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A Coupled Lumped-Parameter
and Distributed Network Model
for Cerebral Pulse-Wave
Hemodynamics
The cerebral circulation is unique in its ability to maintain blood flow to the brain under
widely varying physiologic conditions. Incorporating this autoregulatory response is nec-
essary for cerebral blood flow (CBF) modeling, as well as investigations into pathologi-
cal conditions. We discuss a one-dimensional (1D) nonlinear model of blood flow in the
cerebral arteries coupled to autoregulatory lumped-parameter (LP) networks. The LP
networks incorporate intracranial pressure (ICP), cerebrospinal fluid (CSF), and cortical
collateral blood flow models. The overall model is used to evaluate changes in CBF due
to occlusions in the middle cerebral artery (MCA) and common carotid artery (CCA).
Velocity waveforms at the CCA and internal carotid artery (ICA) were examined prior
and post MCA occlusion. Evident waveform changes due to the occlusion were observed,
providing insight into cerebral vasospasm monitoring by morphological changes of the
velocity or pressure waveforms. The role of modeling of collateral blood flows through
cortical pathways and communicating arteries was also studied. When the MCA was
occluded, the cortical collateral flow had an important compensatory role, whereas the
communicating arteries in the circle of Willis (CoW) became more important when the
CCA was occluded. To validate the model, simulations were conducted to reproduce a
clinical test to assess dynamic autoregulatory function, and results demonstrated agree-
ment with published measurements. [DOI: 10.1115/1.4031331]

Keywords: circle of Willis, cerebral autoregulation, intracranial pressure, collateral
blood flow, multiscale model

1 Introduction

The brain has unique abilities to maintain adequate CBF under
various physiologic and pathologic conditions, such as rapid
changes of blood or ICP, and arterial occlusion. Important features
of intracranial hemodynamics include, (1) cerebral autoregulation
(CA) [1–3], (2) cortical anastomosis that can transfer blood
between different regions of brain, (3) communicating arteries
that form the CoW to redistribute blood supply, and (4) multiple
arterial blood sources (carotid and vertebral arteries). The func-
tions of these are highly coupled, and nonlinearly related to
CSF and ICP dynamics. Moreover, the blood distribution and
pulse-wave dynamics in cerebral arteries can be affected by flow
and pressure dynamics in large systemic arteries. Due to these fac-
tors, quantitative modeling of the intracranial hemodynamics is a
rich topic.

Hemodynamics simulation is typically achieved using models
of varying dimensionality. In 3D models, the velocity and
pressure fields are fully resolved in space and time through com-
putational fluid–structure dynamics simulations. These simula-
tions are computationally expensive, but necessary if localized
flow structures need to be resolved. When a more regional or
global assessment of blood flow is sought, LP and 1D models are
appropriate, especially in assessing pressure and flow waveforms.
LP models typically represent the behavior of a collection of ves-
sels by electrical analogs [4]. Recently, Ursino and Giannessi [5]
applied a LP network model to represent carotid and basilar

arteries and segments in the CoW. The cerebral arteries were con-
nected to six peripheral vascular beds coupled with models for
autoregulation, cortical anastomoses, CSF circulation, and ICP.
This model enabled the study of blood flow distributions and
transient effects of pathological conditions (e.g., hypercapnia) and
carotid artery compression. Similar to LP models, a system of
differential equation can be derived to describe global effects of
cerebral autoregulation. Gonzalez-Fernandez and Ermentrout [6]
modeled CA2þ variations in smooth muscle and reproduced
vasomotions observed in cat cerebral arteries by Harder [7,8].
Later, David et al. [9] investigated myogenic and metabolic autor-
egulation, and showed that the latter mechanism is the dominant
mechanism for cerebral autoregulation in response to carbon diox-
ide variation. LP and theoretical models do not incorporate topo-
logical properties of arteries however, and are thus not able to
describe wave propagation effects. The measurement of such
effects has become important in patient monitoring with the
increased prevalence of diagnostic devices such as transcranial
Doppler and continuous intracranial or arterial blood pressure
monitoring.

To capture wave propagation phenomena, distributed 1D
models are used [10] whereby the governing (Navier–Stokes)
equations for blood flow in each arterial segment are reduced to
the axial coordinate and then a deformable tube network is con-
structed through appropriate junction conditions. In such settings,
LP models are often coupled at the terminal segments of the 1D
domain to represent downstream vascular beds. A similar
approach is adopted here. Important work in modeling CBF on
the pulse-waveform level with patient-based vessel geometry
was performed by Alastruey et al. [11] using a 1D deformable
pipe network. This model considered the first generation of
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arteries past the CoW and coupled three-element Windkessel
models at the outlets. In a subsequent publication [12], the three-
element Windkessel models were extended to include autoregula-
tory function to investigate how anatomical variation of the CoW
restored CBF after a sudden carotid occlusion. Using similar
models, K€oppl et al. [13] also recently studied the impact of
varying degrees of unilateral stenoses of a carotid artery to CBF.
The three-element based CA models used in the aforementioned
studies demonstrated the ability of CA to recover and maintain
blood flow following carotid artery occlusion. Liang et al. [14]
considered more sophisticated cerebral LP model in addition to
heart and lung models for their 1D study to describe cerebral
hyperperfusion syndrome after carotid artery surgery. These
models however did not consider the influences of distal collat-
eral flow, ICP and CSF, which can be essential elements influ-
encing intracranial hemodynamics. A review of computational
models of blood flow to the brain and how variations in arterial
geometry can influence the perfusion in the cerebral vasculature
can be found in Ref. [15].

In this study, we developed an integrated computational
framework to assess the effects of clinical tests and pathological
conditions (e.g., occlusion or compression of arteries) on CBF dis-
tribution, pulse-wave propagation, and ICP. For this, we extended
the recent study by Connolly et al. [16], which incorporated Ursi-
no’s autoregulation models [17,18] into downstream LP models of
a 1D flow domain. Specifically, we extend the 1D network to
include proximal arteries for accurate calculation of blood distri-
bution and pulse-wave propagation. We also incorporated
improvements to the LP CA model by considering the cortical
anastomoses [5]. Moreover, we provide a comparison between
popular pressure–area coupling used in the 1D domain for pulse-
wave analysis. The model developed could be coupled with
model-driven statistical inference approaches to provide a model-
based data fusion of clinical data to monitor cerebral hemodynam-
ics for patients under neurocritical care.

The remainder of this paper is organized as follows. First, we
present the basic formulations used in this study. In the results,
these methods are used to investigate waveform dynamics, includ-
ing comparison between two popular pressure constituent models
based on Laplace’s law. The role of CA and distal collateral path-
ways are compared when the MCA or CCA are occluded. The
role of CA is further analyzed when both CCAs are compressed
with various strengths; this procedure has been used to reduce cer-
ebral embolic load during transcatheter aortic-valve implantation.
Finally, the model is applied to the transient hyperemic response
test (THRT) [19] and compared with available data in the
literature.

2 Numerical Procedures

2.1 Vascular Model. Pressure and flow wave propagation
can be modeled in the major arteries by representing each arterial
segment as a deformable tube. A diagram of the arterial network
used in this study is shown in Fig. 1(a). The following vessel
segments are considered in the model: aorta (#1, 2, 4, 8; AORT),
brachiocephalic (#3; BRC), subclavian (#7, 9; SC), brachial (#15,
16; BR), common carotid (#5, 6; CCA), internal carotid (#11, 12,
18, 21; ICA), external carotid (#10, 13; ECA), vertebral (#14, 17;
VERT), basilar (#22; BAS), posterior communicating (#19, 20;
PcoA), anterior communicating (#31; AcoA), middle cerebral
(#23, 24; MCA), anterior cerebral (#25, 26, 29, 30; ACA), and
posterior cerebral arteries (#27, 28, 32, 33; PCA). Below, “R” and
“L” in front of the vessel abbreviations denote the right and left
side of the body, respectively. The reference state geometries
(length and diameter when transmural pressure is zero) and
mechanical properties of the vessels are adopted from physiologi-
cal data in Refs. [11] and [20–22] and listed in Table 1. We con-
sider occlusions of the MCA and CCAs at the locations marked
with the � in Fig. 1(a).

Terminal branches are coupled with three-element Windkessel
models (marked with •) or with CA models (marked with �) that
themselves are internally coupled. Specifically, the elements of
the cerebral LP network are shown schematically in Fig. 1(b). The
six cerebral distal vascular beds are coupled by collateral path-
ways and are also commonly coupled within a single ICP model.
Further details about the elements are shown, and modeling of the
autoregulatory functions is covered in Sec. 2.6.

2.2 Mass and Momentum Conservation. The 1D equations
for blood flow and pressure in a deformable tube have been
derived in numerous publications under various assumptions. We
use the formulation derived in Ref. [23]. The basic assumption is
that the transverse velocities are small compared with the axial.
Upon applying this assumption and integrating the Navier–Stokes
equations over the cross section, the conservation of mass and
momentum in the axial direction is reduced to

@A

@t
þ @AU

@x
¼ 0 (1)

@U

@t
þ 2a� 1ð ÞU @U

@x
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where x and r are the axial and radial coordinates, R and A are the
vessel’s radius and cross section area, U is the transverse average
of the axial velocity u, and p is the transversely averaged pressure.
The blood density q and apparent viscosity l are assumed con-
stant, and

a x; tð Þ ¼
2p

AU2

ðR

0

u2rdr

To compute a and the wall shear rate @u=@rjR, we need to
know how u depends on r. As proposed in Ref. [24], we assume a
velocity profile of the form

u r; x; tð Þ ¼
cþ 2

c
U x; tð Þ 1� r

R

� �c
" #

from which it can be shown that c ¼ ð2� aÞ=ða� 1Þ. Note that
the Poiseuille (parabolic) velocity profile is represented by c¼ 2
leading to a ¼ 4=3. In most arteries, the profile is more blunt than
parabolic and higher values for c are appropriate, which typically
produce a � 1. Consulting Eq. (2), it is clear that, for a � 1, the
nonlinearity in the momentum equation can be reduced (but not
eliminated) so that
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(3)

This form of the momentum equation is used henceforth in the
results, as well as parameter values of c¼ 9, q ¼ 1:05� 103 kg m�3,
and l ¼ 4:05� 10�3 Pa � s.

2.3 Pressure–Vessel Area Relationship. For the above for-
mulation of flow in a compliant tube, the unknown variables are
U, p, and A. To close the system of equations, various constitutive
relations between p and A have been employed, see, e.g.,
Refs. [22,25,26]. Mostly commonly, the constitutive relation is of
a thin elastic and isotropic tube governed by Laplace’s law; how-
ever, even this model has been treated differently. Starting from
the standard form of Laplace’s law

p� p0 ¼
h

R
s ¼ h

R

E

1� r2

R� R0

R0

(4)
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where h is the vessel thickness, p0 is the external pressure, R0 is
the vessel radius at zero transmural pressure (p¼ p0), s is the

circumferential (hoop) stress, E is Young’s modulus, and r is
Poisson’s ratio. By assuming R0=R � 1

p� p0 ¼
b�

A0

ffiffiffi
A
p
�

ffiffiffiffiffi
A0

p� �
(P1)

Fig. 1 (a) Schematic of the 1D arterial network. Outflow boundaries marked with � are coupled with the LP network
in (b), and boundaries marked with • are coupled to three-element Windkessel models. Locations where A0 is varied
are marked with 3. (b) Schematic of the LP network model, which includes CA. The bounding box represents intracra-
nial space, and a single ICP model is shared by the six cerebral distal vascular bed models inside the intracranial
space.
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where b� ¼ ð
ffiffiffi
p
p

hEÞ=ð1� r2Þ. This elastic relation has been
employed in many recent 1D [11,25,27] models.

If we do not directly apply R0=R � 1 explicitly in the above
formula, Laplace’s law gives

p� p0 ¼
h

R
s ¼ h

R

E

1� r2

R� R0

R0

¼ b
1ffiffiffiffiffi
A0

p � 1ffiffiffi
A
p

� �
(P2)

where b ¼
ffiffiffi
p
p

hE=ð1� r2Þ. This pressure model has been used
by Olufsen et al. [28] and Steele et al. [29]. These two formulas
(Eqs. (P1) and (P2)) represent different functional dependencies
between pressure (and, e.g., wave speed) and cross-sectional area.
Below, we explore how these two constitutive models affect the
pulse-wave quantities in practical applications to systemic blood
flow modeling.

2.4 Characteristic Variable and Wave Intensity Analysis
(WIA). Boundary conditions for a hyperbolic system (Eqs. (1),
(3), and (P1) or (P2)) are often handled by separating propagating
waves into incoming and outgoing ones by characteristic variable
analysis. This analysis also facilitates WIA [30], which quantifies
the amount of forward and backward traveling flow quantities. In
this section, important equations for this analysis are recalled.

Using Eqs. (1), (3), and the distensibility D ¼ ð1=AÞðdA=dpÞ, a
nonconservative form of the governing equations can be derived
with an inviscid approximation (see, e.g., Ref. [27]). In canonical
coordinates, the wave equations are derived

@W6

@t
þ k6

@W6

@x
¼ 0 (6)

where k6 ¼ U6c; c ¼ 1=
ffiffiffiffiffiffiffi
qD
p

, and characteristic variables Wþ
and W� can be determined by

W6 ¼
ðU

U0¼0

dU6

ðA

A0

c

A
dA ¼ U6

ðA

A0

c

A
dA (7)

where U0 and A0 are at the reference state when the transmural
pressure is zero.

The two pressure models discussed in Sec. 2.3 result in differ-
ent values for c and W6. The distensibility and wave speed c�

using the (P1) model [25,27] become

D� ¼ 2A0

b
ffiffiffi
A
p ; c� ¼ 1ffiffiffiffiffiffiffiffiffi

qD�
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ffiffiffiffiffiffiffiffiffiffi
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When A¼A0, the wave speed is consistent with the Moens–
Korteweg formula (c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hE=qA1=2

p
); however, the wave speed

increases with an increase of A, which is opposite from the
Moens–Korteweg formula. The characteristic variables are

W�6 ¼ U 6 4 c� � c0ð Þ ¼ U 6 4
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Using the (P2) model, the distensibility D and the wave speed c
are computed as

D ¼ 2
ffiffiffi
A
p

b
; c ¼ 1ffiffiffiffiffiffiffi

qD
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2qA1=2
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(10)

which is consistent with the Moens–Korteweg formula. The char-
acteristic variables are

W6 ¼ U 6 4

ffiffiffiffiffiffi
b

2q

s
1

A
1=4
0

� 1

A1=4

 !
(11)

Characteristic analysis has been employed to derive WIA,
which is typically applied when blood pressure and velocity
measurements are available at the same vessel location with an
approximated pulse-wave velocity (PWV). The characteristic
variables can be expressed by P and U using Eq. (7).

W6 ¼ U 6

ð
dP

qc
(12)

The differences of W, P, and U in time are

dW6 ¼ dU 6
dP

qc
; dP¼ qc

2
dWþ �dW�ð Þ; dU¼ 1

2
dWþ þdW�ð Þ

(13)

Table 1 The cross section area A0, length L, elasticity constant b5
ffiffiffi
p
p

h0E=ð12r2Þ, reference PWV c05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=2qA

1=2
0

q
, peripheral resist-

ance R, and compliance C of each vessel in the 1D network model shown in Fig. 1(a), based upon the physiological data collected
by previous studies [11,16,20–22]. A0 for AcoA and PcoA have been adjusted to match physiological blood flow flux through the
communicating arteries.

A0 L b c0 Peripheral R Peripheral C
Vessel ID (cm2) (cm) (Pa) (m/s) (109 Pa � s m�3) ð10�10 Pa�1 m3Þ

Aorta (I) #1 4.52 4.00 1540 5.87 — —
Aorta (II) #2 3.94 2.00 1190 5.34 — —
Aorta (III) #4 3.60 3.90 1090 5.22 — —
Aorta (IV) #8 3.14 15.6 1040 5.29 0.180 38.7
Brachiocephalic #3 1.21 3.40 755 5.72 — —
Subclavian #7,9 0.562 3.40 633 6.34 — —
Brachial #15,16 0.510 42.2 633 6.50 2.68 2.58
CCA #5,6 0.196 17.70 595 8.00 — —
ICA (I) #11,12 0.126 17.70 945 11.3 — —
ICA (II) #18,21 0.126 0.500 1890 15.9 — —
ECA #10,13 0.0707 17.70 718 11.3 5.43 1.27
VERT #14,17 0.0581 14.8 642 11.3 — —
Basilar artery #22 0.0824 2.90 1510 15.8 — —
MCA #23,24 0.0642 11.9 1360 16.0 — —
ACA (I) #25,26 0.0430 1.20 1100 15.9 — —
ACA (II) #29,30 0.0452 10.3 1130 15.9 — —
PCA (I) #27,28 0.0360 0.500 1020 16.0 — —
PCA (II) #32,33 0.0346 8.60 982 15.9 — —
AcoA #31 0.00800 0.300 718 19.6 — —
PcoA #19,20 0.00800 1.50 680 19.0 — —
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The wave intensity can then be defined as

dI tð Þ ¼ dP tð ÞdU tð Þ ¼ qc

4
dW2
þ � dW2

�

� �
(14)

which indicates the dominance of forward or backward waves at a
given location. The forward and backward components of pres-
sure and velocity can be found by dW6 ¼ dU6ðdP=qcÞ
¼ dU66ðdP6=qcÞ. This gives the water hammer equation
dP6 ¼ 6qcdU6. The same relations can also be derived by a
control volume approach [31]. If the PWV c can be estimated, for-
ward and backward components of differences of P, U, and I can
be computed by

dP6 ¼
1

2
dP6qcdUð Þ; dU6 ¼

1

2
dU6

dP

qc

� �
; dI6 ¼ dP6dU6

(15)

Note that dI ¼ dIþ þ dI� is satisfied. To a linear approximation,
forward and backward components of pressure and velocity wave-
forms are computed by summation

P6ðtÞ ¼
Xt

0

dP6ðtÞ þ P06; U6ðtÞ ¼
Xt

0

dU6ðtÞ þ U06 (16)

where P06 and U06 are the initial state.

2.5 Inflow and Vessel Junction Conditions. The hyperbolic
system of partial differential equations (Eqs. (1), (3), and (P1) or
(P2)) is solved in each vessel segment of Fig. 1(a) with inflow/
outflow boundary conditions and vessel junction relations. The
conservations of mass and total pressure are enforced at the vessel
junctions. The spatially and temporally evolving flow variables
and cross section area at each uniformly discretized cell are solved
with a finite volume method using a second -order spatial scheme
and a two-step Adams–Bashforth temporal scheme.

For inlet boundary conditions, heart beats are modeled using a
periodic inflow rate QinðtÞ at the ascending aorta (#1) that is im-
mediately downstream of the aortic valve. Each cardiac cycle con-
sists of a half sine wave with a peak value Q̂max ¼ 430 ml s�1 and
a duration ts ¼ 0:3 s (systole), and zero for the rest of the period
(diastole).

Qin tð Þ ¼ Q̂max sin
pt

ts

� �
for 0 � t � ts

0 for ts < t < tc

8<
: (17)

where tc ¼ 0:9 s. The closure of the aortic valve is modeled by the
zero flow rate, which acts as a numerical reflector and generates
the expected dicrotic notch in pulse-waveform solutions. We note
that a clinically measured flow waveform at the ascending aorta
was not chosen, since such measured data contain reflected waves
that would become redundant with those generated by the model,
leading to spurious results.

The coupling between the 1D domain and LP outflow model is
established through the characteristic analysis (Eq. (11)) at their
interface. This process requires terminal pressure Pe. Pe is
calculated from the three-element Windkessel model at systemic
outlets, and by Pe ¼ Qd=ð2GdÞ þ Pd at cerebral outlets. Calcula-
tion of Qd, Gd, and Pd will be discussed in Sec. 2.6. Once Pe is
calculated, terminal vessel area and velocity are calculated by
Eq. (P1) or (P2) and the forward characteristic Wþ. Wþ at the ter-
minal mesh node is linearly extrapolated from the two upstream
values. Various approaches have been used for coupling of 1D
with LP models. Some of recent works can be found in
Refs. [32–35].

2.6 Cerebral Autoregulation Model. Outflow boundaries of
cerebral arteries (marked with � in Fig. 1(a)) are coupled with

autoregulation models adapted from Refs. [5,16,18,36]. These
models represent distal vascular territories downstream of ACA,
MCA, and PCA. A schematic diagram of the CA LP model for
the intracranial space is shown in Fig. 1(b). All distal vascular
models are coupled with a single ICP model with intracranial
compliance Cic. In the diagram, Gd and Cd are the conductance
and compliance of the pial/small arterial beds, respectively. Gpv is
the conductance from the capillary to the venous bed. Gf and Go

are the conductances for the formation and reabsorption of the
CSF, respectively. If and Io denote the production rate and outflow
(reabsorption) of CSF, respectively. The venous bed is collapsible
and often modeled as a Starling resistor. Here, we have assumed
that the venous pressure Pv is same as ICP Pic. The pressures Pe,
Pd, Pc, and Ps correspond to the pressures at the 1D outflow,
pial/small arterial beds, capillary, and the sagittal sinus, respec-
tively. Subscripts A, M, and P denote distal territories downstream
of the ACA, MCA, and PCA, respectively. The model also
includes distal collateral flow pathways. Gc represents the
conductance of the cortical collateral vessels with additional
subscripts denoting the brain regions coupled.

Vascular regions are represented by a lumped vessel model,
and the relation between transmural pressure and wall tension is
first applied following Laplace’s law:

Pdrd � Picðrd þ hdÞ ¼ Td (18)

where rd and hd are the lumped distal vessel radius and wall thick-
ness, respectively. Td is the wall tension, decomposed into three
components such that

Td ¼ Te þ Tv þ Tm (19)

where Te is the passive elastic tension, Tv is the viscous tension.
Tm is the active tension that is produced by the smooth muscle
contraction in response to an autoregulation stimulus. Te is calcu-
lated as Te ¼ rehd , where the stress re assumes an exponential
functional form of rd as

re ¼ re0 exp Kr
rd � rd0

rd0

� �
� 1

� �
� rcoll (20)

where re0; Kr, and rd0 are constant model parameters. rcoll is
used to allow the vessel to have a moderate negative tension
before collapsing. Tv is related to the viscous force introduced by
the blood flow and modeled as Tv ¼ rvhd , where the viscous stress
is rv ¼ ðg=rv0Þðdrd=dtÞ with g being a constant model parameter
as well.

The active tension Tm is a function of rd. Its regulation is mod-
eled by modulating its maximal tension T0 in the following way:

Tm ¼ T0 1þMð Þexp �
				 rd � rm

rt � rm

				
nm

 !
(21)

where M is the CA activation factor, which varies between
½�1; 1	 with M¼ 1 denoting maximal vasoconstriction, M¼�1
maximal vasodilation, and M¼ 0 the neutral state. T0, rm, rt, and
nm are model parameters. In essence, M responds to maintain
CBF. The control function is modeled using a first-order low pass
system (characterized by time constant tCA and gain GCA), which
filters the raw fluctuations subject to a sigmoid function that limits
the excessive changes. Namely, the internal state x of the filter is
expressed as

tCA

dx

dt
¼ �xþ GCA

Qd � Qn

Qn
(22)

where Qd is the CBF at each cerebral territory (anterior, middle,
and posterior), and Qn is the target flow rate. M is then calculated
by
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M ¼ e2x � 1

e2x þ 1
(23)

In addition to the above autoregulatory mechanism, cortical
anastomosis becomes important when cerebral arteries are
occluded. Following Ursino and Giannessi [5], we consider distal
collateral connections between the anterior and middle (AM) terri-
tories, middle and posterior (MP) territories, as well as anterior to
anterior (AA) and posterior to posterior (PP) flows across the
hemispheres (Fig. 1(b)). Qd is calculated using the flow rate from
the 1D domain at each outlet (Q1), as well as distal collateral
flows (QAA, QAM, QMP, and QPP) as follows:

QdRA ¼ Q1RA þ QAA � QRAM;QdLA ¼ Q1LA þ QLAM � QAA

(24)

QdRM ¼ Q1RM þ QRAM � QRMP;QdLM ¼ Q1LM þ QLMP � QLAM

QdRP ¼ Q1RP þ QRMP � QPP;QdLP ¼ Q1LP þ QPP � QLMP

where QRAM denotes collateral flow from anterior to middle cere-
bral territory in the right cerebral hemisphere, determined by the
pressure difference between two distal regions (PdRA � PdRM) and
collateral conductance (GcRAM). QRMP, QPP, QLMP, QLAM, and
QAA are computed similarly.

QRAM ¼ GcRAMðPdRA � PdRMÞ;QLAM ¼ GcLAMðPdLM � PdLAÞ
(25)

QRMP ¼ GcRMPðPdRM � PdRPÞ;QLMP ¼ GcLMPðPdLP � PdLMÞ

QPP ¼ GcPPðPdRP � PdLPÞ;QAA ¼ GcAAðPdLA � PdRAÞ

To complete the model, the volume changes within the intracra-
nial compartment are balanced.

Cic

dPic

dt
¼
X6

k¼1

dVk

dt
þ Ifk

� �
� Io (26)

where Vk is the blood volume for a modeled vascular territory,
with k representing the six cerebral distal beds. Below, variables
with the subscript k denote the quantity for each vascular territory.
The volume change balance equation becomes

dVk

dt
¼ 2Kvrdk

drdk

dt
¼ Gdk

Pek
� Pdkð Þ � Gdk

Pdk
� Pckð Þ þ DQcollk

(27)

where Kv is a constant parameter, and DQcollk is the collateral flow
from Eq. (25). Gdk

is one half of vascular conductances of the
modeled vascular territory. It is related to rdk

as Gdk
¼ Kgr4

dk
,

where Kg is a constant parameter. In the above formulation, CSF
production rate (Ifk ) is modeled with a constant conductance (Gf)
as Ifk

¼ Gf ðPck
� PicÞHðPck

� PicÞ, where H is the Heaviside
function. In a similar fashion, CSF outflow (Io) is modeled
with a constant outflow conductance (Go) as Io ¼ GoðPic � PsÞ
HðPic � PsÞ with Ps representing the sagittal sinus pressure.

Cic in Eq. (26) represents the craniospinal compliance that
has been shown to be a nonlinear function of ICP, Cic ¼ 1=
ðKejPic � Picnj þ ð1=CmÞÞ [36]. A simplified model is adopted
here for the cerebral venous bed. The collapsible nature of the
venous bed makes it behave like a Starling resistor indicating that
the venous pressure equals ICP at locations of cerebral venous
collapse. Thus, blood flow to the venous bed can be specified as
GpvðPck

� PicÞ, where Gpv is the conductance from the capillary
to the location of collapse.

In summary, there are three state variables for each cerebral
outlet: rd, Pic, and x. The input of the model is Q1. State equations

of x and Pic are given in Eqs. (22) and (26). However, explicit
equations of rd have to be obtained by solving a set of linear alge-
braic equations with drd=dt, Pd, and Pc as unknowns, which are
given by

2Kvrd
drd

dt
¼ Gd Pe � Pdð Þ � Gd Pd � Pcð Þ þ DQcoll (28)

Pdrd ¼ Te þ Tm þ Pic rd þ hð Þ þ gh

rv0

drd

dt
(29)

Pc ¼
Gpv

Gpv þ Gd
Pic þ

Gd

Gpv þ Gd
Pd (30)

The baseline values for these parameters were adopted from previ-
ous studies [5,16,17,36] and are listed in Table 2. Note that, for
basal flow conditions, the target flow rate Qn of MCA, ACA, and
PCA were set to 2:2 ml s�1; 1:48 ml s�1, and 1:14 ml s�1, respec-
tively. Kv is specified such that the baseline blood volume in distal
arteries is 10 cm3.

Age or pathological conditions can degrade CA. To investigate
the role of the cerebral autoregulation, we consider both healthy
(baseline) and impaired CA cases. The degree of the impairment
of the CA can be controlled by varying the gain parameter GCA in
Eq. (22). GCA of the healthy (baseline) case was considered to be
GCA ¼ 10 mm Hg�1 following previous studies by Ursino. By
contrast, we also test the totally impaired case with GCA � 0 such
that the second term of the right hand side of Eq. (22) becomes
negligible at all six cerebral outlets. Partially and/or locally
impaired cases were studied by varying GCA but not reported here
for brevity.

3 Results

The modeling framework discussed above was used to investi-
gate the hemodynamic effects of cerebral autoregulation and
collateral blood flows in healthy and pathological conditions. In
Sec. 3.1, pulse-wave propagation through the arterial network is
discussed using the two pressure–area models. In Sec. 3.2, the
role of cortical collateral blood flow, communicating arteries, and
cerebral autoregulation are examined under MCA and CCA occlu-
sion. In Sec. 3.3, the dynamic assessment of the cerebral autoregu-
lation by the compression–decompression of the CCA (THRT
[19]) is presented. In the results below, the baseline condition will
correspond to no occlusion and fully functional autoregulation.

3.1 Pulse-Wave Analysis. Figure 2 presents pulse-waveform
results for the baseline model, including comparison of results
from the two (P1 and P2) pressure–area relations. Similar analysis

Table 2 The baseline values of autoregulatory LP distal vascu-
lar bed model

rd0 ¼ 0:015 cm tCA ¼ 10 s
hd0 ¼ 0:003 cm GCA ¼ 10 mm Hg�1

re0 ¼ 0:1425 mm Hg Gpv ¼ 0:189 mm Hg�1s�1ml
kr ¼ 10:0 Gf ¼ 7:0� 10�5 mm Hg�1s�1ml
rcoll ¼ 62:79 mm Hg GcAA ¼ 4:0� 10�2 mm Hg�1s�1ml
T0 ¼ 2:16 mm Hg cm GcPP ¼ 1:0� 10�2 mm Hg�1s�1ml
rm ¼ 0:027cm GcAM ¼ 9:0� 10�3 mm Hg�1s�1ml
rt ¼ 0:018 cm GcMP ¼ 8:0� 10�3 mm Hg�1s�1ml
nm ¼ 1:83 cm Pan ¼ 100 mm Hg
g ¼ 232 mm Hg s Go ¼ 3:17� 10�4 mm Hg�1s�1ml
Kv ¼ 7:40� 103 cm Ps ¼ 6:0 mm Hg
KgM ¼ 1:05� 106ðmm Hg s cmÞ�1 QnM ¼ 2:2 ml s�1

KgA ¼ 7:50� 105ðmm Hg s cmÞ�1 QnA ¼ 1:48 ml s�1

KgP ¼ 5:90� 105ðmm Hg s cmÞ�1 QnP ¼ 1:14 ml s�1

Ke ¼ 0:077 ml�1 Picn ¼ 9:5 mm Hg
Cm ¼ 1:37 mm Hg�1ml
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can be found in the supplemental results which are available under
“Supplemental Data” tab for this paper on the ASME Digital
Collection for the case of RMCA occlusion. The top two rows
plot the PWV and pressure waves in various arteries over the car-
diac cycle. Velocity and wave intensity results are displayed in
the bottom two rows for the P2 model only.

PWV is used clinically to estimate arterial stiffness and is
highly correlated with various cardiovascular conditions such as
hypertension [37,38]. There is significant difference in PWV
between the P1 and P2 models. PWV using the P1 model
(first row, dotted lines) varies in proportion to the blood pressure
(second row, dotted lines with larger magnitudes), whereas PWV
using the P2 model (first row, solid lines) demonstrates the oppo-
site trend. PWV values are consistently less than the reference

PWV c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ð2qA

1=2
0 Þ

q
(first row, horizontal lines) using the P2

model, whereas the opposite is true for the P1 model. These dif-
ferences are reduced somewhat in the RICA and RMCA (third
and fourth column), as these arteries are stiffer and of smaller

caliber than the RBR and RCCA (first and second column). Local
wave propagation speed can be calculated by adding PWV and
local blood flow velocity U. The P2 model (first row, dashed
lines) presents relatively flat propagation speed throughout the
cardiac cycle, which approaches c0 for the smaller RICA and
RMCA arteries. Alternatively, the P1 model (first row, dotted-
dashed lines) produces large fluctuations in wave propagation
speed throughout the cardiac cycle. We note that the
trends between pressure and PWV in Fig. 2 should not be related
to long-term and global effects of arterial stiffening, which
increases both mean pressure and PWV. Both P1 and P2
models can properly describe this phenomenon by applying larger
b (¼ ð

ffiffiffi
p
p

hEÞ=ð1� r2Þ).
Global pulse-wave propagation speeds can be estimated from

the pressure waveforms using the foot-to-foot method [39]. The
distances from the inflow (aortic root) to the RBR (#15) and
RMCA (#24) are divided by the delay times for minimum pres-
sure in the respective arteries. These values are listed in Table 3
and compared to the values computed from the vessel properties

Fig. 2 Waveforms in the RBR, RCCA, RICA, and RMCA. The first two rows compare waveforms resulting from the P1 and
P2 pressure–area models, including (first row) PWV and total pulse-wave propagation speed (PWV 1 U), as well as (sec-
ond row) full (P), forward (P1), and backward (P2) components of pressure. The third and fourth rows, respectively, plot
the full, forward, and backward components for velocity and wave intensity. Horizontal lines denote the reference PWV

c05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=2qA

1=2
0

q� �
. Vertical lines denote aortic-valve closure.
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(distance and c0). Consistent with the above results, the two
pressure–area models demonstrate significant differences. Results
from the P2 model are close to the characteristic values, whereas
the P1 model shows 8–16% larger values than the characteristic
values.

Reflections. The waveform of blood flow quantities is a super-
position of forward and backward traveling waves, at least under
a linear approximation theory. Thus, large differences in PWV
between the two pressure–area models suggest potential differen-
ces in waveform morphology. The transmural pressure and its
forward and backward components are shown on the second row in
Fig. 2. For the current vessel geometry and a physiologically
realistic peripheral resistance, the P2 model (solid lines with larger
magnitudes) appears to attain more physiologic results. For exam-
ple, brachial pressure varies between 76:6–121:8 mm Hg ðDp �
45 mm HgÞ for the P2 model, whereas for the P1 model (dotted
lines with larger magnitudes) demonstrates larger variation between
71:3–130:4 mm Hg ðDp � 60 mm HgÞ.

Using Eq. (16), forward and backward pressure components
can be calculated. Since P06 is not available, P06 ¼ P0=2 has
been used as in Ref. [40]. Due to low peripheral resistance in the

cerebral vascular bed, the backward pressure variations at the
MCA and ICA are relatively small compared to the forward pres-
sure. However, at the brachial artery, large wave reflection occurs.
This is also observed in the velocity waveforms, as shown in the
third row of Fig. 2. The strong reflection from the BR arteries
propagates to the cerebral arteries and generates pressure peaks in
addition to the systolic and dicrotic notch. These are observed in
the full and forward pressure and velocity waveforms by the P2
model at CCA, ICA, and MCA (a small hump after the dicrotic
notch t � 0:5 s, most evident in Fig. 3). These peaks are not
observed in the backward wave component in these vessels, con-
firming that they originate from proximal arteries. The P1 model
does not show these additional pressure peaks. Wave intensity
(dI) demonstrates consistent results (Fig. 2, fourth row). For
example, the RBR demonstrates large dI�, which makes dI nega-
tive at early, late, and immediately after, systole. RICA and
RMCA show very small dI�. Clinical measurements of wave
intensities at the aorta [41] and carotid artery [42] have similarly
shown two positive peaks during early systole and toward the end
of ejection, and negative values between these two peaks. The nu-
merical study of Alastruey et al. [31] also demonstrated similar
results.

Table 3 The average PWV from inflow to RBR (#15) and RMCA (#24) are calculated by the distance and travel time using

c05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ð2qA0:5

0 Þ
q

. This is compared with the estimates using two simulations with P1 and P2 models. Differences from the reference

PWVs are shown in the parenthesis.

Distance c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ð2qA0:5

0 Þ
q

P1 model P2 model

L ¼ 32:4 cm (inflow to RBR) 6.18 (m/s) 7.2 (16.5%) 6.35 (2.75%)
L ¼ 47:7 cm (inflow to RMCA) 9.86 (m/s) 10.7 (8.52%) 9.93 (0.71%)

Fig. 3 Flow velocities at the middle sections of RICA (top left) and RCCA (bottom left), and
their normalized quantities (U�5ðU2minðUÞÞ=ðmaxðUÞ2minðUÞÞ, right) are shown for the
healthy and RMCA occlusion conditions. They are compared with (DC) and without (No-DC)
distal collateral pathways.
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MCA Occlusion. With MCA occlusion (supplemental results
which are available under “Supplemental Data” tab for this paper
on the ASME Digital Collection), backward pressure at the MCA
is considerably increased, and overall pressure is increased proxi-
mally in the ICA and CCA. Higher backward velocity and inten-
sity due to the occlusion reduce the velocity and wave intensity at
the ICA and CCA. Blood quantities at the brachial arteries were
not found to be affected by MCA occlusion.

Recent studies [16,43] have suggested that the waveforms of
blood flow velocity can be used to diagnose cerebral vasoconstric-
tion and vasodilation. Figure 3 shows flow velocities and their
normalized quantities at the middle sections of RICA and RCCA
under healthy conditions and under RMCA occlusion. With MCA
occlusion, both ICA and CCA show a significant decrease of the
flow velocity, and the role of distal collateral flow (Sec. 3.2)
becomes important. Due to the small blood flow rate, distal collat-
eral flow does not affect the waveform shape. For better compari-
son of the waveform variation, the velocities are normalized such
that systolic maximum and diastolic minimum values become 1
and 0, respectively. With the MCA occlusion, the first hump
between t¼ 0 and 0.1 is pronounced both at ICA and CCA. Val-
ues at the valleys (both ICA and CCA) and peaks (CCA) after the
systolic peak are relatively reduced with the occlusion. This is due
to the negative contribution of the reflected backward wave com-
ponent during and after the systolic peak.

3.2 Collateral Blood Flow and Autoregulation. Under
normal conditions, flow through the cortical collateral arteries is
thought to be insignificant, however flow through these arteries
can increase in response to significant differences in distal vascu-
lar pressure (Pd), e.g., during ischemia. Table 4 lists flow rates
(absolute or relative) at the main cerebral arteries (ACA, MCA,
and PCA), communicating arteries (AcoA and PcoA), and in the
distal territories. The baseline condition, as well as full occlusions
of the RMCA, RCCA, and both CCAs, is considered. The flow
rates are compared between cases with (*) and without
(No-DC**) distal collateral flow. In order to examine the role of

CA function, impaired CA conditions were additionally tested for
all cases, and the results are listed in the supplemental results
which are available under “Supplemental Data” tab for this paper
on the ASME Digital Collection.

RMCA Occlusion. For baseline conditions, flow rates at the
MCA, ACA, and PCA are close to the target state of the CA distal
vascular bed model, and blood flow rates through communicating
arteries (Table 4, first rows, far right) and distal collateral vessels
(not shown) are insignificant. When the RMCA is occluded, the
distal vascular pressure (PdRM) decreases significantly, and this
increases distal collateral flow from the anterior and posterior
regions (increased �QRMP and QRAM in Eqs. (24) and (25), nega-
tive sign indicates opposite the flow direction in Fig. 1). Qd � Q1

represents the amount of distal collateral blood flow and under
occlusion of the RMCA, the distal RMCA territory receives
�13% of normal MCA flow through the distal collateral vessels
(Table 4, RMCA occlusion*); this collateral flow leads to
increased flow through the RACA and RPCA.

Impaired cortical collateral blood flow was also studied. In this
case (“No-DC**” under RMCA occlusion), the blood flow rates
at the RMCA and its distal territory become zero, implying a criti-
cal ischemic event. There are slight changes in flow rates at other
cerebral arteries due to blood flow rerouting through the CoW. In
the absence of CA, this rerouting leads to overflow in the RACA
and RPCA, however including CA enables proper maintenance of
blood flow to the territories (for impaired CA conditions, see sup-
plemental results which are available under “Supplemental Data”
tab for this paper on the ASME Digital Collection).

RCCA Occlusion. Occlusion of the RCCA (Table 4, RCCA
occlusion) affects flow rates of both the RMCA and RACA
directly. In this case, flow rates at communicating arteries in the
CoW increase significantly (40 to 80 times more than healthy con-
dition). When the RCCA is occluded, flow to the RACA is
reduced by 29%, hence 71% of the baseline flow is maintained by
the communicating arteries. This is similarly true for the RMCA,

Table 4 Flow rates and proportions at major cerebral arteries (ACAs, MCAs, and PCAs) and communicating arteries (AcoA and
PcoAs) for baseline conditions, and for occlusion of RMCA, RCCA, or both CCAs

Case Q RACA LACA RMCA LMCA RPCA LPCA All AcoA RPcoA LPcoA

Baseline Q1H ðml=sÞ 1.47 1.47 2.21 2.21 1.11 1.11 9.58 �0.031 �0.022 �0.012

Conditions Q1H

QtotH
ð%Þ 15.3 15.3 23.1 23.1 11.6 11.6 100 �0.325 �0.230 �0.127

RMCA Q1

Q1H
ð%Þ 110 101 0 103 107 98.3 80.0 942 543 139

Occlusion* Qd

Q1H
ð%Þ 100 101 13.1 100 100 100 — — — —

(No-DC**) Q1

Q1H
ð%Þ 103 101 0 100 101 101 77.8 1030 535 154

RCCA Q1

Q1H
ð%Þ 71.2 105 72.3 102 101 96.6 90.1 �7880 �3910 �408

Occlusion* Qd

Q1H
ð%Þ 86.3 92.8 75.3 97.4 98.3 98.3 — — — —

(No-DC**) Q1

Q1H
ð%Þ 79.7 95.4 72.3 97.8 98.3 98.3 88.8 �8220 �3970 �350

Both CCA Q1

Q1H
ð%Þ 25.4 25.4 27.6 27.6 103 103 44.3 0 �5570 �10,100

Occlusion* Qd

Q1H
ð%Þ 25.8 25.8 30.7 30.7 95.7 95.7 — — — —

(No-DC**) Q1

Q1H
ð%Þ 25.5 25.5 28.4 28.4 97.4 97.4 43.5 0 �5650 �10,200

QtotH ¼ 9:59 ml=s is the combined efferent cerebral artery at baseline. Flow rates are compared with (*) and without (No-DC**) distal collateral flow.
For cases with distal collateral flow, Qd is also listed. Note that Q1 ¼ Qd without collateral flow (cf. Fig. 1).
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which also maintains 72% of baseline flow upon RCCA
occlusion.

The influence of distal collateral pathways is more profound for
recovering flow in the anterior territory. Namely, the distal collat-
eral vessels recover approximately 15% of baseline flow in the
RACA territory (i.e., nearly 1/2 of the total loss due to RCCA
occlusion). However, distal collateral pathways are only able to
recover approximately 3% of baseline flow in the RMCA territory.
This is consistent with clinical observations as the MCA territory is
relatively isolated distally, and the distal collateral pathways
between the left and right anterior regions are better developed.

Upon RCCA occlusion, active vasodilation via CA in the
RACA and RMCA territories reduced distal resistance signifi-
cantly. This promoted blood flow from the left to right side
through communicating arteries than the cases with impaired CA.
Downstream territories of LACA and LMCA also reduced resis-
tances to maintain blood flow. Overall, the healthy CA condition
was able to maintain 90% of QtotH during total occlusion of the
CCA, whereas the impaired CA condition was able to maintain
78% of QtotH. See supplemental results which are available under
“Supplemental Data” tab for this paper on the ASME Digital
Collection for additional data on impaired CA conditions.

Dual CCA Occlusion. Compression of the CCAs is used in the
clinical setting for various purposes. For example, this is some-
times performed to reduce the risk of cerebral embolization during
transcatheter aortic-valve implantation, as well as during the eval-
uation of autoregulation function. We performed simulations with
various compressions of the CCAs and examined the changes to
the flow rates at main cerebral arteries under healthy and impaired
(GCA¼ 0) CA conditions.

Figure 4 shows the change of the flow rates at the RCCA,
RMCA, RACA, RVERT, and at all cerebral outlets versus

percent occlusion of the CCAs (values for left side arteries
are similar). The flow velocity at the narrowed portion of the
CCA is also shown. The CCA flow rate is not significantly
affected by the compression until roughly a 70% occlusion, i.e.,
A0post=A0pre � 30%. For A0post=A0pre < 0:1, the flow rate decreases
rapidly to 0 as A0post=A0pre is reduced to 0. The CCA has a large
initial caliber (A0pre), thus moderate compression of the artery
does not significantly increase resistance compared to distal
vascular resistance. However, as the compression progresses
beyond A0post=A0pre � 0:1, the resistance of the occluded segment
becomes dominant resulting in a significant reduction in CCA
flow. This can most clearly be observed by inspection of the CCA
velocity versus compression ratio (bottom right). When
A0post=A0pre > 0:1, the overall resistance does not alter volumetric
flow, and hence velocity increases proportional to area reduction.
However, as A0post=A0pre is reduced further, overall resistance
increases, which decreases volumetric flow and leads to a rapid
decrease in velocity.

As shown in Fig. 4, normal and impaired CAs demonstrated
the most noticeable differences when A0post=A0pre¼ 10–30%.
Impaired autoregulation did not significantly affect CCA flow
(upper-left panel); normal CA demonstrated a maximum of �8%
larger flow rate versus impaired CA over all range of occlusion
percentage. However, differences were more pronounced at
the MCA and ACA (top middle and right of Fig. 4). When
A0pre=A0post ¼ 0:1, the MCA flow rate was reduced to �90% and
�65% of the baseline condition with normal and impaired CA,
respectively. During total occlusion of both CCAs, the combined
flow rate to all cerebral outlets was reduced to 40% of the initial
state (Table 4), with � 75% reductions in flow to the MCAs and
ACAs. Compensatory flow to the ACA and MCA territories was
supplied by an increase in VERT flow, yet this increase did not
affect PCA flow.

Fig. 4 The changes of flow rates at the RCCA (a), RMCA (b), RACA (c), RVERT (d), all cerebral outlets (e), and
velocity at the narrowed RCCA (f) due to the compression of both CCAs. Horizontal axes denote the baseline
area of the narrowed portion of the RCCA compared to the initial baseline area. Solid and dashed lines repre-
sent the cases with healthy and unhealthy autoregulation cases, respectively.
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Figure 5 shows the activation factor M, active tension Tm,
lumped distal radius rd (downstream of the RMCA), and ICP ver-
sus compression ratio for the CCAs. With normal CA, M and Tm

decrease as A0post=A0pre is reduced by compression (Fig. 5, left).
The CA mechanism reaches the vasodilation limit (M¼�1 and
Tm¼ 0) when A0post=A0pre becomes 5%. rd and ICP increase by
�50% (Fig. 5, right) until CA reaches its limit, then when
A0post=A0pre < 0:05 both rd and ICP decrease. This nonmonotonic
behavior of the lumped distal radius and ICP is due to the fast
reduction of the flow rate after the CA limit is reached. As shown
in Eqs. (26) and (27), ICP is directly related to rd. A slight differ-
ence between rd and ICP variation is due to the contribution of
other cerebral distal vasculature and the production of CSF. With
impaired CA, rd and ICP decrease due to the flow rate reduction.

3.3 The Dynamic Assessment of the Cerebral
Autoregulation. The function of cerebral autoregulation is often
monitored for patients with brain damage in order to prevent
secondary damage to the injured brain [44,45]. The dynamic
assessment of CA (dCA) quantifies the fast modifications in
CBF in relation to rapid alterations in arterial blood pressure [3].
These changes can be assessed using the THRT, in which
compression–decompression of a CCA is performed and resulting
flow changes in the MCA are monitored using transcranial
Doppler [19].

The nominal diameter of the RCCA is 0:5 cm, and the
compression–decompression (modeled by controlling A0) was
applied to the middle subsegment of the RCCA over a length of
2 cm. From the upstream to downstream, the lengths of three

subsegments of the RCCA are 3 cm; 2 cm, and 12:7 cm. A 95%
reduction was applied to A0 of the middle segment for 7 s to repre-
sent the THRT. The MCA vessel diameter was also reduced to
80% of the value in Table 1 to match the range of flow velocity in
Ref. [46].

Figure 6 compares the flow velocity at the RMCA measured
in vivo by transcranial Doppler (TCD) during THRT [46] (left)
and predicted by the present model (right). Although the in vivo
data contain measurement noise and breathing effects, the simula-
tion accurately captures the essential autoregulatory features.
Both figures present a rapid decrease of the MCA flow velocity in
response to the compression, a gradual increase of the velocity
while the same level of compression lasts for 7 s, a rapid over-
shoot immediately after the decompression, and a delayed recov-
ery to the initial state.

4 Discussion

We have presented a multiscale approach for CBF modeling,
which involves coupling of a 1D nonlinear blood flow solver with
a sophisticated cerebral autoregulation LP vascular bed model.
The CA model enables the computation of pressure and flow rates
at distal cerebral vessels, distal collateral blood flow, CSF dynam-
ics, and ICP. The combined framework was used to explore pulse-
wave dynamics under healthy conditions, as well as occlusions of
the MCA and CCAs.

The model described is dependent on several parameters that
are patient dependent. Prior studies have investigated to some
degree sensitivity analysis [16]. In general, parameters were
chosen to be physiologically reasonable and similar to prior

Fig. 5 The activation factor M (solid lines, left vertical axis) and active tension Tm (dashed
lines, right vertical axis) (left). Distal radius (solid lines, left vertical axis) and ICP (dashed
lines, right vertical axis) (right). M, Tm, and rd are from downstream of RMCA. Both healthy
and impaired CA cases are shown. Horizontal axes denote the reference area of the con-
stricted portion of the RCCA compared to the initial reference area.

Fig. 6 Flow velocity at the RMCA measured in vivo using TCD with compression–decompression of right CCA
(left) (Reproduced with permission from Smielewski et al. [46]. Copyright 1996 by Wolters Kluwer Health, Inc.)
and predicted by the present model (right).
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published data. Because exhaustive sensitivity analysis is cost pro-
hibitive, a more global approach was taken whereby gross aspects
of the modeling (e.g., autoregulation, distal collateral flow, consti-
tutive model, etc.) were varied and differences reported. General
trends reported above are expected to be robust to finer scale
uncertainties in chosen parameters, nonetheless, the availability of
patient specific parameter information will likely lead to greater
prediction capability in clinical settings.

Two popular pressure constituent models based on Laplace’s
law were compared. The magnitudes and waveforms of hemody-
namic quantities (pressure and velocity) and PWV were found to
be significantly affected by the choice of pressure–area model.
For the given physiological parameters, the P2 model appeared to
produce more realistic pressure magnitudes and waveforms. The
derivation of the P1 model uses the A=A0 ’ 1 approximation
explicitly. Without such assumption, the P2 model results in
PWV that is consistent with the Moens–Korteweg formula. How-
ever, we note that the comparison of two pressure models is not
conclusive, since both models assume a constant elasticity for
each vessel segment, which in fact is a function of the strain
condition of the vessel wall. Thus, both models are (implicitly)
restricted to small deformations. Also, the magnitude of pulse
pressure is determined by multiple factors, such as the amplitude
of the prescribed aortic flow rate, the stiffness of large arteries,
and the peripheral resistances [31,47]. Nevertheless, the elastic
model dominates the blood-vessel wall interactions even in more
advanced viscoelastic models, thus the differences between the
two popular models considered in this study motivates additional
investigation on the validation of the models.

In addition to the pressure magnitudes, the P2 model showed a
second peak during diastole, which is typically observed in meas-
urements. In vivo, peaks in pressure or flow waveforms originate
from wave reflections in the entire peripheral vasculature. These
reflections are superimposed on each other and transmitted
through the aorta to the cerebral arteries to generate the additional
peaks. The magnitude and timing of these peaks are determined
by both the stiffness of large arteries and the resistances of distal
vascular beds. The systemic arteries are simplified in the present
model with the assumption that pulse-wave travel times within
truncated vessels are much smaller than the cardiac cycle.
Recently, Epstein et al. [48] investigated the effect of a reduction
in the number of arterial segments in a given distributed 1D model
on the shape of the simulated pressure and flow waveforms. They
replaced downstream 1D arteries with LP models and found good
agreement in the shape of the waveforms between the original and
reduced models. It still remains to be confirmed using clinical
measurements whether the present model reasonably captures the
major characteristics of pressure waves in the cerebral arteries.
Additionally, the viscoelastic property of artery wall is another
factor affecting the contour of simulated pressure wave [49–51]
that may be necessary to consider.

Velocity waveforms at RICA and RCCA were examined under
normal (healthy) conditions and during MCA occlusion. Normal-
ized waveforms show evident morphological changes due to the
occlusion, including relative decrease of the magnitudes during
and after the systolic peak compared to the magnitude before the
peak. This is due to the negative contribution of the reflected
wave component during and after the systolic peak. Accurate and
continuous monitoring of cerebral vasculature status is very
important to treat neurocritical care unit patients. The velocity
waveform changes due to the distal vascular occlusion may enable
the development of such monitoring system [16,43].

Simulations were conducted to examine the role of proximal
and distal collateral blood pathways. When the MCA is occluded,
the distal collateral vessels have an important role. Previous
experiments with rats [52,53] have shown that the caliber of corti-
cal collaterals increases by �50% during prolonged ischemia of
the MCA territory. Local blood flow returned close to normal
value due to this change. Ursino and Giannessi [5] modeled this
aspect by gradual decrease of collateral resistances in their LP

model study. They reported �15% of normal MCA flow passing
through anterior-to-middle and posterior-to-middle distal collat-
eral pathways during the MCA occlusion. This value increased to
�45% with the vasodilation of the distal collaterals. Our study did
not consider such vasodilated cortical collaterals, and �13% of
normal MCA flow rate was observed through the distal collaterals,
which is similar to the findings in prior studies before active vaso-
dilation of the collaterals.

The communicating arteries in the CoW become important
when the CCA is occluded. Peak flow rates of �2:8 ml=s and
�1:0 ml=s were observed at the AcoA and RPcoA, respectively,
when the RCCA was occluded. These flow rates are consistent
with a recent study by K€oppl et al. [13] which reported �3:2 ml=s
and �1:5 ml=s for peak systolic flow rates at the AcoA and
RPcoA, respectively, for severe RCCA stenosis (95% area reduc-
tion). We note that their study used 2� larger vessel areas for the
communicating arteries than the present study, which may explain
the observed differences, in addition to the more sophisticated CA
model in our study. Alastruey et al. [11] also observed similarly
large increases of flow rates in the communicating arteries (20 to
80 times more flow rates than the cases with complete CoW)
when ACA or PCA are absent in the CoW. In the present study,
we have considered a complete CoW structure, which can only be
found in about 50% of the population [54]. Anatomical variation
in the CoW has been shown to significantly affect the regulatory
capability of the cerebral circulation [11,14,15], which motivates
additional studies on this topic with the present model.

The model is also used to examine the CBF distribution and
ICP variation during the compression of both CCAs, which is a
minimally invasive approach to reduce the cerebral embolization
during transcatheter aortic valve implantation (TAVI). Despite the
increasing popularity of TAVI, there have not yet been thorough
investigations on the strategies to reduce the risk for the neurolog-
ical events [55]. Our results show that the total CBF is reduced to
40% and ICP increases by �50% during the CCA compression.
This suggests that the compression should be carefully considered
for patients who are vulnerable with the large ICP variations.

Simulations for the compression–decompression of a CCA (the
dynamic assessment of cerebral autoregulation, dCA) were con-
ducted. The results show a favorable agreement with a published
clinical measurement for healthy conditions [46]. The simulation
is capable of reproducing all important features of dCA. Most
importantly, a rapid overshoot and delayed recovery to the initial
state of the MCA flow velocity are accurately captured.

This modeling delivers insights to the meanings of morphologi-
cal features of CBF and ICP pulsatile waveforms. There have
been an extensive studies of morphological features of these
pulses using pure data-driven approaches [56,57]. In addition, the
developed model could be coupled with model-driven statistical
inference approaches to provide a model-based data fusion of clin-
ical data to monitor cerebral hemodynamics for patients under
neurocritical care [36,43].
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