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Abstract of the Dissertation

Hechler forcing and its relatives

by

Justin Thomas Palumbo

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2013

Professor Itay Neeman, Chair

This thesis is divided into two main parts. In the first part, we focus on analyzing

the properties of the single step extension of V via Hechler forcing D, as well as

two closely related forcing notions which we refer to as the tree Hechler forcing

Dtree and the non-decreasing Hechler forcing Dnd.

In Section 2 we prove (jointly with Itay Neeman) that D and Dnd are actually

equivalent as forcing notions. This resolves an open question dating back at least

as far as 1992 ([BJS92]). We also prove that D and Dtree are distinct forcing

notions, one consequence of which is the disproof of a conjecture of Brendle and

Löwe (Conjecture 15 of [BL11]) stating that every subextension of a Hechler

extension is either a Cohen extension or a Hechler extension.

We distinguish D and Dtree by proving two theorems about the asymptotic

relationship between dominating reals and unbounded reals in the two extensions.

In Section 3 we prove that in the extension by Dtree for every unbounded real x

there is some real which is dominating over V but does not dominate x. In Section

4 we prove that this is not the case for D, and construct an unbounded real in the

Hechler extension which is dominated by every dominating real. To prove this

last result we prove a representation theorem about the dominating reals in the
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Hechler extension given by a Hechler real d: we show that for any dominating

real y ∈ V [d] there are monotonically non-decreasing z0, z1 ∈ V ∩ωω which go to

infinity so that y dominates z0 ◦d◦z1. Since any real of the form z0 ◦d◦z1 is itself

dominating, this shows that in an appropriate sense d asymptotically generates

all of the dominating reals in V [d]. This theorem allows us to answer a question

of Laflamme [Laf94] about the asymptotic structure of bounded subsets of ωω.

In Section 5 we will prove the existence of a forcing extension which adds a

dominating real, but does not contain any dominating real asymptotically gen-

erating the others. (To allow for the case where the ground model satisfies CH

the argument we give — joint with Itay Neeman — will use large cardinals. We

conjecture this shouldn’t be necessary.)

In Section 6 under large cardinal hypotheses we confirm a conjecture of Bren-

dle and Löwe (Conjecture 14 of [BL11]), which states that any subextension of the

Hechler extension adds a dominating real or is equivalent to a Cohen extension.

In Section 7 we prove that the product of any two forcing notions which add

a dominating real adds a Hechler real. This strengthens an unpublished result of

Goldstern’s stating that the product of any two forcings which add a dominating

real adds a Cohen real.

In Section 8 we prove that every nontrivial subextension of the Hechler ex-

tension contains a real which is Cohen over V . Under large cardinal hypotheses

there is a proof of this fact (which we sketch) that falls very quickly out of work

of Shelah [GS93], and is likely folklore. Our main argument goes through in ZFC.

In Section 9 we construct an example of a subiteration of a well-founded

non-linear iteration of Hechler forcing which does not completely embed into

the full iteration. We discuss a problem involving cardinal characteristics of the

continuum which motivates this example.
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In the second part of the thesis, we study the interaction of polychromatic

Ramsey theory and monochromatic Ramsey theory in a variety of settings. The

main theme of our work in this part is that the monochromatic theory is strictly

stronger than the polychromatic theory. We begin in Section 11 by looking at

the rainbow Ramsey theorem as a choice principle over the theory ZF. We prove

that some amount of choice is necessary to prove the rainbow Ramsey theorem.

We also prove that the rainbow Ramsey theorem is not sufficiently strong as a

choice principle to imply Ramsey’s theorem, and we do this by showing that the

rainbow Ramsey theorem holds in Cohen’s standard model for the failure of AC.

This entails proving that in the Cohen model every non-well-orderable set has

an infinite subset bijecting with a subset of the adjoined Cohen reals. This fact

is an analogue of a corresponding property of the Fraenkel model, due to Blass

[Bla77] and may be of independent interest.

In Section 12 we prove a result (joint with Anush Tserunyan) which shows

that rainbow Ramsey flavored infinite exponent partition relations conflict with

the axiom of choice. This may be viewed as a generalization of the classical result

of Erdös and Rado which says that under the axiom of choice Ramsey’s theorem

fails for infinite exponent partitions (Proposition 7.1 of [Kan03].)

In Section 13 we investigate the (countable) combinatorial power of the rain-

bow Ramsey theorem; to accomplish this we introduce rainbow Ramsey ultrafil-

ters, a polychromatic analogue of the classical Ramsey ultrafilters. Every Ram-

sey ultrafilter is a rainbow Ramsey ultrafilter, yet consistently there are rainbow

Ramsey ultrafilters which are not Ramsey. Thus in the context of ultrafilters

the polychromatic theory is weaker. We will investigate the relationship between

rainbow Ramsey ultrafilters and other well-known types of special ultrafilters

which encapsulate various combinatorial principles on ω. Ramsey’s theorem is
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sufficiently strong as a combinatorial principle so that any Ramsey ultrafilter falls

into one of these special types; this is not so for the rainbow Ramsey theorem.

Constructing ultrafilters which are rainbow Ramsey but fail to have some

other property requires building polychromatic sets with various special prop-

erties, properties for which one cannot generally find monochromatic sets. For

example, we will (assuming MA) construct a rainbow Ramsey ultrafilter which

is not rapid. To do this we must be able to build polychromatic sets whose

enumerating functions do not grow too fast; the monochromatic theory is strong

enough to enforce fast growth while the polychromatic theory is not. In a similar

vein we will construct a rainbow Ramsey ultrafilter which is not discrete. This

requires building polychromatic subsets of Q which have high Cantor-Bendixson

rank, something not in general possible in the monochromatic theory. However

we will prove that every rainbow Ramsey ultrafilter is nowhere dense. One as-

pect of the proof involves showing that there are 2-bounded colorings for which

polychromatic sets are necessarily nowhere dense. We also show that there may

exist weakly selective ultrafilters which are not rainbow Ramsey.

We close the section on rainbow Ramsey ultrafilters by showing that, unlike

any other class of special ultrafilters considered in the literature (that we are

aware of), the class of rainbow Ramsey ultrafilters is not closed downward under

the Rudin-Blass order.

Finally, in Section 14 we give several cardinal characteristics of the continuum

new characterizations in the spirit of polychromatic Ramsey theory.
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1 Introduction

In this part of the thesis we study Hechler forcing and its variants. Hechler forcing

is the most basic method for adding a dominating real to the universe, a tech-

nique which is now ubiquitous in the study of the set theory of the reals. Three

variations of Hechler forcing have been considered in the literature. Notationally

little distinction has been made between them; all three have been commonly

referred to as Hechler forcing and designated by the symbol D. In this paper we

refer to them in words as the original Hechler forcing, the non-decreasing Hechler

forcing and the tree Hechler forcing and symbolically we use D, Dnd and Dtree,

respectively.

Brendle, Judah and Shelah [BJS92] used a rank analysis of Dnd originally due

to Baumgartner and Dordal [BD85] to analyze the combinatorial consequences

of forcing with Dnd. They showed that in V Dnd there is a MAD family of size ω1

and a Luzin set of size 2ω. The existence of the latter implies that non(M) = ω1

and cov(M) = 2ω and thus completely determines Cichoń’s diagram of cardinal

characteristics. They also showed how one can modify the rank analysis of Dnd

to analyze D and prove that such objects exist in V D as well. There is also a rank

analysis for Dtree (see the definitions just before Theorem 12 in [BL11].) The rank

analysis for Dtree is simpler than for either D or Dnd and it is not hard to see that

the same Brendle, Judah and Shelah arguments go through for V Dtree as well.

Not only do all three forcings have the same effect on the standard cardinal

characteristics of the continuum, but as we will see it is not difficult to prove

that forcing with any one of them produces a generic for each of the others. It is

only natural then to ask if all three forcings are in fact the same. In this paper

we will show that while D and Dnd are equivalent from the forcing point of view

(and thus we may safely use the term Hechler forcing for both), Dtree is different.
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To accomplish this we compare the unbounded and dominating reals in V D and

V Dtree and prove two results distinguishing the asymptotics of dominating and

unbounded reals in the two extensions.

Theorem 1.1. Let d a be Dtree-generic real over V . Then for any unbounded

real x ∈ ωω ∩ V [d] there is some dominating real y ∈ ωω ∩ V [d] so that x is not

eventually dominated by y.

Theorem 1.2. Let d be a D-generic real over V . Then there is an unbounded

real x ∈ ωω ∩ V [d] so that for every dominating real y ∈ ωω ∩ V [d] we have that

x is eventually dominated by y.

Thus the two forcings are not equivalent. We will derive Theorem 1.2 from the

following theorem, which we consider the main result of this part of the thesis.

Let ω↗ω denote the set of all monotonically nondecreasing members of ωω which

limit to infinity. Note that whenever y is a dominating real and z ∈ V ∩ ω↗ω

then z ◦y and y ◦ z are also dominating. The next result shows that when adding

a Hechler real this is in some sense the only way to get dominating reals.

Theorem 1.3. Let d be a Dnd-generic real over V and let y ∈ ωω ∩ V [d] be

dominating. Then there are z0, z1 ∈ V ∩ ω↗ω so that y eventually dominates

z0 ◦ d ◦ z1.

In the later sections in this part of the thesis we will examine issues related to

the notion of subforcing. We will prove that under large cardinals any non-trivial

non-Cohen subextension of a Hechler extension adds a dominating real. We will

also show that the product of any two forcing notions which add a dominating

real must add a Hechler real and that any non-trivial subextension of a Hechler

extension contains a Cohen real.
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Our notation and terminology are mostly standard. We use ωω to refer to the

set of all functions on the natural numbers, and often we will call elements of ωω

reals. We use ≤∗ to refer to the preorder of eventual domination on ωω. This

means that we have

x ≤∗ y ⇔ (∀∞n)x(n) ≤ y(n).

A dominating real in a generic extension is a real y ∈ ωω for which for all

f ∈ V ∩ ωω we have f ≤∗ y. An unbounded real in a generic extension is a

real x ∈ ωω for which for all f ∈ V ∩ ωω we have x 6≤∗ f .

We use C to denote Cohen forcing, whose conditions we will take to come

from either 2<ω or ω<ω as the situation demands. When P is a ccc notion of

forcing we abuse notation somewhat and let V P∩ωω denote the collection of nice

names for reals. For two forcing notions P and Q we will use P ≡ Q to denote

forcing equivalence which means 1) for any G a P-generic filter over V there is

some H ∈ V [G] which is a Q-generic filter over V and for which V [G] = V [H]

and 2) vice versa: for any H a Q-generic filter over V there is some G ∈ V [H]

which is a P-generic filter over V and for which V [G] = V [H].

Our main reference both for forcing and for set theory in general is Kunen’s

text [Kun83]. For forcing as it relates to the set theory of the reals in particular

we refer the reader to the monograph [BJ95].

2 Notions of Hechler forcing

In this section we introduce Hechler forcing and the variations which we will be

studying in the rest of this part of the thesis. We will also prove that D and Dnd

are forcing equivalent. All three forcing notions are σ-centered partial orderings

adding a dominating real, and each consists of two parts: a stem giving a finite
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approximation of the real being added, and a commitment restricting the possible

values the real may take beyond the stem.

We start with the definition of Hechler forcing.

Definition 2.1. Hechler forcing is the forcing notion D defined as follows. Con-

ditions p in D are pairs p = 〈s, f〉 where s ∈ ω<ω and f ∈ ωω. We call s the stem

of p and write s = stem(p). We refer to f as the commitment of p. The ordering

on D is given by

〈s′, f ′〉 ≤ 〈s, f〉 ⇔ s ⊆ s′, (∀n)f(n) ≤ f ′(n) and (∀n ∈ |s′| \ |s|)f(n) ≤ s′(n).

Notice that D is ccc and furthermore that it is σ-centered. By partitioning the

elements of D based on their stems we arrive at a decomposition D =
⋃
n<ω Pn

so that any finitely many conditions in Pn are mutually compatible.

Suppose that G ⊆ D is a generic filter. Defining d =
⋃
{s : 〈s, f〉 ∈ G} yields

a dominating real. (The term ‘dominate’ is the reason for the symbol D used to

denote Hechler forcing. In some of the older literature ‘Hechler forcing’ is instead

referred to as ‘dominating forcing’.) Given such a d defined from G, we may

in turn define G from d as the collection of all 〈s, f〉 ∈ D such that s ⊆ d and

(∀n)f(n) ≤ d(n). Any real from which a D-generic filter can be so defined is

referred to as a D-generic real, or a Hechler real. Similar terminology will apply

to the variants of Hechler forcing that we define later on.

Hechler forcing was introduced by Hechler in [Hec74] to analyze the structure

of cofinal subsets of (ωω,≤∗). In that paper Hechler used nonlinear iterations of D

to prove that for any σ-directed partially ordered set P there is a generic extension

in which P is isomorphic to a cofinal subset of (ωω,≤∗). These iterations will be

described in Section 9.

The following theorem of Truss shows that D is fundamental amongst those
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forcing notions which add a dominating real: adding a Cohen real over a model

that contains a dominating real will always produce a Hechler real over the ground

model.

Theorem 2.2 (Truss, [Tru77]). Suppose that d is a dominating real over V , and

c ∈ ωω is a real which is C-generic over V [d]. Then d+ c is D-generic over V .

The first variant of Hechler forcing we consider is the following.

Definition 2.3 (Baumgartner and Dordal, [BD85]). Non-decreasing Hechler

forcing Dnd is the subposet of D consisting of conditions p whose stem is mono-

tonically nondecreasing as a sequence of natural numbers.

The non-decreasing Hechler forcing was first used by Baumgartner and Dordal

in [BD85] where among other things they showed that by iterating Dnd over a

model of CH one obtains a model where the splitting number s is strictly less

than the bounding number b. By work of Judah and Shelah [IS88] the same holds

for the iteration of any Suslin ccc forcing notion adding a dominating real. We

will discuss this in Section 9.

Though the difference in the definitions of D and Dnd is slight and one often

appears in arguments where the other would serve just as well, the two have

occasionally been treated as separate entities, as in [BJS92]. Intuitively there

should be little difference but whether the two are actually equivalent was an

open question. See for example the discussion after definition 3.1.9 in [BJ95].

The two forcing extensions are in fact the same. This theorem is joint with

Itay Neeman.

Theorem 2.4. D ≡ Dnd.

6



Proof. The proof comes in two steps. First we will prove that Dnd ∗ C ≡ D, and

then we will prove that Dnd ∗ C ≡ Dnd.

Suppose d is a D-generic real over V . Define the real dnd by

dnd(n) = min{d(k) : k ≥ n}.

Then dnd is a Dnd-generic real over V . Let d′ = d − dnd. Now while d′ is a

Cohen real over V it is not quite true that it is Cohen over V [dnd]. This is

because whenever dnd(n) 6= dnd(n + 1) we have d(n) = dnd(n). But this is the

only barrier. Let A be the set {n : dnd(n) = dnd(n + 1)}. Then d′ � A is a

Cohen real over V [d] (where for Cohen forcing we use the forcing consisting of

sequences of natural numbers with domain a finite subset of A.) Furthermore

V [d] = V [dnd][d′ � A].

Going the other way, suppose d0 is a Dnd-generic real over V . Let A be the

set {n : d0(n) = d0(n + 1)} and suppose c is generic over V [d0] for the forcing

consisting of sequences of natural numbers with domain a finite subset of A.

Letting c0 agree with c on A and take the value 0 outside of A, we have that

d = d0 + c0 is a D-generic real. Since d0 = dnd we have V [d] = V [d0][c]. Thus

Dnd ∗ C ≡ D.

It remains to show Dnd ∗ C ≡ Dnd. Towards that end suppose that d is a

Dnd-generic real over V . Let {rk : k ∈ ω} ⊆ ω enumerate the range of d in

increasing order. Let Ik(d) be the interval on which d takes value rk. Let c ∈ 2ω

be defined so that c(k) is equal to the parity of the length of the interval Ik(d).

We define d0 to be the nondecreasing real with the same range as d but for which

Ik(d0) has half the length (rounded up) of Ik(d). Then it is straightforward to

check that d0 is a Dnd-generic real and that c is a Cohen real over V [d0]. Also

V [d] = V [d0][c].

This process is reversible. Given a Dnd-generic real d0 and a Cohen real c ∈ 2ω

7



let d be the nondecreasing real with the same range as d0 and for which the length

of Ik(d) is equal to twice the length of Ik(d0) minus c(k). Then d is D-generic

over V and V [d] = V [d0][c]. This completes the proof.

The next variant of Hechler forcing is the tree Hechler forcing. The tree

Hechler forcing Dtree is a special case of the forcings made up of trees branching

into a filter that were considered by Groszek [Gro87]. The forcing Dtree has only

been isolated relatively recently in the literature. For example it was used by

Brendle and Löwe [BL11] to obtain by iteration a model where ∆1
2(D) holds and

∆1
2(E) fails.

Definition 2.5. The tree Hechler forcing Dtree is the poset whose conditions are

trees T ⊆ ω<ω with a distinguished stem s = stem(T ) so that for all t in T

either s extends t or t extends s and so that whenever t in T extends s we have

(∀∞n)t a n ∈ T . The forcing is ordered by inclusion: T ′ ≤ T exactly when

T ′ ⊆ T .

Note that the set of conditions T ∈ Dtree in which each s ∈ T is eventually

strictly increasing is a dense subforcing of Dtree. The collection of T ∈ Dtree with

all s ∈ T strictly increasing is forcing equivalent to Dtree and we may identify the

two forcing notions as necessary.

Now we compare the forcings D and Dtree. The next proposition shows that

each is a subforcing of the other.

Proposition 2.6. Forcing with Dtree adds a D-generic real, and forcing with D

adds a Dtree-generic real.

Proof. That forcing with D adds a Dtree-generic real was observed by Brendle and

Löwe in [BL11]. Given d a D-generic real let N ∈ ω be such that N ≤ n implies
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n < d(n). Define d′ by setting d′(n) = d(n) for n ≤ N and recursively setting

d′(n+ 1) = d(d′(n)) for N ≤ n. Then d′ is a Dtree-generic real over V .

For the other direction let d be a Dtree-generic real over V . Take d′ to be

defined by letting d′(n) take the value of half that of d(n), rounded down. It

is not difficult to check that d′ is also a tree Hechler real over V . Now define

c ∈ 2ω by setting c(n) equal to the parity of d(n). Then c is Cohen over V [d′].

By Truss’s theorem d′ + c is D-generic over V .

We will show that D and Dtree are not forcing equivalent, despite the fact that

each of the two forcings adds a generic real for the other. Thus these forcings

witness the failure of a natural Cantor-Bernstein theorem for forcing notions.

Following our result another such example was produced by Joel David Hamkins,

based on a conversation with Arthur Apter. If one takes P to be the forcing to

add a Cohen subset of ω2 and S to be the forcing to add a stationary nonreflecting

subset of ω2, then together P and P ∗ S give such an example. The reader may

find more details at [Ham].

We now give some notation and terminology for stems consistent with that

introduced in [BL11]. We will be using the same terminology for D and Dtree;

which forcing notion we mean will be clear from context.

First we consider D (and Dnd.) For a condition p = 〈s, f〉 and t ∈ ω<ω we

write t ≤ p to mean

s ⊆ t and (∀n ∈ |t| \ |s|)t(n) ≥ f(n).

We say that s ∈ ω<ω forces a formula ϕ if there exists some commitment f for

which 〈s, f〉 
 φ. Let A ⊆ ω<ω. We will say that s favors A if for every choice of

commitment f there is some t ∈ A so that t ≤ 〈s, f〉. We say that s favors ϕ if s

favors the set {t ∈ ω<ω : t forces ϕ}. Notice that s favors ϕ exactly when s does
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not force ¬ϕ.

Our terminology for Dtree is similar. We write t ≤ T to mean stem(T ) ⊆ t and

t ∈ T . We say s forces ϕ when there is T ∈ Dtree with stem(T ) = s and T 
 ϕ.

We say that s favors A if for every T ∈ D with stem(T ) = s there is t ≤ T with

t ∈ A. When T ∈ Dtree and stem(T ) ⊆ t, write Tt for the tree with stem(Tt) = t

containing exactly the initial segments of t and the extensions of t in T .

Since any two conditions with the same stem are compatible any condition

with stem forcing ϕ may be strengthened to a condition forcing ϕ.

3 Unbounded and dominating reals in the tree Hechler

extension

Our goal in this section is to prove Theorem 1.1. The following easy proposition

characterizing the unbounded reals in a generic extension gives the motivation

for our method. We leave the proof to the reader.

Proposition 3.1. Let P be an arbitrary notion of forcing, and let ẋ ∈ V P ∩ ωω.

Then


P “ẋ is unbounded”⇐⇒ (∀p ∈ P)(∃∞n)(∀i)p 6
 ẋ(n) ≤ i.

In order to prove Theorem 1.1 we give a strengthening of Proposition 3.1 for

the case where P = Dtree. We give a characterization of the unbounded reals in

the tree Hechler extension expressed using stems rather than outright conditions.

Lemma 3.2. Fix ẋ ∈ V Dtree . Set A = {t ∈ ω<ω|(∃n ≥ |t|)(∀i)t favors i < ẋ(n)}.

Then


Dtree “ẋ is unbounded”⇐⇒ every s ∈ ω<ω favors A.
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Proof. First we go from right to left. Let z be a real in the ground model.

Suppose for contradiction that there is some T 
Dtree (∀n ≥ N)ẋ(n) ≤ z(n).

By strengthening T as necessary we may assume that s = stem(T ) has length

greater than N . Since s favors A by further strengthening T if necessary we may

assume that s belongs to A. But now there is some n ≥ |s| ≥ N so that (∀i) s

favors i < ẋ(n). Take i = z(n). We may extend T to T ′ with stem(T ′) forcing

z(n) < ẋ(n). That is a contradiction.

The left to right implication is more involved. We argue by contrapositive.

Suppose there is some s which does not favor A. Then we can find a tree T

with stem(T ) = s for which t ≤ T implies t 6∈ A. To simplify notation we will

assume that stem(T ) = ∅ and T = ω<ω; the simplification does little to change

the argument.

Now by assumption, every s ∈ ω<ω fails to belong to A. That means there is

a function v : ω<ω × ω → ω, and for every s and n with n ≥ |s| some tree T s,n

with stem(T s,n) = s such that

T s,n 
 ẋ(n) ≤ v(s, n).

Claim 1. There exists U ∈ Dtree with stem(U) = ∅ such that

(∀s ≤ U)(∀n ≥ |s|)(∀∞m)Usam ⊆ T s,n.

Proof of Claim 1. We use a fusion argument. We define a sequence of trees

{U l|l ∈ ω} such that

1. stem(U l) = ∅, U l+1 ⊆ U l

2. l < j, s ∈ U l with |s| ≤ l implies s ∈ U j

3. for all s ∈ U l+1 with |s| = l we have (∀n)(∀∞m)U l+1
sam ⊆ T s,n.
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Then we can take U = ∩l<ωU l. Start with U0 = ω<ω. Supposing U l is defined,

let s ∈ U l with |s| = l. For each n ≥ |s| there is some i(n) so that m ≥ i(n)

implies s a m ∈ T s,n. Then define U l+1
sam to be the intersection of U l

sam with each

T s,n for n, i(n) ≤ m. Then m ≥ i(n), n will imply U l+1
sam ⊆ T s,n.

Now fix U as in the claim and let c : ω<ω × ω → ω be such that

(∀s ≤ U)(∀n ≥ |s|)(∀m ≥ c(s, n))Usam ⊆ T s,n.

By further extending U we may assume that for every s ∈ ω<ω, we have that

Us ⊆ T s,n whenever n ≤ max(ran(s)).

Define f ∈ ωω so that whenever |s|,max(ran(s)) ≤ n and m < c(s, n) we

have v(s a m,n) ≤ f(n). Let g ∈ ωω be such that v(s, n) ≤ g(n) whenever

|s|,max(ran(s)) ≤ n. We claim U 
 ẋ ≤∗ max(f, g).

We work now in an arbitrary generic extension V [G] with U ∈ G. Let d be

the corresponding tree Hechler real. Then G is exactly the set of members of

Dtree through which d is a branch and in particular Ud�k ∈ G for all k. Let x be

the evaluation of ẋ via G. Let n ∈ ω with d(k) < n ≤ d(k + 1). For sufficiently

large k we have k ≤ d(k) so by taking n sufficiently large we may assume that

k < n. We show x(n) ≤ max{f(n), g(n)}.

Claim 2. x(n) ≤ v(d � k + 2, n).

Proof of Claim 2. This is because T d�k+2,n belongs to G, which follows from our

assumption that Us ⊆ T s,n whenever n ≤ max(ran(s)).

Now we split into two cases. In the first case, if T d�k+1,n belongs to G then

x(n) ≤ v(d � k + 1, n) ≤ g(n). In the second case, if T d�k+1,n 6∈ G then we

claim that v(d � k + 2, n) ≤ f(n) which by Claim 2 will give x(n) ≤ f(n). Since
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T d�k+1,n 6∈ G it follows that Ud�k+2 6⊆ T d�k+1,n (because Ud�k+2 ∈ G.) It follows

by definition of c that d(k + 1) < c(d � k + 1, n). Then the definition of f gives

v(d � k + 2, n) ≤ f(n) as required.

Armed with Lemma 3.2 we can prove Theorem 1.1.

Proof of Theorem 1.1. Fix ẋ ∈ V Dtree ∩ ωω with 
 “ẋ is unbounded”. Taking A

as in Lemma 3.2 we know that every s ∈ ω<ω favors A. Let φ : A → ω satisfy

φ(t) ≥ |t| and

(∀i)t favors i < ẋ(φ(t)).

We let d be a tree Hechler real over V and work in V [d].

Define d′ by

d′(k) =

 d(n) where n is least such that k = φ(d � n), if such an n exists

d(k) if no such n exists

Claim 1. 
 d′ is dominating.

Proof of Claim 1. For any ground model real f and any T ∈ D we can extend

to T ′ with stem(T ) = stem(T ′) such that stem(T ′) ⊆ s and s a m ∈ T ′ implies

m ≥ f(φ(s)).

Now observe that if s favors ϕ then (∃∞m)s a m favors ϕ. This allows us to

define z ∈ V ∩ ω↗ω such that

(∀s ∈ A)(∃∞m)s a m favors ẋ(φ(s)) ≥ z(m).

Then, because z belongs to the ground model it follows that z ◦ d′ is dominating.

Thus the theorem will be proved given the following claim.

Claim 2. 
 (∃∞k)z(d′(k)) ≤ ẋ(k).
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Proof of Claim 2. Fix N and T . We want to find k ≥ N and U ≤ T such that

U 
 z(d′(k)) ≤ ẋ(k). Let s = stem(T ). We may assume that |s| ≥ N and that

j ≥ i ≥ |s| implies d(i) ≤ d(j). Since s favors A we may also assume that s ∈ A.

Now pick m such that s a m ∈ T and s a m favors ẋ(φ(s)) ≥ z(m). Since

s a m ∈ T there is some U ≤ T such that stem(U) = s a m and also

U 
 ẋ(φ(s))) ≥ z(m).

Now taking l = |s| we have

U 
 ẋ(φ(d � l)) = ẋ(φ(s)) ≥ z(m) = z(d(l)) ≥ z(d′(φ(d � l)).

And φ(d � l) ≥ l ≥ N . So k = φ(d � l) satisfies the claim. (We’ve implicitly used

the assumption that d is strictly increasing but this assumption does no harm,

since as was earlier remarked the collection of T ∈ Dtree with all s ∈ T strictly

increasing is forcing equivalent to Dtree.)

4 Unbounded and dominating reals in the standard Hech-

ler extension

4.1 Proof of Theorem 3

Our objective in this section is to prove Theorem 1.3. Let us note that although

we have seen that D and Dnd are equivalent as forcing notions, nonetheless the

direct analogue of Theorem 1.3 for D is not true. For example, suppose that d is

a D-generic real and let d0 ∈ V [d] ∩ ωω satisfy

(∀n)d0(2n) = d0(2n+ 1) = min{d(2n), d(2n+ 1)}.
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Then d0 is a dominating real but for any z0, z1 ∈ V ∩ω↗ω we have z0◦d◦z1 6≤∗ d0.

Therefore we will exclusively be working with the poset Dnd and thus we

will only be concerned with stems s which are nondecreasing. For the rest of

this section when we refer to finite sequences of naturals we shall always mean

nondecreasing ones, even when not explicitly stated. Let ω↗<ω be the collection

of such sequences, and let ω↗m be the collection of nondecreasing sequences of

naturals of length m.

To motivate we start with the following simple proposition about dominating

reals in V Dnd .

Proposition 4.1. Let ẏ ∈ V Dnd ∩ ωω and let A be the subset of ω<ω given by

A = {t|(∀∞n)(∀i)t forces i ≤ ẏ(n)}. Then


Dnd
“ẏ is dominating ” =⇒ every s favors A.

Proof. Argue by contrapositive; if some s does not favor A then we can find some

f ∈ ωω such that t ≤ 〈s, f〉 implies t 6∈ A. For each such t we have (∃∞n)(∃i)t

favors ẏ(n) < i. This allows us to define a function z ∈ ωω so that for each t 6∈ A

we have (∃∞n)t favors ẏ(n) < z(n). Thus

〈s, f〉 
 (∃∞n)ẏ(n) < z(n).

We have 6
Dnd
“ẏ is dominating ”, as desired.

For the rest of this section we let ẏ ∈ V Dnd ∩ ωω and take A to be defined as

in Proposition 4.1. Let φ : A → ω be defined so that that φ(s) equals the least

N such that

(∀n ≥ N)(∀i)s forces i ≤ ẏ(n).

We extend φ to a function φ : ω↗<ω → ω ∪ {∞} by letting φ(s) = ∞ when no

such N exists.
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Our strategy for characterizing when ẏ is a dominating real is to analyze the

growth of the function φ. Supposing for example that ẏ were of the form z0◦ ḋ◦z1

for some z0, z1 ∈ ω↗ω, it is not hard to see we would have that φ(s) is a function

of the length of s. It turns out that this is essentially an exact characterization

of the dominating reals.

Definition 4.2. Fix q ∈ D. We say that φ is length bounded below q if there is

some function ψ ∈ ωω so that whenever s ≤ q we have φ(s) ≤ ψ(|s|).

We are now ready to give several characterizations of the dominating reals in

V Dnd . Let B ⊆ ω↗<ω be the collection

{s|(∃m)(∃{tl : l ∈ ω} ⊆ ω↗m) lim
l<ω

tl(0) =∞ and lim
l<ω

φ(s a tl) =∞}.

The definition of B is motivated in part by the Baumgartner-Dordal rank analysis

of Dnd. For someone hoping that φ is everywhere length bounded B is a bad set

and in order for ẏ to be a dominating real we must mostly be able to avoid it.

Lemma 4.3. The following are equivalent:

1. 
 “ẏ is dominating”

2. (∀p)(∃q ≤ p)(∀t ≤ q)t 6∈ B.

3. (∀p)(∃q ≤ p) φ is length bounded below q.

4. (∀p)(∃q ≤ p)(∃z0, z1 ∈ ω↗ω)q 
 z0 ◦ ḋ ◦ z1 ≤∗ ẏ.

Notice that (1) implies (4) gives Theorem 1.3.

Proof. That (4) implies (1) is clear.
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We show (1) implies (2). For each s ∈ B fix a witnessing sequence {tsl : l ∈ ω}.

Then we may define a function z ∈ ωω such that

(∀s ∈ B)(∀N)(∃n, l > N)s a tsl favors ẏ(n) < z(n).

Suppose now that (2) failed and there was some p so that (∀q ≤ p)(∃s ≤ q)s ∈ B.

We claim that

p 
 (∃∞n)ẏ(n) < z(n).

If not then there is some q ≤ p with q 
 (∀n ≥ N0)z(n) ≤ ẏ(n). Write

q = 〈t, f〉. There is s ∈ B with s ≤ q. Since s ∈ B we may take l, n ∈ ω so

that s a tsl favors ẏ(n) < z(n) and l, n are large enough that n ≥ N0, s a tsl ≤ q.

Since s a tsl favors ẏ(n) < z(n) we may further extend q to force ẏ(n) < z(n), a

contradiction.

Next we show that (2) implies (3). Fix a condition p ∈ Dnd. Taking q ≤ p

as given by (2), write q = 〈s, f〉. We will define an r ≤ q so that φ is length

bounded below r. In particular we construct functions ψ, f ′ ∈ ωω such that

s a t ≤ 〈s,max{f, f ′}〉 implies φ(s a t) ≤ ψ(|s a t|). Start by setting ψ(|s|)

equal to φ(s). Before we proceed further let us note that when t 6∈ B it follows

that for every m there is some N,L so that if t ∈ ω↗m with t(0) ≥ L then

φ(s a t) ≤ N .

Fix m ∈ ω. We define ψ(|s|+m+1), f ′(|s|+m). To do so we recursively define

a finite set Sm ⊆ ω↗≤m, and we simultaneously define Lt, Nt ∈ ω for each t ∈ Sm.

We will make sure that t ∈ Sm implies s a t 6∈ B. Start by placing ∅ ∈ Sm. Now

suppose that t ∈ Sm. Since s a t 6∈ B there is Lt, Nt ∈ ω such that whenever

u ∈ ω↗<ω with |u| = m + 1 − |t| and u(0) ≥ Lt, φ(s a t a u) ≤ Nt. If |t| < m

put s a t a i ∈ Sm whenever i < Lt and s a t a i 6∈ B. That completes our

definition of Sm. Let ψ(|s|+m+ 1) = maxt∈Sm Nt and f ′(|s|+m) = maxt∈Sm Lt.
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Let us check that this works. Suppose s a t ≤ 〈s,max{f, f ′}〉, and say

|t| = m + 1. Notice that t � 0 = ∅ ∈ Sm. Take k as large as possible with

t � k ∈ Sm. First suppose k < m. Since s a t � k + 1 6∈ B by definition

of Sm we must have that t(k) ≥ Lt�k. From this we can infer the inequalities

φ(s a t � k a t � [k + 1,m]) ≤ Nt ≤ ψ(|s| + m + 1). Now suppose k = m. Since

t(m) ≥ f ′(|s|+m) ≥ Lt�k we have

φ(s a t � k a t(m)) ≤ Nt�k ≤ ψ(|s|+m+ 1)

as needed.

Finally we show that (3) implies (4). Fix p ∈ Dnd and let q ≤ p with φ length

bounded below q. Let ψ ∈ ωω witness the bound. We may assume without loss of

generality that ψ is a strictly increasing function. Whenever t ≤ q and n ≥ ψ(|t|)

we have for every i ∈ ω some commitment f tn,i such that

〈t, f tn,i〉 
 i ≤ ẏ(n).

Now say q = 〈s, f〉. Our goal is to construct z0, z1 and h so that

(∗) 〈s,max{f, h}〉 
 (∀∞n)z0(ḋ(z1(n))) ≤ ẏ(n).

We let z1 ∈ ωω be defined by having z1(n) = l whenever ψ(l) ≤ n < ψ(l+ 1). To

define h and z0 we will make use of the following simple proposition whose proof

we leave to the reader.

Proposition 4.4. Let G be a countable subset of ωω. Then there is a z ∈ ω↗ω

so that for all g ∈ G we have

(∀∞m)g(z(m)) ≤ m.

Fix n, j ∈ ω with |s| ≤ l where l = z1(n). We define a finite set Sn(j) ⊆ ω↗≤l

by recursion. We will guarantee that t ∈ Sn(j) implies t ≤ q. In particular
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f tn,j will be defined for t ∈ Sn(j). Start by putting s in Sn(j). Then, whenever

t ∈ Sn(j) place u in Sn(j) if u ≤ q, t ⊆ u, |u| ≤ l and u(|u| − 1) < f tn,j(|u| − 1).

Since we have restricted our attention to nondecreasing sequences there are only

finitely many options for u. Now define gn,k by

gn,k(j) = max{f tn,j(k) : t ∈ Sn(j)}.

Let G be the collection

{gn,k : z1(n) ≤ k}.

Apply Proposition 4.4 to G to obtain z0. By the defining property of z0 for each

k the set

Xn,k = {m : (∃t ∈ Sn(z0(m))m < f tn,z0(m)(k)}

is finite. Let h ∈ ωω with f tn,z0(m)(k) ≤ h(k) whenever m ∈ Xk, z1(n) ≤ k and

t ∈ Sn(z0(m)). Then h satisfies

(†) (∀t ∈ Sn(z0(m)))m < f tn,z0(m)(k)⇒ f tn,z0(m)(k) ≤ h(k)

whenever z1(n) ≤ k.

We complete the proof by checking that (∗) holds. Let d be a Dnd-generic

real so that 〈s,max{f, h}〉 belongs to the corresponding generic filter G. Fix

n ≥ ψ(|s|) and let l = z1(n).

Claim 1. For k ≥ l, |s| and t ∈ Sn(z0(d(l))) we have f tn,z0(d(l))(k) ≤ d(k).

Proof of Claim 1. We split into two cases. Suppose for the first case that

f tn,z0(d(l))(k) ≤ d(l) holds. Then we are done since l ≤ k and d is nondecreasing.

In the second case d(l) < f tn,z0(d(l))(k). But then by (†) we have

f tn,z0(d(l))(k) ≤ h(k) ≤ d(k).

We have h(k) ≤ d(k) since |s| ≤ k and 〈s, h〉 belongs to G.
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Now take l0 ≤ l to be as large as possible so that d � l0 belongs to Sn(z0(d(l)).

Claim 2. For k ≥ l0 we have fd�l0n,z0(d(l))(k) ≤ d(k).

Proof of Claim 2. If not there is some violating k ≥ l0. By Claim 1 we know

k < l. We have that q belongs to G and so d � k + 1 ≤ q. We also have

d(k) < fd�l0n,z0(d(l))(k). Thus by the definition of Sn(z0(d(l))) we find that d �

k + 1 ∈ Sn(z0(d(l))) which is contrary to the maximality of l0.

By Claim 2 (and the fact that z1(n) = l) we have

〈d � l0, fd�l0n,z0(d(z1(n)))〉 ∈ G.

Since this condition forces that z0(d(z1(n))) ≤ ẏ(n) we are done.

4.2 Proof of Theorem 2

Using Theorem 1.3 we can now prove Theorem 1.2.

Proof. Let d be a Dnd-generic real. Our goal is to to produce an unbounded real

x in V [d] which is eventually dominated by every dominating real. Fix n ∈ ω.

Let k be least with d(k) ≥ n. Then we set x(n) = i where i is large as possible

so that

(∀j ∈ [k, k + i])d(k) = d(j).

An easy density argument shows that x is indeed unbounded. To show that x is

eventually dominated by every dominating real, it is enough by Theorem 1.3 to

show that x ≤∗ z0 ◦ d ◦ z1 for every z0, z1 ∈ V ∩ ω↗ω.

Fix such z0 and z1 and let f ∈ V ∩ ωω satisfy

(1) (∀n)n < f(z0(n)) and (2) (∀n)n < f(z1(n)).
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We claim then that for any s ∈ ω↗<ω we have

〈s, f〉 
 (∀∞n)x(n) < z0(d(z1(n)))

which will complete the proof.

Assume instead that 〈s, f〉 belongs to the generic filter G corresponding to d

and yet z0(d(z1(n))) ≤ x(n) holds for infinitely many n. We know

(∀n ≥ |s|)f(n) ≤ d(n).

We also know that z0(d(z1(n))) is dominating and thus for sufficiently large n we

have z1(n) ≤ z0(d(z1(n))). Fix an n with |s| ≤ n, |s|, z1(n) ≤ z0(d(z1(n))) and

z0(d(z1(n))) ≤ x(n). Let k be least with n ≤ d(k). By (2) n ≤ d(z1(n)) and thus

k ≤ z1(n). By assumption x(n) is larger than or equal to z0(d(z1(n))) and by the

definition of x we have that d is fixed on the interval [k, k + x(n)] and therefore

d(k) = d(z1(n)) = d(z0(d(z1(n)))) = d(x(n)).

But applying (1) with d(z1(n)) in place of n we also get

d(z1(n)) < f(z0(d(z1(n)))) ≤ d(z0(d(z1(n))))

which brings us to a contradiction.

4.3 Consequences

In this subsection we mention some consequences of the other work from this

section. Let d be a Dnd-generic real, and let D be the collection of dominating

reals in V [d].

Corollary 4.5. The structures (V ∩ωω,≤∗) and (D, ∗≥) are cofinally isomorphic.
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Proof. From Theorem 1.3 we have that the set {z ◦d◦ z : z ∈ V ∩ω↗ω} is cofinal

in (D, ∗≥). In V there is a cofinal mapping z 7→ z′ from ωω to ω↗ω such that

z0 ≤∗ z1 ⇔ z′0
∗≥ z′1.

For z0, z1 ∈ V ∩ ω↗ω we also have

z0 ≤∗ z1 ⇔ z0 ◦ d ◦ z0 ≤∗ z1 ◦ d ◦ z1.

(The right to left direction uses the genericity of d). The corollary follows.

An interesting and immediate consequence of Corollary 4.5 is the following.

Corollary 4.6. Let {dn : n ∈ ω} ∈ V [d] be a countable collection of dominating

reals. Then there is a single dominating real d∗ such that d∗ ≤∗ dn for every

n ∈ ω.

In the terminology of Laflamme [Laf94] Corollary 4.6 says that V ∩ ωω has

uncountable upperbound. In the cited paper Laflamme makes the following def-

initions. Let F ⊆ ωω be a bounded family of functions. Then F↓ ⊆ ωω is the set

of functions dominating F . (So if F = V ∩ ωω then F↓ = D.)

b(F) = min{|H| : H ⊆ F is unbounded in F}

d(F) = min{|H| : H ⊆ F is dominating in F}

b↓(F) = min{|H| : H ⊆ F↓ is unbounded in (F↓, ∗≥)}

We see then that working in V [d] we have that b(V ∩ωω) = bV , d(V ∩ωω) = dV

and b↓(V ∩ωω) = bV . In section 4 of his paper Laflamme constructed several ZFC

examples of bounded families of F to achieve various values of b(F), d(F) and

b↓(F). In each of his constructions one of these three parameters is countable.

Since for any regular uncountable cardinals κ ≤ λ one may find a ground model
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V with bV = κ and dV = λ, our corollary gives for any such κ, λ the consistency

of the existence of a bounded family F with b(F) = κ, d(F) = λ and b↓(F) = κ.

Laflamme also specifically asked whether one could consistently obtain a family

with b↓(F) = b and b(F) = b. He showed that consistently there is no such

family. Since V [d] satisfies b = ω1 ([BJS92]), by starting with a model V with

bV = ω1 we find that in V [d] such a family does exist.

Now we turn to some recent work of Brendle and Löwe. In their paper [BL11]

the authors were concerned with building models containing many Hechler generic

reals but no eventually different reals. One consequence of their work is the

following dichotomy theorem for reals in Dtree. The authors originally stated

their result as holding for ‘Hechler reals’, a term the authors use as a catch-all.

The proof they gave was for Dtree.

Theorem 4.7 (Brendle and Löwe,[BL11]). Let d be a Dtree-generic real and

suppose x ∈ V [d] ∩ ωω. Then either

1. x is dominating, or

2. x is not eventually different over V (that is, there is some f ∈ V ∩ ωω such

that (∃∞n)f(n) = x(n)).

Using characterization (2) from Lemma 4.3 we get the same dichotomy for

reals in D.

Corollary 4.8. Let d be a D-generic real and let x ∈ V [d] ∩ ωω. Then either

1. x is dominating, or

2. x is not eventually different over V .
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Proof. By Theorem 2.4 we may work with d a Dnd-generic real instead. Let

ẋ ∈ V D ∩ ωω and suppose

p 
 “ẋ is not dominating”.

Using a version of Lemma 4.3 relativized to Dnd restricted to conditions below p,

there is q ≤ p such that

(∀r ≤ q)(∃s ≤ r)s ∈ B.

For each s ∈ B let {tsl : l ∈ ω} be a witnessing sequence.

Now notice that

(∀i)t forces ẋ(n) ≥ i⇔ (∀i)t forces ẋ(n) 6= i.

Thus if φ(t) > N that means there exists some n ≥ N and i such that t favors

ẋ(n) = i. So we may define a function y ∈ ωω so that

(∀s ∈ B)(∀N)(∃n, l > N)s a tsl favors ẋ(n) = y(n).

Then

q 
 (∃∞n)ẋ(n) = y(n).

Also in [BL11] the authors conjectured (Conjecture 15) that given a Hechler

real d and a new real x in V [d] either V [x] is equivalent to a Hechler extension of

V or V [x] is equivalent to a Cohen extension of V . The authors there use the term

‘Hechler real’ as a catch-all, and so their conjecture has several interpretations.

Our results show that whether one interprets the term ‘Hechler real’ in their

conjecture to mean Dtree-generic real or interprets it to mean D-generic real the

conjecture is false. This is because (by Proposition 2.6) forcing with D and Dtree

24



each add reals generic for the other, but a D-generic extension is not the same as

a Dtree-generic extension.

We do not know if the following trichotomous reinterpretation of their con-

jecture holds.

Conjecture 4.9. Let d be a real which is either D-generic or Dtree-generic, and

let x ∈ V [d] ∩ ωω be a new real. Then exactly one of the following holds

1. V [x] is equivalent to an extension of V by D,

2. V [x] is equivalent to an extension of V by Dtree, or

3. V [x] is a equivalent to an extension of V by C.

5 Forcing extensions with no �-least dominating real

Let V [G] be some generic extension of the universe. Given f, g ∈ V [G] ∩ ωω we

write f � g if there are z0, z1 ∈ V ∩ ω↗ω such that z0 ◦ f ◦ z1 ≤∗ g. It is easy to

see that � gives a preordering on ωω, and furthermore that f � g is equivalent

to the existence of z0, z1 ∈ V ∩ ω↗ω such that f ≤∗ z0 ◦ g ◦ z1. Theorem 1.3 tells

us that in the model obtained by adding a nondecreasing Hechler real d we have

that d is a �-least dominating real: for any dominating real y in V [d] we have

d � y.

So V Dnd contains a �-least dominating real, and by forcing equivalence so

does V D. By suitably modifying the arguments from Section 4 one can also show

that a �-least dominating real is present in V Dtree . If d is a tree Hechler real

(which we may assume is strictly increasing), then a �-least real d↓ is defined by

the equation

d↓(n) = d(k + 1) if n ∈ [d(k − 1), d(k)).
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The key difference in the argument for Dtree is that instead of bounding φ(s) by

a function of the length |s|, one must be content to bound φ(s) by a function of

s � (|s| − 1).

Need there always exist �-least reals in a ccc extension adding a dominating

real? The answer is no. Suppose V is a model of b = d = ℵ2, so that V contains

a dominating family {zα : α < ω2} well-ordered by ≤∗. Let V [G] be an extension

satisfying MA and 2ℵ0 = ℵ3. There is no �-least dominating real d in V [G]. If

there were then {zα : α < ω2}, {z′α ◦ d ◦ z′α : α < ω2} would be an (ω2, ω2)-gap

in the sense of [Sch93], but Proposition 90 of that article shows that no such gap

exists.

This simple argument does not work if the ground model satisfies CH. To-

gether with Itay Neeman we found a construction to produce an appropriate ccc

forcing extension over a model of CH. In fact, this contruction produces a model

that not only has no �-least dominating reals but also has no �-minimal domi-

nating reals; that is, no dominating reals y0 such that whenever y is dominating

and y � y0 holds then it follows that y0 � y. The disadvantage of the argu-

ment is that it uses large cardinals and a fair amount of technical overhead. The

main “trick” used in the argument is rather nice and may be applicable in other

situations, so we will include a proof.

The general idea of the construction is the natural one. We do an ω1-length

finite support iteration of ccc forcings which at each stage places a dominating

real that lies below all the dominating reals added so far. The tricky part is in

making sure that each iterand in the forcing is actually ccc. To show this we will

use an absoluteness argument; this is where the large cardinal assumptions come

in.

The forcing we will iterate is a slight modification of the Laver interpolation
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order given as Definition 13 in [Sch93]. Let F0, F1 be two subsets of ωω so that

every member of F0 is dominated by every member of F1. Say that a real h ∈ ωω

interpolates F0 and F1 if f0 ≤∗ h and h ≤∗ f1 for every f0 ∈ F0 and every f1 ∈ F1.

The forcing Q(F0,F1) consists of conditions 〈s, f0, f1〉 ∈ Q(F0,F1) satisfying

1. s ∈ ω<ω, f0 ∈ F0, f1 ∈ F1

2. (∀n ≥ |s|)f0(n) ≤ f1(n).

and is ordered by 〈s′, f ′0, f ′1〉 ≤ 〈s, f0, f1〉 if

1. s ⊆ s′

2. (∀n ≥ |s|)f0(n) ≤ f ′0(n), f ′1(n) ≤ f1(n)

3. (∀n ∈ |s′| \ |s|)f0(n) ≤ s′(n) ≤ f1(n).

It is not hard to see that Q(F0,F1) adds a real interpolating F0 and F1.

Unfortunately this forcing may collapse ω1. The following proposition is very

similar to Lemma 45 in [Sch93] and can be proved in an identical way.

Proposition 5.1. Let Q be a transitive model of ZFC containing F0 and F1. If

there is a transitive model Q∗ of ZFC with Q ⊆ Q∗ and ωQ1 = ωQ
∗

1 and so that

Q∗ contains an interpolant of F0 and F1, then in Q the forcing Q(F0,F1) is ccc.

Given an ordinal α we let Pα be the α-length finite support iterated forcing

given by 〈Q̇β : β < α〉 which we describe as follows. We take Q̇0 to be Hechler

forcing D. Given 0 < β < α with Pβ already defined, we take Q̇β to be a Pβ-name

for Q(F0,F1) where F0 is V ∩ ωω and F1 is the collection of dominating reals in

V Pβ .

Lemma 5.2. Assume there exists a sharp for ω many Woodin cardinals. Let

α ≤ ω1. Then Pα is ccc.
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Proof. By induction on α. The base case is trivial and the limit case follows from

the inductive assumption and the fact that the iteration has finite support.

Assume by induction that Pβ is ccc for all β ≤ α. By identifying nice names

for reals with reals we may view Pα as a subset of ωω. Let G be Pα-generic over

V . Let F0 be V ∩ ωω and F1 be the collection of dominating reals in V [G]. We

need to show that Q̇α[G] = Q(F0,F1) is ccc.

Let M be a countable elementary submodel of a large rank initial segment

of V with α ∈ M , and let π : M → Q be the transitive collapse. Note that

π(Pα) = Q ∩ Pα. Because Pα is ccc it follows that G ∩ Q is π(Pα)-generic over

Q. Let F̄0 = Q[G] ∩ F0 (which is just Q ∩ ωω) and let F̄1 = Q[G] ∩ F1 so that

π(Q̇α)[G] = Q(F̄0, F̄1).

By elementarity we need only show that Q(F̄0, F̄1) is ccc in Q[G]. By Propo-

sition 5.1 it is enough to find a transitive model Q∗ extending Q[G] with ω
Q[G]
1 =

ωQ
∗

1 and which contains a real interpolating F̄0 and F̄1. Let d̄ ∈ V ∩ ωω be

D-generic over Q. Then d̄ is such an interpolant and so we just need to find an

appropriate model Q∗ containing it.

Now note that Pα is a set of reals definable in L(R) (from real parameters).

Since Pα is ccc the collection of maximal antichains of Pα is also a set of reals

definable in L(R). We use PQ[d̄]
α to refer to Pα computed relative to Q[d̄]. By the

inductive hypothesis applied inside Q[d̄] we have that

Q[d̄] � Pα is ccc.

If we show that G is PQ[d̄]
α -generic over Q[d̄] the proof will be complete, for then

Q[d̄][G] can serve as the desired Q∗.

Claim. Suppose ϕ is a formula and x ∈ Q[d] ∩ ωω. Then

L(R) � φ(x)⇐⇒ Q[d̄] � “L(R) � ϕ(x)”.
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Proof. Here is where the large cardinal machinery comes in. We just give a

sketch:

The theory of L(R) with parameter x reduces to the theory of any model

(N ; E), where E is a class of extenders rich enough to witness that N has a sharp

for ω Woodin cardinals, x ∈ N , and (N ; E) is iterable for iteration trees using

extenders from E . (See section 4 of [Ste93] where full iterability is used, or section

3 of [Nee95] which uses ω-iterability.) It is therefore enough to find, in Q[d̄], a

model of this kind which is ω-iterable in both Q[d̄] and V .

Let V Q
θ be a rank initial segment of Q large enough to contain a sharp for ω

Woodin cardinals. Working in Q[d̄] using the genericity iterations of [Nee95] one

can find a countable model N , which embeds into V Q
θ , and a generic extension

N [g] of N collapsing its first Woodin cardinal, so that x ∈ N [g]. Since N embeds

into V Q
θ , and since Q[d̄] is a small generic extension of Q, N is ω-iterable in Q[d̄].

Since V Q
θ embeds into a rank initial segment of V , so does N , and hence N is

ω-iterable in V . The iterability transfers to (N [g], E), where E consists of the

natural extensions of extenders in N . (N [g], E) is then ω-iterable in both Q[d̄]

and V , contains x, and has a sharp for ω Woodin cardinals, as required.

Let A ∈ Q[d̄] be such that

Q[d̄] � “A is a maximal antichain of Pα”.

As we observed above PQ[d̄]
α is ccc from the point of view of Q[d̄] and so we may

view A as an element of ωω. Applying the claim we have (in V ) that A is a

maximal antichain of Pα. Thus G ∩ A 6= ∅ and we are done.

Theorem 5.3. Suppose V is a model of ZFC which contains a sharp for ω many

Woodin cardinals. Then Pω1 is a ccc forcing which adds a dominating real but

no �-minimal dominating real.
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Proof. From Lemma 5.2 we get that Pω1 is ccc. From this it follows that any

dominating real d added by Pω1 is added at some countable stage Pα. With z0, z1

varying over V ∩ ω↗ω, every real of the form z0 ◦ d ◦ z1 belongs to V Pα and so

the forcing Q̇α adds a dominating real h below them all. Thus d is not a minimal

dominating real for the preordering � in V Pα .

6 A Hechler subextension dichotomy that holds under

large assumptions

In this small section we show that a weaker conjecture made in [BL11] does hold,

assuming that one is willing to make some large cardinal assumptions. In that

article the authors conjecture (Conjecture 14) that if d is a Hechler real over V

and x ∈ V [d] is a new real then either there is a dominating real over V in V [x],

or V [x] is equivalent to a Cohen extension of V . By piecing together results of

Bartoszyński, Shelah and Zapletal we will prove the following.

Theorem 6.1. Suppose there is a proper class of Woodin cardinals. Let d be

D-generic or Dtree-generic over V , and let x ∈ V [d] be a new real. Either V [x]

contains a dominating real over V , or V [x] is a Cohen extension.

The first step of the argument is to note that every eventually different real

in V [d] is dominating. This follows from Theorem 4.7 in the case where d is

Dtree-generic and from Corollary 4.8 in the case where d is D-generic. Hence it

is enough to show that if V [x] is not a Cohen extension then V [x] contains an

eventually different real.

The second step is to note that Bartoszyński’s characterization of non(M)

(see [BJ95], Theorem 2.4.7) shows that forcing with P adds an eventually different

real exactly when forcing with P makes the collection of ground model reals
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meager. Hence it is enough to show that if V [x] is not a Cohen extension then

in V [x] the collection of ground model reals is meager.

We use notation similar to that in Zapletal’s text [Zap08]. Let I be a σ-ideal

on a Polish space X. (We only need to consider the case where X is Baire space

ωω.) Then PI denotes the σ-ideal of Borel subsets of X which do not belong to

I.

We are going to apply a theorem of Zapletal’s about forcing notions of the

form PI where I is universally Baire. For our purposes, all that needs to be

known about universally Baire sets is that said theorem applies to them, and

that assuming there is a proper class of Woodin cardinals, any set of reals in

L(R) is universally Baire. Consult page 7 of [Zap08] for a discussion of the

relevance of the notion of universal Baireness in this context.

We need a small lemma which allows us to represent reals x ∈ V [d] in a more

convenient way. We invite the reader to compare this lemma with Propositions

2.1.6 and 2.1.8 in [Zap08].

Lemma 6.2. Let V [G] be a forcing extension via some ccc forcing notion P, and

let x ∈ V [G] ∩ ωω be a new real. There is a σ-ideal I on ωω in V and a generic

H ⊆ PI so that V [x] = V [H]. Furthermore, if P belongs to L(R) then so does I,

so that I is universally Baire assuming the existence of a proper class of Woodin

cardinals.

Proof. Let ẋ be a P-name for the real x. Define I to be the collection of Borel

sets B coded in V for which 
P ẋ 6∈ B. We easily see that I is a σ-ideal, and

that I belongs to L(R) if P does.

Now let H ⊆ PI be defined to be all of the B ∈ PI with x ∈ B. Since H

is definable from x we see that V [H] ⊆ V [x]. But x is also definable from H as
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the unique real such that for each n the set Nx�n belongs to H. (Here Ns ⊆ ωω

denotes the basic open neighborhood of all reals extending s).

It just remains to show that H is actually a PI-generic filter. This is where

we use that P is ccc. Let A ⊆ PI be a maximal antichain. We must show that

H ∩ A is not empty. We first claim that A is countable (and indeed, that PI is

ccc). To see this, fix B ∈ A. Since B 6∈ I there is some pB ∈ P with pB 
 ẋ ∈ B.

If B 6= B′ belong to A then B ∩ B′ ∈ I and hence 
 ẋ 6∈ B ∩ B′ and hence pB

and pB′ are incompatible. Since P is ccc, A must be countable.

So enumerate A = {Bn : n ∈ ω}. Then B =
⋃
n<ω Bn is a Borel set, and

maximality of A guarantees that ωω \ B ∈ I so that 
 ẋ ∈ B. In particular, x

belongs to Bn for some n, so that some Bn belongs to H and hence H ∩A is not

empty.

By the lemma, we may think of any x ∈ V [d] as the generic for an appropriate

PI , and assuming the existence of a proper class of Woodin cardinals we may

assume that I is universally Baire. The proof of Theorem 6.1 is now completed by

citing the following theorem, proved by Shelah, and then later and independently

by Zapletal. We state the theorem in Zapletal’s language.

Theorem 6.3 (Shelah [She04], Zapletal [Zap08] Corollary 3.5.7). Suppose that

I is a universally Baire ccc ideal such that PI does not make the collection of

ground model reals meager. Then PI is equivalent to Cohen forcing.
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7 The product of two forcings adding a dominating real

adds a Hechler real.

In [FV07] Farah and Veličković mention the following unpublished result due to

Goldstern.

Theorem 7.1 (Goldstern). If P and Q are forcing notions adding a dominating

real then the product P×Q adds a Cohen real.

This section is dedicated to proving the following strengthening of that result.

Theorem 7.2. Suppose P and Q are notions of forcing, each of which adds a

dominating real. Then the product P×Q adds a D-generic real.

Before going into the details let us give a sketch of the proof. Suppose x and

y are dominating reals added by P and Q, respectively. We replace x and y by

iterated versions, so that the reals are not just dominating but in fact strongly

dominating. This will guarantee that the digits x(n) and y(n) are independent

to such an extent that we get a Cohen real c by considering the characteristic

function of the relation x(n) < y(n). In fact, by a careful analysis we will show

that c is not only Cohen over V but is in fact Cohen over V [x] and hence we may

finish by appealing to Truss’s Theorem 2.2.

We start by defining what we mean by a strongly dominating real.

Definition 7.3. A real d ∈ V [G]∩ ωω is strongly dominating over V if for every

function f : ω<ω → ω belonging to V we have (∀∞n)f(d � n) ≤ d(n).

Notice that whenever a forcing notion adds a dominating real, it also adds a

strongly dominating real. Indeed, if d ∈ V [G] ∩ ωω is a dominating real, then
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any real d′ which satisfies the formula (∀n)d′(n + 1) = d(d′(n)) will be strongly

dominating.

Fix a forcing notion P which adds a dominating real. Let ẋ ∈ V P ∩ ωω name

a strongly dominating real. For each p ∈ P let T ẋp be the tree of possibilities for

ẋ, defined to be the collection of all the s ∈ ω<ω for which some q ≤ p forces that

s is an initial segment of ẋ. Recall now that a Laver tree T ⊆ ω<ω is a tree with

a distinguished stem s = stem(T ) so that every member of T is either an initial

segment of s or an extension of s, and furthermore, whenever t ∈ T with s ⊆ t

there are infinitely many n with s _ n also in T .

Lemma 7.4. If x ∈ V P ∩ ωω is forced to be strongly dominating, then for any

p ∈ P there is some Laver tree T ⊆ T ẋp .

Proof. We perform a rank analysis on T ẋp . For s ∈ ω<ω we will, if possible, assign

an ordinal α to s, which we call the rank of s and write rk(s) = α. This is done

as follows. If s 6∈ T ẋp then we set rk(s) = 0. If (∃∞n)rk(s _ n) ≥ α then we

declare that rk(s) > α. We define rk(s) = α if α is the smallest possible ordinal

subject to these requirements, if such an ordinal exists. Otherwise rk(s) > α for

all α. In this case we say that s has infinite rank and write rk(s) = ∞. A node

s ∈ T ẋp has infinite rank precisely when there is a Laver tree T with stem s with

T ⊆ T ẋp . So to prove the lemma we must show that T ẋp contains a node s with

rk(s) =∞.

If not, then for each s ∈ T ẋp there is some N such that for all n ≥ N we have

rk(s _ n) < rk(s). Define f : ω<ω → ω by letting f(s) be this N . Now let G be

a P-generic filter containing p, and let x = ẋ[G]. Each x � n belongs to T ẋp . But

also x is strongly dominating and so we have x(n) > f(x � n) for all sufficiently

large n. That means that (∀∞n)rk(x � n + 1) < rk(x � n). This brings us to a

strictly decreasing sequence of ordinals and hence a contradiction.
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Proof of Theorem 7.2. Let P and Q be two forcing notions which add dominating

reals and let ẋ ∈ V P ∩ ωω and ẏ ∈ V Q ∩ ωω name strongly dominating reals.

For two sequences s, t of natural numbers of the same (and possibly countably

infinite) length, we let φ<(s, t) be the binary sequence of the same length, given

by φ<(s, t)(n) = 1 when s(n) < t(n) and φ<(s, t)(n) = 0 when s(n) ≥ t(n). Then

we take ċ ∈ V P×Q ∩ 2ω to name canonically the real φ<(ẋ, ẏ). We will show that

ċ in fact names a real which is Cohen over V P. Since P adds a dominating real,

P×Q contains a D-generic real, by Truss’s theorem.

Fix 〈p0, q0〉 ∈ P×Q, and let Ḋ ∈ V P name a dense subset of C. We need to

find 〈p′, q′〉 ≤ 〈p0, q0〉 with 〈p′, q′〉 
 ċ � n ∈ Ḋ for some n ∈ ω. Our plan is to

strengthen p0 to some p1 so that the branches of T ẋp1 grow very quickly relative

to the branches of T ẏq0 . This way, when we strengthen p1 to evaluate a member

of Ḋ, we will have the flexibility to select an appropriate branch through T ẏq0 so

that ċ will match this member of Ḋ.

Using Lemma 7.4 we get a Laver tree T0 ⊆ T ẏq0 . For each s ∈ ω<ω with

|s| ≥ |stem(T0)| we will define a function fs : ω<ω → ω. Fix such an s. Let

t(s) ∈ T0 with |s| = |t(s)|. We want fs to satisfy the following property:

(†): If s′ = s _ a and (∀n ∈ |s′| \ |s|)s′(n) ≥ fs(s
′ � n), then (∀u ∈ 2|s

′|\|s|)(∃b ∈

ω|s
′|\|s|) with t(s) _ b ∈ T0 and φ<(a, b) = u.

Defining fs to satisfy (†) is a straightforward recursion. Notice first of all that

we only have to worry about defining fs(s
′) for those s′ ⊇ s which recursively

satisfy s′(n) ≥ fs(s
′ � n) for n ∈ |s′| \ |s|. So suppose fs(s

′) has recursively

been defined on such an s′. Now we define fs(s
′ _ m) for m ≥ fs(s

′). Write

s′ = s _ a. For each u ∈ 2|s
′|\|s|, recursively using (†) take t′u = t(s) _ bu ∈ T0

with φ(a, bu) = u. Then define fs(s
′ _ n) ∈ ω to be large enough so that for

every u ∈ 2|s
′|\|s| there is an i ∈ ω with t′u _ i ∈ T0 and i < fs(s

′ _ m). To
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see that (†) holds, note that by taking fs(s
′ _ m) large we have guaranteed that

we may find an appropriate t′ for any u _ 0. To find an appropriate t′ for any

u _ 1 we may use (†) at s′ and the fact that T0 is a Laver tree with t′u extending

the stem.

Now let g : ω<ω → ω be a function satisfying g(s′) ≥ fs(s
′) for all s ⊆ s′.

Since ẋ is forced to be strongly dominating, we may take p1 ≤ p0 with

p1 
 (∀n ≥ N)ẋ(n) ≥ g(ẋ � n).

Let s ∈ T ẋp1 with |s| ≥ N . Note that each s′ ∈ T ẋp1 extending s has the property

that s′(n) ≥ g(s′ � n) ≥ fs(s
′ � n) and thus we may apply (†) to any such s′.

Let v = φ<(s, t(s)). Since there is some p ≤ p1 forcing s to be an initial

segment of ẋ, and since Ḋ is forced to be a dense subset of C, we may take

p2 ≤ p1 and u ∈ 2<ω with p2 
 s ⊂ ẋ and p2 
 v _ u ∈ Ḋ. The tree T ẋp2 is a

subtree of T ẋp1 containing s (since p2 
 s ⊆ ẋ).

Let s′ = s _ a ∈ T ẋp2 with |a| = |u|. By (†) there is t′ = t(s) _ b ∈ T0 ⊆ T ẏq0

with φ<(a, b) = u. Then φ<(s′, t′) = v _ u. Take p3 ≤ p2 with p3 
 s′ ⊆ ẋ. Take

q3 ≤ q0 with q3 
 t′ ⊆ ẏ. Then 〈p3, q3〉 
 v _ u ⊆ ċ and 〈p3, q3〉 
 v _ u ∈

Ḋ.

8 Every subextension of the Hechler extension contains a

Cohen real

Our goal in this section is to prove the following theorem, which says that every

subuniverse of the tree Hechler extension contains a Cohen real. A slight modifi-

cation of the arguments here will prove that the same holds for the usual Hechler

extension D. One can also directly prove the result for D from the result for Dtree.
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This is because Proposition 2.6 implicitly constructs a complete embedding from

D to Dtree. Hence there is an appropriate forcing notion Q so that Dtree is forcing

equivalent to D ∗ Q, and thus every subuniverse of a Hechler extension may in

turn be viewed as a subuniverse of a tree Hechler extension.

Theorem 8.1. Suppose d is a Dtree-generic real, and x ∈ V [d] \ V . Then V [x]

contains a Cohen real over V .

The proof of Theorem 8.1 relies on the fact that σ-centered forcings add

unbounded reals. This is a folklore fact, but for completeness we include a proof,

which may be original. In fact, the argument we give proves a bit more. Recall

that a poset P is σ-linked if it can be written as P =
⋃
n<ω Pn where for each

n < ω any two members of Pn are compatible.

Lemma 8.2. If P is σ-centered, then forcing with P adds an unbounded real. If

P is σ-linked, then forcing with P adds a real.

Proof. We claim that in either case we may assume that for any pair m 6= n

there are p ∈ Pm and q ∈ Pn which are incompatible. In the σ-linked case this

is accomplished by repeatedly amalgamating together Pm and Pn with Pm ∪ Pn

linked. In the case where P = Pn is σ-centered we must first massage P into a

more workable form.

First, by replacing P with RO(P) we may assume that P is a complete Boolean

algebra. Since the original poset will be a dense subset of RO(P), this operation

preserves σ-centeredness. Second, by adding to Pn the infimum inf({p0, . . . pn})

for each possible finite subset {p0, . . . pn} ⊆ Pn, we may also assume that each Pn

is not only centered, but filtered. This is, for any finite subset {p0, . . . , pn} ⊆ Pn,

a common strengthening of {p0, . . . , pn} belongs to Pn. And third (and finally),

we may now repeatedly amalgmate pairs Pm, Pn for which any conditions p ∈ Pm
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and q ∈ Pn are compatible into a single Pk: we then repeat the second step of

our massage to guarantee the centeredness of the resulting Pns.

Hence indeed we may assume that if m 6= n, then there exists pm,n ∈ Pm and

pn,m ∈ Pn with pm,n ⊥ pn,m. We define the name ṙ ∈ V P ∩ ωω by declaring


 (∀n)r(n) equals the least m such that pm,n ∈ Ġ.

It is not hard to see that r is well-defined, for given any p ∈ P, there is some m

such that p ∈ Pm. Then pm,n and p are compatible so p may be strengthened to

q with q 
 pm,n ∈ Ġ.

We claim that if each Pn is centered then 
 ṙ is unbounded. Indeed, let p ∈ P

and f ∈ V ∩ ωω. Say that p ∈ Pn. Using the fact that Pn is centered, we may

strengthen p to q with q 
 (∀i ≤ f(n))pn,i ∈ Ġ. Then q 
 (∀i ≤ f(n))pi,n 6∈ Ġ.

Hence q 
 f(n) < ṙ(n).

Similarly one shows that if each Pn is linked then 
 ṙ 6∈ V .

If one is willing to step outside of ZFC and make some large cardinal assump-

tions then Theorem 8.1 can now be proven as follows. By Corollary 15.42 of

[Jec03], we know that x is added by forcing with a forcing notion P, a complete

subalgebra of RO(Dtree). Since Dtree is σ-centered, it follows that P is as well.

Hence P adds some real y. Consider a name ẏ ∈ V Dtree . Let Q be the complete

subalgebra of RO(Dtree) generated by ẏ. Since Dtree is ccc, we may think of ẏ as

a member of R and hence Q is definable in L(R). A theorem of Shelah (Proposi-

tion 4.3 of [GS93]) says that sufficiently definable σ-centered forcings add Cohen

reals. Examining the proof, what is really needed is that certain filters F ⊆ P(ω)

which are definable from Q have the property of Baire. Under large cardinal as-

sumptions all sets of reals in L(R) have the property of Baire. Thus forcing with

Q adds a Cohen real. Since a generic for Q is definable from y, and we have just
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seen that the presence of a Q-generic guarantees the presence of a Cohen real,

we see that V [y] ⊆ V [x] will contain a Cohen real.

Now we give a proof of Theorem 8.1 that goes through in ZFC and doesn’t

use any descriptive set theory. Fix x ∈ V [d] \ V . By Lemma 8.2 and Corollary

15.42 of [Jec03], we may assume that x ∈ V Dtree ∩ ωω is an unbounded real. Let

ẋ be a name for x with 
 “ẋ is an unbounded real.′′.

We divide the argument into cases.

Case 1: There is a dense set of stems s ∈ ω<ω for which there exists a u ∈ ω<ω

so that s favors “u _ k is an initial segment of ẋ” for infinitely many k. We

define a Cohen real as follows. Let φ : ω → ω<ω be a map with the property that

whenever As,u = {k : s favors u _ k ⊆ ẋ} is infinite, for every t ∈ ω<ω there are

infinitely many k ∈ As,u with φ(k) = t.

Now let c ∈ V [x] ∩ ωω be the concatenation of the sequences

φ(x(0)), φ(x(1)), φ(x(2)), . . .

Then we claim that c is a Cohen real over V . To see this, let D ⊆ ω<ω be

dense and let T ∈ Dtree with s = stem(T ). By hypothesis we may assume that

there is some u for which As,u is infinite. Let t ∈ ω<ω with φ(u(0)) _ . . . _

φ(u(|u| − 1)) _ t ∈ D. By choice of φ, there is some k ∈ As,u with φ(k) = t. By

definition of As,u, there is some p ≤ T with p 
 u _ k ⊆ ẋ, and hence p forces

that some initial segment of c belongs to D, as desired.

Now assume that Case 1 fails; this means there is some T ∈ Dtree so that

for every s ∈ T and every u there are only finitely many k for which s favors

u _ k ⊆ ẋ. For notational simplicity we assume that T = ω<ω; this doesn’t

change the structure of the rest of the argument.

Case 2: There is a dense set of stems s ∈ ω<ω for which there exists a u(s) ∈ ω<ω
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such that the set Bs = {k : (∃m)s _ m favors u(s) _ k ⊆ ẋ} is infinite. Fix

s, and for k ∈ Bs, let ms(k) witness membership in Bs. Notice that the map

k 7→ ms(k) is finite-to-one: otherwise fix an m with m = ms(k) for infinitely

many k. Then s _ m favors u(s) _ k ⊆ ẋ for infinitely many k, contrary to our

assumption that this does not hold for any member of ω<ω.

Since k 7→ ms(k) is finite-to-one, we may define a partial injection with infinite

domain f s : ω → ω such that for each k ∈ dom(f s) we have that s _ f s(k) favors

u(s) _ k ⊆ ẋ.

To get a Cohen real, we can now use the same trick we used in Case 1.

Let φ : ω → ω<ω have the property that for every s and every t ∈ ω<ω there

are infinitely many k ∈ dom(f s) with φ(k) = t. Let c ∈ V [x] ∩ ωω be the

concatenation of the sequences

φ(x(0)), φ(x(1)), φ(x(2)), . . .

To see that c is Cohen over V , let D ⊆ ω<ω be dense and let T ∈ Dtree with

s = stem(T ). By extending T if necessary we may assume the s we chose is

such that f s is defined. Let u = u(s). Let t ∈ ω<ω with φ(u(0)) _ . . . _

φ(u(|u| − 1)) _ t ∈ D. By choice of φ, there are infinitely many k ∈ dom(f s)

with φ(k) = t. Since f s is injective, there is some choice of such k with s _ f s(k)

belonging to T . Hence there is some p ≤ T with p 
 u _ k ⊆ ẋ, and hence p

forces that some initial segment of c belongs to D, as desired.

Now assume that Case 2 fails as well; this means there is some T ∈ Dtree so

that for every s ∈ T and for all u there is some kus so that (∀m)(∀k ≥ kus )s _

m 
 u _ k 6⊆ ẋ. For notational simplicity we may assume that T = ω<ω. Hence:

Case 3: (∀s)(∀u)(∃kus )(∀m)(∀k ≥ kus )s _ m 
 u _ k 6⊆ ẋ.

We finish the proof of Theorem 8.1 by ruling Case 3 out. This is accomplished
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by a (double) fusion argument; we build a condition T ∈ Dtree and a ground model

real h with T 
 (∀n)ẋ(n) ≤ h(n). This will contradict the fact that ẋ is forced

to be an unbounded real.

The argument has a fair number of moving parts, so for expository purposes

we start by indicating how via a fusion argument we can obtain T ∈ Dtree with

stem(T ) = ∅ and T 
 ẋ(0) ≤ k∅∅. This same method will itself be integrated

into another fusion argument which will net us a ground model bound for ẋ.

To obtain T 
 ẋ(0) ≤ k∅∅, the fusion argument can be described as follows.

Our first approximation to T is T 0 = ω<ω. For each node at level 1, say 〈s(0)〉,

by the assumption of Case 3 we may strengthen T 0
〈s(0)〉 (finitely many times) so

that T 0
〈s(0)〉 
 ẋ(0) 6∈ [k∅∅, k

∅
〈s(0)〉). (This is possible by the assumption of Case

3, because saying ẋ(0) 6= k is the same as saying 〈k〉 6⊆ ẋ.) This brings us to a

tree T 1. At the level 2 nodes 〈s(0), s(1)〉 ∈ T 1 we strengthen T 1
〈s(0),s(1)〉 so that

T 1
〈s(0),s(1)〉 
 ẋ(0) 6∈ [k∅〈s(0)〉, k

∅
〈s(0),s(1)〉). This us brings us to a tree T 2. We continue

in this way. At the level n nodes 〈s(0), . . . s(n − 1)〉 ∈ T n−1 we strengthen

T n−1
〈s(0),...s(n−1)〉 so that T n−1

〈s(0),...s(n−1)〉 
 ẋ(0) 6∈ [k∅〈s(0),...s(n−2)〉, k
∅
〈s(0),...s(n−1)〉). The

limit of this process is the tree T given by the intersection
⋂
n<ω T

n. Then T is

as desired, since given a Dtree-generic d and l ≥ 1, the tree Td�l belongs to the

generic filter G and forces that ẋ(0) does not belong to [k∅d�l−1, k
∅
d�l).

It is clear we could use the same argument to get a tree T with stem(T ) = ∅

forcing bounds on any finitely many digits ẋ(0), . . . ẋ(i). In order to simultane-

ously force bounds on all of the digits, we stagger these bounds into the fusion

argument, by possibly not beginning the process of forcing a bound on ẋ(i) un-

til at some level fairly high up into the tree. To ensure that we end up with a

ground model bound, it is not enough to simply dovetail one digit at a time by

handling ẋ(0) at level 0, ẋ(1) at level 1, and so on. Rather, we will need to start
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handling an enormous number of digits at each stage of the argument. We will

now describe how this can be done.

Fix s ∈ ω<ω. We define a finite partial function fs : ω → ω by recursion. As

a base case, we have fs(0) = k∅∅. Given i + 1 ∈ (s(l − 1), s(l)] (and taking l = 0

when i+ 1 ≤ s(0)), we set fs(i+ 1) equal to the maximum of all k
〈j0,j1,...ji〉
s�l where

jk ≤ f(k). Notice that if s ⊆ t then fs and ft agree on their common domain.

We comment also that the point of this definition is that the assumption of Case

3 only allows us to put a bound on e.g. ẋ(1) relative to the bound we place on

ẋ(0). The function fs serves as a mechanism for facilitating a bound on ẋ(i) once

a bound has already been established on earlier digits.

Now we are ready to describe the fusion argument. We build the desired

tree T as an intersection
⋂
n<ω T

n of approximations to T , with T 0 = ω<ω, and

T n+1 ≤ T n. We will arrive at T n+1 from T n by strengthening the level n nodes

in T n.

To start, we look at each level one node 〈s(0)〉 in T 0. To arrive at T 1,

strengthen each T 0
〈s(0)〉 to force 〈j0, . . . ji−1, k〉 6⊆ ẋ for each i ≤ s(0), each se-

quence 〈j0, . . . ji−1〉 with jl ≤ f〈s(0)〉(l), and each k ∈ [k
〈j0,...ji−1〉
∅ , k

〈j0,...ji−1〉
s(0) ). This

is possible by the assumption of Case 3. In general, to go from T n to T n+1,

strengthen each T ns with |s| = n+ 1 to force 〈j0, . . . ji−1, k〉 6⊆ ẋ for each i ≤ s(n),

each sequence 〈j0, . . . ji−1〉 with jl ≤ fs(l), and each k ∈ [k
〈j0,...ji−1〉
s�n , k

〈j0,...ji−1〉
s ).

We now want to show that there is a ground model h ∈ V ∩ ωω with T 


(∀i)ẋ(i) ≤ h(i). Fix a Dtree-generic real d. Let x be the evaluation of ẋ using the

corresponding generic filter G, ie x = ẋ[G].

Claim. For i ∈ (d(l − 1), d(l)] (if i ≤ d(0), take l = 0), x(i) < fd�l(i).

The claim is proven by induction on i. For i = 0, we note that each Td�n ∈ G

forces ẋ(0) 6∈ [k∅d�n, k
∅
d�(n+1)), so that indeed we must have x(0) < k∅∅ = fd�n(0).
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Inductively assume the claim holds below i, and (to align with our earlier

notation) let jk = x(k) for k < i. For each n ≥ l by construction we have that

Td�n ∈ G forces that 〈j0, . . . ji−1, k〉 6⊆ ẋ for each k ∈ [k
〈j0,...ji−1〉
d�n , k

〈j0,...ji−1〉
d�(n+1) ). In

particular x(i) 6∈ [k
〈j0,...ji−1〉
d�n , k

〈j0,...ji−1〉
d�(n+1) ) for each such n, and so x(i) < k

〈j0,...ji−1〉
d�l ≤

fd�l(i), as desired.

With the claim proven, we at last can obtain our ground model bound. This is

straightforward since d(l−1) < i and so we may (in the ground model) maximize

against all possible sequences below i. Working in V , for each i, let h(i) ∈ ω

be larger than fs(i) for each s with length at most i and range a subset of i.

Then (∀i)x(i) ≤ h(i), and since h (and the rest of our argument above) does not

depend on the particular Dtree-generic d, we have T 
 (∀i)ẋ(i) ≤ h(i), as desired.

9 A non-embedding result for non-linear iterations of Hech-

ler forcing

In the final section of this part of the thesis we present an example showing that

subiterations of non-linear iterations of Hechler forcing behave differently than

in the linear case; specifically in the non-linear case the natural inclusion map is

not a complete embedding. We will be more precise below, but first we give some

motivation. Our main goal in including this section in the thesis is to outline

to future researchers an interesting and potentially fruitful line of inquiry, while

also pointing out a subtle barrier in the most natural approach.

Recall that Hechler’s original application of his forcing notion [Hec74] was

to use non-linear iterations to prove that for any σ-directed partial ordering P

present in the ground model V there is a generic extension V [G] in which P

embeds cofinally into (ωω,≤∗). The article [Bur97] written by Burke gives a

43



modern and very readable treatment of this result.

We describe the iteration Hechler used in the case where P is well-founded.

Fix such a P . We recursively define a rank function rk : P → ON by rk(x) =

sup{rk(y) + 1 : y < x}. (Thus elements in P with no lower elements have

rank 0). We define rk(P ) = sup{rk(x) + 1 : x ∈ P}. For x ∈ P , we let

Px = {y ∈ P : y < x}.

We define the iteration P(P ) by recursion on rk(P ). Conditions in P(P ) are

functions u such that:

1. dom(u) is a finite subset of P .

2. For each x ∈ dom(u), u(x) = 〈sux, ḟux 〉 where ḟux is a P(Px)-name for a

member of ωω.

If u ∈ P(P ) and x ∈ P , then ux denotes the function u � Px. For u, v ∈ P(P )

we declare u ≤ v when:

1. dom(v) ⊆ dom(u).

2. For each x ∈ dom(v), ux 
P(Px) u(x) ≤ v(x) where u(x), v(x) are interpreted

as names for members of D in the natural way. In other words, svx ⊆ sux and

ux 
 ḟ vx (n) ≤ sux(n) for each n ∈ |sux| \ |svx| and ux 
 (∀n)ḟ vx (n) ≤ ḟux (n).

Hechler’s theorem is the following.

Theorem 9.1 (Hechler,[Hec74]). If P is a σ-directed partial ordering, and G ⊆

P(P ) is a generic filter, then in V [G] we have that P is isomorphic to a subset of

ωω which is cofinal in the ordering ≤∗.
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Analogies of this result were later given for both the meager and the null ideal

by Bartoszyński and Kada [BK05] and Burke and Kada [BK04], respectively.

So, for example, Bartoszyński and Kada showed that for any σ-directed partial

ordering P present in the ground model V there is a generic extension V [G]

in which P embeds cofinally into (M,⊆) where M denotes the meager ideal.

Conceptually all three proofs are quite similar. Each uses non-linear iterations,

in the case when P is well-founded the underlying order is exactly given by P ,

and at each step the forcing adds a real that dominates (in the appropriate way)

reals definable from those added at lower steps in the ordering of P .

These forcing notions can be used to quite freely manipulate the cofinal struc-

ture of (ωω,≤∗) (respectively (M,⊆), (N ,⊆)) and hence to alter the relevant

cardinal characteristics of the continuum. If b(P ) denotes the least size of an

unbounded subfamily of P (meaning no member of P lies above all the mem-

bers of that family) and d(P ) denotes the least size of a dominating subfamily

of P (meaning any member of P lies below some member of that family) then

the forcing notions in the paragraph above can be used to give a generic exten-

sion in which b = b(P ) and d = d(P ) (add(M) = b(P ) and cof(M) = d(P ),

add(N ) = b(P ) and cof(N ) = d(P ) respectively). For example by taking κ ≤ λ

to be cardinals of uncountable cofinality, and taking P to be the poset given by

κ × λ in the product ordering, the three forcing constructions can be used to

give natural proofs of the consistency of b = κ and d = λ (add(M) = κ and

cof(M) = λ, add(N ) = κ and cof(N ) = λ, respectively).

Since this approach gives two cardinal characteristics distinct values of arbi-

trarily large size and with an arbitrarily high gap between them, at first glance

(or first several hundred) it seems to be a fertile ground for proving consistency

results involving the separation of three or more cardinal characteristics simul-
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taneously. Consider for example the splitting number s. It is not important for

our purposes what the splitting number is (though we encourage the reader to

consult [Bla10]). What is important is that the linear iteration of Hechler forcing

over a ground model satisfying CH will always preserves the splitting number.

In fact, any linear iteration of ccc Suslin forcing notions over a model of CH will

preserve the splitting number. (Informally, a forcing notion being Suslin simply

means that said forcing notion is sufficiently definable for absoluteness arguments

in the ZFC context. For an actual definition, see section 3.6 in [BJ95].)

Theorem 9.2 (Judah and Shelah,[IS88]). If V � CH and P is a well-founded

linear iteration of Suslin ccc forcing notions, then V P � s = ω1.

It would be nice to prove the same holds for non-linear iterations, i.e., that the

splitting number is not increased by forcing with a non-linear iteration of Suslin

ccc forcing notions of the form considered by Hechler and his successors. The

proof in the linear case relies on the fact that any real added by the full iteration

is added by a subiteration that only refers to countably many coordinates. Let

us be more precise.

Definition 9.3. Let P and Q be forcing notions, and let i : P→ Q. We say that

i is a complete embedding if:

1. If p0 ≤ p1 belong to P, then i(p0) ≤ i(p1).

2. If p0 and p1 belong to P, then p0 and p1 are compatible if and only if i(p0)

and i(p1) are compatible.

3. For every q ∈ Q there exists some p ∈ P (called the reduction of q) so that

whenever p0 ∈ P strengthens p, i(p0) is compatible with q.

When such an i exists we say P completely embeds into Q.
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We note that an equivalent definition of complete embedding is given by

replacing (3) with the condition that whenever A ⊆ P is a maximal antichain the

image i[A] is a maximal antichain of Q.

Now suppose 〈Pα : α ≤ β〉 is a linear iteration of Suslin ccc forcing notions

given by 〈Qα : α ≤ β〉. Let X ⊆ β. For α ≤ β, we define a forcing notion PX∩α

by recursion on α.

1. PX∩0 is the trivial forcing notion.

2. PX∩α+1 is the two step iteration PX∩α∗QPX∩α
α if α ∈ X. Otherwise PX∩α+1 =

PX∩α.

3. If α is a limit, then PX∩α is the direct limit of the PX∩γ for γ < α.

The second item makes sense because Qα is a Suslin forcing notion, and has a

definition that can be applied in any extension of V . A straightforward recursion

shows that we may view PX as a subset of Pβ. For this the fact that each step of

the iteration has a Suslin definition is very important.

The crucial feature of linear iterations of Suslin ccc forcing notions is the

following.

Lemma 9.4 (Judah and Shelah, [IS88]). If 〈Pα : α ≤ β〉 is a linear iteration of

Suslin ccc forcing notions and X ⊆ β, then PX C Pβ.

For a proof, see [Bre10].

Lemma 9.4 is the key ingredient in proving Theorem 9.2. If the same lemma

could be proven for non-linear iterations the consistency of s < b < d, s <

add(M) < cof(M) and s < add(N ) < cof(N ) would follow from the con-

structions of Hechler and his successors. (The first of these three inequalities is
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folklore, and an appropriate model can be obtained by adding ω1 many random

reals to a model of b < d).

Unfortunately this nice property does not hold even for (very simple) non-

linear iterations of Hechler forcing, and that is what we will now demonstrate.

We take B to be the partial order with underlying set {x0, x1, x2, y0, y1} where

x0, x1 < y0 and x1, x2 < y1, and no other relations hold. We let A = B \ {x1}.

Proposition 9.5. The ordering P(A) does not completely embed into P(B).

To prove this proposition we present a condition p ∈ P(B) with no reduction

in P(A). For i ≤ 2 let ġi be canonical P({xi})-names for the generic real. (Note

P({xi}) is isomorphic to Hechler forcing). Fix 〈si : i < ω〉 an enumeration of

ω<ω without repetitions. We define the P({x0, x1})-name ḣ0 by declaring ḣ0(n)

to name the code of ġ1 up to and including the nth digit where ġ0 and ġ1 agree.

That is, 
 sḣ0(n) = ġ1 � l, where l is such that there exist exactly n digits k < l

such that ġ0(k) = ġ1(k). We define ḣ2 the same way, but with ġ2 instead of ġ0.

We let p ∈ P(B) be given by setting p(x0) = p(x1) = p(x2) all equal to the trivial

condition, p(y0) = 〈∅, ḣ0〉, p(y2) = 〈∅, ḣ2〉.

We claim that p has no reduction. Suppose instead for contradiction that there

is such a p̄ ∈ P(A). By strengthening p̄ if necessary we may assume without loss

of generality that sp̄y0 and sp̄y2 have the same length N . Let M equal |sp̄x0| and let

i0 ∈ ω be greater than both N and M .

We fix a descending chain of conditions p̄(x2) ≥ r0 ≥ r1 . . . ≥ rk ≥ . . .

belonging to P({x2}) deciding more and more of ḟ p̄y2 , so that we have a sequence

〈nk : k ∈ ω〉 of integers with rk 
 ḟ p̄y2(k) = nk. Let φ : ω → ω be a function

so that any sequence with a digit larger than φ(k) must have index greater than

nk+1 in our enumeration of ω<ω. So if si(j) ≥ φ(k) for any j then i > nk+1. Let
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p0 ∈ P({x0}) be a strengthening of p̄(x0) with sp0x0(i) ≥ φ(i) for all i ∈ |sp0x0| \ |s
p̄
x0
|,

with fp0x0 (i) ≥ φ(i) for all i ≥ |sp0x0| and with the property that there are m ∈ ω

and t0 ∈ ω<ω so that p0 
 ḟ p̄y0(i0) = m and p0 
 ḟ p̄y0 � i0 + 1 = t0. Let l ∈ ω be

larger than max{|si| : i ≤ m}, N and M .

Now, with an eye towards using the fact that p̄ is a reduction of p, we define

a q̄ ∈ P(A) with q̄ ≤ p̄. Set q̄(x0) = p0 and q̄(x2) = rl. We define ḟ q̄y0 = ḟ p̄y0 and

ḟ q̄y1 = ḟ p̄y1 . We set sq̄y0 � N = sp̄y0 � N , and set sq̄y0(i) = t0(i) for i ∈ |t0| \ N . (In

particular, sq̄y0(i0) = m). We define sq̄y2 � N = sp̄y2 � N , and sq̄y2(i) = ni for all

i ∈ [N, l].

That completes the definition of q̄. It should be clear that q̄ ≤ p̄. Hence by

definition of reduction there is some q ∈ P(B) strengthening both p, q̄. Since

q ≤ q̄, sqy0(i0) = m and sqy2(i) = ni for each i ∈ [N, l]. Since q ≤ p and i0 and l

are greater than N it must be that q � {x0, x1} 
 ḣ0(i0) ≤ m and q � {x1, x2} 


(∀i ∈ [N, l])ḣ2(i) ≤ ni. Assume by extending q if necessary that sqx0 and sqx1 agree

on more than i0 digits. In particular q determines the value of ḣ0(i0), which

must be less than or equal to m. By definition of l then the length of sqx1 up to

and including the i0th place where it agrees with sqx0 must be less than l. Hence

there is k ∈ [max(M,N), l) with sqx0(k) = sqx1(k); take k to be the i0th place of

agreement. By definition of p0 and since k ≥M we must have sqx1(k) greater than

φ(k). This violates the fact that q � {x1, x2} 
 ḣ2(k + 1) ≤ nk+1 as by definition

of φ, any sequence extending sqx1 � k + 1 has code strictly greater than nk+1.
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Part II

Polychromatic versus

monochromatic Ramsey theory
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10 Introduction

In this part of the thesis we investigate the relative strengths of monochromatic

and polychromatic Ramsey theory in a variety of settings. Recall that in the usual

monochromatic Ramsey theory one is given a coloring χ : [X]n → C and seeks

a set Y ⊆ X which is monochromatic for χ. This means that there is a single

color which all elements of [Y ]n receive. In the polychromatic Ramsey theory we

instead seek a set Y ⊆ X which is polychromatic for χ. This means that each

member of [Y ]n receives a different color. (Polychromatic Ramsey theory also

goes by the name rainbow Ramsey theory; a polychromatic set might be called

a rainbow.)

In order to be able to find large monochromatic or polychromatic sets we must

put some restriction on the colorings under consideration. In monochromatic

Ramsey theory the appropriate restriction is to insist that the set of colors be

finite; in the polychromatic theory we insist that each color gets used a bounded,

finite number of times. For k ∈ ω we will say that the coloring χ : [X]n → C is

k-bounded if |χ−1[c]| ≤ k for each c ∈ C.

Let us now state both Ramsey’s theorem and the rainbow Ramsey theorem,

as they are emblematic of the two theories which we will be comparing in the

following sections. We will state both in their simplest form, with an exponent

i = 2 for the colorings, using k = 2 colors for the monochromatic theorem, and

dually using a bound of k = 2 for each color in the polychromatic theorem. As

is well-known, both theorems hold for any finite choice of i or k.

Theorem 10.1 (Ramsey’s Theorem, [Ram]). Let X be an infinite set and let

χ : [X]2 → 2. Then there is an infinite Y ⊆ X which is monochromatic for χ.

The rainbow Ramsey theorem is the polychromatic analogue of Ramsey’s
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theorem.

Theorem 10.2 (The rainbow Ramsey theorem). Let X be an infinite set and let

χ : [X]2 → C be a 2-bounded coloring. Then there is an infinite Y ⊆ X which is

polychromatic for χ.

The following trick due to Fred Galvin shows that (essentially) whenever pos-

itive results in the monochromatic theory hold so too will their polychromatic

analogue. In particular the rainbow Ramsey theorem is an immediate conse-

quence of Ramsey’s theorem. Suppose we are given χ : [X]n → C a k-bounded

coloring. For each c ∈ C fix an enumeration of χ−1[c], and form the dual color-

ing χ∗ : [X]n → k by letting χ(a) = i exactly when a is the ith element in the

enumeration of its color class. It is easy to see that Y ⊆ X is polychromatic for

χ whenever Y is monochromatic for χ∗.

Several situations in which the polychromatic theory is strictly weaker than

the monochromatic theory are already well-known. In the finite setting it has been

shown that the classical Ramsey number Rn grows much more quickly than its

polychromatic counterpart ([AGH86], [HM04]). In the context of reverse mathe-

matics, Csima and Mileti showed [CM09] that the rainbow Ramsey theorem does

not imply Ramsey’s theorem over RCA0 even though RCA0 is sufficient to prove

that Ramsey’s theorem implies the rainbow Ramsey theorem. Sierpinksi showed

(in ZFC) that there are 2-colorings of [ω1]2 with no monochromatic subset of size

ω1, yet Todorčević [Tod83] and Abraham, Cummings and Smyth [ACS07] inde-

pendently showed that under PFA one may always find polychromatic subsets of

size ω1 for 2-bounded colorings on [ω1]2.

Our contributions are the following. In section 11 we view the rainbow Ramsey

theorem as a choice principle. We will prove that some choice is needed to

prove the rainbow Ramsey theorem, and that there are models of ZF where the
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rainbow Ramsey theorem holds yet Ramsey’s theorem fails. In section 12 we will

show that the axiom of choice forbids infinite exponent partition relations for the

polychromatic Ramsey theory just as it does for the monochromatic theory. The

main result of this section was jointly proved by the author and Anush Tserunyan.

In Section 13 we examine the power of the rainbow Ramsey theorem as a prin-

ciple in the realm of countable combinatorics. We pursue this examination by

introducing rainbow Ramsey ultrafilters, a notion which serves as a polychromatic

analogue to the usual Ramsey ultrafilters. The strength of the monochromatic

Ramsey theorem as a countable combinatorial principle can be seen in the fact

that the “Ramsey-ness” of an ultrafilter entails a host of other special properties.

For example, every Ramsey ultrafilter is rapid, every Ramsey ultrafilter is weakly

selective, every Ramsey ultrafilter is nowhere dense, and so forth. (All of these

concepts will be precisely defined in Section 13.) We will compare the strength of

the polychromatic Ramsey theorem by exploring the relationship rainbow Ram-

sey ultrafilters have with other special classes of ultrafilters.

Every Ramsey ultrafilter is a rainbow Ramsey ultrafilter, but we will show

that consistently there are rainbow Ramsey ultrafilters which are not Ramsey.

This shows that in the context of ultrafilters and countable combinatorics, the

rainbow Ramsey principle is weaker. We will expand on this weakness and show

that (consistently) not every rainbow Ramsey ultrafilter filter is rapid and that

not every rainbow Ramsey ultrafilter is discrete. However, the concept does have

some strength. Every rainbow Ramsey ultrafilter is necessarily nowhere dense

and hence by work of Shelah [She98] the existence of rainbow Ramsey ultrafilters

is independent of ZFC. We will also show that consistently there may be weakly

selective ultrafilters which are not rainbow Ramsey.

We will close this part of this thesis with Section 14, in which we introduce
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several cardinal characteristics of the continuum that are defined in the spirit of

polychromatic Ramsey theory. We will prove the equality of these new charac-

teristics with cardinal characteristics from the classical theory.

As a remark for possible future directions to take this work, we note that

with the exception of Section 11 where we view the rainbow Ramsey theorem as

a choice principle, for all of the work we do in the polychromatic theory the choice

of k = 2 as a bound for the colorings is irrelevant. This is not the case for the

choice of i = 2 as an exponent for our colorings. Indeed, very little seems to be

known about infinitary polychromatic Ramsey theory for colorings with exponent

greater than 2. Consider for example the open problems about colorings on triples

listed in [ACS07] and [AC12]. (These articles are the definitive source on what is

known about polychromatic Ramsey theory at the level of uncountable infinity.)

The problem as we see it is that all known direct proofs of the rainbow Ramsey

theorem for triples are essentially identical to direct proofs of Ramsey’s theorem,

and the known positive results in this domain are essentially all an immediate

consequence of the corresponding results in the monochromatic theory, obtained

via Galvin’s trick. Using an argument implicit in [ACS07] and explicitly given in

[CM09], one finds a very different sort of proof of the rainbow Ramsey theorem

for pairs. (We will include this argument in the beginning of Section 13.) The

argument allows for a considerable amount of flexibility, and will enable us to

construct polychromatic sets with various largeness properties, properties for

which there is no guarantee of finding a monochromatic set.
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11 Polychromatic Ramsey theory and the axiom of choice

In this section we investigate polychromatic Ramsey theory in the absence of the

axiom of choice. The standard reference for the basics of building models for the

failure of choice is the text [Jec73], whose notation and terminology we follow

closely.

The proof of Ramsey’s theorem as we have stated it here uses the fact that ev-

ery infinite set has a countably infinite subset, while Galvin’s trick (for 2-bounded

colorings) requires the existence of a choice function on sets of pairs. Kleinberg

[Kle69] proved that some amount of choice is necessary to prove Ramsey’s the-

orem. We begin this section by observing that this is also true of the rainbow

Ramsey theorem.

Theorem 11.1. There is a model of ZF in which the rainbow Ramsey theorem

does not hold.

Proof. We use the permutation model M referred to in [Jec73] as the second

Fraenkel model. While technically speaking permutation models only yield in-

dependence results for ZFA (set theory with atoms), the Jech-Sochor theorem

(Theorem 6.1 of [Jec73]) can be applied to yield the ZF result.

Recall that the model M is obtained as follows. Let A =
⋃
Pn where Pn =

{an, bn}, and G is the group of all permutations π of A such that π({an, bn}) =

{an, bn}. We obtain M using G and the ideal I of finite supports.

Let χ in M be a 2-bounded coloring of [A]2 which gives the pair {ai, bj} the

same color as {bi, aj}, and the pair {ai, aj} the same color as the pair {bi, bj}.

Specifically we may take χ to be defined by χ({ai, bj}) = {{ai, bj}, {aj, bi}} and

χ({ai, aj}) = χ({bi, bj}) = {{ai, aj}, {bi, bj}}. It is not hard to see that χ is

invariant under permutations π ∈ G and hence that χ belongs to M .

55



There is no infinite set in M which is polychromatic for χ. This is because any

infinite B ⊆ A belonging to M must contain infinitely many pairs {ai, bi}.

Let N be the basic Cohen model of the failure of the axiom of choice, as

described in section 5.3 of [Jec73]. In that model the Boolean prime ideal theorem

holds, every set can be linearly ordered and every collection of well-ordered sets

has a choice function. Blass [Bla77] proved that Ramsey’s theorem fails in N .

Thus our next result shows that the rainbow Ramsey theorem is considerably

weaker than Ramsey’s theorem as a choice principle. Our argument is very much

inspired by Blass’s argument in [Bla77] that the basic Fraenkel model satisfies

Ramsey’s theorem.

Theorem 11.2. The rainbow Ramsey theorem holds in N .

As in [Jec73] we take A = {xn : n ∈ ω} to be the canonical set of Cohen reals

in N . We start by showing that the rainbow Ramsey theorem holds on A.

Lemma 11.3. Say Y ⊆ A is infinite, Y ∈ N . If χ : [Y ]2 → C is a two-

bounded coloring in N , then there is in N an infinite set X ⊆ Y on which χ is

polychromatic.

Proof. Let χ̇, Ẏ be hereditarily symmetric names for the corresponding objects.

There is a finite e ⊆ ω such that fix(e) ⊆ sym(χ̇). We claim that Y \{xn : n ∈ e}

is polychromatic.

Suppose otherwise for contradiction. There are two very similar cases to

consider; we will derive a contradiction from the situation where for some distinct

i0, i1, i2 not in e we have χ({xi0 , xi2}) = χ({xi1 , xi2}). Let p ∈ P forcing χ̇ to be

2-bounded and with

p 
 χ̇({ẋi0 , ẋi2}) = χ̇({ẋi1 , ẋi2}).
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We may assume without loss of generality that e∪{i0, i1, i2} ⊆ dom(p). Let π be

a permutation which fixes each member of e as well as i0 and i2, and for which

π(i1) = k where k is not in the domain of p. Then p, π(p) are compatible, and

π(p) 
 χ̇({ẋi0 , ẋi2}) = χ̇({ẋk, ẋi2}). But then if q is a common strengthening of

p and π(p) we have that

q 
 χ̇({ẋi0 , ẋi2}) = χ̇({ẋk, ẋi2}) = χ̇({ẋi1 , ẋi2})

which violates χ being forced to be two-bounded.

The case where there exist distinct i0, i1, i2, i3 not in e with χ({xi0 , xi1}) =

χ({xi2 , xi3}) is similarly handled.

To prove that the rainbow Ramsey theorem holds in N we must show that if

X ∈ N is an infinite set and χ : [X]2 → C is a 2-bounded coloring in N , then N

contains an infinite polychromatic subset of X. If X happens to be well-orderable

in N , there is no difficulty since the usual proof of the rainbow Ramsey theorem

will go through. We thus only have to worry about sets in N which cannot be

well-ordered. Theorem 11.2 will be proven once we establish the following.

Lemma 11.4. If B ∈ N is a non-wellorderable set, then N contains a bijection

of B with an infinite subset of A.

Proof. We take advantage of the theory of least supports. Our notation will

match that of Chapter 5 of [Jec73]. Let x ∈ N , and E ⊆ A with E finite. Write

E = {xi0 , . . . xik}. We say that E supports x and write ∆(E, x) if there is some

hereditarily symmetric name ẋ with ẋ[G] = x such that {i0, . . . ik} supports ẋ.

The class relation ∆ is definable in N .

We first claim that if B ∈ N and there is some single E such that ∆(E, x)

holds for all x ∈ B, then B can be well-ordered in N . Say E = {xi0 , . . . xik}.

57



By the axiom of replacement applied in N there is an ordinal α so that for every

x ∈ B there is a hereditarily symmetric name ẋ in Vα with support e = {i0, . . . ik}

and ẋ[G] = x. Let C be the set

{τ [G] : τ is a hereditarily symmetric name in Vα with support e}.

Then C belongs to N and B ⊆ C. Furthermore, C can be well-ordered in N

since all the relevant names are supported by e. Thus B can be well-ordered in

N .

Recall now that every x ∈ N has a least support; that is, there is some E0

with ∆(x,E0) and such that ∆(x,E) implies E0 ⊆ E. Suppose B is some non-

wellorderable set with least support E0, witnessed by the hereditarily symmetric

name Ḃ. By the above paragraph there is some x ∈ B for which ∆(x,E0) does

not hold. Write the least support of x as E1 ∪ {xk} where xk does not belong

to E0 ∪ E1. Let ẋ be a hereditarily symmetric name witness that x has support

E1 ∪ {xk}. Enumerate E0 = {xi0 , . . . xil1} and E1 = {xj0 , . . . xjl2}. Let p ∈ G

with

p 
 ẋ ∈ Ḃ and Ė1 ∪ {ẋk} is the least support of ẋ.

Let e0 = {i0, . . . il1}, let e1 = {j0, . . . jl2} and let e = e0 ∪ e1. Consider the

name

σ = {〈〈π(ẋk), π(ẋ)〉, π(p)〉 : π fixes e}.

Then f = σ[G] belongs to N since σ is supported by e. We have four things to

prove about f .

First, we check that f is a function. If π1(ẋk)[G] = π2(ẋk)[G] then π1(k) =

π2(k) and so π−1
1 π2 fixes e ∪ {k} and thus ẋ. Then π1(ẋ) = π2(ẋ).

Secondly we note that the range of f is a subset of X. Any member of the

range of f has the form π(ẋ)[G] for some π fixing e with π(p) ∈ G. Since π fixes
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e, π(Ḃ) = Ḃ and so π(p) 
 π(ẋ) ∈ Ḃ.

Next we observe that the domain of f is an infinite subset of A. This is

because xi belongs to the domain of f whenever π(p) ∈ G for some π mapping k

to i. Since G is generic this happens for infinitely many i.

Finally we claim that f is injective. Otherwise we would have π1(ẋ)[G] =

π2(ẋ)[G] for some π1, π2 with π1(k) = k1, π2(k) = k2, k1 6= k2 and both π1(p)

and π2(p) belonging to G. Let q ≤ π1(p), π2(p) with q in G and such that

q 
 π1(ẋ) = π2(ẋ). Now π1(ẋ) and π2(ẋ) have supports e1 ∪ {k1} and e1 ∪ {k2}

respectively. Hence by [Jec73] Lemma 5.23 there is some ż with support e1 and

q 
 π1(ẋ) = π2(ẋ) = ż. Since q extends π1(p) we have

q 
 Ė1 ∪ {ẋk1} is the least support of π1(ẋ) .

On the other hand, q belongs to G and π1(ẋ)[G] = ż[G] and ż has support strictly

contained in e1 ∪ {k1}. Contradiction.

As we mentioned above, Galvin’s trick also requires a small amount of choice.

We do not know of a model of ZF where Ramsey’s theorem holds but the rainbow

Ramsey theorem fails.

The results in this section focused on 2-bounded colorings, and we stated

the rainbow Ramsey theorem for 2-bounded colorings alone. For k ∈ ω let RRk

denote the rainbow Ramsey theorem for k-bounded colorings. For j < k we

clearly have that RRk implies RRj. We do not know if the reverse implication

holds in ZF alone. The following proposition shows that it follows from the axiom

of choice for collections of finite sets. In particular Theorem 11.2 implies for each

k that RRk holds in Cohen’s model, and thus none of these is sufficient to yield

Ramsey’s theorem.
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Proposition 11.5. Fix k ∈ ω, and assume that there exists a choice function

for any family of sets of cardinality at most k. Then RR2 implies RRk.

Proof. Let χ : [X]2 → C be a k-bounded coloring. Using the choice assumption,

for each c ∈ C enumerate χ−1[c] = {pc0, . . . pck−1} (possibly with repetitions.)

Using this enumeration for every possible pair i, j < k we can define a coloring

χi,j which gives each pci and pcj the same color and gives each other member of

[X]2 its own color. Each χi,j is 2-bounded and so by iteratively applying RR2

finitely many times we arrive at an infinite set which is polychromatic for all of

the χi,j. Any such set is polychromatic for χ.

Using the transfer theorem of Pincus [Pin72], to separate RRj and RRk in ZF

it would be enough to find a permutation model of ZFA separating the two. There

is a natural class of models one is drawn to when considering this question. Fix

M a permutation model with the following properties. The collection of atoms

is of the form A =
⋃
Pn where each Pn is a finite set of size at least two. The

group of permutations G acts transitively on each Pn, and so that π(Pn) = Pn,

and the ideal I is the ideal of finite supports.

These are the models used to separate ACj and ACk, the axiom of choice for

sets of size j and k respectively, for appropriate selection of j and k (see Theorem

7.15 of [Jec73].) When all the Pn have size 2, we saw in Theorem 11.1 that RR2

fails. Even better, when all the Pn have size strictly greater than j, an argument

similar to and simpler than the proof of Lemma 11.3 shows that RRj holds when

restricted to colorings on subset of A. Nonetheless RR3 fails in any such M .

To see this, consider the coloring χ on [A2]2 given by χ(s, t) = s ∪ t. Notice

that this coloring is 3-bounded and belongs to M . Let X =
⋃
n<ω(Pn × Pn+1).

The set X ⊆ [A]2 belongs to M since the sequence 〈Pn : n ∈ ω〉 belongs to
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M . We claim that X has no infinite subset which is polychromatic for χ. This

is because any infinite subset of X must contain Pn × Pn+1 for infinitely many

distinct n.

We will use a similar coloring in Section 13 when we construct a weakly

selective ultrafilter which is not rainbow Ramsey.

12 Polychromatic Ramsey theory and infinite exponent

partition relations

A result of Erdös and Rado says that under the axiom of choice Ramsey’s theorem

fails for infinite exponent partitions (Proposition 7.1 of [Kan03].) Specifically, for

any infinite cardinal κ there is a 2-coloring of the countable subsets of κ so that

no infinite subset of κ has all of its countable subsets receiving the same color.

In this section we show that the axiom of choice also implies the failure of the

rainbow Ramsey theorem for infinite exponent partitions. Using Galvin’s trick

we may view our result as a strengthening of the Erdös and Rado result. The

work in this section is joint with Anush Tserunyan.

Theorem 12.1. Let κ be an infinite cardinal. There is a 2-bounded coloring

χ : [κ]ω → C so that whenever X ∈ [κ]ω there are distinct a, b ∈ [X]ω with

χ(a) = χ(b).

To prove the theorem it is enough for us to establish the following.

Lemma 12.2. Let κ be an infinite cardinal. There exists an injective map

f : [κ]ω → [κ]ω so that for each x we have that f(x) is a proper subset of x.

Given the lemma, Theorem 12.1 is proven as follows. Let f be as in Lemma

12.2. We define f0 and f1 two injections from [κ]ω into [κ]ω with disjoint ranges
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so that f0(x) and f1(x) are both proper subsets of x for each x. This can be done

by looking at the orbits of f ; that is, each collection {fn(x) : n ∈ Z}. Because

f is injective, the orbits partition the range of f . Select an enumeration of each,

and take f0 and f1 so that f0(x) is an even member of the orbit of x while f1(x)

is an odd member of the orbit of x. With f0 and f1 defined, we may define χ

by setting χ(f0(x)) = χ(f1(x)), and letting χ take distinct values on the other

members of [κ]ω. Then χ is as desired.

Let us remark that since there are models of ZF where Ramsey’s theorem

holds for infinite exponent partition relations, by Galvin’s trick there are models

of ZF where the rainbow Ramsey theorem holds for infinite exponent partition

relations. Thus this argument also shows that the axiom of choice is required to

prove the existence of such injections f0 and f1.

We now make the observation that the lemma holds if κ = ω.

Proposition 12.3. There exists an injection f : [ω]ω → [ω]ω so that for each x

we have that f(x) is a proper subset of x.

Proof. Fix an enumeration of [ω]ω in ordertype 2ω. We define f by transfinite

recursion. At stage α, we define f(x) where x is the αth member of [ω]ω. Since x

has 2ω many proper subsets and since there are strictly less than 2ω values of f

which have been decided we may select a value for f(x) not equal to any earlier

decided value.

Proof of Lemma 12.2. Fix A = {aα : α < λ} a maximal almost disjoint family

of members of [κ]ω. That is, aα ∩ aβ is finite for distinct α and β and for any

x ∈ [κ]ω there is some α such that x ∩ aα is infinite.

We construct f as follows. For each α < λ let fα : [aα]ω → [aα]ω be as in

Proposition 12.3. Given x in [κ]ω, take α least for which x∩ aα is infinite and set
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f(x) equal to fα(x ∩ aα) ∪ (x \ aα).

We claim that f is injective. Fix x0, x1 ∈ [κ]ω with α0 and α1 least so that

x0∩aα0 and x1∩aα1 are infinite. Assume without loss of generality that α0 ≤ α1.

Suppose f(x0) = f(x1) so that

fα0(x0 ∩ aα0) ∪ (x0 \ aα0) = fα1(x1 ∩ aα1) ∪ (x1 \ aα1).

Note that fα0(x0 ∩ aα0) is an infinite subset of aα0 and fα1(x1 ∩ aα1) is an infinite

subset of aα1 . Consider the following two possibilities. If fα0(x0∩aα0) has infinite

intersection with fα1(x1 ∩ aα1), then aα0 ∩ aα1 is infinite so that α0 = α1. The

other possibility is that fα0(x0 ∩ aα0) ∩ x1 \ aα1 is infinite in which case aα0 ∩ x1

is infinite so that α0 is equal to α1 by minimality of α1. In either case we can

conclude that α0 and α1 are equal to the same ordinal α.

Thus

fα(x0 ∩ aα) ∪ (x0 \ aα) = fα(x1 ∩ aα) ∪ (x1 \ aα).

Then fα(x0 ∩ aα) = fα(x1 ∩ aα) so we have x0 ∩ aα = x1 ∩ aα by injectivity of fα.

Because x0 \ aα = x1 \ aα also holds we get x0 = x1 as desired.

13 Polychromatic Ramsey theory and ultrafilters on ω

We turn our attention now to monochromatic and polychromatic Ramsey theory

in the context of ultrafilters on ω. The following objects are central in the study

of such ultrafilters.

Definition 13.1. A nonprincipal ultrafilter U is Ramsey if for every coloring

χ : [ω]2 → 2 there is an A ⊆ ω belonging to U which is monochromatic for χ.

Ramsey ultrafilters are often called selective ultrafilters in connection with the

following characterization. An ultrafilter U is Ramsey exactly when given any
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partition of ω into countably many pieces
⋃
n<ω An with each An 6∈ U we may find

B ∈ U such that |An∩B| ≤ 1 for each n ∈ ω. Another salient characterization of

Ramsey ultrafilters is that they are precisely nonprincipal ultrafilters which are

minimal in the Rudin-Keisler ordering.

The existence of Ramsey ultrafilters is not provable in ZFC. This was first

established by Kunen [Kun76]. Martin’s Axiom (MA) is sufficient to prove their

existence; indeed MA is generally the context in which relationships between

various classes of ultrafilters are studied. Such investigations have been pursued

by Baumgartner [Bau95], Brendle [Bre99] and others.

As an analogue to the Ramsey theoretic characterization of Ramsey ultrafil-

ters, we present the following definition.

Definition 13.2. A nonprincipal ultrafilter U is rainbow Ramsey if for every

2-bounded coloring χ : [ω]2 → ω there is an A ⊆ ω belonging to U which is

polychromatic for χ.

We start with the simple observation that although our definition of rainbow

Ramsey ultrafilters only guarantees that they contain polychromatic sets for the

2-bounded colorings, we automatically get polychromatic sets for colorings of all

other possible finite bounds.

Proposition 13.3. If U is a rainbow Ramsey ultrafilter and χ : [ω]2 → ω is a

k-bounded coloring then there is an A ⊆ ω belonging to U which is polychromatic

for χ.

Proof. The proof of Proposition 11.5 goes through in this context.

By Galvin’s trick every Ramsey ultrafilter is a rainbow Ramsey ultrafilter.

Assuming MA we will prove that the converse does not hold. We will also com-
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pare the notion of rainbow Ramsey utrafilter to other notable classes of special

ultrafilters on ω. Let us introduce the special ultrafilters we will consider.

Definition 13.4. A nonprincipal ultrafilter U on ω is weakly selective if whenever

ω is partitioned into countably many pieces
⋃
n<ω An with each An 6∈ U we may

find B ∈ U such that An ∩B is finite for each n ∈ ω.

Weakly selective ultrafilters are also often referred to as P-points in connec-

tion with the fact that an ultrafilter is weakly selective exactly when for every

countable family {Bn : n ∈ ω} of members of U there is some B ∈ U such that

B ⊆∗ Bn for each n ∈ ω. (Here ⊆∗ is the preorder of almost containment; A ⊆∗ B

means A \B is finite.)

Definition 13.5. A nonprincipal ultrafilter U on ω is rapid if for every f : ω → ω

there is some A ∈ U such that f ≤∗ eA. (Here eA is the function enumerating A

in increasing order, and ≤∗ is the preorder of eventual domination.)

The next definition scheme is due to Baumgartner [Bau95]. In this thesis

ideals will always contain all possible finite sets.

Definition 13.6. Let I be an ideal on some set X. We say that a nonprincipal

ultrafilter on ω is an I-ultrafilter if for every f : ω → X there is some A ∈ U

with f(A) ∈ I.

For example we could take I to be the nowhere dense subsets of Q, or we

could take I to be the discrete subsets of Q; in these cases we have the notion of

a nowhere dense ultrafilter and the notion of a discrete ultrafilter, respectively.

Every Ramsey ultrafilter is rapid, and every Ramsey ultrafilter is weakly selec-

tive. Every weakly selective ultrafilter is discrete, and every discrete ultrafilter is

nowhere dense.
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We connect rainbow Ramsey ultrafilters to these classes as follows. Every

rainbow Ramsey ultrafilter is nowhere dense, but (assuming MA) there exist

rainbow Ramsey ultrafilters which are not discrete as well as rainbow Ramsey

ultrafilters which are not rapid. Shelah proved [She98] that there are models of

ZFC with no nowhere dense ultrafilters; this implication shows that the same

is true of rainbow Ramsey ultrafilters. We will also show that MA implies the

existence of a weakly selective ultrafilter which is not rainbow Ramsey. Together

these results rule out the possibility of the concept of rainbow Ramsey ultrafilter

being equivalent to any previously studied special class of ultrafilter.

The arguments we give separating classes of ultrafilters all use MA, an axiom

which guarantees the existence of Ramsey ultrafilters and hence of all the special

types of ultrafilters considered here. We do not know whether the existence of

a rainbow Ramsey ultrafilter implies the existence of a Ramsey ultrafilter. We

do not even know whether the existence of a rainbow Ramsey ultrafilter implies

the existence of a P-point. A good place to start on this question would be to

determine the status of the existence of rainbow Ramsey ultrafilters in Shelah’s

model with no P-points [She98].

In our constructions of ultrafilters which are rainbow Ramsey but lack some

other property we will be interested in building polychromatic sets which are

large in some sense. Let us describe some tools that will help us accomplish this.

Fix a coloring χ : [ω]2 → ω. We assume throughout that χ is 2-bounded. For

a, b ∈ ω we will usually write χ(a, b) for χ({a, b}). If X ⊆ ω is finite and a ∈ ω

we write X < a to mean max(X) < a. Similarly we will write X < Z to mean

max(X) < min(Z).

Definition 13.7. A set A ⊆ ω is normal (with respect to χ) if whenever a0 < a1

and b0 < b1 are elements of A with χ(a0, a1) = χ(b0, b1) then we necessarily have
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a1 = b1. We say that χ is normal if ω is normal with respect to χ.

Generally our constructions of large polychromatic sets will entail first build-

ing large normal sets.

Suppose X is a given finite polychromatic set. We define E(X) by setting

E(X) = {a > X : X ∪ a is polychromatic}.

We will sometimes write E(X ∪ x) as shorthand for E(X ∪ {x}).

Proposition 13.8. Suppose A is normal. If X ⊆ A is polychromatic, |X| ≤ n

and a0 < . . . < an belong to A ∩ E(X) then

A ∩ E(X) ⊆∗ A ∩ (E(X ∪ a0) ∪ . . . ∪ E(X ∪ an)).

Indeed, every member of A∩E(X) greater than an belongs to A∩
⋃
i≤nE(X∪ai).

Proof. Enumerate X = {x0, . . . xn−1}. Suppose for contradiction that z > an

with z ∈ A ∩ E(X), but z does not belong to any A ∩ E(X ∪ ai). For each

such i, since X ∪ {z} is polychromatic, X ∪ {ai} is polychromatic, X ∪ {ai, z} is

not polychromatic and A is normal there must be some ji such that χ(ai, z) =

χ(xji , z). There are n + 1 possible i while only n possible ji. By the pigeonhole

principle there is some j and i0 < i1 such that j = ji0 = ji1 . Then χ(xj, z) =

χ(ai0 , z) = χ(ai1 , z). But that contradicts χ being 2-bounded.

Lemma 13.9. Suppose A ⊆ ω is normal. Let I be an ideal on ω. Let X ⊆ A be

polychromatic with |X| ≤ n. Then if E(X) ∩ A 6∈ I,

{a ∈ A ∩ E(X) : A ∩ E(X ∪ a) ∈ I}

has size at most n.
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Proof. Suppose for contradiction that a0, . . . an are distinct members of A∩E(X)

with each A ∩ E(X ∪ ai) belonging to I. Then by Proposition 13.8 we have

A ∩ E(X) ⊆∗ A ∩ (E(X ∪ a0) ∪ . . . ∪ E(X ∪ an)).

But then A ∩ E(X) belongs to I. Contradiction.

For the sake of completeness and to serve as a simple paradigm of how one

can apply Lemma 13.9 to build large polychromatic sets, we use it to prove the

rainbow Ramsey theorem (for pairs) directly. This is essentially the same proof

as in [CM09].

Proof of Theorem 10.2. Fix χ : [ω]2 → ω a 2-bounded coloring. We seek an

infinite polychromatic A ⊆ ω.

First we find B ⊆ ω on which χ is normal. We construct B by induction,

enumerated {bn : n ∈ ω}. Suppose we have thus far constructed a finite set

{b0, . . . bn−1} on which χ is normal. Consider the possible colors χ(bi, bj) with

i, j < n. There are finitely many such colors, and each is used at most twice by

χ. Thus by taking bn to be some sufficiently large member of ω, we have that χ

is normal on the set {b0 . . . bn}.

By restricting our attention to B, we may assume without loss of generality

that χ is normal. We construct A by induction, enumerated {xn : n ∈ ω}. Sup-

pose we have thus far constructed a finite polychromatic set X = {x0, . . . xn−1},

with the property that E(X) is infinite. Taking I to be the ideal of finite sets,

by Lemma 13.9 we find an xn > X such that {x0, . . . xn} is polychromatic and

E(X ∪ xn) is infinite. This completes the induction.
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13.1 An ultrafilter which is rainbow Ramsey and not rapid

In this subsection we use MA to construct a rainbow Ramsey ultrafilter U which

is not rapid. To accomplish this we must be able to build polychromatic sets

which are large in the sense that they have enumerating functions which do not

grow too fast. That is, we define a function f : ω → ω and construct U so that

for every A ∈ U we have f 6≤∗ eA. Such constructions are not possible in the

monochromatic theory; given a function one can always define a 2-coloring so

that any monochromatic set dominates that function.

Proposition 13.10. There is a function Nrm : ω2 → ω such that the following

holds. Suppose χ is a 2-bounded coloring and X is normal with |X| = p, and

suppose Z ⊆ ω with Z > X and Nrm(p, n) ≤ |Z|. There is Y ⊆ Z with |Y | ≥ n

such that χ is normal on X ∪ Y .

Proof. For each a < b ∈ X there is at most one other pair c < d with χ(a, b) =

χ(c, d) and hence some z from the first
(
p
2

)
+ 1 elements of Z gives X ∪ z is

normal. By iterating this observation we see that we may define Nrm recursively;

Nrm(p, n+ 1) = Nrm(p, n) +
(
p+n

2

)
+ 1.

Proposition 13.11. There is a function h : ω2 → ω with the following properties.

Let χ be a 2-bounded coloring and A ⊆ ω a normal set. Let I be any ideal on ω,

X ⊆ A a polychromatic set with |X| ≤ p and A∩E(X) 6∈ I, and Z ⊆ A∩E(X)

with h(p, n) ≤ |Z|. There is Y ⊆ Z with |Y | ≥ n such that X∪Y is polychromatic

and A ∩ E(X ∪ Y ) 6∈ I.

Proof. As in Proposition 13.10 this follows by iterating an observation for extend-

ing by one point. This time the observation is the claim that given N0 ∈ ω, if

N1 ≥ N0(p+1)+2p+2 and Z has size at least N1 then for some z equal to one of

the first 2p+1 members of Z we have A∩E(X∪z) 6∈ I and |Z∩E(X∪z)| ≥ N0.
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Let us verify this claim. By Lemma 13.9 there are at most p members z of

A ∩E(X) with A ∩E(X ∪ z) belonging to I. Remove these from Z and call the

resulting set Z0. Then Z0 has size at least N0(p + 1) + p + 2 and it is enough

to show that one of the first p + 1 members of Z0 works. Suppose otherwise for

contradiction: let a0, . . . ap be the first p+1 members of Z0 and assume that each

|Z ∩ E(X ∪ ai)| ≤ N0. Then

|E(X ∪ a0) ∩ Z0 ∪ . . . ∪ E(X ∪ ap) ∩ Z0| ≤ N0(p+ 1).

But now we can select a z in Z0 ⊆ E(X) above ap and not belonging to any of

the E(X ∪ ai) and that violates Proposition 13.8.

Now define a function g as follows. For each n ∈ ω, set g(1, n) = n+ 1. Then

recursively define g so that

g(k + 1, n) > h(k, g(k, n)),Nrm(k, g(k, n)), 2 · g(k, n).

We let f : ω → ω be a function eventually dominating (for each fixed k and l)

the map that sends n to g(k, n) + l. We say a set is f -rapid if f ≤∗ eA.

We build U by constructing a filter F which consists only of sets which are

not f -rapid and which contains a polychromatic set for every 2-bounded coloring;

we will then want to extend F to an ultrafilter consisting only of sets which are

not f -rapid. To do this it is enough to have F ∩ I = ∅ where I is an ideal on ω

containing all the f -rapid sets.

Proposition 13.12. Let I consist of all sets A ⊆ ω for which there exists

l, k,N ∈ ω such that

(∀n ≥ N)|[l, f(n)) ∩ A| < g(k, n).

Then I is an ideal that contains every f -rapid set.
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Proof. First, if A is f -rapid then since n + 1 ≤ g(1, n) taking l = 0 and k = 1

witnesses A ∈ I. Clearly I is closed under subsets. To see that ω 6∈ I, just

notice that |[l, f(n)) ∩ ω| = f(n)− l and we defined f so that g(k, n) + l ≤ f(n)

for sufficiently large n. Closure of I under unions follows from the fact that

2g(k, n) < g(k + 1, n) for every n and k.

We now build a filter F disjoint from I and containing a polychromatic set

for each 2-bounded coloring. We generate F from a tower of sets not in I. Recall

that a tower is a sequence 〈Ti : i < λ〉 of subsets of ω with i < j implying that

Tj ⊆∗ Ti.

Proposition 13.13. If A 6∈ I and χ : [ω]2 → ω is 2-bounded then there is a

normal B ⊆ A with B 6∈ I.

Proof. It is enough to show that given a finite X ⊆ ω on which χ is normal and

given N, k, l we may find n ≥ N and Y ⊆ A with X ∪ Y normal and

|[l, f(n)) ∩ Y | ≥ g(k, n)

for then B may be constructed by a straightforward induction. Let p = |X|.

Because A 6∈ I there is some n ≥ N such that |[l, f(n)) ∩ A| ≥ g(max{p, k} +

1, n) > Nrm(p, g(k, n)). By Proposition 13.10 there is Y ⊆ [l, f(n)) ∩ A with

|Y | ≥ g(k, n) and X ∪ Y is normal.

Proposition 13.14. If χ a 2-bounded coloring and A 6∈ I is a normal set then

there is a set B ⊆ A which is polychromatic and so that B 6∈ I.

Proof. This is just like Proposition 13.13 but appealing to Proposition 13.11

instead of Proposition 13.10.

Lemma 13.15. Assume MA. If 〈Ti : i < λ〉 is a tower of sets with λ < 2ℵ0 and

each Ti 6∈ I, there is Tλ 6∈ I such that Tλ ⊆∗ Ti for all i < λ.
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Proof. The usual forcing notion P to extend a tower applies; conditions are pairs

〈s, A〉 where s is a finite subset of ω and A belongs to the tower. We order by

setting 〈s′, A′〉 ≤ 〈s, A〉 exactly when s′ is an end extension of s, A′ \max(s′) ⊆ A

and s′ \ s ⊆ A. The dense sets come in two flavors; first for each Ti consider the

dense set Ci of conditions 〈s, A〉 for which A \max(s) is a subset of Ti. Second,

for each l, k,N ∈ ω take the dense set Dl,k,N of conditions 〈s, A〉 for which there

is some n ≥ N with |s∩ [l, f(n))| ≥ g(k, n). If G is a filter on P intersecting each

Ci and Dl,k,N then Tλ may be obtained as the union of all the s such that some

〈s, A〉 belongs to G.

Putting all the ingredients together to construct a U which is rainbow Ramsey

and not rapid is now routine. We enumerate all 2-bounded colorings 〈χi : i <

2ω〉 and construct a tower of sets 〈Ti : i < 2ω〉 not in I such that each Ti is

polychromatic for χi. Given an initial segment of such a tower, Lemma 13.15

applies to extend it by a single set A and then Lemma 13.13 followed by Lemma

13.14 apply to refine this extension to a polychromatic set not in I. With the

tower constructed, the filter it generates consists of sets not in I, and this filter

can be extended to an ultrafilter U which is disjoint from I and is thus not rapid.

13.2 A weakly selective ultrafilter which is not rainbow Ramsey

In this subsection we use MA to construct a weakly selective ultrafilter U which

is not rainbow Ramsey. We will define U to be an ultrafilter on [ω]2 rather than

on ω. We think of [ω]2 as the set of edges in the complete graph whose set of

vertices is ω. Define a coloring χ by setting χ({a, b}, {c, d}) = {a, b, c, d}. Notice

that χ is 3-bounded.

Let IRamsey be the collection of X ⊆ [ω]2 for which there exists an N so that

N ≤ |A| implies [A]2 6⊆ X.
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Proposition 13.16. The set IRamsey is an ideal containing every set which is

polychromatic for χ.

Proof. Since χ({a, b}, {c, d}) = χ({a, d}, {b, c}) no polychromatic set can contain

an [A]2 where A has size at least 4.

It is clear that IRamsey is closed under subsets. That IRamsey is closed under

finite unions follows from the finite monochromatic Ramsey theorem. If X =

Y0 ∪ . . .∪ Yn contains arbitrarily large complete graphs, then so does Yi for some

i.

Let P = {Pn : n ∈ ω} be a partition of [ω]2. We say that X ⊆ [ω]2 is a weak

P-selector if X ∩ Pn is finite for each n. To construct our ultrafilter it suffices to

build a filter F disjoint from IRamsey which for each P either contains some Pn

or contains a weak P-selector for each P .

Lemma 13.17. Assume MA. If 〈Ti : i < λ〉 is a tower of subsets of [ω]2 with

λ < 2ℵ0 and each Ti 6∈ IRamsey, there is Tλ 6∈ IRamsey such that Tλ ⊆∗ Ti for all

i < λ.

Proof. As in Lemma 13.15 we apply MA to the usual forcing to extend a tower.

Our dense sets again come in two flavors; Ci consists of those 〈s,X〉 with A \

max(s) a subset of Ti. For each N we let DN be those 〈s,X〉 with some [A]2 ⊆ s

with N ≤ |A|. Given G ⊆ P a generic filter intersecting each Ci and DN we may

define Tλ as the union of all the s such that there exists X with 〈s,X〉 ∈ G.

Lemma 13.18. Suppose X 6∈ IRamsey and P = {Pn : n ∈ ω} is a partition of

[ω]2. Either some X ∩ Pn 6∈ IRamsey or there is Y ⊆ X a weak P -selector with

Y 6∈ IRamsey.
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Proof. Assume that each X ∩ Pn ∈ IRamsey. Then Y may be built in ω stages,

adding finitely many points at a time. We start with Y0 = ∅. At stage N

we have YN , with P0, . . . Pn all the members of P with which YN has nonempty

intersection, and we form YN+1 = YN ∪ [B]2 where N ≤ |B|, [B]2 ⊆ X and

[B]2 ∩ P0 ∪ . . . ∪ Pn = ∅.

We find B as follows. Let Q = P0∪ . . .∪Pn. Then Q∩X ∈ IRamsey so we may

take M so that Q ∩X contains no [C]2 where |M | ≤ C. Now define a 2-coloring

with domain X by giving elements of Q color 0 and all other members of X color

1. By the monochromatic Ramsey’s theorem there is B ⊆ ω with M ≤ |B| and

[B]2 monochromatic; then [B]2 ⊆ X \Q as desired.

Now a routine recursion of length continuum will yield an ultrafilter U which

is weakly selective but not rainbow Ramsey. Enumerate all partitions of [ω]2

as 〈P i : i < 2ω〉 and construct a tower of sets 〈Ti : i < 2ω〉 not in IRamsey

such that each Ti is either a weak P-selector or a subset of some P i
n. Given an

initial segment of such a tower, Lemma 13.17 applies to extend it by a single set

Y 6∈ IRamsey and then Lemma 13.18 applies to refine Y to a Z ⊆ Y which is

either a weak P-selector or a subset of some P i
n. With the tower constructed, the

filter it generates consists of sets not in IRamsey, and this filter can be extended

to a weakly selective ultrafilter U which is disjoint from IRamsey and is thus not

rainbow Ramsey.

13.3 Rainbow Ramsey ultrafilters are nowhere dense.

In this subsection we show that every rainbow Ramsey ultrafilter is nowhere

dense.

Lemma 13.19. Suppose S ⊆ R is countable. Then there is a 2-bounded coloring
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χ : [S]2 → ω so that any set A which is polychromatic for χ is nowhere dense as

a subset of R.

Proof. Let C be the collection of all open intervals in R with rational endpoints.

Fix ≺ an ordering of S in ordertype ω. When we specify χ(q, r) we insist that

q ≺ r. Enumerate C = {cn : n ∈ ω}.

Before defining χ we first define sequences {Sn : n ∈ ω} and {bp,qn : n ∈

ω, {p, q} ∈ [Sn]2} such that

1. S \ Sn is finite.

2. For each n ∈ ω the set {bp,qn : {p, q} ∈ [Sn]2} is a pairwise disjoint collection

of elements of C each of which is a subset of cn.

3. bp,qn ∩ br,sm 6= ∅ and {p, q} ∩ {r, s} 6= ∅ implies that m = n (and thus

{p, q} = {r, s} by (2).)

Suppose recursively we have defined Si and bp,qi for i < n. For each i ≤ n we

define a set ani ∈ C and we do this by recursion. Let an0 = cn. If there is some

{pni , qni } ∈ [Si]
2 with ani ∩ b

pni ,q
n
i

i 6= ∅ then set ani+1 = ani ∩ b
pni ,q

n
i

i ; otherwise set

ani+1 = ani . Let Sn = S \
⋃
i<n{pni , qni }. We take {bp,qn : {p, q} ∈ [Sn]2} to be a

pairwise disjoint collection of members of C so that each bp,qn ⊆ ann.

That completes the definition of the Sn and the bp,qn . It is easy to see that

we have (1) and (2). To see that (3) holds notice that by construction if i < n

and ann ∩ b
r,s
i 6= ∅ we have ann ⊆ br,si and {r, s} = {pni , qni }. But pni , q

n
i 6∈ Sn and

bp,qn ⊆ ann.

Now we define χ. For x with p, q ≺ x and x ∈ S ∩ bp,qn set χ(p, x) = χ(q, x) =

{p, q, x}. For all other pairs we let χ(p, x) = {p, x}. Condition (3) in our con-

struction of bp,qn guarantees that χ is well-defined and 2-bounded.
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Suppose A ⊆ S is polychromatic for χ. We want to check that A is nowhere

dense. We may as well assume A is infinite. For c ∈ C we must find b ∈ C with

b ⊆ c and b ∩ A = ∅. Fix cn ∈ C. Since A is infinite and Sn is coinfinite in S we

may find distinct p, q ∈ A ∩ Sn. Then χ(p, x) = χ(q, x) for all x ∈ bp,qn which are

≺ above p and q and thus bp,qn ∩ A is finite since A is polychromatic. Hence A is

empty on a subinterval bp,qn which itself is a subset of cn.

Let us temporarily call an ultrafilter weakly nowhere dense if for every injective

f : ω → Q there is an A ∈ U with f(A) nowhere dense. In the terminology of

Flašková [Fla10] these are the I-friendly ultrafilters, where I is the nowhere

dense ideal. Lemma 13.19 shows that every rainbow Ramsey ultrafilter is weakly

nowhere dense. Thus it only remains for us to establish the following.

Lemma 13.20. Every weakly nowhere dense ultrafilter is nowhere dense.

Proof. We show that given a function G : ω → R we can find an injective

function F : ω → R such that for any A ⊆ ω, if F (A) is nowhere dense then

G(A) is nowhere dense. As before let C be the collection of all open intervals in

R with rational endpoints.

Claim. There is C ′ ⊆ C such that for every c ∈ C there is a t ⊆ c with t ∈ C ′, and

so that each G(n) belongs to finitely many members of C’.

Proof of Claim. Enumerate C as {cn : n ∈ ω}. For each cn let tn ⊆ cn be some

member of C that does not contain any of G(0), . . . G(n). Set C ′ = {tn : n ∈

ω}.

Now we construct F . We do so recursively. Suppose that F (0), . . . F (n − 1)

have already been defined. Let t0, . . . tm be all the members of C ′ containing G(n).
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Then t0 ∩ . . . ∩ tm is a nonempty open set. We take F (n) to be a member of

t0 ∩ . . . ∩ tm different from each of F (0), . . . F (n− 1).

Obviously F is injective. Notice also that for every n ∈ ω and every t ∈ C ′,

F (n) ∈ t whenever G(n) ∈ t. We can use this property to see that F is as desired.

For suppose A ⊆ ω with F (A) nowhere dense. We check that G(A) is nowhere

dense. Let s ∈ C. Since F (A) is nowhere dense there is u ∈ C with u ⊆ s so

that F (A)∩ u is empty. Take t ∈ C ′ with t ⊆ u. Then since F (A)∩ t is empty it

follows that G(A) ∩ t is empty: if n ∈ A and G(n) ∈ t then F (n) ∈ t.

13.4 A rainbow Ramsey ultrafilter which is not discrete

In this subsection we use MA to construct a rainbow Ramsey ultrafilter U which

is not discrete. It is enough to construct U an ultrafilter on Q which contains no

discrete subset of Q but which contains a polychromatic set for every 2-bounded

coloring on Q.

Definition 13.21. Let A ⊆ Q. We define Lk(A) ⊆ Q by induction on k ∈ ω.

1. L0(A) = A.

2. Lk+1(A) is the set of a ∈ A which are limit points of Lk(A).

If there exists k such that Lk(A) = ∅ we set CB(A) equal to the least such k.

Otherwise we say CB(A) ≥ ω.

For A without a perfect kernel CB(A) is just the usual Cantor-Bendixson rank

for finitely ranked sets. Let I be the collection of all A ⊆ Q with CB(A) < ω.

The following proposition is well-known but we include a proof since it uses ideas

we will need later in the more delicate situation of Proposition 13.28.
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Proposition 13.22. The set I contains every discrete subset of Q and is an

ideal. In fact if CB(A ∪B) > k + l then CB(A) > k or CB(B) > l.

Proof. Every discrete subset of Q belongs to I since a set is discrete exactly when

CB(A) < 2.

To show that I is an ideal, fix A,B ⊆ Q. We show that if Lk+l(A ∪ B) 6= ∅

then either Lk(A) 6= ∅ or Ll(B) 6= ∅.

For our purposes a tree (T,<T ) is a partially ordered set so that for each node

x ∈ T the set of predecessors of x is well-ordered by <. Let pT (x) be the set of

predecessors of x. For each x ∈ T we let the height of x, written ht(x), be equal

to the order-type of pT (x). The height of T , written htT (T ), is the maximum of

the heights of its elements. The kth level of T is all x ∈ T with htT (x) = k.

Now let T be the collection of all trees T with the following properties:

1. T has finite height.

2. T ⊆ A ∪B.

3. Every x ∈ T with htT (x) < ht(T ) has infinitely many successors. These

can be enumerated {yn : n ∈ ω} where limn<ω yn = x.

4. For each k ≤ ht(T ) either every x ∈ T with htT (x) = k belongs to A, or

every x ∈ T with htT (x) = k belongs to B.

If x ∈ Lk(A∪B) then by induction on k it may be shown that there is T ∈ T

with root x and htT (T ) = k. Thus if there is some x ∈ Lk+l(A∪B) then there is

a T ∈ T with root x and htT (T ) = k + l. Then T has k + l + 1 levels so either

k + 1 levels are subsets of A or l + 1 levels are subsets of B. It is easy to see if

a node in A has k levels above which are subsets of A then that node belongs to

Lk(A). Similarly for B and l.
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There is an unfortunate complication in the argument to come. Unlike our

constructions in Subsections 13.1 and 13.2 we will not be able to generate U

from a tower; there are countable length towers of sets not in I which cannot be

extended by a set not in I.

The key lemma in the construction of U is the following.

Lemma 13.23. Assume MA. Let S be a filter base with S∩I = ∅ and |S| < 2ω

and let χ be a 2-bounded coloring on Q. There is a polychromatic B ⊆ Q such

that B ∩ S 6∈ I for every S ∈ S.

Using Lemma 13.23 to construct an appropriate U is a routine recursion of

length continuum. So we turn to proving Lemma 13.23. Fix S a filter base with

S ∩ I = ∅ and |S| < 2ω and fix χ : [Q]2 → ω a 2-bounded coloring. Throughout

the rest of this section we assume MA. For ε > 0 and a ∈ Q we let Nε(a) denote

the ε-neighborhood around a. Fix a well-ordering ≺ on Q of ordertype ω; our

definition of normal for subsets Q is the same as Definition 13.7, but using ≺

instead of <.

Proposition 13.24. There is a normal A ⊆ Q with A ∩ S 6∈ I for each S ∈ S.

Proof. We apply MA to the partial order of finite normal subsets of Q ordered

by X1 ≤ X0 if X0 ⊆ X1. The point is to arrange the dense sets so that for each

k ∈ ω and S ∈ S we eventually add a member of Lk(S), and once we have added

some a ∈ Lk+1(S) we add for each rational ε > 0 a member of Lk(S) ∩ Nε(a).

The density of the sets follows from the fact that each S 6∈ I and the fact that

if X ⊆ Q is finite and normal then X ∪ {a} is normal for all but finitely many

a ∈ Q.

Now fix A as in Proposition 13.24. We want to build a polychromatic B ⊆ A

with each B ∩S 6∈ I. We will build B by finite approximations, which we denote
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by X, and when we add a proposed limit point b to B we have to make sure that

b is a limit point not only of E(X) but also of E(X ∪ b). Hence the following

definition.

Definition 13.25. Let X ⊆ A be finite and polychromatic and let S ∈ S. We

define Lkpol(X,S) by induction on k ∈ ω.

1. L0
pol(X,S) = E(X) ∩ S.

2. Lk+1
pol (X,S) is the set of a ∈ E(X)∩S which are limit points of Lkpol(X∪a, S).

If there exists k such that Lkpol(X,S) = ∅ we set CBpol(X,S) equal to the least

such k. Otherwise we say CBpol(X,S) ≥ ω.

We prove the analogue of Proposition 13.8. Define h : ω2 → ω by recursion

on the first coordinate. Take h(0, n) = n and h(k + 1, n) = n+ 1 + h(k, n+ 1).

Proposition 13.26. Suppose n = |X| and a0, . . . ah(k,n) are distinct members of

E(X) ∩ S. Then

Lkpol(X,S) ⊆∗ Lkpol(X ∪ a0, S) ∪ . . . ∪ Lkpol(X ∪ ah(k,n), S).

Proof. The base case k = 0 is just Proposition 13.8.

For the successor case let y ∈ Lk+1
pol (X,S) be ≺ above all of the ai. By

Proposition 13.8 there are at most n + 1 choices of i with y 6∈ E(X ∪ ai) or

equivalently ai 6∈ E(X ∪ y). Hence by relabeling we may assume that ai ∈

E(X ∪ y) for i ≤ h(k, n + 1). By definition y is a limit point of Lkpol(X ∪ y, S)

and by induction we have

Lkpol(X ∪ y, S) ⊆∗ Lkpol(X ∪ y ∪ a0, S) ∪ . . . ∪ Lkpol(X ∪ y ∪ ah(k,n+1), S).

Thus there is i such that y is a limit point of Lkpol(X ∪ y ∪ ai, S). Since y ∈

E(X ∪ ai) ∩ S that gives y ∈ Lk+1
pol (X ∪ ai, S).

80



Proposition 13.27. For each S ∈ S we have CBpol(∅, S) ≥ ω.

Proof. We must prove that Lkpol(X,S) 6= ∅ for each k < ω. Define v : ω2 → ω

by recursion on the first coordinate. Take v(0, n) = 1 and v(k+ 1, n) = v(k, n) +

h(k, n) + 2.

To prove the proposition, we prove the following more general fact by induc-

tion on k. For X ⊆ A with |X| = n and U an open subset of Q,

(∗) if Lv(k,n)+1(E(X) ∩ S) ∩ U 6= ∅ then Lkpol(X,S) ∩ U is infinite.

Since CB(E(∅) ∩ S) ≥ ω, this statement yields the proposition when used with

X = ∅ and U = Q.

The base case k = 0 is trivial.

For the successor step k + 1 suppose that Lk+1
pol (X,S) ∩ U is finite, yet

Lv(k+1,n)+1(E(X) ∩ S) ∩ U is not empty. We define sequences {yi : i ≤ h(k, n)},

{εi : i ≤ h(k, n)} by recursion so that

1. Nε0(y0) ⊆ U

2. yi ∈ Lv(k+1,n)−i(E(X) ∩ S)

3. Nεi(yi) ∩ Lkpol(X ∪ yi, S) ⊆ {yi}

4. Nεi+1
(yi+1) ⊆ Nεi(yi).

Start by fixing some y a member of Lv(k+1,n)+1(E(X)∩S)∩U . By definition y

is a limit point of Lv(k+1,n)(E(X)∩S); since y ∈ U there must be infinitely many

members of Lv(k+1,n)(E(X)∩S)∩U ; one of them does not belong to Lk+1
pol (X,S),

take this to be y0. Since y0 6∈ Lk+1
pol (X,S) we may select some small ε0 satisfying

(1) and (3). The construction of the rest of the sequence follows suit and we

obtain yi+1 from yi in a manner similar to how we obtained y0 from y.
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Now take y = yh(k,n) and ε = εh(k,n). By (3) and (4) we have that Nε(y) ∩

Lkpol(X ∪ yi, S) is finite for i ≤ h(k, n). Also y ∈ Nε(y) ∩ Lv(k,n)+1(E(X) ∩ S) so

that by induction Nε(y)∩Lkpol(X,S) is infinite. And yet by Proposition 13.26 we

have

Nε(y) ∩ Lkpol(X,S) ⊆∗ Nε(y) ∩ (Lkpol(X ∪ y0, S) ∪ . . . ∪ Lkpol(X ∪ yh(k,n), S)).

This is a contradiction because the right hand side is supposedly finite.

Proposition 13.28. Suppose that X ⊆ A with |X| ≤ n and CBpol(X,S) ≥

ω for each S ∈ S. Then there are at most n elements a in E(X) such that

CBpol(X ∪ a, S) < ω for some S ∈ S.

Proof. Suppose for contradiction that ai ∈ E(X) and Si ∈ S for i ≤ n with

CBpol(X ∪ ai, Si) < ω. Set S =
⋂
i≤n Si. Then CBpol(X,S) ≥ ω while CBpol(X ∪

ai, S) < ω for each i ≤ n. By Proposition 13.8 we have

E(X) ∩ S ⊆∗ (E(X ∪ a0) ∪ . . . ∪ E(X ∪ an)) ∩ S.

We will use this obtain a contradiction by showing that for each l ∈ ω there is

some i ≤ n so that Llpol(X ∪ ai, S) is not empty. So fix l ∈ ω.

Let T be the collection of all trees T with the following properties:

1. T has finite height.

2. x <T y in T implies x ≺ y.

3. T ⊆ (E(X ∪ a0) ∪ . . . E(X ∪ an)) ∩ S.

4. Every x ∈ T with htT (x) < ht(T ) has infinitely many successors. These

can enumerated be as {yn : n ∈ ω} where limn<ω yn = x.
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5. For each k ≤ ht(T ) for some i ≤ n we have that all x in T with ht(x) = k

belongs to E(X ∪ ai).

6. x ∈ E(X ∪ pT (x)) for each x ∈ T . (Recall that pT (x) denotes the set of

predecessors of x in T .)

Let F be a finite set so that (E(X)∩S)∪F ⊆ (E(X∪a0)∪. . .∪E(X∪an))∩S.

If x ∈ Lkpol(X,S) and does not belong to F it can be shown by induction on k

(letting X vary) that there is a T ∈ T with root x and ht(T ) = k. Since

CBpol(X,S) ≥ ω it follows that we may find T ∈ T with ht(T ) arbitrarily large.

Let Ti be the set of all trees T ′ ⊆ E(X ∪ ai) ∩ S satisfying clauses 1,2,

and 4 of the definition of T with the additional property that if x ∈ T ′ then

x ∈ E(X ∪ ai ∪ pT ′(x)). If x is the root of some T ′ ∈ Ti with ht(T ′) = l then

x ∈ Llpol(X ∪ ai, S), so we just need to find such a tree.

Let T ∈ T with ht(T ) > 2l(n + 1). For some i ≤ n there are 2l + 1 levels

of the tree with every member of that level belonging to E(X ∪ ai). Let T0 be

the subtree of T consisting of just those levels, thinned appropriately so as to

satisfy the limit condition from (4). Then ht(T0) = 2l and T0 satisfies all the

requirements of the definition of membership in Ti except possibly one: while

each x ∈ T0 belongs to both E(X ∪ ai) and E(X ∪ pT0(x)) it may be that x does

not belong to E(X ∪ ai ∪ pT0(x)).

We define by recursion a sequence of trees {Tk : k ≤ l} so that

(i) ht(Tk+1) = ht(Tk)− 1 = 2l − k

(ii) For x ∈ Tk with htTk(x) > ht(Tk)− k we have x ∈ E(X ∪ ai ∪ pTk(x)).

Given the sequence we may take T ′ to be Tl. So let us describe the recursion.

Say Tk is given with k < l. For j < htTk(x) let pTk(j, x) denote the unique
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y ∈ pTk(x) with htTk(y) = j. If x ∈ Tk and x 6∈ E(X ∪ ai ∪ pTk(x)) then by

normality of A and the fact that x belongs to both E(X∪ai) and (E(X)∪pT0(x))

there is some j < htTk(x) with χ(pTk(j, x), x) = χ(a, x). Since χ is 2-bounded

there is at most one such j. For each x ∈ Tk with htTk(x) = ht(Tk) − k let b(x)

equal such a j if it exists. We may thin Tk so that b(x) is the same j for all

such x; then form Tk+1 by removing level j from Tk and thinning as necessary to

preserve the limit condition in clause 4 of the definition of T .

Proposition 13.29. Suppose that c ∈ A, X ⊆ A is finite and S ∈ S. If c is a

limit point of Lkpol(X,S) then for all but finitely many a ∈ E(X) ∩ S we have

that c is a limit point of Lkpol(X ∪ a, S).

Proof. This is immediate from Proposition 13.26.

Proof of Lemma 13.23. Take P to be the notion of forcing consisting of conditions

〈X, f〉 where

1. X ⊆ A is finite and polychromatic with CBpol(X,S) ≥ ω for each S ∈ S.

2. f is a finite partial function from S ×ω×ω into X so that if f(S, n, k) = c

then c ∈ S is a limit point of Lkpol(X,S).

(We could also prove this lemma using the same forcing notion but without

the commitments f , but including them will help keep the argument organized.)

We order P by inclusion: 〈X ′, f ′〉 ≤ 〈X, f〉 if and only X ′ ⊇ X and f ′ ⊇ f . That

P is nonempty follows from Proposition 13.27. A simple ∆-system argument

establishes that P is ccc.

Let DS,n,k be the collection of conditions 〈X, f〉 with (S, n, k) ∈ dom(f). To

check density let 〈X, f〉 ∈ P with (S, n, k) 6∈ dom(f). The set Lk+1
pol (X,S) is

infinite. Together Propositions 13.28 and 13.29 imply that for all but finitely
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many c ∈ Lk+1
pol (X,S), the pair 〈X ∪ {c}, f ∪ {〈(S, n, k), c〉}〉 is a condition. It

clearly belongs to DS,n,k.

For rational ε > 0 let ES,n,k,ε be the collection of conditions 〈X, f〉 with

f(S, n, k + 1) = c where for some m we have f(S,m, k) = d and d ∈ Nε(c).

To check density let 〈X, f〉 ∈ P and without loss of generality assume 〈X, f〉 ∈

DS,n,k+1 and f(S, n, k + 1) = c. Then Nε(c) ∩ Lk+1
pol (X,S) is infinite and together

Propositions 13.28 and 13.29 imply that for all but finitely many d ∈ Nε(c) ∩

Lk+1
pol (X,S) the pair 〈X∪{d}, f∪{〈(S,m, k), d〉}〉 is a condition. It clearly belongs

to ES,n,k,ε.

Finally let D′S,n,ε be the collection of conditions 〈X, f〉 with f(S, n, 0) = c

where we have some d ∈ X∩S∩Nε(c). Density of D′S,n,ε can be checked similarly

to the above.

Using MA let G ⊆ P be a filter intersecting the dense sets described above.

Let B =
⋃
{X : 〈X, f〉 ∈ G} and let F =

⋃
{f : 〈X, f〉 ∈ G}. Then B

is polychromatic and an induction on k shows that each F (S, n, k) belongs to

Lk+1(B ∩ S). Thus CB(B ∩ S) ≥ ω.

13.5 A rainbow Ramsey ultrafilter Rudin-Blass above a non-rainbow

Ramsey ultrafilter

We close our analysis of rainbow Ramsey ultrafilters by showing that as a class of

special ultrafilters on ω, the class of rainbow Ramsey ultrafilters has an unusual

non-closure property. Recall the definition of the Rudin-Blass preordering, a

refinement of the usual Rudin-Keisler preorder on ultrafilters on ω.

Definition 13.30 ([LZ98]). Let U ,V be ultrafilters on ω. We write U ≤RB V

if there is a finite-to-one function f : ω → ω such that A ∈ U if and only if
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f−1[A] ∈ V .

Except for the class of rainbow Ramsey ultrafilters, every special class of ul-

trafilters considered in this thesis — and indeed every special class of ultrafilter

in the literature which is known to this author — is closed downwards in the

Rudin-Blass ordering on ultrafilters. The remainder of this section is dedicated

to the proof that this is not the case for the class of rainbow Ramsey ultrafil-

ters. The construction, while not entirely straightforward, is very similar to the

construction of rainbow Ramsey ultrafilters in previous subsections and thus we

will be sparser with the details here. The hypothetical reader who has made it

through those sections will have no trouble filling in the gaps.

Theorem 13.31. Assume MA. There exist ultrafilters U ≤RB V with V a rainbow

Ramsey ultrafilter and U not a rainbow Ramsey ultrafilter.

As in Subsection 13.2, let IRamsey be the collection of X ⊆ [ω]2 for which

there exists an N so that N ≤ |A| implies [A]2 6⊆ X. Fix f : ω → [ω]2 a finite-

to-one function, with |f−1{m,n}| increasing as m and n increase; for the sake of

specificity let us say that |f−1{m,n}| = m+ n.

Our goal is to construct a rainbow Ramsey ultrafilter V on ω with the property

that for every B ∈ V we have that f [B] 6∈ IRamsey. Then we may let U be the

ultrafilter on [ω]2 generated by {f [B] : B ∈ V}. Then U ≤RB V by definition

and U ∩ IRamsey = ∅, and in particular U is not rainbow Ramsey by Proposition

13.16.

Let J be the collection of those A ⊆ ω for which there exists an N ∈ ω

so that whenever C ⊆ ω with |C| ≥ N , there is some {m,n} ∈ [C]2 with

|A ∩ f−1{m,n}| < N .

Proposition 13.32. The set J is an ideal.
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Proof. Given N ∈ ω, if m,n > N then |f−1{m,n}| ≥ N and hence ω 6∈ J .

Clearly J is downward closed under ⊆.

We check that J is closed under ∪. Suppose A,B ∈ J , witnessed by N0, N1

respectively. Suppose for contradiction that A ∪ B 6∈ J . Let N be greater than

N0+N1, and let M be larger than the finite Ramsey number R(N). Since A∪B 6∈

J , by definition of J there is C with |C| ≥ M and |(A ∪ B) ∩ f−1{m,n}| ≥ M

for each {m,n} ∈ [C]2. Two-color [C]2 by giving {m,n} color 0 if |A∩f−1{m,n}|

is greater than N0. By choice of M there is a complete monochromatic subgraph

[D]2 of [C]2 with |Y | ≥ N . If [D]2 is monochromatically colored 0, we contradict

the choice of N0. But if [D]2 is monochromatically colored 1, since N > N0 +N1

we have |B ∩ f−1{m,n}| is greater than N1 for each {m,n} ∈ [D]2, contradicting

the choice of N1.

The ideal J contains every set B ⊆ ω with f [B] ∈ IRamsey. Thus it will be

sufficient to construct a rainbow Ramsey ultrafilter disjoint from J .

Proposition 13.33. Whenever χ : [ω]2 → ω is 2-bounded and A 6∈ J , there is

a normal B ⊆ A with B 6∈ J .

Proof. It is enough to show that given X ⊆ ω a finite set on which χ is normal

and given N ∈ ω, we may find C ⊆ ω with |C| = N and a finite Y ⊆ A with

X ∪ Y normal and

|Y ∩ f−1{m,n}| ≥ N for each {m,n} ∈ [C]2

for then B may be constructed by a straightforward induction.

Say |X| = p. Using the fact that A 6∈ J , for any M ∈ ω we can always find

a C ⊆ ω with |C| = N and |A ∩ f−1{m,n}| ≥ M for each {m,n} ∈ [C]2. The

crux of the remainder of the argument is that as long as we take M large enough
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we will be able to take enough points from each f−1{m,n} ∩ A to form Y . To

facilitate our choice of an appropriate M we define a function h : ω → ω by the

following recursion. Let h(0) =
(
p
2

)
+ 1, and h(k + 1) = h(k) +

(
p+k+1

2

)
+ 1.

We let M = h(
(
N
2

)
N) and construct Y in

(
N
2

)
N stages, selecting one point to

add to Y at each stage while maintaining the condition of normality of X ∪ Y .

We use Yj+1 to denote the approximation of Y constructed at the jth stage; thus

Y0 = ∅ and |Yj+1| = j + 1. We must eventually add N members from each of the

f−1{m,n} where {m,n} ∈ [C]2. The order of which f−1{m,n} we select from

will depend on how the sets A ∩ f−1{m,n} are interleaved.

For each stage j of the construction we let Pj = {{m,n} ∈ [C]2 | |Yj ∩

f−1{m,n}| < N}, and let Zj =
⋃
{m,n}∈Pj A ∩ f

−1{m,n}. We may assume

max(X) < min(Z0). We maintain that max(X ∪ Yj) is no larger than the h(j −

1)th element of Zj. At stage j itself, as in the proof of Proposition 13.10 and since

h(j)−h(j−1) =
(|X|+|Yj |

2

)
+1, there is some yj among the first h(j) elements of Zj

and above max(X∪Yj), so that X∪Yj∪{yj} is normal. Set Yj+1 = Yj∪{yj}.

Proposition 13.34. Whenever χ : [ω]2 → ω is 2-bounded and A 6∈ J is normal,

there is a polychromatic B ⊆ A with B 6∈ J .

Proof. We need to construct B so that for every N , we have some C with |C| ≥ N

so that |B ∩ f−1{m,n}| ≥ N for each {m,n} ∈ [C]2. Suppose we have X ⊆ ω

a finite set, which represents some finite initial segment of B that has been

constructed, and we wish to extend this segment to meet the condition for N .

Iterate as in the proof of Proposition 13.33, but using the following fact for the

inner recursion when defining the sets Yj, instead of the appeal to the proof of

Proposition 13.10. Given any N0, N, p ∈ ω there are M and N1 so that if X ⊆ ω

with |X| = p, C ⊆ ω with |C| = N , P ⊆ [C]2, and Zm,n ⊆ ω with |E(X)∩Zm,n| ≥

N1 for each {m,n} ∈ P , then one of the firstM members of E(X)∩
⋃
{m,n}∈P Zm,n,
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say x, gives X ∪ {x} polychromatic and |E(X ∪ {x}) ∩ Zm,n| > N0 for each

{m,n} ∈ P . This fact is proved using Proposition 13.8. We leave the details to

the reader.

Proposition 13.35. Assume MA. If 〈Ti : i < λ〉 is a tower of sets with λ < 2ℵ0

and each Ti 6∈ J , there is Tλ 6∈ J such that Tλ ⊆∗ Ti for all i < λ.

Proof. Almost identical to Proposition 13.15.

Putting together the previous propositions to build (assuming MA) a rainbow

Ramsey ultrafilter V disjoint from J is done just like the main construction in

Subsection 13.1. This completes the proof of Theorem 13.31.

14 Polychromatic Ramsey theory and cardinal character-

istics of the continuum

In this short final section we give a few well-known cardinal characteristics char-

acterizations with the flavor of polychromatic Ramsey theory. The colorings we

use here will be unary.

Definition 14.1. Let F ⊆ ωω. We let par(F) denote the least size of a family

G ⊆ F for which for every X ∈ [ω]ω there is f ∈ G so that f is neither eventually

constant nor eventually injective on X.

1. par1c = par(ωω).

2. parc = par(2ω)

3. par1 = par(F) where F consists on all finite-to-one functions.

4. parbdd = par(F) where F consists of all f with each |f−1(n)| ≤ 2.
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Our notation is consistent with that of Blass [Bla93] who introduced par1c.

The cardinal parc is just the splitting number s. Let us note that Galvin’s trick

applied to the unary 2-bounded colorings corresponding to parbdd yields the in-

equality parc ≤ parbdd.

We also introduce notation for the dual characteristics.

Definition 14.2. Let F ⊆ ωω. We let hom(F) denote the least size of a X ⊆ [ω]ω

so that for every f ∈ F there is someX ∈ X so that f is either eventually constant

or eventually injective on X.

1. hom1c = hom(ωω).

2. homc = hom(2ω)

3. hom1 = hom(F) where F consists on all finite-to-one functions.

4. hombdd = hom(F) where F consists of all f with each |f−1(n)| ≤ 2.

Proposition 14.3. par1 = b, and dually hom1 = d.

Proof. Given f ∈ ωω strictly increasing let gf be some finite to one function

which is constant on each interval [f(2n), f(2n+ 2)). Then if X ∈ [ω]ω and gf is

injective on a cofinite subset of X it follows that f ≤∗ eX . This shows par1 ≤ b.

The dual argument shows that d ≤ hom1.

For each strictly increasing f ∈ ωω let Xf ∈ [ω]ω be the set {fn(0) : n ∈ ω}.

For each finite-to-one function g ∈ ωω let hg ∈ ωω be such that if l ≥ hg(n) then

g(l) 6∈ {g(0), . . . g(n)}. Suppose hg ≤∗ f and take N for which f(n) ≥ hg(n) for

all n ≥ N . Then g is injective on Xf \ N . This shows hom1 ≤ d. The dual

argument shows that b ≤ par1.

Theorem 14.4. parbdd = non(M), and dually hombdd = cov(M).
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Proof. First we prove parbdd ≤ non(M). The collection F ⊆ ωω of two-to-one

functions is closed as a subset of Baire space and thus may be regarded as a Polish

space in its own right. Thus if non(M) < parbdd there exists some nonmeager

A ⊆ F with cardinality strictly less than parbdd. By definition of parbdd there

exists an infinite X ⊆ ω for which

A ⊆ {f ∈ F : (∃N)(∀n,m ∈ X)n,m ≥ N → f(n) 6= f(m)}.

But this latter set is meager, contradiction.

The dual inequality, cov(M) ≤ hombdd, can be obtained using a dual ar-

gument. Alternatively one may notice that by its definition hombdd is a Σ0
2

characteristic and apply Proposition 3 and Theorem 5 of [Bla93].

Next we prove hombdd ≤ cov(M). We use Bartoszyński’s characterization of

cov(M) in terms of slaloms. Given h ∈ ωω, an h-slalom is a function φ with

domain ω so that each φ(n) ⊆ ω with |φ(n)| ≤ h(n). A slalom is just an h-slalom

where h is the identity function. Let Ch denote the set of h-slaloms and let C

denote the set of slaloms. Then cov(M) is the least size of a family F ⊆ ωω

such that for every φ ∈ C there is some f ∈ F so that for all but finitely many

n we have f(n) 6∈ φ(n). For a proof of this characterization, see Lemma 2.4.2 in

[BJ95]. This proof shows that in fact the same characterization will hold with

h-slaloms in the place of slaloms, as long as h ∈ ωω has values which limit to

infinity.

We start by massaging Bartoszyński’s characterization slightly, and show that

we may take F to consist of strictly increasing functions. For each f ∈ ωω we

associate a strictly increasing gf ∈ ωω as follows. If f is finite-to-one, we fix

some X = {xn : n ∈ ω} (enumerated in increasing order) on which f is strictly

increasing and set gf (n) = f(xn). Otherwise we take gf to be the identify function

(or something equally arbitrary.) Let h ∈ ωω be defined by h(n) = (n+1)(n+2)
2

.
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We claim that if F ⊆ ωω is such that (∀φ ∈ Ch)(∃f ∈ F)(∀∞n)f(n) 6∈ φ(n) then

the family {gf : f ∈ F} has the same property (with respect to C rather than

Ch.)

Given φ ∈ C associate the function ψφ ∈ Ch defined by

ψφ(n) = φ(0) ∪ . . . φ(n) ∪ {0, . . . n}.

It is enough to show that if (∀∞n)f(n) 6∈ ψφ(n) then (∀∞n)gf (n) 6∈ φ(n). If

(∀∞n)f(n) 6∈ ψφ(n) f certainly can only take each value finitely often. Further

for sufficiently large n we have gf (n) = f(xn) 6∈ ψφ(xn). Then for such n,

gf (n) 6∈ φ(0) ∪ . . . ∪ φ(xn).

Since n ≤ xn we have gf (n) 6∈ φ(n), as desired.

We now use the massaged characterization to finish proving the theorem.

Given strictly increasing f ∈ ωω associate Af ∈ [ω]ω given by Af = {fn(0) :

n ∈ ω}. (To avoid the technicality that Af might contain only a single element,

consider only those f with f(0) > 1.) To each two-to-one g ∈ ωω we associate a

slalom φg defined as follows. First define hg ∈ ωω by setting hg(n) = m where

m 6= n is the unique m such that g(n) = g(m) if such m exists, and set hg(n) = n

if there is no such m. Then define φg by

φg(n) = {hg(1), . . . hg(n)}.

We verify that if (∀∞n)f(n) 6∈ φg(n) then g is injective on a cofinite subset

of Af . Say N is such that f(n) 6∈ φg(n) for n ≥ N . We may assume N > 0.

Then g is injective on Af \N . Otherwise for some k,m ∈ ω with fk(0) ≥ N we

would have g(fk(0)) = g(fk+m+1(0)). Then hg(f
k(0)) = fk+m+1(0). Because f

is increasing and fk(0) 6= 0 (as N > 0) we have hg(f
k(0)) ∈ φg(fk+m(0)). Thus

f(fk+m(0)) ∈ φg(fk+m(0)), contradicting fk+m(0) ≥ N .
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