
UC San Diego
UC San Diego Previously Published Works

Title
Vector quantization with zerotree significance map for wavelet image coding

Permalink
https://escholarship.org/uc/item/41h9c93s

Journal
Signals, Systems and Computers, 1995. 1995 Conference Record of the Twenty-Ninth 
Asilomar Conference on, 2

Authors
Perlmutter, S M
Perlmutter, K O
Cosman, P C

Publication Date
2014-08-06
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/41h9c93s
https://escholarship.org
http://www.cdlib.org/


Vector Quantization with Zerotree Significance Map for Wavelet 
Image Coding 

Sharon M. Perlmutter Keren 0. Perlmutter Pamela C. Cosmant 

Information Systems Lab, EE Dept., Stanford University, Stanford, CA 94305-4055 
tECE Dept., University of California, San Diego, La Jolla, CA 92093-0407 

Abstract 
Variable-rate tree-structured vector quantization as 

applied to the coefficients obtained from an orthogonal 
wavelet decomposition. The set of vectors from differ- 
ent levels of the decomposition that correspond to the 
same orientation and spatial location are examined in 
various “zerotree” groups to determine the different 
bit rates and distortions achievable for  the set. The 
decision not to code certain groups of vectors is based 
upon choosing the desired dastortion/rate tradeoff from 
among the possibilities. Side information is sent to the 
decoder to inform it of the sequence of decisions. The 
resulting bit stream is entropy coded. Results of this 
method on the test image Tena” yielded Q PSNR of 
30.16 dB a t  0.148 bpp. 

1 Introduction 
Wavelet encoding involves taking the discrete-time 

wavelet transform of an image and quantizing the 
wavelet coefficients based on some bit allocation 
scheme. Bit allocation is the process of assigning a 
given number of bits to a set of different sources (e.g. 
wavelet subbands) to minimize the overall distortion of 
a coder. A simple and effective wavelet coding method 
has been the embedded zerotree wavelet (EZW) al- 
gorithm [4]. The basic premise of the algorithm is 
to ta%e advantage both of the many zeros that ap- 
pear in the quantized coefficients and of the location 
correspondence between those zeros. This location 
correspondence is described as follows. In an octave- 
band decomposition, each coefficient x (except those 
in the DC band and the three highest subbands) has 
four children coefficients in the next higher subband. 
These four coefficients correspond to the same orien- 
tation and spatial location as I does in the original 
image. Each of these four children has four children 
in the next higher band. This ,relationship contin- 
ues until the highest subband. The coefficients in the 
three highest subbands have no children. All of these 
children coefficients are referred to collectively as the 

descendants of x. A wavelet coefficient x is called in- 
significant with respect to a threshold T if 1x1 < T.  
The EZW design is based on the hypothesis that if 
a wavelet coefficient at a coarse scale is insignificant 
with respect to a given threshold T ,  then the descen- 
dants of that coefficient are likely to be insignificant 
with respect to T also. A coefficient is said to be an 
element of a zerotree for threshold T if itself and all 
of its descendants are insignificant with respect to T.  
An element of a zerotree is a zerotree root if its parent 
is not an element of a zerotree. When wavelet coeffi- 
cients are to be coded at low bit rates by scalar quan- 
tization followed by entropy coding, the zero symbol 
will be the most probable symbol after quantization, 
and a binary Significance map can be used to indicate 
the location of the non-zero values. The EZW algo- 
rithm uses the zerotree structure as an efficient way 
to convey significance map information. An extension 
to this algorithm that attempted to jointly optimize 
the scalar quantizers and the zerotree structures by 
examining distortion/rate tradeoffs was considered in 
~51. 

In this paper, we quantize wavelet coefficients by 
combining variable-rate tree-structured vector quan- 
tizers (TSVQs) with a zerotree significance map that 
indicates the location of those coefficients that will 
be coded. A binary TSVQ consists of a tree with 
nodes labeled by candidate reproduction vectors [2]. 
The encoder performs a sequential binary search for 
the nearest neighbor until a terminal node is reached. 
The label of the terminal node is the final reproduc- 
tion, and the binary vector describing the sequence 
of encoder decisions is the index that is sent to the 
decoder. The decoder then performs a table lookup 
to produce a local reproduction. A variable rate code 
can be implemented by an unbalanced tree, obtained 
either by growing a balanced tree and then pruning it 
back so that it becomes unbalanced, or by “greedily” 
growing an unbalanced tree directly [2]. A simplified 

1058-6393196 $5.00 0 1996 IEEE 
Proceedings of ASILOMAR-29 

1419 



version of the zerotree significance map was used with 
TSVQ in [l]. In that work, after a vector was en- 
coded, the vector’s descendants were examined to see 
if they were all insignificant with respect to some pre- 
determined threshold. One bit of side information was 
transmitted to the decoder to inform it of the decision. 
When the encoder reached those later subbands, those 
vectors previously marked as insignificant would not 
be coded. Preliminary results were also mentioned on 
a method where the decision to zero out future vec- 
tors is based on a distortion/rate tradeoff, rather than 
a strict thresholding criterion. The current paper im- 
proves those results by extending this method in sev- 
eral ways. We achieve approximately a 15% reduction 
in bit rate by allowing the zerotree to root lower down 
in the hierarchy] changing the vector-forming strategy, 
modifying the training sequence to reflect the distri- 
bution of vectors under the zerotree method, and en- 
tropy coding the output bit stream (a 12% reduction 
is obtained without the entropy coding). Additional 
improvement in performance is achieved at the higher 
bit rates when a multistage version of the algorithm is 
implemented. 

2 Zerotree Choice Algorithm 
In the current work, the Daubechies orthogonal 8- 

tap filter was used to decompose the images 4 levels. 
This decomposition produced 13 subbands. Different 
vector sizes and shapes were used in the different sub- 
bands. The lowest band was coded by scalar quan- 
tization, the finest scales were encoded using 4 x 4 
vectors, and intermediates scales employed vectors of 
size 2, 4, or 8. Figure 1 shows the decomposition to- 
gether with the size and shape of the vector used in 
each subband. Separate TSVQs were greedily grown 
and optimally pruned from the training sequence in 
each band. For each band, the distortions and rates 
for the sequence of pruned subtrees provided distor- 
tion/rate curves. The minimum overall distortion for 
a given total rate is achieved by choosing the point of 
equal slope along the D(R) curve for each band [3]. 
This step is equivalent to selecting the point where 

for all subbands i. 
Since we use vectors of varying dimension at each 

subband level, the relationship between elements to 
be coded at each level is slightly modified from the 
scalar case. For example, a 2-D vector 2 in subband 
2 is in spatial correspondence with two 4-D vectors 
of subband 5. Each of these 4-D vectors is in spa- 
tial correspondence with two 8-D vectors of subband 

Figure 1: Sizes and shapes of the vectors chosen for 
each subband. 

8, and each of these 8-D vectors is in spatial corre- 
spondence with two 16-D vectors of subband 11. This 
group consists of 15 vectors or 170 coefficients. Figure 
2 illustrates an example of this group. The labels in 
the figure indicate distinct vectors, where the dimen- 
sion of each vector is as shown in Figure 1. We will 
investigate coding groups of this type in order to de- 
termine the location of zerotrees. There are a number 
of ways to code this collection of 170 coefficients. The 
entire group could be declared a zerotree, without con- 
sideration of what threshold level would actually make 
them a zerotree. This would lead to the possible oper- 
ating point (Bo, D O ) .  Alternatively, the lone ancestor 
(in subband 2) could be encoded with the TSVQ for 
that band, and the decoder could be told that its de- 
scendants constitute a zerotree, again without consid- 
eration of what threshold value would be required for 
them all to be insignificant. This would lead to a dif- 
ferent distortion D1 and rate R1 associated with the 
entire collection of 170 coefficients. If the descendants 
of only one of the children vectors in subband 5 were 
declared a zerotree, but not the descendants of the 
other, this would lead to additional possibilities for D 
and R. Note that the rates for each of these choices 
consist of the sum of the rates to code the vectors that 
are not zeroed out and the rate to inform the decoder 
which of the choices to select. In all, we will consider 
27 ways that the group can be encoded. These options 
can be illustrated with a tree structure, as shown in 
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Figure 2: Group of 15 vectors considered when assign- 
ing zerotrees 

Figure 3. 
There are several techniques that can be used to 

determine the number of bits needed to inform the 
decoder which vectors are to be coded. The simplest 
approach is to use the tree depicted in Figure 3 a5 
the bit assignment strategy. This tree is derived from 
making the decision of whether to zero out the vectors 
from the lowest subbands to the highest subbands. For 
each yes/no decision in the tree, a single bit would be 
used to inform the decoder of the result. This is the 
method which was implemented for this paper. If ad- 
ditional complexity can be tolerated, however, the bit 
assignment strategy can be designed using a lossless 
technique such as a Huffman or adaptive arithmetic 
coder. 

Each of the 27 choices produces a ( D ,  R) pair. 
These pairs can be plotted in the D ,  R plane and the 
convex hull of the set can be extracted. This curve, 
which we call the zerotree choice curve, then repre- 
sents the distortion/rate tradeoffs obtainable for the 
group of 170 coefficients by different choices of where 
to root the zerotrees. Recall that the overall rate for 
each subband was chosen by finding points along the 
D ( R )  curves for each subband that had equal slope. 
The same slope can be used to guide the selection of 
the operating point along the zerotree choice curve 
for each group of 170 coefficients. In this way, groups 
of coefficients are zeroed out because doing so makes 
sense according to a distortion/rate tradeoff. 

When the training sequence in each subband con- 
sists of all of the training vectors that correspond to 
that band, the training sequence is not quite represen- 
tative of the test vectors to be encoded later. This is 
because when the zerotrees are used, fewer test vectors 
of low magnitude are encoded. The training sequence 
can be made more representative of the test sequence 
by iterating the code design procedure. That is, af- 
ter using all training vectors initially to design the 
TSVQs, the training images can themselves be en- 
coded, and those training vectors which are declared 
zerotrees can be left out of the training sequence for 
the next round of TSVQ design. Note that this tech- 
nique is also a form of classified VQ. The classifier is 
the zerotree structure, and it divides the training se- 
quence into two classes. The codebook of one class 
will consist of one codeword with value zero, and the 
codebook of the second class will be constructed from 
only those training vectors that mapped into it (the 
vectors that were declared significant). This process 
can be iterated. 

The zerotree choice algorithm can be improved if it 
is combined with multistage TSVQ. Multistage TSVQ 
(also referred to as residual TSVQ), has proven to 
be an effective technique for applications that possess 
storage or search complexity constraints [2]. In multi- 
stage TSVQ, the computational complexity increases 
linearly with the dimension-rate product. In addition, 
an important advantage to multistage TSVQ systems 
is that it can ameliorate training sequence size prob- 
lems. 

The codebook corresponding to a multistage TSVQ 
can be viewed as the collection of all possible repro- 
ductions that can be constructed by adding one code- 
word from each of the stages. The first stage encodes 
all of the input vectors. Then a second stage quantizer 
operates on the error vector between the original vec- 
tor and the quantized first stage output. The quan- 
tized error vector provides a refinement to the first 
approximation. At the decoder, the reproduction vec- 
tors produced by the first and second stages are added 
together. Additional stages of quantizers can be used 
to provide further refinements. 

In this paper a 2-stage zerotree choice system was 
implemented. Separate Huffman codes were designed 
for each band in each stage. The Huffman codes were 
designed non-adaptively. 

3 Results and Conclusions 
The training sequence was composed of 10 im- 

ages from the USC database. Each image was trans- 
formed and the resulting subbands were blocked into 
vectors (according to the dimensions shown in Fig- 
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ure 1). The image "Lena" was used as a test im- 
age, and was not part of the training sequence. 
Each vector of the transformed test image was en- 
coded by the pruned subtree for its subband. One 
iteration of training sequence reduction was imple- 
mented. The performance of the algorithm was eval- 
uated using PSNR = 10 x loglo(&). Fig- 
ure 4 illustrates the PSNR performance of the mul- 
tistage TSVQ/zerotree choice method with entropy 
coding, the TSVQ/zerotree choice method with en- 
tropy coding, the TSVQ/zerotree choice method with- 
out entropy coding, the TSVQlzerotree with thresh- 
old method presented in [l], and a wavelet/TSVQ sys- 
tem that does not examine the significance of later co- 
efficients (i.e., no zerotree coding). The graph demon- 
strates that the TSVQ/zerotree choice method per- 
formed about 1 dB better at the lower rates than the 
TSVQ/zerotree with threshold method, and over 1.5 
dB better than the method with no zerotree coding. 
The multistage system performed comparably with 
the 1-stage system at low bit rates, and provided over 
0.8 dB improvement at the higher rates. As an ex- 
ample, the test image had a PSNR of about 30.16 dB 
when it was encoded to the bit rates of 0.148 using the 
TSVQ/zerotree choice method (1 or 2 stages), 0.154 
bpp with the TSVQ/zerotree choice system without 
entropy coding, and 0.27 bpp with the system that 
did not use any zerotree coding. We note that for 
the zerotree choice method the zerotree bits comprised 
about 8% of the total bit rate (at most bit rates). 

The original image is shown in Figure 5, and the en- 
coded image using the TSVQ/zerotree choice method 
with entropy coding is shown in Figure 6. Figure 7 
demonstrates the significance map for the Lena image 
at 0.148 bpp. The white areas indicate those coeffi- 
cients that were coded, the gray areas indicate those 
coefficients that were zerotree roots, and the black ar- 
eas indicate those coefficients that were descendants 
of a zerotree root. 

We note that VQ applied to wavelet coefficients has 
been shown by many researchers to produce excellent 
quality images at low bit rates. Some of those methods 
use the vector quantizer (e.g., a lattice or a classified 
VQ) in a purely intraband and memoryless fashion. 
Our method of using a distortion/rate tradeoff to de- 
clare vectorial zerotrees may be useful in such systems. 
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Figure 3: Tree of zerotree decisions (Y = Yes, N = 
No) 
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Figure 5: Original "Lena" image at 8 bpp 
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