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1. INTRODUCTION

This manuscript reports on certain traffic details measured at a freeway merge before and

after it became a bottleneck on each of six observation days.  The findings indicate that

flows departing this merge can be made substantially higher by metering the on-ramp to

restrict the rate its vehicles enter the freeway.  Evidently this is because restricting

inflows from the on-ramp will limit disruptive vehicle lane-changing maneuvers just

downstream.  It follows that a metering scheme can reduce the total delay at this merge

(collectively incurred by all vehicles arriving from the freeway and the ramp), even

absent any changes in commuter travel patterns in response to the scheme.

These findings came to light by collecting high resolution data (including

individual vehicle arrival times) at strategic locations near the merge and then processing

and analyzing these data in careful ways.  These painstaking procedures verified, among

other things, that during each afternoon rush the site became an active bottleneck; i.e.,

queues formed near the merge, but traffic remained freely flowing at locations just

downstream of this (Daganzo, 1997).  During its active periods, measured flows

departing the bottleneck were therefore not impeded by any queues emanating from

further downstream.

The freeway site itself, and the kinds of traffic data extracted there, are described

in section 2 of the manuscript.  Verification that the site became an active bottleneck and

that this activation diminished outflows (i.e., capacities) is provided in section 3.  In

section 4, we show that the on-ramp inflows that accompanied the bottleneck’s activation

each day were negatively correlated with the short-run outflows measured just prior to

these activations.  This finding indicates that ramp meters can postpone the bottleneck’s

activation.  Presentations in section 5 offer an explanation for this.  The data provided

there indicate that the bottleneck was triggered each day by bursts in the vehicle lane-

changing activity just downstream of the merge and that these bursts were evidently

motivated by surges in inflow from the on-ramp.  We show in section 6 that on-ramp

metering served to increase queue discharge flows even after the bottleneck had

activated.  Certain implications of these findings are summarized in the conclusions.
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2. STUDY SITE AND ITS DATA

Figure 1 is a sketch of the study site, a stretch of eastbound Freeway 22 and its junction

with the Fairview Avenue on-ramp in Orange County, California.  Data were collected

during the afternoon rush hours on six days spanning the period of November 8, 2000 to

March 28, 2002.

As shown in the figure, loop detectors are located in each lane at MilePosts (MPs)

8.7 and 9.0.  These recorded, among other things, vehicle counts over 30-sec intervals.1

But as will be made clear in the following sections, data from these loop detectors played

a minor role in the study.  Instead, analyses were primarily performed on the individual

vehicle arrival times at MPs 9.1, through 9.4 (as labeled on the figure).  Vehicle trip times

between some of these MPs were measured as well.  These data were manually extracted

from videotapes that were recorded by cameras placed on the freeway over-crossing just

downstream of the merge.

Figure 1
Study Site. Eastbound Freeway 22, Orange County, California

One of these cameras provided measurements of on-ramp vehicles passing MP

9.0 and merging onto the freeway.  The meter at this ramp reportedly resticts on-ramp

traffic at a fixed rate of 1,200 vph.  A wide range of ramp inflows was nonetheless

observed to accompany the bottleneck’s activations over the six days studied here.  On

                                                          
1 During one of the days studied here (November 8, 2000), only the detectors at MP 8.7 functioned while
those downstream at MP 9.0 did not record data.  On three other days, the opposite occurred; i.e., the
detectors at MP 9.0 were the only ones to function.

Over-crossing

Eastbound 22

MP 8.7 MP 9.0
MP 9.1 MP 9.2
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 N

Median Lane
Center Lane
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several days, for example, lower demands at the on-ramp kept these inflows from

reaching 1,200 vph.  On one such occasion, the ramp surge that accompanied the

bottleneck activation was only 960 vph.  On another day, the meter was not in operation

and on-ramp inflow surged to 1,440 vph.

Weather conditions were good on each of the observation days. Analyses of the

data and the findings are described in the following three sections of the manuscript.

3. THE BOTTLENECK AND ITS FLOWS

In this section, we demonstrate the use of specially transformed cumulative count curves

for identifying the bottleneck and the outflows that occurred each day before and after

this bottleneck became active.  To this end, Figures 2(a) and (b) show curves of

cumulative vehicle count, N, vs time, t, that were measured across all freeway lanes at

certain MPs during a rush (on March 15, 2001).  These curves have been transformed as

explained below.

First, the curves in each figure were measured from the passage of an imaginary

reference vehicle so that each set of curves was constructed from the same collection of

vehicles.  Secondly, each N-curve was shifted forward by the average free flow vehicle

trip time from its respective MP to the downstream-most MP shown in its figure.  The

vertical separations between any two curves (of the same figure) are thus the excess

vehicle accumulations between the respective MPs due to freeway traffic delays.

The N-curves were transformed in one final way to render these separations and

certain other of their features more visible.  Namely, an oblique coordinate system was

used in each figure to plot N – qo×(t – to) vs t for each curve's starting time, to, and some

choice of background flow, qo; a fixed qo was used for the entire collection of curves

shown in a given figure and its value was selected so that the range of N – qo×(t – to) was

small as compared with the N itself.  This coordinate system reduced the vehicle count

actually displayed on each figure's ordinate.  This, in turn, amplified the curves' vertical

separations and made them more visible to the naked eye.

The curves' changes in slopes were amplified as well, such that flow changes at a

MP are made evident by taking piece-wise linear interpolations of the curves themselves.
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Examples of piece-wise interpolations are provided in Figures 2(a) and (b) and will be

provided in other figures as well.

Further discussion on the construction and interpretation of oblique N-curves is

available from a number of sources, including Cassidy and Windover (1995).  It suffices

for now to direct the discussion to Figure 2(a). It presents curves at the four MPs

downstream of the on-ramp during a certain 14-min period of the rush.  It is clear from

the figure that traffic was nearly freely flowing during the early minutes of this period;

i.e., these curve portions remained nearly (although not entirely) superimposed, even as

flows departing the merge climbed to well above 7,000 vph.  But by t  = 13:30, the curves

at MPs 9.1 and 9.2 diverged from their two downstream counterparts (indicating the

presence of excess vehicle accumulations), while the curves at downstream MPs 9.3 and

9.4 remained superimposed.  The freeway segment between MPs 9.2 and 9.3 was thus

identified as the initial location of an active bottleneck; i.e., the head of a queue first

resided somewhere between these MPs.

But Figure 2(a) also shows that queueing downstream of MP 9.1 all but

disappeared by t = 13:34.  By this time, its N-curves were again nearly superimposed and

only occasionally displayed (rather small) vertical displacements thereafter.

Figure 2(b) shows, however, that the head of the queue had merely moved

backward (against the flow of traffic) and that delays and excess vehicle accumulations

persisted upstream of the merge. Shown in this second figure are oblique N-curves at

MPs 9.0 and 9.1.  These were constructed from the counts of vehicles that had arrived to

the merge from the freeway.  Vehicles from the on-ramp were excluded from this figure

since these did not pass the location described by the upstream curve (i.e., at MP 9.0)2.

The figure clearly indicates that queueing between MPs 9.0 and 9.1 continued well

beyond t = 13:34.

Figures 2(a) and (b) collectively verify that, beyond t = 13:30 (and prior to the

bottleneck's de-activation some time later), flows measured downstream of the on-ramp

                                                          
2 The N-curve at MP 9.0 was constructed from (30-sec) counts measured by loop detectors that were likely
subject to small errors.  But the finding that queueing persisted between MPs 9.0 and 9.1 rests upon large
vertical separations between the respective N-curves, such that small errors in the detector counts would
not change this diagnosis.
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Figure 2(a)
Oblique N-curves at MPs 9.1 through 9.4 (March 15, 2001)

(e.g. at MP 9.3) were queue discharge rates.  These were the maximum rates that could

depart the active bottleneck.

It is notable that, following the activation, the N-curves in Figure 2(a) display

obvious changes in slopes, indicating changes in the queue discharge flows.  These

changes are evident both in the short-run (as wiggles on the curves) and in the longer-run

(as exemplified by the linear approximations that accompany some extended portions of

the N-curves).  Longer-run trends in the curves also show that flows departing the merge

diminished following the bottleneck’s activation.

An explanation for these changes in flow is offered in a later section of this

manuscript.  We now conclude the current section with a second demonstration of the

changes in outflow that accompanied an activation of this bottleneck.
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Figure 2(b)
Oblique N-curves of freeway traffic at MPs 9.0 and 9.1 (without on-ramps) (March 15, 2001)

Figure 3(a)
Oblique N-curves at MPs 9.1 through 9.4 (February 20, 2001)
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Figure 3(b)
Oblique N-curves of freeway traffic at MPs 9.0 and 9.1 without on-ramp counts (February 20, 2001)

Figures 3(a) and 3(b) are oblique N-curves from another observation day

(February 20, 2001).  The former displays portions of curves sufficient to verify that the

bottleneck again activated between MPs 9.2 and 9.3, on this day at t = 14:45:30.  As in

the day presented earlier, flows departing the merge (measured at MPs 9.3 or 9.4)

dropped just after the activation.  Figure 3(a) also shows that the head of the queue

moved upstream by t = 14:57, leaving virtually no evidence of any delays downstream of

MP 9.1 beyond this time.  But Figure 3(b) demonstrates that queueing remained just

upstream of MP 9.1 for some time thereafter.
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discharge that eventually ensued; (the latter was measured for an hour following this

activation).

So the bottleneck’s activations had the undesirable consequence of reducing

outflows from the merge.  In the following section, we show that ramp metering can

forestall these outflow reductions.

Figure 4
Oblique N-curve at MP 9.3 (February 20, 2001)
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shown in this figure is remarkable.  It indicates that keeping surges from this ramp small

can result in higher short-run outflows.  The range observed in these outflows is

substantial.  It extends from as low as 6,730 vph on November 8, 2000, a day when the

on-ramp meter was not in service, to 8,050 vph on February 21, 2001 when diminished

demand at the ramp kept its inflows low. 3

This finding does not suggest that by restrictively metering the on-ramp, outflows

comparable to the highest rates shown in Figure 5 will be realized for extended periods.

(We restate, for emphasis, that most of the outflows displayed in this figure were

measured for only a few minutes and that there is no evidence the higher values shown

there could have been sustained for long durations).  Rather, each data point in Figure 5

indicates that the merge did accommodate the outflows leading up to the one that

accompanied that particular bottleneck activation.  It follows that sufficiently restrictive

metering at this on-ramp can at least postpone bottleneck activation and thereby forestall

the outflow reductions that result.

The N-curve previously shown in Figure 4 illustrates a case in point.  On the day

counts were measured for this curve (February 20, 2001), an average outflow of nearly

7,000 vph was sustained for many minutes before an even higher flow occurred and the

bottleneck activated.  Inflows from the ramp during this time did not exceed 1,100 vph

(and evidence of this is shown later in Figure 7(a)).

Notably, Figure 5 indicates that this high flow of nearly 7,000 vph would not have

been sustained had its contribution from the on-ramp been allowed to exceed about 1,350

vph.  This indicates that metering inflows from the on-ramp can prolong higher outflows

from the merge.

                                                          
3 The observation from March 26, 2002 shows that the on-ramp surged to a rate that is slightly higher than
the fixed metering rate of 1,200 vph.  We suspect this surge might have resulted from a small number of
commuters who chose to violate the meter’s assignment of right-of-way
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Figure 5
On-ramp and downstream flows measured just before the bottleneck activations on each observation day

5. AN EXPLANATION

Further study of the measured data provided insight into the vehicular interactions that

triggered the bottleneck’s activations and the reason for the subsequent reductions in

outflow.  The findings explain why these events can be postponed by metering the on-

ramp in suitable fashion.

Namely, it appears that the bottleneck activations were caused by excessive rates

of vehicular maneuvering from the shoulder lane to the center lane at locations just

downstream of the merge.  Bursts in this lane-changing activity created vehicle slowing

near the merge and reductions in outflow.  Notably, these bursts in lane changing

coincided with surges in inflow from the on-ramp; evidently, much of this lane changing

was negotiated by drivers who had only recently merged onto the freeway from the on-

ramp and/or by other drivers overtaking them.4  So metering is apparently beneficial in

that restricting inflows from the ramp limits disruptive lane-changing downstream.

                                                          
4 Some of the on-ramp vehicles may have entered the freeway at relatively slow speeds and this would have
motivated vehicle overtaking.
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In this section, we provide a demonstration of the phenomena described above

using data taken from one of the observation days (March 15, 2001).  We begin this

presentation by showing that the bottleneck’s activation was marked by vehicle slowing

in the shoulder lane just downstream of the merge (as will be evident in Figure 6(a)) and

that this slowing soon spread to all freeway lanes (Figure 6(b)).  Following this, we will

show that the initial vehicle slowing was accompanied by reductions in outflows from the

merge and that periodic slow-downs and outflow reductions continued after the

bottleneck became active (Figure 6(c)).  Having demonstrated the link between vehicle

slowing and outflows, we then demonstrate that on-ramp surges coincided with slow-

downs (Figure 6(d)) because these surges evidently triggered excessive lane changing

downstream (Figure 6(e)).

We begin with Figure 6(a).  It displays vehicle trip times sampled over a stretch of

the shoulder lane that lies between MPs 9.1 and 9.2; (the videotaped images facilitated

trip time measurements here).  The figure presents the ratios of the actual trip times to the

average free flow trip time; the latter was estimated from samples drawn early in the

rush.5  The data are expressed as these ratios to facilitate comparisons with other lanes

and on another day (since the segment lengths used for sampling trip times changed in

each of these instances).  The ratios are plotted against the times vehicles arrived at the

upstream end of the stretch and the inter-arrival times between sampled vehicles were

only about 5-secs long.  The trip time ratios for each vehicle sampled are shown in the

figure with the thin line.  The bold line is the 30-sec moving average of these.

Figure 6(a) shows that trip times began to rise in the shoulder lane by t = 13:30,

the time previously identified (in Figure 2(a)) as marking the bottleneck's activation.

These trip times rose sharply soon thereafter and then diminished by t = 13:34, the time

when the head of the queue had moved upstream.

Slow-downs in the center and median lanes, although less dramatic, followed

close on the heels of the shoulder lane's trends, as evident in Figure 6(b).   This shows

that vehicle slowing in the shoulder lane spread quickly across the freeway.

                                                          
5 Designating the denominator of this ratio as the free flow trip time may be a misnomer; i.e., the
denominator may actually be slightly higher than the average trip time under very low flows.  This detail
would not, however, affect our diagnoses.
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Figure 6(a)
Sample Trip Times in the shoulder lane (March 15, 2001)

Figure 6(b)
Sample Trip Times in the center and median lanes (March 15, 2001)
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While the bottleneck remained active, shoulder lane slowing periodically re-

occurred downstream of the on-ramp, although to lesser extent.6  This important detail is

exemplified in the figure next presented.

Figure 6(c) displays trip time ratios in the shoulder lane (as in Figure 6(a), but for

a longer time) along with an oblique N-curve of counts departing the merge at MP 9.3

during this same period.  The figure indicates that reductions in the latter tended to

accompany rises in the former.

Figure 6(c)
Correlations between slowing and bottleneck discharge (March 15, 2001)
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bottleneck’s activation coincided with marked reductions in the flow, as highlighted with
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Moreover, the slow-downs that occurred shortly after t = 13:34 accompanied

further discharge reductions, as highlighted with the curve segments labeled 2.  And the

discharge flows eventually recovered (to an average rate of about 6,700 vph) once the

shoulder lane trip time ratios consistently fell below 2.0.  Yet even during this period,

there seems to be evidence that these trip times were negatively correlated with

bottleneck discharge; i.e., a convex trend in one was often accompanied by a concave

trend in the other, as highlighted by the curve segments labeled 3 through 6.  The slow-

downs thus appear to have had deleterious effects on outflows from the merge.

As an important aside, the data in Figure 6(c) are presented in such a way that

short-run changes in measured traffic variables are clearly visible to the eye.  Any efforts

to quantify (numerically) the correlations between two variables should be done so as not

to average-out features of interest; i.e., time intervals used for the analysis should be

small.

As an example, we denoted the shoulder lane trip time ratios as Xi for every ith

second following the bottleneck’s activation; (our time intervals were thus 1-sec long).

We set Xi equal to +1 if the value of this ratio in second i was greater than the value in

second i−1; Xi = −1, otherwise.  The analogous operation was preformed for bottleneck

discharge rates, Yi.  We then defined the index variable Zi = 1 if Xi-15 secs = -Yi; Zi = 0,

otherwise.  A 15-sec difference was used to capture the time lag in this cause and effect

relation. For March 15, 2001 (shown in Figure 6(c)), the average of these Zi was 0.60

during the first 15 minutes following the bottleneck’s activation. Thus, vehicle trip times

in the shoulder lane were negatively correlated with outflows from the bottleneck; i.e.,

greater vehicle slowing further diminished outflows.

That disruptive vehicle slow-downs were, in turn, linked to surges in the on-

ramp’s inflows seems evident from Figure 6(d).  This figure displays shoulder lane trip

time ratios along with an oblique N-curve of the on-ramp vehicles as they merged into

freeway traffic near MP 9.1.  The latter shows that, on this day, on-ramp inflows

regularly surged to about 1,200 vph.

The figure shows clear correlation between these ramp surges and the shoulder 

lane trip times.  Virtually every peak in the latter arose at or near the end times of the 

former and vertical arrows are included in Figure 6(d) to aid the reader in verifying this. 
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Figure 6(d)
Correlations between on-ramp surges and slowing downstream (March 15, 2001)

And with few exceptions, each ramp surge that followed the bottleneck’s activation

corresponded to a rise in the trip times.  Some linear approximations accompany the on-

ramp’s N-curve to highlight this.

Similar to our earlier correlation analysis of trip times and bottleneck outflows,

we again denoted the shoulder lane trip time ratios as Xi for every ith second following

the bottleneck’s activation.  We set Xi equal to +1 if the value of this ratio in second i was

greater than the value in second i−1; Xi = −1, otherwise.  The analogous operation was

preformed for on-ramp counts Yi. The index variable Zi = 1 if Xi+5 secs = Yi; Zi = 0,

otherwise.  Here a 5-sec time lag was used.

For March 15, 2001, the average of these Zi was 0.75 during the first 5 minutes

following the bottleneck’s activation, a strong correlation.  This correlation diminished

slightly as we investigated durations longer than 5 mins, but the averages of our index

variable consistently remained above 0.60.
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Figure 6(d) also shows that the bottleneck’s activation was itself accompanied by

a surge from the on-ramp.  And by referring back to Figure 2(b), the reader can verify

that this particular surge from the ramp was the first after the freeway traffic’s arrival rate

had climbed to its highest measured value (7,320 vph).

Finally, Figure 6(e) shows that the on-ramp surges tended to bring higher rates of

lane changing (departing the shoulder lane) just downstream.  An oblique N-curve of

ramp inflows is again included in this figure.  Also shown is a curve displaying the net

lane changing of interest; i.e., its slopes are the net egress rates from the shoulder lane

between MPs 9.1 and 9.3.  (Negative slopes on this curve mark periods with net

movements into the shoulder lane).

Figure 6(e)
Correlations between on-ramp inflows and lane changing downstream (March 15, 2001)

The lane-changing rates displayed in Figure 6(e) were estimated using N-curves
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markedly and the two periods shown in this figure are instances of this.7  By shifting the

upstream N-curve for one such period forward by the average trip time between the MPs,

the rates of (vertical) divergence between it and its downstream counterpart can be taken

as approximations of the net lane-changing rates (Mauch and Cassidy, 2001).  A thin line

is used in Figure 6(e) to display these rates of divergence.  The bold line shows their 10-

sec moving averages.

The on-ramp inflows shown in Figure 6(e) tend to display positive correlation

with the net lane-changing rates.  A convex (or a concave) trend in one is often

accompanied by the same trend in the other.  Smooth curve segments have been added to

Figure 6(e) to aid the reader in seeing these coinciding trends.

It thus appears that disruptive lane changing (and the outflow reductions that

evidently result) can be mitigated by metering the on-ramp to restrict inflow surges from

there.  These findings are further supported in the following section using data from a

different observation day.

6. SOME ADDITIONAL OBSERVATIONS

The data presented in this section came from another observation day (February 20,

2001).  They are presented, in part, to confirm certain causal links identified in the

previous section.  Namely, we will use Figure 7(a) to verify apparent links between

vehicle slow-downs and inflow surges from the on-ramp.  Figure 7(b) will then be used to

demonstrate links between this vehicle slowing and reductions in outflow form the

merge.  Further inspection of these figures will suggest that on-ramp metering, if

sufficiently restrictive, can increase queue discharge flows from the merge even after the

bottleneck there has become active.

Figure 7(a) presents the oblique N-curve of the on-ramp counts together with the

shoulder lane’s trip time ratios (just downstream) for a 30-min period during the rush.

On this day, the bottleneck activated at t = 14:45:30 (and this can be verified by referring

back to Figure 3(a)).  Figure 7(a) shows that prior to this activation, the peaks in the trip

times closely correspond to the ending times of surges from the on-ramp; vertical arrows

                                                          
7 The reader can use figure 6(c) to confirm that the period from t = 13:37 to t = 13:44 was marked by
relatively small peaks in the shoulder lane trip time ratios.
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Figure 7(a)
Correlations between on-ramp surges and slowing downstream (February 20, 2001)

are included in the figure to highlight this.6   The figure also shows that the bottleneck’s

activation was accompanied by a prolonged increase in ramp inflow and a marked rise in

the trip times.  The latter receded by t = 14:48, although ratios remained well above 1.0

for some minutes thereafter.

At t = 14:54:30, a rapid sequence of two inflow surges from the ramp caused trip

times to rise (and display two pronounced peaks).  But notably, these were followed by a

sequence of three periods, each of about 30-secs in duration, whereby ramp inflows were

completely halted.  Consequently, the trip times diminished downstream; (these ratios

were below those observed while the bottleneck was active for the day shown in the

previous section).  With this vehicle slowing all but eliminated, an eventual surge in ramp

                                                          
6 Although the time scale used to display the curves in Figure 7(a) makes it difficult at times to verify by
eye, similar correlations between trip times and ramp surges were also evident after the bottleneck’s
activation.
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inflow (at t = 15:01:30) did not cause trip times to rise; they actually dropped slightly,

such that ratios nearly returned to 1.0.

Figure 7(b) presents both the shoulder lane’s trip time ratios and an oblique N-

curve of counts departing the merge at MP 9.3.  The figure shows that, at t = 14:47, the

peak in trip times (brought by the bottleneck’s activation) caused outflows from the

merge to drop to 6,130 vph.  And the later rise in trip times at t = 14:54:30 caused

discharge flows to drop even further to 5,680 vph.  Discharge rates began to recover just

after t = 14:56, the time when the ramp inflows were first halted.  Moreover, the highest

of these recovery discharge flows (6,540 vph) corresponded to the 5-min period when

shoulder lane trip time ratios returned nearly to 1.0.

 Thus, the ramp metering on this day was rather restrictive; it included brief

periods when inflows from the on-ramp were halted.  This evidently served to increase

queue discharge flows from the merge bottleneck.  Some final thoughts are offered in the

following section.

Figure 7(b)
Correlations between slowing and bottleneck discharge (February 20, 2001)
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7. CONCLUSIONS

The work has shown that the outflows from the freeway merge studied here diminished

once the site became an active bottleneck.  This finding is consistent with previous

observations at other freeway merge bottlenecks (Cassidy and Bertini, 1999) and it

underscores the potential value of postponing a bottleneck’s activation.  It is thus

fortuitous that the six days studied in the present research indicate that sufficiently

restrictive on-ramp metering can forestall this bottleneck’s activations and the resulting

reductions in its outflow (or capacity).

It appears that the key to these postponements stem from vehicle lane-changing

maneuvers made just downstream of the merge.  By restricting surges in inflows from the

ramp, metering evidently limits these lane changes and their disruptive effects.  It seems

that damping high flows from the on-ramp even promotes higher queue discharge flows

after this bottleneck has activated.

The present findings indicate that metering the on-ramp to the merge studied here

actually helps to increase outflows from this merge.  Higher such outflows mean

diminished commuter delays; (the reader can refer to section 3 of Cassidy, 2002 for

discussion of this).

In designing a specific metering scheme, one need consider local conditions on

the freeway where the scheme is to serve.  Key considerations include the demands at the

on-ramps and the space available there for storing queued vehicles.  Evidence that

sufficiently restrictive metering can increase the capacity of a merge bottleneck would be

important to factor into the design process as well.   Of course, determining the extent to

which the present findings hold at other freeway merge areas will require observations at

other sites.
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