50 years 

before knowledge production in a region reaches an appreciable volume, local inventors 

begin to experiment with a small number of promising ideas developed in other places. In the 

second stage, inventors use the promising ideas developed elsewhere to create a larger 

number of highly impactful inventions locally. In the third stage, inventors source high-

impact ideas from their local environs and produce even more local inventions, albeit of 

lower quality. Overall knowledge production in regions peaks in this third stage, but novelty 

and the potential for future knowledge production growth decline.  
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3.2) Introduction 

At the start of the 21
st
 century the San Jose–Sunnyvale–Santa Clara Metropolitan 

Area, the economic core of California’s Silicon Valley, ranked first among the United States’ 

983 metropolitan and micropolitan areas in terms of the number of patents awarded to its 

inventors and second in terms of per-capita income. San Jose’s economic stature is 

particularly remarkable because it is a “young” city, even by American standards. The 

counties that now comprise the San Jose Metropolitan Area housed just 0.2% of the U.S. 

population in 1950 but expanded to 0.6% of the U.S. total by 2000. Patent production in San 

Jose expanded even faster over this period: San Jose inventors produced less than 1% of the 

country’s patents in 1950 but over 8% in 2000.  

While San Jose’s rise is striking, nearly every innovative city in the United States 

began in a similar position as a location where few patentable ideas were invented. Table 3.1 

shows the year that the top-15 patent-producing Core-Based Statistical Areas (CBSAs) in the 

United States emerged as centers for knowledge production, defined as the first five-year 

window that their local inventors produced 1% of the U.S.’s count of utility patents from that 

same five-year window. Of the 15 top-ranked CBSAs, 12 crossed the 1% threshold after 1835 

when the data series begin. The San Jose, San Diego, and Austin, TX metropolitan areas, for 

example, all emerged as centers for innovation after the 1950s. And although “old” cities like 

Chicago and Detroit developed innovative economies much earlier, knowledge production in 

those cities too had a beginning. 
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Table 3.1: The Rise of New Cities as Centers of Innovation 

Patenting Rank 

2001-2005 
Core-Based Statistical Area 

Year CBSA First Produced 

1% of U.S. Patents 

1 San Jose 1965 

2 New York Before 1835 

3 San Francisco 1865 

4 Boston Before 1835 

5 Los Angeles 1905 

6 Seattle 1915 

7 Chicago 1855 

8 Minneapolis 1890 

9 San Diego 1980 

10 Austin, TX 1990 

11 Detroit 1865 

12 Philadelphia Before 1835 

13 Houston 1955 

14 Dallas 1970 

15 Portland, OR 1995 

 

How do inventors commence technological knowledge production in new places? 

This question is difficult to resolve using the traditional explanations of knowledge-based 

agglomeration from the geography of innovation literature. According to that literature, 

innovative activities concentrate in space (Audrestch and Feldman, 1996; Balland et al., 

2020) because inventors use existing ideas to create new ideas (Nelson and Winter, 1982; 

Romer, 1990), and because ideas are more readily transmitted between actors located in close 

physical proximity or in distant but well-connected regions with established inventive milieus 

(Jaffe et al., 1993; Bathelt et al., 2004; Breschi and Lissoni, 2009; Kwon et al., 2020). These 

arguments explain how incumbent regions retain their innovativeness over time, but they 

leave us to puzzle over how inventors begin to produce knowledge in places that lack existing 

knowledge stocks or inter-regional networks to begin with. 
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One way inventors may initiate knowledge production in new places is by developing 

new domains of technological knowledge (Kuhn, 1962; Dosi, 1982). The knowledge 

spillovers that circulate within and between incumbent regions are domain-specific in that 

they contain information about how technologies with specific material or relational 

properties function (Arthur 2009). Because the spillovers of older ideas are less relevant to 

innovation in new knowledge domains, the introduction of new domains may open windows 

of opportunity for inventors in new locations to commence local knowledge production 

(Storper and Walker, 1991; Boschma and Lambooy 1999; Boschma and Frenken, 2006). 

Data-intensive case studies of the automotive cluster in Detroit, the steel industry in 

Cleveland, and textile industry in Manchester, England, have shown that the formation of 

major U.S. and British metropolitan economies coincided with the advent of new industries 

and process technologies (Brezis and Krugman, 1997; Klepper, 2007; Lamoreaux et al., 

2004). However, this empirical record has not been generalized to a broader set of 

metropolitan regions. In addition, the existing literature tracks employment counts and the 

opening of new firms, and does not observe changes in the knowledge used to innovate in 

their industries. 

In this chapter, I present evidence from over 8 million geo-located patent records 

granted to U.S. inventors between 1850 and 2010 to outline a common pathway through 

which inventors initiate technological knowledge production in new places. Namely, that 

pathway involves the creation and development of new knowledge domains by inventors. I 

identify domain-forming inventions at the patent level by calculating the extent to which a 

patented technology introduces new and novel ideas that are used in a large number of 

subsequent inventions. My results show that inventors rely heavily on knowledge embedded 

in novel and impactful inventions early in their home regions’ innovative growth. In addition, 

I find that in the earliest stages of their home regions’ innovative growth, inventors 
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disproportionately rely on such knowledge from non-local origins, and switch to such 

knowledge from local origins as their home regions’ knowledge production expands.  

My analysis uses the novel dataset that traces the flow of technological knowledge 

between patents and across time described in Chapter 2 of this dissertation. The new dataset 

contains records of knowledge flow tracing back to 1850, allowing for a historical study that 

cannot be performed using patent citation records that have unreliable historical coverage 

(Berkes 2020). I combine the new records of knowledge flow with historical information on 

inventors’ place-of-residence (Petralia et al., 2016) to study how inventors initiated 

knowledge production in all but the oldest U.S. cities. In addition, I test whether novel and 

impactful ideas are more useful for initiating local knowledge production by comparing the 

composition of knowledge used by inventors that reside in CBSAs that eventually become 

innovative centers with the composition used by inventors in CBSAs that never emerge as 

innovative centers. This comparative analysis reveals that inventors in ultimately successful 

CBSAs source a significantly larger share of knowledge from high-impact local and non-

local inventions than do inventors in ultimately unsuccessful CBSAs, even 50-100 years 

before their home regions emerge as innovative centers. 

The results of the study contribute to four literatures: the spatial patterns of 

knowledge transmission, agglomeration theory, evolutionary economic geography, and the 

regional economic lifecycle. With respect to the first literature, the decomposition of 

knowledge sources conducted in this study shows how local and non-local knowledge flows 

materialize in knowledge production growth in proximate and distant locations (Jaffe et al., 

1993; Breschi and Lissoni, 2009; Kwon et al., 2020). With respect to agglomeration theory 

and evolutionary economic geography, the analysis reveals how spatial concentrations of 

knowledge production form in their earliest years, before they enter the purview of 

agglomeration theory and evolutionary economic geography as geographical units of 
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observation. Finally, the findings expand the concept of the urban lifecycle (Audretsch et al., 

2008) by revealing how new centers for innovation are conceived using ideas developed in 

other places, and by showing how even after innovation in a place declines, its ideas can 

flock to and flourish in new regions. 

In the text that follows, I discuss how inventors create and transmit technological 

knowledge and the geographical implications thereof, I introduce the methods used to infer 

historical flows of knowledge between patents and to identify high-impact inventions that 

support the creation of new knowledge domains, and I present the results of the analysis, 

beginning with a birds-eye-view of knowledge production growth and decline in regions and 

continuing with a decomposition of the sources used by inventors as their regions initiate, 

expand, and decline in patent production. In the final section I discuss the relationship 

between incremental and disruptive inventions and their relationships with the emergence, 

evolution, and resilience of knowledge production in cities.   

 

3.3) The Production and Transmission of Technological Knowledge 

The process of invention involves the recombination of existing technological 

components (Romer, 1990; Weitzman, 1998). These components may be material or 

immaterial, ranging from screws and bolts to functions and commands in computer programs 

(Arthur, 2009). Recombinant technological knowledge, defined as the ability to assemble 

components into larger functioning systems, is exceedingly difficult to generate. Each 

component in a technology operates by interacting with other elements in the same system. 

Because of the high interdependence, inventors struggle to anticipate how their technologies 

will function before they assemble them (Fleming and Sorenson, 2001). Models and 

prototypes help inventors to simulate the interactions between components, but models and 

prototypes are also costly to create and time-consuming to administer (Usher, 1929; Arrow, 
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1962; Adler and Clark, 1991; Von Hippel and Tyre, 1995). These costs multiply when 

inventors design complex technologies containing many elements arranged in irregular ways 

(Broekel, 2019).  

To ease the process of designing complex technologies, inventors rely on prior 

knowledge (Fleming, 2001). Inventors who already know how some assemblies of 

components function can focus on integrating their assemblies rather than developing them 

anew (Foster and Evans, 2019). The ability for inventors to build on prior knowledge, 

however, is limited by the breadth of their individual accumulated knowledge assets. Because 

technological knowledge is detailed, inventors have highly specialized areas of expertise and 

need to collaborate or source ideas from other inventors and scientists (Wuchty et al., 2007). 

It is challenging for inventors to source recombinant technological knowledge from 

other inventors. In its native format, recombinant knowledge is a list of the experiences an 

inventor accumulates while assembling a technology (Arrow, 1962). For all but the simplest 

devices, that list is too detailed for an inventor to recollect let alone communicate (Polanyi, 

1966). Inventors respond by compressing knowledge into diagrams and metaphors (Nonaka 

and Takeuchi, 1995). However, these project-oriented coding schemas can only be 

transmitted using supportive communication technologies. For most of the United States’ 

industrial history, face-to-face communication held an absolute advantage in communicating 

messages encoded in dynamic, non-linear schemas. Face-to-face communication allows for 

the use of visual clues such as body language and hand gestures to convey complex points, as 

well as the manipulation of vocal tone to stress key aspects of a message (Storper and 

Venables, 2004). The interactive nature of face-to-face communication allows speakers to 

notice misunderstandings and to correct their presentations to improve comprehensibility 

(Nohria and Eccles, 1992), and to create norms, routines, and rhetorical devices that are 
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specifically designed for the technical issues at hand (Kogut and Zander, 1992; Powell et al., 

1996; Gertler, 2003).  

Because close spatial proximity is a necessary condition for face-to-face 

communication, the ability for inventors to source recombinant knowledge is influenced by 

their socio-spatial environments. While inventors that reside in regions with many other 

inventors are able to source a wide range of ideas face-to-face, inventors in regions with 

sparse networks of inventors are at a competitive disadvantage. Empirical research shows that 

the frequency of knowledge transmission (Jaffe et al. 1993; Kwon et al., 2020) and the 

frequency of collaboration (Balland, 2012; van der Wouden, 2020) between inventors decline 

as spatial distance increases. Isolation can be momentarily remedied through travel, but the 

logistical and economic costs of travel also pose constraints (Torre, 2008). Inventors are 

unlikely to travel for work unless they or their organizations have strong incentives to 

undertake travel (Morrison et al., 2013). The incentive to travel is a function of the quantity 

and quality of the knowledge inventors expect to gather through travel or the expected value 

of a resulting product or invention (Cowan and Jonard, 2004). The incentive to travel to 

places with few knowledgeable inventors is therefore small, so most non-local flows of 

knowledge span between regions that already have dynamic inventive milieus (Bathelt et al., 

2004; Wolfe and Gertler, 2004). Temporary face-to-face meetings such as tradeshows and 

conferences are another means through which inventors may source non-local knowledge. 

However, geographically isolated inventors tend to lack the local absorptive capacity needed 

to make effective use of temporary face-to-face meetings (Bathelt and Henn, 2014; Esposito 

and Rigby, 2019. Altogether, the odds are stacked against inventors that reside and work in 

peripheral locations. 

Yet as Table 3.1 illustrates, early in the history of every innovative region there is a 

moment when local inventors overcome their constraints to sourcing knowledge and begin to 
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produce patentable ideas. Given that the creation of recombinant knowledge is difficult and 

competitive, how do inventors transform peripheral regions into centers of innovation? As 

described by the concept of the Window of Locational Opportunity, two factors may interact 

to allow inventors in new locations to commence knowledge production (Storper and Walker, 

1991; Boschma and Lambooy, 1999). The first factor is that historical accidents and 

idiosyncratic events occasionally transport ideas to regions that are not major centers for 

knowledge production. The second factor is that there is immense heterogeneity in usefulness 

of existing ideas for the creation of new ones (Dosi, 1982; Martinelli and Nomaler, 2014). 

Some ideas are radical, meaning that they begin at the root of all knowledge. While in 

practice all new ideas to a certain extent build on existing knowledge, radical inventions 

nonetheless explore new material or immaterial relationships and thus fall outside the 

dominant trajectories of knowledge development (Arthur, 2009). Because such inventions do 

not rely on extensive stocks of prior knowledge, they level the geographical playing field for 

subsequent innovation. Inventors in regions with underdeveloped knowledge bases that gain 

access to even a small number of impactful and novel ideas may be able to use those ideas to 

initiate local knowledge production. 

The example of the semiconductor-based transistor demonstrates how the 

transportation of a single revolutionary idea to a new location can uproot the geography of 

knowledge production. The first two transistors, the point-touch transistor and the junction 

transistor, were invented at Bell Labs in the suburbs of New York City in 1947 and 1948, but 

the transistor’s development into useful tools took place primarily in Silicon Valley, the 

region of California centered on the San Jose Metropolitan Area. While the design of 

transistors is now a complex industry around which large teams, firms, and agglomerations 

have organized (Balland et al., 2019), shortly after the first transistors were invented, 

transistor design was less knowledge-intensive. Notably, when William Shockley, Bell Labs’ 
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star engineer and inventor of the junction transistor, moved from the New York City area to 

Silicon Valley in 1956, he brought just one colleague from Bell Labs with him (Gertner, 

2012, 181). This relocation indicates that the knowledge domain needed to design new 

transistors at that time was evidently simple enough for two engineers to collectively master 

(Wuchty et al., 2007). Because the transistor’s knowledge domain was compact, idiosyncratic 

factors, such as Shockley’s preference to be near his ailing mother, were able to influence 

where the new knowledge domain settled and produced innovative growth. 

While Shockley’s arrival in Silicon Valley brought detailed knowledge of the 

transistor to the region, it was just one early step in a larger process that ultimately made 

Silicon Valley a leading innovative center. After Shockley arrived, local inventors applied his 

transistor to make a large number of subsequent impactful inventions. For example, the first 

microprocessor (the Intel 4004) was introduced in Silicon Valley in 1971, making personal 

computers and hand-held computer devices possible. Additional groundbreaking inventions, 

such as the first dynamic RAM chip (the Intel 1003, invented in 1970) were made in Silicon 

Valley, as were hardware technologies such as the computer mouse in 1964 and the first 

commercialized computer monitor in 1973. These inventions extended the potential of the 

semiconductor transistor by making the transistor useful in new applications. In so doing, 

these inventions developed the nascent knowledge field grounded in the properties of 

semiconductor amplification into a full-fledged knowledge domain. The creation of these 

subsequent inventions in Silicon Valley caused the center of gravity of the knowledge 

domain to settle in the region through a virtuous, self-reinforcing cycle (Saxenian, 1994; 

O’Mara, 2019). 

The geographical history of the semiconductor transistor thus suggests two sets of 

processes that occur as new places emerge as centers for innovation. The first is the creation 

of novel and promising ideas. These ideas do not need to be invented in the same locations 
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where they ultimately produce innovative growth so long as they are simple enough to be 

transported across space through the movement of people or messages (cf. Kerr, 2010). The 

second process is the creation of high impact inventions locally. These follow-up inventions 

build a local critical mass of knowledge in the new knowledge domain, causing future 

knowledge production to consolidate in the emerging innovative region. The analysis section 

of this paper investigates these two processes and their relationship with the growth of local 

innovation. 

 

3.4) Methods Overview 

In this study, I use the new records of knowledge flows between inventions described 

in Chapter 2 to identify the earlier inventions that inventors build on when commencing 

knowledge production in new places, and to identify the impact of their resulting 

technologies. The knowledge sources of a focal patent are given by its parent patents. 

Knowledge sources may be local or non-local, and high or low impact. A local knowledge 

source is a parent patent that was invented in the same metropolitan region as its child patent. 

A high-impact knowledge source is a parent patent that is observed to be highly impactful, 

using the binary definition of impact discussed in Chapter 2.  

To match patents to geographical regions, I aggregate patents to CBSAs based on the 

home address of the inventors of that patent. I use 2015 definitions of CBSAs, which include 

all metropolitan and metropolitan areas in the United States.
7
 When patents have inventors 

living in two or more CBSAs, I fractionally assign those patents to each CBSA. I regard 

knowledge sourced from patents created by inventors that reside outside the U.S. as non-local 

knowledge. 

 

                                                 
7
 A list of 2015 CBSAs with their constitutive counties is available at the USPTO website: 

https://www.uspto.gov/web/offices/ac/ido/oeip/taf/cls_cbsa/cbsa_countyassoc.htm 

https://www.uspto.gov/web/offices/ac/ido/oeip/taf/cls_cbsa/cbsa_countyassoc.htm


28 

 

3.5) Results: Overview 

The growth of knowledge production in U.S. CBSAs tends to follow a general pattern 

in which regions begin knowledge production by producing a small number of ideas, expand 

their production of ideas over time, reach a peak in knowledge production, and thereafter tend 

to enter a period of decline. Using black dots in Figure 3.1, I plot the production of patents by 

half-decade for four representative U.S. CBSAs centered in Detroit, Cleveland, San Jose, and 

Austin. I selected these cities because they are or have been major centers for innovation and 

because they initiated patent production growth during the time period for which I have 

reliable data, starting in 1850. To improve the comparison of patent production across years, I 

express the patents produced in a CBSA in a given half-decade as a percentage of the U.S. 

total for that same half-decade. I also plot the number of high-impact patents produced in that 

CBSA using plus-signs and low-impact patents using dots, as described in Section 3.4. 
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Figure 3.1: High-Impact and Total Patents Produced in Four Representative CBSAs 

Detroit 

 

Cleveland, OH 

 
San Jose

 

Austin, TX 

 
 

Figure 3.1 shows that the years of 1865 in Detroit, 1855 in Cleveland, 1965 in San 

Jose, and 1990 in Austin all bear resemblance in terms of patent production growth: during 

these years, knowledge production in each CBSA started to climb. Additionally, as those 

cities began to increase their overall production of patents, they also increased their 

production of high-impact patents. Generally, their production of high-impact patents grew 
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faster than their production of low-impact patents: when the plus-signs rise in Figure 3.1, the 

black dots rise even faster. 

The examples of Detroit, Cleveland, San Jose, and Austin in Figure 3.1 thus suggest 

two general patterns. First, overall patent production in cities experiences both a rise and a 

decline; second, the rise and decline of patenting in cities is preceded by the rise and decline 

of the production of high-impact patents. To test if these patterns are found generally across 

U.S. CBSAs, I compute the average percentage of U.S. total and high-impact patents that 

each CBSA produces at each stage in its patenting growth. To compare cities that underwent 

knowledge growth during different periods of time (such as San Jose and Detroit), I align the 

time dimension of their patenting based on their CBSA “age,” defined as the first five-year 

period a CBSA produces 1% or more of the U.S. total stock of patents. For example, I 

assume that San Jose in 1965 (when it first produced 1% of U.S. patents) was at the same 

stage of its growth trajectory as Detroit was in 1865. Extending that reasoning, 35 years later, 

San Jose was at the same stage of its growth process as Detroit was in 1900. Formally, I 

calculate the 𝐴𝑔𝑒𝑐,𝑡 of a CBSA c in half-decade t by subtracting the observation year from 

the year it first crosses the 1% patenting threshold, as captured by Equation 3.1: 

(3.1) 𝐴𝑔𝑒𝑐,𝑡 = 𝑌𝑒𝑎𝑟𝑐,𝑡 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑌𝑒𝑎𝑟𝑐 

After aligning the curves of each CBSA based on 𝐴𝑔𝑒𝑐,𝑡, I compute aggregate patent 

production curves by averaging the percent of U.S. overall and high-impact patents in a given 

half-decade that are produced in cities with a given 𝐴𝑔𝑒𝑐,𝑡 value, as in Figure 3.2. In the 

chapter appendix, I show that the general findings of Figure 3.2 are robust when 0.5% and 

5% patenting thresholds used to identify CBSA age. 
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Figure 3.2: Average Patent Production in U.S. CBSAs by CBSA Age 

 
Note: Only CBSAs that produce at least 1% of U.S. patents during one or more 5-year 

periods of their history are included in the analysis. Thus, 19 CBSAs are included in 

Figure 3.2. 

 

Figure 3.2 generates three observations. First, patenting growth in cities is related to 

CBSA age as defined in Equation 4.1. Second, the production of high-impact patents in cities 

generally increases before the production of low-impact patents; similarly, the production of 

high-impact patents starts to decline before low-impact patenting goes down. Third, the 

temporal order of the growth of high-impact and low-impact patent production documented 

in Figure 3.2 suggests that a causal relationship runs from the local production of high-impact 

patents to increased low-impact patenting later on.  

Because high-impact patenting rises before low-impact patenting does, Figure 3.2 

suggests that the creation of local high-impact inventions creates a local knowledge base that 

inventors subsequently use to create further inventions. However, Figure 3.2 does not 

explicitly identify flows of knowledge running from these high-impact inventions to the 

subsequent low-impact inventions; this identification is made strictly based on temporal 
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ordering. In addition, Figure 3.2 leaves unresolved the issue of how inventors source the 

knowledge used to make the very first local inventions. In the following section, I address 

these two by explicitly studying the composition of knowledge that inventors use as overall 

patenting in their home region begins and expands. 

 

 3.6) Results: The Sources of Knowledge Production Growth in Cities 

In this section, I examine how inventors source impactful knowledge locally and non-

locally as knowledge production commences, expands, and declines in their home regions. 

To undertake this analysis, I develop a knowledge-source accounting framework that reveals 

the relative importance of various types of knowledge flows for instigating knowledge 

production. Most research on the geographical patterns of knowledge flows, such as Jaffe et 

al. (1993), Breschi and Lissoni (2007) and Arora et al. (2018), infer the geographical 

consequences of local and non-local knowledge flows based on the friction posed by 

distance. For reasons discussed in Section 3.3, even if geographical distance exerts strong 

frictions on the spreading of ideas across distances, non-local ideas can nonetheless be used 

to initiate knowledge production in new places if those ideas are transformative. The source-

accounting framework developed here overcomes this analytical challenge by directly 

calculating the relative importance of local, non-local, high-impact, and low-impact 

knowledge sources for inventors to initiate local knowledge production. 

In Table 3.2, I show how the types of knowledge that inventors’ sources evolve as 

their home regions become innovative. To do so, I compute the percentage of each type of 

knowledge source that the inventors of patents use at three stages of knowledge production 

growth in their home regions. Those stages are defined using the CBSA age measures defined 

in the previous section. CBSAs in the first stage (CBSA age -100 to 0) are nascent innovative 
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centers, CBSAs in the second stage (CBSA age 0 to 50) are maturing innovative centers, and 

CBSAs in the third stage (CBSA age 50 to 150) are mature or declining innovative centers. 

As discussed in the methods section, I distinguish between four types of knowledge 

sources that inventors used by inventors: non-local high-impact patents (NL.High), non-local 

low-impact patents (NL.Low), local high-impact patents (L.High), and local low-impact 

patents (L.Low). High-impact inventions introduce novel and useful new knowledge and thus 

represent stages in the formation of new knowledge domains. The values in Table 3.2 use the 

1% patenting threshold to define CBSA age; the appendix presents similar results using 0.5% 

and 5% patenting thresholds. 

Table 3.2: Composition of Knowledge Sources by Source Type and by CBSA Age  

 Source Type 

Age Range NL.High NL.Low L.High L.Low 

-100 to 0 67% 28% 3% 2% 

0 to 50 59% 27% 9% 5% 

50 to 150 57% 26% 11% 6% 

Note: Table 2 uses the 1% patenting threshold to define CBSA age. Only the 19 CBSAs 

that break the 1% threshold are included in the table. 

Table 3.2 shows that inventors disproportionately use knowledge from non-local 

high-impact sources (NL.High) when knowledge production in their home regions first 

begins. Non-local high-impact sources account for 67% of all knowledge sources when 

CBSA age is between -100 and 0, while it accounts for 57% of all knowledge sources when 

CBSA age is between 50 and 150. While inventors’ reliance on non-local high-impact 

sources declines as their home regions grow, their reliance on local high-impact sources 

(L.High) grows over time: local high-impact sources account for just 3% of all sources used 

by inventors when their CBSA age is between -100 and 0, but it accounts for 11% of all 

sources when CBSA age is between 50 and 150.  
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Table 3.2 also shows important changes in inventors’ use of low-impact knowledge 

sources as their home regions emerge as innovative centers. The percent of knowledge 

sourced from non-local low-impact (NL.Low) sources declines slightly over time, from 28% 

in the -100 to 0 CBSA age range to 26% in the 50-150 age range. More importantly, 

inventors’ reliance on local low-impact sources (L.Low) increases from 2% in the -100 to 0 

age range to 6% in the 50 to 150 age range. This increased reliance on local low-impact 

sources coincides with the period when patent production in the CBSA peaks (Figure 3.2). 

The overall patterns identified in Table 3.2 hold up when CBSA age is not aggregated 

to multi-decade periods of time. Figure 3.3 shows the composition of knowledge sources 

used by inventors at each unique value of CBSA age. The figure uses the 1% patenting 

threshold to compute CBSAage, but in the appendix I show that the results do not change 

significantly when 0.5% or 5% thresholds are used to compute CBSA age. In Figure 3.3, I 

also overlay the percentage of all U.S. patents produced in CBSAs at a given age value using 

a solid line to show how changes in the composition of knowledge sources used by inventors 

correspond with the rise, levelling off, and decline of local patent production. Figure 3.3 

indicates that inventors most heavily rely on knowledge from non-local high-impact 

inventions as local patent production commences and increase their use of knowledge 

embedded in local high-impact inventions as local knowledge production reaches its peak.  
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Figure 3.3: Composition of Knowledge Sources and Patent Production by CBSA Age 

 

While Table 3.2 and Figure 3.3 show that the knowledge types of sources used by 

inventors evolve as their home regions emerge as innovative centers, it remains undetermined 

whether the types of sources used by inventors are important for inventors to initiate 

knowledge production in their home regions. An ideal causational analysis would study two 

plots of land, both located far away from any existing innovative centers. At the start of the 

study, both plots are completely empty of people and knowledge. Later in time, the first plot 

receives an infusion of inventors with knowledge of the inner-workings of novel and 

impactful technologies. The second plot also receives an infusion of inventors, but their 

knowledge is less novel and less useful for subsequent invention. Several decades later, we 

would check back to see which plot of inventors produced more inventions. 

Of course, such an experiment is impossible to administer. Nonetheless, a revealing 

identification can be generated by comparing the knowledge sources used by inventors in 
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CBSAs that break the 1% patenting threshold with the knowledge sources used by inventors 

in CBSAs that never break the 1% threshold.  

To compare the types of knowledge sources in “successful cities” (CBSAs that break 

the threshold) and “unsuccessful cities” (CBSAs that never do), I compute the frequency by 

which their inventors use each type of source at each CBSA age value. Unsuccessful cities do 

not have CBSA age values because they never break the patenting threshold. However, a 

robust comparison can be generated by comparing the composition of knowledge sources 

used in successful cities with the composition used in USCs in the same 5-year period of 

observation. In a simple one-city example, assume that I seek to compare San Jose when its 

CBSA age was -15 with all unsuccessful cities at that same moment in history. San Jose was 

age -15 in 1950, so I compare the knowledge sources used by San Jose’s inventors in 1950 

with the sources used by inventors in unsuccessful cities in 1950.  

I generalize the method described above to all 983 CBSAs in my dataset. To do so, I 

begin by generating the vector 𝑌𝑒𝑎𝑟𝑠𝐴𝑔𝑒, which records the 5-year periods in which 

successful cities are observed at a given age value. For example, if a total of three successful 

cities in reach age 10, the first in 1900 and the second and third in 1995, then the Years 

vector is given by: 

(3.2) 𝑌𝑒𝑎𝑟𝑠𝐴𝑔𝑒=10 = [1900, 1995,1995] 

I calculate the composition of knowledge types used by inventors in unsuccessful 

cities at a given age value by averaging the composition used in unsuccessful cities over the 

𝑌𝑒𝑎𝑟𝑠𝐴𝑔𝑒 vector. Let the count of patent parents used by all inventors in unsuccessful cities 

(abbreviated as USC) in a given 5-year period and of a given source type be defined as 

𝑃𝑎𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑌𝑒𝑎𝑟𝑠,𝑈𝑆𝐶,𝑇𝑦𝑝𝑒. The average propensity for inventors in unsuccessful cities of a 

given age to source knowledge of a given source type is: 

(3.3) %𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑈𝑆𝐶,𝑇𝑦𝑝𝑒,𝐴𝑔𝑒 =
∑ ∑ 𝑃𝑎𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑌𝑒𝑎𝑟𝑠,𝑈𝑆𝐶,𝑇𝑦𝑝𝑒𝑈𝑆𝐶𝑌𝑒𝑎𝑟𝑠

∑ ∑ 𝑃𝑎𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑌𝑒𝑎𝑟𝑠,𝑈𝑆𝐶𝑈𝑆𝐶𝑌𝑒𝑎𝑟𝑠
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In Equation 3.3, the Years subscript is an index of the 𝑌𝑒𝑎𝑟𝑠𝐴𝑔𝑒 vector.
8
 To provide an 

example of how Equation 3.3 is computed, let us make three assumptions:  

 

(1) 𝑌𝑒𝑎𝑟𝑠𝐴𝑔𝑒=10 = [1900, 1995,1995], as in Equation 3.2 

(2) 𝑃𝑎𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑌𝑒𝑎𝑟𝑠,𝑈𝑆𝐶 = [50,100,100], denoting that patents in unsuccessful cities 

sourced knowledge from 50 parent patents in 1900 and 100 parents in 1995 

(3) 𝑃𝑎𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑌𝑒𝑎𝑟𝑠,𝑈𝑆𝐶,𝑇𝑦𝑝𝑒=𝑁𝐿.𝐻𝐼𝐺𝐻 = [5,8,8], denoting that patents in unsuccessful 

cities sourced knowledge from 5 high-impact parents in 1900 and 8 in 1995 

 

In this example, percentage of parents unsuccessful cities sourced from NL.HIGH parent 

patents at Age=10 is computed as: 

(3.4) %𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑈𝑆𝐶,𝑇𝑦𝑝𝑒=𝑁𝐿.𝐻𝐼𝐺𝐻,𝐴𝑔𝑒=10 =
5+8+8

50+100+100
= 8.4% 

Finally, to compare the composition of knowledge sources used by inventors in 

successful cities with the composition used in unsuccessful cities, I compute the successful 

cities composition premium as the difference between the compositions used in successful 

cities (SC) and unsuccessful cities (USC): 

(3.5) 𝑆𝐶𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑇𝑦𝑝𝑒,𝐴𝑔𝑒 = %𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑆𝐶,𝑇𝑦𝑝𝑒,𝐴𝑔𝑒 − %𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑈𝑆𝐶,𝑇𝑦𝑝𝑒,𝐴𝑔𝑒 

In Figure 3.4, I create scatterplots of 𝑆𝐶𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑇𝑦𝑝𝑒,𝐴𝑔𝑒 by plotting it against CBSA age. I 

overlay Loess regression fit lines with a search distance of 100% to identify general trends in 

the data across age values and to generate 95% confidence intervals. The chapter appendix 

provides similar charts using 0.5% and 5% threshold values. 

                                                 
8
 The 1995 value is double-counted because it appears twice in the 𝑌𝑒𝑎𝑟𝑠𝐴𝑔𝑒=10 vector, which amounts to 

taking weighted means. 
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Figure 3.4: Knowledge Sources used by Cities that Break the Patenting Threshold in 

Excess of Knowledge Sources used by Cities that Never Break the Patenting Threshold

 

Figure 3.4 shows that inventors in successful CBSAs use a different composition of 

knowledge sources than do inventors in unsuccessful CBSAs. These differences occur during 

and after successful CBSAs cross the patenting threshold. Early in their CBSA’s innovative 

growth, when CBSA age is between -100 and -50, inventors in successful cities source about 

2.5% more of their knowledge from NL.HIGH patents than do inventors in unsuccessful 

cities, as indicated by the dotted red line that is located above the x-axis. The shaded 

confidence interval indicates that this difference is statistically significant at the 95% level. 

Between age -50 and 0, inventors in successful cities increase a growing share of their 

knowledge from local high-impact inventions, as indicated by solid red line that rises well-

above the x-axis. Eventually, when city age passes 50 years, inventors in successful cities 

source a growing share of their knowledge from local low-impact inventions. However, the 
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solid red line remains far above the solid blue line for the duration of the chart, indicating that 

inventors in successful cities rely much more heavily on local high-impact knowledge than 

do inventors in unsuccessful cities for the full duration of their region’s innovative growth 

and decline.  

 

3.7) Discussion 

This paper has used data on knowledge production and knowledge sourcing to study 

how inventors initiate and expand knowledge production in new places. The creation of new 

technological knowledge is difficult but inventors are aided by the existing ideas that they can 

build on. However, inventors in regions without histories of knowledge production can access 

few ideas through face-to-face communication. In turn, inventors tend to create new 

technologies in established milieus. 

Occasionally new and impactful ideas are generated that are less reliant on existing 

stocks of knowledge. Certainly, many of the subsequent inventions enabled by these 

breakthroughs are realized within immediate environs where the breakthroughs are initially 

made. However, it is possible for inventors to commence knowledge production in new 

places by importing promising new ideas from other regions and by developing those ideas to 

create larger technological systems. As those technological systems grow, the associated 

knowledge is distributed across expanding networks of actors that co-locate in space to 

interact through face-to-face communication. New innovative clusters and new knowledge 

domains are thus endogenously developed. 

While a wealth of research examines how geographical proximity enhances the 

generation and transmission of technological knowledge, those literatures have paid less 

attention to how these social and physical are created. As a consequence, two related 

questions about how regions emerge as innovative centers remain unresolved. The first 
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question is why inventors in some locations manage to source high-impact non-local ideas 

but fail to sustain long-run local innovation (Scott and Storper, 1987). The results of this 

study indicate that in addition to importing promising ideas from afar, inventors need to 

introduce high-impact ideas locally. Yet, this finding begs a related question: why do 

inventors in some regions introduce more high-impact inventions than in others? For 

Saxenian (1996) and Storper et al. (2015), competitive advantage in the creation of impactful 

new technologies is derived from dexterous local institutions that allow regional actors to 

develop new methods for organization and coordination. To test this hypothesis, researchers 

should study the association between the cross-regional variation in the fluidity of local 

inventor networks and the local creation and capture of high-impact inventions. 

Finally, while this study demonstrates how high-impact ideas provide opportunities 

for inventors to commence knowledge production in new places, too little is known about 

why inventors integrate some new and impactful ideas into existing technological systems 

while in other cases they develop technologies that drive existing technological systems into 

obsolescence. These technological relationships have regional consequences as certain 

inventions promote regional diversification and resilience (Neffke et al., 2013; Rigby, 2015; 

Boschma, 2015) while other inventions render regional knowledge bases obsolete and 

establish new geographical outposts for innovation (Scott and Storper, 1987; Storper and 

Walker, 1991; Boschma and Lambooy, 1999). Ecological models of symbiotic and 

adversarial relationships between technologies (Foster et al., 2014) and network-based 

models of disruption (Funk and Owen-Smith, 2016) are encouraging starting points to unpack 

these conflicting sources of evolution and revolution in the geography of innovation. 
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3.8) Appendix 

The production of high and low-impact patents in CBSAs by CBSA Age. 

Figure 3.5: Age Defined Using 0.5% Threshold 

 

Figure 3.6: Age Defined Using 5% Threshold 
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Composition of knowledge sources by ranges of CBSA age. 

Table 3.3: Age Defined Using 0.5% Threshold 

 Source Type 

Age Range NL.High NL.Low L.High L.Low 

-100 to 0 68% 26% 4% 2% 

0 to 50 69% 27% 9% 5% 

50 to 150 57% 27% 10% 6% 

 

Table 3.4: Age Defined Using 5% Threshold 

 Source Type 

Age Range NL.High NL.Low L.High L.Low 

-100 to 0 70% 23% 5% 3% 

0 to 50 55% 28% 10% 6% 

50 to 150 55% 23% 15% 7% 
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Composition of knowledge sources and patent production by CBSA Age using 0.5% and 5% 

thresholds in calculating CBSA Age. 

 

Figure 3.7: Age Defined Using 0.5% Threshold 

 

Figure 3.8: Age Defined Using 5% Threshold 
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Composition of knowledge sources used by cities that break the patenting threshold in excess 

of knowledge sources used by cities that never break the patenting threshold. 

 

Figure 3.9: Age Defined Using 0.5% Threshold 

 

 

Figure 3.10: Age Defined using 5% Threshold 
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Chapter 4: The Geography of Breakthrough Innovation in the United 

States 

 

4.1) Abstract 

Over the 20
th

 century, the geography of breakthrough innovation in the United States 

– defined as the spatial distribution of the production of patents that are both novel and 

impactful – underwent three broad transformations. At the start of the 20
th

 century, 

breakthrough innovation was concentrated in populous metropolitan areas where diverse 

technological knowledge circulated. However, by the 1930s breakthroughs were created less 

frequently across the entire country. Consequently, their invention had a less distinct 

geography. The large-scale creation of breakthroughs resumed in the 1960s and was once 

again concentrated in large and knowledge-diverse metropolitan areas. However, the 

invention of breakthroughs during the latter part of the century also frequently involved long-

distance collaborations between inventors. In this chapter, I document these historical 

changes to the geography of breakthrough innovation and advance a model to explain why 

these changes occurred. The model proposes that the geography of breakthroughs is 

established by four factors: (1) the prevailing knowledge intensity of breakthrough 

inventions, (2) the distance-based frictions incurred by the technologies used for 

collaboration, (3) the distance-based frictions incurred by the technologies used for 

knowledge-sourcing, and (4) the disruptiveness of the regime of technological change. With 

respect to these parameters, I provide evidence to suggest that (a) the knowledge-intensity of 

breakthrough inventions increased over the 20
th

 century, (b) the technologies used to 

collaborate across distance improved markedly over the 20
th

 century, (c) the technologies 

used to source knowledge across distance did not improve  over the 20
th

 century, and (d) the 

regime of technological change was disruptive at the beginning and at the end of the 20
th
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century but incremental in the middle of the 20
th

 century. I additionally show how the 

combination of these four parameters accurately predicts the empirical geography of 

breakthrough innovation during the beginning, middle, and end of the 20
th

 century. I 

conclude the paper by discussing lessons that the 20
th

 century’s geography of breakthrough 

innovation provide for anticipating possible futures for the geography of innovation in the 

21
st
 century, including in the years beyond COVID-19. 
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4.2) Introduction 

Innovation is a critical determinant of the competitiveness of firms and the aggregate 

economic prosperity of the residents of cities (Nelson and Winter, 1982; Moretti, 2012; 

Chetty et al. 2014). For these reasons, a widespread effort in urban economics, economic 

geography, and innovation science seeks to uncover the types of spatial environments that 

enhance creativity and promote innovation. Such analyses often focus on the spatial 

concentration of actors in regions with high population densities and ready access to flows of 

diverse ideas which circulate in those regions (Duranton and Puga, 2001; Mewes, 2019; 

Berkes and Gaetani, 2020). This line of research, however, is complicated by the fact that 

innovation has thrived in regions with very different local agglomeration densities. No two 

places have been more influential for the development of the agglomeration-based theory of 

innovation than Jane Jacobs’ (1962; 1969) neighborhood of Greenwich Village in New York 

City and AnnaLee Saxenian’s (1994) Silicon Valley, but the territorial form of these two 

agglomerations are vastly different: while ideas spilled across Greenwich Village’s narrow 

streets and alleyways, Silicon Valley is currently a suburban landscape, and during Silicon 

Valley’s initial phase of innovative growth, the region was borderline rural (O’Mara, 2018). 

Moreover, despite the current tendency for innovative activities to concentrate in large and 

dense metropolitan areas (Balland et al., 2020), important historical inventions such as the 

airplane and the cotton gin were made outside dense urban environments (Mokyr, 1990). The 

rise of non-local collaboration further complicates the relationship between agglomeration 

and innovation: the average distance between co-inventors of patents tripled in the United 

States between 1900 and 2015 (van der Wouden, 2020; Clancy 2020). The prevalence of 

innovation in urban, suburban, and rural environments, as well as the rise of inter-regional 

collaborations between inventors, demonstrates that there is no singular territorial form of 

economic activity which absolutely optimizes creativity and innovation. 
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Nonetheless, certain types of environments have proven to be advantageous for 

creative invention during specific periods of U.S. history. Anecdotal records and patent data 

indicate that rural innovation was prominent during the 18
th

 and 19
th

 centuries (Mokyr, 1990; 

Gordon, 2016; Balland et al., 2020; Mewes, 2019). Both patent data and employment records 

suggest that a big-city advantage for complex, high-impact, and well-compensated innovative 

activities emerged at the start of the 20
th

 century (Desmet and Rossi-Hansberg, 2009; 

Bettencourt et al., 2007; Kemeny and Storper, 2020; Balland et al., 2018; Mewes, 2019; van 

der Wouden, 2019; Berkes and Gaetani, 2020). The agreement between patent data and 

employment records on the spatial concentration of innovative activities breaks down in the 

middle of the 20
th

 century, when patent records indicate that innovation remained 

concentrated in large cities (Balland et al., 2018; Mewes, 2019) but employment records 

indicate that innovative occupations spread out across space (Desmet and Rossi-Hansberg, 

2009; Kemeny and Storper, 2020). Finally, there is consensus that a strong big-city advantage 

for innovative activities emerged at the end of the 20
th

 century. During this latter period, the 

productivity spillovers radiating from firms fully decayed across a distance as short as 250 

meters (Arzaghi and Henderson, 2008; Baum-Snow et al., 2020). However, during the late 

20
th

 century non-local collaboration between the inventors of patents also became 

increasingly frequent (Bathelt et al., 2004; van der Wouden, 2019). With these caveats in 

mind, in Table 4.1 I synthesize these sources by presenting a stylized timeline of the broad 

shifts in the spatial distribution of innovative activities across regions of the United States. 
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Table 4.1: Geographical Distribution of Innovative Activities by Historical Period 

Suggested by Existing Literature 

Before 1900 Early 20
th

 Century Mid-20
th

 Century Late 20
th

 Century 

Dispersed across 

space 

Strongly 

concentrated in major 

metropolitan areas 

Spatially dispersed 

high-wage 

employment; 

spatially 

concentrated 

patenting 

Spatially 

concentrated high-

wage employment; 

spatially 

concentrated 

patenting in major 

metropolitan areas 

but involving inter-

regional 

collaborations 

Source: Author’s elaboration of sources cited in the paragraph above. 

While suggestive, the timeline in Table 4.1 is only partly helpful for understanding 

how the relationship between agglomeration and creative innovation evolved over time. The 

outcomes summarized in Table 4.1 – overall patenting and high-wage employment – vary in 

terms of the extent to which they demand creative insight, as patents are often awarded to 

incremental inventions and high wages are often paid to workers for factors unrelated to 

creativity. This limitation to the existing literature motivates the first objective of this chapter: 

to describe how the relationship between agglomeration density and breakthrough innovation 

evolved in the United States over the 20
th

 century. In this study, I emphasize breakthroughs 

because breakthroughs’ combination of novelty and outward impact implies that they are 

outcomes of a highly creative process. 

To describe the evolution of the relationship between agglomeration and breakthrough 

innovation, I analyze data from about 4 million patents granted between 1900 and 1999 to 

study how the propensity for inventors residing in knowledge-diverse metropolitan areas in 

the U.S. to create breakthrough inventions changed over time. I define knowledge-diverse 

regions as the Core-Based Statistical Areas (CBSAs) where local inventors patent in a wide 
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array of patent classes.
9
 Inventors that reside in knowledge-diverse metropolitan areas are 

able to source a broader set of ideas through face-to-face communication than are all other 

inventors and thus may invent breakthroughs more frequently. Because the frequency of non-

local collaboration between inventors increased over the 20
th

 century (van der Wouden, 2020; 

Clancy, 2020), I also examine changes in the propensity for inventors engaged in non-local 

collaborations to invent breakthroughs. My analysis generates three findings. First, in the 

early 20
th

 century, inventors residing in knowledge-diverse regions were disproportionately 

more likely than inventors residing in non-knowledge-diverse cities (hereafter, knowledge 

homogeneous regions) to develop breakthroughs. Second, in the mid-20
th

 century, inventors 

located in knowledge-diverse regions were no more likely than inventors in knowledge-

homogeneous regions to develop breakthroughs. Third, at the end of the 20
th

 century, 

inventors that both resided in knowledge-diverse regions and engaged in non-local 

collaborations were more likely than all other types of inventors, including those that resided 

in knowledge-diverse regions and collaborated locally, to develop breakthroughs. 

The chapter’s second objective is to explain why these changes to the geographical 

distribution of breakthrough innovation occurred. For this purpose, I develop a spatial model 

of endogenous knowledge production which emphasizes four factors that collectively 

determine the geographical distribution of breakthrough innovation. These factors are the 

knowledge intensity of breakthrough inventions, the distance-based frictions incurred by 

collaborative technologies, the distance-based frictions incurred by knowledge-sourcing 

technologies, and the disruptiveness of the prevailing regime of technological change. I 

elaborate on these four model parameters in Section 4.5. In Section 4.6, I show that the 

theoretical distribution of breakthrough innovation predicted by the model closely aligns with 

the observed distribution.  

                                                 
9
 Empirically, I define knowledge-diverse metropolitan areas using a year-specific variable, so a metropolitan 

area that is not knowledge-diverse in one year may be knowledge-diverse in later years. 
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The balance of the chapter consists of a review of the literatures on innovation and its 

geography (Section 4.3), a description of the methods used in the study (Sections 4.4 and 

4.5), and an empirical analysis of the evolving geography of breakthrough innovation 

(Section 4.6). The introduction of the theoretical model, its calibration to empirical data, and 

the discussion section occupy Sections 4.7 and 4.8. In Section 4.9, I discuss how the model 

developed in this article revises a common perspective on why economic activities dispersed 

across space during the mid-20
th

 century, and I share lessons that this historical revision 

imply for the future of the agglomeration of breakthrough innovation, including in the years 

after COVID-19.  

 

4.3) Invention, Breakthroughs, and Location 

Economic geography theory argues that strong distance-based frictions in endogenous 

knowledge production cause innovative activities to concentrate in space (Jaffe et al., 1993; 

Berkes and Gaetani, 2020). Those distance-based frictions arise because the quantity of 

information embedded in dense technological knowledge exceeds the bandwidth of long-

distance communication technologies. In this regard, long-distance communication 

technologies compete poorly with face-to-face communication. The combination of vocal, 

visual, and physical cues that are possible with face-to-face communication allows partners to 

transmit a large quantity of information in a short amount of time and is a primary reason 

why inventors located in knowledge-rich locations hold an enduring advantage in sourcing 

ideas and developing of new technologies (Gertler, 2003; Storper and Venables, 2004).  

The advantages of face-to-face communication are likely to be particularly pertinent 

during the creation of breakthrough inventions. This is because the creation of breakthroughs 

involves extensive technological search, which is performed more efficiently when the 

communication technology used to conduct that search has sufficient bandwidth. 
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Breakthroughs involve extensive search because they are novel and highly impactful. 

Breakthroughs are novel in that they combine existing ideas in dramatically imaginative 

ways, often departing from the well-worn search paths (Uzzi et al., 2013). Breakthroughs are 

highly-impactful because they combine existing ideas with a high level of complementarity 

and so enable a large quantity of subsequent innovation (Fleming et al., 2001). Together, the 

two criteria of novelty and impact imply that inventors need to identify well-functioning and 

radically new combinations of ideas in order to develop breakthroughs. Most of the 

combinations of ideas that inventors can create do not fit both criteria of novelty and 

complementarity, so inventors have to search widely amongst the set of combinatorial 

possibilities to identify the few that do (Youn et al., 2015).  

Duranton and Puga (2001) and Berkes and Gaetani (2020) develop formal models 

where distance-based search costs cause innovating actors to co-locate in space. In Duranton 

and Puga’s (2001) model, innovating firms agglomerate to minimize distance-based 

transaction costs while they search for inputs that are complementary to their production 

process. While Duranton and Puga’s (2001) model makes the identification of 

complementary pairings of inputs and outputs endogenous to the process of agglomeration, 

they exogenously introduce novelty in their model by assuming that all firms enter the market 

with a new production process. Berkes and Gaetani’s (2020) model explains the creation of 

novelty in densely populated cities through the increased exposure of inventors in dense cities 

to intra-industry spillovers. While their model makes the creation of novelty endogenous to 

the provision of local intra-industry spillovers, the model does not describe how 

complementary ideas are generated locally because all ideas in the model are made available 

to every firm after they are invented, regardless of a firm’s location. Moreover, in Berkes and 

Gaetani (2020), novel combinations of ideas are generated locally, but complementary 

combinations are generated globally. Thus, while neither model generates an explicit 
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prediction for how distance-based frictions affect the search for combinations of ideas that 

are both novel and complementary, they collectively propose that the creation of novel and 

complementarity combinations are both positive functions of the heterogeneity of ideas that 

circulate in local environs. 

Despite widespread interest in breakthrough innovation, few empirical studies have 

investigated the spatial concentration of breakthrough innovation. One exception is Grashof 

et al. (2019), who find that breakthrough inventions made in Germany are disproportionately 

created by firms that are located geographically inside innovative clusters but whose 

inventors are in the periphery of their clusters’ collaborative networks.
10

 From these results, 

the authors infer that both local and non-local interactions between inventors are important 

for the creation of breakthroughs. Additional studies have separately examined the 

geographical distribution of the creation of novel inventions and impactful inventions, but 

they have not studied the geographical distribution of novel and impactful inventions in 

conjunction. Balland et al. (2020) show that overall patenting in the United States is 

concentrated in populous metropolitan areas and that this association is stronger for novel 

patents.
11

 Mewes (2019) also studies the spatial concentration of overall patenting and novel 

patenting in the U.S. and finds both types of innovation to be concentrated in metropolitan 

areas with diverse local knowledge stocks. However, neither Balland et al. (2020) nor Mewes 

(2019) analyze the impact of those patents on subsequent invention. Berkes and Gaetani 

(2020) perform a similar analysis using U.S. counties as their unit of observation. In addition, 

Berkes and Gaetani (2020) test the aggregate relationship between the novelty of patents and 

the impact of patents, measured using forward citations. They find that novel inventions in 

                                                 
10

 Grafhof et al. (2019) refer to breakthrough inventions as “radical inventions”. They define “radical 

inventions” as patents that are both novel and impactful, which is the definition of breakthroughs adopted by 

this paper. 

 
11

 Balland et al. (2020) define novel patents as “complex” patents. Their measurement of “complexity”, which 

measures the newness of the subclassification codes on patents, closely resembles this paper’s definition of 

novelty. 



59 

 

the U.S. are disproportionately introduced in counties with high population densities and that 

novel patents are on average more impactful than non-novel inventions on subsequent 

innovation. However, Berkes and Gaetani (2020) do not analyze whether patents which are 

both novel and impactful are more often made in high-density counties. Finally, Castaldi et 

al. (2015) examine the knowledge-based characteristics of U.S. states that are more likely to 

produce high-impact patents (measured using forward citation counts). They find that 

inventors in states with diverse stocks of circulating unrelated ideas tend to produce high-

impact inventions more frequently. However, Castaldi et al., (2015) do not analyze the 

novelty content of these inventions. In addition, Castaldi et al.’s (2015) study is at the state 

level, within which population and knowledge density can vary strongly. Thus, while each of 

these four studies of U.S. invention suggest that agglomeration economies are important for 

overall patenting, novel patenting, and high-impact patenting, they do not analyze the 

relationship between agglomeration and the production of patents that are both novel and 

impactful. As a result, the geography of breakthrough innovations in the U.S. has yet to be 

systematically described. 

In addition to these issues related to the identification of breakthrough inventions, the 

geography of breakthrough innovation may contain important variations across time. As 

discussed earlier, the advantages that knowledge-diverse regions provide for the creation of 

breakthroughs is a function of the knowledge intensity of breakthrough innovation and the 

distance-based frictions incurred by the technologies used to collaborate and source 

knowledge. The states of these parameters are likely to change over time as the nature of the 

process of innovation and the state of communication technologies evolves (Lamoreaux and 

Sokoloff, 1996; Wuchty et al., 2007; Storper and Leamer 2001). In addition, the 

disruptiveness of the dominant regime of technological change may increase or decrease over 

time. Schumpeter (1934; 1942) proposes that there are periods of more incremental 
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technological change and periods of more disruptive technological change. In incremental 

regimes, technological knowledge is primarily advanced through the introduction of 

incremental or “normal” inventions while in disruptive regimes the state of technological 

knowledge primarily advances through the creation of novelty. In an incremental regime, the 

novel inventions introduced to the economy may not be impactful enough to warrant the 

distinction of breakthrough inventions. Therefore, no geography of breakthrough innovation 

will establish itself during incremental regimes of technological change.  

Two historical studies analyze the geographical concentration of innovation in the 

U.S. over an extended time period (Mewes, 2019; Balland et al., 2020). Both studies use 

USPTO patent records to measure innovative output and find that the spatial concentration of 

overall patenting increased between 1850 and 2000. While Balland et al. (2020) finds that the 

increased concentration is even stronger for novel patents (measured by the age of the 

subclassification codes assigned to patents), Mewes (2019) does not identify a significant 

difference between increased agglomeration of overall patenting and novel patenting using a 

slightly different measure of novelty. Again, neither study examines changes in the 

geographical concentration of breakthrough inventions.   

Finally, there is growing recognition that the geography of innovation is more 

complex than a binary typology of spatial concentration or dispersion or an ordinal gradient 

spanning the two. In particular, non-local collaboration allows inventors to bridge separate 

inventive milieus, experiment with underexplored combinatorial possibilities, and possibly 

introduce high-impact inventions (Bathelt et al., 2004; Esposito and Rigby, 2018). While past 

studies have documented the increase in the prevalence of non-local collaborations (van der 

Wouden, 2020; Clancy, 2020), the relationship between non-local collaboration and the 

invention of breakthroughs has not been systematically studied. 
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4.4) Methods: Identifying Breakthrough Inventions 

Breakthroughs inventions are the subset of inventions that are both novel and highly 

impactful. To empirically identify breakthroughs, one must assess individual inventions along 

both of these dimensions. Past research has defined novel inventions as those which generate 

entirely new ideas or recombine existing ideas in new ways. To this end, Uzzi et al. (2013) 

compute the atypicality of the knowledge combinations in individual inventions using z-

scores, which calculate the extent to which each combination of knowledge units in a given 

invention deviates from the combinations inventors have made in the past. Kim et al. (2016) 

and Mewes (2019) apply this method to U.S. patent records using subclassification codes as 

indicators of the knowledge components in each invention, while Berkes and Gaetani (2020) 

apply z-scores to patent citations in a similar manner. Atypicality measured at the pairwise 

level between all ideas combined in an invention can be aggregated to the invention level to 

compute an invention’s novelty. 

In this study, I identify novel inventions by assessing the atypicality within them. I 

calculate the atypicality of all combinations of knowledge units in each invention by 

calculating z-scores for all USPTO patents issued between 1900 and 1999.
12

 I use the coarse-

grained subclasses assigned to each patent for this purpose, at which scale there are about 

16,000 unique USPC subclasses (Kim et al., 2016). Because z-scores require a sufficient pre-

history of patenting to accurately measure the mean frequency of the combination of any two 

subclasses, I compute Z-scores for the combinations of subclasses on patents granted starting 

in 1900 (Mewes, 2019). The z-score of the combination of subclass i with subclass j on a 

patent is given by Equation 4.1: 

(4.1) 𝑍𝑖,𝑗 =
𝑜𝑖,𝑗 − 𝑢𝑖,𝑗

𝜎𝑖,𝑗
 

                                                 
12

 I source raw patent data and their USPC subclasses from the publicly-accessible Patents View website: 

https://www.patentsview.org/ 

https://www.patentsview.org/
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In Equation 4.1, 𝑜𝑖,𝑗is the number of past co-occurrences of subclasses i and j on all 

previously-granted patents. The term 𝑢𝑖,𝑗 gives the expected number of past co-occurrences 

of subclasses i and j if inventors were to combine subclasses randomly. Its value is computed 

using Equation 4.2: 

(4.2) 𝑢𝑖,𝑗 =
𝑛𝑖 ∗ 𝑛𝑗

𝑁
 

In Equation 4.2, 𝑛𝑖 and 𝑛𝑖 are the respective cumulative number of patents that 

contain subclasses i and j on all prior patents, and N is the cumulative count of all prior 

patents. Finally, the variance of the subclass pairing, 𝜎𝑖,𝑗
2 , is given by Equation 4.3:  

(4.3) 𝜎𝑖,𝑗
2 = 𝑢𝑖,𝑗 (1 −

𝑛𝑖

𝑁
) (

𝑁 − 𝑛𝑗

𝑁 − 1
) 

𝑍𝑖,𝑗 is positive when two subclasses are combined more frequently than expected 

given a random process, and negative when two subclasses are combined less frequently than 

expected given a random process. To generate a simple interpretation of the extent to which a 

combination is atypical, I follow Mewes (2019) and define atypical combinations as those 

with negative Z-scores. In addition, I define novel patents as those which introduce 1 or more 

atypical combinations of subclasses. I define all patents which do not introduce an atypical 

combination of subclasses as a “normal” patent. 

The second criterion of breakthroughs is that they have outsized impact on subsequent 

innovation. To identify high-impact inventions, researchers often count the number of 

forward citations received by patents (Cremers et al., 1999; Hall, Jaffe, and Trajtenberg, 

2001). In Chapter 2 of this dissertation, I developed  related approach by tracing the flow of 

knowledge between individual patents based on the co-occurrence of fine-grained 

subclassification codes found on patents invented at different moments of time. There are two 

advantages to the latter method. First, citation records are unreliable for patents granted 

before 1947 (Berkes 2020) but the subclass codes used by my method are available for all 
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USPTO utility patents starting in 1836. Second, the same subclassification codes used to 

compute patent impact can also be used to assess the novelty profile of patents using Z-scores 

(Kim et al., 2016; Mewes, 2019). Thus, subclassification codes allow the novelty and impact 

of individual patents to be assessed using a common data input. Therefore, I follow the 

methods described in Chapter 2 to compute the impact of each patent on subsequent 

invention.  

In Table 4.2, I present a typology of patents that vary in terms of impact and novelty. 

While in the subsequent analyses I treat the number of knowledge-based descendents of a 

patent as a continuous variable, for simplicity in Table 4.2 I convert patent impact into a 

binary measure by defining high-impact inventions as those that are in the top decile of the 

impact distribution for the same cohort year. The first quadrant of the 2x2 matrix describes 

the patents that do not introduce novelty and have low impact. Patents of this type are failed 

conservative experiments and they account for 72.4% of all USPTO utility patents granted 

between 1900 and 1999. The second quadrant of the matrix describes the inventions that do 

not introduce novelty but are nonetheless highly impactful. These incremental improvements 

account for 5.8% of USPTO patents granted 1900-1999. The third quadrant describes novel 

inventions that have low impact. These failed radical experiments account for 19.1% of 

USPTO patents 1900-1999. Finally, quadrant 4 describes the small percentage of inventions 

that are both novel and highly-impactful. These breakthrough inventions are rare, comprising 

just 2.7% of all USPTO patents 1900-1999. They are created when inventors deviate from the 

status quo in useful ways.  
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Table 4.2: Typology of Inventions by Novelty and Impact 

 Low-Impact High-Impact 

Normal 

(1) 

 

Failed conservative 

experiments 

 

72.4% of Patents 

 

(2) 

 

Incremental 

improvements 

 

5.8% of Patents 

 

Novel 

(3) 

 

Failed radical 

experiments 

 

19.1% of Patents 

 

(4) 

 

Breakthroughs 

 

 

2.7% of Patents 

 
Patents granted 1900-1999. High-Impact patents are those in the top decile of their 

cohort year in terms of impact on subsequent invention. Because of integer cutoffs, the 

High-Impact column does not sum to 10%. 

 

4.5) Methods: The Geography of Breakthroughs 

After classifying each patent based on the typology in Table 4.2, I link patents to the 

metropolitan areas where they are invented. To do so, I use place-of-residence data provided 

van der Wouden (2020) for all U.S. inventors between 1836 and 1975, and I use place-of-

residence data publicly available on the PatentsView website for all U.S. inventors between 

1976 and 1999. I use constant-boundary 2015 definitions of metropolitan areas for this 

purpose. Because the innovative potential of inventors is expected to be greater for inventors 

residing in knowledge-diverse metropolitan areas (Duranton and Puga, 2001; Berkes and 

Gaetani, 2020), I measure the local knowledge diversity of the regions in which each patent is 

produced. I measure local knowledge diversity by counting the number of unique USPC 

coarse-grained subclassification codes assigned to the patents produced by inventors that 

reside in each core-based statistical area (CBSA) in a given year. Next, I transform the raw 

counts of local knowledge diversity into a binary variable by defining knowledge-diverse 

CBSAs as those where inventors produced patents in 10% or more of the USPC course-



65 

 

grained subclassification codes assigned to all U.S. patents in a given year. All CBSAs that 

do not meet the diversity criterion are labeled “knowledge-homogeneous cities”. For 

example, in 1950 the USPTO assigned patents using 7,454 unique course-grain subclass 

codes, so in 1950 diverse CBSAs were those that produced patents with at least 745 unique 

subclasses. In 1950, 13 CBSAs met the diversity criterion.
13

  

A core argument of this paper is that the generation of novelty is not important per se, 

because many novel inventions have minor downstream impact. Indeed, in Figure 4.1 I 

aggregate the total number of patents produced, the number of novel patents produced, and 

the number of high-impact patents produced to the CBSA level and show that there is no 

relationship between the production of novelty and the knowledge diversity of the regions 

where those patents are invented. In particular, Figure 4.1 shows that the concentration of 

total patenting in knowledge-diverse cities (solid line) is identical to the concentration of 

novel patenting in knowledge-diverse cities (dashed line). Thus, my data affirm the 

conclusion reached by Mewes (2019) that novel patenting is no more concentrated in 

knowledge-diverse cities than overall patenting is. On the other hand, Figure 4.1 shows that 

high-impact patenting (dotted line, defined as in Table 4.2) is more concentrated in 

knowledge-diverse cities than is overall patenting. Because these results show that the 

creation of novelty does not benefit from location in knowledge-diverse regions but the 

creation of high-impact inventions does, the results raise the possibility that the key 

advantage of local knowledge diversity is the enhanced ability to identify complementary 

combinations of ideas. Therefore, in the proceeding empirical analysis, I take the creation of 

novelty as a given, and examine how the impact of novel patents varies with the local 

knowledge diversity of the regions in which those novel patents are invented. 

 

                                                 
13

 In 1950, the knowledge-diverse CBSAs were (in descending order), New York, Chicago, Los Angeles, 

Philadelphia, Cleveland, Boston, Detroit, Pittsburgh, Cincinnati, San Francisco, Washington DC, Milwaukee, 

and Bridgeport CT. 
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Figure 4.1: Percentage of Patents Produced in Knowledge-Diverse Cities by Patent Type 

 

 

4.6) Results: The Geography of Breakthrough Innovation 

For the reasons discussed above, I test whether the average impact of novel patents 

varies based on the diversity of the local knowledge stock in which they are invented. I 

perform this test in Figure 4.2 by creating time charts of the average impact of four types of 

patents: novel patents invented in knowledge-diverse cities (Nov | Div), novel patents 

invented in knowledge-homogeneous cities (Nov | Homog), normal patents invented in 

knowledge-diverse cities (Norm | Div), and normal patents invented in knowledge-

homogeneous cities (Norm | Homog). Because there are about 4 million observations in the 

dataset, a scatterplot is infeasible so I instead show fit lines with 95% confidence intervals. 

The large number of observations also renders LOESS regression infeasible, so I produce the 

fit lines using a Generalized Additive Model (GAM) with a cubic spline smoothing parameter 

(Wood et al. 2017). I use this same plotting method for all subsequent figures. 
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Figure 4.2: Average Patent Impact by Novelty and Local Knowledge Diversity 

 

Figure 4.2 generates three inferences. First, across all years, novel patents invented in 

knowledge-diverse cities (Nov|Div) were on average the most impactful type of patents, 

followed by novel patents invented in knowledge-homogeneous cities (Nov|Homog) 

inventions. Second, the average impact of all types of inventions increased over time. Third, 

the increases in average impact were larger in knowledge-diverse cities: the impact of 

Nov|Div patents increased relative to Nov|Homog, and the impact of Norm|Div increased 

relative to Norm|Homog.  

The increase in the average impact of Nov|Div patents relative to Nov|Homog patents 

suggests that the invention of breakthrough patents increasingly concentrated in knowledge-

diverse cities over time. However, there are two reasons to exercise caution when interpreting 

this raw data. First, the large increases in average impact for all types of patents over time 

make it difficult to identify differential trends. Second, patents vary in terms of the number of 

subclasses assigned to them. Patents with more subclasses have higher impact values by 

virtue of their larger subclass count. The latter consideration arises because the method used 

to identify knowledge-based descendants searches for overlapping subclasses and 
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combinations of subclasses on patents. Patents assigned many subclass codes therefore have 

more opportunities for knowledge-based descendants. 

To take these two considerations into account, I compute the predicted impact of 

patents by adjusting for the year a patent is granted and the number of subclasses assigned to 

it. To compute predicted impact, I regress raw patent impact against a year*subclass count 

factor variable. I collect the residuals from the regression and plot them against the each 

patents’ grant year, broken out by patent type to derive predicted impact values by patent 

type. The regression model used to predict these impact values is given by Equation 4.4: 

(4.4) 𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝑌𝑒𝑎𝑟𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝐸𝑝 

In the dataset, there are 99 years and the number of subclasses assigned to patents 

ranges from 2 to 7, creating 594 unique values of the interaction factor variable. The 

predicted impact values, broken out by patent type and CBSA type, are presented in Figure 

4.3. 

Figure 4.3: Predicted Patent Impact by Novelty and Local Knowledge Diversity of 

CBSA of Invention 

 

Note: The regression used to estimate predicated impact is given in Equation 4.4. 
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Figure 4.3 shows that the concentration of patenting by patent and city type went 

through three distinct periods during the 20
th

 century. The first phase spanned from 1900 to 

1930. During that period, novel patents were more impactful than normal patents. In addition, 

starting in 1910 novel patents invented in knowledge-diverse cities were significantly more 

impactful than novel patents invented in knowledge-homogeneous cities. The second period 

began around 1930 and lasted until approximately 1965. During this period, the predicted 

impact of novel inventions declined. By 1950, novel patents invented in knowledge-diverse 

cities were no more impactful than normal patents, and novel patents invented in knowledge-

homogeneous cities were much less impactful than normal patents. The third period began 

around 1965 when the predicted impact of novel inventions made in knowledge-diverse cities 

increased above that of normal patents. During this period, the predicted impact of novel 

patents invented in knowledge-homogeneous cities declined. This latter result shows that by 

the end of the 20
th

 century, breakthrough innovation was concentrated in these knowledge-

diverse cities. 

While Figure 4.3 shows that breakthrough innovation concentrated in knowledge-

diverse cities at the end of the 20
th

 century, the propensity for teams of inventors to 

collaborate non-locally also increased during that time period (Van der Wouden, 2019; 

Clancy, 2020). The increase in non-local collaboration suggests that the classical model of 

local innovation resulting from high distance-based communication costs became more 

complex (c.f. Duranton and Puga, 2001; Storper and Venables, 2004; Berkes and Gaetani, 

2020), so in Figure 4.4 I examine the relationship between the engagement of inventors in 

non-local collaborations and the creation of breakthroughs. To study this relationship, I 

compare the average impact of patents invented by single-location and multi-locational teams 

of inventors. Multi-locational patents are defined as patents invented by teams of inventors 

that resided in different metropolitan areas when their patent was granted. In addition, I 
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decompose teams based on the knowledge diversity of their home cities by differentiating 

between multi-locational teams that reside in knowledge-diverse and knowledge-

homogeneous cities. To ease interpretation, I momentarily omit all teams with inventors in 

both knowledge-diverse and knowledge-homogeneous cities (I analyze these mixed teams in 

the appendix). Finally, I omit all patents invented by lone inventors. 

Figure 4.4: Average Patent Impact of Collaborative Patents by Type of Collaboration 

 

Figure 4.4 shows that the average impact of novel patents produced by teams in 

knowledge-diverse cities and in knowledge-homogeneous cities were statistically identical 

until 1960. In addition, before 1980 there was no significant difference in the average impact 

of novel patents produced by single-location or multi-locational teams. However, after 1980 

novel patents produced by teams in knowledge-diverse cities became significantly more 

impactful than novel patents produced by single-location teams in knowledge-diverse cities 

or by teams of any type located in knowledge-homogeneous cities. The theoretical model 

developed in Section 4.7 will show how this spatial pattern can emerge when the state of 

collaborative and knowledge-sourcing technologies fit certain conditions. 
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Finally, in Figure 4.5 I display the predicted impact of patents based on their novelty, 

the knowledge diversity of their inventors’ CBSAs, and whether their collaborative teams are 

multi-locational. As before, I compute the predicted impact of patents by regressing patent 

impact against the Year*NrSubclasses factor variable as in Equation 4.4 and aggregate the 

residuals by year and patent type. 

Figure 4.5: Predicted Patent Impact of Collaborative Patents by Type of Collaboration 

 

Note: Regression to estimate predicted impact is given in Equation 4.4. 

Figure 4.5 shows that the predicted impact of all types of collaborative patents was 

identical until 1975. After 1975, the predicted impact of novel patents created by multi-

locational teams residing in knowledge-diverse cities increased far above the predicted 

impact of any of the other types of patent. Thus, Figure 4.5 shows that the increasing 

concentration of breakthrough innovation in knowledge-diverse cities documented in Figure 

4.3 was driven by inventors that collaborated with non-local teammates. Moreover, 

breakthrough innovation at the end of the 20th century was maximized through a 

combination of large clusters integrated into long-distance networks. 

 



72 

 

4.7) Interpretation of the Causes of Changes in the Geography of Breakthroughs 

What explains the changes in the geography of breakthrough inventions documented 

in the text above? In this section, I develop a model in which the geography of breakthroughs 

at any moment in time is established by the articulation of four factors: the disruptiveness of 

the regime of technological change, the knowledge-intensity of breakthrough invention, the 

state of long-distance collaboration technology, and the state of long-distance knowledge-

sourcing technology. Equation 4.5 writes this model as a series of interactions to express the 

interdependency between each of the factors: 

(4.5) 𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑂𝑓𝐵𝑟𝑒𝑎𝑘𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑠𝑡

= 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑣𝑒𝑡 ∗ 𝐾𝑛𝑜𝑤𝑒𝑑𝑔𝑒𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑡 ∗ 𝐿𝑜𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑐𝑒𝐶𝑜𝑙𝑙𝑎𝑏𝑇𝑒𝑐ℎ𝑡

∗ 𝐿𝑜𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑐𝑒𝑆𝑜𝑢𝑟𝑐ℎ𝑖𝑛𝑔𝑇𝑒𝑐ℎ𝑡 

In Equation 4.5, 𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑂𝑓𝐵𝑟𝑒𝑎𝑘𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑠𝑡 can take one of four discrete 

values: the production of breakthrough inventions can be perfectly concentrated in a single 

metropolis, uniformly distributed across space, concentrated in a small number of major cities 

connected by non-local collaborations, or undefined. The geography of breakthroughs is 

undefined during time periods when no breakthroughs are introduced to the economy. 

The model described by Equation 4.5 has four factors on the right-hand side of the 

equation, the first of which is the disruptiveness of the regime of technological change 

(Schumpeter, 1934; Schumpeter, 1942). This factor captures the extent to which 

technological knowledge advances through the creation of novel inventions versus normal or 

incremental ones. During periods of time when the disruptiveness of the regime of 

technological change is high, a large number of breakthroughs are created to the economy 

and so their invention can take on a distinct geography. When the disruptiveness of the 

regime of technological change is low, few breakthroughs are developed so their spatial 

distribution is indistinct – or more technically, undefined. 
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The second factor in the model is the knowledge intensity of breakthrough inventions 

(Wuchty et al., 2007; Balland et al., 2018; Bloom et al., 2020). This factor is defined as the 

prevailing returns that sourcing a larger number of knowledge-based inputs has on the 

creation of high-impact novelty. When the knowledge intensity of breakthroughs is high, the 

impact of novel inventions responds positively to the use of a large number of ideas when 

creating them. 

The third factor in the model is long-distance collaboration technology. Long-distance 

collaboration technologies are the devices used by inventors to collaborate with co-inventors 

that reside in other regions, such as letters, email, videoconferencing, and long-distance 

travel. The robustness of long-distance collaboration technology is defined as its information 

loss relative to face-to-face collaboration. By assumption, face-to-face collaboration suffers 

no information loss but is only possible between inventors that reside in the same region 

(Storper and Venables, 2004). Therefore, when completely robust, long-distance 

collaboration technologies are perfect substitutes for face-to-face communication and 

inventors are able to create novelty through collaborations across distance with no loss in 

impact.  

The fourth factor is long-distance knowledge-sourcing technology. Long-distance 

knowledge-sourcing technologies are the items inventors use to source ideas from non-local 

regions in which they do not have active collaborators. They include scientific articles, patent 

documents, and physical technological devices that can be reverse-engineered. The 

robustness of long-distance knowledge-sourcing technologies is defined by their information 

loss relative to the information loss encountered by inventors who source local knowledge. 

By assumption, sourcing local knowledge, which benefits from physical presence and 

embeddedness in an environment of shared norms, is assumed to entail no information loss 

(Gertler, 2003). Therefore, when long-distance knowledge-sourcing technologies are 
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completely robust, they are perfect substitutes for local knowledge sourcing and inventors are 

able to source ideas from all locations in the world in the creation of novelty without a 

reduction in impact. 

For simplicity, I assume that all independent variables are binary. Therefore, when 

𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑣𝑒𝑡 = 1, technological change is advanced through novel inventions as opposed to 

normal inventions; when 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑡 = 1, the knowledge-intensity of 

breakthrough inventions is high, meaning that inventors need to source a large quantity of 

knowledge in order to create high-impact novelty; when 𝐿𝐷𝐶𝑜𝑙𝑙𝑎𝑏𝑇𝑒𝑐ℎ𝑡 = 1, inventors are 

able to collaborate non-locally with no loss of information; when 𝐿𝐷𝑆𝑜𝑢𝑟𝑐𝑖𝑛𝑔𝑇𝑒𝑐ℎ𝑡 = 1, 

inventors are able to source non-local ideas with no loss of information. Because equation 6 

has four binary parameters, a 2x2x2x2 hypercube is required to demonstrate each of the 

equation’s possible outcome states. To ease the exploration of the equilibria, I present the 

possible states of the model in Table 4.3 using a 2x8 matrix. In the matrix, changes in the 

disruptiveness of the regime of technological change are shown along the matrix’s columns, 

and changes in knowledge intensity, long-distance collaboration technology, and long-

distance learning technology are shown along its rows. The cells of the matrix with white 

backgrounds show the predicted geography of breakthrough innovation given a set of 

conditions of disruptiveness, knowledge intensity, long-distance collaboration technology, 

and knowledge-sourcing technology. 
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Table 4.3: Geography of Breakthroughs under Conditions of Technological 

Disruptiveness, Knowledge Intensity, Long-Distance Collaboration Technology, and 

Long-Distance Knowledge-Sourcing Technology 

   Disruptiveness of Tech Regime 

Knowledge 

Intensity 

L.D. Collab 

Tech 

L.D. K-

Sourcing Tech 
Weak Strong 

Weak 

Weak 
Weak Undefined Dispersed 

Strong Undefined Dispersed 

Strong 
Weak Undefined Dispersed 

Strong Undefined Dispersed 

Strong 

Weak 
Weak Undefined 

Perfectly 

Concentrated 

Strong Undefined Dispersed 

Strong 
Weak Undefined Multi-Nodal 

Strong Undefined Dispersed 

 

Table 4.3 shows Equation 4.5’s predictions for the geography of breakthrough 

invention given any combination of disruption, knowledge intensity, long-distance 

collaboration technology, and long-distance knowledge sourcing technology. For example, 

the top-left white-background cell in Table 4.3 contains the value “Undefined”, indicating 

that the geography of breakthroughs is undefined when the disruptiveness of the regime of 

technological change, the knowledge intensity of breakthroughs, and long-distance 

collaboration and knowledge-sourcing technologies are all weak. The geography is undefined 

under these conditions because the non-disruptive nature of the regime of technological 

change implies that few to no breakthroughs are introduced into the economy. More 

generally, the geography of breakthroughs is undefined whenever the technological regime is 

not disruptive. 

More interesting geographies of breakthroughs emerge when the disruptiveness of the 

regime of technological change is strong. For example, under the conditions of a strongly 

disruptive regime of technological change but weak long-distance collaboration and 
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knowledge-sourcing technologies and weak knowledge intensity, the geography of 

breakthroughs is dispersed across space. The reason the geography is dispersed under these 

conditions is because the knowledge intensity of breakthrough innovation is low. Low 

knowledge intensity means that inventors do not need to source many ideas to develop high-

impact novelty, so the weak states of collaboration and knowledge-sourcing technologies are 

not major impediments to the creation of breakthroughs by spatially-isolated inventors. These 

conditions may describe U.S. invention during the 19
th

 century, when anecdotal evidence 

indicates that many breakthroughs were invented in the countryside (Mokyr, 1990).  

When the knowledge-intensity of breakthrough innovation is strong and the regime of 

technological change is disruptive, the resulting geography of breakthrough invention 

depends on the strength of long-distance collaboration and knowledge-sourcing technologies. 

When long-distance collaboration and knowledge-sourcing technologies are both weak, the 

geographical distribution is perfectly concentrated in a single region because inventors need a 

large quantity of knowledge to develop breakthroughs, but they can only gain clear 

informational signals through co-presence with other inventors or objects. If, ceteris paribus, 

long-distance knowledge-sourcing technology becomes stronger, the spatial distribution 

disperses because inventors can source ideas from any region in the world without loss in 

impact. The most interesting state of the model, however, is when the knowledge intensity of 

breakthroughs, the disruptiveness of the regime of technological change, and long-distance 

collaboration technology are all strong but long-distance learning technology is weak. This 

state results in a multi-nodal geography of breakthroughs because inventors (a) need large 

quantities of knowledge to invent breakthroughs, (b) collaborate with minimal information 

loss with inventors in other locations, and (c) experience a large amount of information loss 

when they source knowledge from locations where they do not have active collaborators on-



77 

 

the-ground. The multi-nodal structure emerges as inventors establish multi-locational teams 

to source diverse ideas held by actors in various locations.  

 

4.8) Measurement of the Parameters of the Theoretical Model to Data 

How did the state of the disruptiveness of the regime of technological change, the 

knowledge intensity of breakthroughs, and the distance-based frictions incurred by 

collaborative and learning technologies evolve over the 20
th

 century? In this section, I review 

evidence from patent records to document changes in the model’s parameters over the study 

period. 

I begin by describing the evolution of the knowledge intensity of breakthrough 

innovation, which is measured as the added benefit of additional knowledge sources for 

helping inventors to create high-impact novelty. I measure the number of prior knowledge 

sources that each patent draws ideas from as the in-degree of the knowledge flow network 

described in Chapter 2. Next, I transform the number of knowledge sources used by the 

inventors of each patent into a binary variable by defining patents with “many knowledge-

based parents” as the patents in the top decile of a given year in the knowledge source count 

distribution. I define patents as having “few knowledge-based parents” if they fall in the 

bottom 90% of the knowledge source count distribution from their same year. The empirical 

goal is to examine if the average impact of patents with many knowledge-based parents 

increased more than the average impact of patents with few knowledge-based parents over 

the 20
th

 century. 

As in the previous analyses, I adjust for the relationships between the number of 

subclasses on a patent and the year it is granted by regressing patent impact against a 

Decade*SubclassCount factor variable, as in Equation 4.4. I collect the residuals from the 

model, aggregate them to groups based on the novelty and knowledge-intensity of patents, 
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estimate GAM-function fit lines to these predicted impact values, and plot those fit lines with 

95% confidence intervals by year. The resulting fit lines are shown in Figure 4.6. A similar 

figure using raw impact values is presented in the chapter’s appendix. 

Figure 4.6: Predicted Patent Impact by Novelty and Number of Patent Parents 

 

Note: Regression to estimate predicted impact is given in Equation 4.4. 

In Figure 4.6, the predicted impact of novel patents with many patents (green line) is 

slightly but statistically-significantly higher than the predicted impact of novel patents with 

few patents (orange line) until about 1965. Thereafter, the predicted impact of novel patents 

that source knowledge from many parent patents increases sharply while the predicted impact 

of novel patents with few parents declines. Therefore, the knowledge intensity of 

breakthroughs was moderate until 1965 but very high after 1965. The relationships identified 

in Figure 4.6 are also present within technological fields, as shown in Figure 4.13 in the 

appendix, which illustrates the predicted impact of the four types of patents with the inclusion 

of an aggregate technology class fixed effect.  
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Next, I investigate changes in the strength of long-distance communication 

technologies. There are two types of long-distance communication technologies: long-

distance collaboration technology, and long-distance knowledge-sourcing technology. I 

measure the strength of each type of long-distance communication technology based on the 

revealed ability for inventors to create high-impact novelty while collaborating with distant 

teammates or while sourcing knowledge from distant environs. Figure 4.5 presented evidence 

that long-distance collaborative technology was weak before 1960 but grew stronger 

thereafter. In particular, the average impact of novel patents invented by multi-locational 

teams in knowledge diverse cities climbed well above that of novel patents invented by 

single-location teams starting in the 1960s.  

To assess the strength of long-distance knowledge-sourcing technologies, I test 

whether novel patents created by inventors who source knowledge locally are more impactful 

than novel patents created by inventors who source knowledge non-locally. In administering 

this test, I develop a definition of local knowledge sourcing that defines knowledge sourced 

from locations in which multi-locational teams have on-the-ground collaborators as local. 

Only one teammate needs to reside in a given CBSA for the knowledge sourced from that 

CBSA to be considered local. In particular, I label patents as “patents which source 

knowledge with proximity” as the patents for which an above-average number of their 

knowledge sources are from CBSAs in which the patent’s inventors reside. All other patents 

are defined as patents that “source knowledge without proximity”.  I recompute the average 

number of local knowledge sources within each year, so in any given year half of all granted 

patents are defined as patents that source knowledge with proximity. As in the previous 

analyses, I account for changes in the average impact of patents across time and across 

patents assigned a different number of subclasses by regressing the impact of patents against 
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a Year*NrSubclasses factor variable as in equation 4 to compute predicted impact. I plot the 

predicted values, aggregated by patent type, in Figure 4.7. 

Figure 4.7: Predicted Patent Impact by Novelty and Extent to which a Patent Sources 

Knowledge with Proximity 

 

Note: Regression to estimate predicated impact is given in Equation 4.4. 

Figure 4.7 indicates that novel patents using knowledge sourced with proximity were 

more impactful than novel patents using knowledge sourced without proximity during the full 

study period. Moreover, the green line is always significantly above the orange line. The 

persistent advantage of sourcing knowledge with proximity for creating high-impact novel 

patents is also robust to the inclusion of fixed effects for the aggregate classification code of 

patents (Figure 4.14). These results suggest that minimal progress was made over the 20
th

 

century to improve the ability for inventors to source knowledge from locations where they 

do not have active collaborators. When viewed alongside Figure 4.5’s finding that 

breakthroughs were disproportionately produced by multi-locational teams toward the end of 

the 20
th

 century, Figure 4.7 suggests that multi-locational teams have emerged in response to 



81 

 

the inability for inventors to source knowledge from regions where they do not have 

collaborators. 

Finally, I document changes in the disruptiveness of the regime of technological 

change over the 20
th

 century. I measure the disruptiveness of the technological change regime 

by comparing the average impact of novel patents relative to that of normal patents. Again, I 

control for changes in the impact of patents across decades and across patents with different 

numbers of subclass codes by plotting predicted impact values using Equation 4.4. The 

predicted impact values, presented in Figure 4.8, show that novel patents were more 

impactful than normal patents during the early 20
th

 century. Thereafter, the average impact of 

novel patents decline and eventually fall below that of normal patents. 

Figure 4.8: Predicted Patent Impact by Novelty 

 

The decline in the impact of novel patents relative to normal patents between 1900 

and 1950 indicates that technological change was less disruptive during the middle and end of 

the 20
th

 century. The low level of disruptiveness at the end of the century seems at odds with 

the earlier finding that the average impact of novel patents invented in knowledge-diverse 

cities rebounded during the 1960s (Figure 4.3). One possible explanation to reconcile these 
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two findings is that novelty was produced in both knowledge-diverse and knowledge-

homogeneous cities at the end of the 20
th

 century and that the novelty produced in 

knowledge-homogeneous cities was particularly low-impact.  

To test whether inventors in knowledge-homogeneous cities developed fundamentally 

different types of novelty than did inventors in knowledge-diverse cities, I analyze how the 

average impact of novel inventions evolved relative to normal inventions within broad 

technological fields. If inventors in knowledge-homogeneous cities develop a large quantity 

of low-impact novelty in technological fields that are generally low impact, then controlling 

for the mean impact of each technological field will project these values out of the data. 

Therefore, in Figure 4.9 I perform the same analysis as in Figure 8 before but add a fixed 

effect for the primary USPC class of each patent to the regression model. The regression 

model is given by Equation 4.6, where 𝐹𝐸𝐶438 designates fixed effects at the primary class 

level, at which scale there are 438 unique classes: 

(4.6) 𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝑌𝑒𝑎𝑟𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝐹𝐸𝐶438 + 𝐸𝑝 
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Figure 4.9: Predicted Patent Impact by Novelty with Aggregate Technology Class Fixed 

Effects 

 

Note: The regression used to estimate predicated impact is given in Equation 4.6. 

 

In Figure 4.9, the average impact of novel patents declines during the first several 

decades of the century, bottoms out in 1955, and jumps after 1985. The relationship presented 

in Figure 4.9 is robust to the use of a more detailed course-grained subclass fixed effect 

(Figure 4.15) and indicates that the regime of technological change became very disruptive 

within technological classes at the end of the 20
th

 century, but that disruption did not extend 

beyond technology classes. Moreover, while many novel and impactful technologies were 

introduced between 1985 and 1999, they were not sufficiently impactful to shift the entire 

economy into a disruptive regime of technological change. This finding is similar to 

Gordon’s (2016) inference that the information technology revolution failed to revolutionize 

a broad an expanse of the economy in contrast with the breakthrough inventions of the early 

20
th

 century. Thus, we may conclude from Figure 4.9 that a narrow sector of the economy 

became disruptive between 1985 and 1999. 
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To conclude the analysis, in Table 4.4 I assemble together the observed state of the 

knowledge-intensity of breakthrough innovation, the state of collaborative technologies and 

learning technologies, and the disruptiveness of the regime of technological change to 

generate the empirically-predicted state of the geography of breakthrough innovation for the 

early, mid, and late 20
th

 century. 

Table 4.4: Observed States of Model Parameters and Model-Predicted Geography of 

Breakthrough Inventions by Time Period 

 Approximate Time Period 

Parameter 1900-1930 1930-1970 1970-1999 

Knowledge Intensity Moderate Moderate High 

Disruptiveness High Low 
High within 

sectors 

LD Collaboration Tech Weak Weak Strong 

LD Knowledge-Sourcing Tech Weak Weak Weak 

Predicted Geography of 

Breakthroughs 

Weakly 

concentrated 
Undefined Multi-Nuclei 

Note: the empirical observation of the four model parameters are described in the text. 

The predicted geography of breakthrough inventions is presented in Table 4.3. 

To test the model, the predicted geographies of breakthrough innovation from Table 

4.4 can be compared to the observed geographies documented in Figure 4.3 and Figure 4.5. 

Notably, the states of breakthrough innovation predicted in Table 4.4 closely correspond to 

the empirical distributions found in Figures 4.3 and 4.5. During the first part of the 20
th

 

century, the weakness of long-distance collaboration and knowledge-sourcing technologies, 

high disruptiveness, and moderate knowledge intensity of breakthroughs implies a weakly 

concentrated geography of breakthrough innovation. Figure 4.3 bears out this prediction by 

showing that the predicted impact of novel patents was slightly higher for patents invented in 

knowledge-diverse cities than for patents invented in knowledge-homogeneous cities. During 

the mid-20
th

 century (approximately 1930-1970), long-distance collaboration and knowledge-

sourcing technologies were still comparatively poor and the knowledge intensity of 

breakthroughs was moderate. While these factors ceteris paribus would predict a spatially-
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concentrated geography of breakthrough innovation, the disruptiveness of the regime of 

technological change was low. Because few breakthroughs were invented during this time 

period, the geography of breakthrough innovation was undefined. This proposition is 

empirically confirmed in Figure 4.3 where the average impact of novel patents is shown to be 

no higher than the average impact of normal patents, regardless of the local knowledge 

diversity in which the novel patents are invented. Finally, at the end of the 20
th

 century the 

combination of a high knowledge intensity of breakthroughs, strong long-distance 

collaboration technology, weak long-distance knowledge-sourcing technology, and a high 

disruptiveness of technological change within sectors (as measured using technology 

classification codes) predicts a multi-nuclei geography of breakthrough innovation. That 

geography is emerges because inventors concentrate in knowledge-diverse metropolitan areas 

to source knowledge locally (because long-distance knowledge-sourcing technologies are 

poor) but nonetheless collaborate with non-local teammates by taking advantage of the 

stronger long-distance collaboration technology. The multi-location team is thus rationalized 

as a response to the asymmetric improvements to long-distance knowledge sourcing 

technology and long-distance collaboration technology over the 20
th

 century. The geography 

predicted by these parameters corresponds to the observed distribution described in Figure 

4.5, where high-impact novelty was shown to be produced by multi-location teams with co-

inventors residing in multiple knowledge-diverse cities. 

An important caveat regarding the geography of breakthroughs at the end of the 20
th

 

century is that the breakthroughs produced during this period were not very impactful outside 

the sectors in which they were invented. This finding, evident in Figures 4.8 and 4.9, 

indicates that the knowledge-diverse cities where most of the breakthroughs of the late 20
th

 

century were made were engaged in relatively esoteric technological problems. Over time, 

these inventions may have diffused throughout the economy and instigate an economy-wide 
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period of disruptive technological change. However, such a transformation had not taken hold 

by the end of the 20
th

 century. 

 

4.9) Discussion 

The spatial concentration of innovation is not an inherent quality of density, 

agglomeration, or urbanization (c.f. Duranton and Puga, 2001; Mewes, 2019; Balland et al., 

2020; Berkes and Gaetani, 2020). Instead, innovation spatially concentrates, disperses, or 

adopts a non-ordinal distribution as more fundamental changes institutions and 

communication technologies take hold. These institutional and technological factors 

determine inventors’ general need to interact in order to create inventions, and the frictions 

involved in sustaining those interactions across distance.  

The focus of this paper was to document changes in the spatial distribution of 

breakthrough innovation in the United States evolved over the 20
th

 century and to advance an 

explanation for why those changes occurred. To this end, I began the paper by describing 

how the advantages afforded by locating in knowledge diverse cities and participating in 

multi-locational collaborations for creating high-impact novelty changed over time. 

Thereafter, I proposed a model in which breakthrough inventions are generated through 

interactions sustained by collaboration technologies and knowledge-sourcing technologies 

that incur different levels of distance-based frictions and within regimes of technological 

change that vary in terms of their disruptiveness and knowledge-intensity. Finally, I showed 

that the model predicts geographical distributions of breakthrough innovation which closely 

align with the observed distributions in the United States over the 20
th

 century. 

Explicit recognition of how institutional and technological contingencies shape spatial 

distributions of innovation can help to revise existing understandings of why certain 

geographies have emerged historically. One example is the mid-20
th

 century, which is 
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broadly understood to be an era during which economic activities in the U.S. spread out 

across space (Rosen, 1979; Roback, 1982; Glaeser and Tobio, 2007; Glaeser, 2008). 

According to these sources, the spreading out of economic activities in the middle of the 

century was caused by improvements in communication technologies, decreases in 

transportation costs, and the high cost of housing and labor in densely-populated locations. 

However, the results from this study suggest that a reduction in the disruptiveness of the 

regime of technological change also may have supported the dispersal of economic activities 

during the mid-20
th

. As documented in Figure 4.3, breakthrough innovation did not disperse 

across space during the mid-20
th

 century; instead, few to any breakthroughs were invented 

across the entire country during that time period. In the knowledge economy, the advantages 

of agglomeration are larger for firms that compete in environments riddled by uncertainty and 

rapid change (Duranton and Puga, 2001; Delgado et al., 2015; Lin, 2012; Berger and Frey, 

2016). If the regime of technological change was less disruptive during the mid-20
th

 century, 

firms may have faced minimal pressure to locate in dense agglomerations (Kemeny and 

Storper, 2020). 

This historical insight may prove helpful for predicting future changes to the 

geography of breakthrough innovation. The COVID-19 pandemic has shifted many strongly 

agglomerated high-skilled service jobs to remote work (Dingel and Neiman, 2020). Recent 

advancements in communication technologies are generally thought to have reduced the costs 

associated with sharing knowledge across space. Some authors argue that this widespread 

temporary adoption of remote work will shift the economy to a new spatial equilibrium of 

geographical dispersion (Catalini et al., 2018; Dong et al., 2018; Agrawal et al., 2017; 

Clancy, 2020). While the future may break from the past and a geographically-dispersed 

distribution of breakthrough innovation may indeed prevail, this study emphasizes that there 

is no historical precedent from the 20
th

 century in the United States for such a dispersal of 
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breakthrough innovation in the absence of a reduction in the disruptiveness of the regime of 

technological change.  

In turn, any forecast of the post-COVID-19 geography of breakthrough innovation 

needs to pay careful attention to a possible decline in technological disruption. Notably, 

market concentration in firms in the United States has reached its highest value since the 

1970s (Autor et al., 2017; Grullon et al., 2019). The ongoing increase in market concentration 

may either cause, or be a result of, a slowdown in technological change as the competencies 

of incumbent firms are less frequently disrupted by new product or process technologies. If 

technological change is increasingly advanced through incremental inventions, as was the 

case during the mid-20
th

 century, then companies and industries may de-agglomerate 

following COVID-19 not just because of the widespread adoption of Skype and Zoom, but 

also because of the advantages of co-location will be less important in a period of greater 

technological stability. 

The current literature on the effect of market concentration and the geographical 

distribution of economic activity has not yet investigated this relationship between 

oligopolistic market structure and the demand for co-location (Manduca, 2019; Feldman et al. 

2020). Instead, that literature focuses on how the rents accrued by oligopolistic firms 

concentrate wealth in those firms’ immediate spatial environs. The policy response advocated 

by the existing literature is to increase antitrust enforcement in order to reduce inter-regional 

income inequality. Increasing antitrust enforcement may reduce inter-regional income 

inequality by shrinking the monopoly rents bestowed on “superstar metros”. However, 

increasing competition in innovative industries through antitrust enforcement may also 

increase inter-regional income inequality by stimulating faster and more disruptive 

technological change. Management theory, network theory, and product cycle theory all 

emphasize that small firms better adapt to disruptive technological change than large ones 
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(Acs and Audretsch, 1988; Feldman and Audretsch 1999). In addition, economic geography 

has strongly argued that cities and regions informally coordinate production amongst small 

firms when market conditions are fast-moving and riddled with uncertainty (Scott, 1988; 

Saxenian, 1994; Levinthal, 1997; Storper et al., 2016). If the organizational ties of firms are 

broken through antitrust enforcement, an alternative organization of inter-inventor 

coordination is likely to emerge. Historically, in the absence of organizational ties, that 

coordination has been achieved through co-location. 

In conclusion, the analysis in this paper generates three core insights for interpreting 

and forecasting the geography of breakthrough innovation. First, the geography of 

breakthrough innovation changes over time as social, economic, and technological conditions 

evolve. Second, by identifying changes to the broader social, economic and technological 

conditions and by modeling their interrelationships, research can inform and improve 

predictions for past and future distributions of the geography of breakthrough innovation. 

Third, breakthrough innovation in the post-COVID-19 era is likely to involve high 

knowledge intensity, powerful collaborative technologies, high market concentration, and a 

possible reduction in the disruptiveness of the regime of technological change. Careful 

measurement and modeling of these four parameters is needed for researchers and policy 

makers to understand and rectify the new geographical and technological challenges that are 

bound to emerge. 
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4.10) Appendix 

Multi-Locational Collaboration Type 

The following figures examine the average impact of novel and normal patents that 

are created through non-local collaborations based on the knowledge diversity of respective 

cities. For simplicity, I restrict the data to collaborative teams located in two metropolitan 

areas. This generates 3 types of collaborative possibilities: collaborations between inventors 

located in two knowledge-diverse cities (Div-Div), collaborations between inventors located 

in one diverse and one homogeneous city (Mixed), and collaborations between inventors 

located in two homogenous cities (Homog-Homog). 

Figure 4.10: Average Impact of Multi-Locational Patents by Collaboration Type 

 

To compute the residual impact of inventions, I collect residuals from the following 

model and display them in Figure 4.11: 

𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝑌𝑒𝑎𝑟𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝐸𝑝 
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Figure 4.11: Predicted Impact of Multi-Locational Patents by Collaboration Type 

 

 

Knowledge Intensity and Impact of Patents 

Figure 4.12 plots the raw patent impact of novel and normal patents with many and 

few patents by year. 

Figure 4.12: Predicted Impact by Novelty and Knowledge Intensity 

 

Figure 4.13 plots the residuals from the following model: 

𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝐷𝑒𝑐𝑎𝑑𝑒𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑙𝑎𝑠𝑠𝐹𝐸𝑝 + 𝐸𝑝 



92 

 

Figure 4.13: Predicted Impact by Novelty and Knowledge Intensity 

 

Residual Impact of Locally-Sourced and Non-Locally Sourced Patents,  

Figure 4.14 plots the residuals from the following model: 

 𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝐷𝑒𝑐𝑎𝑑𝑒𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑙𝑎𝑠𝑠𝐹𝐸𝑝 + 𝐸𝑝 

In the model, C438 is a factor variable designating the primary class that a patent is assigned 

to. In the USPC classification scheme, there are 438 unique classes. 

Figure 4.14: Residual Impact of Locally-Sourced Knowledge 

 

Disruptiveness of Regime of Technological Change 
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Figure 4.15 plots the residuals from the following model: 

 𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝐷𝑒𝑐𝑎𝑑𝑒𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝑆𝑢𝑏𝑙𝑐𝑎𝑠𝑠𝐹𝐸𝑝 + 𝐸𝑝 

The subclass fixed effect is a factor variable designating the primary subclass that a patent is 

assigned to. In the USPC classification scheme, there are about 16,000 unique classes. 

Figure 4.15: Residual Impact of Novel and Normal Patents 
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Chapter 5: Learning, Fast and Slow: The Returns to Maturity and Team 

Size for High-Impact Innovation in the United States between 1836 and 

1975 

 

5.1) Abstract 

This paper analyses changes in the returns to maturity and collaboration for U.S. 

patent inventors between 1836 and 1975. I combine two novel datasets which allow me to 

trace the careers of inventors, record instances of collaboration, and measure the impact of 

patents on subsequent invention across a long period of U.S. history. The study advances two 

stylized facts. First, I show that the returns to maturity, measured as the marginal effect that 

an additional year of patenting experience has on inventors for creating high-impact 

inventions, have been negative for the inventors of U.S. utility patents since the 1920s. 

Second, I show that the returns to collaboration, measured as marginal effect that 

collaborating with a larger number of co-inventors has on an inventor’s probability of 

creating a high-impact patent, were negligible until the 1920s and became positive thereafter. 

I develop a simple model to interpret these findings. The model proposes that teams “learn” 

quickly by rapidly pooling together the knowledge of their co-inventors while individual 

inventors learn slowly through experiential search and discovery. When the knowledge 

frontier is rapidly expanding, individual inventors are not able to learn quickly enough to 

keep up with the new ideas that are being introduced, so maturity is associated with lower 

impact. Collaboration, which allows teams to gather knowledge more quickly, is better-suited 

to innovation in fast-growth knowledge environments. I find empirical support for the model 

through an analysis that relies on variation in the growth rate of knowledge across 

technological fields. In this respect, I find that (a) the average maturity level of inventors is 

lower in fast-growth technological fields, (b) the returns to maturity are most negative in 
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rapidly expanding technological fields, (c) the average size of inventor teams is larger in fast-

growth technological fields, and (d) the returns to team size are greatest in fast-growth 

technological fields. 
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5.2) Introduction 

The ability of inventors to create high-impact inventions is largely determined by their 

accumulated technological knowledge. Inventors expand the breadth and effectiveness of 

their knowledge through two ways. First, inventors learn over time by search and discovery, 

and so their accumulated knowledge assets expand as they mature (Arrow, 1956; Fleming, 

2001). Second, inventors collaborate with other inventors and scientists. Collaboration allows 

inventors to utilize the ideas developed by their collaborating partners without needing to 

fully develop those ideas themselves (Katz and Martin, 1997).  

Empirical research has shown that collaboration is positively associated with the 

creation of impactful patents and scientific publications (Jones et al., 2008; van der Wouden, 

2020; Wuchty et al., 2007). However, evidence of the relationship between the maturity of 

inventors the creation of high-impact inventions is mixed. One way researchers measure the 

returns to maturity is by calculating the age at which scientists’ and inventors’ creative output 

peaks. Jones (2010) shows that the average age at which Noble Laureates and historian-

identified great inventors created their top achievements increased by 6 years during the 20
th

 

century. However, Sarada et al.’s (2017) analysis of the careers of patent inventors finds no 

relationship between inventor age and the impact of their patents, measured by the number of 

forward citations their patents receive. An alternative measure of maturity is the number of 

years that have elapsed since an inventor or scientist produces her or his first patent or article. 

Using the second measure, Sinatra et al. (2016), Liu et al. (2018), and Liu et al. (2021) find 

no relationship between scientists’ accumulated years of experience and the forward citations 

received by their articles. Akcigit et al. (2018) apply the career progress measure of maturity 

to the inventors of U.S. patents 1947-2010 and find a negative relationship between their 

level of maturity and their patents’ forward citations. Observing that both collaboration and 

the accumulation of experiential knowledge over time are both means by which inventors 
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expand their knowledge-based capabilities, the above literature prompts the question: why do 

inventors receive positive returns to collaboration but not to maturity?  

In this paper, I analyze a novel dataset of the inventors of over 8 million U.S. utility 

patents granted between 1836 and 1975 and show that (a) positive returns to collaboration, 

defined as the number of co-inventors of a patent, emerged in the 1920s and expanded 

thereafter, and (b) no positive returns to maturity, defined as the number of years elapsed 

since an inventor’s first patent was granted, emerged during the study period. I generate these 

findings by combining two datasets. The first dataset, introduced by van der Wouden (2020), 

identifies each patent produced by U.S.-based patent inventors between 1836 and 1975 and 

allows me to examine variation in the impact of patents across inventors’ careers and to 

adjust for inventor-level variation in ability. The second dataset records the impact of 

individual patents granted between 1836 and 2010 on subsequent patenting by applying the 

method outlined in Chapter 2 of this dissertation. This second dataset provides a new source 

for information about the quality of historical patents. By combining the two datasets, I am 

able to compute inventor-adjusted returns to inventor maturity and inventor collaboration 

over nearly 150 years of U.S. history. 

One possible reason scientists and inventors receive positive returns to collaboration 

but not to maturity is that collaboration allows inventors to extend the capabilities of their 

knowledge sets quickly, while individual inventors who accumulate knowledge through the 

accumulation of experience do so slowly. The slow pace of experiential knowledge 

accumulation causes the returns to maturity to be insignificant or negative because, as 

inventors slowly accumulate experience over time, other inventors introduce their own 

inventions and in so doing increase the quantity of knowledge that inventors must learn in 

order to remain competent. Generally, inventors are not able to accumulate experience as 

quickly as other inventors expand the knowledge frontier, so maturity and impact are 
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inversely related. Although collaboration with other inventors entails costs associated with 

building trust and shared norms (Levin and Cross, 2004), it nonetheless allows inventors to 

collect knowledge more rapidly than they could through the accumulation of experience. To 

extend the capability of their knowledge assets, inventors may thus benefit more from 

collaboration than from experience when they seek to innovative in knowledge fields that are 

rapidly expanding. 

In Section 5.5 of this chapter, I develop a simple model to flesh out this logic. In the 

model, inventors create new ideas by combining the ideas that they already know. The impact 

of their resulting ideas is determined by the level of complementarity between the ideas that 

they combine. Inventors begin their careers with an intrinsic stock of ideas accumulated 

during their educational training. To their intrinsic knowledge, inventors add ideas learned 

through experience accumulated over the course of time during their patenting careers.  

The challenge for inventors is that as they accumulate ideas through experience, other 

inventors introduce new ideas. The introduction of new ideas by others reduces the 

percentage of the total number of ideas known by individual inventors. Because individual 

inventors’ knowledge stocks decline in a relative sense over time, the likelihood that they 

have knowledge of the most complementary combinations of ideas decreases and the impact 

of their inventions declines. Collaborating inventors are able to use the knowledge of their 

collaborative partners without having to develop that knowledge anew, so collaboration is a 

relatively effective method for inventors to mobilize knowledge when many new ideas are 

being introduced to the world. To validate the model empirically, I exploit cross-sectional 

variation in the rate of knowledge growth across technology fields. Technology fields are the 

groups of ideas, linked by common materiality or domain, between which there are strong 

recombinatory complementarities (Arthur, 2007). I identify the technology fields of patents 

using aggregate USPC patent classification codes, and I identify fast and slow-growth 
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technology fields based on the growth rate of patents in each field. My analysis demonstrates 

that the average number of years of prior patenting experience of inventors is lower in fast 

growth technology fields, that the average size of inventor teams is higher in fast growth 

knowledge fields, that the returns to maturity are lower in fast growth knowledge fields, and 

that the returns to collaboration are larger in fast growth fields. 

In addition to these cross-sectional results, I also show that the acceleration in the rate 

of knowledge growth explains the increase in the returns to collaboration and the decrease in 

the returns to maturity across time. To this end, I demonstrate that (a) the difference in the 

returns to maturity in fast and slow growth fields emerged after 1900, and (b) the difference 

in the returns to team size in fast and slow growth fields emerged after 1920. Moreover, I 

argue that the rate of knowledge growth expanded after 1920, which reduced the returns to 

maturity and increased the returns to collaboration. 

This study contributes to the current literatures on inventor collaboration, inventor 

maturity, and the knowledge-intensity of innovation. With regard to team formation, past 

studies have documented long-run increases in the size of teams of inventors and scientists 

(Lamoreux and Sokoloff, 1996; Wuchty et al., 2007; van der Wouden, 2020); however, the 

novel dataset on the impact of inventions used in this study allows me to explore historical 

changes in the returns to inventor collaboration by linking collaboration to impact data. In 

this regard, I show that positive returns to collaboration first emerged in the 1920s.  

With regard to inventor maturity, three studies have found no relationship between the 

number of years elapsed since the publication of scientists’ first article and the impact of their 

articles (Sinatra et al., 2016; Liu et al., 2018; Liu et al., 2021) and one study has demonstrated 

the average impact of patents is lower for inventors with more years of patenting experience 

(Akcigit et al., 2018). A limitation to the latter study is that it makes use of patent forward 

citations to assess the impact of inventions, which are not available for patents granted before 



104 

 

1947. The novel dataset I use to measure the impact of patents allows me to perform a related 

analysis that extends back to 1836. My analysis shows that the returns to inventor maturity 

were statistically insignificant before 1900 and were negative thereafter. 

Collectively, the two core findings of this paper – that inventors started to receive 

positive returns to collaboration in the 1920s and negative returns to maturity in the first 

decade of the 20
th

 century – make a third contribution to the literature on the reduction in 

R&D productivity (Gordon, 2014; Bloom et al., 2020). The literature on the R&D 

productivity decline argues that long-run increases in the complexity of new technologies has 

caused the process of invention to involve the coordination of more extensive and more 

costly organizations of inventors, firms, and research centers (Powell et al., 1996; Wuchty et 

al., 2007; Clancy, 2017; Balland et al., 2020; Esposito, 2021; van der Wouden, 2020). The 

analysis performed in the current study help to scrutinize these assertions. In particular, I 

show that knowledge production has become not just more knowledge-intensive, but also 

more reliant on recent and fast-advancing knowledge. This result implies that big and 

expensive-to-fund research and development teams do not form because ideas are “getting 

harder to find” (Bloom et al., 2020), but because there are many new ideas that are being 

rapidly introduced. Big teams are able to organize and collect these recent ideas more quickly 

than inventors are able to learn them. Moreover, instead of being a cause of the decrease in 

R&D productivity, the increase in team size appears to be an adaptation to the accelerating 

rate of innovation. 

The remainder of the paper consists of a description of the construction and structure 

of the datasets in Section 5.3, an empirical analysis of changes in the returns to collaboration 

and experience in Section 5.4, the development of the formal model in Section 5.5, the 

empirical validation of the model in Section 5.6, and a reflection on directions for further 

research in Section 5.7. 
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5.3) Data Construction and Description 

The empirical analysis in this paper uses two long-run datasets of 8 million utility 

patents that cover about 150 years of U.S. inventive activity. The first dataset originates from 

van der Wouden (2020) and links disambiguated inventors to patents. These data were 

constructed by searching the text of historical patents made available in Petralia et al. (2016) 

to identify potential first and family names of inventors. Once a potential name is found, 

three groups of algorithms are run. The first group searches each patent for the text found 

before and after the potential name to determine if the potential name is in fact the name of 

the inventor of the patent. When a patent has multiple co-inventors, the group of algorithms 

determines whether the potential names are in fact names of inventors. The second group of 

checks the accuracy of the identified names outputted from the first group of algorithms 

against an external comparison data set. This second group of algorithms record 30 features 

associated with the found name(s) which act as predictor variables for a subsequent 

supervised machine learning exercise. In this exercise, information from labeled (true known 

cases) inventor names on patents originating from Google Patents and EspaceNet is used to 

train gradient boosting models to predict whether the previously-identified names are truly 

inventor names. The third group of algorithms disambiguates the inventors by creating a 

unique ID code for each unique inventor. This step disambiguates all inventors by pair-wise 

comparing all inventors based on the similarity of 12 characteristics (e.g. first name, middle 

name, last name, location, year, technology). The disambiguated inventor data from Lai et al. 

(2012) is used to train a supervised machine learning model for this purpose. This model is 

used to predict which identified inventors are likely to be the same individuals, resulting in 

over 1.9 million disambiguated unique inventors of U.S. utility patents between 1836 and 

1975. 
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The disambiguated inventor dataset is used to identify inventor career trajectories and 

to compute the number of collaborators on a patent. Inventor career trajectories are built by 

sorting the inventor-patent data by grant year and patent number, after which I measure 

experience as the elapsed time between the inventor’s first and current patent, rounded to 

years. The number of collaborators is taken as the number of unique inventors listed on the 

patent. Figure 5.1 plots the share of patents that have two or more co-inventors by year. The 

share of patents that are collaborative rose steadily across the study period. 

Figure 5.1: Share of Collaborative Patents by Year 

 

In Figure 5.2, I plot the average career length (in years) of inventors, broken out by 

cohort year. Career length is defined as the number of years that elapse between the granting 

of an inventor’s first patent and the granting of an inventor’s final patent, and cohort years are 

defined as the year that an inventor’s first patent is granted. The figure shows that the average 

career length hovered between 5 and 12 years for inventors that started their careers between 

1836 and 1885 and then gradually dropped to 3 years in 1905. This evolution of inventor 

career lengths broadly corresponds with earlier observations of shifts in inventor careers and 

the organization of inventive activity (Lamoreux and Sokoloff, 1996; Lamoreaux and 

Sokoloff, 2005; Lamoreaux et al., 2011; Lamoreaux et al. 2013). The dataset contains one 

spike in average career length in 1911, when the average career length jumps to 8 years and 

declines thereafter. The primary identification strategy used in this paper exploits within-year 



107 

 

variation in maturity levels of inventors and is thus robust to random temporal shocks. 

Finally, because I cannot trace inventor careers beyond 1975, careers are right-truncated 

toward the end of the study period.  

Figure 5.2: Mean Career Length by Inventor Cohort Year 

 

I measure inventor maturity as the number of years elapsed since the granting of an 

inventor’s first patent. In the subsequent analyses, I interchangeably use a binary and a 

continuous variable to define inventor maturity. When I use the continuous definition, I take 

its natural logarithm. When I use a binary variable, I use a 5-year cutoff value; under this 

definition, all inventors with 0-4 years of patenting experience are defined as “premature” 

while all inventors with 5 or more years of experience are defined as “mature”. 

The second dataset provides information about each patent’s impact on subsequent 

invention. This dataset is created by tracing the flow of technological knowledge between 

patents using the method described in Chapter 2 of this dissertation. Using the patent impact 

measures computed from that method, I define high-impact inventions as patents with an out-

degree in the top 5% of their grant year cohort. In the appendix, I replicate the key analyses 

of this chapter using a top 10% threshold to define high-impact patents. In that analysis, I 

arrive at results that are identical to the results generated using the 5% threshold, with one 

notable exception. I discuss this exception in the appendix. 
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The final descriptive exercise, Figure 5.3, pulls together the data on team size, 

inventor maturity, and patent impact to show how these variables relate to one-another. Each 

column in the left panel plots the distribution of patent impact by inventor maturity for 

patents granted between 1836 and 1919 (left chart) and 1920-1975 (right chart). Each column 

in the right panel plots the distribution of patent impact by team size for patents granted 

between 1836 and 1919 (left chart) and 1920-1975 (right chart). I break the data out by these 

two time periods because, as I will later demonstrate, the relationships between team size, 

experience, and patent impact change substantively after 1920.  

Figure 5.3: Distribution of Patent Impact by Inventor Maturity and Number of 

Inventors by 35-Year Periods 

Maturity in Years 

 

Team Size 

 
 

In the left panel of Figure 5.3, the columns associated with 0 years of experience 

indicate that most of the patents by inventors with 0 years of patenting experience have very 

low impact. This is signaled by the very high density for patents created by inventors with 0 

years of experience at the patent impact level of 0. For columns corresponding to more years 

of experience (i.e. 5+ years of experience), the density of patent impact is less strongly 

concentrated at the low end of impact, suggesting that the impact is a little more evenly 

spread out across the spectrum. Comparing the 1836-1919 maturity chart with the 1920-1975 
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maturity chart shows that the shading remains largely the same across these two time periods. 

Therefore, the relationship between inventor maturity and patent impact does not change 

much over the timeframe of the dataset. However, comparing the 1836-1919 team size chart 

with the 1920-1975 team size chart (Figure 5.3, right panel) shows that the relationship 

between team size and patent impact changes strongly between the two time periods. In 

particular, the impact distribution is centered near 0 for large teams in 1836-1919, but is 

dispersed for large teams between 1920 and 1975. Moreover, between 1920 and 1975, the 

variation in the impact of patents was large for big teams 

While the descriptive insights garnered from Figure 5.3 are informative, the potential 

selection of less-able inventors to discontinue patenting or of more-able inventors to 

collaborate more frequently motivates the analysis in the following section.  

 

5.4) Returns to Collaboration and Experience for High-Impact Invention 

I begin the analysis of the returns to collaboration and experience in Figure 5 by 

plotting the mean probability premature inventors (< 5 years of patenting experience) and 

mature inventors (5+ years) create a high-impact patent between 1836 and 1975. I 

additionally overlay 95% confidence intervals on the chart. The left panel of Figure 5.4 uses 

the complete dataset containing all inventors, while the right panel uses the subset of 

inventors that reach maturity, meaning their careers last 5 years or longer. In this figure, the 

“0-4 Years” category shows the probability that an inventor who ultimately reaches maturity 

invents a high-impact patent while still premature.  
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Figure 5.4: Probability of High-Impact Patent by Inventor Experience 

(A) All inventors 

 

(B) Inventors that Reach Maturity 

 
 

The left panel of Figure 5.4 shows that mature inventors are more likely to create 

high-impact patents starting in the 1880s. The probability that mature inventors will produce 

a high-quality patent is roughly 5.5%, while for premature inventors that probability is 

approximately 4.5%. This initial result, however, is driven by a selection effect in which 

inventors with lesser ability tend to have shorter careers. The exit of less able inventors early 

in their careers places a downward bias on the observed frequency of high-impact patents by 

premature inventors. The right panel of Figure 5.4 confirms that this selection effect is 

substantial. In the right panel, I restrict the dataset to inventors that patent over the course of 

5 or more years. By removing the selection effect, the right panel shows that the probability 

of creating a high-impact invention was unrelated to inventor maturity until 1910, and that 

after 1910 premature inventors were more likely to create high-impact patents than mature 

ones. In the appendix, I show that result is unaffected when the maturity of inventors is 

computed using only patents created by lone inventors. 

In Figure 5.5, I plot the mean probability that inventor teams and lone inventors create 

a high-impact patent, broken out into five-year periods. As before, I overlay 95% confidence 

intervals on the chart. The figure shows that the probability of creating a high-impact patent 
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was 5% for both teams of inventors and lone inventors until around 1920.
14

 After this year, 

the probability that a patent created by a team was high-impact rose to about 6% while the 

likelihood for lone inventors dropped to about 4%. Moreover, by the end of the study period 

in 1975, patents invented by teams were about 50% more likely to be high-impact were 

patents generated by lone inventors. 

Figure 5.5: Probability of High-Impact Patent for Teams and Individuals 

 

Figures 5.4 and 5.5 do not adjust for inventor-level heterogeneity in ability. To adjust 

for differences in inventor ability in computing the returns to inventor experience, I develop a 

linear probability regression model in which the probability that a patent p is high impact 

(𝐻𝐼𝑝) is a function of inventor i fixed effects, a factor variable recording the half-decade 

during which a patent is granted, and the binary variable 𝑀𝑎𝑡𝑢𝑟𝑒𝑝, which records a 1 if an 

inventor has 5 or more years of patenting experience prior to the granting of patent p and 0 

otherwise. To allow the returns to collaboration to vary across time, I interact the 𝑀𝑎𝑡𝑢𝑟𝑒𝑝 

binary variable with the half-decade factor variable. The regression model is given by 

Equation 5.1: 

                                                 
14

 The probability of creating a high-impact patent can exceed 5% across all patents because the 5% cutoff often 

falls on integer values. 
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(5.1) 𝑃𝑟𝑜𝑏(𝐻𝐼𝑝)

= 𝐵1𝑀𝑎𝑡𝑢𝑟𝑒𝑝 ∗ 𝐻𝑎𝑙𝑓𝐷𝑒𝑐𝑎𝑑𝑒𝑝 + 𝐵2𝑀𝑎𝑡𝑢𝑟𝑒𝑝 + 𝐵3𝐻𝑎𝑙𝑓𝐷𝑒𝑐𝑎𝑑𝑒𝑝 + 𝐹𝐸𝑖

+ 𝐸𝑝 

The dataset is sparse before 1875 because relatively few patents were granted during 

that time period. Therefore, I aggregate all patents granted before 1875 into a single time unit 

(coded as “Pre-1875). I aggregate patents granted after 1875 to the half-decade. The pre-1875 

patent set serves as the reference group for the regression. With these considerations in mind, 

the coefficients associated with the 𝑀𝑎𝑡𝑢𝑟𝑒 ∗ 𝐻𝑎𝑙𝑓𝐷𝑒𝑐𝑎𝑑𝑒𝑝 term are plotted in the left panel 

of Figure 5.6. In the right panel, I produce a similar chart but replace the binary Maturity 

variable with a continuous measurement of inventor maturity by computing the log number 

of years of experience of the inventors of each patent. 

Figure 5.6: Predicted Probability of Creating a High-Impact Patent by Inventor 

Maturity 

Returns to Maturity 

 

Returns to Log(Years of Experience) 

 
 

Figure 5.6 shows that the returns to maturity were indistinguishable from 0 between 

1875 and the first few decades of the 20
th

 century. The returns to maturity were negative 

between 1925 and 1955, after which they became statistically insignificant. The returns to log 
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years of experience became negative starting in 1905 and remained negative through the end 

of the study period. The differences in the way these two variables are measured can account 

for the slight differences in their returns across time. In the appendix, I find no evidence of 

positive returns to maturity when I restrict the dataset to solo-invented patents. 

To adjust for individual-level ability when calculating the returns to collaboration, I 

develop a similar regression model containing inventor i fixed effects, a half-decade factor 

variable, and a binary variable 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑝 which records a value of 1 if patent p is 

invented by a team of 2 or more co-inventors. I interact the 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑝 binary variable 

with the half-decade factor variable to allow the returns to collaboration to vary across time. 

As before, I group all patents granted before 1875 into a single time period which serves as 

the reference group for the estimation. The regression model is given by Equation 5.2: 

(5.2) 𝑃𝑟𝑜𝑏(𝐻𝐼𝑝)

= 𝐵1𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑝 ∗ 𝐻𝑎𝑙𝑓𝐷𝑒𝑐𝑎𝑑𝑒𝑝 + 𝐵2𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑝

+ 𝐵3𝐻𝑎𝑙𝑓𝐷𝑒𝑐𝑎𝑑𝑒𝑝 + 𝐹𝐸𝑖 + 𝐸𝑝 

I plot the coefficients associated with the 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑝 ∗ 𝐻𝑎𝑙𝑓𝐷𝑒𝑐𝑎𝑑𝑒𝑝 term in 

Figure 5.7. The left panel uses the binary 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑝 variable, while the right panel 

replaces this measure with a continuous measure of collaboration computed by taking the 

natural log of the number of co-inventors on a patent.   
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Figure 5.7: Predicted Probability of Creating a High-Impact Patent by Collaboration 

Returns to Collaboration 

 

Returns to Team Size 

 
 

Figure 5.7 shows that the returns to collaboration and team size were statistically 

insignificant before 1930. After 1930, the returns to collaboration and team size became 

positive and significant. The returns to team size remained positive and significant through 

the end of the study period, while the returns to collaboration become insignificant using a 

95% confidence interval in the final years of the study. In an un-reported set of results, I find 

that the returns to collaboration remained significant and positive through the end of the study 

period when using a 90% confidence interval. 

To summarize the empirical investigation, I find that inventors received no returns to 

increases in team size and maturity before 1900. However, after 1900 inventors received 

negative returns to maturity and after 1920 inventors received positive returns to team size. 

These disparate returns are surprising because both increasing the size of a team and 

accumulating experience over time as inventors’ careers progress are means through which 

inventors’ knowledge-based capabilities expand. The expansion of those knowledge-based 

capabilities should translate into high-impact innovation. In the following section, I develop a 

model to assist in interpreting why only team size is positively related to creating high-impact 

patents.  
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5.5) Theory: The Returns to Experience in Fast- and Slow-Moving Knowledge Fields 

Building on a model of recombinant knowledge creation (Weitzman, 1998), I assume 

that inventors create new ideas by combining existing ideas. I allow new ideas to vary in 

terms of their impact. The impact of a new idea p is a function of the complementarity of the 

existing ideas that are combined in the creation of the new idea (Fleming and Sorenson, 

2001). Equation 5.3 defines the impact of patent p as a function of the complementarity 

between its components and a stochastic element, Z:  

(5.3) 𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝑓(𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑖𝑡𝑦𝑝 + 𝑍𝑝) 

To invent a new idea, an inventor i maximizes the impact of an invention subject to 

i’s knowledge constraint by searching amongst their accumulated ideas and by combining the 

set with the strongest complementarities. The knowledge constraint of inventor i defines the 

existing ideas that the inventor has knowledge of and is able to combine. The knowledge 

constraints of inventors relax when they accumulate knowledge. Inventors accumulate 

knowledge in two ways. First, inventors learn during their educational careers prior to 

becoming patenting inventors. This knowledge is intrinsic from the standpoint of the model. I 

denote i’s intrinsic knowledge by 𝐾𝑖, which is fixed for the duration of i’s patenting career. 

Second, inventors accumulate knowledge through interactions with texts, materials, and with 

other inventors during their patenting careers. The term 𝐸𝑖,𝑡 denotes this time-varying 

experiential knowledge. The accumulated knowledge of inventor i is thus a function of i’s 

intrinsic and experiential knowledge: 

(5.4) 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑖,𝑡 = 𝑓(𝐾𝑖 + 𝐸𝑖,𝑡) 

Because inventors create new ideas by combining the maximally-complementary 

existing ideas within their knowledge constraint, the complementarity of a new idea created 

by inventor i is an increasing function of the number of ideas that i knows: 

(5.5) 𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑖𝑡𝑦𝑝 = 𝑓(𝐾𝑖 + 𝐸𝑖,𝑡) 
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Equation 5.5 can be substituted into Equation 5.3 to relate the impact of an invention 

p to the knowledge accumulated by inventor i in the time leading up to time t plus the 

stochastic element 𝑍𝑝: 

(5.6) 𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝑓(𝐾𝑖 + 𝐸𝑖,𝑡 + 𝑍𝑝) 

In Equation 5.6, the absolute impact of patent p is a function of the absolute quantity 

of the knowledge held by the inventor. The relative impact of p, measured as the impact of p 

relative to all other ideas that could possibly be created during t, is determined by the extent 

of inventor i’s accumulated knowledge stock (𝐾𝑖 + 𝐸𝑖,𝑡) relative to the knowledge stocks of 

all other inventors. Under the assumption that inventors can collaborate with other inventors 

without cost,
15

 the relative impact of p is determined by the extent of i’s accumulated 

knowledge stock relative to the number of ideas known by all other inventors, denoted by 𝑈𝑡. 

Therefore, the relative impact of p is given by the percentage of all ideas known by inventors 

in time t by inventor i plus the stochastic element 𝑍𝑝: 

(5.7) 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝑓 (
𝐾𝑖+𝐸𝑖,𝑡

𝑈𝑡
+ 𝑍𝑝) 

In Equation 5.7, 𝑈𝑡 is the sum of all intrinsic knowledge and experiential knowledge 

across all inventors. Because new inventors enter the patenting universe over time (i.e. new 

inventors start their careers), the quantities of universe-wide experiential knowledge and 

intrinsic knowledge are time-varying: 

(5.8) 𝑈𝑡 = ∑ (𝐾𝑖,𝑡 + 𝐸𝑖,𝑡)𝑛
𝑖  

Substituting Equation 5.8 into Equation 5.7 and taking the differences of each variable 

with respect to time relates the changes in the impact of ideas created by individual inventors 

to their flow of experiences, the flow of new inventors into the universe, and the flow of 

experiences by incumbent inventors:  

                                                 
15

 We will relax the assumption of costless collaboration in the following section. For now, it is helpful to note 

that a non-zero cost of collaboration reduces the value of 𝑈𝑡 by segmenting the knowledge stocks of individual 

inventors. 
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(5.9) 𝛥𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐼𝑚𝑝𝑎𝑐𝑡𝑝,𝑖 = 𝑓 (
𝛥𝐸𝑖

(𝛥𝐾 + 𝛥𝐸)⁄ ) 

Equation 5.9 states that the returns to inventor maturity, defined as the change in the 

relative impact of an inventor’s inventions over time (𝛥𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐼𝑚𝑝𝑎𝑐𝑡𝑝,𝑖), is determined by 

three factors: the change in an inventor’s experience over time (𝛥𝐸𝑖), the change in the 

number of inventors in the universe (𝛥𝐾), and the change in the number of experiences in the 

universe (𝛥𝐸). For simplicity, in the subsequent discussion I will compact the denominator to 

a single term, 𝛥𝑈, denoting the change in the number of new ideas in the universe without 

distinguishing whether those ideas are added by intrinsic or experiential knowledge. 

The discussion so far has assumed that the complementarity between ideas is 

generated by a random process. I now assume that ideas are organized in fields of knowledge, 

indexed by c. Ideas from the same field have a fixed probability ρ of being complements, 

while ideas from different fields have zero probability of being complements. This 

assumption can be relaxed such that ideas from different fields would have some probability 

between 0 and ρ of being complements; however, the simple binary classification is sufficient 

to define the model and derive its propositions. The assumption that ideas are grouped into 

knowledge fields also generates the consequence that inventors who innovate in large fields 

with many recombinant possibilities are less likely to have knowledge of the most-

complementary combinations in their field. This latter statement is expressed in Equation 5.9, 

where the impact of idea p relative to all other ideas that can theoretically be generated in 

field c is a function of the number of ideas known by i in field c divided by the number of 

ideas in field c known by all inventors: 

(5.10) 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐼𝑚𝑝𝑎𝑐𝑡𝑝,𝑐 = 𝑓 (
𝐾𝑖,𝑐+𝐸𝑖,𝑐,𝑡

𝑈𝑐,𝑡
+ 𝑍𝑝) 

Taking differences of each variable in Equation 5.10 over time expresses the change 

in the relative impact of the ideas produced by i in field c as a function of the change in the 
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knowledge accumulated by i in field c and the change in the number of ideas in field c that 

are added by other inventors: 

(5.11) 𝛥𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐼𝑚𝑝𝑎𝑐𝑡𝑝,𝑖,𝑐 = 𝑓 (
𝛥𝐸𝑖,𝑐

𝛥𝑈𝑐
⁄ ) 

The denominator of Equation 5.10 indicates that the returns to inventor maturity, 

𝛥𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐼𝑚𝑝𝑎𝑐𝑡𝑝,𝑖,𝑐, vary across knowledge fields. In particular, the returns to maturity are 

a decreasing function of 𝛥𝑈𝑐, the rate at which all inventors introduce new ideas to the field. 

When 𝛥𝑈𝑐 >  𝛥𝐸𝑖,𝑐, new ideas are added to fields faster than individual inventors learn those 

ideas. In these fast-growth knowledge fields, the relative impact of the new ideas declines as 

their inventors mature. 

Finally, I assume that inventors are awarded patents for ideas if the relative impact of 

their ideas is above the threshold value τ. This is the threshold above which inventions are 

deemed to be “useful”, which is one of the criteria used by the USPTO when determining 

whether a patent application should be granted.
16

 All ideas that fall below this threshold are 

not granted patents. In addition, an idea will become a high-impact patent if its relative 

impact is above the threshold value γ, such that γ > τ. 

Combining these assumptions with the specification of Equation 10 and defining fast-

growth knowledge fields as the fields in which 𝛥𝑈𝑐 is large generates the first two 

propositions: 

 Proposition 1: The probability that inventors create patents (ideas with relative 

impact exceeding τ) declines more rapidly over their careers in fast-growth 

knowledge fields. 

                                                 
16

 See: https://www.uspto.gov/patents/basics 



119 

 

 Proposition 2: The probability that inventors create high-impact patents (ideas 

with relative impact exceeding γ) declines more rapidly over their careers in fast-

growth knowledge fields. 

 

5.6) Theory: The Returns to Collaboration in Fast and Slow-Moving Fields 

Collaboration allows inventors to pool their intrinsic and experiential knowledge. 

Collaborating with a new partner also entails a cost associated with building trust and shared 

norms. This cost is measured in units of time and is denoted by r. Inventors must choose 

between investing their time toward accumulating experiential knowledge or toward 

establishing collaborative relationships. The collaboration between inventor i and inventor j 

results in the shared knowledge constraint: 

(5.12) 𝑆ℎ𝑎𝑟𝑒𝑑𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑖+𝑗 = 𝑓 (𝐾𝑖 + (𝐸𝑖,𝑡 − 𝑟) + 𝐾𝑗 + (𝐸𝑗,𝑡 − 𝑟)) 

A collaboration between i and j produces an idea p with a relative impact determined 

by their shared knowledge constraint, the number of ideas known by all inventors in the 

universe 𝑈𝑡, and the stochastic element 𝑍𝑝: 

(5.13) 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐼𝑚𝑝𝑎𝑐𝑡𝑝,𝑖+𝑗 = 𝑓 (
𝐾𝑖+𝐸𝑖,𝑡+𝐾𝑗+𝐸𝑗,𝑡−2𝑟

𝑈𝑡
+ 𝑍𝑝) 

Inventors collaborate with partners if the returns to collaboration, measured in terms 

of the increase in the relative impact of the resulting invention, exceed the costs of 

collaboration. For inventor i, this condition holds when the shared knowledge constraint, 

including the cost incurred by establishing the collaborative relationship, is less restrictive 

than i’s individual knowledge constraint: 

(5.13) 
𝐾𝑖+𝐾𝑗+2𝐸𝑖∨𝑗,𝑡−𝑟

𝑈𝑡
>  

𝐾𝑖+𝐸𝑖,𝑡

𝑈𝑡
 

This inequality is more likely to be satisfied when the rate at which all inventors 

introduce new ideas to the universe (𝛥𝑈𝑐) is large. The reason for this is that a large growth 
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rate of new ideas implies that inventors accumulate knowledge through experiential learning 

more slowly than the introduction of new ideas to the universe erodes their awareness of the 

highest-impact combinations of ideas. When 𝛥𝑈𝑐 is very large, the growth rate of i’s 

individual knowledge constraint is determined solely by 𝐾𝑖 and i and j’s shared knowledge 

constraint is determined by 𝐾𝑖 + 𝐾𝑗 − 𝑟. So long as j’s intrinsic knowledge, 𝐾𝑗, exceeds the 

cost of forming a collaboration (r), i is incentivized to collaborate with j when 𝛥𝑈𝑐 is large. 

For reasons discussed above, 𝛥𝑈𝑐 also varies across technological fields. Therefore, I arrive 

at the model’s third proposition: 

 Proposition 3: Collaborative teams are more likely to create a patent (an idea with 

relative impact exceeding τ) in fast-growth knowledge fields. 

For similar reasons to those described above, I arrive at the model’s fourth proposition: 

 Proposition 4: Collaborative teams are more likely to create a high-impact patent (an 

idea with relative impact exceeding γ) in fast-growth knowledge fields. 

 

5.7) Learning and Collaborating in Slow and Fast-Moving Knowledge Fields 

The model generated the following predictions: 

 

1. Inventors in fast growth knowledge fields are less mature than inventors in slow 

growth fields 

2. The returns to maturity are lower in fast growth fields than in slow growth fields 

3. Inventors in fast growth knowledge fields collaborate more frequently than in slow 

growth fields 

4. The returns to collaboration are larger in fast growth fields than in slow growth fields 
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To empirically identify fast growth and slow growth knowledge fields, I compute the 

patent growth rate in each aggregate USPC technology class and in each 5-year time period. 

There are 438 unique technology classes at the level of the USPC schema that I utilize. The 

growth rate of patents in each class c is computed as the number of patents assigned to class c 

in the 5-year period t divided by the number of patents assigned to class c in all time periods 

up to t-1: 

(5.14) 𝐺𝑅𝑐,𝑡 =
𝑃𝑐,𝑡

∑ 𝑃𝑐,𝑖
𝑡−1
𝑡=0

 

Next, I transform 𝐺𝑅𝑐,𝑡 into a binary variable by defining class-time period pairs as 

“fast growth classes” if their growth rate is above the average across all classes in the same 5-

year period. All other class-time period pairs are defined as “slow growth classes”. Therefore, 

in each 5-year period half of all classes are fast growth and half are slow growth. 

I begin the empirical test of the model by analyzing the model’s proposition, that 

inventors in fast growth classes have fewer years of patenting experience than inventors in 

slow growth classes. Figure 5.8 plots the mean experience of repeat inventors of patents in 

fast and slow growth technological fields by 5-year periods. In the figure, I restrict the sample 

to repeat inventors (inventors granted at least two patents) because inventors that patent only 

1 patent during their careers do not accumulate meaningful experience. As before, I overlay 

95% confidence intervals in the charts.  
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Figure 5.8: Average Years of Experience of Repeat Inventors by Class Growth Rate 

 

95% confidence intervals are overlaid in the figure. 

Figure 5.8 shows that the average number of years of experience level of repeat 

inventors in fast growth technological fields was lower than that of the inventors of patents in 

slow growth fields for the full study period. The 95% confidence intervals, which are tightly 

concentrated around the mean values, indicate that these differences are statistically 

significant across all time periods. The one exception is the period spanning from 1910 to 

1914 during which there is a discontinuity in the inventor career panels, as discussed in 

Section 5.3. With this caveat aside, Figure 5.8 confirms the model’s first proposition that 

mature inventors tend to patent in slow growth fields. 

The second proposition from the model is that the returns to maturity are more 

strongly negative in fast growth fields. To test this proposition, in Figure 5.9 I plot the 

probability that four types of patents – patents in fast growth fields invented by premature 

inventors, patents in fast growth fields invented by mature inventors, patents in slow-growing 

classes invented by premature inventors, and patents in slow-growing classes invented by 

mature inventors – are high-impact. The left panel of Figure 5.9 uses the entire dataset, while 

the right panel accounts for the selection of low-ability inventors to discontinue patenting by 
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restricting the dataset to inventors who reach maturity. In the right panel, premature inventors 

are those who started their patenting careers recently but go on to reach maturity. 

Figure 5.9: Probability of High-Impact Patent by Maturity and Class Growth Rate 

All Inventors 

 

Inventors with Careers 5+ Years Long 

 
95% Confidence intervals are overlaid in the chart. 

Figures 5.9 shows that the probability that a patent will be high-impact was about the 

same for patents produced in fast and slow growth classes, regardless of the level of maturity 

of their inventors, until 1880. After 1880, patents in fast growth were more likely to be highly 

impactful. The right panel of Figure 5.9, which accounts for inventor selection by omitting 

inventors that do not reach maturity, shows that the probability of inventing a high-impact 

patent in a fast-moving class was greater for premature inventors than for mature ones. The 

right panel also shows that the probability of creating a high-impact patent in a slow growth 

class was greater for premature inventors than for mature ones.  

Although informative, Figure 5.9 does not account for inventor-level heterogeneity 

including the possible self-selection of inventors into particular technology classes. In 

addition, Figure 5.9 does not test whether the difference in the returns to mature are 

significantly different in fast and slow-growing technology fields. To account for these 

potential issues, I develop a regression model where the probability that a patent is high-

impact is a function of inventor maturity measured as log years of experience, the binary 

variable FastClass which records a 1 if a class is fast and 0 if it is slow growth, the 
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interaction of maturity and FastClass, and inventor and year fixed effects. I am primarily 

interested in 𝐵3, the coefficient on the interaction of inventor maturity and FastClass. I 

hypothesize that 𝐵3 will be negative and significant, indicating that the returns to experience 

are lower in fast growth classes. The model is given by Equation 5.15: 

(5.15) 𝑃𝑟𝑜𝑏(𝐻𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡𝑝)

= 𝐵1𝐿𝑜𝑔(𝑌𝑒𝑎𝑟𝑠𝑂𝑓𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒)𝑝 + 𝐵2𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑝

+ 𝐵3𝐿𝑜𝑔(𝑌𝑒𝑎𝑟𝑠𝑂𝑓𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒)𝑝 ∗ 𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑝 + 𝐹𝐸𝑖 + 𝐹𝐸𝑡 + 𝐸𝑝 

Because the earlier results showed that the returns to maturity change over time (see 

Section 5.4), I run the model described by Equation 5.15 separately for patents granted before 

and after 1920. I hypothesize is that 𝐵3 will be statistically insignificant for patents issued 

before 1920 but negative and significant for patents issued after 1920. The results are 

presented in Table 5.1. As before, I estimate the model as a linear probability model because 

the large number of fixed effects makes logit or probit specification infeasible. 
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Table 5.1: Regression Estimates of Effect of Years of Experience on Prob(High Impact) 

 Patents Granted 1836-1919 Patents Granted 1920-1975 

𝐿𝑜𝑔(𝑌𝑒𝑎𝑟𝑠𝑂𝑓𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒) 
-0.00164** 

(0.000736) 
 

-0.00384*** 

(0.000448) 
 

𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠 
0.00920*** 

(0.00129) 

0.0102*** 

(0.00143) 

0.0214*** 

(0.000937) 

0.0226*** 

(0.000994) 

𝐿𝑜𝑔(𝑌𝑒𝑎𝑟𝑠𝑂𝑓𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒)
∗ 𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠 

0.000135 

(0.000692) 
 

-0.000931** 

(0.000464) 
 

𝑀𝑎𝑡𝑢𝑟𝑒  
0.000153 

(0.00133) 
 

-0.00323*** 

(0.000753) 

𝑀𝑎𝑡𝑢𝑟𝑒 ∗ 𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠  
-0.000531 

(0.00190) 
 

-0.00289** 

(0.00116) 

Inventor and year fixed 

effects 
Yes Yes Yes Yes 

R
2 

0.315 0.276 0.281 0.227 

Inventor Subset 
All 

Inventors 

Inventors 

who reach 

maturity 

All 

Inventors 

Inventors 

who reach 

maturity 

NOBS (unique inventors) 211,298 135,813 447,847 254,434 

Standard errors clustered at inventor level in parenthesis. 

Table 5.1 generates several insights. First, for patents granted before 1920 (left-hand 

column), maturity when measured using log years of experience was associated with a lower 

probability of high impact. In addition, FastClass was positively associated with high-impact 

patenting. The interaction of maturity and FastClass was insignificant, indicating that the 

returns to maturity were statistically the same in fast and slow growth classes before 1920. 

The right-hand column of Table 5.1 shows that, between 1920 and 1974, maturity was also 

negatively associated with high impact and that FastClass was also positively associated with 

high-impact during the later years of the study. However, after 1920 the interaction of 

maturity, specified as both a binary and a continuous logged variable, and FastClass was 

significantly negative. Therefore, I conclude that the model’s second proposition is confirmed 
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by the empirical analysis: the returns to maturity were significantly lower in fast growth 

classes than in slow-growth classes after 1920.  

The third proposition of the model is that inventors in fast growth classes are more 

likely to collaborate than inventors in slow growth classes. I test this proposition in Figure 

5.10 by plotting the average team size of patents in the two types of classes. To separate out 

possible changes in the propensity to collaborate as a binary outcome from the propensity to 

form larger collaborative teams, I also produce a version of the figure in which I omit all 

solo-inventor patents in the right panel of the figure. 

Figure 5.10: Average Team Size by Class Growth Rate with 95% Confidence Intervals 

All Patents

 

Collaborative Patents 

 
95% confidence intervals overlaid in the chart. The confidence intervals are tightly 

clustered around the means. 

Figure 5.10 shows that the average team size was the same for patents in fast and slow 

growth classes until 1920. After 1920, the average team size of patents in fast-growth classes 

increased significantly above that of patents in slow-growth patents. The 95% confidence 

intervals are very small, indicating that the difference in average team size after 1920 is 

statistically significant. These results are found in both panels in Figure 5.10, including the 

right-hand panel which omits all single-inventor patents. Thus, Figure 5.10 confirms the 

model’s third proposition.   
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The final proposition from the model is that the returns to collaboration are greater in 

fast growth classes than in slow growth classes. I start to explore this proposition in Figure 

5.11 plotting by computing the probability that patents of four types -- patents in fast growth 

classes invented by individuals, patents in fast growing classes invented by teams, patents in 

slow growth classes invented by individuals, and patents in slow growth classes invented by 

teams – are high-impact. I overlay 95% confidence intervals in the chart. 

Figure 5.11: Probability of High-Impact Patent by Collaboration and Class Growth 

Rate 

 

Figure 5.11 shows that the probability of creating a high-impact patent did not vary 

across fast and slow growth classes until 1890. After 1890, patents in fast growth classes 

were more likely to be high-impact than patents in slow growth classes. In addition, after 

1920 patents invented by teams in fast growth classes were more likely to be high-impact 

than patents invented by individuals in fast growth classes, and patents invented by teams in 

slow-growth classes were more likely to be high impact than patents invented by individuals 

in slow growth classes. 

Figure 5.11 may contain two issues. First, inventors with greater ability may select 

into fast growth classes or into collaboration more frequently. In addition, Figure 5.11 does 
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not test whether the returns to collaboration vary by class growth rate. To address these 

issues, I develop a regression model where the probability that a patent is high-impact is a 

function of the team size that invented the patent, the FastClass binary variable described 

above, a term which interacts team size with FastClass, and inventor and year fixed effects: 

(5.16) 𝑃𝑟𝑜𝑏(𝐻𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡𝑝)

= 𝐵1𝐿𝑜𝑔(𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒)𝑝 + 𝐵2𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑝 + 𝐵3𝐿𝑜𝑔(𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒)𝑝

∗ 𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑝 + 𝐹𝐸𝑖 + 𝐹𝐸𝑡 + 𝐸𝑝 

As before, I am primarily interested in 𝐵3. I hypothesize that 𝐵3 will be positive and 

significant, indicating that the returns to collaboration are larger in fast growth technology 

classes. In addition, I run the model described by Equation 5.16 separately for patents granted 

before and after 1920 because I found in Figure 5.7 that 1920 is the critical year when 

positive returns to collaboration emerged. I estimate Equation 5.16 using a linear probability 

model and provide the regression results in Table 5.2. 
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Table 5.2: Regression Estimates of Effect of Team Size on Prob(High Impact) 

 
Patents Granted 1836-

1919 

Patents Granted 1920-

1975 

𝐿𝑜𝑔(𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒) 
-0.000490 

(0.00127) 
 

0.00661*** 

(0.000587) 
 

𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠 
0.00897*** 

(0.000968) 

0.00907*** 

(0.00101) 

0.0171*** 

(0.000696) 

0.0178*** 

(0.000706) 

𝐿𝑜𝑔(𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒)
∗ 𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠 

0.00213 

(0.00212) 
 

0.00703*** 

(0.00108) 
 

𝐶𝑜𝑙𝑙𝑎𝑏  
-0.000196 

(0.000985) 
 

0.00416*** 

(0.000498) 

𝐶𝑜𝑙𝑙𝑎𝑏 ∗ 𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠  
0.00252 

(0.00171) 
 

0.00449*** 

(0.000952) 

Inventor and year fixed 

effects 
Yes Yes Yes Yes 

R
2 

0.315 0.315 0.281 0.281 

Inventor Subset 
All 

Inventors 

All 

Inventors 

All 

Inventors 

All 

Inventors 

NOBS (unique inventors) 211,298 211,298 447,847 447,847 

Standard errors clustered at inventor level in parenthesis. 

Table 5.2 generates three important results. First, team size was not associated with 

high impact before 1920, but FastClass was. Second, the interaction team size and FastClass 

was insignificant for patents granted before 1920, indicating that the returns to team size were 

no different in fast-growth fields before 1920. Third, the interaction term was positive and 

significant for patents granted after 1920. This finding confirms the model’s fourth 

proposition, that the returns to collaboration were greater in fast-moving classes after 1920. 

 

5.8) Discussion 

This paper demonstrated that inventors receive positive returns to collaboration and 

negative returns to maturity. Both sets of returns emerged during the first three decades of the 

20
th

 century. This timing is consequential. Historians of technology and the economy have 

identified the start of the 20
th

 century as a transformative era. Technology historians describe 
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shifts in the organization of innovation that took place in the early 1900s, including the 

invention of the corporate R&D lab and the emergence of firms as the principal coordinating 

actors of innovative activities (Lamoreaux and Sokoloff, 1996; Neffke et al., 2021). 

Economic historians have identified the 1920s as the final decade of rapid innovation in the 

United States. Following his herculean work in data collection and archival research, Gordon 

(2014) concludes that the period of rapid growth in the U.S. standard of living and business 

productivity during the middle of the 20
th

 century resulted from the diffusion of technologies 

that were invented during the first three decades of the 20
th

 century. According to his 

analysis, the rate of innovation in the United States slowed substantially after the 1930s. 

It is plausible that the changes to the organization of innovative activities and the 

slowdown in the rate of invention in the early 20
th

 century are joint outcomes of changes in 

the environment within which inventors operate. Before the turn of the 20
th

 century, invention 

required a relatively small amount of knowledge. Empirical evidence supports this point: the 

opening of Carnegie library in towns and small cities in the U.S. at the dawn of the 20
th

 

century caused local patenting to increase between 8% and 13%, suggesting that the 

independent study of library texts was sufficient for invention during that era (Berkes and 

Nencka, 2021). However, as the 20
th

 century unfolded, invention became harder to do. Bloom 

et al. (2020) show that the productivity of R&D declined by on average 4% per year between 

1930 and 2015.  

The increase in the knowledge-intensity of invention has generated several related 

consequences. First, the average education level of the inventors of patents has increased 

(Junge and Ejermo, 2014). Second, innovative activities have become increasingly 

concentrated in populous counties and metropolitan areas where inventors were able to 

source a wider range of ideas through face-to-face communication (Mewes, 2019; Balland et 

al., 2020). Third, inventors have reorganized by creating larger teams, by partnering and 
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collaborating with non-family members, and by organizing into firms and corporate R&D 

labs (Lamoreaux and Sokoloff, 1996; van der Wouden, 2019; Neffke et al., 2021). A 

commonality between each of these adaptations is that they allowed inventors to access and 

employ more extensive stocks of knowledge. 

Interestingly, the increase in the knowledge intensity of invention during the 20
th

 

century did not result in an increase in the average experience level of inventors (Liu et al., 

2018; Liu et al., 2021) or in inventors’ average age (Sinatra et al., 2016; c.f. Jones, 2010). In 

this study, I also showed that the returns to inventor maturity became sharply negative during 

that time period. The explanation I proposed for why maturity is inversely related to 

innovation is that the rate of knowledge growth has accelerated over the last century. 

Experience accumulated over time is an ineffective means for knowledge accumulation when 

the sought-after knowledge is rapidly evolving. For this reason, inventors adapt to 

accelerating knowledge growth by developing methods to accumulate knowledge rapidly, 

such as by forming teams, by organizing into firms, and by agglomerating in dense cities. 

There is, to my knowledge, one alternative plausible hypothesis that could explain the 

negative returns inventors receive to maturity. Assume a model in which inventors begin their 

careers with a finite set of ideas, and that they patent their most impactful ideas early in their 

careers. As inventors mature, only their lowest impact ideas will remain to be patented. While 

plausible, this alternative model does not have empirical support. Notably, the model predicts 

that inventors who, for idiosyncratic reasons, take time off from patenting would not see any 

decrease in the impact of their inventions once they resume patenting, because they would 

not lose any of their ideas during those patenting breaks. To the contrary, Haller (2021) 

shows that, upon their return, inventors who take breaks from patenting create much lower 

impact inventions when compared with otherwise-similar inventors. This result is 

incompatible with a model in which the negative returns to maturity arise because inventors 
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run out of ideas, but it is fully consistent with the model outlined in Section 5.5 of this 

chapter, in which the negative returns to maturity arise because other inventors expand the 

knowledge frontier and render mature inventors’ knowledge stocks obsolete. 

Finally, I conclude by discussing an issue associated with team formation in fast-

advancing knowledge fields. The formation of teams allows inventors to expand their 

individual knowledge capabilities only if inventors already know a certain quantity of 

knowledge. Therefore, inventors must accumulate knowledge in some way in order to share 

it; otherwise the benefits to sharing knowledge would be nil. In this study, I demonstrated 

that the returns to inventor maturity are negative, so it is unlikely that inventors accumulate 

their sharable knowledge during their patenting careers. A more plausible explanation is that 

inventors develop highly specific and current technological skills and methods during their 

educational training. The effectiveness of inventors’ knowledge is thus greatest when they 

commence their patenting careers, and as their industry evolves over time their skills become 

dated. Therefore, the positive returns to collaboration result from the sharing of educational 

backgrounds, and not professional experiences.   
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5.9) Appendix 

Exclusion of Collaborative Patents in Calculation of Experience 

Figure 5.12: Likelihood of Creating a High-Impact Patent by Inventor Maturity, 

Excluding Collaborative Patents 

All inventors 

 

Inventors with Careers 5+ Years Long 

 
  

 

Returns to Experience Excluding Co-Invented Patents 

Figure 5.13: Predicted Probability of Creating a High-Impact Patent, Excluding Co-

Invented Patents 

Returns to Maturity 

 

Returns to Log(Years of Experience) 
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Analysis using 10% Threshold 

In this sub-section, I replicate the main analyses using a top-10% threshold to define 

high-impact inventions. The results are similar to those using the top-5% threshold in the 

main text, with the exception of Table 5.3. I discuss this exception in the text below. 

I begin in Figure 5.14 by plotting the probability that premature and mature inventors create a 

high-impact patent. 

Figure 5.14: Probability of High-Impact Patent by Individuals and Teams 

All Inventors

 

Inventors that Reach Maturity
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In Figure 5.15, I plot the probability that individuals and teams create a high-impact patent. 

Figure 5.15: Probability of High-Impact Patent by Individuals and Teams 

 

Figures 5.16 and 5.17 show the returns to experience and collaboration after adjusting 

for inventor-level variation in ability. The regressions used for these figures are the same as 

Equations 5.1 and 5.2 in the main text. 

Figure 5.16: Returns to Maturity 

(A) Returns to Maturity 

 

(B) Returns to Log(Years of Experience) 
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Figure 5.17: Returns to Collaboration and Team Size 

Returns to Collaboration 

 

Returns to Team Size 

 

 

Figure 5.18 shows the mean probability that inexperienced inventors, experienced 

inventors, individuals, and teams create a high-impact patent, broken out by the growth rate 

of knowledge in a technology class.  

Figure 5.18: Probability of High-Impact Patenting in Fast and Slow Classes, by 

Maturity and Collaboration 

(A) Experience 

 

(B) Collaboration 

 
Panel A contains only inventors with careers that last 5+ years 

Table 5.3 shows the regression results of the relationship between experience and the 

probability of creating a high-impact patent. The regression model is the same as Equation 

5.15 in the main text. The results in Table 5.3 are slightly different from those in Table 5.1 

(which is the same model but uses the 5% threshold to identify high-impact inventions). 
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Notably, in Table 5.1, the coefficient for the interaction terms for patents granted 1920-1975 

is negative and significant, while the coefficient on the interaction terms is statistically 

insignificant in Table 5.3. 

Table 5.3: Regression Estimates of Effect of Years of Experience on Prob(HighImpact) 

 Patents Granted 1836-1919 Patents Granted 1920-1975 

𝐿𝑜𝑔(𝑌𝑒𝑎𝑟𝑠𝑂𝑓𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒) 
-0.00326*** 

(0.000985) 
 

-0.00637*** 

(0.000617) 
 

𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠 
0.0132*** 

(0.00183) 

0.0157*** 

(0.00192) 

0.0317*** 

(0.00125) 

0.0310*** 

(0.00132) 

𝐿𝑜𝑔(𝑌𝑒𝑎𝑟𝑠𝑂𝑓𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒)
∗ 𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠 

0.00142 

(0.000945) 
 

0.000248 

(0.000620) 
 

𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 (≥ 5 𝑦𝑒𝑎𝑟𝑠)  
0.00130 

(0.00181) 
 

-0.00737*** 

(0.00104) 

𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 ∗ 𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠  
0.000649 

(0.00248) 
 

0.00184 

(0.00152) 

Inventor and year fixed 

effects 
Yes Yes Yes Yes 

R
2 

0.329 0.290 0.304  

Inventor Subset 
All 

Inventors 

Inventors 

with careers 

5+ years 

All 

Inventors 

Inventors 

with careers 

5+ years 

NOBS (unique inventors) 211,298 135,899 447,847 254,434 

Standard errors clustered at inventor level in parenthesis. 

There are a few possible reasons why the coefficient on the interaction term is not 

significant in Table 5.3 but significant and negative in Table 5.1. One possibility is that 

experience in a fast-growing class may be negatively associated with inventing very high-

impact patents (top 5%) but less so with inventing slightly less high-impact patents (patents 

falling in the top 10% to top 6% of the impact distribution). This argument is supported by 

the more negative coefficient on log years of experience using the 10% threshold (-0.00637, 

Table 5.3) than using the 5% threshold (-0.00384, Table 5.1). The less negative coefficient 

using the 5% threshold indicates that the challenge of creating high-impact inventions is 
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greater between fast and slow-growth fields under the 5% threshold. Moreover, a 10% 

threshold may be embracing enough to reduce the distinction between the field growth rates. 

Finally, in Table 5.4 I plot regression coefficients for the effect of team size on the 

probability of creating a high-impact patent. These regression results are statistically identical 

to those I arrive at using a 5% threshold in the main text (Table 5.2). 

Table 5.4: Regression Estimates of Effect of Team Size on Prob(HighImpact) 

 
Patents Granted 1836-

1919 

Patents Granted 1920-

1975 

𝐿𝑜𝑔(𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒) 
-0.000816 

(0.00172) 
 

0.0101*** 

(0.000811) 
 

𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠 
0.0150*** 

(0.00135) 

0.0147*** 

(0.00136) 

0.0281*** 

(0.000940) 

0.0294*** 

(0.000952) 

𝐿𝑜𝑔(𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒)
∗ 𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠 

0.00200 

(0.00285) 
 

0.00993*** 

(0.00141) 
 

𝐶𝑜𝑙𝑙𝑎𝑏  
-0.000872 

(0.00135) 
 

0.00704*** 

(0.000702) 

𝐶𝑜𝑙𝑙𝑎𝑏 ∗ 𝐹𝑎𝑠𝑡𝐶𝑙𝑎𝑠𝑠  
0.00252 

(0.00227) 
 

0.00593*** 

(0.00125) 

Inventor and year fixed 

effects 
Yes Yes Yes Yes 

R
2 

0.329 0.329 0.304 0.304 

Inventor Subset 
All 

Inventors 

All 

Inventors 

All 

Inventors 

All 

Inventors 

NOBS (unique inventors) 211,298 135,813 447,847 254,434 

Standard errors clustered at inventor level in parenthesis. 
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