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From a Dyad to a Flock – Complexity Matching to Loose Coupling 

Daniel Sean Schloesser 

Doctor of Philosophy in Cognitive and Information Sciences 

University of California, Merced – 2021 

Christopher T. Kello, Chair 

 

Abstract 

 
Ranging over a wide array of interactions, coordination comprises the simple to complex 

interactions that occur within our daily lives. Many events we encounter ask us to work alone or 

with a group to achieve a common goal. These goals frequently set the stage for how we find a 

deeper understanding of underlying principles of coordination. Here, began by focusing on the 

interaction between two individuals cooperating, and how coupling strength could modulate the 

connection shared between them. In these initial studies we found that principles and measures of 

complexity matching applied similarly within and between individuals, and perceptual-motor 

performance can be facilitated by loose response coupling. We concluded that complexity matching 

observed between individuals can similarly occur within one individual, suggesting a general 

principle of interaction at work. When response coupling was absent in the dyadic condition, the 

degree of complexity matching was significantly reduced. The connection shared between the 

coupled cooperative agents influenced their overall shared success. Expanding upon this research, 

we asked investigated coordination within larger groups. To do this, we need to find a situation that 

fit within coordination but allowed for larger group sizes.  

A situation that fit these criteria existed in collective foraging. Collective foragers can 

coordinate and cooperate flexibly over time despite changes to task demands, connectedness, and 

environmental conditions. The coupling strength linking foragers together often shapes their 

collective movements. Based on this, we created a scenario where varying degrees of coupling 

strength bound cooperative agents together as they collectively coordinated their actions in search 

of hidden targets. We found that loose and flexible coupling among search agents improved 

collective performance, and that human players improved performance partly by subtle, indirect 

effects on group interactions. Loose coupling emerged among agents when the rules of interaction 

were weak enough for agents to act independently or interdependently, while still being strong 

enough to help hold them together. Movement patterns showed loose coupling enabled collections 

of agents to self-organize and reorganize into a greater diversity of ad hoc groupings. We continued 

this work by investigating the link between cooperative interactions among larger groups of agents, 

coupling strength, and group member effectiveness. By manipulating group member effectiveness, 

group members performed the search task better than before, but without human intervention, the 

individual movements of the more-optimal agents continued to lag humans. Based on these results, 

we successfully instilled a unique agent with a form of memory which helped them to act in more 

‘human-like’ ways. 

Taken together, this dissertation supports a broader narrative where coordination depends on 

the loose, and flexible alignment of available actions (Glassman, 1973; Kloos & Van Orden, 2009). 

This adaptive reorganization of behaviors is supported by an exchange of information, dependent 

upon the connections linking complex networks together (Nordham, Tognoli, Fuchs, & Kelso, 

2018; Rigoli, Holman, Spivey, & Kello, 2014; Schloesser, Kello, & Marmelat, 2019; West, 

Geneston, & Grigolini, 2008). Future work may continue to uncover the underpinnings of 

interpersonal coordination – with humans, engineered agents, or both.   
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Chapter 1 

1.1. Introduction 

Cooperative tasks bring people together to coordinate their actions to achieve shared 

goals. Some cooperative tasks can be simple, such as lifting and moving a table, while 

other tasks can be quite complex. For instance, group activities, such as multiplayer online 

video games, and team sports, such as soccer, typically require perceptual-motor 

coordination to occur both within and between individuals. In this way, the coupling of 

coordinated behaviors, which may range from an individual responding to a stimulus as 

quickly as possible to a group of subjects searching for hidden targets, unites people into a 

higher-order system to accomplish collective goals. 

What makes human coordination “work” is our ability to anticipate the actions of 

others. Perceiving another person’s actions allows for behavioral adjustments to occur 

within others, thereby bringing about more successful coordination during cooperative 

tasks (Garrod & Pickering, 2009; Marsh, Richardson, & Schmidt, 2009; Valdesolo, 

Ouyang, & DeSteno, 2010). When acting alone, an individual already knows what to 

expect next, because, self-evidently, they are the only actor in the system. However, 

coordinated tasks become increasingly more complex when multiple people work together. 

In some cases, group coordination can often be more difficult because groups coordinate 

their actions in complicated ways (e.g., well-strategized soccer) without knowing exactly 

what will happen next (e.g., specific actions by other players). Frequently, groups rely on 

their experience acting alongside others, building strategies based on their stored memories 

and planning to anticipate and adapt during cooperative tasks. The primary goal of this 

dissertation was to investigate the nature of the connections binding individuals together, 

and how these connections may relate to underlying fundamental principles of 

coordination.  

1.1.1. Body Movement Dynamics Inform Us about the Other 

A significant body of research has investigated the dynamics of body movements 

during joint activities. This research has been oriented toward understanding how people 

spontaneously and reciprocally influence each other during cooperative tasks (Nordham, 

Tognoli, Fuchs, & Kelso, 2018; Schmidt & O’Brien, 1997; Schmidt & Richardson, 2008). 

Often, researchers vary the extent to which partners can perceive the actions of the other, 

comparing these actions against responses made with no perceptual restrictions (Marmelat 

& Delignières, 2012a; Tolston, Shockley, Riley, & Richardson, 2014; Varlet, Coey, 

Schmidt, & Richardson, 2012). For example, research by Vesper and Richardson (2014) 

attempted to create an account for dyadic coupling where participants acted as a Leader or 

a Follower in a joint response “location” task. Leaders were cued by a light signal to 

respond at the indicated locations. Followers had to respond at the same location as the 

Leader, but Followers could not see the light cues. Followers attempted to do this under 

“Full” and “Partial” vision conditions. In the Full vision condition, Followers could see all 

the Leader’s movements. Conversely, in the Partial vision condition, Followers could only 

see the starting and finishing points of the movements performed by the Leader.  
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As expected, the coordination between Leaders and Followers depended on the 

coupling strength connecting their respective actions together (Vesper & Richardson, 

2014). These findings suggest that with greater coupling strength, people are better able to 

coordinate with others (Newman-Norlund, Noordzij, Meulenbroek, & Bekkering, 2007; 

Sebanz, Knoblich, Prinz, & Wascher, 2006; Tomasello, Carpenter, Call, Behne, & Moll, 

2005; Vesper & Richardson, 2014). Interestingly, when actions were partially occluded, 

the actions of Leaders became slower and more exaggerated, suggesting the cooperative 

strategies developed based on the coupling strength connecting the group together (Vesper 

& Richardson, 2014), i.e., changing their own behaviors to accommodate reaching a shared 

goal. This fascinating result is related to the concept of relational coordination, also known 

as metastability, soft-assembly, or loose coupling (Holden, 2005; Kello, Beltz, Holden, & 

Van Orden, 2007; Kello & Van Orden, 2009; Kloos & Van Orden, 2010, 2009). These 

concepts are striving to understand a similar construct: how emergent performance 

strategies depend on a complex system’s ability to organize itself within the current 

context, while remaining open to changing if conditions change. Whether it is locomoting 

from one location to the next (Harrison & Richardson, 2009; von Holst, 1954) or 

coordinating actions within or between individuals (Coey, Kallen, Chemero, & 

Richardson, 2018; Coey, Varlet, & Richardson, 2012; Coey, Varlet, Schmidt, & 

Richardson, 2011; Fine, Likens, Amazeen, & Amazeen, 2015; Marmelat & Delignières, 

2012; Scott Jordan, Schloesser, Bai, & Abney, 2018; Van der Wel, Knoblich, & Sebanz, 

2011; Vesper & Richardson, 2014), behaviors are dependent on the context from which 

they originate. Vesper and Richardson (2014) showed how Leaders tend to slow their 

actions to match Followers’ actions, because task constraints prevented the group from 

going faster while remaining successful. When allowed full access to see each other’s 

movements, no such slowing was necessary, so a higher-order strategy emerged instead. 

In both scenarios, groups utilized all available degrees of freedom to organize their 

behaviors to perform the shared task successfully.    

1.1.2. Task Constraints Shape Joint Action 

Task constraints can have a broad and significant influence on cooperative behaviors, 

driving behaviors to change to fit the current context. Task constraints shape emergent 

behaviors for both individuals and groups (Skewes, Skewes, Michael, & Konvalinka, 2014; 

Vesper, Van Der Wel, Knoblich, & Sebanz, 2011). conjoined partners were simply 

instructed to move from one location to another. Being conjoined by a foam appendage, 

the partners moved together with a distinct gait when visually and mechanically coupled. 

Developing an emergent gait depended on the connection linking both individuals together 

as they cooperatively moved from one place to another.  

These task constraints resulted in the emergence of a new performance strategy based 

on the type of coupling binding individuals together (Coey et al., 2011; Harrison & 

Richardson, 2009; Washburn, Kallen, Coey, & Shockley, 2015). Emergent strategies 

develop out of groups taking advantage of as many available degrees of freedom as 

possible. When the coupling strength connecting individuals together changes, so too do 

their behaviors (Vesper et al., 2011).  
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1.1.3. Complexity Matching in Cooperative Actions 

When an individual moves an object by themselves, they know what to expect next 

because they are the only one doing the moving. By contrast, groups of people collectively 

moving an object together experience the effects of a partner’s actions transferred through 

the object (Ganesh et al., 2014; Masumoto & Inui, 2014; Reed et al., 2006; Van der Wel et 

al., 2011). Coordination studies typically employ measures like timing and movement 

accuracy (Rosenbaum, Dawson, & Challis, 2006; Wel, Knoblich, & Sebanz, 2011), phase 

relations (Coey, Varlet, Schmidt, & Richardson, 2011), and movement coordination 

(Schmidt, Morr, Fitzpatrick, & Richardson, 2012; Schmidt & O’Brien, 1997; Stephen et 

al., 2008) to measure individual and cooperative behaviors in situations like moving an 

object. Based on such measures, studies have shown how simply perceiving the actions of 

others can cause actions to become coupled across individuals (Marsh et al., 2009; 

Valdesolo et al., 2010; Van der Wel et al., 2011; Varlet et al., 2012).  

This coupling can also be measured across timescales in terms of complexity matching, 

i.e., a convergence in temporal correlations that are relevant to the variations of each degree 

of freedom (Abney, Paxton, Dale, & Kello, 2014; Marmelat & Delignières, 2012; West et 

al., 2008). Complexity matching is measured as a convergence in the long-range temporal 

correlations produced by two interacting systems. Typically, the long-range dynamics of 

each system are quantified using spectral or detrended fluctuation analysis, and then the 

resulting estimated exponents are correlated across a paired population of interacting 

systems. Generally, complexity matching measures coupling across sequences of 

behaviors and how they become stitched together, rather than direct dependencies in the 

timing of successive behaviors. Often, complexity matching research focuses on the 

strength and modality of the coupling necessary to exhibit higher degrees of complexity 

matching.  

Marmelat and Delignières (2012) were the first to investigate the relationship between 

coupling strength and complexity matching. Participants attempted to swing separate 

pendula in synchronous, in-phase movements. Across three trials, the coupling strength 

shared between the two people was varied by changing which perceptual channels were 

available to help link their actions together. Each trial consisted of a different coupling 

strength condition: weak, intermediate, and strong. The weak-coupling condition only 

allowed for peripheral visual information. The intermediate-coupling condition allowed 

visual and auditory information, and the strong-coupling condition allowed visual, 

auditory, and haptic information. Haptic information was made available by instructing 

participants to cross and link their free arms together.  

Marmelat and Delignières (2012) found no significant difference between the 

intermediate and strong-coupling conditions in terms of the degree of complexity 

matching, but, interestingly, there was significantly less matching in the weak-coupling 

condition. This decreased complexity matching indicated that coupling strength affected 

the extent to which people reciprocally influenced each other’s actions, i.e., showing that 

the presence of perceivable information about the actions of others changed the coupling 

strength connecting them together. However, the influence and nature of the connections 

binding individuals together likely differs for groups larger than two.  
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Frequently, cooperative shared tasks are studied on small groups of interacting agents, 

but oftentimes tasks require multiple agents to complete the task successfully and 

effectively. One such task includes foraging. Foraging is frequently studied as an activity 

performed by individual organisms (Ceia & Ramos, 2015; Patrick et al., 2014; Patrick & 

Weimerskirch, 2014). For instance, a single bird may fly over an area in search of food, as 

a tiger roams the jungle, or a person scans their nearby terrain for resources. In other 

instances, foraging is studied as a collective activity that groups of organisms engage in 

(Aplin, Farine, Mann, & Sheldon, 2014; Palacios-Romo, Castellanos, & Ramos-

Fernandez, 2019), such as schools of fish or colonies of ants seeking food. Collective 

foraging occurs when groups of organisms interact and move together while searching for 

resources, and it is more often associated with organisms that have limited cognitive 

capacities for planning and decision-making (Davidson & Gordon, 2017; Jackson & 

Ratnieks, 2006; Tereshko & Loengarov, 2005).  

Organisms with greater cognitive capacities may also engage in collective foraging, 

but they are more likely to exhibit flexibility in switching between different foraging modes 

that are dependent on various factors (Aplin et al., 2014; Harel, Spiegel, Getz, & Nathan, 

2017; Nathan et al., 2012). For example, a lion may choose to hunt alone or team up with 

other lions to locate and take down prey (Lamprecht, 1981). A person may choose to help 

others harvest a large patch of berries, or alternatively, head off alone in search of unfound 

berry patches. In general, foragers can communicate information about resources and 

conditions to each other, and thereby help individuals make decisions regarding where and 

with whom to forage (Jackson & Ratnieks, 2006; Tereshko & Loengarov, 2005). For these 

reasons, collective foraging serves as a useful scenario to understand principles of 

coordination within larger cooperative groups.  

Often, foraging can benefit from an agent’s ability to vary between searching alone and 

searching in a group as a means of improving collective performance (Beauchamp, 2005; 

Lihoreau et al., 2017). Whether it is “better” to search alone or in a group at any given time 

often depends on various contextual factors (Biesmeijer & De Vries, 2001; Seeley, 1983, 

2019). Group cooperation can outperform individual or independent foraging strategies by 

exploiting food resources more quickly (Beauchamp, 2005), as well as providing security 

from predation among other social benefits (Lamprecht, 1981; Vicsek & Zafeiris, 2012). 

However, these benefits may not always be available or sufficiently salient, and further, 

they may be outweighed when foraging becomes overly competitive (Packer & Ruttan, 

1988). This dependence on certain conditions suggests the importance of adaptive 

flexibility that enables switching between independent and collective modes of foraging. 

The benefits of collective foraging have been shown for various birds of prey (Cortés-

Avizanda, Jovani, Donázar, & Grimm, 2014; Harel et al., 2017; Jackson, Ruxton, & 

Houston, 2008; López-López, Benavent-Corai, García-Ripollés, & Urios, 2013), and the 

apparent prevalence of collective foraging in nature has led researchers to develop and test 

formal models of collective foraging to investigate the underlying principles and processes. 

Liu and Passino (2004) created a collective foraging model based on balancing forces of 

attraction and repulsion, such that agents tended to position themselves relatively near their 

neighbors while still maintaining some distance. The goal was for agents to find food 



5 
 

 
 

resources by following gradients to their locations. Coordinating movements with nearby 

cooperative agents allowed them to collectively follow otherwise unreliable gradients 

toward resources (Falcón-Cortés, Boyer, & Ramos-Fernández, 2019; Liu & Passino, 2004; 

Sellers, Hill, & Logan, 2007). In more recent work, a similar function for balancing 

attraction and repulsion based on agent separation distance was developed, called the 

Lennard-Jones potential (Copenhagen, Quint, & Gopinathan, 2016; Spears, Anderson-

Sprecher, Kletsov, & Rebguns, 2011). The balancing of attraction and repulsion between 

agents yields loose coupling effects which coordinates the behaviors of the agents as a 

group, similar to what we have seen emerge within cooperative tasks involving people 

(Kello & Van Orden, 2009; Kloos & Van Orden, 2009; Van Orden, Holden, & Turvey, 

2003). Our flexibility and adaptiveness to changes leaves us ready to meet the demands of 

the task at hand.  

1.1.4. Loose Coupling of Coordinated Systems 

A general feature of living systems is their relative independence from momentary 

environmental change. This independence shows their stability is achieved across different 

levels of complexity and organization. For our purpose, it is important to understand how, 

and to what extent the dynamics of interacting components within a given system influence 

each other. Such that the degree of coupling among components, subsystems, and systems 

are tied together through their shared connections.  

Here, coupling refers to the strength of the dynamical relations between components of 

a given system. The degree of coupling between components of a given system depends 

upon then extent components within a system mutually perturbating and constraining each 

other. Therefore, the degree of coupling is a continuum where components can range from 

uncoupled, having no influence or relationship to each other, to tightly coupled, where the 

dynamics are strongly linked together such that they become entrenched into one 

dynamical relationship. 

The more reliant each component is upon the dynamics of other components within the 

system, the stronger the coupling between the connected components. Loose coupling 

stands as a balance between these two extremes along the same continuum of varying 

coupling strength. Loose coupling implies a form of flexible stability, where components 

have some degree of influence on each other, while retaining a relative independence of 

dynamics. These weaker dynamical relationships allow for a loosely coupled system to 

change its dynamics in response to external events. In this way, the components of loosely 

coupled systems can be expected to exhibit a range of collective dynamics that emerge over 

time because they are both sensitive to internal and external constraints and perturbations. 

This flexible stability is a signature feature of loosely coupled systems because of their 

susceptible to change, making them unlike uncoupled or tightly coupled systems based on 

their component dynamics. 

As it relates to coordination, we define coordination as the dynamical relations among 

components that results in a system with some collective function. The coupling strength 

of a given system allows for systems to mutually constrain and perturbate the dynamics of 

other components. Loose coupling within a coordinated system supports coordination 
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because component dynamics are sensitive to constraints and perturbations, allowing for 

adaption in response to changing conditions, thereby making the dynamical relation 

functional in nature. By balancing the dependence and independence of components, 

loosely coupled systems exhibit emergent and functional behaviors based on changing 

conditions because of the system’s susceptibility to change. Based on this notion, when 

loosely coupled, the actions of an individual, dyad, or flock will all naturally differ in 

coordinated actions based on their respective component dynamics and external 

constraints. In this way, loose coupling may support coordination by allowing for an 

adaptive, flexible stability to emerge between the dynamical relations of limbs, partners, 

or collective searchers across varying conditions.  

1.2. Outline of the Dissertation 

Everyday people engage in flexible, loosely coupled behaviors while coordinating their 

actions within themselves and with other people. This flexibility to adapt our behaviors is 

often the key to our collective success because of how generalizable we can be. Based on 

humans’ general adaptiveness and ingenuity for actions, we began our investigation by 

testing whether performance depends on the coupling strength in a bimanual Fitts’ task. 

Fine and Amazeen (2011) showed how cooperative performance was affected by task 

constraints in an interpersonal hand-eye coordination task. This flexibility of coordination 

is reflected in the variability of measured degrees of freedom. Human coordination in tasks 

like juggling are soft-assembled—degrees of freedom are recruited flexibly and 

temporarily to accomplish the task at hand, while also remaining available to reorganize 

into other coordinated configurations as the tasks change over time (Kloos & Van Orden, 

2009). Specifically, flexible coordination of complex systems requires a coupling of their 

dynamics at multiple timescales. Marmelat and Delignières (2012) demonstrated how 

coupling strength can be quantified in terms of complexity matching. Complexity matching 

measures the degree of coupling arising from such cooperative interactions, and thereby 

gauging how soft-assembly, or “loose coupling” influences cooperative coordination. 

In Chapter 2, we examine complexity matching in a double, coordinated Fitts' 

perceptual-motor task with comparable individual and dyadic conditions. Participants 

alternated touching targets with their left and right hands in the individual condition, or 

analogously with the left hand of one partner and the right hand of the other in the dyadic 

condition. In Experiment 1, response coupling was manipulated by making targets drift 

either randomly or contingently based on prior responses. Here, “drift” refers to the 

variability in the target movements between consecutive response locations. Long-range 

correlations in time series of inter-response intervals exhibited higher degrees of 

complexity matching between the left and right hands of dyads and individuals when 

responses were contingently linked together. Response coupling was necessary for 

complexity matching in dyads but not individuals. When response coupling was absent in 

the dyadic condition, the degree of complexity matching was significantly reduced. 

Experiment 2 showed that the effect of coupling was due to interactions between left and 

right responses. Results also showed a weak, negative relationship between complexity 

matching and performance as measured by total response time. Concluding that principles 

of coordination and complexity matching apply similarly within and between individuals, 

and perceptual-motor performance can be facilitated by loose response coupling. 
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Similarly, collective foragers are influenced by the coupling shared between foragers 

which affects emergent and varying foraging strategies. Social cues serve as at least one 

connection, helping to bind foragers together (Harel et al., 2017; Jackson et al., 2008; 

Seeley, 1983). As agents emit social cues, these cues affect the decisions other collective 

foragers make, causing searchers to flexibly reorganize between individualistic and 

collective foraging strategies (Dreller, 1998; Harel et al., 2017; Nathan et al., 2012; Seeley, 

1983). For instance, when a vulture shows signs of having recently visited a carcass, that 

vulture is more likely to be followed the next time it leaves the roost (Harel et al., 2017). 

The flexibility of agents to switch between individual and collective strategies indicates 

that foragers can reorganize their degrees of freedom and adapt to the task at hand, resulting 

in individuals and groups having greater success overall. By testing the connections that 

bind groups together or separate them, we stand to better our understanding of any 

underlying principles of coordination related to larger groups.   

In Chapters 3–5, we investigate how intelligent agents coordinate and cooperate 

flexibly when rules and dynamics of interaction can change over time and across different 

tasks and environmental conditions. Loose coupling emerges among agents when the rules 

of interaction are weak enough for agents to act independently or interdependently, and 

patterns of interaction vary as a function of conditions. In Chapter 3, we examine collective 

foraging among simulated agents with and without human intervention. We found that 

loose coupling among search agents improved group foraging success, and that human 

players improved performance partly by subtle, indirect effects on group interactions. 

Analyses of movement patterns showed that loose coupling enabled collections of agents 

to self-organize and reorganize into a greater diversity of ad-hoc groupings. Building on 

these promising results, in Chapter 4, we conduct a series of simulations to develop a more-

optimal configuration of loose coupling, one that we then compared to human searching 

behaviors. We found that the searching behaviors of the more-optimal loose coupling 

agents increased collective performance, but these improved searching agents continued to 

search the space less effectively than the human player based on individual measures of 

performance. Considering these findings, in Chapter 5, we continue our investigation by 

instilling a single autonomous simulated agent with a more ‘human-like’ quality. 

Specifically, we instilled this new agent with a form of memory that would direct them to 

favor moving towards yet unsearched areas of the space rather than where they have 

already been. Surprisingly, we found that this new memory parameter directed this new 

memory agent to search in more ‘human-like’ ways.  
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Chapter 2 

Interpersonal Coordination and Complexity Matching as a function of Dependency 

2.1. Preface 

In this chapter, I present an analysis of a published study providing evidence for loose 

coupling, both within and between individuals, as measured via complexity matching. The 

present study examined complexity matching in a double, coordinated Fitts' perceptual-

motor task with comparable individual and dyadic conditions. Participants alternated 

touching targets with their left and right hands as an individual or as dyads, cooperating as 

pairs of subjects in the dyadic condition, to repeating patterns of moving targets. In 

Experiment 1, response coupling was manipulated by making targets drift either randomly 

or contingently based on prior responses – target drift varied target movements between 

response locations. Long-range correlations in time series of inter-response intervals 

showed response coupling was necessary for developing higher degrees of complexity 

matching in dyads but not for individuals. Individuals were able to develop high degrees 

of complexity matching regardless of response coupling – due to the individual controlling 

the timing of all responses.  

When response coupling was absent in the dyadic condition, the degree of complexity 

matching was significantly reduced. These findings demonstrated that the degree of 

complexity matching within collaborative pairs differed as a function of coupling strength. 

Additionally, these results support individuals and dyads can become increasingly 

“coupled” over time when coupling effects are dependently linked to corresponding 

actions. Adding to the mounting evidence of loose coupling effects emerging during human 

interactions. 

2.2. Introduction 

To accomplish a task, e.g., either an “individual” task or a common collaborative goal, 

people must often coordinate a plurality of discrete actions. For instance, a single person 

can coordinate discrete actions performed by each of the person’s two hands to juggle a set 

of objects. Similarly, two people juggling together can mutually coordinate actions by all 

four of their collective hands. In both instances, bimanual coordination is required to 

complete the respective task—what differs is whether such coordination is implemented 

by a single person or between two distinct individuals.   

Human coordination in tasks like juggling is soft-assembled, meaning the available 

degrees of freedom for actions are flexibly and temporarily recruited within the present 

context. At the same time, the available degrees of freedom retain the ability to reorganize 

based on changing task demands into other coordinated configurations, reflected in the 

variability of measured degrees of freedom (Kloos & Van Orden, 2009). Coordination of 

complex systems requires a coupling of their dynamics at multiple timescales. Complexity 

matching is one way to measure the degree of coordination at multiple timescales, serving 

as an effective measurement for studying soft-assembly, or loose coupling and its influence 

on coordination. 
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Complexity matching is based on a theory of information exchange between complex 

networks (West et al., 2008), measured as convergence in the long-range temporal 

correlations produced by two interacting systems (Abney et al., 2014; Marmelat & 

Delignières, 2012). Typically, the long-range dynamics of each system are quantified using 

spectral or detrended fluctuation analysis. The resulting estimated exponents are correlated 

across a sampled population of pairs of interacting systems. The same measure of 

convergence was simultaneously introduced as strong anticipation (Stephen, Stepp, Dixon, 

& Turvey, 2008). For our purposes, these two terms and concepts are interchangeable, and 

one can interpret our study of complexity matching as also applying to strong anticipation.  

Complexity matching has been used in many areas involving coordination. From 

studies in dyadic conversations (Abney et al., 2014; Fusaroli, Raczaszek-Leonardi, & 

Tylén, 2014), dyadic perceptual-motor coordination (Coey et al., 2016; Den Hartigh et al., 

2017; Fine et al., 2015; Marmelat & Delignières, 2012), perceptual-motor coordination 

with a metronome (Delignières et al., 2016; Stephen, Stepp, Dixon, & Turvey, 2008; Torre 

et al., 2013), to neural networks and brain connectivity (Mafahim, Lambert, Zare, & 

Grigolini, 2015).  

The pursuit of developing principles of coordination has led researchers to focus on 

coordination within a person or between multiple people coordinating with a device like a 

metronome (see Rigoli, Holman, Spivey, & Kello, 2014). Here, we examine complexity 

matching in a perceptual-motor task that has comparable conditions of individual and 

dyadic coordination. We test whether complexity matching generalizes across 

collaborative behaviors, and whether the role of response coupling operates similarly 

within and across individuals.  

Our study is motivated by the hypothesis that loose coupling may be a general principle 

of coordination akin to models of coupled oscillators. For instance, Haken, Kelso, and Bunz 

(1985) introduced a model of coupled oscillators that has proven to describe the dynamics 

observed in many studies of perceptual-motor coordination within and between individuals 

(Black, Riley, & McCord, 2007; Issartel, Marin, & Cadopi, 2007; Riley, Richardson, 

Shockley, & Ramenzoni, 2011; Schmidt & Richardson, 2008), in movement activity as 

well as neural activity (Bressler & Kelso, 2001; Fink, Foo, Jirsa, & Kelso, 2000; Swinnen, 

2002). Loose coupling may be a similarly general principle for complex networks of 

interacting components with heterogeneous dynamics. 

2.2.1. Bimanual and Interpersonal Coordination 

We start with a review of previous studies of coordination within and between 

individuals to provide context for complexity matching. Coordination studies typically 

employ measures like timing and movement accuracy (Rosenbaum, Dawson, & Challis, 

2006; Wel, Knoblich, & Sebanz, 2011), phase relations (Coey, Varlet, Schmidt, & 

Richardson, 2011), and movement dynamics (Schmidt, Morr, Fitzpatrick, & Richardson, 

2012; Schmidt & O’Brien, 1997; Stephen et al., 2008). These measures can often be 

applied similarly within and between individuals. For example, Wel et al. (2011) asked 

participants to swing a pendulum between two markers by pulling a rope alone or with 

another person at different amplitudes and frequencies. Individual subjects had control over 
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both ends of the rope and dyads worked together by only controlling one end each. Results 

showed that dyads cooperated by pulling their respective end simultaneously with the other 

to produce perceivable and predictable effects each person could recognize. By contrast, 

individuals pulled the ends simultaneously only half as often. 

Tasks like swinging pendula force participants to time their movements relative to each 

other, but timing relations are not required to perform these tasks—if oscillations fall out 

of phase with each other, the task continues without penalty or disruption. Other 

coordinative tasks require certain timing relations to be performed. Fine and Amazeen 

(2011) extended the individual Fitts’ task to investigate whether the Fitts’ law tradeoff 

between speed and accuracy holds when two people cooperate to perform the task. 

Participants alternately aimed at targets using their left and right hands. This alternation 

served as a built-in timing relation necessary to perform the task across three different 

conditions: unimanual, intrapersonal, and interpersonal. “Unimanual” meant that the 

participants used either their left or right hands across separate trials; “intrapersonal” 

participants used both hands; and “interpersonal” participants used their dominant hands 

while standing alongside another participant.  

Results showed interactions between paired individuals emerged implicitly, and arose 

from perceptual-motor coupling through peripheral vision (Amazeen, DaSilva, & 

Amazeen, 2008; Mechsner, Kerzel, Knoblich, & Prinz, 2001). Results also showed, in both 

the intrapersonal and interpersonal conditions, and when task difficulty varied across 

hands, that movement times for the easy targets slowed down to maintain an in-phase 

relation with the other hand responding to harder targets. Similar results have been 

recorded in other shared coordination tasks (Fine et al., 2015; Harrison & Richardson, 

2009; Lumsden, Miles, Richardson, Smith, & Macrae, 2012; Vesper & Richardson, 2014). 

This result is contrary to the Fitts’ law assumption of independence between limbs which 

can be interpreted as evidence against a centralized control of target aiming and reaching 

(Marteniuk, Mackenzie, & Baba, 1984).  

Fine and Amazeen (2011) encouraged alternation to perform the task, whereas other 

studies have induced more varied forms of coordination necessary to perform a 

collaborative task (Harrison & Richardson, 2009; Jordan, Schloesser, Bai, & Abney, 2018; 

Knoblich & Jordan, 2003; Wel et al., 2011). For instance, Jordan et al. (2018) instructed 

participants to contain a drifting dot within a narrow rectangular box displayed on a 

computer screen. The dot moved constantly and was controlled with two keys to determine 

the direction of movement. Individuals controlled both keys, whereas dyads controlled only 

one key each. This made the timing relations between keypresses necessary to control the 

moving dot. 

In Jordan et al. (2018), individual subjects performed better than dyads, presumably 

because the individuals had enough control to time precise key presses to control 

movement effects (Jordan et al., 2018). Such precision of coordination was less feasible 

for dyads, so a different coordination pattern emerged where people pressed the keys 

rapidly (i.e., a reorganization of available degrees of freedom). Through movement 

feedback, players adjusted the phase and frequency of their keypresses to stabilize and hold 

the dot in the middle of the goal box. Although dyads were less successful than individuals 
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at performing the task, this study indicated that dyad players were able to utilize the 

available degrees of freedom to loosely couple with each other. 

2.2.2. Complexity Matching 

Each of the studies reviewed thus far used measures of phase relations in behavior, 

including methods like recurrence-quantification analysis (Coey, Washburn, & 

Richardson, 2014; Fusaroli, Konvalinka, & Wallot, 2014; Riley, Richardson, Shockley, & 

Ramenzoni, 2011). In the current study, we measured the degree to which coordination 

was in-phase, i.e. phase matching, and compared this measure with complexity matching, 

which was introduced as another measure of coordination dynamics (Abney et al., 2014; 

Marmelat & Delignières, 2012), to evaluate the viability of complexity matching as an 

alternative, distributional measure of coordination.  

Among the first empirical studies of complexity matching, Marmelat and Delignières 

(2012) instructed dyads to swing separate pendula back and forth using either their left or 

right hand. All people started by completing one trial alone, followed by a practice period 

of about five minutes, and then as a group using the same hand as they did in the individual 

condition. Afterwards, participants were asked to complete a series of three trials. In each 

trial, they were asked to consistently swing the pendula in synchronized, in-phase 

movements. Coupling strength was manipulated through the amount of perceivable 

information about the other’s swinging. There were three different levels of coupling 

strength: weak, intermediate, and strong coupling. The weak coupling condition allowed 

for only peripheral visual information about the partners’ swinging movements. 

Intermediate coupling allowed for both visual and auditory information, whereas strong 

coupling provided the participants with visual, auditory, and haptic information. The haptic 

information was made available by allowing the participants to lock their free arms 

together.  

Marmelat and Delignières (2012) measured fluctuations in the inter-peak intervals of 

oscillatory movements, whose temporal autocorrelations were found to follow an inverse-

power-law relation. The relation was quantified for each time series by estimating the 

power law exponent, and complexity matching was measured by correlating the estimated 

exponents across dyads. Results showed higher degrees of complexity matching for 

intermediate and strong coupling, and weaker complexity matching for weak coupling. 

Thus, the strength of complexity matching differed as a function of the amount of 

perceivable information (i.e., coupling strength).  

More recently, some studies have investigated whether complexity matching might 

relate to measures of collective performance (Abney, Paxton, Dale, & Kello, 2015; Zapata-

Fonseca, Dotov, Fossion, & Froese, 2016). For example, Zapata-Fonseca et al. (2016) 

created a task in which paired individuals interacted with one another by moving virtual 

“avatars” (points) around an invisible ring. Players received haptic feedback about their 

avatar positions only when the positions overlapped. The goal of the task was to align both 

avatars. This effort was made more challenging by the presence of three decoys which were 

placed on the same ring as the avatars. One decoy was a static point, and the other two 

would move in ways that shadowed each avatar’s movements. Results found higher 
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complexity matching in the fluctuations of avatar movements, and increased complexity 

matching was correlated with higher degrees of avatar alignment. These results suggest 

that complexity matching reflects collective performance in terms of the degree to which 

common ground is established. 

2.2.3. Current Study 

For the present study, we modified the classic Fitts’ task to compare perceptual-motor 

coordination and performance of individuals to that of dyads. Participants were instructed 

to reach out and touch targets as the targets appeared on touchscreens. For both individuals 

and dyads, targets appeared alternatively on opposite (left and right) sides of the 

touchscreen. For individuals, the participants responded by reaching for all the displayed 

targets, alternating between using left and right hands to touch targets on the corresponding 

side. For dyads, the targets were displayed on two touchscreens in two separate rooms. One 

person in the first room reached for left-side targets with their left hand, and the other 

person in the second room reached for right-side targets with their right hand. 

Both conditions required participants to time their responses between both hands to 

successfully complete the task. Each hand produced timing fluctuations in a series of inter-

response intervals (IRIs). We quantified temporal autocorrelations by estimating a spectral 

exponent for each time series, and we measured complexity matching by correlating the 

exponent estimates across participants. We evaluated the use of complexity matching as a 

more diffuse, distributional measure of correlations in timing fluctuations, as compared 

with phase matching serving as a more local, direct measure of such fluctuations. 

Individuals’ responses were inherently coupled because responses were controlled by 

a single brain with two hemispheres connected by a corpus callosum (among other 

physiological and functional pathways). This inherent, internal coupling in the individual 

condition initially led us to expect higher complexity matching within individuals. 

However, we had different sets of expectations for the dyadic conditions. We manipulated 

coupling strength by causing the targets to appear in positions on the touchscreen according 

to either a dependent or a random drift. The dependent drift condition positioned each target 

depending on the location of the previous touch by the participant. With a random drift, 

the position of the next target was chosen randomly from within the target area. For dyads, 

response coupling only existed through the appearance of targets on the screen. As a result, 

a dependent drift enabled response coupling through bimanual interactions, while a random 

drift prohibited such interactions. 

Our Fitts-like task was designed to address three main research inquiries. First, does 

complexity matching generalize across both dyadic and individual (e.g., bimanual) 

perceptual-motor coordination, and if so, how does this phenomenon compare with phase 

matching? Second, does external response coupling produce similar effects on complexity 

matching in both coordination conditions? And third, how do complexity matching and 

phase matching in an “aiming” task relate to overall performance, as measured by total 

response time? 

Previous studies suggest a relationship between coordination and performance, but 

both the degree and the direction of this relationship are unclear. Matching of movement 
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dynamics has been shown to correlate with both better task performance (Abney et al., 

2014; Zapata-Fonseca et al., 2016), but also worse performance (Abney et al., 2015). In 

the latter case, dyads worked together to build a tower, and the results indicated that 

complementary movements that varied in their phase relations over time supported a loose 

or “flexible” form of coordination. 

It was initially unclear whether performance in our Fitts-like task should improve with 

increased matching in response timing, or whether the participants’ hands can coordinate 

more effectively when they maintain some independence from each other. Given that prior 

studies have found differing relationships between performance and coordination, we 

considered this issue for exploration in the present study. Examining this relationship 

furthers our understanding of coordination as revealed in the temporal correlations of 

performance fluctuations. 

2.3. Methods: Experiment 1 

2.3.1. Participants 

Ninety students participated from University of California, Merced for course credit. 

Each participant signed a consent form explaining that participation was voluntary, and 

that the participant could end the experiment at any time without penalty. Of the 90 

participants who volunteered for this experiment, 62 (69%) were female and 28 (31%) were 

male. 59 of the 62 females (i.e., 95%), and all 28 of the males (i.e., 100), were right-handed 

as determined by which hand they use for writing. Given the uneven distributions of 

genders and handedness (i.e., the negligible proportions of both males and left-handed 

individuals), we did not analyze potential effects of these parameters any further. 

2.3.2. Apparatus  

For each dyad, each participant sat roughly 30 cm (11.81 in) in front of their own 22-

inch Planar PCT2235 touchscreen monitor at approximately a 65° angle, in a separate room 

from their partner. The height of each chair relative to the table was set to a comfortable 

level for each participant. Both rooms were 7 feet by 9 feet in size. Individuals were 

separated across rooms, each with a monitor present. A single computer sent the same 

graphical display to one or both monitors, and collected user input (i.e., touchscreen 

responses) from one or both monitors via a program written in Python using the Pygame 

module. 

2.3.3. Procedure  

The experiment began with verbal instructions to the participants regarding the overall 

nature of the task, which was to reach out and touch targets, in the form of red circles, as 

they appeared on the touchscreen monitors. Targets appeared on the screens, one-at-a-time, 

and players were asked to touch them as quickly as possible with the corresponding hand. 

Each target was 2.3 cm (0.9 in) in diameter, and the targets appeared in certain positions 

on the screen according to a repeating sequence (see Figure 1). Specifically, the target first 

appeared in the top-left quadrant of the screen, then in the top-right quadrant, followed by 

the lower-left quadrant, and finally in the lower-right quadrant. This sequence repeated 300 

times in each session block. 
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An auditory tone 200 ms in duration followed each target response to indicate the 

response time. The frequency of the tone was linearly related to the response time within a 

bounded range. The lower frequency bound was 250 Hz, indicating a user-response time 

of 1750 ms or longer, and the upper frequency bound was 2000 Hz, indicating a theoretical 

“perfect” response time of 0 ms. The tone provided an indication of relative performance 

to participants, with higher pitch meaning faster (better) performance, and lower pitch 

meaning slower (worse) performance. 

A participant’s left hand responded to targets in the left two quadrants, and the right 

hand responded to targets in the right two quadrants (see Figure 1). Individuals used both 

hands, whereas dyadic players each responded to only one side (half) of the targets. One 

dyadic participant responded to left-sided targets with their left hand, and the other 

participant responded to right-sided targets with their right hand (see Figure 1). All 

participants observed all the targets in all four quadrants, and dyads were shown an 

indication of their partner’s touch responses in the form of brief gray concentric rings 

centered on the response location. 

Although confined to a particular quadrant according to the sequence described above, 

the relative positions of the targets drifted within the quadrants from one response to the 

next. This positional drift was either dependent on participant responses or randomized. 

The random drift positioned each target as if it had shifted in any random direction. The 

distance between consecutive target locations was sampled uniformly from a set of lengths 

ranging from zero to the radius of the circle that formed the target. This distance was then 

translated from the corresponding location in the next quadrant to position the subsequent 

target. In cases in which the randomly selected direction and distance would have caused 

the target to drift outside the quadrant boundary, the direction was “reflected” to the 

opposite direction to keep the targets within the set bounds. The dependent drift created a 

new center for each target determined by an accurate response located within the previous 

target circle. In both drift conditions, target positions were restricted from drifting off the 

screen by always keeping at least half the target circle in view.  

Overall, the task was identical for both individuals and dyads, except individuals 

responded to all the targets, whereas each member of a dyad responded to only half. Each 

block of 1200 targets were preceded by 40 “practice” targets. Each participant completed 

one “random” drift block and one “dependent” drift block, and the order of these blocks 

was counterbalanced across participants. 
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Figure 2. 1. (Top) Four initial response locations are depicted in the individual and dyadic 

conditions (the white dashed lines were not visible in the experiment). (Bottom) Response 

configurations are depicted for individual and dyadic conditions.  

2.3.4. Data Collection/Processing  

Responses both inside and outside the target areas were recorded, but only “accurate” 

responses (i.e., inside the target areas) counted toward response times and any dependent 
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drift. The primary dependent variable of interest was the duration between consecutive 

responses, or the inter-response interval (IRI). The IRI provides an indication of relative 

performance, given that the goal was to complete each block of targets as quickly as 

possible. IRIs above or below 2.5 standard deviations were replaced with the mean IRI for 

the corresponding block—on average, 2.89% of responses were replaced. The 1200 

responses in each block were divided in half to identify the responses produced by the left 

and right hands. The last 512 responses of each hand were retained and analyzed. Figure 2 

shows example IRI time series for the left and right hands from each of the four different 

conditions. 

 
Figure 2. 2. An example time series for the four conditions: Individual dependent (top left), 

individual random (top right), dyadic dependent (bottom left), and dyadic random (bottom 

right).  

The time series show that IRI fluctuations tend to rise and fall together, indicating 

visual evidence of phase matching. However, closer examination reveals that fluctuations 

cover timescales of multiple trials, rather than varying from trial-to-trial. We explored the 

scale at which to measure phase matching by correlating IRI series after convolving them 

with a moving-average window of several different widths. Phase matching on longer 

timescales was measured by correlating series convolved with wider moving-average 

windows. We tested windows in multiples of four, reflecting one “cycle” of responses over 

each of the four quadrants. Correlations began to asymptote at a window size of 16 

responses, so for the results reported herein, we measured phase matching by correlating 

IRI series after being smoothed-out by a moving-average window 16 responses wide. 
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2.3.5. Analyses 

2.3.5.1. Spectral Analysis 

We used spectral analysis to measure temporal autocorrelations in IRI time series for 

each condition and measured the degree of complexity matching in response time 

fluctuations. Temporal autocorrelations in response time series are commonly expressed 

as an inverse relation between frequency and spectral power (Gilden, 2001; Holden, Van 

Orden, & Turvey, 2009; Kello, Beltz, Holden, & Van Orden, 2007). When temporal 

correlations extend over many trials (i.e., long-range correlations), the spectral function 

often resembles a power law as expressed by a linear relation between spectral power and 

frequency in log-log coordinates. Statistical tests have concluded that, in many cases, 

power laws provide better fits to the data than short-range correlations (Gilden, Thornton, 

& Mallon, 1995; Kello, Anderson, Holden, & Van Orden, 2008; Wagenmakers, Farrell, & 

Ratcliff, 2004). Here, we are only interested in capturing variability in the degree of 

autocorrelation across timescales, rather than determining the best-fitting statistical 

function. Therefore, it suffices to estimate degrees of autocorrelation by fitting polynomial 

functions to spectra in log-log coordinates. 

2.3.5.2. Complexity Matching 

Complexity matching is commonly measured in terms of correlations in the linear 

coefficients of fits to log-log spectra (or analogously, for detrended fluctuation functions; 

(Delignières & Marmelat, 2012; Marmelat & Delignières, 2012). In analyses of speech 

(Abney et al., 2014), complexity matching has been determined based on fits of the lower 

frequencies of variation, rather than of all measured timescales. Speakers matched prosodic 

features of their speech that span longer timescales (e.g., phrases and other large units of 

language), and the utilized measures of clustering in speech timing are sensitive to prosodic 

variations (Falk & Kello, 2017). However, the perceptual-motor task employed herein is 

distinguishable from a conversation. For instance, speakers have relatively few constraints 

on how they coordinate their utterances because conversational turns, as well as pauses and 

even periods of overlap in speaking, may vary widely in duration. By contrast, this target-

aiming task requires strict timing and sequencing between the left and right hands. It is 

possible that the hands are too constrained to vary freely and match their correlations over 

timescales like those observed for speech. Therefore, we tested complexity matching over 

low, middle, and high ranges of timescales to see which, if any, timescales express greater 

levels of matching. 

Out of eight logarithmically binned estimates of spectral power, we fit a line to the six 

highest frequencies for the High-Frequency estimate, the six middle frequencies for the 

Mid-Frequency estimate, and the six lowest frequencies for the Low-Frequency estimate. 

Complexity matching was computed as an estimate by correlating the corresponding left-

and-right-hand slopes. The High-Frequency estimate yielded the strongest mean 

correlation across conditions, r(118) = 0.421, followed by Mid Frequency, r(118) = .184, 

and then Low Frequency r(118) = .118. We surmise that the greatest degree of complexity 

matching occurred in the High-Frequency range because the highly constrained nature of 
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the Fitts-like task attenuates the adaptation of lower-frequency dynamics. We therefore 

focus our analyses on spectral slopes in the High-Frequency range. 

2.4. Results 

2.4.1. Total Time 

We first analyzed overall performance for each condition in terms of the total amount 

of time it took to complete each block. A two-way analysis of variance was conducted with 

“Group Type” (i.e., individual versus dyadic) as a between-subjects factor, “Movement 

Type” (i.e., dependent drift versus random drift) as a within-subjects factor (dependent 

versus random drift), and participants as a random factor. We found a significant main 

effect of Group Type, F(1, 58) = 17.71, p = .001, a main effect of Movement Type, F(1, 

58) = 66.01, p < .001, and a significant interaction, F(1, 58) = 4.73, p = .034 (see Figure 

3). Overall, individuals were faster (i.e., performed better) than dyads. Although the 

dependent drift supported faster responses than the random drift in both cases, the 

dependent drift benefited individuals more than it benefited dyads. Individuals also 

committed more errors; however, they were still able to recover from those errors fast 

enough to complete the blocks faster than dyads, on average. Therefore, in terms of overall 

performance, some sacrifice of accuracy for the sake of speed appeared to be worthwhile 

for individuals, given that the only objective was to complete the task as fast as possible 

(see Figure 3). Anecdotal experience indicates that it takes some tens of milliseconds to 

recover from each missed (i.e., outside-target) response, so any speed gained beyond the 

mean recovery time is worth the tradeoff. 
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Figure 2. 3. Total time to complete each block as a function of Group Type and Movement 

Type. Boxes correspond to group means, and individual points correspond to outliers.  

2.4.2. Spectral Analysis 

Figure 4 shows the mean spectra as a function of condition, with spectral power 

logarithmically binned as a function of frequency so that each bin is estimated from 

comparable amounts of data (Gilden et al., 1995). Figure 4 shows spectral power increasing 

as frequency decreases across all measured timescales, for all four conditions. This 

inversely proportional relationship also appears to flatten out in the higher frequencies, 

which is common in behavioral and neurophysiological measures due to measurement and 

timing errors, among other possible factors. To estimate the degree of autocorrelation while 

accounting for its flattening, we fit a first-order polynomial to the IRI time series for each 

hand in each block of trials, and we used the linear coefficient as a dependent measure to 

estimate the degree of autocorrelation. 

We conducted a 2x2x2 (i.e., Group Type—individual or dyad; Movement Type—

dependent or random; Hand—right or left hand) mixed ANOVA on the linear coefficients 

of a first-order polynomial for each IRI spectrum produced by each hand in each block. 

We found a significant main effect of Group Type, Mind = -0.852, Mdyad = -1.012, F(1, 58) 

= 36.53, p < .001, Movement Type, Mdependent = -1.091, Mrandom = -0.772, F(1, 58) = 31.9, 

p < .001, and a non-reliable effect of Hand, F(1, 58) = 3.51, p = .072 (more negative 

coefficients for the right hand). All other main effects and interactions were non-

significant, p > .05. Additionally, spectral slopes did not show a reliable, consistent 

relationship with performance.  
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Figure 2. 4. Logarithmically binned, mean spectra as a function of Group Type and 

Movement Type.  

As can be seen in Figure 4, spectral functions were steeper for dyads and dependent 

drift compared to individuals and random drift, respectively. These effects were not a focal 

point of our study, but one might expect random perturbations caused by random drift to 

disrupt temporal autocorrelations relative to non-random drift. Weaker autocorrelations for 

individuals are harder to interpret, but we note that the faster responses of individuals were 

much more error prone. Based on the same rationale as random drift, aiming errors 

disrupted performance because they required monitoring and recovery. Such disruptions 

may have weakened autocorrelations akin to random-drift perturbations. 

2.4.3. Complexity Matching 

We found significant positive correlations of spectral slopes for individuals in both 

movement conditions and the dyadic dependent-drift condition, but not for the dyadic 

random drift condition (see Figure 5). This pattern of slope correlations indicates that 

complexity matching occurred when the hands were coordinated either within an 

individual or through dependencies in the positioning of targets across separated hands. 

When neither of these two channels of coupling were available, complexity matching was 

inhibited. 
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Figure 2. 5. Left-hand slope plotted against right-hand slope per block, separated by Group 

Type and Movement Type. 

2.4.4. Phase Matching  

We measured phased matching per response series by correlating the left and right hand 

IRI series, after convolving each one with a moving-average window 16 responses wide. 

The mean and variance of Pearson’s r values are shown in Figure 6 below, separated by 

condition. Figure 6 shows that nearly all correlations were above-zero across conditions, 

indicating that phase matching was a general feature of performance in our Fitts-like 

coordination task, even when coupling was inhibited in the dyadic random-drift condition. 

To test whether phase matching varied by condition, we conducted a two-way analysis 

of variance with Group Type as a between-subjects factor (individual versus dyadic), 

Movement Type as a within-subjects factor (dependent versus random drift), and 

participants as a random factor. We found a significant main effect of Group Type, F(1, 

58) = 8.13, p < .01, and a main effect of Movement Type, F(1, 58) = 4.97, p < .05, but 

there was no significant interaction between Group Type and Movement Type, F(1, 58) = 

0.94, p = .336. Figure 6 shows that phase matching was greater for individuals and for 

dependent drift, as compared with dyads and random drift, respectively. In summary, these 

phase-matching results indicate an additive effect of internal coupling and response 

coupling on phase matching, whereas the complexity matching results indicated a 

multiplicative effect because the latter occurred equally when either coupling was present, 

and not at all when neither coupling was present.  
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Figure 2. 6. Phase matching of smoothed IRI series in each block as a function of Group 

Type and Movement Type.  

2.4.5. Matching and Performance 

Next, we investigate the relationship between complexity matching and performance 

in terms of total time for each response series in each condition. We followed this analysis 

with another in which complexity matching was replaced with phase matching. The latter 

analysis is feasible with our phase-matching measure because it yields a correlation per 

response series, but we need a similar per-series measure of complexity matching. We 

formulated a per-series measure of complexity matching as the absolute difference between 

the left-hand and right-hand slopes, with smaller differences indicating closer matching of 

slopes for a given response series. 

We conducted a 2x2 mixed analysis of variance with Total Time as the dependent 

variable, and Movement Type and per-series complexity matching as the predictors. We 

also ran the same analysis with phase matching in place of complexity matching. There 

was no significant relation between phase matching and performance, but complexity 

matching exhibited a weak, negative relationship with total time that was marginally 

reliable, F(1,57) = 3.27, p = 0.07. The weak trend suggests that better performance is, if 

anything, associated with less complexity matching, but the results are not statistically 

reliable, so we avoid drawing any conclusions based on this experiment alone. 
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2.4.6. Positional and Directional Target Drift 

To this point, the drift manipulation employed so far has been framed in terms of 

response coupling—dependent drift is a channel for left and right responses to affect each 

other, and random drift eliminates this channel while preserving target movement. The two 

different drift conditions were designed to be roughly equivalent in terms of drift 

magnitude, mainly by virtue of bounding them within the same radius. However, random 

drift steps were drawn from a uniform distribution, without directional bias, whereas 

dependent drift may be corrective in nature and hence autocorrelated with smaller step 

sizes. If so, complexity matching may be facilitated by less variability and greater 

predictability in dependent drift rather than response coupling. 

We measured each angular and distance deviation in target position and plotted their 

histograms aggregated over each response series, as a function of group type and 

movement type (see in Figure 7). The random-drift conditions showed uniform 

distributions, as anticipated. The dependent-drift conditions were far from uniform, 

showing large biases towards smaller steps in corrective directions opposite the prior target 

movement. This anti-persistence in drift direction indicates that participants used their 

control over the drift to actively stabilize targets toward the middle of each quadrant, 

occurring somewhat more frequently in individuals than dyads. Individuals responded 

much faster overall compared with dyads, causing their drift deviations to be larger (as 

shown in Figure 7), but which the individuals somewhat counteracted through increased 

negative feedback via the response-tone frequency. 

 
Figure 2. 7. (Left) Direction in degrees (0°‒180°) of target movements from one target to 

the next by Group Type and Movement Type. (Right) Movement distance of the target 

(measured in pixels) on the x and y-axis from one target to the next by Group Type and 

Movement Type.  

2.5. Preliminary Discussion 

The directions and sizes of dependent-drift deviations indicate that the effect of 

dependent drift on complexity matching may have been due to increased predictability in 

target positions. The other possibility, which we originally hypothesized, is that dependent 

drift facilitates response coupling between left and right responses. In turn, this coupling 
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was hypothesized to provide a channel of information exchange that facilitates loose 

coupling. 

In Experiment 2, we tested these competing explanations by dissociating the possible 

effect of target predictability from response coupling. We created a “playback” condition 

in which the series of target positions from each block of the dependent condition of 

Experiment 1 were used to display targets to new participants in Experiment 2. The new 

participants experienced the same exact target predictability that occurred in Experiment 

1, but without the response-to-response interactions across hands. If the effect of dependent 

drift on matching (complexity or phase) is due to target predictability, then the degree of 

dyadic matching should be the same for dependent-drift and playback-drift conditions in 

Experiment 2. By contrast, if matching depended on interactions in Experiment 1, then 

playback drift should be like random drift, and the playback-drift condition in Experiment 

2 should replicate the random-drift condition in Experiment 1. 

2.6. Methods: Experiment 2 

2.6.1. Participants 

To maintain equivalent sample sizes to those of Experiment 1, we collected another 90 

students from UC Merced who all participated for course credit. All participants signed a 

consent form which explained that participation was voluntary, and that the participant 

could end the experiment at any time. Of the 90 participants (68 female) who volunteered 

for this experiment, 59 females and 16 males were right-handed, based on which hand they 

use for writing. 

2.6.2. Apparatus, Procedure, and Data Collection/Processing 

The experimental setup was the same as Experiment 1, as was the experimental 

protocol and design. Conditions were also the same, except that random drift was replaced 

with playback drift. Each series of playback target positions corresponded to one of the 

series generated by participants in Experiment 1, such that every series was played back 

once. Data collection and preprocessing procedures were the same as in Experiment 1. 

2.7. Results 

2.7.1. Distance and Angle Variability 

Before reporting the main results, we first verify that dependent drift in Experiment 2 

was comparable to playback drift, which was equal to dependent drift in Experiment 1. As 

shown in Figure 8, variability in drift distance and angular change was highly similar 

between the Dependent and Playback conditions. This equivalence allows us to ascribe the 

upcoming effects of dependent drift to response coupling, as opposed to target variability 

or target predictability. 
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Figure 2. 8. (Left) Direction in degrees (0°‒180°) of target movements from one target to 

the next by Group Type and Movement Type. (Right) Movement distance of the target 

(measured in pixels) on the x and y-axis from one target to the next by Group Type and 

Movement Type. 

2.7.2. Total Time 

A 2x2 (i.e., Group Type – Individual or Dyad; Movement Type – Dependent or 

Playback) two-way ANOVA was conducted with individual or dyad as a random factor. 

The results indicated a marginally significant main effect of Group Type, F(1, 58) = 3.7, p 

= .059, and a significant two-way interaction between Group Type and Movement Type, 

F(1, 58) =6.11, p = .016 (see Figure 9). Individuals were again faster than dyads, especially 

with dependent drift, but playback drift supported the same overall levels of performance 

as random drift in Experiment 1. Error rates followed the same pattern as in Experiment 1. 

These results suggest that target predictability is more relevant to performance than 

bimanual interactions created by response coupling. Whether it is more relevant for our 

measures of matching is addressed after we report the spectral analyses. 
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Figure 2. 9. Mean time to complete the task as a function of Group Type and Movement 

Type. 

2.7.3. Spectral Analysis 

As in Experiment 1, we conducted a 2x2x2 (Group Type by Movement Type by 

Handedness) mixed ANOVA with linear coefficients of a first-order polynomial as the 

dependent measure. The results replicated Experiment 1 with reliable or nearly reliable 

effects of Group Type, Mind = -0.704, Mdyad = -0.928, F(1, 58) = 18.87, p < .001, Movement 

Type, Mdependent = -0.9, Mplayback = -0.732,  F(1, 58) = 3.44, p = .069, and Hand, Mright hand = 

-1.614, Mleft hand = -1.393, F(1, 58) = 5.76, p = .02. As shown in Figure 10, spectral slopes 

were steeper for dyads and dependent drift compared with individuals and playback drift, 

respectively. This pattern replicated Experiment 1, as did steeper slopes for right-hand 

responses, and no correlations between slopes and performance. The marginal difference 

between dependent drift and playback drift, compared with a stronger effect of drift type 

in Experiment 2, suggests that spectral slopes are affected by response coupling as well as 

target predictability. 
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Figure 2. 10. Spectral analysis: Group Type by Movement Type.  

2.7.4. Complexity Matching 

As in Experiment 1, spectral slopes for left and right responses were correlated within 

each condition to measure complexity matching. Results again replicated Experiment 1. 

There were significant positive correlations for both individual conditions and the dyadic 

dependent-drift condition, but not for the dyadic playback drift (see Figure 11). These 

results indicate that complexity matching is facilitated by response coupling as afforded by 

dependent drift, and not by target predictability. If predictability was the operative factor, 

then we would expect complexity matching in all four conditions since target predictability 

was equated across them. 
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Figure 2. 11. Correlations for Group Type and Movement Type at High 

Timescales. 

2.7.5. Phase Matching 

As in Experiment 1, we examined the pattern of phase-matching effects by correlating 

smoothed left-hand and right-hand IRI series, and then analyzing Pearson’s r values as a 

dependent measure in a 2x2 (Group Type by Movement Type) analysis of variance. The 

means and variability of r values are shown in Figure 12. As in Experiment 1, nearly all 

correlations were positive in all four conditions, indicative of pervasive phase matching. 

The analysis of variance yielded a significant main effect of Group Type, F(1, 58) = 35.84, 

p < .001, but no significant main effect of Movement Type, F(1, 58) = 1.58, p = .213, and 

no significant interaction, F(1, 58) = 0.48, p = .492 (see Figure 12). Unlike complexity 

matching, playback drift facilitated phase matching to the same degree as dependent drift. 

Therefore, it appears that phase matching was affected by target predictability in 

Experiment 1, and not the lack of response coupling in Experiment 2. 
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Figure 2. 12. Regular matching of IRI correlations in each block as a function of Group 

Type and Movement Type. 

2.7.6. Matching and Performance 

As in Experiment 1, the relationship between total time and matching was subtle for 

both measures, but also consistent enough with Experiment 1 that we combined the data 

from the two experiments into a single analysis. We combined Random and Playback Drift 

into a single “Uncoupled” condition, which we then compared to Dependent Drift. We 

conducted an ANOVA with Total Time as the dependent variable, and Drift Type and 

either complexity matching or phase matching as the independent measures. Results 

showed that phase matching was not reliably related to performance, F(1, 117) = 2.13, p = 

0.147, but that complexity matching was marginally related to performance in the 

dependent drift condition: F(1, 117) = 3.49, p = 0.064 (see Figure 13). This analysis 

clarifies the weak effect found in Experiment 1 (as seen in Section 2.4.5), by showing that 

response coupling is helpful to reveal the subtle, inverse effect of complexity matching on 

performance. The analysis also corroborates other results suggesting that complexity 

matching, and phase matching reflect distinct processes and principles of coordination 

(Coey et al., 2016; Delignières et al., 2016). 
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Figure 2. 13. Phase Matching (left) and Complexity Matching (right) by Movement Type: 

Dependent and Uncoupled (Random and Playback Drift combined).  

2.8. Discussion 

The main goal of our study was to examine complexity matching as it may generalize 

across dyadic and individual modes of coordination. We also compared complexity 

matching with phase matching, and we tested whether either measure was related to 

coordinative performance in a Fitts-like aiming task. We found that complexity matching 

and phase matching both occur for individuals and dyads, but that the two measures reflect 

different aspects of coordination. Specifically, complexity matching required response 

coupling when internal coupling was unavailable (for dyads), whereas phase matching 

occurred under all conditions. Thus, complexity matching appears to be more sensitive to 

response coupling, whereas phase matching was more sensitive to target predictability, as 

evidenced by Experiment 2. 

The divergence of complexity matching, and phase matching was also observed in 

another study that compared complexity matching and phase matching within individuals. 

Rigoli and colleagues (2014) asked participants to tap in concert with a visual metronome, 

and they measured long-range correlations in two fluctuations of tapping responses 

(keypress times and durations) and two fluctuations of the autonomic nervous system 

(pupil dilation and heart rate). They found complexity matching between the two keypress 

measures and between the two autonomic measures, but no reliable phase matching among 

any measured time series. They concluded that complexity matching reflected the 

interacting networks of activity that produce keypress responses, and likewise within the 

autonomic nervous system, but that these two sets of networks do not exchange information 

during a simple, relaxed task of tapping along with a metronome. 

Results of the current study, taken together with those of Rigoli et al. (2014), support 

the theory of complexity matching as a general principle of information exchange between 
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complex networks. We now have evidence that the principle holds equally for interactions 

both within and between individuals. We also have additional evidence that complexity 

matching requires coupling between networks to facilitate information exchange, whereas 

phase matching does not. These results encourage future investigations into models of 

information exchange between complex networks that may further illuminate principles of 

intrapersonal and interpersonal coordination. 

We also found that individuals performed better overall compared with dyads, which 

indicates an advantage when one hand can “anticipate” the response of the other—that is, 

when the left hand “knows” what the right hand is doing, so to speak. Also, performance 

was better overall when there was dependent drift, and this advantage appeared to derive 

from response coupling as well as target predictability. Finally, there was no relationship 

between performance and phase matching, and only a weak relationship between 

performance and complexity matching. Complexity matching was related to performance 

only when responses were coupled via dependent drift, yet better performance was 

associated with less complexity matching. 

This relationship with performance was relatively weak and only marginally reliable, 

so we do not draw any strong conclusions from it. That said, it appears that response 

coupling enabled response dynamics to diverge somewhat between the hands, and that this 

mode of complementary interaction resulted in faster responses to some extent. Keep in 

mind that there was a strong overall complexity-matching effect with dependent drift, so 

apparently, it was advantageous to diverge from complexity matching, at least to some 

degree. At least two other studies have shown negative relationships between performance 

and matching (Abney et al., 2015; Wiltshire, Steffensen, & Fiore, 2018). Taken together 

with several other studies showing positive relationships (Abney et al., 2015; Fine et al., 

2015; Zapata-Fonseca et al., 2016), the evidence suggests that a complex relationship 

between matching and performance may depend on specific characteristics of the 

coordination task. 

Future studies of coordination may advance our methods for measuring coordination 

and its relationship to performance. For instance, recent advances in studies of human 

dynamics have introduced multifractal measures of time series (Delignieres & Marmelat, 

2012; Ihlen & Vereijken, 2010). Multifractal analyses provide more in-depth measures of 

long-range temporal dependencies in behavioral dynamics, and recent studies generalized 

complexity matching to correlate functions of estimated multifractal exponents (Coey et 

al., 2016; Delignières et al., 2016). Multifractal analyses of IRI series in the present study 

did not shed any new light on complexity matching and its relation to performance (results 

not reported here), but future studies may formulate new measures of coordination that 

further our understanding of the principles underlying its many forms. 
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Chapter 3 

Individual and Collective Foraging in Autonomous Search Agents with Human 

Intervention  

3.1. Preface 

In this chapter, we departed from Chapter 2 in both the type of interactions that 

occurred, as well as the measurements we used to evaluate performance across conditions. 

Here, we transitioned away from dyads to groups, and perceptual-motor coordination to 

collective search. Importantly, Chapters 3–5 are all related based on the methodology and 

analytics that are developed within this first set of experiments and simulations. Despite 

this transition away from more traditional scenarios designed to investigate the dynamics 

of cooperative interactions, we posit that collective search serves as a useful and rich area 

for studying coordination, and the influence loose coupling may have within groups larger 

than two. Typically, loose coupling has been studied within or between individuals (Kello, 

Anderson, Holden, & Van Orden, 2008; Kello & Van Orden, 2009; Kloos & Van Orden, 

2009). Here, we seek to expand this area of knowledge by examining effects of loose 

coupling in larger group sizes.  

Often the context collective searchers find themselves in dictate the strategies that help 

improve collective outcomes. Here, we investigate whether social foragers can benefit from 

the ability to vary the degree of individual and collective search modes as a means of 

improving group foraging performance. Searching strategies may be more-or-less 

advantageous based on various foraging factors and conditions. For instance, group 

cooperation can outperform individual foraging strategies by exploiting food resources 

more quickly (Beauchamp, 2005), in addition to providing security from predation, among 

other social benefits (Lamprecht, 1981; Vicsek & Zafeiris, 2012). However, these benefits 

may not always be available or salient.  For instance, these benefits are outweighed when 

foraging becomes sufficiently competitive (Packer & Ruttan, 1988). This dependence on 

conditions suggests the importance of adaptive and flexible loose coupling that enables 

switching between independent and collective modes of foraging. 

We were inspired by Harel and colleagues (2017), who showed how griffon vultures 

(Gyps fulvus) switch between independent and cooperative foraging strategies in response 

to certain social cues (Dechaume-Moncharmont et al., 2005; Harel et al., 2017). They 

found that individual vultures who share visible signs of having recently discovered food 

were more frequently followed back to the same carcass location at a subsequent point in 

time. Uninformed vultures used these visible cues, such as blood stains on the head and 

body, to flexibly choose when and with whom to collectively forage. Flexibly switching 

between these two strategies increased group foraging success by helping uninformed 

vultures find new carcasses more quickly, and together, they were able to consume 

carcasses more quickly, thereby leaving less chance for other scavengers to share in the 

meal.  

In the present study, we developed an agent-based simulation in which both individual 

and collective foraging strategies provide distinct advantages, such that the ability to vary 

between them should be advantageous to the group. We created a social foraging 
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simulation in which we could test collections of autonomous agents with movement rules 

that varied between more and less flexible modes of interaction. We were also able to test 

how humans move and interact with autonomous foraging agents by including a condition 

in which a human player controlled one of the search agents. Our aims were to 1) 

understand how coupling strength in the movements of autonomous agents plays a role in 

foraging performance by diversifying their collective movement patterns, and 2) test 

whether human agents with memory and more-complex strategies engage in loose coupling 

with autonomous agents in the service of collective foraging. 

We manipulated the degree of coupling strength using the Lennard-Jones potential 

(Spears & Spears, 2012) plus a flocking term that correlated the direction of movement 

among nearby search agents. We expected the intervention of a human player to improve 

group performance. We also tested whether the degree of loose coupling, in terms of 

distancing and flocking among autonomous agents, influenced human search performance. 

By comparing agent-based simulations with and without human intervention, we tested the 

benefits of human memory and decision-making while managing a balance between 

independent and collective foraging behaviors.  

3.2. Introduction 

Foraging is often studied as an activity performed by individual organisms. A single 

bird may fly over an area in search of food, as a tiger would roam the jungle, or a person 

might scan their terrain for resources. In other instances, foraging is studied as a collective 

activity that groups of organisms engage in, such as schools of fish or colonies of ants 

seeking food. Often, groups of organisms interacting and moving together while searching 

for resources are associated with limited cognitive capacities for planning and decision-

making. Organisms with greater cognitive capacities may also engage in collective 

foraging, but they are more likely to exhibit a flexibility or adaptiveness by switching 

between different foraging modes, like how a lion may choose to hunt in a pride or alone 

(Lamprecht, 1981). Similarly, a person may choose to help others harvest a large patch of 

berries or head off alone in search of unfound patches. In general, foragers communicate 

information about resources and conditions to each other, and thereby help individuals 

make decisions about where and with whom to forage (Jackson & Ratnieks, 2006; 

Tereshko & Loengarov, 2005). This sharing of information with others predicates efficient 

foraging.  

More generally, efficient foraging needs to result in both finding and consuming 

enough food for everyone in the group to survive (Dechaume-Moncharmont et al., 2005; 

Dreller, 1998; Lihoreau et al., 2017; Seeley, 1983, 2019). One such example by Beauchamp 

(2005) demonstrated this principle of efficient foraging when simulated agents consumed 

food at a faster rate than individuals, at the expense of consuming less food per forager. 

However, there was also reduced variability in the frequency of food consumption, 

indicating that social foraging may provide protection against long periods of famine.  

The apparent prevalence of collective foraging in nature has led researchers to develop 

and test formal models of collective foraging, to investigate the underlying principles and 

processes. Liu and Passino (2004) created a collective foraging model based on balancing 
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forces of attraction and repulsion. Agents tended to position themselves near adjacent 

neighbors while keeping others distant. The agents were designed to locate resources by 

following a gradient to their location. By coordinating movements with nearby agents, 

groups were better able to follow otherwise-unreliable gradients toward resource locations 

(Falcón-Cortés et al., 2019; Liu & Passino, 2004; Sellers et al., 2007).  

The balancing of attraction and repulsion produced loose coupling effects that helped 

coordinate the behaviors of the foraging agents as a group. Larger group sizes helped 

because the random variability inherent within everyone was averaged out by being loosely 

coupled. More recently, similar effects were created using the so-called Lennard-Jones 

potential (Copenhagen et al., 2016; Spears et al., 2011) to govern the degree to which 

agents are attracted or repelled from each other, as a function of the distance between them. 

As detailed below, we used the Lennard-Jones potential along with two other control 

parameters to manipulate the coupling strength shared between cooperative foraging 

agents.  

3.3. Methods 

3.3.1. Simulation Setup and Parameters 

Our agent-based foraging model was implemented in NetLogo with a 200x200 grid of 

pixels with periodic boundary conditions and based on a previous social foraging model 

(Vicsek & Zafeiris, 2012). The grid was empty except for one target at a time, positioned 

randomly within the grid. The goal was for ten agents to search the task space for a gold-

star target, and to find as many of these targets as possible within a set amount of time. 

While searching for targets, all agents moved at a constant velocity of 1 pixel per timestep. 

Agents could not “see” anything until they came within a 𝑑𝑣 = 22.5 pixel radius of their 

position, which meant the visible area for each agent was 4% of the total game space. With 

ten agents searching together, it did not take long to find each next target, which helped to 

find multiple targets (and hence variability in performance) within short amounts of time. 

When an agent detected the target, its status changed such that other agents within view 

could “see” that the first agent detected a target, even if the second agent could not see the 

target directly. Specifically, once a simulated agent detected the target, the agent would 

turn red. When an autonomous agent detected the target either directly, or indirectly via 

another agent who detected the target, it automatically headed straight for the target or 

agent, respectively. Agents immediately started consuming the target upon arrival, at a rate 

of one unit of consumption per time unit, wherein each target initially consisted of 500 

consumption units. Therefore, it required 500 timesteps for a single agent to fully consume 

a target. Less time was required to consume the target as more agents arrived at its location 

and consumed it simultaneously. Each target “disappeared” once it had been completely 

consumed, and a new target subsequently repopulated at a random location within the grid.  

 Each simulation session was defined by the rules applied to all ten autonomous agents 

that generated search movements to find each target or other agents who found the target 

(i.e., “visual chaining,” see Cortés-Avizanda et al., 2014). The default rule present in all 

conditions was a correlated random walk (CRW), which caused each agent to randomly 

wander through space with some tendency to maintain their current heading. Next was a 
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“flocking” rule that added a tendency for movement in the average direction of nearby 

agents. Third and finally was a “distancing” rule based on a generalization of the Lennard-

Jones potential (Copenhagen et al., 2016; Spears & Spears, 2012), that drove agents to 

maintain a given distance from each other. The governing equations for the CRW, flocking, 

and distancing forces on the 𝑖-th agent (given 𝑖 ≠ 𝑗) at time 𝑡 are as follows:  

CRW (𝑑𝑁):     𝑑𝑖,𝑁 = [cos(𝜃𝑖(𝑡 − 𝛿𝑡) +  𝜃𝑁), sin(𝜃𝑖(𝑡 − 𝛿𝑡) + 𝜃𝑁)], 

Flocking (𝑑𝐴 ):        𝑑𝑖,𝐴 = ∑ 𝑑𝑗(𝑡 − 𝛿𝑡)Ω
𝑗=1 ,   

Distancing (𝑑𝐿𝐽):    𝑑𝑖,𝐿𝐽 = − ∑ [(
𝑆

‖𝑑⃗𝑖𝑗‖
)

4

− (
𝑆

‖𝑑⃗𝑖𝑗‖
)

3

]Δ
𝑗=1

𝑑⃗𝑖𝑗

‖𝑑⃗𝑖𝑗‖
 . 

For the CRW, 𝜃𝑖 represents the current heading of the 𝑖-th agent and 𝜃𝑁 is a correlated 

random angle given by 𝜃𝑁 = 𝜃𝑅 − 𝜃𝐿 , where 𝜃𝑅 ∼ 𝑈(0,180) and 𝜃𝐿 ∼U(0,180) are 

independent random turning angles between 0 and 180 degrees. The difference between 

these random uniform turning angles produces a symmetric probability distribution from 

−180 to 180, linearly weighted toward zero.  For flocking, the vector 𝑑𝑗 represents the 

directional heading of the 𝑗-th agent at time 𝑡 − 𝛿𝑡, where 𝛿𝑡 represents the timestep. The 

flocking direction 𝑑𝐴 is calculated as the sum of the set of all the agents within the vision 

distance 𝑑𝑣 denoted as 𝛺 = { 𝑑𝑗  | ‖𝑑𝑖𝑗‖ < 𝑑𝑣}. The vector 𝑑𝑖𝑗 represents the distance in 

pixels from the 𝑖-th and 𝑗-th agents. The distancing 𝑑𝐿𝐽 is calculated from the separation 

parameter 𝑠 (the desired distance between agents), and the distance 𝑑𝑖𝑗 between pairs of 

agents belonging to the set 𝛥 = {𝑑⃗⃗⃗𝑖𝑗| ‖𝑑⃗⃗⃗𝑖𝑗‖ < 1.5𝑑𝑣}. To avoid losing sight of the agents, 

the separation distance 𝑠 was set to 𝑠 = 15 pixels, which is inside the vision distance 𝑑𝑣. 

This distance s also set the field of view agents could see targets. The exponents 4 and 3 in 

the distancing rule 𝑑𝐿𝐽 represent the repulsion and attraction terms, respectively. The 

original exponent values for the Lennard-Jones potential are 12 and 6, respectively. These 

values were chosen arbitrarily, through trial and error, to reflect the loose coupling between 

agents. The result is a mostly repulsive force with a weak attractive component that fades 

away as the agents separate by a distance greater than 𝑠.  

The governing equation for the 𝑖-th agent at time 𝑡 is found by combining additively, 

𝑑𝑖 = 𝑑𝑖,𝑁 + 𝑑𝑖,𝐴 + 𝑑𝑖,𝐿𝐽. Simulation conditions were defined by turning off or on the 

flocking and distancing rules such that the CRW rule was always in effect, resulting in four 

different movement conditions: Random (CRW only), Flocking (and CRW), Distancing 

(and CRW), and Loose Coupling (all three rules combined). See Figure 1 for visual 

illustrations of the movement rules and see Figure 2 for general trajectory examples of each 

movement condition. 
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Figure 3. 1. a) Illustrative view of the task space (not shown to players). The green agent 

and circle represent the human’s agent and their field of view (detailed more below). Area 

outside their field of view was occluded (greyed out area). The dotted line represents that 

the human agent moved toward the mouse-pointer position, so the human could control 

movement direction by moving the mouse. b) Random movement shown to be random 

angular deviations of movement from each previous heading. c) Flocking term directed 

agents to converge toward a similar shared movement trajectory. d) Distancing term 

prompted agents to separate from one another when close and move toward each other 

when farther away. e) Visual Chaining prompted agents to move directly toward an agent 

flagged as detecting the target.  
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Figure 3. 2. Example movement trajectories for 2000-time steps for each movement 

condition: a) Random; b) Flocking; c) Distancing; and d) Loose Coupling.  

 Each simulation session lasted 13,500 timesteps long, which corresponded to about 

eight minutes in real time when simulated through the NetLogo interface. Performance was 

measured in terms of the number of targets found and consumed, which in turn was based 

on the number of timesteps needed to find and consume targets. Each movement condition 

was tested in 60 sessions to match the number of sessions with data collected from 

participants in the human intervention experiment, described next. 

3.3.2. Participants, Materials, and Experimental Setup 

The simulated collective foraging sessions described in the previous section consisted 

of autonomous agents only, with no human intervention. Matching sessions with human 
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players, where each session included one human controlling one of the ten agents, were 

conducted as follows.  

Sixty participants from the University of California, Merced were recruited for course 

credit. After being instructed about the game and filling out the consent form, each 

participant controlled one of the ten search agents and engaged in collective foraging with 

the goal of finding and consuming as many targets as possible in the allotted time. Each 

participant controlled their on-screen avatar by using a computer mouse to place a pointer 

at the desired location, causing their avatar to move in the direction of the pointer. If the 

avatar reached the desired location, it kept moving in the same direction until the human 

player moved the mouse to change course. Participants had the same visual radius as 

autonomous agents, and their avatar affected autonomous search agent movements 

according to the rules described above. Alternatively, autonomous agents did not affect 

movement of the human avatar except for the chaining rule—the human avatar went 

straight to another agent if the agent was tracking towards the target.  

The foraging game was designed to give human players the same operational 

information and latitude as automated agents so that the only difference from human 

players was their memory and decision-making about prior states of the environment and 

foraging outcomes developed through experience. The simulation ran at about 35 msec per 

update, and each human player ran through one session for each of the four movement 

conditions, in counterbalanced order across participants. The number of timesteps was 

chosen to be long enough to elicit variability in performance, but short enough to complete 

each session in about eight minutes. 

3.3.3. Measures and Analyses 

The overall measure of performance for each game session was the total number of 

targets found (session duration was constant), which was determined by the time needed 

to find and then consume each target. These two components of performance were 

measured by search time and consumption time, which were computed on a per-target 

basis, and then averaged for each session. Overall performance was also measured by the 

average total trial time, i.e., the sum of search and consumption time, where lower times 

corresponded with better performance. 

Two factors were manipulated to test the efficacy of loose coupling and the role of 

memory and strategy in collective foraging. The efficacy of loose coupling was tested by 

comparing different movement rules for autonomous search agents across different 

sessions, where all agents in each session were governed by the same set of rules. The role 

of memory and strategy was tested by comparing sessions with and without human 

intervention, and because simulations are not statistically comparable to humans in terms 

of their variability, we ran separate analyses with and without human intervention.  

3.4. Results 

3.4.1. Loose Coupling and Human Intervention Promote Collective Foraging Success 

We first determined group search performance by assessing the metrics of average 

search time, consumption time, and total targets found in each movement condition with 
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and without intervention. To test the outcomes of these measures independently, we 

conducted separate within-subject analyses of variance (ANOVA) with each metric as the 

dependent measure, and two independent variables: human intervention (present or absent) 

and movement type (random, flocking, distancing, and loose coupling).   

 

Figure 3. 3. Mean trial time per session as a function of movement type without human 

intervention (left) and with human intervention (right). Mean trial times are divided into 

their composite search times (red) and consumption times (teal). 

Results showed that search performance as measured by mean trial time was better with 

loose coupling and human intervention, as seen in the lowest average trial times in Figure 

3. Movement type had a reliable effect on performance without human intervention, 

F(1,59) = 27.65, p < 0.001, ηp
2 = 0.319, and with human intervention, F(1,59) = 20.85, p < 

0.001, ηp
2 = 0.261. The specific direction of effect was supported by post-hoc Tukey HSD 

comparison tests showing that loose coupling was significantly better than other movement 

types both with and without human intervention (each p < 0.001). By necessity, the same 

pattern of results was found when performance was measured by the number of targets 

found per session. 

 On average, more targets were found with human intervention (M = 16.94) than 

without (M = 5.89), and more targets were found with loose coupling (M = 16.26), 

compared with other movement types (M = 9.8). Human intervention did not interact with 

movement type, F(1,59) = 2.55, p = 0.116, ηp
2 = 0.141, which indicates that more targets 

were found on average per session for all movement conditions (M = 11.04) with human 

intervention (see Figure 4 below). 
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Figure 3. 4. Mean targets found per session as a function of movement type without human 

intervention (left) and with human intervention (right).  

To look further at overall performance, we broke the performance measure of mean 

trial time into its two component parts: Search Time (i.e., the time from the start of a trial 

to when any of the agents spotted the target) and Consumption Time (the time from the 

first agent landing on the target to completely consuming it, which decreased as additional 

agents arrived to share in consumption). Mirroring mean trial times, search times were 

fastest in the loose coupling condition regardless of human intervention: without, F(1,59) 

= 48.17, p < 0.001, ηp
2 = 0.449, and with intervention, F(1,59) = 41.24, p < 0.001, ηp

2 = 

0.411. Based on Tukey HSD results, both loose coupling conditions were significantly 

faster than all other respective movement conditions, p < 0.001. By contrast, consumption 

times were fastest in the flocking condition: without, F(1,59) = 542.2, p < 0.001, ηp
2 = 

0.902, and with intervention, F(1,59) = 56.79, p < 0.001, ηp
2 = 0.49. All Tukey HSD 

flocking condition comparisons were significant, p < 0.001. Flocking produced faster 

consumption times because agents were uniformly clumped together when they found a 

target, so they all landed at one time to consume it together. This effect of flocking was 

predicted to occur, and we also predicted that the distancing condition would produce the 

fastest search times by means of a divide-and-conquer strategy. Results were not consistent 

with this latter prediction, because adding flocking to distancing improved search times by 

way of loose coupling. We return to this unexpected result later when we present analyses 

of the rate at which agents collectively covered the search area. 

Analyses of search times and consumption times as a function of human intervention 

found that, again mirroring mean trial times, human intervention improved search times 

substantially across all four movement conditions, albeit less reliably for loose coupling 

because of an apparent ceiling effect (loose coupling without human intervention already 

produced fast search times): F(1,59) = 22.24, p < 0.001, ηp
2 = 0.086. By contrast, human 

intervention improved consumption times in most conditions, F(1,59) = 80.00, p < 0.001, 

ηp
2 = 0.253, but surprisingly, humans caused slower consumption times in the flocking 

condition; for comparison, Tukey HSD p < 0.001. The apparent detriment of human 

intervention on flocking consumption times can be explained by humans finding targets on 
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their own, without the benefit of other agents nearby to join in consumption. This 

explanation is further addressed in the next section. 

3.4.2. Loose Coupling Diversifies Groupings of Search Agents 

Collective foraging performance was best with loose coupling, which was predicted 

based on the hypothesis that loose coupling balances the benefit of flocking versus 

distancing. This balance should result in more flexibility in agent groups as they merge, 

reorganize, and split over time—the agents only partially affect each other’s movements, 

thereby allowing interactions between search agents to vary as they come in and out of 

view of each other. To quantify flexibility in grouping, we examined the distribution of 

numbers of agents in view for each given tick, trial, and agent. If groupings do not change 

much within each trial, then there should be little variation in the numbers of agents in 

view, and the distribution should have a sharp peak. By contrast, if groupings vary during 

a trial, then the numbers of agents in view should vary, and hence their distribution should 

be more spread out.  

We used information entropy to quantify flexibility via the diversity of each 

distribution over the number of search agents in view. Grouping entropy was calculated 

as − ∑[𝑝(x𝑖) log(𝑝(x𝑖))] where xi is the number of agents viewed by agent i over time, 

and p is the associated proportion of time that xi agents were in view. To focus on grouping 

entropy from the perspective of autonomous agents, we removed the human player from 

entropy calculations, and to make analyses comparable, we removed a simulated agent at 

random in sessions without intervention so that entropy was computed over zero to eight 

possible agents in view in both conditions. The first 14 timesteps at the start of each new 

trial (when each new target was generated) was removed to avoid initial transients due to 

agents starting together from the previous target location. Entropy was computed over the 

subsequent timesteps for each trial, up to the timestep when the next target is detected by 

one of the agents. We also computed grouping entropy with respect to the human agent, 

and again we removed one autonomous agent at random so that entropy was computed 

over zero to eight possible agents in view. 

Figures 5 and 6 show distributions of agents in view aggregated over trials and 

individuals for each movement condition with respect to autonomous agents in the 

simulation (Figure 5) and with respect to human agents in the experiment (Figure 6). These 

histograms show that the rules governing agent movements and interactions had large 

effects on agent groupings. The random and distancing conditions were similar in that 

agents traveled solo much of the time, with another agent in view sometimes, and two or 

three more on occasion. Adding the flocking rule to each of these two conditions resulted 

in opposite effects on the entropy of the distributions. Flocking plus correlated noise (the 

random condition) resulted in all agents converging and moving together such that 

variability caused by noise was not enough to disperse the single grouping once it was 

formed. By contrast, adding the distancing term to flocking (along with the correlated 

noise) was sufficient to counteract flocking and disperse agents such that their flight 

configurations varied over time. Variations in loose coupling effects resulted in more 

varied group sizes and hence more variability and greater entropy in the number of agents 

in view.  
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Figure 3. 5. Normalized histogram of the number of agents in view during the search time 

period respective to one autonomous agent without intervention. 

 
Figure 3. 6. Normalized histogram of the number of agents in view during the search time 

period respective to only human agents. 
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We tested the effects of movement type and human intervention on grouping entropy 

using two different statistical analyses. First, we tested entropy values for individual 

simulated agents with and without human intervention, as a function of movement type, as 

shown in Figure 7. By conducting these analyses on individual agents within each 

movement condition we avoid unequally inflating the frequency count of some grouping 

sizes over others. Entropy values were minimal in the flocking condition because agents 

were always in a unified group, so we removed this condition from statistical analyses. We 

also removed trials with human intervention when the human player was first to find the 

target, so that entropy values are not directly affected by human intervention. Therefore, 

differences can be ascribed to the effect of human intervention on the movements of 

autonomous agents. 

 
Figure 3. 7. Entropy values for simulated agents as a function of movement type (Random, 

Flocking, Distancing, and Loose Coupling) in the experiment (With Human) versus the 

simulation (Without Human). 

We conducted a mixed-effects ANOVA with movement condition as a within-subjects 

factor, human intervention as a between-subjects factor, and entropy as the dependent 

variable. First there was a significant main effect of human intervention whereby human 

players caused autonomous agents to exhibit less entropy in their distributions over agents 

in view, F(1,59) = 21.43, p < 0.001, ηp
2 = 0.058; and a marginally significant main effect 

of movement type, F(2,59) = 2.41, p = 0.091, ηp
2 = 0.014. The interaction was non-
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significant, F(2,59) = 0.49, p = 0.613, ηp
2 = 0.003. Individual post-hoc tests confirmed that 

grouping entropy was highest with loose coupling compared with the distancing and 

random conditions, p < .001. Human intervention appeared to decrease grouping entropy 

for autonomous agents by giving them less time to group by converging on targets. This 

decrease in grouping entropy was evident even in the random condition when humans had 

no direct effect on agent movements—instead, humans had indirect effects because they 

helped find and consume targets more quickly, thereby decreasing the time available for 

agents to converge on targets, leaving them less grouped and more dispersed in general.  

 
Figure 3. 8. Entropy values by movement condition (Random, Flocking, Distancing, and 

Loose Coupling) for human players (Human) versus simulated agents (Autonomous) in the 

experiment. 

In our second analysis, we compared grouping entropy for human players against 

grouping entropy for individual simulated agents in the experiment with human 

intervention (Figure 8). We ran another ANOVA like the previous analysis, but with 

“intervention type” replaced by “agent type” (human or autonomous) as a between-subjects 

factor, again excluding the flocking condition from movement type. We found that 

grouping entropy was greater for humans compared with autonomous agents, F(1,59) = 

213.85, p < 0.001, ηp
2 = 0.379, and grouping entropy was again influenced by the 

movement condition, F(2,59) = 8.11, p < 0.001, ηp
2 = 0.044, and post-hoc tests showed it 

was greatest with loose coupling, p < 0.001. There was also an interaction such that 
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grouping entropy for human players was more like autonomous agents when the latter were 

loosely coupled compared with other movement types, F(2,59) = 16.9, p < 0.001, ηp
2 = 

0.088. Moreover, human movements exhibited the most grouping entropy when 

coordinating with loosely coupled agents, p < 0.001. Overall, given that grouping entropy 

was higher, and performance was better, with loose coupling and with human intervention, 

we can infer that collective foraging in our simulation benefits from loose coupling 

between autonomous agents as well as for mixtures of agents and humans.  

3.4.3. Human Intervention Benefits Search Performance for Non-Random Agents 

Entropy analyses in the previous section showed that human intervention decreased the 

grouping entropy of autonomous agents, even though performance was generally better 

with human intervention and with increased grouping entropy. Therefore, it is unclear 

whether human intervention improved the way that autonomous agents searched, or if 

humans are simply better searchers and therefore find and consume more targets than 

autonomous agents.  

To test the search performance of autonomous agents themselves, we measured how 

fast they covered the game space when searching for each next target, and we compared 

their rates of search-area coverage with and without human intervention as a function of 

movement type. Specifically, area search rate was computed as the number of unique 

pixels searched on each trial, divided by the time spent searching prior to finding the target, 

and converted into a percentage of total pixels (200 x 200 = 40,000 pixels). 

To test more specifically how human intervention affected autonomous agents, we 

measured area search rate at both the individual and collective levels for autonomous 

search agents. Human movements may perturb autonomous agents such that they 

individually reduce the number of returns to areas already searched, and human movements 

may also perturb agents to reduce overlap among their collective search areas. Figure 9 

shows area search rates for autonomous agents with and without human intervention for 

individual search and collective search. As before, the human was removed from rate 

calculations, and trials were excluded when search was terminated by the human player 

finding the target first. We used ANOVA models as in the previous results for grouping 

entropy, but with area search rate as the dependent measure instead, and flocking was 

brought back into the statistical model. 
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Figure 3. 9. Area search rate for autonomous agents, averaged for each session, and plotted 

as a function of movement type and human intervention for agents individually (left) and 

collectively (right). 

We found that human intervention improved both individual search rates and collective 

search rates, F(3,59) = 43.09, p < 0.001, ηp
2 = 0.044, but had no effect on random movement 

conditions because humans had no direct effect on random agent search movements, all p 

> 0.95. The benefit of intervention was greater for collective versus individual area search 

rates, F(3,59) = 17.28, p < 0.001, ηp
2 = 0.018, indicating that human intervention reduced 

overlap in autonomous agent search areas, as well as reduced the degree to which 

individual agents returned to previously covered areas. We also found individual area 

search rates were not reliably different between the flocking and loose coupling conditions, 

all p > 0.7, but collective search rates were greater with loose coupling compared with 

flocking, all p < 0.001. These results indicate that loose coupling preserved the individual 

diffusivity of flocking agents, but the addition of distancing helped to reduce their overlap 

and thereby improve collective search effectiveness. 

3.4.4. Human Search Benefits from Coordinating with Loosely Coupled Agents 

The previous section focused on the beneficial effect of human intervention on the 

individual and collective search performance of autonomous agents as a function of 

different movement rules. We can also test whether different movement rules have 

different effects on human search performance. In theory, human players could search on 

their own, unresponsive to the movements of other agents. However, to the extent players 

try to guide or otherwise coordinate with autonomous agents, the efficacy of human search 

movements may be affected by the way agents move and coordinate. Results presented 

earlier showed human intervention affected autonomous agents via their grouping entropy, 

and agents affected human players in kind. Given that human players showed the greatest 

grouping entropy when agents themselves showed the greatest grouping entropy in the 

loose coupling condition, we can hypothesize human search performance may benefit from 

coordination with loosely coupled agents. 
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To test the effect of movement rules on human search performance, we computed area 

search rates for the human players individually. Not surprisingly, as shown in Figure 10, 

humans covered the search space at a faster rate than the individual agents they foraged 

with, F(1,59) = 536.04, p < 0.001, ηp
2 = 0.534. For each given target, humans can use 

memory and strategy to avoid inefficiently returning to previously searched areas. More 

interestingly, human players outperformed themselves in the Random and Distancing 

conditions when coordinating alongside loosely coupled agents, both p < 0.001. The human 

players performed similarly across the Flocking and Loose Coupling conditions, p = 0.535, 

but the human player searched equally as well alongside Flocking, Distancing, and 

Random agents, all p > 0.1. What this analysis shows is that, not only can human players 

search effectively across all movement conditions, but also that the humans’ searching 

performance can improve even further when working alongside loosely coupled agents. 

Exceeding their own effectiveness when coordinating with loosely coupled agents by 

expressing their intelligence and cooperativeness.   

Taken together with results from the previous section, we can conclude that human 

players and loosely coupled agents benefitted from each other to improve search 

performance by virtue of flexibly coordinated movement patterns, as evidenced by higher 

values of grouping entropy. 

 
Figure 3. 10. Area search rate averaged for each session and plotted as a function of 

movement type and agent type for human players and individual agents with intervention. 
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3.4.5. Human Players Adapt their Foraging Strategies to Agent Behaviors 

At this point, we have seen how human players improve collective foraging by means 

of memory and strategy, however, the evidence has not been direct. It is difficult to infer 

specific strategies from gameplay data alone, but one apparent choice players can make in 

collective foraging is the emphasis on finding versus consuming targets. Players may try 

to find targets with other agents following or not, or they may instead seek out other agents 

to collectively consume each target so the next one comes faster. Human players may 

improve collective foraging in part by adapting their emphasis on finding versus 

consuming targets based on the rules governing the movements of the other agents. 

To measure the emphasis on finding versus consuming targets, we analyzed the 

proportion of targets found versus consumed by human players as a function of movement 

type. As a baseline, assuming that humans are no better than their autonomous 

counterparts, they should find targets 10% of the time (0.1 proportion of times) and 

consume 10% of the target units (recall that each target consisted of 500 consumption 

units), given that the human player is one of ten foraging agents. The difference between 

finding and consuming proportions is a measure of the emphasis that human players placed 

on one versus the other component of collective foraging. 

Regarding adaptations in strategy, we can see the differential between proportions 

varied as a function of movement type, for finding targets, F(3,59) = 36.07, p < 0.001, ηp
2 

= 0.187, and consuming targets, F(3,59) = 30.8, p < 0.001, ηp
2 = 0.164. Specifically, players 

emphasized finding targets and consuming targets when agents were not loosely coupled, 

all p < 0.001. This contrast of emphasis across loose and non-loose coupling conditions is 

evidence players adapted their strategy to the movement rules for agents—emphasizing 

independent detection and consumption when agent search was directed by non-loose 

coupling rules, and more equitable detection and consumption rates with loosely coupled 

agents. This equity in emphasis indicates the human player sharing more equally to off-

load responsibility for the overall performance of the group when loosely coupled – i.e., 

acting as a member of the group rather than as a lone searcher.  
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Figure 3. 11. Finding and consuming proportions for human players as a function of 

movement type. The red line indicates the expected proportion to be found and consumed 

if human performance was no better than that of simulated agents. Proportions above the 

expected baseline indicate the degree to which humans outperformed simulated agents. 

First one can see that both proportions were significantly above 0.1 in all movement 

conditions, all post-hoc tests p < 0.001. Greater-than-chance proportions support that at 

least some of the benefit human intervention provides comes from the superiority of human 

players, although this benefit was lowest when agents were loosely coupled, all p < 0.001, 

because loose coupling was the most-effective movement rule.  

3.5. General Discussion 

Our principal goal here was to investigate the benefits of balancing individual and 

collective modes of interaction in loosely coupled systems. We designed an agent-based 

model in which finding targets benefitted from individual agents diffusing across the search 

space, whereas consuming targets benefitted from convergence of agents on target 

locations. We formulated movement rules that balanced a tendency toward distancing with 

a tendency towards flocking, and simulations showed that the resulting loose coupling 

among agents was beneficial to overall group performance. Analyses of grouping entropy 
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showed loose coupling diversified the range of more-individual to more-collective search 

configurations, because flocks of various sizes formed and dissolved as time unfolded.  

Our simulation showed how loose coupling is beneficial even when agents are 

memoryless and unable to learn, adapt, or develop strategies through experience. The 

diversity of search patterns did not come from decision-making of any kind—it was instead 

driven primarily by injecting noise with the CRW movement component, plus additional 

randomness from positioning of targets. Our simple model of loosely coupled foraging 

agents is useful in its economy of mechanism and may be appropriate for collections of 

simple organisms and artificial agents with minimal capacity for computation. However, 

foraging is necessary for the survival of all mobile species, including for humans and other 

social animals with extensive capacities of memory, learning, and strategy to drive 

decision-making over time. To test how decision-making capacities might interact with 

simple rules of loose coupling, we compared simulations of autonomous agents with and 

without human intervention. 

Human players exhibited an even greater diversity of search configurations than loosely 

coupled agents, and both humans and autonomous agents covered the search area at faster 

rates in the loose coupling condition compared with too much distancing or too much 

flocking. These results provide evidence that abilities like learning and memory may 

complement simpler rules of loose coupling to support social foraging, rather than supplant 

them. It is difficult to determine movements were controlled based on strategies learned 

through experience, but we did find evidence that players adapted their strategies to 

coordinate with agents differently depending on the agent search behaviors. Specifically, 

we found human players emphasized finding and consuming targets individually when 

agents distanced too much or flocked too much, whereas they shared more equally when 

agents were loosely coupled. This finding suggests intelligent agents can learn to leverage 

other agents for the good of the group, depending on their abilities.  

Our agent-based model proved useful for demonstrating the benefits of loose coupling 

and adaptive foraging strategies, but future studies could undertake more thorough analyses 

of the model and its parameters to understand which aspects are most important for loose 

coupling in social foraging. Also, while the distancing and flocking rules combined to 

produce loose coupling, they were not quite complementary on their own. Flocking had 

the desired effect of longer search times offset by shorter consumption times relative to 

random search, but distancing did not have the reverse effect—instead, distancing did not 

have an appreciable effect beyond noise from the CRW rule, although it synergized 

strongly with the flocking rule. Future studies may consider a different form of distancing 

that has the opposite effect of flocking, i.e., shorter search times offset by longer 

consumption times.  

Finally, it would be informative to study how groups of human foragers coordinate to 

play our social foraging game. The most salient question is whether players would still 

exhibit signs of loose coupling in terms of flexibly diverse groupings, and whether group 

performance would still benefit from loose coupling. Theories of self-organization suggest 

that loose coupling may be generally useful for adapting coordinated behavior to respond 

to changes in conditions as they unfold (Van Orden et al., 2003). For instance, it may be 
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useful to follow one or more agents when they are first encountered in the hopes of finding 

targets and consuming them together, but it may become more beneficial to break from the 

group and seek new search opportunities as time goes by instead of following the group 

with no success. In this way, loose coupling may enable agents to enact a “stay-or-go” 

decision between exploiting nearby agents or exploring new opportunities, similar to the 

stay-or-go decision at the heart of optimal foraging theory (Charnov, 1976; Ehinger & 

Wolfe, 2016; Pleasants, 1989). The agent-based modeling and experimental paradigm 

introduced herein could be extended to investigate these and other questions about 

individual and collective foraging. 
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Chapter 4 

Optimizing Loosely Coupled Cooperative Agents 

4.1. Introduction 

Here, we continue our investigation into the effects loose coupling can have on 

collective performance by refining the rules governing the searching behaviors of 

cooperative agents. We further optimized loose coupling effects based on collective 

performance and individual search rates. By refining Lennard-Jones potential exponents 

and creating a new separation-distance parameter, we increased the positive outcomes 

resulting from loosely coupled agents working together. By further refining the attraction 

and repulsion parameters of the Lennard-Jones potential, we expected to see increased 

collective and individual performance metrics. Specifically, with increased loose coupling 

effects we expected to see increased numbers of targets found, grouping entropy, and area-

search-rates.  

An important part of loose coupling that made agents successful in Chapter 3 was their 

ability to diversify the size of their groupings. We predicted that refining the Lennard-Jones 

potential would increase diversification of group sizes, resulting in higher grouping 

entropy. Similarly, increased performance in Chapter 3 resulted in part from agents 

covering the space more effectively and efficiently. For this reason, we predicted that 

search efficiency and area-search-rate measures would both improve as well when loose 

coupling effects are enhanced.  

Both search efficiency and area-search-rate measures are related, but each tap into 

differing aspects of searching behavior. Search efficiency as we defined it related to the 

rate agents collectively found and consumed targets. This balance was imperative to 

performance in Chapter 3. Movement configurations needed to balance both finding and 

consuming targets quickly to improve collective performance. We hypothesized that 

enhanced loose coupling effects would lower collective searching and consuming times 

across the more-optimal loose coupling agents. Relatedly, area-search-rate gauges an 

individual’s ability to effectively search the space, benefitting significantly from covering 

areas that have yet to be searched by that individual. Anticipating more-optimal 

configurations of the Lennard-Jones potential would allow agents to move more efficiently, 

we expected these improvements to prompt agents to search the space more effectively as 

well. Adding further evidence that loose coupling, or soft-assembly benefits collective 

performance.  

To test our hypotheses, we first swept across the Lennard-Jones potential exponents to 

vary the strength of loose coupling shared across agents. Varying the strength of loose 

coupling effects resulted in definitive improvements in collective performance for some 

configurations, while others saw a drastic decrease in performance. As agents become more 

loosely coupled and flexible, we saw them search more effectively. 

Additionally, we added a control parameter varying the separation distance between 

agents after a target repopulated. This added feature simulated the emergent distance 

separating agents as time went on. Originally, in Chapter 3, agents would continuously 
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search the space for targets, and following the repopulation of a target, agents would 

continue searching from their present location. Here, we simulated this separation distance 

by recentering all agents back, within a set radius, to the center following a target being 

fully consumed. We varied this radius to observe its effect on collective performance. 

Returning all the agents nearer to the middle can benefit performance because agents 

working together in larger groups consume targets faster. By returning to the middle, agents 

can more reliably search within larger groups, allowing these groups to quickly consume 

targets together. Alternatively, at greater radius distances from the center, this separation 

parameter spread agents out across the search space. By spreading agents out, agents may 

collectively find targets faster by covering space more quickly than they could in larger 

groups. Prospectively, this separation-distance parameter simulates the spread of agents as 

it would otherwise emerge over time, but in a more deliberate and controlled way. 

Allowing us to better understand its impact on reorganizing group sizes via loose coupling 

effects.  

4.2. Methods 

4.2.1. Simulation Setup and Parameters 

Apart from a few key changes, nearly all the parameters used in Chapter 3 are replicated 

here. Using Netlogo, ten agents would search for a single hidden target within a 200 x 200 

pixel space with periodic boundaries. All agents moved at the same constant velocity and 

would search the space over the same 13,500 timestep duration. All ten agents had the same 

visual radius size to see other agents and spot targets. As before, agents who spot a target 

turn red, visually indicating they found the target to others within view and would head 

directly towards the target location. Upon arrival, agents consume targets at the same rate, 

with a maximum duration of 500 timesteps if consuming the target alone. If multiple agents 

found the target, the target would be consumed more quickly, with a minimum of 50 

timesteps.  

Importantly, the alignment, noise, and Lennard-Jones potential well-depth components 

functioned the same as before. However, we made a few key changes from our previous 

model. Based on how loose coupling helped to improve collective performance over other 

movement conditions, our aim was to further explore its impact on collective performance 

and grouping variability. To do this, we swept across the two exponents of the Lennard-

Jones potential (LJP) in increments of 0.5 units to pursue a more-optimal configuration, 

enhancing the effects of loose coupling. Additionally, all ten simulated agents had an 

increased visual radius for spotting targets from 𝑑𝑣 = 15 pixels to 𝑑𝑣 = 22.5 pixels, 

making the radius for viewing other agents and targets equal. This increase also makes 

their vision equal to the human players from Chapter 3.  

In Chapter 3, all agents moved based on the present movement conditions, which 

frequently caused them to spread out over time. This emergent separation likely contributed 

to collective performance. To simulate emergent separation distance between agents, we 

varied the positions of agents by recentering them following a target repopulating. After 

fully consuming a target, agents would be repositioned within some set radius from the 

middle of the search space. We varied this radius from zero to 100 in increments of 20. An 
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initial separation distance of zero put all the agents in the exact middle of the space, while 

a separation distance of 100 randomly populated them throughout the entire space. Each 

agent would calculate x and y coordinates ranging positively or negatively from 0 to the 

set maximum distance (see Figure 1). Coordinates were independently calculated for each 

agent using the following: 

Initial Separation Distance (ISDxy): Xpos = ((-X1) + X2); Ypos = ((-Y1) + Y2) 

where X1, X2 and Y1, Y2 were all independent random samples ranging positively from 0 

to the set maximum radius distance. The remainder for Xpos and Ypos then formed the 

respective coordinates for each agent around the origin.  

 

Figure 4. 1. Example initial agent separation distances at zero (a.), 20 (b.), 40 (c.), 60 (d.), 

80 (e.), and 100 (f.) maximum patches from the center origin of the search space.  

ISDxy allowed grouping variability to be more consistently controlled as the task 

developed over time rather than relying on this variability to emerge spontaneously. All 

other remaining features of the task space and agents were carried over from the original 

model configurations in Chapter 3. 

4.3. Results 

4.3.1. Loose Coupling Improves Performance, Relying on Grouping Diversity  

First, to determine if there are more-optimal loose coupling configurations, we needed 

to reduce the number of exponent configurations for the attraction and repulsion 
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components of the LJP. To do this, we swept across each exponent in 0.5 increments. To 

recap, see the original distancing equation below:  

Distancing (𝑑𝐿𝐽):    𝑑𝑖,𝐿𝐽 = − ∑ [(
𝑆

‖𝑑⃗𝑖𝑗‖
)

4

− (
𝑆

‖𝑑⃗𝑖𝑗‖
)

3

]Δ
𝑗=1

𝑑⃗𝑖𝑗

‖𝑑⃗𝑖𝑗‖
 . 

The exponents 4 (alpha) and 3 (beta) in the distancing rule 𝑑𝐿𝐽 represent the repulsion 

and attraction terms, respectively. These values were originally chosen through trial and 

error to reflect the loose coupling between agents. Resulting in a mostly repulsive force 

with a weak attractive component that dissipates when agents separate greater than 𝑠. Here, 

by sweeping across a range of exponent values, we are deliberately configuring agents to 

find increasingly more-optimized loose coupling effects. Each configuration was repeated 

10 times. See Figure 2 for the average number of targets found for each configuration.  

 

Figure 4. 2. The number of targets found per configuration averaged across 10 repetitions. 

The tile outlined in red indicates the original configuration of alpha and beta values.  

As indicated by the dark colored tiles in the upper-left portion of Figure 2, quite a few 

setups result in approximately zero targets found. These configurations disproportionately 

favored attraction resulting in the agents converging towards a single stationary point, 

completely unable to search the space for targets. Compared to configurations with larger 

group sizes on average (i.e., an average of seven or more), diversifying the total number of 

groups helped to improve performance, as seen in Figure 3.  
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Figure 4. 3. The number of targets found as a function of the average agents in view across 

all agents. Each point indicates an independent alpha and beta configuration. Red points 

indicate the ten repetitions for the original LJP configuration.  

Next, to better differentiate these configurations, we looked at group search efficiency. 

As used herein, the “search efficiency” refers to the additive sum of the average search and 

consumption times. This total indicates on average the duration to find as well as consume 

targets throughout the simulation. For example, if agents were quick to find a target, but 

slow to consume it, then this value would be higher. Search efficiency scores are only low 

when targets are both found and consumed quickly, as seen in Figure 4.  
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Figure 4. 4. The average search efficiency, i.e., the sum of the average search and 

consumption times per configuration. The tile outlined in red indicates the original 

configuration. Configurations above 1500 timesteps were removed due to the number of 

configurations well below this threshold, in addition to those who only found one target. 

On its own, search efficiency is not sufficient to determine the best-performing 

configurations. It measures the averaged search and consumption times, but it does not 

necessarily reflect the number of targets found beyond a single target. Rather, this estimate 

of efficiency becomes less varied with increased targets found. Despite this limitation, 

optimal loose coupling agents should be able to find and consume many targets quickly. 

Consistent with this assumption, configurations that found many targets also had better 

search efficiency. Based on the consistency between these two measurements, we ranked 

the top 15, plus the original configuration, in order of the average number of total targets 

found. These 16 configurations were then varied across a range of initial separation 

distances.  

Again, agents were set at varied distances from one another after a target was fully 

consumed to test how separation between agents affected effects of loose coupling and 

performance. This separation-distance parameter was designed to emulate the emergent 

distance agents would create between one another over time. By parameterizing this 

naturally occurring distance, we can better understand how separation distance influences 

collective performance in a more controlled manner.  

Each initialization distance was repeated 10 times for the remaining 16 configurations 

to establish a rank based on the number of targets found. Interestingly, the average number 

of targets found was not highest when the separation distance was at its maximum value. 

Some of the lowest-scoring configurations were at a distance of 100. This likely resulted 
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from agents being overly spread out, making it difficult to work together to speed up 

consumption times. Instead, the more mid-ranged separation distances enhanced 

performance, as seen in Figure 5.  

 

Figure 4. 5. The number of targets found per alpha and beta configuration across initial 

separation distances. The number of targets found was averaged across 10 repetitions. The 

tile outlined in red indicates the original configuration. Tiles outlined in purple indicate the 

top-three-performing configurations. 

Throughout this section, the original configuration of simulated agents has been 

outperformed by other configurations, including when it varied across initial separation 

distances. Thus far, the results indicate that loose coupling effects can be made more 

effective and efficient within cooperative groups. Next, we compared individuals from the 

top-three configurations and against human players from the original experiment to 

measure additional qualities of the new, loosely coupled agents. 

4.3.2. Loose Coupling Agents have more varied Group Sizes 

Based on the results so far, the human player is the only remaining agent left to be 

outperformed by the new, loosely coupled agents. For this reason, focusing on individual 

measurements of loose coupling and performance became our next objective. To do this, 

we separated individual simulated agents and human players from their respective groups. 

Based on the sample size from the original experiment, we conducted 60 runs for each 

simulated configuration to maintain equal sample sizes.  

Figure 6 shows the distributions of the number of agents in view, averaged over trials 

for an individual agent in each configuration, and for the human player alone. These 

histograms show that human players spent more time searching alone than any simulated 

agent, from any configuration. Alternatively, the simulated agents tended to search in 

multiple, smaller groups (i.e., of about 2-3 other agents).  
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Figure 4. 6. Normalized histogram of the number of agents in view during the search time 

period respective to one agent only, either one simulated or human player.  

Using the same measure of grouping variability as before, grouping entropy was 

calculated as described above in Chapter 3.4.2. A simulated agent and a human player from 

each configuration were treated as individuals who each had a respective distribution of 

agents-in-view over time. Using the same entropy calculation (i.e., − ∑[𝑝(x𝑖) log(𝑝(x𝑖))], 
where xi is the number of agents viewed by agent i over time, and p is the associated 

proportion of time that xi agents were in view), each agent was given a “grouping entropy” 

score, which was averaged across configurations, as seen in Figure 7. 
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Figure 4. 7. Average Grouping Entropy of the number of Agents-in-View during the search 

time period of the task for a single autonomous agent and for a human player, respectively. 

We tested the effect “Rank” (Rank 1, Rank 2, Rank 3, or Original) had on Grouping 

Entropy with a one-way ANOVA. The simulated agents displayed higher grouping entropy 

than the human player, F(3,6935) = 86.67, p < 0.001, η2 = 0.04. Post-hoc comparison tests 

showed that simulated agents spent more time in varying group sizes than the human 

players, all p < 0.001. This is visually supported by the normalized histograms in Figure 6. 

Group sizes spanned a wider range of possible groupings for simulated agents than human 

players. Replicating our previous findings, variation in loose coupling effects affects group 

sizes, resulting in greater grouping entropy. This measure indicates how collective or 

individualistic the searching behaviors of a simulated agent or human player was. Next, we 

see how effective the more-optimal agents are at covering the space while searching for 

targets, as compared to human players.  

4.3.3. Individual “Optimized” Loose Coupling Agents Lag Behind Human Players 

To recap, the increasingly optimized, loosely coupled agents outperform the original 

simulated agents from Chapter 3. These new agents also show higher degrees of grouping 

diversity than human players, but how effectively these new agents search the space as 

individuals has yet to be determined. To measure the overall effectiveness of searching 

behaviors, we utilized the same area-search-rate measure from before, see Chapter 3.4.3. 
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Area search rate was computed as the number of unique patches searched during each trial, 

divided by the time spent searching prior to finding the target, and converted into a 

percentage of total patches (e.g., 200 x 200 = 40,000 patches). Higher averages for this 

measure indicate a more-efficient coverage of space in the time it took to find the target, 

see Figure 8.   

 

Figure 4. 8. The average area search rate for one simulated agent in the top-three-

performing configurations and for the human player alone from the original experiment. 

Using the same one-way ANOVA as before, the human player covered the space more 

effectively than all the new autonomous simulated loosely coupled agents, F(3,7771) = 

540.2, p < 0.001, η2 = 0.17. Despite the simulated agents outperforming the original agents, 

the human player continued to move more effectively, all p < 0.001. For this reason, we 

are motivated to create a more-human-like simulated agent, i.e., one who is better-suited 

to searching the space effectively and efficiently. This measurement supports the previous 

finding with the normalized histograms and grouping entropy. The human player searched 

the space differently from the simulated agents. For instance, they spent more time 

searching as an individual than any other agent. This is something that we try to instill 

within a simulated agent in Chapter 5. 
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4.4. Discussion 

Here, we saw some dramatic improvements to collective performance based on 

maximizing loose coupling effects. Changes to the Lennard-Jones potential could 

dramatically influence the movement patterns that emerged as the group searched for 

targets. The most important factor was the balance between the respective attraction and 

repulsion exponents governing their movement rules. If the configuration even moderately 

favored attraction, the group could find itself completely trapped as a stationary point or 

resembling the movement patterns of the Flocking conditions from Chapter 3. This resulted 

in less successful collective performance. Conversely, if the configuration favored 

separation, the individual agents would be able to search the space but could struggle to 

consume targets quickly enough as a group to maximize performance. Balanced 

configurations resulted in maximal collective performance, where the group both found 

and consumed many targets quickly.  

 The maximal loosely coupled agents outperformed the original configuration and 

further benefited from increases in initial separation distances. Importantly, setting agents 

to increased separation distances recreated spreading over the space, but interestingly, the 

maximum initial distance rarely increased performance over other shorter distances. 

Shorter initial separation distances improved the distribution of agents over the space while 

maintaining multiple group configurations to consume targets cooperatively.  

At the individual level, the maximal loosely coupled agents searched more effectively 

than their previous counterparts by being even more loosely coupled. The new maximal 

configurations spent more time searching in a wider range of possible group sizes, favoring 

to search in smaller groups than alone. Each maximal configuration increased their 

grouping diversity based on our grouping entropy measurement. Agents preferred to search 

in smaller group sizes, but the changes made within the Lennard-Jones potential allowed 

these agents to flexibly shift between collective and independent searching strategies.  

Despite the improvements in collective performance for the maximal configurations, 

simulated agents as individuals continue to lag the human players. Human players likely 

leverage their memory to learn throughout their experiences while searching alongside the 

group or individually, which is something the present iterations of the simulated agents 

lack the capacity to do. These qualities remained uniquely human within the current setup. 

From here, we ask whether a simulated agent can behave more like the human players. 

In Chapter 5, our aim was to create a unique simulated agent to replace the human 

player, but which behaves more like them. By leveraging a form of memory, we created 

an agent that adaptively reacts to the area that they have already covered while searching 

for the current target. For example, human players likely recall memories that prompt them 

to search some areas over others, thereby favoring areas they have not yet visited. 

Accordingly, if a simulated agent reacts to previously covered areas in an avoidant way, 

we may similarly prompt a unique memory agent to search new areas instead of covering 

old ground.   
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Chapter 5 

Loose Coupling with Memory 

5.1. Introduction 

For humans and other animals, memory and learned strategies aid collective 

coordinated performance. Typically, coordinated task performance improves when people 

can perceive the actions of others by allowing co-actors to adjust their own behavior to 

successfully coordinate during cooperative tasks (Garrod & Pickering, 2009; Marsh et al., 

2009; Valdesolo et al., 2010). Individuals avoid such limitations when working alone 

because they know what to expect next by being the only actor. Tasks become complicated 

by adding others into the mix. Groups work differently than individuals because they need 

to anticipate the cooperative behaviors of others, leveraging the skills and knowledge of 

the whole group to succeed. This allows groups to coordinate their behaviors in often 

complex ways (e.g., well-strategized soccer). 

A modern twist to these typical forms of interaction shared between people has been 

introduced by adding autonomous agents into the mix. In many ways, humans 

cooperatively interacting with others and machines has become a nested part of everyday 

life. By reducing the actions of humans down to their primitive components, we may be 

able to instill these facets of human behavior back into the cooperative agents we interact 

with. In this way, we may allow agents to better assist us in a wider range of tasks to the 

benefit of the individuals involved and the group at large (Auletta, Fiore, Richardson, & di 

Bernardo, 2020; Lamb et al., 2017; Nalepka et al., 2019; Rigoli et al., 2020; Wiltshire et 

al., 2018; Wiltshire, Steffensen, & Likens, 2020). For example, instilling an automated 

agent with more ‘human-like’ qualities helped human players to learn a task quicker and 

to complete it more successfully (Nalepka et al., 2019). Leveraging the intelligence of 

automated agents allows humans to learn from their interactions with them. This is 

especially important, given the propensity for people to adapt their behaviors 

spontaneously and reciprocally while interacting with others (Nordham, Tognoli, Fuchs, & 

Kelso, 2018; Schmidt & O’Brien, 1997; Schmidt & Richardson, 2008). Such behaviors 

emerge as a result of the physical, informational, and task constraints that define a given 

context (Richardson et al., 2016; Saltzman & Caplan, 2015; Warren, 2006). Based on these 

ideals, we instilled one agent with the capacity to remember locations where it has already 

been, in order to be of better service to overall collective performance. 

Chapter 4 covered the cultivation of a more-optimal loose coupling configuration that 

directed agent movements. These improvements resulted in greater collective performance, 

but human players continued to search the space more effectively than any autonomous 

agent. To further improve the performance of the autonomous agents, we instilled a single 

simulated agent with a more ‘human-like’ quality. Based on an assumption of human 

behavior and learning, we began by including an autonomous agent with a form of spatial 

memory which would help direct their movements. To do this we created an agent with a 

locally situated, but globally perfect form of spatial memory at the scale of navigation. 

Done in such a fashion as to enhance the searching performance of a unique agent by 

encoding information about searched and unsearched areas into their foraging behaviors 
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(Kerster, Rhodes, & Kello, 2016). This new and unique agent was sensitive to the pixels 

they previously covered while searching for the current target. The agent’s stored spatial 

memories of previously covered areas would reset after a target repopulated, thereby 

creating a situationally based form of spatial memory that is nested within the progress of 

the group’s success. For example, the faster that agents found and consumed targets, the 

faster the target would repopulate, and the faster the agent’s spatial memory would be reset. 

When moving across unsearched areas, the memory agent moved according to the same 

movement configuration as the other agents, however, when faced with a previously 

searched area, the memory agent would adjust its heading by facing toward the most-

unsearched area within view. By adjusting its heading to move toward unsearched areas 

rather than searched areas, we intended the memory agent to act in a more human-like 

fashion, i.e., adjusting and adapting its movements in accordance with what it has 

experienced while searching for the current target. This was intended to tap into an aspect 

of human behavior that made them previously successful at this task.   

The implemented memory parameter relates to the previous work that originally 

inspired the creation of this project. Specifically, we took reference from the social foraging 

behaviors in larger birds of prey, because their capacity for remembering carcass locations 

improved individual and group fitness (Cortés-Avizanda et al., 2014; Harel et al., 2017; Jackson 

et al., 2008; López-López et al., 2013). Based on an individual’s memory, group performance 

can be improved because an individual can help guide others toward that which the group 

is collectively searching for. Whether an individual is leading others directly towards a 

source of food (Harel et al., 2017; Nathan et al., 2012), or whether an individual is informing 

others about a possible location of a resource (Seeley, 1983, 2019; Visscher & Seeley, 1982; 

von Frisch, 1969), an individual with some memory about the searchable area helps to 

improve collective performance. This was a quality we aimed to instill within our new 

memory agent, i.e., aiding others by being increasingly more flexible and loosely coupled, 

adapting its movements based on the context to favor new areas over those they know the 

target is not. 

5.2. Methods 

5.2.1. Simulation Setup and Parameters  

Like in Chapter 4, many of the parameters here are replicated from the original 

simulation from Chapter 3. Using Netlogo with a space of 200 x 200 patches with periodic 

boundaries, ten agents moved at the same velocity while searching for targets over a 13,500 

timestep duration. Once an agent discovered a target, it would turn red and move directly 

toward the target location. Other nearby agents who saw an agent turn red would follow 

that agent toward the target location. Once an agent reached a target, it began to consume 

the target at a rate of 1 consumption point per timestep. This rate increased with the number 

of agents who found the target, with a minimum consumption time of 50 timesteps. 

Simulated agent movements followed the alpha and beta parameters set from the top-

ranked configuration (alpha = 2.5, beta = 1) and included an initial separation distance 

within 80 pixels from the center following a target repopulating. All remaining original 

movement condition parameters featured in Chapter 4 were replicated here.  
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A new parameter added into the simulation was the memory parameter. This memory 

parameter was added into the movement configuration of one agent. This new agent was 

provided a form of memory that assisted the agent to head towards new searchable areas. 

The nature of how it functioned was generally straightforward.  

The unique memory agent would react differently to areas it had previously covered 

while searching for the current target. Once a target repopulated, the memory agent’s 

memory was wiped clean, setting the value of all pixels within the search space to equal 0. 

Pixels that have yet to be searched for targets assume a value of 0, and pixels that have 

been searched for the current target assume a value of 1. Pixels change from a value of 0 

to 1 by entering and then subsequently leaving the memory agent’s field of view. These 

pixels would remain at a value of 1 until the current target was fully consumed, and 

repopulated. After a target repopulated, all pixels within the search space were reset to a 

value of 0 and the memory process would begin anew.  

Importantly, the only agent who had any impact on the value of any pixel was the 

memory agent. No other agent had any effect on, or was influenced by, the value of a given 

pixel. Additionally, the memory agent remained completely unaware of the area that any 

other agent had previously covered. The only information the memory agent used to 

augment its movements were based on its own memory of covered pixels within its visual 

radius. 

As the memory agent searched for targets, and while the value of the pixels in view 

summed to approximately 0 (i.e., 0.03% of pixels-in-view with a value of 1), the memory 

agent’s movements were governed by the same movement configuration rules as the other 

nine simulated agents. Alternatively, if the value of the pixels in view exceeded this 

minimal threshold, then the memory parameter would affect the unique memory agent’s 

heading direction.  

When the memory parameter turned on, it would direct the memory agent to face 

toward a direction determined as the average x and y coordinates of all the pixels in view 

that were equal to 0, before the agent took its next step forward. This caused the memory 

agent to face away from the patches of pixels with a value of 1. Therefore, the memory 

agent was biased toward searching new areas rather than continuing over previously 

searched spaces. This memory parameter was designed to help capture some of the unique 

and intelligent behaviors we assumed the human players were implementing while 

searching for targets. Over time, if a target had yet to be found, the memory agent would 

have covered a greater area of the search space, creating a larger proportion of patches with 

a value of 1. As this proportion of patches with a value of 1 increased, the movements of 

the memory agent would become increasingly directed by the memory parameter, thereby 

directing the memory agent to favor areas left unsearched. Our intention for these moments 

would be for the memory agent to be better suited at finding the hidden targets, i.e., finding 

them more easily than if they simply followed the same movement rules as the other agents.  

To compare the effect of the new memory agent on any collective or individual measure 

of performance, we conducted the same movement and separation configurations with a 

separate group of 10 non-memory agents.  
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5.2.2. Experiment Setup and Parameters 

In Chapter 3, we recruited participants to search for targets alongside nine autonomous 

agents across four separate movement conditions. Here, we recruited 10 new human 

players to search alongside nine non-memory agents with the top ranked configuration. 

The human players experienced the same setup as those in Chapter 3. Players controlled 

their agent with the use of a computer mouse, and their agent would follow a straight line 

heading toward the current position of the mouse at the same constant velocity as the other 

nine simulated agents. Like in Chapter 3, the movements of the human players remained 

completely unrestricted and uninfluenced by any other agent in the task, however, the other 

nine simulated agents did take the human’s agent into account when calculating their next 

movement. The only functional difference these human players experienced that differed 

from those in Chapter 3 is that these participants were also subject to the initial separation-

distance parameters following a target repopulating. Any remaining feature of the human 

player was also replicated from Chapter 3. These three intervention conditions allow us to 

compare how the non-memory, memory, and human players affected individual and 

collective performance.  

5.3. Results 

5.3.1. Collective Measures of Performance 

Here, we repeated the same overall measures of performance for each game session 

like those used in Chapter 3. The primary measure of collective performance was the total 

number of targets found (session duration was constant). This measure relates to the time 

needed to find and then consume each target. Search and consumption times were 

computed on a per-target basis, and then averaged for each session. Put together, these 

measures create the average total trial time, i.e., the sum of search and consumption time, 

where lower times corresponded with better performance. 

One primary factor was manipulated to test the role of memory and strategy in collective 

foraging. To do this, we compared different types of intervention for autonomous search 

agents across different sessions, varying the movement rules governing the behaviors of 

an agent depending on the intervention type. The role of memory and strategy was tested 

by comparing sessions with and without memory agent or human intervention. 

5.3.1.1. Targets Found varied by Intervention 

 First, we compared collective performance based on the total number of targets found. 

To compare the effects of different intervention types, we conducted a one-way ANOVA 

with the number of targets found as a dependent measure, and intervention type (no 

memory, memory, or human) as an independent variable. All agents in the no memory 

condition moved using the same governing movement rules. Agents in the memory and 

human intervention conditions moved using these same rules except for the memory agent 

and human players, respectively. See Figure 1 for the average number of targets found by 

intervention type.  
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Figure 5. 1. Mean targets found per session by intervention type (no memory, memory, or 

human). 

We found a significant effect of intervention type, F(2,127) = 3.85, p = 0.024, η2 = 

0.06. The specific direction of effects was supported by post-hoc Tukey HSD comparison 

tests which showed that the memory agents and the human were not significantly different 

from each other, p = 0.543. Surprisingly, human intervention was not different from the no 

memory agents, p = 0.908. This lack of differences for the human condition likely resulted 

in part from the small initial sample size. With more individuals, we would have a clearer 

picture of their performance distribution. However, the memory agents were significantly 

different than the no memory agents, p = 0.018, supporting our initial assumption that an 

improved agent with memory would benefit collective performance. 

5.3.1.2. Search Time Improved with Memory Intervention but at a Cost  

Next, we compared the effect that intervention type had on performance by comparing 

mean search, consumption, and trial times across conditions as dependent measures in a 

one-way ANOVA. Intervention type served as the independent variable again. Results 

showed that searching performance as measured by mean search time was significantly 

better with memory intervention, F(2,127) = 4.309, p = 0.015, η2 = 0.06. Post-hoc Tukey 

HSD comparison tests showed that the intervention of a memory agent significantly 

decreased search times compared to no memory intervention, p = 0.013, however, the 

human players did not significantly differ from either memory or no memory intervention 

conditions, both p > 0.4. As anticipated, the memory agent helped facilitate lower overall 

search times beyond the no memory condition by being biased towards searching yet-

unsearched areas based on their theoretically perfect but locally situated spatial memory.  
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Separately, we conducted the same ANOVA with “consumption time” as a dependent 

variable and “intervention type” as an independent variable. We found the opposite pattern 

of effects than those we saw for search time, indicated by a significant main effect of 

intervention type, F(2,127) = 5.968, p = 0.003, η2 = 0.09. The no memory intervention 

condition had significantly lower consumption times than the memory intervention 

condition, p = 0.002. Like the search time results, the human player is not significantly 

different in consumption times than the other intervention types, both p > 0.35. 

Interestingly, we see the no memory intervention condition improve consumption times 

over the memory condition. This likely results from the memory agents searching 

independently when search times run long, resulting in them consuming targets alone more 

often than the no memory agents.  

When summed together to construct the mean trial time, there was not a significant 

main effect of intervention type, F(2,127) = 1.187, p = 0.309, η2 = 0.02. Unlike the 

individual measurements of search and consumption times, the sum of these two values 

does not differ as a function of intervention type, all p > 0.37. The benefits provided by the 

inclusion of a memory agent helped improve search times, but this may have resulted in 

the memory agent consuming targets alone, which would increase consumption times. The 

improvements to search times were washed out by increased consumption times, as seen 

in Figure 2. 

 

Figure 5. 2. Mean trial time per session by intervention type (no memory, memory, or 

human). Mean trial times are divided into their composite search times (teal) and 

consumption times (red). 
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5.3.2. Individual Measures of Performance 

Here, we repeated the same primary individual measures of performance as in Chapter 

3. We conducted analyses on the average grouping entropy and area-search rate on 

individual agents across intervention types. These measures provide evidence related to the 

group-size diversity and searching effectiveness for an individual agent, respectively. The 

efficacy of loose coupling, memory, and strategy was tested by comparing sessions with 

and without a memory agent or human intervention. This factor of agent type was used as 

the independent variable within each respective one-way ANOVA. 

5.3.2.1. Memory Agents group like Humans 

Thus far, we have seen that intervention types are more beneficial for separate parts of 

collective performance measures. Memory intervention improved search times, while non-

memory improved consumption times. This likely relates to the way in which agents are 

searching on an individual basis. To measure how an individual searches the space, we 

used two primary measures. The first measure is the grouping entropy value, based on the 

distribution of counts relating to the number of agents in view while searching for targets. 

Based on a visual inspection, we can see that the memory agent and the human searched in 

similarly diverse group sizes, contrasted by the more collectively oriented non-memory 

agents, as seen in Figure 3.  

 

Figure 5. 3. Normalized histogram of the number of agents in view during the search time 

period respective to one agent per session. Human players and simulated agents differ only 

by agent type (non-memory, memory, or human). 

 To test the significance of any difference across intervention type on grouping 

diversity, we used the same grouping entropy measure from Chapters 3 and 4 (i.e., 

− ∑[𝑝(x𝑖) log(𝑝(x𝑖))], where xi is the number of agents viewed by agent i over time, and 

p is the associated proportion of time that xi agents were in view). This measure provides 

a value for the overall stability of the distribution associated with the number of agents in 

view over time while searching for targets (see Figure 4).  
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Figure 5. 4. Average Grouping Entropy of the number of agents in view during the search 

time period of the task for individual autonomous agents or human players. Human players 

and simulated agents only differ based on the agent type (non-memory, memory, or 

human). 

 Results showed that there is a significant main effect of Agent Type, F(2,4390) = 

2.386, p < 0.001., η2 = 0.01. Post-hoc Tukey HSD comparison tests showed the non-

memory agent was significantly different than both the memory agents and human players, 

both p < 0.001. Interestingly, the memory agents were not significantly different in 

grouping diversity than the human players, p = 0.986. This is an interesting result because, 

by including the memory parameter to adjust the memory agents' searching behaviors, the 

memory agents searched in similar configurations to how a human player decided to 

search.  

5.3.2.2. Area Search Rate 

 Lastly, we measured the individual ability of an agent to cover the space using the area-

search-rate measure used before. This is an important measure for comparing effects of 

agent type because the area-search rate captures the individual quality an agent has for 

covering the space. The higher the rate an agent can search the space, the better able they 

are at covering ground within the time it took to find the target (see section 3.4.3. for more 

details about area-search rate). To evaluate the effect of Agent Type as an independent 

variable, we conducted the same one-way ANOVA, with area-search rate as a dependent 

variable.  

 Like grouping entropy, results showed a significant main effect of Agent Type, 

F(2,5057) = 123.1, p < 0.001., η2 = 0.05, where the non-memory agent had a significantly 
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slower area search rate than both the memory agent and human players, both p < 0.001. 

Consistent with previous results, the memory agent searched the space as effectively as the 

human player based on the non-significant difference in their respective area search rates, 

p = 0.8. These results are supported visually in Figure 5. 

 

Figure 5. 5. The average area-search rate for individual autonomous agents or human 

players. Human players and simulated agents only differ based on the agent type (non-

memory, memory, or human). 

These results are striking because a simulated agent was able to perform similarly to 

the human player based on an individual-level measurement by including a primitive 

version of one quality that humans possess: memory. However, these results should be 

considered preliminary based on the relatively small sample size for the human players (n 

= 10). Despite this limitation, we find these results to be promising based on the success 

we see in the memory agent differing from agents without memory, and the apparent 

similarities emerging between the memory agent and human players.   

5.4. Discussion 

The intervention of the memory agent helped to improve both individual and collective 

performance during this cooperative search task. Human intervention with more-optimal 

loose-coupling agents did not have as much effect on collective performance as it did in 

Chapter 3, but as an individual, the human player continued to outperform non-memory 

agents. We saw a replication of our findings from Chapter 3 with the reduction in grouping 

entropy for human players when compared to the non-memory, loose-coupling agents. This 

supports the original interpretation that the human is varying their grouping diversity less 

than the autonomous agents, preferring to search in smaller group sizes. We also replicated 
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the area-search-rate findings, where the human players continued to search the space more 

effectively than the non-memory, loosely coupling agents. Supporting the idea that the 

human players are utilizing qualities beyond what the loose-coupling configuration is 

capable of on its own. Results relating to the human’s performance are tentative due to the 

low sample size, but the initial pattern of results remains promising for the new memory 

agent. Our initial findings suggest the added memory parameter, in addition to the more-

optimal loose-coupling movement configuration, resulted in the memory agent searching 

in more ‘human-like’ ways.  

We saw the memory agent improve both its overall grouping entropy and area-search-

rate to equal that of the human players. Both measures were designed to measure the 

strategies human players enacted back in Chapter 3. To see the memory agent be 

statistically equal to the human player on both measures is a promising preliminary result. 

Importantly, this does not mean that human players only used memory to guide their 

searching behaviors. Rather, this study provides evidence that memory is one quality of 

what makes human players successful. Obviously, human players possess additional 

qualities, like decision making and learning, that the memory agent does not possess.  

There is an important difference between the memory of the human players and 

memory agents which separates them. The spatial memory of the memory agent was 

locally situated but globally perfect. The memory agent would only augment its heading 

based on the value of pixels within its field of view, but globally all pixels retained a value 

of 0 or 1 regardless of the memory agent’s position. This fundamentally differs from the 

memories of humans, which are notoriously limited and imperfect. Despite this difference 

in memory capacity, the memory agent could find itself covering areas it had already 

searched by cornering itself into areas it had already been. In these moments, infrequent as 

they might be, the memory agents reverted to acting like regular non-memory agents.  

By lacking a form of decision making, the memory agent could realistically find itself 

traveling over previously searched ground by cornering itself into searched areas. This is 

less likely to occur within the human players because of their capacity to enact higher-

order decision making, planning, and learning. With additional parameters it is likely that 

a simulated agent could be made to outperform the human players. From what we have 

seen, adding one human-like quality improved the memory agent to match human 

performance. The memory agent benefited collective and individual performance by being 

biased towards unsearched ground. If it were given additional properties of learning and 

decision making, a simulated agent could potentially far-outperform a human player in 

future iterations of this study. As a note of caution, this may improve an agent’s ability to 

search within this task space, but unless given qualities of equally general applicability to 

those of humans, the agents may continue to fundamentally differ in type from the human 

players by being overly specialized within this context. By contrast, the human player will 

remain a contextual generalist, able to flexibly and spontaneously reorganize themselves 

to reach their goals.  
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Chapter 6 

Conclusions about Coordination and Loose Coupling 

 Throughout this dissertation, the underlying focus has been to deepen our 

understanding of the general principles and processes of coordination. To do this we have 

explored varying scenarios requiring multiple agents to cooperatively coordinate their 

actions to achieve some shared, common goal. We began with individuals and dyads 

coordinating their actions via a moving target, where the goal was to complete the aiming 

task as quickly as possible. We found that higher degrees of complexity matching occurred 

for individuals and dyads (Chapter 2). Response coupling, i.e., nested spatial and temporal 

variability, was required for the emergence of higher degrees of complexity matching in 

dyads. We interpreted these results to mean that complexity matching reflects a more 

“underlying” or fundamental process within coordination than other measures of 

coordination, which relate more to target predictability (i.e., phase matching). These results 

align with other research suggesting that complexity matching taps into a more sensitive 

and underlying process within coordinating complex systems (Marmelat & Delignières, 

2012; Ramirez-Aristizabal, Médé, & Kello, 2018; Rigoli et al., 2014; Tononi, Sporns, & 

Edelman, 1996). Chapter 2 added to the literature by showing how interpersonal 

coordination benefits from being loosely coupled. Coordination was facilitated by the 

exchange of predictable information both within and between individuals, as measured by 

complexity matching. This research helped to further illuminate some of the principles of 

intrapersonal and interpersonal coordination. 

 In Chapter 3, to scale up the size of the interactions that occur within a shared space to 

reach a common goal, we constructed a cooperative search task to expand our findings 

from Chapter 2 to groups larger than two. To formulate a balance between collective and 

independent searching behaviors, we formulated movement rules that balanced a tendency 

toward distancing with a tendency toward flocking within autonomous searching agents. 

Our simulations showed that loose coupling among agents benefitted overall group 

performance. An analysis of group-size variability showed that loose coupling diversified 

the group sizes more than any other movement condition, resulting in the loose coupling 

condition covering a more diverse range of individual and collective search configurations 

over time. The diversity of search patterns did not come from decision-making of any 

kind—it was instead driven primarily by injecting noise with the CRW movement 

component, plus additional randomness from the positioning of targets. 

The inclusion of a human player added to the benefits of loose coupling by engaging 

in even greater diversity of search configurations than loosely coupled agents. This resulted 

in the higher area-search rates with human intervention, especially in the loose-coupling 

condition. We found that human players exhibited a tendency to individually find and 

consume targets when agents either distanced too much or flocked too much, whereas they 

cooperated more equally when agents were loosely coupled. This finding suggests that 

intelligent agents can learn to leverage other agents for the good of the group, depending 

on their individual abilities. 
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Our initial simulations showed that loose coupling is beneficial even when agents are 

memoryless and unable to learn, adapt, or develop strategies through experience. Our 

simple model of loosely coupled foraging agents is useful in its economy of mechanism, 

however, humans and other social animals with extensive capacities use their memory, 

learning, and decision-making to drive their actions over longer spans of time. Theories of 

self-organization suggest that loose coupling may be generally useful for adapting 

coordinated behavior to respond to changes in conditions as they unfold (Van Orden et al., 

2003). These results provide evidence that abilities like learning and memory may 

complement simpler rules of loose coupling to support cooperative coordination, rather 

than supplant them.  

In Chapter 4, we investigated the effects of loose coupling by pursuing a more-optimal 

configuration of movement rules. The extended simulation resulted in a configuration of 

loosely coupled agents whose collective performance surpassed the original loosely 

coupled agents. The more-optimal configuration was benefited further by increased initial 

separation distances. Mid-ranged initial separation distances improved the distribution of 

agents over the space while maintaining multiple group configurations to consume targets 

cooperatively. The more-optimal attraction and repulsion parameters benefited individual 

measures of performance but continued to differ from individual human performance.  

Individually, the more-optimal configurations lacked the searching effectiveness of the 

original human players from Chapter 3, those players were able to leverage their memory, 

learning, decision-making, and strategy, something the present iterations of the simulated 

agents lack the capacity to do. These qualities remained uniquely human, resulting in 

humans searching more effectively than any simulated agent until those discussed in 

Chapter 5. 

With the intervention of a memory agent, we saw distinct improvements for both 

collective and individual performance for the more-optimal simulated agents. Human 

intervention with more-optimal loose-coupling agents did not have as large of an influence 

on collective performance as it did in Chapter 3, but as individuals, human players 

continued to outperform non-memory agents. Our initial findings suggest the added 

memory parameter, in addition to the more-optimal loose-coupling movement 

configuration, resulted in the memory agent searching in more ‘human-like’ ways.  

With improved individual-based measurements, equal to that of the human players, 

Chapter 5 provides evidence that memory is one quality underlying human performance. 

Naturally, we possess additional qualities beyond simply memory, but even the added 

memory parameter suggests that human players utilize qualities beyond what the loose-

coupling configuration was capable of on its own. If simulated agents were provided with 

additional parameters designed to simulate additional human-like qualities, the agents 

could potentially outperform the human players. Importantly, these qualities should be 

made as general as possible to avoid over-specifying the agents within a certain context. 

This would limit their general utility to be beneficial across a wider range of situations, 

situations that could benefit a lot from the intervention of autonomous agents (Lomonaco, 

Trotta, Ziosi, Ávila, & Díaz-Rodríguez, 2018; Mishra, Garg, Narang, & Mishra, 2020; Niu, 

Hollenbeck, Zhao, Wang, & Chen, 2020; Smith, John, Stark, Christensen, & Chen, 2016).  
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This dissertation focused on the nature of the connections that bind individuals together 

while cooperatively coordinating their actions to reach shared goals. This work fits within 

a broader picture about the underlying principles of interpersonal coordination. The joint 

Fitts’ task results are consistent with emerging narratives about complexity matching and 

the effect that different modalities have on cooperative systems (Almurad, Roume, & 

Delignières, 2017; Coey et al., 2018, 2016; Fine et al., 2015; Marmelat & Delignières, 

2012; Ramirez-Aristizabal et al., 2018; Zapata-Fonseca et al., 2016). Chapters 3–5 fit into 

a broader narrative about large-group teamwork coordination (Auletta et al., 2020; Lamb 

et al., 2017; Nalepka et al., 2019; Rigoli et al., 2020; Wiltshire et al., 2018, 2020), within 

a collective foraging scenario (Cortés-Avizanda et al., 2014; Farine, Strandburg-Peshkin, 

Couzin, Berger-Wolf, & Crofoot, 2017). These chapters probed further into the effects that 

loose coupling can have on individual and cooperative performance.  

As the agents became more loosely coupled, they became more flexible in their 

grouping diversity, increasing their collective and individual performance. Taken together, 

this work supports a broader narrative that coordination depends on the loose and flexible 

alignment of available degrees of freedom (Glassman, 1973; Kloos & Van Orden, 2009), 

supported by an exchange of information dependent upon the connections linking complex 

networks together (Nordham et al., 2018; Rigoli et al., 2014; West et al., 2008). Whether 

interactions take place between multiple people, with people and autonomous agents, or 

within simulations alone – loose coupling has been shown to play a positive role within 

cooperative coordinated systems. It has helped coordinate the actions of two people 

working to reach a shared goal, as well as aiding many agents search effectively and 

efficiently across a large space. Regardless of the scenario we have shown here in this 

dissertation, loose coupling has helped improve cooperative performance between fellow 

group members. Benefiting both the performance of individuals and groups alike. Future 

work has ample ground left to explore to seek out the remaining unfound properties about 

the connections that help bind us together – connections that make us who we are in those 

coordinated moments, with other humans or not.  
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